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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Laser welding (LW) thanks to its flexibility, limited energy consumption and simple realization has a prominent role in several industrial sectors. 
LW process requires careful parameters’ tuning to avoid generating internal defects in the microstructure or a poor weld depth, which reduce the 
joining mechanical strength and result in waste. This work exploits a supervised machine learning algorithm to optimize the process parameters 
to minimize the generated defects, while catering for design specifications and tolerances to predict defect generation probability. The work 
outputs a predictive quality control model to reduce non-destructive controls in the LW of aluminum for automotive applications. 
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1. Introduction 

Among the various welding techniques available, laser 
welding (LW) is particularly attractive and performing 
compared to other joining technologies due to multiple factors. 
First of all, the simple setup does not require mechanical 
contact with the components to be welded, and ensures good 
final quality in terms of penetration depth, mechanical 
properties and stability, and also a higher welding speed [1]. 
Thus, due to its flexibility, effectiveness, and productivity, LW 
is a technology adopted for industrial applications in a variety 
of industries, e.g., aerospace, automotive, military, marine, and 
electronics [2].  

Despite these benefits, the inherent chaotic nature of the 
laser system can generate several defects and non-conformities, 

e.g. sputter and weld break-ins, non-conforming laser weld 
depth and microstructural defects (porosity and/or cracks), thus 
requiring accurate quality control procedures. Post-process 
inspections are essential to inspect weld geometry and detect 
visible and internal defects, which are the major defects that 
companies would like to minimize to avoid scraps, reworks, 
and related poor-quality costs. Technologies used are eddy 
current, X-CT, ultrasonic techniques and, for innovative 
materials being developed or being introduced into a 
production line, destructive inspections requiring cross-
sectioning and optical microscopes inspections. In particular, 
the penetration depth of the weld bead is one of the most critical 
parameters to ensure the final quality of the process and 
guarantee adequate mechanical properties [2]. Accordingly, 
identifying suitable post-inspection prediction models from 
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process parameters to minimize generated defects is essential 
in pre-production and R&D. In the literature, several Machine 
Learning (ML) approaches are used to develop the model and 
to optimize the process parameters for improved LW process. 
These range from supervised to unsupervised techniques [2–4]. 
Typical approaches include Design of Experiments (DoE) and 
relevant analysis methodology, e.g. Response Surface 
Methodology (RSM) and Generalized Linear Model (GLM) 
[5], Gaussian Process Regression (GPR) [6], Kernel-based 
regression models [2,4], Support Vector Machine Regression 
(SVM or SVR) [7], and Classification and Regression Trees 
(CART) [8]. In addition, besides explainable artificial 
intelligence [9], also Genetic Programming (GP) and Neural 
Networks (NN) are adopted for welding applications [10]. 

In this paper, defects related to non-conforming weld depth 
and microstructural defects – with respect to specifications – 
are combined to derive an overall probabilistic estimate of 
occurrence of a (generic) defect in laser welded parts. In detail, 
a GLM and a CART will be used to model the relationship 
between process parameters and, respectively, weld depth and 
the presence of relevant microstructural defects. Then, a 
process optimization is performed to maximise the weld depth, 
considering the absence of microstructural defects. In such an 
optimized condition, a probability of occurrence of a non-
conforming weld depth is derived. Both probabilities of weld 
depth and microstructural defects are combined to assess the 
overall quality of welded parts. The proposed approach is 
applied to a real industrial production of laser-welded steel parts 
for automotive applications. 

The rest of the paper is structured as follows: Section 2 
presents the considered case study, the experimental 
methodology, and the applied ML techniques to model and 
optimize the process and predict the probability of defects 
generation, while Section 3 presents and discusses the results, 
and Section 4 finally draws the conclusions.  

2. Materials and Method 

This study addresses the optimization of an industrially 
relevant case study, offered by AGLA Power Transmission, 
FORZA SMART INDUSTRY and LBN Ricerca, interacting 
companies in automotive field. The LW process is a 
manufacturing step for the support of a clutch disc in a CVT 
gearbox. LW is performed with state-of-the-art manufacturing 
equipment, i.e. a Ytterbium laser source, with tunable power up 
to 10 kW and a single-mode beam. 

According to the literature, the customer requires the 
manufacturing of the component within tight specification of 
the minimum achievable laser weld depth Sn, and with strict 
control of the admissible type and the number of internal 
defects. The latter, in particular, can be of several types. In the 
considered case study, specifications were provided in terms of 
internal porosity and cracks. The former being acceptable up to 
a certain maximum threshold, and the latter never being 
tolerated. The weld geometry is an edge butt joint, cross section 
for the investigations have been carried out at 180° from the 
start of the welding process. For confidentiality reasons, the 
exact geometry of the manufactured component and the 

specified maximum tolerable porosity threshold are not 
disclosed.  

