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A local regression approach to analyze the orographic
effect on the spatial variability of sub-daily rainfall annual
maxima

Paola Mazzoglio, Ilaria Butera and Pierluigi Claps

Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy

ABSTRACT
In this work we investigate the spatial variability of sub-daily rain-
fall extremes over Italy considering the influence of local oro-
graphic effects. We consider the average annual maxima
computed from the recently-released Improved Italian – Rainfall
Extreme Dataset (I2-RED) in about 3800 time series with at least
10 years of data (1916–2020 period) and we analyze the oro-
graphic effects through a local regression approach which gathers
stations in a grid cell-centered area of 1 km resolution. Several
constraints are considered to tackle problems determined by the
low data density of some areas and by the extrapolation at
low/high elevations. Different criteria for selecting the local sam-
ple are examined. This work confirms with increased detail previ-
ous findings, such as a generally positive gradient of the 24h
average annual maxima and the evidence of negative gradients
in large mountainous areas for the 1 h maxima. The use of a local
regression approach allows to identify the areas showing the
reverse orographic effect, providing material for future investiga-
tions on the physical explanation of this evidence. Moreover, the
reconstructed maps will allow to apply more accurate approaches
in works related to the spatial variability of other rainfall statistics,
such as the quantiles required for hydrologic design.
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1. Introduction

Datasets of rainfall features with large coverage in space and time can be relevant in
a vast range of applications, like hydraulic design, water resources management and
climate change impact assessment. Not many of these datasets refer to the features of
precipitation extremes, which are of increasing interest for both scientists and practi-
tioners because of the evolution of the hydrologic hazard in the recent years (Fowler
et al. 2021a, 2021b).
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Dataset related to large areas are generally created by spatial interpolation of
irregularly spaced rain gauge data into a regular grid (Daly et al. 1994, 2002;
Thornton et al. 2021; Crespi et al. 2018). To control the quality of the interpolation it
is necessary to understand the spatial distribution of the rainfall features, particularly
by investigating some geographic factors that can be considered responsible for the
spatial variability of the rainfall amounts. One such factor is the relief.

In regions with almost flat orography, rainfall variability can be handled with
interpolation techniques (e.g. inverse distance weighting and ordinary kriging) that
do not require to consider other spatial covariates. On the other hand, in regions
with significant elevation variability, interpolation requires methods that can explicitly
account for the elevation effect (e.g. Prudhomme and Reed 1999; Daly 2006; Claps
et al. 2022). Several of the approaches available in the literature consider the elevation
as an explanatory variable, such as: simple and multiple regression models (Basist
et al. 1994; Prudhomme and Reed 1998, 1999; Allamano et al. 2009; Mazzoglio et al.
2022), local regressions or georegressions (Daly et al. 1994), geographically-weighted
regressions (Thornton et al. 1997; Brunsdon et al. 2001; Daly et al. 2002; Di Piazza
et al. 2011; Crespi et al. 2018; Thornton et al. 2021), residual or regression kriging
(Prudhomme and Reed 1999; Di Piazza et al. 2011; Crespi et al. 2018), kriging with
external drift (Goovaerts 1999; Pellicone et al. 2018) and cokriging (Diodato and
Ceccarelli 2005; Pellicone et al. 2018).

Among the methods listed above, univariate and multivariate linear regression
models have the advantage of producing results that are statistically stable with
respect to small errors in the observations; they also explain a large portion of the
rainfall variability (Daly 2006). Nevertheless, when applied to large areas with com-
plex terrain features, the use of a unique regression model can lead to evident cluster-
ing of the residuals. This is why simple or multiple linear regressions usually provide
better results if applied over small regions (Daly 2006; Mazzoglio et al. 2022).

Geographically-weighted regression techniques have been developed to deal with
local relationships between rainfall and geography. For instance, in the first version of
PRISM, i.e. the Parameter-elevation Regressions on Independent Slopes Model (Daly
et al. 1994), the precipitation-elevation relationship is investigated with reference to
any individual grid cell. The approach uses a local regression model that selects rain
gauges located within a specific radius on topographic facets having an orientation
similar to the one of the estimation cell. An improved version of PRISM (Daly et al.
2002) uses a complex geographically-weighted regression model based on weighting
functions that account, for every station, for the effects of elevation, terrain orienta-
tion, coastal proximity and a two-layer atmosphere introduced to handle non-mono-
tonic variations with the elevation (Daly et al. 2002; Daly 2006). In both the PRISM
versions, the optimal search radius is identified through cross-validation and ranges
from 30 to 100 km, in an attempt to adapt to the station density. Other works
(Brunsdon et al. 2001; Fotheringham et al. 2002) implemented a geographically-
weighted regression with fixed or adaptive spatial kernels (using a Gaussian or expo-
nential decay function). These latter approaches avoid the a priori selection of the
radius used to select the points in the analysis of the spatially varying precipitation vs
elevation relationships. A mixed approach is used in the Daymet model (Thornton
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et al. 1997, 2021): a truncated Gaussian spatial kernel is applied only to stations
located within a specific search radius defined using a data density evaluation algo-
rithm. In all these applications, each rain gauge included in the regression function is
weighted by its distance from the grid cell where rainfall is to be estimated. This
approach makes data measured far from the target cell irrelevant.

