
17 October 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Renewable powered Battery Swapping Stations for sustainable urban mobility / Renga, Daniela; Centonze, Gianmarco;
Meo, Michela. - ELETTRONICO. - (2022), pp. 1-7. (Intervento presentato al convegno 2022 IEEE International Smart
Cities Conference (ISC2) tenutosi a Pafos, Cyprus nel 26-29 September 2022) [10.1109/ISC255366.2022.9921757].

Original

Renewable powered Battery Swapping Stations for sustainable urban mobility

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ISC255366.2022.9921757

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2978661 since: 2023-05-20T21:20:42Z

IEEE



Renewable powered Battery Swapping Stations for
sustainable urban mobility

Daniela Renga*, Gianmarco Centonze°, Michela Meo*

Department of Electronics and Telecommunications
Politecnico di Torino

Turin, Italy
*{firstname.lastname}@polito.it

°gianmarco.centonze@studenti.polito.it

Abstract—Due to sustainability concerns raised by the trans-
portation sector, still relying mostly on oil as main energy source,
urban mobility is quickly shifting towards the adoption of electric
vehicles (EVs). The EV charging process should heavily rely on
Renewable Energy Sources (RES) and be smartly scheduled to
promote sustainability and pollution reduction. In this context,
renewable powered Battery Swapping Stations (BSS) represent a
promising solution to enable sustainable and feasible e-mobility.
Focusing on a BSS powered by photovoltaic panels, we investigate
the issue of properly dimensioning its capacity (in terms of
number of sockets) and the renewable energy supply to satisfy
the battery swapping demand, trading off cost, Quality of Service
and feasibility constraints. In addition, we analyse the potential
benefits of smart scheduling strategies for battery recharging.
Our results show that considerable cost saving of up to almost
40% can be achieved with a local RE supply to power the
BSS. Furthermore, a proper tuning of the scheduling strategy
configuration parameters is required to better trade off cost and
Quality of Service, based on the desired performance targets.

Index Terms—Battery Swapping Stations, e-mobility, Renew-
able Energy

I. INTRODUCTION

Currently the main energy source for the transportation sec-
tor is still represented by oil, satisfying more than 90% of the
sector energy demand. According to [1], road transportation
alone is responsible of the largest oil consumption among all
sectors, with a share of almost 50%. Furthermore, whereas
in other sectors oil consumption has not been significantly
increasing in the past decades, the total final oil consumption
of road transportation has almost triplicated in less than five
decades, currently amounting to almost 2000 Mtoe per year
[1], a trend which is clearly not sustainable.

Besides sustainability, especially in urban environments,
traditional transportation raises also concerns related to air
pollution. In this context, urban mobility is quickly shifting
towards the adoption of electric vehicles (EVs). However,
the positive impact of e-mobility on pollution reduction is
sustainable in the medium to long term only if EV charging
is carefully managed through energy supply systems which
heavily rely on Renewable Energy Sources (RES) and sched-
ule and plan recharging in a smart way.

A promising solution that facilitates the adoption of sustain-
able and smart charging is Battery Swap technology, which
consists in EVs equipped with batteries that can be quickly

changed, so that a discharged battery can be substituted with
a fully charged one in a short time. In this way, the need
for mobility is decoupled from the battery charging process
that is managed by independent companies through Battery
Swapping Stations (BSS) that operate in a similar way to
a fuel filling station. This has a number of advantages over
EVs with standard batteries. First, the time for a battery
swap is comparable to refueling an Internal Combustion En-
gine vehicle and this, in its turn, reduces the users’ range
anxiety (fear that a vehicle has insufficient range to reach
the destination) which is one of the major obstacles to the
large-scale adoption of all-electric cars [2], [3]. Second, new
convenient business models are possible. The user or the car
sharing company owns the EVs, whereas batteries are owned
and managed by a centralized provider, which is in charge of
battery maintenance. This lowers the EV prices and relieves
the burden on users to cope with exhausted batteries. Third,
smart scheduling of battery charging is possible. The time
constraint for recharging is relaxed and the recharging process
can adapt to the RES production and be activated when RES
energy is available. In addition, the charging process can
respond to Smart Grid requests in a beneficial interaction that
schedules battery charging in periods of low price, or when
RE is available or to prevent peak loads of electricity.