2.1. Experimental set-up 

A set of components was manufactured in different 
processing conditions to investigate the main process 
parameters, identified according to literature and company 
historical data. In particular, the laser power, the welding speed 
v and the focus offset FO were considered, in accordance with 
industrial experience and literature [11,12]. Preliminary 
investigation considered also the effect of shielding gas flow, 
but a lack of significance resulted. A total of 88 parts were 
manufactured according to an unbalanced experimental design 
[13], due to company resource availability, with considered 
process parameters ranging over the levels reported in Table 1, 
and including some replication in randomly selected 
conditions. For confidentiality, the laser power is reported 
normalized to the laser spot area, i.e. as power density Pd. 

Table 1 Considered parameters values in the implemented experimental design. 
Values of welding speed are in angular units as the welded component is axially 
symmetric. Power values are normalized to the laser spot area to avoid the 
disclosure of sensitive information and the power density is thus reported. 

v / rad/s Pd / W/mm2 FO / mm 
1.5 12025 -20 
1.8 13086 -16 
2.1 14147 -12 
2.4 15031 -8 
2.7 15915 -4 

 16623 0 
 17684  

 
Once the components were manufactured, they were cross-

sectioned and prepared for inspection at optical microscopy by 
polishing with grit paper (240, 320, 800 and 1200) and diamond 
solution (6 µm, 3 µm and 1 µm). A Laborlux 12 ME Leitz with 
50× magnification objective was used to measure the weld 
depth and investigate the presence of microstructural defects. 
Weld depth Sn is reported in millimetres, the presence of the 
two types of defects, i.e. internal porosity and cracks, were 
independently marked and then combined and reported as a 
dichotomous variable, defined as follows: X=1 for the presence 
of a microstructural defect and X=0 for the absence. 

2.2. Statistical modelling 

The collected data are analyzed and used to train a 
prediction model of the considered quality variables. In 
particular, the multivariable multivariate model in Eq. (1) is 
developed: 

�𝑆𝑆� = 𝑔𝑔(𝑃𝑃�, 𝑣𝑣, 𝐹𝐹�)
𝑋𝑋 = 𝒞𝒞(𝑃𝑃�, 𝑣𝑣, 𝐹𝐹�)

 (1). 

 
Both the models are obtained by machine learning. As far as 

the function 𝑔𝑔  is concerned, i.e. the prediction of the weld 
depth Sn, it is obtained by applying a generalized linear model 
(GLM) with variable reduction by stepwise method, 
considering an alpha-to-enter and an alpha-to-remove equal to 
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0.15 [14]. This allows defining a model capable of thoroughly 
and robustly describing the relationship between statistically 
significant process parameters, their interactions, and the weld 
depth, while avoiding overfitting. A GLM is adopted for its 
generality and its implementation simplicity [14–16]. The 
considered base model is polynomial of 3rd order with all 
interactions and parameters estimated by least square 
regression [15].  Similarly, by means of CART ensemble 𝒞𝒞, 
prediction of relevant microstructural defects is obtained on the 
basis of process parameters is achieved. In particular, amongst 
the several statistical models for dichotomous variable, e.g. 
logistic regression, SVM and CART, the proposed approach 
allows suitable robustness, and flexibility while combining 
ease of readability and avoidance of overfitting by combining 
an ensemble of weak learners. The ensemble of trees is defined 
by a set of hyper-parameters, namely, the width and depth of 
each weak learner, the number of trees in the ensemble and the 
method of creation of the weak learners, e.g. boosting and 
bagging. The optimization of the hyperparameters set is a time 
and resource-intensive activity. In this study, a Bayesian 
optimization is adopted to explore the parameters’ hyperspace 
to maximize the accuracy, i.e. minimize the RMSE [17,18]. 

2.3. Process optimization 

Once the prediction model of Eq. (1) has been obtained, the 
welding process is optimized. This entails identifying the set of 
process parameters 𝝑𝝑�∗ = {𝑃𝑃�, 𝑣𝑣, 𝑣𝑣�}∗ that maximizes the weld 
depth in absence of microstructural defects, in other words: 

 

�
𝝑𝝑�∗ = argmax

��
(𝑆𝑆� = 𝑔𝑔(𝝑𝝑�))

0 = 𝒞𝒞(𝝑𝝑�∗ )
 (2). 