Due to the lack of a complete national rainfall database, until recently, analyses
based on geo-regression models were not extensively conducted over Italy. The only
study available for the entire country (Crespi et al. 2018) considers monthly and
annual precipitations. Some studies are available for selected regions of Italy: Di
Piazza et al. (2011) focused on monthly rainfall in Sicily, Golzio et al. (2018) and
Crespi et al. (2021) analyzed monthly rainfall in the Central Alps region, while Frei
and Sch€ar (1998) and Isotta et al. (2014) addressed daily rainfall in Northern Italy.
None of them, whatever the spatial coverage, has considered rainfall extremes of sub-
daily durations.

In addressing the goal of accurately reconstructing sub-daily extreme rainfall indi-
ces (as the mean values, that is the focus of this work) at a national scale, we can
take advantage of: i) a database of sub-daily annual maximum rainfall depths
(Mazzoglio et al. 2020) and ii) some preliminary results reported in Mazzoglio et al.
(2022) that demonstrated the influence of elevation in the spatial variability of sub-
daily annual maxima. Within the framework of the spatial analysis of rainfall
extremes, and based on the above considerations, the aims of this research are to: i)
investigate the relationships between orography and the mean values of the sub-daily
annual maximum rainfall depths (the so-called ‘index rainfall’ (Dalrymple 1960)) in
Italy and ii) build maps of sub-daily average annual maxima that can be used for
describing the spatial variability of the extremes over Italy. Both these issues represent
the main novelties introduced in this work, in which we develop: i) a new criteria for
the definition of the optimal search radius on the basis of the station density, as an
extension of something attempted in Daymet (Thornton et al. 2021); ii) a method-
ology that allows to investigate the presence of negative orographic gradients for short
durations (according to Allamano et al. 2009; Avanzi et al. 2015; Mazzoglio et al.
2022), not considered in PRISM; iii) an approach for the selection of constraints in
the process of pooling the local sample, that can solve some well-known artifacts
remarked in Daymet, such as negative or excessive estimated values; iv) new maps of
sub-daily average annual maximum rainfall depths in Italy. The approach undertaken
is based on an improved local regression approach, that is able to preserve local fea-
tures and to prevent the spatial clustering of the residuals.

2. Methods

The nature of the approach proposed involve a strict relationship between data and
methods. The reason is that the selection of the sample to be subjected to local
regression is based itself on the quality of the results of the regression applied. In this
section, the interactions between the two components is preliminary exposed.
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2.1. Data catalog

Rainfall data used in this analysis comes from the Improved Italian – Rainfall
Extreme Dataset (I2-RED; Mazzoglio et al. 2020), a collection of short-duration (1, 3,
6, 12 and 24 h) annual maximum rainfall depths measured from 1916 until 2020 by
more than 5200 rain gauges located over Italy. In this study we use only time series
with at least 10 years of data (from more than 3800 stations). At-site average annual
maxima for the 5 durations are computed and constitute our reference data catalog.

In this work, we do not consider the possible variability of the mean values over
time. Regarding the area of interest of this work, previous studies (Libertino et al.
2019; Mazzoglio et al. 2022) pointed out that an increase in rainfall extremes over the
entire territory is not detectable and not statistically significant over a large part of
Italy. Therefore, we decided to consolidate the knowledge in the perspective of
stationarity.

Elevation data of the rain gauges and of the surrounding terrain come from the
Shuttle Radar Topography Mission (STRM) Digital Elevation Model (DEM) at 30m
resolution (Farr et al. 2007) resampled at 1-km resolution using a cubic interpolation,
as in Daymet (Thornton et al. 2021). The elevation of the rain gauges was derived
from the resampled DEM using the station coordinates, following the approach sug-
gested in PRISM (Daly et al. 1994, 2002) and adopted in Daymet (Thornton et al.
1997, 2021). This step is not trivial and has methodological implications. In fact, the
authors involved in the development of PRISM pointed out that the relationship
between precipitation and elevation is more representative if local elevations are
derived from a low-resolution DEM, that is able to describe better the scale of oro-
graphic processes and to filter out local elevation details.

2.2. Linear regression model

In order to examine the relations between sub-daily rainfall depths and orography,
local linear regression models have been built. The linear regression model that we
use is

hd ¼ aþ b� z þ e (1)

where hd is the average annual maximum of an assigned duration d (with d¼ 1, 3, 6,
12 and 24 h in our case), a is the intercept, b is the slope (that represents the rainfall
gradient), z is the elevation and e is the residual of the regression.

As mentioned in the Introduction, approaches that use a unique linear regression
model applied over vast areas are known to produce high residuals and high bias (see
also Brunsdon et al. 2001; Mazzoglio et al. 2022). For this reason, we allow the
parameters a and b to be space-dependent, i.e. Eq. (1) assumes the form

hd x, yð Þ ¼ a x, yð Þ þ b x, yð Þ � z x, yð Þ þ e x, yð Þ (2)

where hd, a, b, z and e have the same meaning as in Eq. (1) but are related to a gen-
eric position with coordinates (x,y).
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Similarly to the Daymet model (Thornton et al. 1997), we consider linear rainfall-
elevation relationships by using slope coefficients b(x,y) dependent only on the plani-
metric coordinates. In most applications of the PRISM model, the minimum allow-
able slope coefficient b(x,y) is set to zero, because Daly et al. (2002) argue that the
rainfall depth can only increase with elevation. Considering that previous works con-
ducted over Italy suggest that a reduction of rainfall depth with elevation is possible
(e.g. Allamano et al. 2009; Avanzi et al. 2015; Libertino et al. 2018; Formetta et al.
2022; Mazzoglio et al. 2022), in our work we do not disregard negative values
obtained for the b(x,y) parameter. Nevertheless, values of the b(x,y) parameter need
to be in a reasonable range, as will be explained in Section 3.3.

