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Abstract

The interest in the properties of animal soft tissues is often related to the desire to find an animal model to replace human
counterparts due to the unsteady availability of human tissues for experimental purposes. Once the most appropriate animal
model is identified, it is possible to carry out ex-vivo and in-vivo studies for the repair of ligamentous tissues and performance
testing of replacement and support healing devices. This work aims to present a systematic review of the mechanical proper-
ties of ligaments reported in the scientific literature by considering different anatomical regions in humans and several animal
species. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) method. Moreover, considering the lack of a standard protocol for preconditioning of tissues, this aspect is also
addressed. Ninety-six studies were selected for the systematic review and analysed. The mechanical properties of different
animal species are reported and summarised in tables. Only results from studies reporting the strain rate parameter were
considered for comparison with human ligaments, as they were deemed more reliable. Elastic modulus, ultimate tensile
stress, and ultimate strain properties are graphically reported identifying the range of values for each animal species and to
facilitate comparison between values reported in the scientific literature in animal and human ligaments. Useful similarities
between the mechanical properties of swine, cow, and rat and human ligaments have been found.

Keywords Animal ligaments - Human ligaments - Mechanical properties - Tensile properties - Mechanical
characterisation - Biomechanics
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The interest in the mechanical properties of animal liga-
ments is often correlated with finding a useful model for
human ones. Since ethical reasons make difficult to find
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human ligaments to run in vitro and in vivo tests, animal
specimens are commonly employed. In fact, animal models
are preferred in preclinical studies for two main types of
research purposes: (i) evaluation of tissue healing through
different strategies (for example, after growth factors and
stem cell injection) and (ii) the evaluation of mechanical
properties of suture pattern under validation and testing of
innovative repair technologies. Surgical repair techniques
commonly employed in human’s and animal’s traumatology
(DeLong and Waterman 2015; Dabbene et al. 2018) rely on
the results of mechanical studies, based on reported proper-
ties of the original and intact anatomical structures.
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Nevertheless, not all animal ligaments are biomechanically
comparable to their humans’ anatomical counterparts. There-
fore, it is needed to discuss the differences between these lat-
ter and animal ligaments, even if few studies in the literature
made a direct comparison between human and animal liga-
ments (Baah-Dwomoh et al. 2018; Noyes and Grood 1976).

This review aims to provide a more detailed analysis of
similarities and differences between human and various ani-
mal species to find the most suitable human ligament sur-
rogate. Uniaxial tensile tests performed on equine, bovine,
ovine, caprine, swine, canine, rodents, leporidae, and human
ligaments were considered. This work is closely related to a
similar comparison between animal and human tendons pre-
viously conducted by this research group (Burgio et al. 2022).

1.1 Human and animal ligaments

Like tendons, ligaments are characterised by a hierarchi-
cal structure and are made of mesenchymal cells inside a
supporting matrix and an extracellular matrix containing a
high amount of collagen fibres (type I and type III collagen
are the most abundant), water and to a lesser extent of elas-
tin, glycoproteins, and proteoglycans (Rumian et al. 2007).

Despite the similar composition, in tendons collagen
fibrils are placed in parallel to each other and along the
whole length of the tendon. On the contrary, the collagen
fibrils of the ligaments are not uniformly orientated, and this
organisation is fundamental to withstand multidirectional
loads (Rumian et al. 2007).

Even localisation and function, as well as the different
arrangement of the components, contribute to defining dif-
ferences in the biomechanical characteristics of tendons
and ligaments: both of these structures must be able to
withstand tensile loads, but while the tendons are sub-
jected mostly to uniaxial forces, the ligaments are sub-
jected to multiaxial loads (the force components directions
depend on the directions of movement allowed to the joint)
(Rumian et al. 2007).

1.2 Common applications of animal surrogates

Concerning biomechanics, it is important to consider that,
unlike humans, almost all animals are quadrupeds and often
have different and more limited ranges of motion in the cor-
responding joints (Bascuifian et al. 2019). However, there are
many instances where they are extensively used. In this section,
will be discussed different animal models encountered in the
research. Considering human biomechanics, the main subject of
investigation is the knee joint; therefore, over the years several
studies with different animal models have been done to better
understand its anatomy and biomechanics. On the other hand,
only a few articles dealing with other anatomical sites were
found, and these will be discussed in a specific subsection.
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1.2.1 Animal models for knee joint

Knee joint ligaments injuries are one of the most wide-
spread lesions; for this reason, several animal models have
been widely employed to better understand the anatomy
and biomechanics. Numerous studies dealing with knee
ligament reconstruction via suture patterns, graft, or Liga-
ment Advanced Reinforcement System (LARS) used animal
specimens to perform tests, especially bovine (Eleswarapu
et al. 2011), rabbit (Woo et al. 1992), rat (Yiannakopoulos
et al. 2005), sheep (Weiler et al. 2001; Viateau et al. 2013),
swine (Kim et al. 2014), and monkey (Noyes and Grood
1976). To the best of our knowledge, the study carried out
by Noyes and Grood (Noyes and Grood 1976) is the only
one in the literature that deals with a nonquadruped animal
model, and the authors reported similar results with respect
to the canine model.

The anterior cruciate ligament (ACL) is critical for knee
joint stability in humans and animals, and its injury results
in joint instability rapidly causing osteoarthritis (Comerford
et al. 2005). The canine knee model is largely used to make
studies on knee ligaments and tendons due to its similarity
with its human counterpart (Beynnon et al. 1994).

The sheep stifle joint has often been used as an animal
model for human ACL reconstruction. However, Radford
et al. (1996), showed that the ovine stifle is not suitable for
testing full-size human clinical ACL implants. The reason
for this statement is that when compared to human joints the
overall shape of the distal femur is narrower, and the femoral
condyles do not have extensive articular surfaces distally.
Thus, the range of motion of the stifle is not adapted for tak-
ing loads in full extension and cannot attain a straight-leg
posture (Radford et al. 1996).

Moreover, it was concluded that the stifle joint of the
sheep is both morphologically and biomechanically similar
to the human knee, but there are detailed differences relat-
ing to ligament’s fibres geometry. In conclusion, the authors
reported that the ovine stifle is a valid animal model for
experimental work on menisci and cruciate ligaments (Rad-
ford et al. 1996).

The rabbit knee has often been used as an animal model
for the study of cruciate ligaments (posterior cruciate liga-
ment (PCL) and ACL) and collateral ligaments (medial col-
lateral ligament (MCL) and the lateral collateral ligament
(LCL)). It is well accepted in the orthopaedic community
that unrepaired injuries to either cruciate ligament will
eventually result in chronic secondary degenerative joint
changes, most notably in the menisci and in the articular
cartilage. Few studies have been proposed to analyse the
pathological consequences of cruciate ligament ruptures in
the medial and collateral ligaments. Among them, Tozilli
and Arnoczky (Tozilli and Arnoczky 1988) have not found
significant changes in the biomechanical properties of rabbit
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LCL after a complete section of the anterior and posterior
cruciate ligaments.

Another knee ligament involved in common trauma is
the MCL,; therefore, it is of great importance to find suitable
animal surrogates. A relevant case study was conducted by
Germscheid et al. (2011), in which was reported that por-
cine MCL is comparable in shape and size and in its failure
mechanism to the adult human MCL.

1.2.2 Other animal models

Animal models are often used also to investigate causes
and consequences of human diseases on the related liga-
ments. For example, a frequent trauma highly explored is
the chronic neck pain caused by whiplash; in this context,
several tensile failure studies (Lee et al. 2006; Quinn and
Winkelstein 2007) of the C6/C7 rat cervical facet capsu-
lar ligament have been conducted to better understand the
whiplash-related pain. Other studies were also conducted
to better understand pelvic floor disorders that often result
on permanent compromission of pelvic ligaments, affect-
ing millions of women every year. The pelvic anatomy of
the Macaca species is approximately identical to that of the
human, providing a unique opportunity to study pelvic sup-
portive ligaments (Vardy et al. 2005) and related mechani-
cal and structural changes after injuries. Studied on non-
quadruped animals which have a certain relevance, since
they have a posture and joint range of motion more similar
to that of humans. Unfortunately, in our research work, only
one study on non-quadrupeds animals met the eligibility cri-
teria and therefore was considered worthy of being reviewed.
The results obtained are interesting, and comparisons with
human ligaments have been performed in paragraph 4.1.1.

1.3 Effects of experimental setup parameters

First of all, it is necessary to specify that to characterise the
ligaments and evaluate the integrity of the tissues after surgi-
cal repair, uniaxial tensile tests are generally carried out on
the bone-ligament—bone (blb) complexes rather than on the
single, isolated ligament. This procedure is preferred due to
the limited sizes of the single ligament and its slipperiness
at the anchor points with the clamps. The bone provides a
secure hold on clamps during in-vitro testing. In contrast,
the blb complex has one drawback: often the break occurs
near the insertions (avulsion) instead of the expected “mid-
substance failure” (Sample 2017; Martin et al. 2015).

Due to the variability in the ligament’s mechanical prop-
erties introduced by the animal species, age, sex, testing
conditions, tensile testing device and orientation of the liga-
ments or blb complexes in relation to the imposed stress,
it is crucial to standardise a protocol to obtain data easily
comparable with each other (Beynnon and Amis 1998). In

this systematic review, wherever available, these parameters
are always reported for completeness and proper comparison
of the results. Nevertheless, this investigation of the exist-
ing scientific literature highlighted the lack of a commonly
accepted standard. This point will be addressed in a dedi-
cated section.

For example, there has been much discussion on the
influence that the storage of the samples could have on the
mechanical properties of the specimens. The debate is still
open, but it seems that freezing up to three months does not
significantly modify the structural and mechanical properties
of the samples, as proven by Woo and colleagues (Woo et al.
1986), studying the influence of conservation on rabbit MCL
ligaments (Martin et al. 2015; Beynnon and Amis 1998). In
fact, in the main part of the experimental studies reported
in this review, the specimens were kept at low temperature
(freezing) and defrosted shortly before the actual test. Gener-
ally, specimens were maintained hydrated in solution during
tests. For the conservation of the specimens, a physiological
solution is commonly used, but also the phosphate buffered
saline and Ringer's solution are usable (Martin et al. 2015).