Some studies from the literature investigate optimal bat-
tery charging schedule approaches aiming at minimizing the
operational cost. Authors in [4] proposes a mathematical
model to schedule the battery charging process. This approach
optimizes an objective function that considers: (i) the number
of batteries taken from the BSS to satisfy the demand for EV
battery replacement, (ii) the potential damage due to high-
rate charging, and (iii) the varying electricity cost. The work
presented in [5] focuses on deploying a mathematical model
to optimally operate a BSS considering the random demands
of fully charged batteries, and exploiting demand shifting and
energy sellback to reduce the BSS operational cost. The study
in [6], based on a Monte Carlo simulation approach, shows
that optimal schedule for the charging process contributes to
satisfy more EV swapping and charging requests maximizing
the service capacity. Regarding renewable powered BSSs,
forecasting models based on statistics and machine learning
techniques can be integrated in the scheduling approaches to



Fig. 1: Renewable powered Battery Swapping Station.

address the uncertainties related not only to traffic load and
swapping demand, but also to renewable energy generation
and weather conditions [7], [8]. In [9], a charging strategy
is designed with the purpose of improving self-utilization of
renewable energy.

In this paper, we focus on urban e-mobility based on
battery swap technology, considering a renewable powered
BSS. We investigate the issue of properly dimensioning the
BSS capacity and the renewable energy supply to trade off cost
and Quality of Service. In addition, we analyse the potential
benefits of smart scheduling strategies for battery recharging.
The main contributions of the paper are the following:

• We analyze the performance of Battery Swap technology
in terms of cost and grid energy consumption when BSS
make use of solar panels;

• we discuss the dimensioning of the BSS in terms of num-
ber of sockets, to satisfy the battery swapping demand
trading off cost and service loss probability;

• we investigate the dimensioning of RE supply to trade
off cost saving and feasibility constraints;

• we propose some simple smart scheduling strategies and
observe the benefits of adapting charging schedules to
energy availability and electricity prices, investigating the
proper tuning of the strategy parameters settings.

II. SUSTAINABLE URBAN MOBILITY SCENARIO

We consider a scenario with a fleet of EVs owned by a
private company either offering goods delivery service or car
sharing service over a city and its suburban area. EVs are
equipped with a specially designed battery unit that, in case of
low charge level, can be replaced by a fully recharged battery
at a Battery Swapping Station (BSS), as shown in Fig. 1. The
swap takes a very short time and once the discharged battery is
replaced its recharging at the BSS can start. The battery units
have 20 kWh capacity. Due to the nonlinear charging power of
lithium-ion batteries, it is difficult to exactly estimate the final
charging time of each storage unit [3]. Nevertheless, according
to [10], a constant current can be used to quickly recharge the
battery from 0% to approximately 80%, whereas the charging
power in the remaining stage is significantly lower. In our

Fig. 2: Daily profile of EV arrival rates.

study, we assume a constant charging rate of 10 kW, allowing
to charge half the battery capacity per hour.

A number of BSSs are distributed in the city to provide
battery charging service to the fleet of EVs. In our paper we
focus on a single BSS, featuring a number of sockets that is
denoted by 𝑁𝑆 . Besides being powered by the electric grid, the
BSS is equipped with a set of photovoltaic (PV) panels that
locally produce renewable energy (RE) that is used to recharge
the battery units, as depicted in Fig. 1. Given a unitary capacity
of 1 kWp, and assuming one of the most efficient crystalline
silicon technologies, with efficiency 19%, the physical area
occupancy of the corresponding PV modules is about 5 m2

