POLITECNICO DI TORINO Repository ISTITUZIONALE

SEPARATION AND IDENTIFICATION OF MICROFIBERS IN THE WASTEWATERS OF TEXTILE FINISHING PROCESS

Original

SEPARATION AND IDENTIFICATION OF MICROFIBERS IN THE WASTEWATERS OF TEXTILE FINISHING PROCESS / Hazal Akyildiz, Sinem; Bellopede, Rossana; Fiore, Silvia; Sezgin, Hande; Yalcin and Ipek Yalcin-Enis, Bahattin. - ELETTRONICO. - International Textile & Fashion Congress (ITFC 2023):(2023), pp. 381-385. (Intervento presentato al convegno International Textile & Fashion Congress (ITFC 2023) tenutosi a Instanbul nel 16-17 March 2023).

Availability: This version is available at: 11583/2977751 since: 2023-04-04T08:12:14Z

Publisher: TUV Faculty of textile technolgies and designes

Published DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

Separation and Identification of Microfibers in the Wastewaters of Textile Finishing Process

Sinem Hazal Akyildiz¹, Rossana Bellopede², Silvia Fiore², Bahattin Yalcin³, Hande Sezgin⁴, and Ipek Yalcin-Enis⁴

¹Department of Textile, Marmara University, Turkey ²Department of Engineering for Environment, Land and Infrastructures, Politecnico di Torino, Italy ³Department of Chemistry, Marmara University, Turkey ⁴Department of Textile Engineering, Istanbul Technical University, Turkey

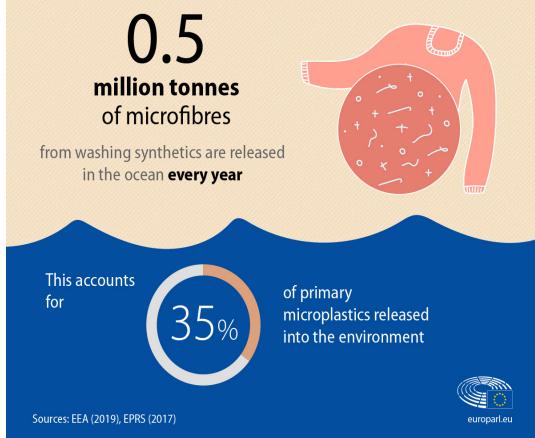
International Textile & Fashion Congress

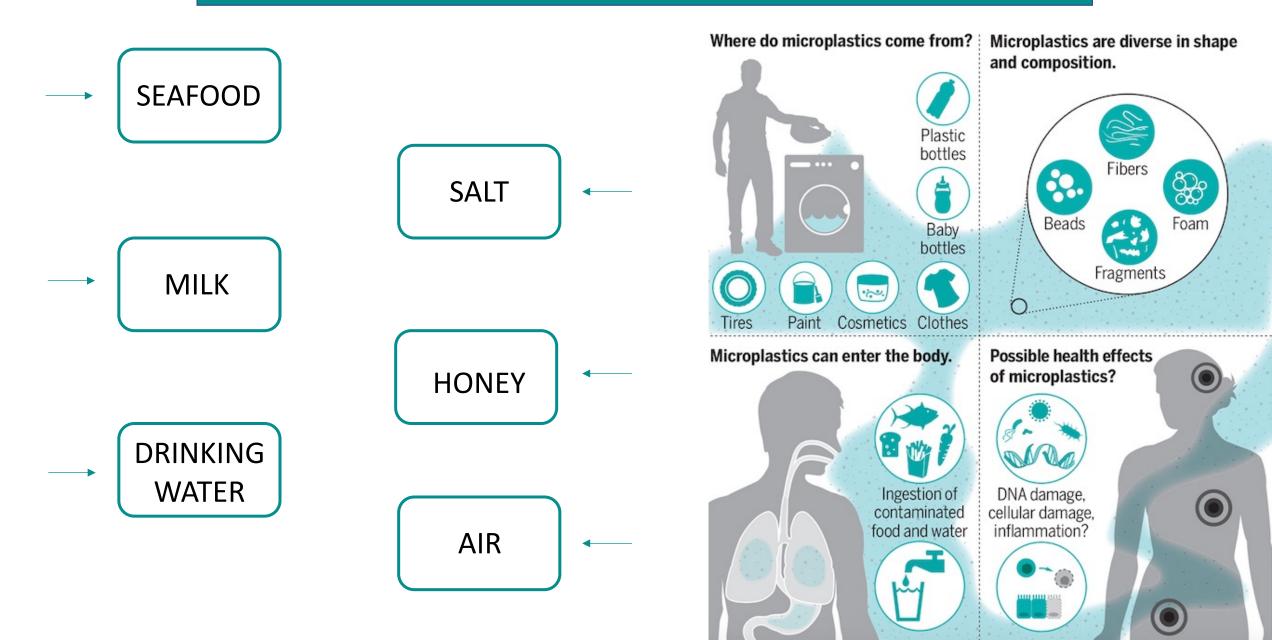
Innovative textiles and fashion trends tackling global challenges