The aim of this study is to analyse the setup parameters
used during the experimental tests. In particular, two main
factors influence the mechanical response: (i) the strain rate
and displacement rate values set during the test and (ii) the
preconditioning before the test. These aspects will be dis-
cussed in detail in the rest of the paper.

1.4 Difference between human and animals knee
biomechanics

The substantial impact of knee ligaments injury, such as
ACL, PCL, and collateral ligaments, has generated a big
research field, thus allowing to explore their mechanisms
of injury and the development of new treatment strategies.
In fact, several large animal models are commonly used to
study knee ligaments repair mechanisms, but no species is
currently considered as the gold standard. However, each
animal model has limitations, which should be carefully con-
sidered. Regarding the human ACL, it is well known that is
anatomically divided into three bundles: the anteromedial
(AM), intermediate (IM), and posterolateral (PL), each of
them performing different functions within the knee joint.
Other animal species as dog and goat ACL have only two
bundles, rabbit ACL has not bundles, and only pig and goat
ACL have three bundles (Bascuiian et al. 2019). Further-
more, biomechanical studies on the human ACL have shown
that different bundles of ligaments have opposite behaviour
during knee joint extension and flexion. Nevertheless, no
animal ACL presents that mechanical behaviour in different
portions (Bascuiian et al. 2019). Goat and swine appear to
be a valid surrogate of ACL, since they present the greatest
similarities with human ones (Bascuiian et al. 2019).
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Another aspect to consider when experimental studies
on knee animal models are designed is the difference in the
mechanical properties of the knee ligaments at different
angles of work. Wingfield et al. (2000) analysed the influ-
ence of two different knee angles in the mechanical proper-
ties of dog CraCl. However, no significant difference in the
mechanical properties was found, but it is well known that
cruciate ligaments in humans are influenced by the knee
angle. Further studies need to evaluate more precisely this
aspect.

2 Materials and methods
2.1 Eligibility criteria

The primary aim of this review is a systematic revision of
the scientific literature reporting tensile-testing mechanical
properties of healthy ligaments in different animal species
(bovine, dog, equine, monkey, mouse, ovine, rabbit, rat,
swine). The mechanical properties were collected to com-
pare the mechanical behaviour and identify the most suitable
animal model.

In the cases where the data were expressed in units of
measures that did not belong to ST units, they were converted
into the corresponding SI units. Furthermore, to improve
data accuracy, the expression of these properties as mean
value + standard deviation (SD) was required. All articles
that presented the following characteristics were excluded:
(i) results of the tensile test represented only in a graphic
form, expressed only as mean without standard deviation,
percentage, or range of values; (ii) studies on pathological or
damaged ligaments only; (iii) study conducted on ligaments
harvested from paediatric or elderly patients; (iv) studies
evaluating the healing process of injured ligaments through
the insertion of allografts or autografts or that included the
use of different kinds of scaffolds or growth factors; (v) stud-
ies that report only compression and shear stress values and
viscoelastic properties of the specimens; (vi) studies with
data derived from finite element models; (vii) studies that
perform biaxial test.

2.2 Information sources and search

The main databases were PubMed, Google Scholar, Sci-
ence Direct, Springer, Taylor and Francis, Wiley-Blackwell,
and PicoPolito (Politecnico di Torino search engine). The
keywords used to find the articles in the primary research

9

were: “ligaments”, “animal ligaments”, “human ligaments”,
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“biomechanics”, “mechanical characterisation”, “mechani-
cal properties”, “structural properties”, “stress—strain”,
“tensile test”, “failure test”, “strain rate”, “Young’s modu-
lus”, “ultimate tensile stress”, and “ultimate strain”. All the
collected data were exported to Microsoft Excel and ana-
lysed. The research was conducted by four authors (S.C.,
M.M., E.S., and G.S.) working independently, each of them
investigating one-quarter of the number of articles analysed
and then reviewing them together one by one over three
months. This study was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) method.

2.3 Dataitems

Specifically, the following mechanical properties were con-
sidered: elastic modulus or Young’s modulus (MPa), stiff-
ness (N mm™!), maximal load (N), ultimate tensile stress
(MPa), ultimate strain (%), and energy absorbed at failure
(N mm). Additionally, regarding the experimental setup of
the tensile tests, the preconditioning application, the strain
rate (% min_l), and the displacement rate (mm min_l) values
set for the tests were reported.

2.4 Additional analysis

In order to evaluate all the aspects related to the experimen-
tal tensile tests, the two methodologies that are employed to
perform the tests were considered: “strain-controlled mode”
and “displacement-controlled mode”. The information
about the control mode adopted by various authors during
tensile tests was reported with the relative values of strain
rate, where “SCM” stands for “strain controlled mode” and
“DCM?” stands for “displacement-controlled mode”.

Additionally, the type of preconditioning used for the
tests was reported and evaluated to give some guidelines in
the results section.

3 Results
3.1 Study selection

The initial research of peer-reviewed articles published
in the selected databases using the mentioned keywords
includes more than 2000 manuscripts. Then, the title and
abstracts were analysed to include the papers and 263 manu-
scripts for the full-text evaluation were selected. Following
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Fig. 1 Workflow followed to
identify, exclude and select the
articles

Identification

Articles from PubMed,

Screening

Google Scholar, Science

Francis, Wiley-Blackwell and
PicoPolito have been used

Several (>2000) articles
i i Full-text articles assessed review (N=95). All the articles
Direct, Springer, Taylor and were selected in the — e .
- primary research using the for eligibility. - selected were reported in a

principal keywords.

Studies included in our

for this research.

the eligibility criteria, 95 articles were evaluated to obtain
values of the mechanical properties (Fig. 1).

In particular, data were classified in animal species as
follows: cow (n=3), calf (n=1), dog (n=10), horse (n=35),
foal (n=1), monkey (n=3), mouse (n=2), goat (n=06),
sheep (n=10), rabbit (n=12), rat (n="7), swine (n=7), and
human (n=29). We considered any peer-reviewed article
published in English between 1968 and the current date
(May 2022).

Table 1 All the selected articles are grouped by animal species and human

l summary table.

Articles were excluded
according to eligibility
criteria.

Title and abstract of
each study were
examined (N=263).

v

In particular: Bovine (4), Dog
(10) Equine (5), Ovine (16),
Rabbit (12), Mouse (2),
Monkey (3), Rat (7), Swine (7)
and Human (29).

3.2 Synthesis of results

After selecting the articles that were in compliance with the
eligibility criteria, all the data regarding ligament mechani-
cal and the type of preconditioning used in the published
studies were reported in many summary tables. Article sum-
maries are illustrated in Table 1, grouped by animal species
and human. Table 2 reports a list of the ligament acronyms
as used in this paper.

Animal species Studies

Bovine Niehaus et al. (2013), Diotalevi et al. (2018), Oskui et al. (2016);

(Cow; Calf) Eleswarapu et al. (2011)

Dog Butler et al. (1983), Shino et al. (1984), Figgie et al. (1986), Nikolaou et al. (1986), Beynnon et al. (1994), Wingfield et al.
(2000), Comerford et al. (2005), Dupuis et al. (1994), Shetye et al. (2009), Woo et al. (1990b)

Equine Riemersma and Schamhardt (1985), Jansen and Savelberg (1994), Smith (2006), Gellman and Bertram (2002), Becker et al.

(Horse; Foal) (1994)

Monkey Noyes et al. (1974), Vardy et al. (2005), Noyes and Grood (1976)

Mouse Carballo et al. (2018), El-Zawawy et al. (2005)

Ovine McPherson et al. (1985), Jackson et al. (1988), Jackson et al. (1991), Jackson et al. (1993), Ng et al. (1995), Abramowitch et al.

(Goat; Sheep) (2003);

Rogers et al. (1990), Radford et al. (1996), Weiler et al. (2001), Weiler et al. (2004), Hunt et al. (2005), Meller et al. (2008),
Gurlek et al. (2017), Viateau et al. (2013), Mahalingam et al. (2015), Mallett and Arruda (2017)

Rabbit Woo et al. (1992), Danto and Woo (1993), Panjabi et al. (1996), Murao et al. (1997), Ma et al. (2009), Tozilli and Arnoczky
(1988), Woo et al. (1986), Woo et al. (1990c), Woo et al. (1990a), Weiss et al. (1991), Moon et al. (2006), Xie et al. (2021)

Rat Yiannakopoulos et al. (2005), Nawata et al. (2001), Belanger et al. (2000), Su et al. (2008), Lee et al. (2006), Freedman et al.
(2012), Quinn and Winkelstein (2007)

Swine Hirokawa and Sakoshita (2003), Zhou et al. (2009), Bonner et al. (2015), Germscheid et al. (2011), Kim et al. (2014), Polak
et al. (2014), Tan et al. (2015)

Human Trent et al. (1976), Noyes and Grood (1976), Chandrashekar et al. (2006), Woo et al. (1991), Race and Amis (1994), Sugita

and Amis (2001), LaPrade et al. (2005), Ciccone et al. (2006), Wilson et al. (2012), Quapp and Weiss (1997), Wijdicks et al.