2.3. Local sample identification

To estimate the parameters of the local regression (Eq.2) in every (x,y) position, a
‘local’ reference sample must be identified with a number n of station included in an
area adequate for a regression. Similarly to Daly et al. (2002), we proceed by selecting
n stations available in a circular area of radius r, whose center coincides with the cen-
troid of the grid cell to which the regression is referred. The length of the radius and
the minimum number of stations required for reaching a reasonable local estimate
are parameters that have to be conveniently tuned.

If r is small, a low number of rain gauges would be selected (in some cases, the
low data density can imply that no rain gauge can be selected). If r is large, the rela-
tionship ceases to be ‘local’, and model performance can degrade. The definition of
the number of stations necessary for the regression is strongly driven by the station
density and its uniformity on the territory, being desirable that the regression model
is applicable on a high percentage of the territory. To provide a baseline, we started
to use local samples gathered in circles of varying radii, to perform a rain gauge dens-
ity analysis. The search of the modal value of stations available in circles of different
radius can be a first approach for defining n. As a reference, when the PRISM model
considers all the stations (independently on the orientation of the topographic facet
on which these stations are installed), the authors account for the availability of 10 to
30 stations within a radius of 30 to 100 km (Daly et al. 2002).

To define the most appropriate radius of the area needed for selecting the local
sample, in this work two approaches have been adopted:

� to use a unique, fixed radius r ¼ rfix;
� to use a radius interval, variable from rmin to rmax, that depends on data density.

In the first approach we evaluate the regression parameters using the data of rain
gauges that are located inside a circular area of radius r ¼ rfix, whatever the statistical
significance of the regression model. This approach is similar to the one used in the
PRISM and in Daymet models. In the second approach, the radius increases from
rmin to rmax in each cell, until a statistically-significant regression model is found (p-
value < 0.05). The rmax is set to avoid regression models that gather data from areas
that are too large. If, when reaching rmax, the model pools together at least n rain
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gauges, but the regression is not statistically significant, two alternatives can be con-
sidered: a) the model is applied without considering the p-value threshold; b) the pre-
dicted value is set to the mean rainfall value evaluated using the n nearest stations. If
n stations are not present even within a circle of radius rmax, the model is applied to
the n nearest stations, regardless of their position.

It is worthwhile to observe that the evaluation of the average annual maxima,
using the mean values of the n nearest stations, can be applied all over the territory.
This approach, despite its simplicity, can provide a valid starting point for additional
comparisons with most complex methods. It is interesting to notice that all the previ-
ously referenced works do not provide this comparison.

2.4. Artifacts and model corrections in high/low elevations

Application of systematic criteria for the selection of both the local sample and of the
reference radius can involve the presence of artifacts in the final results. The analyses
carried out in this research have shown that artifacts are mainly due to two causes: i)
a non-consistent rainfall gradient; and ii) a level of extrapolation leading to unreason-
able results.

As regards the first issue, we realized that an insufficient elevation range in the
data sample was the cause of anomalously high (positive and negative) rainfall local
gradient. To prevent the occurrence of this effect, we envisaged to impose a min-
imum elevation range Dz (i.e. the difference between the highest and the lowest rain
gauge) to undergo to the regression analysis.

Considering the extrapolation aspects, it is well known that regression models
applied in data scarce regions with a complex rainfall-elevation relationship can pro-
duce unrealistic results (Brunsdon et al. 2001; Crespi et al. 2018). In Crespi et al.
(2018) no constraint is assigned to grid cells with elevation higher than those of the
rain gauges used in the local sample. Also in the first version of PRISM model (Daly
et al. 1994) extrapolation is allowed almost without constraints; nevertheless, if the
stations of the local sample have a lower elevation compared to the grid cell for
which the estimation is performed, and the elevation range covered by the station ele-
vation is small (less than 1000m), a different slope coefficient is used in the precipita-
tion-elevation function above the elevation of the highest station. In an improved
version of PRISM (Daly et al. 2002) the extrapolation is differently handled: the
atmosphere is divided into two layers, and thus a different weight is assigned to each
rain gauge depending on its elevation.