The problem is solved by a brute-force numerical evaluation 
of the process parameter space, i.e. evaluating Eq. (1) in all 
possible combinations of the process parameter space and then 
solving for Eq. (2) on the predicted responses. The possible 
combinations are limited to the set-up resolution of the 
industrial equipment. 

2.4. Defect generation modelling 

Although the process has been optimized, the model suffers 
from prediction uncertainty. This is liable for generating 
defects in the optimized process, resulting in scraps, rework 
and unnecessary costs [19]. Therefore, the probability of 
defects generation in optimized process conditions is essential 
to be estimated. In this work, two possible defects are 
considered: insufficient weld depth and presence of internal 
microstructural defects. 

As far as the weld depth is concerned, the process 
optimization achieves the estimation of  𝑆𝑆�∗ = 𝑔𝑔(𝝑𝝑�∗ ) . 
According to the GLM theory, this is a random variable 
normally distributed according to 𝑁𝑁(𝑆𝑆�∗, 𝑢𝑢��∗

� ) , having a 
probability density function 𝑓𝑓(𝑓𝑓𝑓 𝑓𝑓 = 𝑆𝑆�∗, 𝜎𝜎 = 𝑢𝑢��∗ ) . The 
variance of the distribution is obtained by combining the 
influence factors of the prediction model by the application of 
the law of uncertainty propagation as per the Guide to the 
expression of Uncertainty in Measurement (GUM) [20]:  

𝑢𝑢��∗
� = ��

𝜕𝜕𝑔𝑔
𝜕𝜕𝑓𝑓�

𝜕𝜕𝑔𝑔
𝜕𝜕𝑓𝑓�

𝑢𝑢(𝑓𝑓�, 𝑓𝑓�)
���

���

���

���

+ 𝑀𝑀𝑆𝑆𝑀𝑀� (3.1) 

𝑓𝑓 = {𝒂𝒂, 𝝑𝝑�} (3.2) 

𝑀𝑀𝑆𝑆𝑀𝑀� =
∑ (𝑆𝑆�,�� − 𝑆𝑆�,�)��
���

𝑛𝑛 − 1
 (3.3), 

 
where the propagation includes covariances of the GLM model 
parameters a, the process parameters 𝝑𝝑�, and the variance of 
the model residuals, i.e. the model’s mean squared error, to 
achieve the estimation of the Sn prediction interval [14,20,21]. 
Thus, the uncertainty is propagated considering k+3+1 
influence factors, where k is the number of Eq. (1) parameters, 
3 represents the process parameters, and 1 represents the model 
random fitting error. The latter is assumed to be normally 
distributed as 𝑁𝑁(0,𝑀𝑀𝑆𝑆𝑀𝑀�). 

As discussed in the Introduction, a tight control on the 
penetration depth is critical [2] and process specification that 
requires a minimum acceptable weld depth 𝑆𝑆�,���  are stated, 
where the limit is strictly application dependent. Accordingly, 
a defect in optimized process condition is identified if 𝑆𝑆�∗ <
𝑆𝑆�,���. Thus, the probability of generating a weld depth-defect 
is: 

𝑝𝑝���,�� = ℙ�𝑆𝑆�∗ < 𝑆𝑆�,���� = � 𝑓𝑓(𝑓𝑓𝑓 𝑆𝑆�∗, 𝑢𝑢��∗ )
��,���

��
𝑑𝑑𝑓𝑓 (4). 

 
The prediction model for the internal defects yields 

prediction results. The model validation, performed by a 
conventional 5-fold cross-validation, allows estimating true 
and false response rates, as per the tree diagram in Fig. 1. 

 

 

Fig. 1. Microstructural defect prediction response tree diagram, where 𝑋𝑋� is the 
predicted response and X is the true response in the validation set. 

The process optimization constraints the maximization of Sn 
to a predicted absence of defects, i.e. 𝑋𝑋� = 0 . Under this 
assumption, the probability of defects generation in optimized 
process conditions is the false negative rate, i.e.: 

 

𝑝𝑝���,µ���������� = ℙ�𝑋𝑋� = 0|𝑋𝑋 = 1� (5). 
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Overall, the probability of generated defects in optimized 
process conditions is: 

 
𝑝𝑝���,��� = 𝑝𝑝���,�� + 𝑝𝑝���,µ����������

− 𝑝𝑝���,��. 𝑝𝑝���,µ���������� 
(6), 

 
considering the defects to be independent. All computations are 
performed in MATLAB R2021b. 