(2010), Robinson et al. (2005), Zens et al. (2015), Criscenti et al. (2016), Kusayama et al. (1994), Gupte et al. (2002), Hewitt
et al. (2002), Schleifenbaum et al. (2016), Pieroh et al. (2016), Neumann et al. (1994), Przybylski et al. (1996), Mattucci

et al. (2012), Nachemson and Evans (1968), Lee et al. (1999), Bigliani et al. (1992), Moore et al. (2004), Moore et al. (2005),
Fremerey et al. (2000), Johnston et al. (2004), (Martins et al. 2013)
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Table 2 Acronyms list to indicate the ligaments quoted in this review

Part of the body Type of ligament

Anterior cruciate ligament (ACL) [also called cranial cruciate ligament (CraCL) for the animals], posterior cruciate ligament

Facet capsular ligament (FCL), anterior longitudinal ligament (ALL), posterior longitudinal ligament (PLL), capsular ligament

(CL), ligamentum flavum (LF), interspinous ligament (ISL), supraspinous ligament (SSL), nuchal ligament (NL), denticulate

Knee
(PCL) [also called caudal cruciate ligament (CauCL) for the animals], lateral collateral ligament (LCL) [also called fibular
collateral ligament], medial collateral ligament (MCL), anterolateral ligament (AL), posterior oblique ligament (POL),
medial patellofemoral ligament (MPFL), popliteofibular ligament (PFL), meniscofemoral ligament (MFL)

Hip joint Iliofemoral ligament (IL), superior halves of the iliofemoral ligament (SHIL), inferior halves of the iliofemoral ligament
(IHIL), ischiofemoral ligament (IS), Pubofemoral ligament (PF), femoral arcuate ligament (FAL)

Spinal cord
ligament (DL)

Shoulder Anterior band of inferior glenohumeral ligament (AB-IGHL), Posterior band of inferior glenohumeral ligament (PB-IGHL),
superior band of inferior glenohumeral ligament (SB-IGHL), inferior glenohumeral ligament (IGHL), coracoacromial liga-
ment (CAL)

Limbs Scapholunate ligament, accessorometacarpal ligament (AMCL), palmar radiocarpal ligament (PRL), palmar ulnocarpal liga-
ment (PUL), accessory ligament (AccL), distal check ligament (DCL), suspensory ligament (SL)

Uterus Uterosacral ligaments (USL), round ligaments (RL), cardinal ligament (CL)

Mouth Periodontal ligament (PL)

3.3 Study characteristics

Table 3 shows the mechanical properties (strain rate and/or
displacement rate, Young’s modulus, stiffness, maximum
load, ultimate tensile stress, ultimate strain, and energy
absorbed at failure) in different animal species considering
the control mode (only in the studies in which strain rate
was used) and preconditioning. Table 4 reports the same
mechanical values for different human ligaments.

3.4 Comparison between the mechanical properties
of animal and human ligaments

All the collected data reported in the previous tables were
organised in different bar graphs. Each bar in the graphs rep-
resents the range of values assumed by a specific mechani-
cal property analysed; the bar is delimited by the standard
deviation (STD) values centred on the mean value of the
data considered. In certain cases, the same reference pro-
vides several bars with different values because, in the same
article, animals of different breeds, different sexes, different
ages, or right/left limbs were studied. As a result, different
values were obtained in the same article, although the type
of sample preparation and strain/displacement rate were the
same.

All the data reported in the previous tables were organised
in different bar graphs. The elastic modulus, the ultimate
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tensile stress, and the ultimate strain report the strain rate in
mm/min (Figs. 2, 3 and 4) and in %/min (Figs. 5, 6 and 7).
For standardisation, values reported in mm/min and in cm/
min have been modified to obtain values in mm/s. Data that
did not report the strain rate values were not used for graph-
ing and analysis. During the evaluation of all the articles
related to rabbit ligaments, different MCL elastic modulus
values were found. In particular, the article of Xie et al. (Xie
et al. 2021) shows an MCl elastic modulus equal to 3 GPa, a
greater value compared to the other articles. The high vari-
ability in the results may be due to the experimental setup,
since they used a tension—torsion combined testing machine.
Given that the elastic modulus value obtained by Xie et al.
appears to be an outlier, this study was removed from our
evaluation.

For better data visualisation and comparison of the
mechanical properties of the ligaments between different
animal species and the human, each species was associated
with a specific colour: bovine (blue), dog (light blue), equine
(green), monkey (light green), goat (yellow), sheep (orange),
rabbit (red), rat (fuchsia). Regarding the mechanical proper-
ties of the human ligaments, grey was chosen.

3.5 Results of mechanical property evaluation
in mm/min

See Figs. 2, 3 and 4.
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Elastic modulus [MPa] from data obtained for displacement rate in mm/min

USL; v = 45 mm/min

Tanetal (2015) W cL (right); v = 45 mm/min
CL (left); v = 45 mm/min

MCL RD left; v = 20 mm/min

MCL RD right; v = 20 mm/min

MCL YK left; v = 20 mm/min

MCL YK right; v = 20 mm/min
Posterolateral ACL; v = 19.8 mm/min
Anteromedial ACL; v
ACL; v =19.8 mm/min

PCL; v =19.8 mm/min

PCL fascicles; v = 19.8 mm/min

ACL; v =19.8 mm/min

ACL fascicles; v = 19.8 mm/min

MCL (cyclic); v = 30 mm/min

I MCL (Non-cyclic); v = 30 mm/min
Moon et al. (2006) MCL; v = 10 mm/min
Woo et al. (1992) MCL; v = 10 mm/min
CL (12 weeks); v = 10 mm/min
ICL (12 weeks); v = 10 mm/min
CL (6 weeks); v = 10 mm/min

Germscheid et al. (2011)

Zhou et al. (2009) I 9.8 mm/min

Hirokawa and Sakoshita (2003)

Suetal. (2008)

Weiss et al. (1991)

CL (6 weeks); v = 10 mm/min

MCL (female, 3.5 mo); v = 10 mm/min

MCL (female, 36 mo); v = 10 mm/min

MCL (female, 12 mo); v = 10 mm/min

MCL (female, 6 mo); v = 10 mm/min

Wooetal. (1990¢) I MCL (female, 3.5 mo); v = 10 mm/min
MCL (male, 36 mo}; v = 10 mm/min

MCL (male, 12 mo); v = 10 mm/min

MCL (male, 6 mo); v = 10 mm/min

MCL (male, 3.5 mo); v = 10 mm/min

Lateral ACL; v = 10 mm/min
Medial ACL; v = 10 mm/min
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Fig.2 Young’s modulus for the considered animal species (mm/min)
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Fig. 3 Ultimate tensile stress for the considered animal species (mm/min)
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Ultimate strain [%] from data obtained for displacement rate in mm/min
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Tanetal. (2015) W c( (right); v = 45 mm/min —

CL (left); v = 45 mm/min =———1

Polak et al. (2014) DL; v = 2 mm/min

MCL RD left; v = 20 mm/min -

Germscheid et al. (2011) [ MC! RO right; v = 20 mm/min L

MCL YK left; v = 20 mm/min =

MCL YK right; v = 20 mm/min -
Posterolateral ACL; v = 19.8 mm/min —

——

Anteromedial ACL; v = 19.8 mm/min

Zhou et al. (2009)

ACL; v = 19.8 mm/min —
PCL;v=19.8mm/min = =
Hirokawa and Sakoshita (2003) [ PCL fascicles; v = 19.8 mm/min -
ACL; v =19.8 mm/min -
ACL fascicles; v = 19.8 mm/min -
Quinn and Winkelstein (2007) cervical FCL; v = 0.08 mm/min
Lee et al. (2006) FCL; v = 4.8 mm/min —
I MCL (cyclic); v = 30 mm/min =
Suetal. (2008) B yiei non-cyclicl; v = 30 mm/min -
Moon et al. (2006) MCL; v = 10 mm/min = Tl
Woo et al. (1992) MCL; v = 10 mm/min H

MCL (12 weeks); v = 10 mm/min ]
Weiss et al. (1991) [ MCL (12 weeks); v = 10 mm/min 1
MCL (6 weeks); v = 10 mm/min 1

MCL (6 weeks); v = 10 mm/min 1
MCL (female, 3.5 mo); v = 10 mm/min ]
MCL (female, 36 mo); v = 10 mm/min 1
Woo etal. (1990c) | MCL (female, 12 mo); v=10 mm/min | 1
MCL (male, 36 mo); v = 10 mm/min N
MCL (male, 12 mo); v = 10 mm/min ]

MCL (male, 6 mo); v = 10 mm/min -

Gurlek et al. (2017) ACL; v = 5 mm/min

ACL (Left); v = 500 mm/min
ACL (Right); v = 500 mm/min
ACL (Left); v = 500 mm/min

Rogers et al. (1990)

———
ACL (Right); v = 500 mm/min =
-
==

ACL; v = 508.2 mm/min
Noyes et al. (1974)

ACL; v =508.2 mm/min —

ACL (greyhound); v = 1000 mm/min (]
ACL (labrador); v = 1000 mm/min =]

CraCL (greyhound 130°); v = 1000 mm/min [}

CraCL (rottweiler 160°); v = 1000 mm/min m
Wingfield et al. (2000) W cracL (greyhound 130°); v = 1000 mm/min ]

CraCL (rottweiler 160°); v = 1000 mm/min =

ACL; v =510 mm/min =
Figgie et al. (1986) ACL; v =510 mm/min 1

ACL; v = 510 mm/min =
ACL; v = 500 mm/min —
ACL; v =500 mm/min —
ACL; v =500 mm/min
ACL; v = 500 mm/min

Comerford et al. (2005) I

Shino et al. (1984)

Johnston et al. (2004) Scapholunate Ligament; v = 50 mm/min
CAL (older);
CAL (younger); v = 100 mm/min
AB-IGHL/PB-IGHL/SB-IGHL (mean); v = 2.4 mm/min
SB-IGHL; v = 2.4 mm/min

PB-IGHL; v = 2.4 mm/min

AB-IGHL; v = 2.4 mm/min

Moore et al. (2004) PB-IGHL; v = 10 mm/min
AB-IGHL; v = 10 mm/min

IGHL (older); v = 50 mm/min
IGHL (younger); v = 50 mm/min
PF; v=5 mm/min

Pieroh etal. (2016) || 'Liv=5mm/min
1S; v= 5 mm/min

=100 mm/min

Fremerey et al. (2000)

Bigliani et al. (1992)

Lee et al. (1999)

PF; v = 20 mm/min
1S; v = 20 mm/min

IL; v =20 mm/min
FAL; v =2.4 mm/min
IS; v=2.4 mm/min
IHIL; v = 2.4 mm/min
SHIL; v = 2.4 mm/min
La Prade et al. (2005) PFL; v = 6000 mm/min
Zens et al. (2015) AL; v = 30 mm/min

PFL; v =200 mm/min
LCL; v = 200 mm/min

Schleifenbaum et al. (2016)

Heuwitt et al. (2002)

Sugita and Amis (2001)

Fig.4 Ultimate strain for the considered animal species (mm/min)
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V. Burgio et al.