To decide how to handle the extrapolation in our work, we identified the situa-
tions in which extrapolation leads to inconsistent results. A model correction appears
to be necessary both in mountainous and in very flat regions. Inconsistencies due to
extrapolation can be encountered over the peaks or in narrow valleys, when all the
rain gauges are located over the mountain slopes. In this case, the local sample
includes only rain gauges installed at location higher than the selected one. Another
inconsistency can be encountered in grid cells of a plain area when the local sample
of the model includes stations located over an isolated small hill. To face similar sit-
uations, different approaches have been tested, looking for more robust estimates at
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ungauged grid cells. Three alternative constraints are finally considered in the regres-
sion models:

1. extrapolation is never allowed: in grid cells with an elevation z� that is higher/-
lower than those of all the data of the local sample, the regression model is not
applied and the predicted value is set as the value obtained by the model in cor-
respondence of the elevation of the highest/lowest rain gauge used (see the ordin-
ate hd(z�), i.e. the dashed line in Figure 1a);

2. extrapolation is allowed to a limited extension, while elsewhere the regression
limit value are used: in grid cells with an elevation z� that is higher/lower than
those of the data of the local sample by an amount emax, the model is not applied
and the predicted value is set as the value obtained by the model at an elevation
that is emax higher/lower than those of the highest/lowest rain gauge of the sam-
ple (see hd(z�), i.e. the dash-dot line in Figure 1b);

3. extrapolation is allowed to a limited extension, while elsewhere the mean value is
used: in grid cells with an elevation z� that is emax higher/lower than those of the
data of the local sample, the model is not evaluated and the predicted value is
computed using the 5 nearest stations (see hd(z�), i.e. the dash-dot line in
Figure 1c).

To summarize, in the last two cases (Figure 1b, c) an extrapolation is allowed up
to a level emax, while in the first one (Figure 1a) no extrapolation is allowed. In the
third case (Figures 1c) marked discontinuities can appear when applying the con-
straint over a group of pixels, while in the first two cases (Figure 1a, b) discontinu-
ities are not present. In all cases, extrapolation is not allowed when the elevation of
the estimation cell is emax higher than those of the rain gauges of the local sample.

In the subsequent Sections, we present the results obtained applying the different
alternative constraints mentioned above. The final value for emax is also defined after
proper testing.

Figure 1. Visual representation of the three approaches used to handle the extrapolation effect
described in Section 2.4 for the estimation of the average annual maximum rainfall depth hd at
the elevation z�. The black line represents the fit of the local sample; the vertical grey bars in case
(b) and (c) represent the case of extrapolation emax ¼ 100m allowed.
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3. Application

According to what defined above, we approach to the analysis of the spatial variabil-
ity of the average annual maxima in Italy through a local regression framework. The
definition of the model configuration passes through the setting of the model config-
uration parameters introduced in Section 2. In this section, the parameter values are
estimated for the Italian territory and a list of plausible model configurations is
obtained.

3.1. Definition of the local sample

Italy has a� 300,000 km2 wide territory having marked mountainous characteristics
(Figure 2a), that undermine the possibility of having a uniform rain gauge density.
Even though an unprecedent rainfall data coverage is now available with the
Improved Italian – Rainfall Extreme Dataset (Mazzoglio et al. 2020), the search for
algorithms that predict extreme rainfall indices based on local data will face a marked
spatial data heterogeneity in station density, with changes up to half an order of mag-
nitude in different areas of the country.

For each grid cell all over Italy we evaluated the number of rain gauges (with a
time series of at least 10 years of data) available within circles with radius of 10, 15,
20 and 25 km. The results are shown in Table 1 in terms of the mean, median, modal
and standard deviation values found.

The values shown in Table 1 are useful both to understand what could be a rea-
sonable minimum local sample size n and to the selection of r. We then evaluated
that a local sample of 5 stations within a 15 km radius can provide a reference set
similar to the one used in PRISM (1 station every 3 km of radius in average).

Figure 2. Elevation data (a) and number of rain gauges available for each cell within a 15 km
radius (b). Source: Shuttle Radar Topography Mission (Farr et al. 2007).
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More specifically, using a fixed 15-km radius we get a local sample of at least 5
rain gauges in over 227,150 grid cells (Figure 2b), leading to an equal minimum dens-
ity in about 75% of Italy. As we do not consider reliable a regression fitted using a
local sample with less than 5 values, for the remaining 25% of the cells over Italy we
computed the average annual maxima using the 5 nearest stations, independently on
their distance from the reference cell. It is interesting to note that the spatial coverage
of this 25% of under-threshold density cells (that can be recognized as the yellow
areas of Figure 2b) is quite coherent, i.e. cells are spatially connected. These areas
often coincide with flat regions, where we expect a limited influence of the orographic
effect. We decided not to reduce the radius because, if we consider as an example the
case of 10 km, only 93,735 grid cells (� 31% of the Italian territory) can secure a local
sample of at least 5 rain gauges.

Based on the results of Table 1, we considered model configurations with a fixed
radius whose length is equal or greater than 15 km (rfix ¼ 15, 20 and 25 km), within
which the criterion of pooling a minimum number of 5 stations was always kept
valid.

For the variable radius approach, as described in Section 2.3, the radius length was
allowed to vary between rmin ¼ 1 km and rmax ¼ 15 km to have a local regression.
Some tests were performed using also larger rmax (up to 50 km) but we observed a
marked decrease of the model performance, in terms of error statistics and residuals
of the regressions, as the radius increases beyond 15 km. A quantitative estimation of
the degradation of model performance is reported in Section 4.