per kWp [11], [12]. Real RE generation profiles are obtained
from the PVWatts tool [11] for a city in Northern Italy
during the typical meteorological year. To evaluate the BSS
operational cost, we consider real electricity prices derived
from the Day-Ahead Market, provided by Gestore dei Mercati
Energetici (GME), the Italian company responsible for the
electricity market management [13]. EVs are assumed to arrive
at the BSS to replace their discharged battery according to
an inhomogeneous Poisson process, characterized by average
arrival rate 𝜆 varying with the time of the day on an hourly
basis, according to the daily traffic profile reported in Fig.2.
Taking inspiration from typical models of EV arrival rates
that are adopted in the literature [14], this pattern reflects
traffic variations during the day, showing traffic peaks at the
beginning of the working day, during lunchtime, and in the
evening.

The battery charge level of the EVs that arrive at the BSS
is denoted 𝐿 ·𝐶𝐵, with 𝐿 representing the fraction of the total
battery capacity, denoted by 𝐶𝐵. 𝐿 is assumed to be uniformly
distributed according to U[0.2,0.4] . This assumption allows to
take into account the Maximum Depth of Discharge (DoD) of
the battery, that is set in this case to 0.8, in order to limit the
battery degradation. Furthermore, under this assumption the
risk of fully running out of battery is avoided, allowing the
EV to reach another BSS in case no battery units are currently
ready to replace the EV battery.



III. SMART SCHEDULING STRATEGIES

When an EV arrives at the BSS, if at least a fully recharged
battery is available, this battery is used to replace the dis-
charged battery of the EV, and the EV battery takes its place at
the corresponding socket in the BSS, to start its recharge pro-
cess. In case no fully recharged battery is currently available
at the BSS, the EV cannot be served by the considered BSS
and another BSS must be reached. The described operation
corresponds to the Baseline Strategy (BLS). In addition, we
design different smart scheduling algorithms aiming at more
efficiently exploiting the produced RE, when available, and at
reducing operational cost. The proposed strategies represent
variants of the BLS and are based on the additional possibility
to periodically postpone the charging of a fraction of the
batteries currently under charge at the BSS. The postponing
decisions are based on predictions about the future renewable
energy generation and the electricity cost. In this paper,
we assume that prediction errors are negligible. The three
proposed approaches are detailed hereafter.

A. Renewable Energy based Postponing Strategy (REPS)

According to this strategy, the charging of a subset of
batteries plugged to the BSS can periodically be suspended
by an amount of time that facilitates the recharging with
renewable energy so as to decrease the consumption from the
electric grid. Let us denote by 𝐹 the maximum number of
batteries under charge in the BSS whose charging process can
be postponed by a period of time 𝑇𝑚𝑎𝑥 and let 𝑒𝐺 (𝑡) be the
energy requested by the electric grid if recharging starts at time
𝑡. When a new EV arrives at the BSS or one of the batteries
under charge at the BSS achieves the target charging level,
an algorithm is triggered to select up to 𝐹 batteries, whose
charge is postponed by a period 𝑡𝑟 , with 𝑡𝑟 ≤ 𝑇𝑚𝑎𝑥 , as long as
the following condition holds:

𝑒𝐺 (𝑡 + 𝑡𝑟 ) = min
∀𝑖∈(0,𝑇𝑚𝑎𝑥 ]

𝑒𝐺 (𝑡 + 𝑖) (1)

𝑒𝐺 (𝑡) > 𝑒𝐺 (𝑡 + 𝑡𝑟 ) (2)

where (1) identifies the best choice of the postponing time 𝑡𝑟
and (2) verifies that the best option for postponing is better
than non-postponing. The value of 𝑒𝐺 (𝑡) depends on the initial
charge level of the battery and on the RE that is produced
during the period in which the battery remains under charge.