3. Results and discussion 

3.1. Process and defects statistical modelling 

The 88 components were manufactured and analyzed 
according to the methodology described in Section 2.1. Fig. 2 
shows the results of the metallographic analysis identifying 
several types of defects, i.e. microporosity and cracks, as well 
as other components presenting no defects. The weld depth Sn 
was measured, and these results were exploited to train the 
prediction models as per the discussion in Section 2.2. 

The main effects plot in Fig. 3 justifies the choice of a 3rd 
order polynomial as base model for the stepwise variable 
reduction.  

 

 

Fig. 2. Results of metallographic analysis at different magnification: (a) 
defective weld: porosities and cracks (image taken at 100× magnification) with 
indication of the measured weld depth Sn, (b-c) increasing magnification of the 
defects: cracks and porosity. 

 

Fig. 3. Main effects plot for weld depth. 

The GLM model for Sn is reported in Eq. (7), with 
parameters in homogeneous measurement unit to Table 1. 

 
𝑆𝑆� = 0.1329 ∙ 𝐹𝐹� + 8.4 × 10�� ∙ 𝑃𝑃� + 10.129 ∙ 𝑣𝑣 − 0.0091 ∙ 𝐹𝐹�� + 

−1.9 × 10�� ∙ 𝐹𝐹� ∙ 𝑃𝑃� − 6.6654 ∙ 𝑣𝑣� + 1.246 ∙ 𝑣𝑣� (7). 
 
The model shows very good predictive and fitting 

capability, based on the predicted R-squared value of 92.5%. 
Additionally, the residuals were tested for normality, through a 
normal probability plot, shown in Fig. 4, and an Anderson-
Darling test, which resulted in a p-value of 14.5% which cannot 
reject the null hypothesis of normality. Residuals showed a 
standard deviation of 0.2995 mm. Similarly, the prediction 
model for the internal defects was trained and validated. A 
CART based on an ensemble of week learners was selected and 
trained with hyperparameters optimization by Bayesian 
algorithm. The optimization selected a RUSBoosting for 
unbalanced classes [22], with 439 weak learners with a 
maximum number of nodes of 29. The model shows an 
adequate predictive capability, presenting an overall accuracy 
of 61.4%, and Table 2 reports the true and false positive and 
negative rates.  

 

 

Fig. 4. NPP of GLM residuals for weld depth. Normality cannot be 
qualitatively disproved. 

Table 2. True and false prediction rates of microstructural defects (see Fig. 1). 

 𝑋𝑋� 
0 1 

𝑋𝑋 0 0.2954 0.2387 
1 0.1477 0.3182 

 

3.2. Process optimization 

The process was optimized exploiting the trained model 
defining Eq. (1) to solve for the best process parameters set 𝝑𝝑�∗  
according to the methodology described in Section 2.3. The 
optimization is carried out seeking the parameters within the 
maximum process parameters window defined by the 
experimental plan. Fig. 5 shows the response surfaces for the 
model in Eq. (1), and the location of the optimized process 
parameters set 𝝑𝝑�∗ , which is also reported in Table 3. 
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The obtained results in Eq. (7) can be explained on the basis 
of the weld physics. A suitable parameter to support such 
discussion is the Energy input, 𝐸𝐸 𝐸 𝑃𝑃�

𝑉𝑉� , and the Energy 
density, i.e. 𝐸𝐸� 𝐸 𝐸𝐸

𝐴𝐴��
� , that is the Energy input normalized 

by the focal spot area [23]. Greater energy input ensures a 
larger penetration, which is consistent with the obtained results 
in Eq. (7) and Fig. 3. Accordingly, process optimization 
maximizes the power, while minimizing the speed and the 
focus offset is chosen so that the minimal weld spot area results.  

 

Fig. 5. Surface plots of the weld depth as a function of process parameters. In 
each of the represented surfaces, the third variable is set at the optimized value. 
Red dots are process parameters resulting in predicted internal defectivity. 
Black star is the optimized process parameter set. 

Physics-based explanation of the obtained results in the case 
of internal defects is more challenging. In fact, it highlights on 
the shortcomings of the mathematical black-box approach here 
exploited, for it cannot relate physics of the process. The 

chosen physics modelling and the selected internal defects 
quality variable allow only partial insights on the physical 
relationship. In particular, the internal defects include cracks, 
that are never tolerated and often due to thermal gradient [24]. 
High gradient is generated by high power and low speed [25], 
as it is consistently shown in Fig. 5.  