3.2. Locally-averaged rainfall maps

As mentioned in Section 2.3, the estimation of the average annual maxima using the
mean values of the n nearest stations can represent a strong reference for additional
comparisons with all the other attempts based on more complex georegression mod-
els. In this case, no specific radius is used to put together a local sample whose spatial
extension depends on the data density. This approach represents a step forward com-
pared to the approach used in Mazzoglio et al. (2022), where geographical and geo-
morphological classifications were used to pool the data before fitting the model.

Figure 3a shows the average 1 h annual maxima computed on the basis of the
n¼ 5 nearest stations: it can be seen that this approach does not allow to model the
orographic gradients (i.e. some of the spatial patterns that follow the orography are
missing) and several artifacts are clearly visible. Moreover, Figure 3b shows clusters
of high residuals in correspondence of orographically complex areas as the Prealps.

Table 1. Mean, median, modal and standard deviation values of the rain gauges falling in circles
of variable radius.

Radius (km)
Mean

(n� of stations)
Median

(n� of stations)
Mode

(n� of stations)
Standard deviation
(n� of stations)

10 3.9 3 2 2.7
15 8.2 7 5 5.2
20 14.3 13 7 8.4
25 21.8 19 14 12.2

GEOMATICS, NATURAL HAZARDS AND RISK 9



Figure 3c shows the comparison of the box plot of measured average values of the
� 3,800 time series with the reconstructed values of � 300,000 pixels and confirms
that a simple spatial averaging smooths the extremes: while the highest measured
average annual maximum rainfall depth in 1 h is 64mm, the highest estimated value
is 54mm. The analysis of the spatial distribution of the average annual maxima shows
a concentration of high values in Liguria, North of Piedmont and Friuli Venezia
Giulia. The reconstructed map, instead, shows a cluster of values > 50mm only in
Liguria, that incidentally shows a high density of rain gauges. In all the other regions,
the rain gauges characterized by high values are sparse, and this probably justifies
that the reconstructed average annual maxima are smoothed.

The results of Figure 3a suggests that, where possible, it is advisable to consider
the links between rainfall and elevation with a georegression approach, using the bare
local sample average as a baseline and as a surrogate of more accurate estimations
when regressions are not possible.

3.3. Evaluation of parameters for model correction

3.3.1. Elevation range
To undertake the role of the elevation range of the sample we performed an analysis
using the variable radius approach, without losing generality. For the analysis of this
detail, moving from the results of Section 3.1, we referred to rmin ¼ 15 km and rmax

¼ 50 km and a minimum local sample size n¼ 5 to apply local regressions. We com-
puted the rainfall gradient over elevation where possible, i.e. in the 75% of the Italian

Figure 3. Average annual maxima of 1 h duration computed on the basis of the 5 nearest stations
(a). Residuals of the 1 h model, with an indication of the elevation (b). Box plots of measured and
estimated mean of 1 h values (c).
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area and we checked the statistical significance and the spatial variability of the slope
estimates. In terms of slope values, we noticed the presence of some consistent out-
liers in the box plots (see Figure 4). These very high values were mainly clustered in
the flat areas, pointing to a data anomaly effect: we realized that an insufficient eleva-
tion range in the data sample was the reason of obtaining anomalously high (positive
and negative) rainfall local gradient. Based on the experience gained in a previous
work (Mazzoglio et al. 2022) and after some exploratory tests, we set the minimum
Dz value to 100m. Application of this constraint allowed us to remove a considerable
number of outliers, as shown in Figure 4 (lower row of each subplot).

To support the assessment of the efficiency of the threshold criterion (Dz¼ 100m),
we tested its application comparing maps of estimated average annual maxima
obtained without any constraint, to those built with the minimum range threshold
Dz. Considering the average annual maxima in 24 h, the maps in Figure 5 show that,
when assuming no threshold, several artifacts appear (see e.g. the dark triangle in the
left part of Figure 5c). For reference, elevation data are visible in Figure 5a. In that
area, slopes are obtained by applying the local regression to rain gauges presenting
very similar elevations (say, with a 5–10m elevation range only). Incidentally, the
average rainfall depth presented moderate local variability (e.g. a 10mm rainfall
range). Applying, instead, the Dz¼ 100m range threshold, we obtained more than
reasonable improvements (Figure 5d, e) with removal of almost all artefacts. To verify
the impact of using Dz¼ 100m, among the proposed model configurations both cases
with Dz¼ 100m and Dz¼ 0m are considered.

3.3.2. Extrapolation
Preliminary tests made on selected mountain areas showed the importance of consid-
ering constraints in applying the regression equation well beyond the elevation ranges

Figure 4. Visual representation through box plots of the slope coefficients obtained with a regres-
sion model based on r¼ 15 to 50 km and Dz¼ 0 or 100m in the case of 1 (a) and 24 h durations
(b). Please note that Dz is the minimum difference in elevation among the rain gauges of the local
sample required to apply the regression.
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of the local sample, as pointed out in Section 2.4. Extrapolation showed to produce
even negative values of rainfall estimates in areas with complex topography. After a
preliminary sensitivity analysis that proved that higher values degraded the model
performances, the threshold value of emax ¼ 100m was selected for the alternative
constraints outlined in Section 2.4.