3.6 Results of mechanical property evaluationin %/ 3.7 Results of additional analysis-type
min of preconditioning

See Figs. 5, 6 and 7. Table 5 reports the preconditioning that has been performed
for different animal species and human.

Elastic modulus [MPa] from data obtained for strain rate in %/min

LCL; v = 779400 %/min
LCL; v = 63600 %/min ——
LCL; v = 5640 %/min —
LCL; v = 600 %/min _—
LCL; v = 60 %/min S
MCL (male, 8.5 mo); v = 9300 %/min —
MCL (male, 8.5 mo); v = 720 %/min —
MCL (male, 8.5 mo); v = 95 %/min E—
MCL (male, 8.5 mo); v =9 %/min e
—
—
—
e
——
—
—
-

Bonner etal. (2015)

MCL (male, 8.5 mo); v = 0.66 %/min
MCL (male, 3.5 mo); v = 9300 %/min
MCL (male, 3.5 mo); v = 720 %/min
MCL (male, 3.5 mo); v = 95 %/min
MCL (male, 3.5 mo); v =9 %/min
MCL (male, 3.5 mo); v = 0.66 %/min
Medial ACL; v = 22860 %/min

Danto and Woo (1993) Medial ACL; v = 100.8 %/min
Medial ACL; v = 0.96 %/min

Mahalingam et al. (2015) ACL; v = 300 %/min

Ng et al. (1995) ACL; v = 4800 %/min
Jackson et al. (1993) ACL; v = 6000 %/min
ACL (26 weeks); v = 6000 %/min

Woo et al. (1990a)

Jackson et al. (1991a) ACL (6 weeks); v = 6000 %/min

ACL; v = 6000 %/min

Noyes and Grood (1976) ACL; v = 3960 %/min

Foal Accl; v = 60-180 %/min —
Becker et al. (1994) Accl; v = 60-180 %/min
AccL; v = 60-180 %/min

Smith (2006) SL; v = 4800 %/min e=——————
SL-SS; v = 60 %/min —_—
I
=
I —
—_—
—

>

1=
=

N

Riemersma and Schamhardt (1985) SL=SS; v = 6 %/min
SL-MT; v = 60 %/min
SL-MT; v= 6%/min
AMCL-V; v = 30 %/min
AMCL-IV; v = 30 %/min
Butler et al. (1983) CraCL; v = 6000 %/min

MCL;v=60%/min W

LCL; v=60%/min B

CauCL; v =60 %/min W

CraCL; v = 60 %/min

PL; v = 60000 %/min

PL; v = 6000 %/min

PL; v = 600 %/min

PL; v = 60 %/min

1SL; v = 900000 %/min

ISL; v = 120000 %/min

ISL; v = 3000 %/min

LF; v = 900000 %/min

LF; v = 120000 %/min

LF; v=3000 %/min

CL; v = 900000 %/min

Mattucci et al. (2012) CL; v = 120000 %/min

CL; v =3000 %/min

PLL; v = 900000 %/min

PLL; v = 120000 %/min

PLL; v = 3000 %/min

ALL; v = 900000 %/min

ALL; v = 120000 %/min

ALL; v = 3000 %/min

Criscenti et al. (2016) MPFL; v = 18 %/min

MCL (transverse); v = 60 %/min

MCL (longitudinal); v = 60 %/min

PFL; v = 6000 %/min

FCL; v = 6000 %/min

Postero-medial PCL; v = 3000 %/min

Antero-lateral PCL; v = 3000 %/min

ACL (male); v = 6000 %/min

ACL (female); v = 6000 %/min

Noyes and Grood (1976) ACL; v = 6000 %/min

Shetye et al. (2009) I

Eleswarapu etal. (2011)

Oskui et al. (2016)

CERE

Quapp and Weiss (1997)

LaPrade et al. (2005)

Race and Amis (1994)

Chandrashekar et al. (2006)

0 200 400 600 800 1000 1200 1400 1600

Fig.5 Young’s modulus for the considered animal species (%/min)
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Ultimate stress [MPa] from data obtained for strain rate in %/min

LCL; v = 779400 %/min
LCL; v = 63600 %/min
LCL; v = 5640 %/min
LCL; v = 600 %/min
LCL; v = 60 %/min

Bonner et al. (2015)

MCL (male, 8.5 mo); v = 9300 %/min
MCL (male, 8.5 mo); v = 720 %/min
MCL (male, 8.5 mo); v = 95 %/min
MCL (male, 8.5 mo); v = 9 %/min
MCL (male, 8.5 mo); v = 0.66 %/min

Woo et al. (1990a)

Jackson et al. (1993) ACL; v = 6000 %/min
ACL (26 weeks); v = 6000 %/min
ACL (6 weeks); v = 6000 %/min
ACL; v = 6000 %/min

Noyes and Grood (1976) ACL; v = 3960 %/min

Jackson et al. (1991)

Foal AccL; v = 60-180 %/min
Accl; v = 60-180 %/min
AcclL; v = 60-180 %/min

Smith (2006) SL; v = 4800 %/min

DCL; v = 60-180 %/min

SL; v = 60-180 %/min

Becker et al. (1994) |

Jansen and Savelberg (1994)

MCL (12 weeks); v = 30 %/min
MCL (6 weeks); v = 30 %/min
MCL (12 weeks); v = 30 %/min
MCL (6 weeks); v = 30 %/min
MCL (12 weeks); v = 30 %/min
MCL (6 weeks); v = 30 %/min
Butler et al. (1983) CraCL; v = 6000 %/min

Woo et al. (1990b)

MCL; v = 60 %/min
LCL; v = 60 %/min —
CauCl; v = 60 %/min
CraCL; v =60 %/min &
PL; v = 60000 %/min 1
PL; v = 6000 %/min 1
PL;v=600%/min 1
PL;v=60%/min |

Eleswarapu et al. (2011)

Oskui et al. (2016)

LF; v =33 %/min

LF; v =33 %/min

LF; v =33 %/min

LF; v = 33 %/min

LF; v =33 %/min

LF; v =33 %/min

LF; v =33 %/min

LF; v =33 %/min

ISL; v = 900000 %/min
1SL; v = 120000 %/min
ISL; v = 3000 %/min
LF; v = 900000 %/min
LF; v=120000 %/min
LF; v = 3000 %/min

CL; v =900000 %/min
CL; v = 120000 %/min
CL; v =3000 %/min
PLL; v = 900000 %/min
PLL; v = 120000 %/min
PLL; v = 3000 %/min
ALL; v = 900000 %/min
ALL; v = 120000 %/min
ALL; v = 3000 %/min
Criscenti et al. (2016) MPFL; v = 18 %/min
MCL (transverse); v = 60 %/min
MCL (longitudinal); v = 60 %/min
Human PFL; v = 6000 %/min

FCL; v = 6000 %/min
Postero-medial PCL; v = 3000 %/min
Antero-lateral PCL; v = 3000 %/min
ACL (female); v = 6000 %/min

ACL (female); v = 6000 %/min
Noyes and Grood (1976) ACL; v = 6000 %/min

Nachemson and Evans (1968)

Mattucci et al. (2012)

Quapp and Weiss (1997)

LaPrade et al. (2005)

Race and Amis (1994)

Chandrashekar et al. (2006)

Fig. 6 Ultimate tensile stress for the considered animal species (%/min)

4 Discussion

The mechanical properties evaluation of animal’s and
human’s ligaments obtained from literature was performed
in this review, considering the strain rate with two different
units (mm/min and %/min). The analysis only dealt with the
comparison between human and animal ligaments; thus, no
comparison was performed among the mechanical properties

60 80 100 120 140 160 180

of animal ligaments. From the analysis of the bar graphs, it
was observed that generally, for each species, the values of
the mechanical properties are included in a specific range.
In particular, there is evidence that the value of strain rate
has an effect on the mechanical properties of the ligaments
(Pioletti et al. 1999). Differences in specimen behaviour
at high and low strain rate values were shown in several
papers. For instance, (Woo et al. 1990a) showed that the
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Ultimate strain [%] from data obtained for strain rate in %/min

LCL; v = 779400 %/min -
LCL; v = 63600 %/min -—
LCL; v = 5640 %/min -
LCL; v = 600 %/min
LCL; v = 60 %/min

Bonner et al. (2015)

MCL (male, 8.5 mo); v = 9300 %/min | |

MCL (male, 8.5 mo); v = 720 %/min [ ]
MCL (male, 8.5 mo); v = 95 %/min 1
MCL (male, 8.5 mo); v =9 %/min []
MCL (male, 8.5 mo); v = 0.66 %/min ]

Woo et al. (1990a)

-
<&

ACL (26 weeks); v = 6000 %/min
ACL (6 weeks) ; v = 6000 %/min
ACL; v = 6000 %/min
Foal AccL; v = 60-180 %/min -

AccL; v = 60-180 %/min ]

AccL; v = 60-180 %/min —
Smith (2006) SL; v = 4800 %/min —
DCL; v = 60-180 %/min u

SL; v = 60-180 %/min -
Riemersma and Schamhardt (1985) SL; v = 60 %/min [}

Jackson et al. (1991)