B. Renewable Energy and Energy Price based Postponing
Strategy (RE-EPPS)

Based on the algorithm implemented by this strategy, the
charge of some batteries at the BSS can be postponed by up to
𝑇𝑚𝑎𝑥 if the cost for the energy drawn from the grid is expected
to be more convenient in the next future. In particular, when a
new EV arrives at the BSS or one of the batteries under charge
at the BSS achieves the target charging level, an algorithm is
triggered to select up to 𝐹 batteries at the BSS, whose charge
is postponed by a period 𝑡𝑟 , with 𝑡𝑟 ≤ 𝑇𝑚𝑎𝑥 , as long as the

following conditions hold:

𝑐𝐺 (𝑡 + 𝑡𝑟 ) = min
∀𝑖∈(0,𝑇𝑚𝑎𝑥 ]

𝑐𝐺 (𝑡 + 𝑖) (3)

𝑐𝐺 (𝑡) > 𝑐𝐺 (𝑡 + 𝑡𝑟 ) (4)

where 𝑡 + 𝑡𝑟 corresponds to the time between 𝑡 and 𝑡 +𝑇𝑚𝑎𝑥

at which the battery charge, once postponed at time 𝑡, must
be resumed to observe the minimum value of the cost for the
energy drawn from the grid that is required to recharge the
considered battery to the desired level. The value of 𝑐𝐺 (𝑡)
depends on the initial charge level of the battery, on the RE
that is produced during the period in which the battery remains
under charge, and on the time-varying electricity prices.

IV. KEY PERFORMANCE INDICATORS

The following Key Performance Indicators (KPIs) are de-
fined to evaluate the system performance under the different
smart scheduling strategies:

a. Average Service Loss probability - 𝑃𝑙: it is the average
daily probability that an EV arrives at the BSS and cannot
be served, since no battery is immediately ready to be
swapped with the EV battery.

𝑃𝑙 =
1
𝐷

𝐷∑︁
𝑖=1

𝑉𝑎
𝑖
−𝑉 𝑠

𝑖

𝑉𝑎
𝑖

𝑖 = 1,2, ...𝐷 (5)

where 𝑉𝑎
𝑖

is the number of EVs arrived at the BSS during
day 𝑖 , 𝑉 𝑠

𝑖
is the number of EVs served by the BSS on

day 𝑖, and 𝐷 is the number of days in the observation
period.

b. Average Energy Demand from the Grid - 𝐸𝐺: it is the
average daily BSS energy demand drawn from the electric
grid.

𝐸𝐺 =
1
𝐷

𝐷∑︁
𝑖=1

𝐸𝐺
𝑖 𝑖 = 1,2, ...𝐷 (6)

where 𝐸𝐺
𝑖

is the energy drawn from the grid on day 𝑖

to recharge the batteries of EVs that are served during
day 𝑖.

c. Average Total Cost - 𝐶𝑇 : it is the average daily cost to
operate the BSS.

𝐶𝑇 =
1
𝐷

𝐷∑︁
𝑖=1

𝐶𝑇
𝑖 𝑖 = 1,2, ...𝐷 (7)

where 𝐶𝑇
𝑖

is the cost spent on day 𝑖 to operate the BSS. A
low value of 𝐶𝑇 does not necessarily reflect a desirable
system performance, since a high value of service loss
probability may contribute to decrease the total cost at
the price of Quality of Service impairment. We hence
define also the following KPI, i.e. the Average Cost per
Service, whose value is not influenced by the service loss
probability.

d. Average Cost per Service - 𝐶𝑆: it is the average daily cost
to serve an EV and replace its battery with a recharged
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Fig. 3: Average daily total cost versus loss probability.

battery.

𝐶𝑆 =
𝐶𝑇𝐷

𝐷∑︁
𝑖=1

𝑉 𝑠
𝑖

𝑖 = 1,2, ...𝐷 (8)

V. SYSTEM DIMENSIONING

We first investigate how the system dimensioning influences
the overall performance, considering both the BSS charging
capability in terms of number of installed sockets and the size
of the RE supply. We assume that the system operates under
the BLS. An average value of 101.8 EV arrivals per day is
assumed. The simulations are run over a period of one year.