To exemplify, we have reported in Figure 6 the estimated values of the 24 h aver-
age annual maxima in two mountainous areas of Italy: in Friuli Venezia Giulia
(Figure 6a, c and e) and in Sicily, near the Etna volcano (Figure 6b, d and f). In
Figure 6e, f the estimates are obtained by selecting a maximum 100m of extrapola-
tion allowed. Figure 6c, d show the results obtained with the extrapolation allowed
without limitations. Some cells with negative estimates appear in this latter case (the
grid cells are highlighted in red in Figure 6c, d). The results in Figure 6e, f, obtained
after correction, confirm that the extrapolation problem must be carefully handled.
As mentioned in Section 2.4, we considered different limiting cases to tackle the
problem. All three approaches to managing extrapolation presented in Section 2.4 are
present in the model configurations examined to assess their impact.

3.4. Selection of tested model configurations

As mentioned before, the geo-regression approach presented in this manuscript, even
if simple, involves the selection of different parameters, namely the number of rain

Figure 5. Elevation map with the indication of the area investigated (a). 24 h average annual max-
ima estimated using radii variable from 15 to 50 km (simulation with an extrapolation of 100m
allowed and with mean rainfall depth evaluated using the 5 nearest rain gauges in uncovered
cells) in the case of Dz¼ 0m (c) and Dz¼ 100m (e) and related slope coefficients (b and d). Red
circles in (c) serve to highlight artifacts. Grey color defines areas where the local regression
approach is not applicable e.g. due to the impossibility of pooling at least 5 rain gauges or to the
lack of significance of the regression model.
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gauges that forms the local sample n, the elevation difference among the rain gauges
of the local sample Dz, the area of support (rfix, rmin, rmax) and the maximum
extrapolation allowed emax. On the basis of the analysis carried out in Section 3.1 to
Section 3.4, meaningful combinations of the different parameters were applied and
several techniques were jointly used to select the most valuable model. The most

Figure 6. Elevation data for Friuli Venezia Giulia (a) and Sicily (b). In (c, d) extrapolation is allowed
without limits and red areas represent cells with negative estimated rainfall. In (e, f) extrapolation
is limited to 100m.

Table 2. Most relevant model configurations.

Case n (-) Dz (m)
Radius

configuration rfix (km) rmin (km) rmax (km) emax (m)

Extrapolation
configuration
(Section 2.4)

0 5 0 Variable – – – – –
1 5 100 Variable (V1) – 1 15 0 a
2 5 100 Variable (V1) – 1 15 0 c
3 5 100 Variable (V2) – 15 50 100 c
4 5 100 Fixed 15 – – 100 b
5 5 100 Fixed 15 – – 100 c
6 5 100 Fixed 20 – – 100 c
7 5 100 Fixed 25 – – 100 c

Case 0 represents the case with mean values reconstructed using the 5 nearest stations, while all the other tests
were performed using georegression models. The last column refers to the configuration described in Section 2.4: in
configuration ‘a’ extrapolation is not allowed while in ‘b’ and ‘c’ the extrapolation is allowed up to emax (for the grid
cells that would require extrapolation higher than emax, in configuration ‘b’ the predicted value is set equal to the
value obtained by the model at an elevation that is emax higher/lower than those of the highest/lowest rain gauge
of the sample, while in configuration ‘c’ the predicted value is computed using the 5 nearest stations).
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relevant model configurations considered in this study, in the following called Cases,
are listed with their settings in Table 2.

As it can be seen, Case 0 is the model configuration where the evaluation of the
average annual maxima is performed using the mean values of the 5 nearest stations
all over the territory. Cases 1, 2 and 3 consider the variable radius approach, but with
a difference if when reaching rmax the model pools together at least 5 rain gauges and
the regression is not statistically significant: Case 1 and Case 2 applied the model
without considering the p-value (Variable (V1)); Case 3 used the mean rainfall value
evaluated using the 5 nearest stations (Variable (V2)).

Cases 4, 5, 6 and 7 refer to the fixed radius approach, for two different extrapola-
tions configurations and three radii: 15, 20 and 25 km.

4. Discussion of results and rainfall maps

4.1. Residual analysis and model selection

To evaluate the performance of the cases listed in Table 2, we carefully analyzed the
residuals. For each case two sets of residuals were analyzed: (i) the residuals obtained
from a cross-validation (leave-one-out approach), that is ‘cross-validation configur-
ation’ and (ii) the residuals obtained applying the regression on the whole data, that
is ‘real model configuration’.

As a first step, error statistical indexes were computed for each residual set: bias,
mean absolute error (MAE), root mean square error (RMSE) and Nash-Sutcliffe
model efficiency coefficient (NSE) (Nash and Sutcliffe 1970; Wasserman 2004).

Results obtained for the 1 h duration are reported in Table 3 for the cross-valid-
ation configuration and in Table 4 for the real model configuration. Similarly, for the
24 h duration, the results of the cross-validation configuration are reported in Table 5
while the real model configuration is summarized in Table 6. The results shown in
Tables 3 to 6 do not clearly indicate a model that is able to outperform all the others.
Moreover, 1- and 24-hour durations seem to perform differently. As expected, Cases
3, 6 and 7 that consider a large radius do not perform well because the benefit of
working with a local sample is lost. Focusing on short radii (Cases 1, 2, 4 and 5),
comparable performances of the models emerged. For the 1 h duration, as an
example, the fixed radius case with rfix ¼ 15 km (Case 5) performs slightly better in
cross-validation mode (Table 3) but considering the performance of the real model
(Table 4), the variable radius approach (Cases 1 and 2) proved to be better, even if
the improvement in terms of error statistics is limited.