Becker et al. (1994) |

Jansen and Savelberg (1994) I

Butler et al. (1983) CraCL; v = 6000 %/min |

PL; v = 60000 %/min
PL; v = 6000 %/min
PL; v = 600 %/min
PL; v = 60 %/min

Oskui et al. (2016)

ISL; v = 900000 %/min
ISL; v = 120000 %/min
ISL; v = 3000 %/min
LF; v = 900000 %/min
LF; v = 120000 %/min
LF; v = 3000 %/min
LF; v =33 %/min

LF; v =33 %/min

LF; v =33 %/min

LF; v =33 %/min
Nachemson and Evans (1968) LF; v =33 %/min
LF; v =33 %/min

LF; v =33 %/min

LF; v =33 %/min

CL; v =900000 %/min
CL; v = 120000 %/min
CL; v = 3000 %/min
PLL; v = 900000 %/min
PLL; v = 120000 %/min
PLL; v = 3000 %/min
ALL; v = 900000 %/min
ALL; v = 120000 %/min
ALL; v = 3000 %/min
Criscenti et al. (2016) MPFL; v = 18 %/min
MCL (transverse); v = 60 %/min
MCL (longitudinal); v = 60 %/min
PFL; v = 6000 %/min
FCL; v = 6000 %/min
ACL (male); v = 6000 %/min
ACL (female); v = 6000 %/min

Mattucci et al. (2012)

Mattucci et al. (2012)

Quapp and Weiss (1997)

LaPrade et al. (2005)

Chandrashekar et al. (2006)

Fig. 7 Ultimate strain for the considered animal species (%/min)

rabbit MCL ligament changes its properties at high strain
rate values compared to low strain rate values (Figs. 5, 6
and 7). In other cases, for the same strain rate values, some
mechanical properties show very different value as data
obtained for rabbit MCL, v=10 mm/min (Weiss et al. 1991)
for elastic modulus (Fig. 2). Before the evaluation of the
similarity between human ligaments and animal ligaments,
it is important to specify that two different types of overlap-
ping were found. The partial similarity means an overlap-
ping between data, but the animal ligament shows a range
of values that exceed human ligament values range. On the
other hand, total similarity means that the animal ligaments
show a range of values that is within the human ligament

@ Springer
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values range. The partial and total similarity between human
and animal ligaments is reported in Appendix 1 and 2 in
Supplementary material. Only the total similarity for all the
parameters evaluated in this work is discussed in the fol-
lowing subsection, additionally, the percentage of overlap
between the animal species and human ligament range was
reported (%, of overlap between the distributions considered
as the overlap with respect to the human values range).
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Table 5 Type of preconditioning divided by animal species and human. ‘na’ indicates unavailable data

Animal species Type of ligament

Type of preconditioning

Reference

Bovine

Dog

Horse

Foal
Monkey
Mouse
Goat

Sheep

Rabbit

Rat

CraCL

PL

ACL

LCL, MCL, AMCL-1V,
AMCL-V, PBL, PUL

MCL

SL, DCL

AccL

AccL

na

na
ACL

MCL

ACL

ACL

ACL

ACL

ACL

PCL

PCL

LCL

MCL

MCL

MCL

MCL

MCL

MCL

MCL

Thoracic FCL
Cervical FCL

30 loading cycles from 30 to 200 N at a quasi-static strain rate of
0.02 57!

20 tensile-compression cycles at the stretch of 1.3 and frequency of
1Hz

4 loading/unloading cycles of 50 N and then a subfailure load (200
N), both at a slow deformation rate of 50 mm  min~"

10 cycles of 2% strain by use of a Haversine waveform

10 cycles of approximately 2% strain at a rate of extension of 20
mm « min~!

cyclically loaded 10 times to the level of the onset of the linear part
of the force—displacement curve, which was drawn by a XY-
recorder

10 times with a load of 50-125 N, depending on their size

10 times with a load of 50-125 N, depending on their size

na

na

10 cycles of 5% strain, at a speed of 2.5 s/cycle; after the last cycle, a
resting load of 20 N was applied

10 cycles of loading between 0 and 2 mm of elongation for at 10
mm e min~

3 times of an AP force of +50 N was applied with a load displace-
ment rate of 1 mm e 5!

10 cycles between 5 and 50 N

10 cycles between 0.0 and 0.3 mm extension (approximately 0 and
3% strain of the mid-substance of the ligament) at a rate of 10
mm e min~

10 cycles from 0.0 to 0.3 mm elongation (approximately 0-3% strain
of the mid-substance of the ligament), at a rate of 0.2 mm o 5!

21 cycles of stretching between 0 and 0.5 mm (approximately 5%
strain) at 1 mm e s~! and on the 22nd cycle stretched until failure

10 cycles between 0 and 0.5 mm deformation at a rate of 10
mm e min~"'

10 cycles between 0 and 0.5 mm deformation at a rate of 10
mm « min~!

3 cycles were performed by slowly cycling the ligament from its
unloaded state just into the linear portion of its load-deformation
response and then back to zero load

10 cycles of loading—unloading to 1 mm of elongation at a rate of 1
cmemin~!

10 cycles of loading—unloading to 1 mm of elongation

stretching the FMTC 10 times to the in situ strain level previously

determined for each MCL specimen, at an elongation rate of 1 cm/
min

10 cycles between 0.0 and 0.5 mm extension (approximately O and
3% strain of the MCL substance, respectively) at an extension rate
of 10 mm « min~!

10 cycles of between 0 and 1.5 mm of elongation
5 min of a static preload of 0.5 N and then the maximum load was

loaded and unloaded at a rate of 5 mm « min~" at 0.5% of the maxi-
mum load 20 times

5 cycles of load as low as the cyclic stretching and then stretched to
failure immediately

30 cycles to 0.1 mm at 0.05 mm e s~!

30 cycles to 0.2 mm (approximately 5% of load at gross failure)

Diotalevi et al. (2018)
Oskui et al. (2016)
Comerford et al. (2005)
Shetye et al. (2009)

Woo et al. (1990b)

Jansen and Savelberg (1994)
Becker et al. (1994)

Becker et al. (1994)

na

na
Ng et al. (1995)

Abramowitch et al. (2003)
Weiler et al. (2004)
Viateau et al. (2013)

Woo et al. (1992)

Danto and Woo (1993)
Panjabi et al. (1996)
Murao et al. (1997)

Ma et al. (2009)

Tozilli and Arnoczky (1988)

Woo et al. (1986)
Woo et al. (1990a)
Weiss et al. (1991)

Woo et al. (1992)

Moon et al. (2006)
Xie et al. (2021)
Su et al. (2008)

Freedman et al. (2012)
Quinn and Winkelstein (2007)
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Table 5 (continued)

Animal species Type of ligament

Type of preconditioning

Reference

!, and repeated five

1

Swine LCL 5 cycles between 1 and 10 N at 10 mm ¢ min~
times, then held at O N for 10 s
MCL 2 cycles from — 20 N to+8 N at 1 mm « min~
MPFL 10 cycles of cyclic tension between 0 and 2 mm at an extension rate
of 10 mm « min™!
CL 5 cycles from 0.25 to 1.0 N at 0.75 mm o s~
Human ACL, PCL, LCL, MCL

5 cycles to an intermediate load (approx. 147 N) at a strain rate of

5cm e min~!

1

ACL 20 cycles between 25 and 150 N tension at 0.25 Hz

LCL, PFL Several cycles by slowly cycling the specimens from an unloaded
state to the linear portion of their load deformation curve and back
to zero load

LCL 5 loading cycles to a maximum load of 35 to 50 N tension at 0.5 Hz

LCL, MCL 10 cycles to a nominal 2 N and then to 3.5% strain at 1 Hz

MCL 10 cycles to a maximum amplitude of 0.5 mm at a rate of 10
mm e min~!

MCL, POL 10 cycles of 10 N to 50 N tension at 0.1 Hz

MCL 10 cycles between 1 and 40 N tension at a crosshead speed of 10
mm s min~!

MPFL 10 cycles to 3% of strain at a strain rate of 0.1%es™!

MFL 10 cycles of 0-2 mm extension at a crosshead speed of 20
mm e min~

MFL 10 load cycles resulting in 2 mm of extension at 20 mm ¢ min~

SHIL, IHIL, IS, FAL 10 cycles of loading to 5% strain

IL, IS, PF

ALL, PLL, CL, LF, ISL

crosshead displacement of 20 mm « min~! and a maximum strain of
5%

20 cycles of loading to 10% strain at a frequency of approximately
1Hz

5 load cycles were applied (from the unloaded condition) up to 9.8 N

1

10 cycles between elongation limits of 0—0.3 mm at a rate of 10

LF

and subsequently to 19.6 N
IGHL 10 cycles 1-2 mm at 50 mm ¢ min~
AB-IGHL

mm e min~!
PB-IGHL

Scapholunate Ligament

10 cycles between elongation limits of 0-0.3 mm at a rate of 10
mm e min~!