Indeed, the considered methodology presents shortcomings 
that currently being developed Physics-based Artificial 
Intelligence modelling will overcome [26,27]. However, the 
presented approach offers a simple black box modelling tool to 
optimize relevant process parameters to industrial practitioners, 
who might be not interested in deep understanding of the 
process physics. 

Table 3. Results of process optimization (the predicted internal defect is not 
present, i.e. 𝑋𝑋�∗ 𝐸 0). 

𝑃𝑃�
∗ / W/mm2 𝐹𝐹�

∗ / mm 𝑣𝑣∗ / rad/s 𝑆𝑆�
∗ / mm 

17684 -10.7071 2.7 5.813 
 

3.3. Probability of defects generation 

The optimized model was exploited to study the probability 
of defect generation. 

Firstly, the generation of a non-conforming weld depth is 
analyzed. The uncertainty was propagated in the model of Eq. 
(7), considering the variance and covariance of the estimated 
parameters, including the contribution of the fitting error, 
modelled as white noise with 𝑀𝑀𝑆𝑆𝐸𝐸� =0.0897 mm2. 
Contribution from the model regressors, i.e. the process 
parameters, was modelled as a uniform distribution, with range 
of variability equal to twice the resolution allowed by the 
machine when setting up the process. 

The uncertainty propagation results in a standard 
uncertainty 𝑢𝑢��

∗ = 0.305 mm. As a reference, the resulting 
expanded uncertainty prediction interval, evaluated with a 
coverage factor equal to 2, approximating a 95% confidence 
interval, is 𝑆𝑆�

∗ 𝐸 (5.813 ± 0.610) mm. 
Consequently, as per Eq. (4), the probability of generating a 

defect related to the weld depth is 𝑝𝑝���,�� = 1.30 × 10�� , 
considering a 𝑆𝑆�,���= 4 mm. 

The probability of generating an internal defect, i.e. crack or 
porosity, is obtained, as per the discussion in Section 2.4, 
directly from Table 2, as 𝑝𝑝���,µ���������� 𝐸 0.1477. 

Therefore, in optimized process conditions, the probability 
of defect generation is 𝑝𝑝���,��� 𝐸 14.8%. Thus, since 𝑝𝑝���,��  is 
almost negligible, the overall probability of occurrence of a 
defect is mainly due to false negative prediction rates of 
microstructural defects.   

4. Conclusions 

Laser welding is a promising technique adopted in manifold 
sectors including aerospace, shipbuilding and automotive 
thanks to its flexibility, limited energy consumption and simple 
realization. Although the parameters used to manufacture laser-
welded parts are optimized, the inherent uncertainty of the 
process can lead to defects and non-conformities. In particular, 
non-conforming laser weld depth and microstructural defects 
(porosity and/or cracks) are the major defects that companies 



 Giacomo Maculotti  et al. / Procedia CIRP 115 (2022) 48–53 53
6 Maculotti G. et al. / Procedia CIRP 00 (2019) 000–000 

would like to minimize to avoid scraps, reworks, and related 
poor-quality costs.  

The aim of this paper is to quantify the probability of 
occurrence of defects in laser-welded parts when process and 
related parameters are optimized. Both defects related to non-
conforming weld depth and microstructural defects are 
considered. For modeling the relation between weld depth and 
microstructural defects with process parameters, a General 
Linear Model with variable reduction by stepwise method and 
a Classification and Regression Trees are adopted, 
respectively. Then, the weld depth is maximized in absence of 
microstructural defects to derive the set of optimal parameters. 
According to specifications, in such an optimized condition, 
the probability of non-conforming weld depth is estimated, and 
combined with false negative predictions of microstructural 
defects. The resulting overall probability defines the 
probability of occurrence of a (generic) defect in laser-welded 
parts. The description is supported by a real case study in the 
automotive field. According to the experimental results, the 
main findings can be summarized as follows:  
 The probability of generating a defect related to the weld 

depth may be considered negligible. 
 The probability of generating an internal defect, i.e. crack 

or porosity, is approximately 15%. 
 In optimized process conditions, the probability of defect 

generation is mainly due to false negative prediction rates 
of microstructural defects and thus reaches about 15%.   

 The combination of probabilities of non-conforming weld 
depth and false negative predictions of microstructural 
defects represents an innovative aspect of this study that 
enables a holistic prediction of the quality of laser-welded 
parts. 

The prediction models developed in this study and the 
probabilities estimated enable engineers to predict defects 
occurring in laser-welded parts and accordingly plan and 
design effective quality controls to achieve the goals of zero-
defect manufacturing.  
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