A. Dimensioning the BSS

We evaluate the BSS dimensioning in a baseline scenario
where no RE supply is envisioned. Fig. 3 reports the average
total daily cost, 𝐶𝑇 , versus the service loss probability, 𝑃𝑙 ,
obtained under different values of the number of sockets in
the BSS, 𝑁𝑆 . For each point in the graph, a label specifies
the corresponding value of 𝑁𝑆 . As the BSS size increases,
the service loss probability decreases, whereas the total cost
grows larger, due to the larger fraction of EVs that can be
served. However, the gain in terms of 𝑃𝑙 reduction and the cost
increase that are observed as 𝑁𝑆 increases tends to become less
relevant under higher values of 𝑁𝑆 . For example, under values
of 𝑁𝑆 as low as 15, entailing a loss probability of about 0.05,
the introduction of two additional sockets allows to almost
halve 𝑃𝑙 , at the price of less than 3% cost increase, whereas
raising 𝑁𝑆 from 22 to 23, although not very costly, does not
provide significant benefits in terms of further 𝑃𝑙 reduction,
since the service loss probability results well below 0.01 in
both cases.

Unlike 𝐶𝑇 , and as intuitively expected, the average cost
per service, 𝐶𝑆 (not shown here for the sake of brevity),
remains constant around 0.88 C under any BSS size. This
finding confirms that the total cost reduction observed under
smaller size of the BSS, i.e., lower 𝑁𝑆 , basically depends on
the lower fraction of EVs that can successfully be served, due
to the higher service loss probability.

B. Dimensioning Renewable Energy supply to reduce cost

Assuming that RE can be utilized to power the BSS in
addition to the energy drawn from the electric grid, we analyse
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Fig. 4: Average total cost, 𝐶𝑇 , under different settings of PV
panel capacity, 𝐶𝑃 , and number of sockets, 𝑁𝑆 .

the contribution of the RE supply to reduce the operational
cost, investigating the effect of its dimensioning on the system
performance.

Fig. 4 depicts the average daily cost, 𝐶𝑇 , for increasing
RE generator capacity, 𝐶𝑃 , with each curve representing a
different value of the number of sockets, 𝑁𝑆 . The introduction
of a set of PV panels with capacity 300 𝑘𝑊𝑝 allows to decrease
the cost by up to almost 40%. If 𝐶𝑃 is raised by 50%,
the cost is further decreased by few percentage points only.
Further increasing the size of the RE supply hence does not
provide remarkable additional gain in terms of cost reduction.
Considering that PV modules requires a surface of 5 𝑚2 per
𝑘𝑊𝑝 , a value of 𝐶𝑃=300 𝑘𝑊𝑝 allows to trade off between
the obtained operational cost saving and the need for limiting
the area required to host the PV system installation due to
feasibility and CAPEX constraints. To further decrease cost
in the RE powered BSS, 𝑁𝑆 can be slightly reduced, keeping
in mind that it is not convenient to remarkably decrease the
number of sockets, since the limited additional cost savings
under lower 𝑁𝑆 comes at the price of higher service loss
probability.

VI. SMART SCHEDULING STRATEGIES PERFORMANCE
EVALUATION

The system performance is now investigated under various
settings of the smart scheduling strategy parameters, to derive
guidelines to properly tune the parameter configuration based
on desired performance targets. Furthermore, the performance
under the different strategies is compared to analyse the
benefits provided by the various algorithms. A BSS equipped
with 25 sockets and a RE supply of capacity 300 𝑘𝑊𝑝 are
assumed.