25 times to 15% of their initial lengths at a rate of 66% of the initial
lengths at a rate of 200 Hz

Bonner et al. (2015)

Germscheid et al. (2011)
Kim et al. (2014)

Tan et al. (2015)
Trent et al. (1976)

Chandrashekar et al. (2006)

LaPrade et al. (2005)

Ciccone et al. (2006)
Wilson et al. (2012)
Quapp and Weiss (1997)

Wijdicks et al. (2010)
Robinson et al. (2005)

Criscenti et al. (2016)
Kusayama et al. (1994)

Gupte et al. (2002a)
Hewitt et al. (2002)
Schleifenbaum et al. (2016)

Mattucci et al. 2012)
Nachemson and Evans (1968)

Lee et al. (1999)
Moore et al. (2004)

Moore et al. (2005)

Johnston et al. (2004)

4.1 Evaluation of mechanical property
4.1.1 Evaluation of mechanical property in mm/min

Analysing the mechanical parameters obtained with a strain
rate in mm/min (as reported in Figs. 2, 3 and 4), it can be
observed that:

e Human AL (Zens et al. 2015) has a partial similarity for
each animal ligament in terms of elastic modulus and
ultimate stress. It has a verified total similarity of 38,7%
in terms of ultimate strain with dog CraCL (Wingfield
et al. 2000).
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Human AB-IGHL (Moore et al. 2005) has a total similar-
ity with the swine CL (left) (Tan et al. 2015). This sur-
rogate presents an error with respect to the human equal
to 11.06% for elastic modulus, 52.50% for ultimate stress,
and 58.89% for ultimate strain. Considering the elastic
modulus, there are other total similarities: 17.09% with
swine CL (right) (Tan et al. 2015) and 4.33% with sheep
ACL (Gurlek et al. 2017). The ultimate stress presents
only partial similarities. The ultimate strain presents total
similarities with swine USL (Tan et al. 2015) of 24.57%,
swine CL (right) of 70.33%, swine MCL (Germscheid
et al. 2011) between 10.16% and 12.71%, swine pos-
terolateral ACL (Zhou et al. 2009) of 42.37%, swine
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PCL of 20.76% and ACL between 19.91% and 21.61%
(Hirokawa and Sakoshita 2003), and dog CraCL (Wing-
field et al. 2000) between 7.33% and 26.52%.

Human PB-IGHL (Moore et al. 2005) presents total simi-
larities in terms of elastic modulus with swine USL of
58.09% (Tan et al. 2015). For the ultimate strain, there
are total similarities with swine USL (Tan et al. 2015) of
52.25%, swine MCL (Germscheid et al. 2011) between
21.62% and 27.02%, swine ACL of 42.34% (Hirokawa
and Sakoshita 2003), rat MCL (Su et al. 2008) between
25.22% and 30.63%, rabbit MCL (Weiss et al. 1991)
between 4.50% and 6.30%, rabbit MCL (Woo et al. 1992)
0f 9.00%, and rabbit (female, 36 and 12 months) between
4.50% and 11.71% (Woo et al. 1990c¢).

Human RL (Martins et al. 2013) has only partial similari-
ties for all the parameters.

Human ALL/PLL (mean) (Przybylski et al. 1996) pre-
sents total similarities in terms of elastic modulus with
swine USL) (Tan et al. 2015) of 12.29%, dog ACL (Com-
erford et al. 2005) between 12.00% and 18,83%, swine
ACL of 34.00%, and PCL of 19.33% (Hirokawa and
Sakoshita 2003).

Human USL (Martins et al. 2013) shows no similarities.
Human IGHL (older) (Lee et al. 1999) presents a total
similarity in terms of elastic modulus with dog ACL
(Comerford et al. 2005) of 72.72%. For the ultimate
stress, there are only partial similarities. For the ulti-
mate strain, there is a total similarity with rabbit MCL
(male,12 months) of 80% (Woo et al. 1990c¢).

Human IGHL (younger) (Lee et al. 1999) presents only
partial similarities for elastic modulus and ultimate
strain.

Human PF (Pieroh et al. 2016) presents a total similarity
in terms of elastic modulus with dog ACL (Comerford
et al. 2005) of 22.42%. For the ultimate strain, there are
only partial similarities.

Human IS (Pieroh et al. 2016) presents a total similarity
in terms of elastic modulus with swine USL (Tan et al.
2015) of 36.16%. For the ultimate strain, there are only
partial similarities.

Human IL (Pieroh et al. 2016) presents a total similarity
in terms of elastic modulus with swine USL (Tan et al.
2015) of 34.47%. For the ultimate strain, there are only
partial similarities.

Human PF (Schleifenbaum et al. 2016) presents a total
similarity for elastic modulus of swine USL (Tan et al.
2015) of 26.49%. For the ultimate strain, there are total
similarities with swine CL(left) (Tan et al. 2015) of
53.29%, swine posterolateral ACL (Zhou et al. 2009) of
37.86%, sheep ACL (right and left) (Rogers et al. 1990)
between 44.49% and 71.94%, monkey ACL (Noyes
and Grood 1976b) between 58.68% and 63.89%, and

dog ACL (Comerford et al. 2005) between 46.00% and
52.06%.

Human IS (Schleifenbaum et al. 2016) presents a total
similarity in terms of elastic modulus with swine USL
(Tan et al. 2015) of 34.96%. For the ultimate strain, there
are total similarities with sheep ACL (right and left)
(Rogers et al. 1990) between 16.66% and 20.00%, dog
ACL (Figgie et al. 1986) between 3.33% and 20.00%,
and dog ACL (Shino et al. 1984) between 26.00% and
36.00%.

Human IL (Schleifenbaum et al. 2016) presents a total
similarity in terms of elastic modulus with swine USL
(Tan et al. 2015) of 35.13%. For the ultimate strain, there
are total similarities with sheep ACL (right and left)
(Rogers et al. 1990) between 13.88% and 16.66%, dog
ACL (Figgie et al. 1986) between 2.77% and 16.66%,
and dog ACL (Shino et al. 1984) between 21.66% and
30.00%.

Human posterior MFL (Gupte et al. 2002) presents total
similarities in terms of elastic modulus with dog CraCL
(Wingfield et al. 2000) between 7.89% and 28.19%,
sheep ACL (Meller et al. 2008) of 45.41%, sheep ACL
(right and left) (Rogers et al. 1990) between 15.68% and
39.21%, rat MCL (Su et al. 2008) of 35.29%, and swine
ACL of 23.45% and PCL of 27.45% (Hirokawa and Sako-
shita 2003).

Human anterior MFL (Gupte et al. 2002) presents total
similarities in terms of elastic modulus with sheep ACL
(Meller et al. 2008) of 24.16%, sheep ACL (right and
left) (Rogers et al. 1990) between 8.34% and 20.86%,
rat MCL (Su et al. 2008) between 17.94% and 18.78%,
swine MCL (Germscheid et al. 2011) between 19.82%
and 45.86%, swine ACL (Zhou et al. 2009) of 25.77%,
swine posterolateral ACL (Zhou et al. 2009) of 19.01%,
swine anteromedial ACL (Zhou et al. 2009) of 12.55%,
swine PCL between 4.86% and 14,60%, and ACL
between 8.51% and 12.47% (Hirokawa and Sakoshita
2003).

Human MFL (Kusayama et al. 1994a) presents total
similarities in terms of elastic modulus with dog CraCL
(Wingfield et al. 2000) between 25.64% and 55.55%,
sheep ACL (Meller et al. 2008) of 21.36%, sheep ACL
(right and left) (Rogers et al. 1990) between 4.29% and
15.36%, rabbit MCL (Woo et al. 1992) medial of 51.28%
and lateral of 67.52%, rat MCL (Su et al. 2008) between
38.46% and 47.00%, swine MCL (Germscheid et al.
2011) between 18.37% and 29.48%, and swine ACL of
23.24% and PCL of 46.96% (Hirokawa and Sakoshita
2003).

Human PFL (LaPrade et al. 2005) presents a total simi-
larity in terms of elastic modulus with swine USL (Tan
et al. 2015) of 50.88%.
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Human antero-lateral PCL (Race and Amis 1994) pre-
sents total similarities in terms of elastic modulus with
dog CraCL (Wingfield et al. 2000) between 8.45% and
30.21%, rat MCL (Su et al. 2008) between 36.16% and
37.81%, sheep ACL (right and left) (Rogers et al. 1990)
between 16.80% and 42.01%, and swine ACL of 25.12%
and PCL of 29.41% (Hirokawa and Sakoshita 2003).
For the ultimate stress, there are total similarities with
dog ACL (Comerford et al. 2005) between 20.39% and
23,02%, sheep ACL (Hunt et al. 2005) of 29.60%, sheep
ACL (Weiler et al. 2004) of 29.60%, rat MCL (Su et al.
2008) of 58.55%, and swine PCL (Hirokawa and Sako-
shita 2003) of 27.63%.

Human postero-medial PCL (Race and Amis 1994) pre-
sents total similarities in terms of elastic modulus with
dog CraCL (Wingfield et al. 2000) of 14.57%, swine
ACL (Zhou et al. 2009) of 89.49%, swine posterolateral
ACL (Zhou et al. 2009) of 66.01%, swine anteromedial
ACL (Zhou et al. 2009) of 43.60%, and swine ACL
(Hirokawa and Sakoshita 2003) of 29.56%. For the ulti-
mate stress, there are total similarities with swine ACL
between 36.00% and 53.00%, PCL of 32.00% (Hirokawa
and Sakoshita 2003), and swine posterolateral ACL
(Zhou et al. 2009) of 66.60%.

Human Cal (older) (Fremerey et al. 2000) presents total
similarities in terms of ultimate stress with dog ACL
(Comerford et al. 2005) of 36.47%, sheep ACL (Gurlek
et al. 2017) of 27.53%, and swine PCL (Hirokawa and
Sakoshita 2003) of 49.41%. For the ultimate strain, there
are total similarities with swine USL (Tan et al. 2015) of
67.44%, and rat MCL (Su et al. 2008) between 32.55%
and 39.53%.

Human Cal (younger) (Fremerey et al. 2000) presents
total similarities in terms of ultimate stress with dog ACL
(Comerford et al. 2005) of 40.78%, sheep ACL (Gurlek
et al. 2017) of 30.78%, and swine PCL (Hirokawa and
Sakoshita 2003) of 55.26%. For the ultimate strain, there
are total similarities with swine MCL (Germscheid et al.
2011) between 40.67% and 50.84%.

Human AB-IGHL/PB-IGHL/SB-IGHL (mean) (Bigliani
et al. 1992) presents total similarities in terms of ultimate
strain with swine MCL (Germscheid et al. 2011) between
31.46% and 33.70%, and rat MCL (Su et al. 2008) of
38.20%.