For an accurate analysis of the residuals, we also analyzed the box plots of the
reconstructed values for both the ‘real model configuration’ and the ‘cross-validation

Table 3. Results of the cross-validation configurations for the 1 h duration.
Statistic Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

BIAS (mm) �0.11 0 �0.02 �0.01 �0.02 �0.03 �0.02 �0.01
MAE (mm) 3.13 3.12 3.14 3.34 3.11 3.10 3.14 3.21
RMSE (mm) 4.15 4.12 4.17 4.43 4.12 4.10 4.15 4.26
NSE (-) 0.68 0.68 0.68 0.64 0.69 0.69 0.68 0.66
NRG (-) 223 222 230 263 221 214 216 234

14 P. MAZZOGLIO ET AL.



configuration’ (Figure 7), compared with the box plot of measured values. Figure 7
shows that models based on variable radii (with an upper threshold of 15 km, i.e.
Cases 1 and 2) proved to be able to cover almost the same measurement range of the
measured values. Measured values have higher upper quartile and maximum
whiskers, but the median values remain almost constant.

Thornton et al. (2021) pointed out that unrealistically high estimated rainfall values
can be obtained using a local-regression approach. In their approach, if the estimated
rainfall depth is more than twice the highest measured rainfall depth, this anomalous
value is reduced to twice the maximum measured rainfall depth. By applying con-
straints on the search radius and on the extrapolation, we never encountered this
problem, independently on the duration that we considered.

A close inspection of the residuals and their spatial aggregation was also performed
(not reported here for brevity). The analysis of the spatial distribution of the residuals
confirms what was outlined in Section 2.3: for the variable radius configuration, by
increasing both rmin and rmax the benefit of using a local regression approach
decreases. Case 3, with rmin ¼ 15 km and rmax ¼ 50 km, presents larger clusters, and
significant residuals with opposite signs lying at close distances. By comparing the
data density map (Figure 2) with the maps of the cross-validation residuals (not
reported here for brevity) it emerges that the largest errors are in areas with complex
topography and low instrument density. This fact suggests that, even with a high data
density, some local behaviors were not correctly represented and managed with the
proposed approach when too large area were considered in the regression model. The
higher spatial homogeneity of residuals in the case of smaller variable radii or fixed
radius suggests that these models should be preferable, keeping in mind that even
with this configuration some high local errors remain.

Table 4. Results of the real model configurations for the 1 h duration.
Statistic Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

BIAS (mm) �0.07 �0.01 �0.02 �0.03 �0.03 �0.03 �0.03 �0.01
MAE (mm) 2.51 2.57 2.56 2.95 2.60 2.60 2.78 2.96
RMSE (mm) 3.35 3.44 3.43 3.96 3.48 3.48 3.70 3.94
NSE (-) 0.79 0.78 0.78 0.71 0.77 0.77 0.75 0.71
NRG (-) 101 118 117 189 122 122 151 184

Table 5. Results of the cross-validation configurations for the 24 h duration.
Statistic Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

BIAS (mm) �0.66 �0.14 �0.25 �0.25 �0.14 �0.06 0.10 0.07
MAE (mm) 10.17 10.38 10.51 11.04 10.45 10.37 10.84 11.46
RMSE (mm) 14.87 15.40 15.69 16.61 15.56 15.40 16.22 17.21
NSE (-) 0.79 0.78 0.77 0.74 0.77 0.78 0.75 0.72
NRG (-) 207 219 236 275 225 218 250 280

Table 6. Results of the real model configurations for the 24 h duration.
Statistic Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

BIAS (mm) �0.48 �0.26 �0.21 �0.37 �0.14 �0.14 �0.01 0.10
MAE (mm) 8.14 8.47 8.35 9.64 8.68 8.68 9.64 10.61
RMSE (mm) 12.02 12.76 12.53 14.81 13.10 13.10 14.61 16.08
NSE (-) 0.86 0.85 0.85 0.79 0.84 0.84 0.80 0.76
NRG (-) 116 138 129 193 142 142 192 240
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To have a complete picture of the model configurations of Table 2, we focused
also on the estimation of the average annual maxima, following what emerged in
Section 3.2. As an example, Figure 8a shows the location of the rain gauges with a
1 h average annual maximum of at least 50mm while Figure 8b to e shows the loca-
tion of the estimated values for Case 0, Case 1, Case 2 and Case 5. As it can be seen
in Figure 8b a simple computation of the average annual maxima performed by using
the 5 nearest rain gauges (Case 0), even if providing good error metrics, cannot
reconstruct the extremes in the northern part of the area. Conversely, a model based

Figure 7. Box plots of the real model configurations for the 1 h (a) and 24 h (c) durations and box
plots of the cross-validation configurations for the 1 h (b) and 24 h (d) durations. The orange box
plots refer to the measured values, while the blue box plots refer to the estimated value.
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on a georegression, as Cases 1 and 2, provides additional information, even if the
area where we expect to reach high rainfall depths shows some underestimated values
(Figure 8c, d). Model 5, despite good performance, is not able to reconstruct the
extremes and, in addition, it overestimates the average annual maxima in the North-
East of the area (Figure 8e).