A. Tuning configuration parameters

We now assume that the charging of some batteries at the
BSS can be postponed, if convenient. The system performance
under REPS is considered hereafter. Fig. 5 shows the total
cost, 𝐶𝑇 , the daily cost per service, 𝐶𝑆 , and the service loss
probability, 𝑃𝑙 , for increasing values of the maximum number
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Fig. 5: Average total cost, 𝐶𝑇 , cost per service, 𝐶𝑆 , and service loss probability, 𝑃𝑙 , under different settings of 𝐹 and 𝑇𝑚𝑎𝑥 .

of batteries whose charge can be postponed, 𝐹, for different
values of 𝑇𝑚𝑎𝑥 , that correspond to the various reported curves.
Under 𝑇𝑚𝑎𝑥 lower than 60 min, the setting of 𝐹 does not
significantly affect the total cost (Fig. 5a). Under higher values
of 𝑇𝑚𝑎𝑥 , as 𝐹 becomes larger, the cost tends to gradually
decrease. A steeper descent is observed for extremely high
values of 𝐹. For a given value of 𝐹, the larger the value of
𝑇𝑚𝑎𝑥 , the higher the cost reduction. Remarkable cost saving
of up to about 26% with respect to the baseline strategy are
achieved under very high values of 𝑇𝑚𝑎𝑥 and 𝐹. Nevertheless,
this comes at the price of higher service loss probability, as
shown by Fig.5c, where 𝑃𝑙 tends to grow as 𝐹 increases,
with a sharper increase when 𝑇𝑚𝑎𝑥 is higher. Clearly, although
providing relevant cost saving, very high values of both 𝑇𝑚𝑎𝑥

and 𝐹 are not advisable, since similar settings lead to a 𝑃𝑙

increase of up to almost 10%. Conversely, limiting 𝐹 to 15,
the value of 𝑇𝑚𝑎𝑥 can be conveniently increased to raise the
cost saving up to more than 10%, still keeping 𝑃𝑙 below 0.02.
As highlighted by Fig. 5b, the cost per service, similarly to
𝐶𝑇 , tends to decrease as 𝐹 and 𝑇𝑚𝑎𝑥 grow larger, although
with a more gradual descent under very large values of 𝐹.
This suggests that the higher cost reduction obtained under
REPS when 𝐹 and 𝑇𝑚𝑎𝑥 are increased does not only depend
on the higher service loss probability, but it also results form
properly shifting the battery charge processes to periods in
which more RE is available.

B. Smart scheduling based on charge postponing

The system performance under the proposed smart schedul-
ing strategies based on battery charge postponing, REPS and
RE-EPPS, is now evaluated and compared in terms of grid
energy demand, operational cost and Quality of Service.

First, the different approaches are compared under different
settings of 𝐹. Fig. 6 depicts the total daily cost, 𝐶𝑇 , and the
grid energy demand, 𝐸𝐺 , versus the service loss probability,
𝑃𝑙 , under different settings of 𝐹 (whose values are indicated
by the labels specified for each point in the graph), considering
the operation under REPS (Fig. 6a-6b) and RE-EPPS (Fig. 6c-
6d). 𝑇𝑚𝑎𝑥 is set equal to 120 min. Under both strategies, as
𝐹 grows larger, the cost and the service loss probability tend
to decrease gradually for low values of 𝐹, and more sharply
under larger values of 𝐹. Up to almost 10% of cost can be

saved under the largest value of 𝐹. Nevertheless, to limit 𝑃𝑙

below a target value of 0.02, the charge of up to no more than
19 batteries can be simultaneously postponed.

Focusing on the grid energy demand, 𝐸𝐺 decreases as 𝐹

increases, entailing higher service loss probability. Unlike 𝐶𝑇 ,
the decrease of 𝐸𝐺 is rather proportional to the 𝑃𝑙 increase.
This suggests that cost saving does not merely depend on the
reduction of the total amount of energy drawn from the grid,
but also on timely postponing the charge of some batteries,
to take advantage of time periods characterized by higher RE
availability and lower electricity prices.