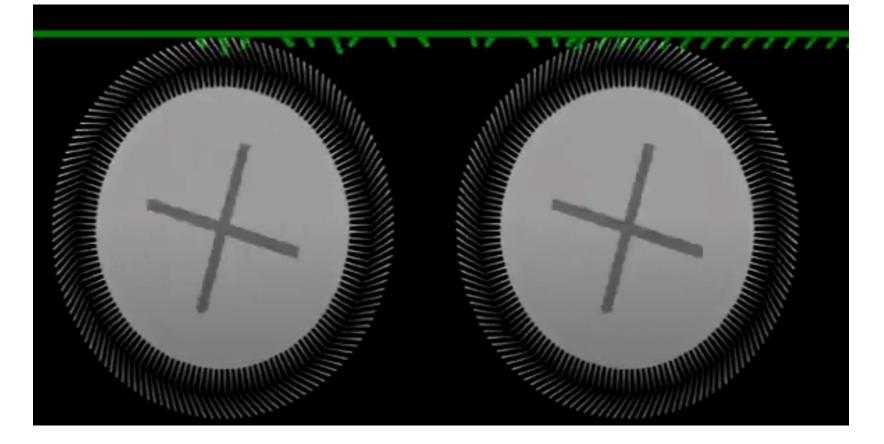
16-17 March 2023, Istanbul, Turkey

INTRODUCTION

PLASTICS


- The most common type of marine litter, comprising 60% to 80% of all, is plastic particles.
- The worldwide output of thermoplastics is predicted to reach 445,250 million metric tons in 2025.
- There are numerous industries that use plastic, with the <u>textile industry</u> being among the <u>most prevalent</u>.
- Worldwide textile fiber production reached 108 million metric tons in 2020, with <u>synthetic fibers</u> accounting for about <u>62%</u> of the total.
- While <u>60%</u> of the synthetic fibers produced are <u>buried</u> or <u>disposed</u> of as waste after use, it can take up to <u>100 years</u> for these fibers to <u>decompose</u> and <u>disappear</u> in nature.

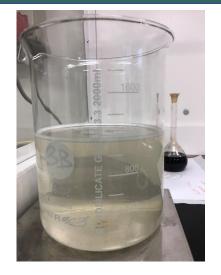

MICROPLASTICS


- Microplastics are particles smaller than <u>1 mm</u> according to ISO/TR 21960 and particles up to <u>5 mm</u> in size according to scientific literature.
- There are two different categories of microplastic sources: **primary** and **secondary.**
- Fibers and fragments make up to 80% of all MPs in the seas.
- Textile microfibers are a subset of microplastics.
- <u>85-99%</u> of MFs can be removed during the wastewater treatment process.
- MPs released into nature can accumulate in marine species and be transported to <u>higher trophic levels</u>.

THE ENVIRONMENTAL IMPACT OF TEXTILES

IMPACTS OF MICROPLASTICS

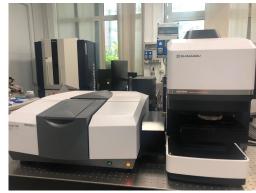
- Biancalani is a textile finishing machine which contains a raising procedure that involves removing a fiber layer from the fabric's surface to give it a hairy surface or generate a pile.
- However, the fibers emerging from this finishing machine remove with the wastewater and lead to the formation of a high concentration of MFs in the wastewater.

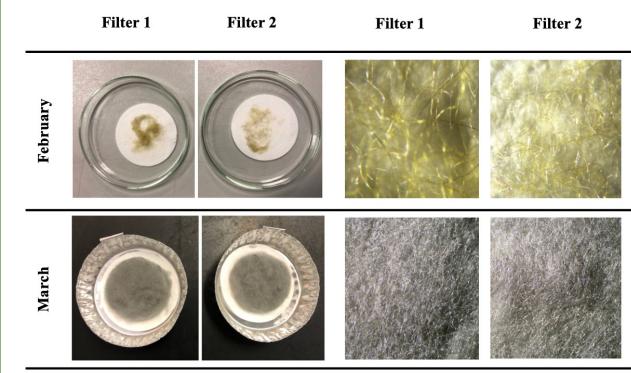

AIM OF THE STUDY

The aim of this study is to determine and separate the MFs released from the textile finishing machine used to give a soft touch to the fabric in a textile factory.

EXPERIMENTAL STUDY

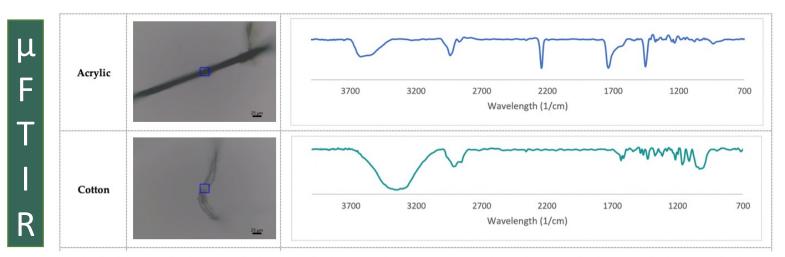
1. Pretreatment and filtration of wastewater: The 15% hydrogen peroxide was used to pretreat the 1 L samples for 5 days at 25 °C. After pretreatment, the filtration process was done with a 0.7 μ m pore-size glass fiber filter, then dried overnight at 40 °C.





2. Analysis of Microfibers: After filtration and drying, each filter was weighed with a precision balance. An optical microscope was used to examine the GF filters. The microfibers were characterized using a Micro-FTIR at 700–4000 cm⁻¹.

RESULTS


Μ

R

S C

D

 When the MFs filtered from the February and March wastewater samples were weighed, it was discovered that the samples contained 0.058 g/L and 0.25 g/L MFs, respectively.

CONCLUSION

- This study aims to separate and identify MFs in wastewater resulting from a finishing process.
- Wastewater samples from the factory were processed with 15% H₂O₂ at 25 °C for 5 days, and then the treated wastewater was filtered.
- MFs accumulated on the filter were examined both by microscope and micro-FTIR and their weights were determined.
- Examining the 1 L wastewater samples collected on various days reveals how much MFs (0.058 0.25 g/L) get into the wastewater from even just one finishing machine.
- This preliminary study on MF identification and separation will provide guidance to plan and improve the process of separating MFs from the wastewater of textile companies in the future.