Human FAL (Hewitt et al. 2002) presents total simi-
larities in terms of ultimate strain with swine MCL
(Germscheid et al. 2011) between 32.00% and 40.00%,
swine ACL of 62.66% and PCL of 33.33% (Hirokawa
and Sakoshita 2003), rat MCL (Su et al. 2008) of 37.33%,
rabbit MCL (Moon et al. 2006) of 37.33%, rabbit MCL
(Weiss et al. 1991) between 6.66% and 10.66%, rabbit
MCL (Woo et al. 1992) of 13.33%, rabbit female (from
6 to 36 months) between 6.66% and 17.33% and rabbit
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male (from 6 to 36 months) between 10.66% and 28.00%
(Woo et al. 1990c).

e Human IHIL (Hewitt et al. 2002) presents total similari-
ties in terms of ultimate strain with swine PCL of 50.00%
(Hirokawa and Sakoshita 2003), rabbit MCL (Moon
et al. 2006) of 56.00%, rabbit MCL (Weiss et al. 1991)
between 10.00% and 14.00%, and rabbit female (from 6
to 36 months) between 10.26% and 26.00% and rabbit
male (from 6 to 36 months) between 16.00% and 42.00%
(Woo et al. 1990c).

e Human IS (Hewitt et al. 2002) presents total similarities
in terms of ultimate stress with monkey RL (Vardy et al.
2005) of 65.08%, and swine CL of 28.99% (right) and
12.42% (left) (Tan et al. 2015).

e Human SHIL (Hewitt et al. 2002) presents total similar-
ity in terms of ultimate stress with swine USL of 28.94%
(Tan et al. 2015), and swine DL (Polak et al. 2014) of
50.00%.

e Human Scapholunate Ligament presents total similarities
in terms of ultimate strain with sheep ACL (right and
left) (Rogers et al. 1990) between 41.32% and 49.58%,
and dog ACL (Figgie et al. 1986) of 8.26%.

e Human PFL (Sugita and Amis 2001) presents total
similarities in terms of ultimate strain with swine MCL
(Germscheid et al. 2011) between 46.15% and 57.69%,
swine PCL of 90.38% (Hirokawa and Sakoshita 2003),
rat MCL (Su et al. 2008) of 53.84%, rabbit MCL (Woo
et al. 1992) of 19.23%, rabbit MCL (Weiss et al. 1991)
between 9.61% and 13.46%, rabbit female (12 months)
of 9.61% and rabbit male (36 months) of 23.07% (Woo
et al. 1990c).

e Human LCL (Sugita and Amis 2001) presents total
similarities in terms of ultimate strain with rabbit MCL
(Woo et al. 1992) of 40.00%, and rabbit MCL (Weiss
et al. 1991) of 20%.

4.1.2 Evaluation of mechanical property in %/min

Analysing the mechanical parameters obtained with a strain
rate in %/min in Figs. 5, 6 and 7, it can be observed that:

e Human ACL (Noyes and Grood 1976) has no similari-
ties for elastic modulus. For the ultimate stress, there are
only partial similarities with calf CauCL, LCL and MCL
(Eleswarapu et al. 2011).

e Human ACL (Chandrashekar et al. 2006) has only par-
tial similarities for elastic modulus and ultimate stress.
Instead, for the ultimate strain, there are total similarities
with goat ACL (Jackson et al. 1991) between 25% and
33.33%.

e Human anterolater PCL (Race and Amis 1994) presents
total similarities in terms of elastic modulus with mon-
key ACL (Noyes and Grood 1976) of 21.82% and goat
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ACL (Jackson et al. 1993) of 31.09%. For the ultimate
stress, there is total similarities with swine LCL (Bonner
et al. 2015) of 72.36%. For the ultimate strain, there is a
total similarity with swine LCL (Bonner et al. 2015) of
56.60%.

Human posteromedial PCL (Race and Amis 1994) pre-
sents total similarities in terms of elastic modulus with
monkey ACL (Noyes and Grood 1976) of 37.68% and
sheep ACL (Mahalingam et al. 2015) of 46.37%. For the
ultimate strain, there are total similarities with swine
LCL (Bonner et al. 2015) of 55.55%, and with equine
SL (Smith 2006) of 96.29%.

Human FCL (LaPrade et al. 2005) presents total simi-
larities in terms of elastic modulus with monkey ACL
(Noyes and Grood 1976) of 23.48% and sheep ACL
(Mahalingam et al. 2015) of 28.90%.

Human MCL (longitudinal) (Quapp and Weiss 1997)
presents only partial similarities for elastic modulus and
ultimate strain.

Human MCL (transverse) (Quapp and Weiss 1997) pre-
sents total similarities in terms of elastic modulus with
cow PL (Oskui et al. 2016) at different strain rate val-
ues, 0.28% (600%/min), 7.56% (6000%/min), and 9.80%
(60,000%/min).

Human MPFL (Criscenti et al. 2016) presents total
similarity in terms of ultimate stress with calf MCL
(Eleswarapu et al. 2011). For ultimate strain, there is a
total similarity with goat ACL (Jackson et al. 1991) of
29.48%.

Human ALL (strain rate of 3000%/min) (Mattucci et al.
2012) presents a total similarity in terms of ultimate
strain with cow PL (Oskui et al. 2016) at strain rate of
6000%/min and 60,000%/min of 6.12%.

Human ALL (strain rate of 12,000%/min) (Mattucci et al.
2012) presents only partial similarities for ultimate stress.
Human ALL (strain rate of 900,000%/min) (Mattucci
et al. 2012) presents only partial similarities for ultimate
stress.

Human PLL (strain rate of 3000%/min) (Mattucci et al.
2012) presents only partial similarities for ultimate stress.
Human PLL (strain rate of 12,000%/min) (Mattucci
et al. 2012) presents total similarities in terms of ulti-
mate stress with PL (Oskui et al. 2016) of 0.44% (60%/
min), 0.82% (600%/min), 0.98% (6000%/min), 1.45%
(60,000%/min), with calf CraCL of 1.9%, CauCL of
18.70%, LCL of 12.36%, MCL of 20.28% (Eleswarapu
et al. 2011), and swine LCL (Bonner et al. 2015) of
34.86%. For the ultimate strain, there are a total similari-
ties with dog CraCL (Butler et al. 1983) of 5.31%, equine
SL (Riemersma and Schamhardt 1985) of 1.27%, equine
SL of 2.97% and DCL of 2.12% (Jansen and Savelberg
1994), equine SL (Smith 2006) of 11.06%, equine AccL
(Becker et al. 1994) between 4.25% and 6.38%, goat ACL

(Jackson et al. 1991) between 4.25% and 8.50%, rabbit
MCL (Woo et al. 1990a) between 1.06% and 2.12%, rab-
bit MCL (Moon et al. 2006) of 5.95%, and swine LCL
(Bonner et al. 2015) between 4.25% and 6.38%.

Human PLL (strain rate of 900,000%/min) (Mattucci
et al. 2012) presents a total similarity in terms of elastic
modulus with sheep ACL (Mahalingam et al. 2015) of
46.37%. For ultimate stress, there is a total similarity
with swine LCL (Bonner et al. 2015) of 72.36%.
Human CL (strain rate of 3000%/min) (Mattucci et al.
2012) presents total similarities in terms of elastic modu-
lus with cow PL (Oskui et al. 2016) at different strain
rate values, of 1.25% (60%/min), 0.31% (600%/min). For
ultimate stress, there are similarities with cow PL (Oskui
et al. 2016) at different strain rate values, of 11.66%
(60%/min), 21.66% (600%/min), 25.83% (6000%/min),
and 38.33% (60,000%/min).

Human CL (strain rate of 12,000%/min) (Mattucci et al.
2012) presents total similarities in terms of elastic modu-
lus with cow PL (Oskui et al. 2016) at different strain
rate, of 0.29% (600%/min), 7.94% (6000%/min). There
are only partial similarities for ultimate strain with cow
PL (Oskui et al. 2016) with strain rate of 600, 6000 and
60,000%/min.

Human CL (strain rate of 900,000%/min) (Mattucci et al.
2012) presents total similarities in terms of elastic modu-
lus with cow PL (Oskui et al. 2016) at different strain rate
values, of 0.29% (600%/min), 7.94% (6000%/min), and
7.94% (60,000%/min).

Human LF (strain rate of 3000%/min) (Mattucci et al.
2012) presents total similarities in terms of elastic modu-
lus with cow PL (Oskui et al. 2016) at different strain
rate, of 1.79% (6000%/min), 2.31% (60,000%/min), and
calf LCL (Eleswarapu et al. 2011) of 26.95%.

Human LF (strain rate of 12,000%/min) (Mattucci et al.
2012) presents only partial similarities for elastic modu-
lus and ultimate stress.

Human LF (strain rate of 900,000%/min) (Mattucci et al.
2012) presents only partial similarities for elastic modu-
lus and ultimate stress.

Human ISL (strain rate of 3000%/min) (Mattucci et al.
2012) presents total similarities in terms of elastic modu-
lus with calf LCL of 40.7%, CauCL of 59% (Eleswarapu
et al. 2011), and with cow PL (Oskui et al. 2016) at dif-
ferent strain rate, of 0.40% (60%/min), 0.1% (600%/
min), 2.70% (6000%/min) and 3.50% (60,000%/min).
For ultimate stress, there are total similarities with cow
PL (Oskui et al. 2016) at different strain rate values, of
4.82% (60%/min), 8.96% (600%/min), 10.69% (6000%/
min), and 15.86% (60,000%/min).