By integrating all the above features, we suggest that the model configuration of
Case 1 represents the best compromise and can be taken as the optimal model for all
the durations.

4.2. Orographic gradients and rainfall maps

4.2.1. Orographic gradients
By varying the model parameters, only minor differences in the sign of the oro-
graphic gradients emerge, but the general picture remains. Thus, for the best model

Figure 8. Spatial distribution of the rain gauges with 1 h average annual maxima higher than
50mm (a). Location of the estimated values higher than 50mm for Case 0 (b), Case 1 (c), Case 2
(d) and Case 5 (e).

Figure 9. Slope coefficients of the regression models for the 1 h (a) and 24 h (b) duration in the
case of r¼ 1 to 15 km.
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configuration considered in Section 4.1 (Case 1), it can be worth examining the spa-
tial variability of the slope coefficients emerged by the regression models. These have
been mapped in Figure 9 and represent an answer to the scientific question regarding
the sign of the orographic effect on extreme rainfall.

As introduced in Mazzoglio et al. (2022), the orographic effect (rainfall gradient
with elevation) appears to vary greatly with the duration of the extreme rainfall in
Italy. In Figure 9a we show the gradient for the 1 h duration average annual max-
ima. The grey color is used for the areas where the regression model cannot be
applied due to low data density or extrapolation constraints. Over most of the
Alps, Liguria region and portions of the Apennines, a general decrease of the 1 h
average annual maxima with increasing elevation emerges (confirming thus the
‘reverse orographic effect’ mentioned in Allamano et al. (2009), in Avanzi et al.
(2015), in Formetta et al. (2022) and in Mazzoglio et al. (2022)), while over most
of the hills, pre-hills and flat areas, the average annual maxima increases with the
elevation.

Figure 10. Average annual maxima for 1 (a), 3 (b), 6 (c), 12 (d) and 24 (e) hour intervals and
related box plots.
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Figure 9b shows the slope coefficients for the 24 h duration, for the same model
configurations. The maps confirm a general increase of the 24 h average annual max-
ima with increasing elevation over Italy, except for some hill/mountainous areas.

4.2.2. Extreme rainfall maps of Italy
The optimal model configuration, Case 1, is used to evaluate the average annual max-
ima over Italy, as reported in Figure 10. For short durations (e.g. for the 1 h interval,
depicted in Figure 10a) the Northern areas of Aosta Valley and Bolzano province
exhibited average annual maxima smaller than in Southern Italy. For longer durations
(e.g. for the 24 h interval, Figure 10e), these areas are affected by a mean rainfall
depth comparable with the one recorded in Sicily and Sardinia Islands, in the Po
Valley and in the Southern Apennines. The wetter areas are located in Friuli Venezia
Giulia, in Liguria, in the northern areas of Piedmont and in Calabria. It is interesting
to notice that the 1- and 24-hour durations have different characteristics: as the dur-
ation increases, the highest values appears to be clustered in space and focused over
limited areas.

5. Conclusions

In this work we propose an improved local regression approach to describe the spa-
tial variability of the average annual maximum rainfall depths for short durations (1,
3, 6, 12 and 24 h) over Italy. The proposed method optimizes the interpolation
through the selection of small samples that emphasize the value of high local station
density. The application of the proposed method allows to highlight the presence of
several areas with negative orographic gradients in Italy. The optimal regression
model configuration was selected by analyzing the residuals through cross-validations,
through visual inspection of their spatial distributions and adding a comparative ana-
lysis of their box plots. With regard to Italy, the results presented in Section 4 suggest
that the estimation of the average annual maxima using a local regression in each
considered pixel, calibrated for a limited spatial extent (circle with radius of 15 km at
maximum) represents the solution that best preserves the local features of the regres-
sions in relation to very variable data densities over the entire country, as explained
in Section 4.1.

In the development of the regression model particular attention was paid to the
presence of artifacts, that appear to depend on non-consistent rainfall gradients or to
extrapolation issues. Different to the Daymet model (Thornton et al. 2021), in our
work negative gradients are not considered errors and are not equaled to zero, but
their values are only controlled through appropriate constraints on data elevation
range. In addition, our analysis showed that the model performance gets worse when
the regression model is applied at elevations outside the elevation range of the data
used for the regression. To avoid this drawback, we suggested setting the predicted
value as the value obtained by the model in correspondence of the elevation of the
highest/lowest rain gauge used in the regression model.
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Through the proposed approach, the obtained maps of average annual maxima
clearly show that even wide areas are subject to a decrease in sub-daily rainfall max-
ima with elevation.

The maps and the methodological results presented in this work, that mainly
regard the analysis of the spatial variability of orographic gradients, provide a baseline
that can be important in view of regional rainfall frequency analyses, aimed to esti-
mate high return period rainfall quantiles. The same knowledge, for the first time
extended to the whole of Italy, will help to investigate the different morphological/cli-
matological characteristics that lead to orographic effects, that can play a significant
role in catchment-based hydrological analyses.
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