No remarkable difference is observed between REPS and
RE-EPPS in terms of cost saving and yielded service loss
probability. This is likely due to the fact that the daily
patterns of RE production and electricity prices result coupled,
entailing peaks of prices that roughly overlap with peaks of RE
production. Hence, in the considered scenario, a strategy that
takes the decisions to postpone the charge of some batteries
based on the future RE availability provides similar effects
to a strategy that takes decisions based on both future RE
production and electricity prices.

We now compare the performance of the various strategies
under different settings of 𝑇𝑚𝑎𝑥 . Fig. 7 shows the total
daily cost, 𝐶𝑇 , and the grid energy demand, 𝐸𝐺 , versus the
service loss probability, 𝑃𝑙 , under different settings of 𝑇𝑚𝑎𝑥 ,
considering the operation under REPS (Fig. 7a-7b) and RE-
EPPS (Fig. 7c-7d). 𝐹 is set equal to 17.

Under both strategies, the daily cost tends to decrease as
𝑇𝑚𝑎𝑥 becomes larger, as well as the grid energy demand. Up
to more than 12% cost saving can be achieved under REPS
and RE-EPPS with respect to the baseline case in which none
of the strategies is applied. However, under higher settings
of 𝑇𝑚𝑎𝑥 , REPS provides slightly lower cost, granting smaller
service loss probability than RE-EPPS. This is likely due to
the fact that decisions to postpone the charge of some batteries,
although based on both RE future availability and electricity
prices under RE-EPPS, may provide optimal cost savings in
the current moment, nevertheless they may lead to additional
future service losses or may prevent future operations of
battery charging postponement due to lack of convenience,
hence reducing the overall cost gain.
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Fig. 6: Daily total cost (𝐶𝑇 ) versus service loss probability (𝑃𝑙), under different settings of 𝐹 (values are indicated by the
labels that are specified for each point in the graph), considering the operation under REPS and RE-EPPS.

Our findings suggest that when the target 𝑃𝑙 value is set to
a higher level, for instance 𝑃𝑙 < 0.02, both 𝑇𝑚𝑎𝑥 and 𝐹 can
be modulated to reduce cost without impairing Quality of
Service, preferably adopting REPS. Conversely, under tighter
constraints on 𝑃𝑙 , like 𝑃𝑙 < 0.01, it looks more effective to
increase 𝐹 rather than 𝑇𝑚𝑎𝑥 to obtain relevant cost reduction
without remarkably affecting the service loss probability, with
similar performance under both strategies.

VII. CONCLUSION

Our work investigates the potential of renewable powered
BSSs to make urban mobility more sustainable and more
competitive with respect to benefits provided by non-electric
mobility. Our results show that introducing a RE supply of
about 12-20 𝑘𝑊𝑝 per each socket provides up to almost
40% cost saving, hence contributing to make the BSS more
sustainable, trading off cost and feasibility constraints. An
appropriate dimensioning of the BSS in terms of number of
available sockets allows to limit the service loss probability.
Furthermore, properly designed smart scheduling strategies
allow to more effectively exploit the locally produced RE,
keeping in mind that effective policies do not aim at merely
reducing the energy consumption from the grid, but at timely
reducing the grid energy demand when the electricity prices
are not convenient as well as enhancing the RE utilization.

Finally, a convenient tuning of parameter settings is required
to better trade off cost and Quality of Service, based on the
desired performance targets.

Future work is required to investigate seasonal trends of the
system behavior, to identify optimal parameter configurations
depending on the time of the year, besides envisioning the
possibility to sell back unused RE to the electric grid. In ad-
dition, further research efforts should be directed to investigate
whether the strategy performance can be improved by slightly
relaxing some constraints, like allowing to reduce the mini-
mum charge level required to release a battery under charge
at the BSS in case of an EV request, or assuming that EVs can
wait for a short time at the BSS for a battery to become ready
for swapping, in case no batteries are immediately available.
Moreover, the sensitivity of the strategies to prediction errors
about renewable energy production and electricity cost has also
to be assessed.
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