Human ISL (strain rate of 12,000%/min) (Mattucci
et al. 2012) presents total similarities in terms of elastic
modulus with calf CauCL of 90.77% (Eleswarapu et al.
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2011), and with cow PL (Oskui et al. 2016) at differ-
ent strain rate, of 2.15% (60%/min), 4.00% (600%/min),
4.76% (6000%/min) and 7.36% (60,000%/min). For ulti-
mate stress, there are total similarities with calf LCL of
90.76%, CauCL of 59% (Eleswarapu et al. 2011), and
with cow PL (Oskui et al. 2016) at different strain rate,
of 2.15% (60%/min), 4.00% (600%/min), 4.76% (6000%/
min), and 7.07% (60,000%/min). For the ultimate strain,
there are total similarities with dog CraCL (Butler et al.
1983) of 20.83%, goat ACL (Jackson et al. 1991) between
16.66% and 33.33%.

e Human ISL (strain rate of 900,000%/min) (Mattucci
et al. 2012) presents total similarities in terms of ulti-
mate stress with calf CauCL of 95.16% (Eleswarapu
et al. 2011), and cow PL (Oskui et al. 2016) at differ-
ent strain rate, of 2.25% (60%/min), 4.19% (600%/min),
5.00% (6000%/min), and 7.41% (60,000%/min). For the
ultimate strain, there is a total similarity with dog CraCL
(Butler et al. 1983) of 20.83%.

e Human LF(Nachemson and Evans 1968), presents total
similarities in terms of the ultimate stress with calf
CraCL (Eleswarapu et al. 2011) from 32.42 to 66.66%,
and cow PL (Oskui et al. 2016) at different strain rate,
of 12.72% (60%/min), 23.63% (600%/min), and 41.81%
(60,000%/min). For ultimate strain, specimens with an
average ultimate stress of 21.60 MPa have a total similar-
ity with equine SL (Smith 2006) of 81.25%.

4.2 Type of preconditioning

The preconditioning consists typically of 10/20 cycles of
loading/unloading until a certain value or inside an interval
of tension or deformation. As can be seen in Table 5, in the
majority of the reviewed articles, the specimens underwent
preconditioning by 10 cycles of approximately 0—5% strain
(Shetye et al. 2009, Woo et al. 1990b, Ng et al. 1995, Woo
et al. 1992, Danto and Woo 1993, Murao et al. 1997, Ma
et al. 2009, Moon et al. 2006, Kim et al. 2014, Wilson et al.
2012, Quapp and Weiss 1997, Criscenti et al. 2016, Kusay-
ama et al. 1994, Hewitt et al. 2002, Schleifenbaum et al.
2016, Moore et al. 2004 and Moore et al. 2005) or around
50 N (Becker et al. 1994, Viateau et al. 2013, Wijdicks
et al. 2010 and Robinson et al. 2005). It is also possible to
observe that in many cases (Diotalevi et al. 2018, Woo et al.
1990b, Abramowitch et al. 2003, Weiler et al. 2004, Woo
et al. 1992, Panjabi et al. 1996, Woo et al. 1986, Weiss et al.
1991, Xie et al. 2021, Kim et al. 2014, Tan et al. 2015 and
Schleifenbaum et al. 2016) the loading/unloading cycles are
performed at the same strain rate used during the tensile
tests. Lastly, it can be said that the type of preconditioning
varies with different ligaments in various animal species and
human specimens. In fact, it is important to point out that in
general there is no standardisation in terms of the number
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of cycles and the value of deformation or tension at which
the preconditioning is performed.

4.3 Limitations

The individuation from the existing scientific literature
of the most suitable surrogate to imitate the behaviour of
human ligaments is hampered by several inhomogeneities
in the experimental test protocol. This study also did not
consider parameters such as animal age, sex, and lifetime
activity. These parameters may influence the biomechani-
cal characteristics of soft tissues. Additionally, the compari-
son of ligaments should be conducted by evaluating their
composition. Future studies should compare the influence
of these parameters on the mechanical properties of animal
and human tendons, which would lead to a more accurate
assessment of the ligament to be used for ex vivo testing.
Moreover, here the mechanical properties of knee animals
and human ligaments were reported evaluating only a uni-
axial tensile test condition. Further studies will be needed
to analyse their mechanical behaviour at different angles.

5 Conclusions

This systematic review aimed at defining the most suitable
surrogates for mimicking the behaviour of human ligaments
when subjected to uniaxial tensile tests. For this reason, the
scientific literature was reviewed, evaluating the experimen-
tal studies involving the mechanical properties of animal
ligaments. Differences and similarities between human and
animal ligaments were highlighted and commented upon
and the best candidates were determined and discussed. The
comparison between the mechanical properties of animal
ligaments highlighted how they cannot always be compared
with their human counterparts; on the other hand, there are
many similarities between different anatomical parts. In
general, no specific animal ligaments can provide a suitable
model for its respective human counterpart concerning all
the three primary mechanical properties (Young modulus,
ultimate tensile stress, and ultimate tensile strain) at the
same strain rate. It is interesting to note that in the current
scientific literature, different animal models (bovine, dog,
rabbit, and swine) were adopted to evaluate the knee repair
technologies; nevertheless, despite this wide use, no clear
similarities were found in their mechanical properties. Fur-
ther studies will be needed to further compare the mechani-
cal properties of these ligaments and ensure that the scien-
tific evidence derived from such experimental studies can
be considered reliable.

Several similarities were observed in some properties
between animal and human ligaments. These similarities
were found despite the ligaments having been analysed at
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different strain rates. The results showed similarities between
animal and human ligaments that should be considered in the
evaluation of scaffolds and sutures.

Considering the results reported for tests performed in
mm/min:

e Swine CL with a displacement rate of 45 mm/min is
comparable (total similarity in terms of elastic modulus,
ultimate tensile stress and ultimate strain) with human
AB-IGHL with a displacement rate of 10 mm/min;

e Swine USL with a displacement rate of 45 mm/min is
comparable (total similarity in terms of elastic modu-
lus and ultimate strain but not for ultimate stress) with
human PB-IGHL with a displacement rate of 10 mm/
min;

e Swine ACL and posterolateral ACL with a displacement
rate of 19.8 mm/min are comparable (total similarity in
terms of elastic modulus and ultimate strain but not for
ultimate stress) with human posteromedial PCL with a
displacement rate of 1000 mm/min;

e Rat MCL with a displacement rate of 30 mm/min is
comparable (total similarity in terms of elastic modu-
lus and ultimate stress but not for ultimate strain) with
human posteromedial PCL with a displacement rate of
1000 mm/min;

e Swine PCL with a displacement rate of 19.8 mm/min is
comparable (total similarity in terms of elastic modu-
lus and ultimate stress but not for ultimate strain) with
human anterolateral PCL with a displacement rate of
1000 mm/min;

It’s important mentioning that monkey RL with a dis-
placement rate of 6 mm/min has a partial similarity with
human RL with a displacement rate of 5 mm/min for elastic
modulus and ultimate tensile stress. This result should be
further analysed in future works.

Considering the results reported for tests performed in
%/min:

e Swine LCL with a strain rate of 60%/min is comparable
(total similarity in terms of ultimate stress and ultimate
strain but not for elastic modulus) with human anterolat-
eral PLL with a strain rate of 12,000%/min;

e Swine LCL with a strain rate of 60 %/min and 600%/
min are comparable (total similarity in terms of ulti-
mate stress and ultimate strain but not for elastic modu-
lus) with human anterolateral PCL with a strain rate of
3000%/min;

e Swine LCL with a strain rate of 60 %/min is comparable
(total similarity in terms of ultimate stress and ultimate
strain but not for elastic modulus) with human PLL with
a strain rate of 12,000%/min;

e Cow PL with a strain rate of 60 %/min and 600% is com-
parable (total similarity in terms of elastic modulus and
ultimate stress but not for ultimate strain) with human
CL with a strain rate of 3000%/min. Moreover, the cow
PL at different strain rate shows some partial similarities
with human CL with a strain rate of 900,000%/min;

e Cow PL with a different strain rate is comparable (total
similarity in terms of elastic modulus and ultimate stress
but not for ultimate strain) with human ISL with strain
rates of 3000%/min and 12,000%/min. The human ISL
(3000%/min and 12,000%/min) shows some partial simi-
larities with calf CauCL for elastic modulus and ultimate
stress. Moreover, increasing the strain rate, some partial
similarities with cow PL remain.

In our previous review, similarities between human,
swine, equine, rabbit, rat, and goat tendons were found
and discussed in detail. Here, the analysis of the mechani-
cal properties for human and animal ligaments reported
similarities between human and swine, cow, and rat ones.
Comparing these two reviews, it can be stated that there are
similarities between the mechanical properties of human and
animals’ tendons and ligaments. In particular, the species
with most similarities for both tendons and ligaments are
swine and rat. These results may pave the way for future
works.

As a concluding remark, it seems highly probable that the
choice of parameter setting significantly affects the results
of the experimental studies reviewed and discussed here.
Unfortunately, different authors reported their results with
different settings. The lack of standard test settings (strain
rate, pre-conditioning) for the experiments should be consid-
ered when interpreting the results reported in the scientific
literature. Future studies will be needed to evaluate liga-
ments from different animals and anatomical regions with
the same test conditions and strain rate, in a fully compara-
ble way. Based on the evaluation of mechanical characterisa-
tion of ligaments analysed in this work, the authors thought
the following suggestions for best practices. After the tendon
extraction from the anatomical site, it is important to use the
same protocol for each of them. It is advisable to not per-
form the test on frozen samples. However, in case of frozen
samples, the defrosting process should be done at least 24 h
before the tests. Furthermore, before the test, the specimens’
thickness and width should be measured. These measure-
ments can be done either in a normal condition or with a
preload. The preload value should be evaluated based on the
literature information; if no data are available, the preload
should not exceed 10 Newton. Of course, all the parameters
used for the test should be fully reported in the article and
defined after an evaluation of the literature on the specific
tissue. Based on this review, the standard preconditioning for
ligaments should be 20 cycles at 1%/s of strain rate (starting
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from the preload force). Finally, the range where Young’s
modulus was calculated should be reported in the article.
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