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Abstract: This paper discusses the combined application of the lattice discrete element method

(LDEM) and the acoustic emission (AE) technique to analyze damage in quasi-brittle materials. These

methods were used to study the damage in a concrete slab under pure-shear stress and a pre-fissured

sandstone beam subjected to three-point bending. The first test was restricted to simulation results,

whereas the second included experimental data. The discrete element method was used to perform

the simulations for both tests, whereas the corresponding results and the information from the

experiments were assessed using AE analysis tools. It was shown that the synergistic use of these two

methods led to a comprehensive understanding of the two analyzed cases and offered an effective,

generalizable approach for assessing damage processes in quasi-brittle materials.

Keywords: discrete element method; quasi-brittle materials; damage evolution; fracture; acoustic

emission

1. Introduction

Concrete, granite, and certain polymers are examples of quasi-brittle materials, in
which the damage process governs energy dissipation, and their residual deformations are
marginal, as compared to materials with dominant plasticity effects. Such processes are
analogous to thermodynamical phase changes [1], with inherent discontinuities related to
the formation of micro-cracks within the material. Since most numerical analyses, most
notably the finite element method (FEM) have relied on continuous-media hypotheses, they
have significant limitations when emulating the strong interactions between continuous
and discontinuous effects, such as the formation of micro-fissure clusters, which is typical
in quasi-brittle materials. Some methods have built-in mechanisms to bypass the difficulties
presented by the presence of discontinuous terms, such as the cohesive interface method
by [2] and the extended finite element method by [3], where the discontinuities were
embedded in the element’s interpolation functions. However, these types of approaches
have led to the loss of information regarding the spasmodic growth of micro-fissures within
the structure. Deep discussions on the topic were found in [4,5].

Discrete element methods present material media as a cloud of punctual masses held
together by mass-less bars or beams to emulate the medium’s stiffness [6,7]. As they do
not rely on continuous-medium considerations, such methods have been able to handle
discontinuities, which is a significant advantage when modeling the formation of cracks in
quasi-brittle materials during damage processes [8]. Several variations of these methods
have appeared in many different scientific realms, such as chemistry, biology, management
systems, and even the dynamics of social networks (see, for example, [9,10]). In solid
mechanics, well-known approaches appeared in the peridynamic theory initially proposed
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by [11], which was discussed in detail in [12] and applied in several other works [13–16];
The bundle model by [17,18] was extensively discussed in [19], and the fuse model was
proposed by [20] and explored by [21,22]. Other applications were found in [23–25], and
the last two references include authors of the present work. However, this approach
has limitations in the choice of its parameters. For example, if a cubic arrangement, as
employed in the present work, is used, the model could only represent isotropic materials
for one specific Poisson coefficient (0.25) [26], requiring the use of other topologies for a
broader range of parameter values, as discussed at length in [6]. Furthermore, its ability to
simulate plasticity effects is poor: its elements’ constitutive laws are not able to account
for information related to the neighboring regions, such as the first- and second-strain
invariants. A new elemental constitutive law that bypasses this limitation is currently
under development, with some advances in the method used here appearing in [27].

As for monitoring damage processes as they unfold, several methods have relied on
the analysis of acoustic emission signals, i.e., surface effects (usually a displacement or
acceleration) derived from the propagation of elastic waves generated within a structure
as it ruptured. These signals have been analyzed using several approaches, ranging from
the classical universal laws used by [28] in seismology and [29] in meter-scale structures,
to the natural time concept introduced by [30]. The basic premise of these methods was
to associate the amplitudes and frequencies of AE signals to suitable indexes, so their
values throughout time served as reliable criteria to identify critical damage. Grosse and
Ohtsu [31] provided a primary reference using AE methods to analyze the damage in
quasi-brittle materials. Several application examples attested to the effectiveness of such
methods, for example, [32–37], including works from the same research group involved in
the present paper [38–40].

In the present work, we used a version of the discrete element Approach called the
lattice discrete element method (LDEM), in conjunction with the acoustic emission (AE)
technique, for two objectives: (i) to deepen the understanding of the link between damage
evolution in a generic structure and its corresponding AE signals, and (ii) to facilitate the
interpretation of actual AE data by comparing experimental and numerical results. We
pursued such goals through two specific application tests:

1. simulating a concrete slab under pure-shear stress and observing how the internal
damage process translated into the signals recorded by an AE sensor.

2. Subjecting a pre-fissured sandstone beam to a three-point-bending test, carried out
experimentally by [41], as well as through simulations performed in this study. The
simulated dataset was then used to deepen the understanding of the damage process
through comparisons with the corresponding experimental data.

The overall purpose was to illustrate how the synergistic use of these two strategies
(LDEM and AE) could lead to a more comprehensive understanding of damage processes
and could be employed an invaluable analysis approach for studying quasi-brittle struc-
tures.

2. Overview of the LDEM Approach

The LDEM approach modeled solids as a set of mass-less uni-axial elements and
nodal masses, forming cubic cells of 20 bars and 9 nodes, as depicted in Figure 1a. Each
node had three degrees-of-freedom, corresponding to its displacements in each coordinate
direction. The lengths of each longitudinal and diagonal element were denoted as Ln and
Ld =

√
3Ln/2, respectively. The equations relating the properties of the LDEM elements to

the elastic isotropic medium were as follows:

δ =
9ν

4 − 8ν
, α =

9 + 9δ

2(9 + 12δ)
, (1)

An = αLn
2, Ad =

2√
3

δαLn
2, (2)
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where E and ν denote the Young’s modulus and Poisson’s ratio, respectively, of the material,
whereas the initial axial stiffness values of the normal and diagonal elements are EAn/Ln

and EAd/Ld. Equations (1) and (2) were proposed by Nayfeh and Hefzy in [26], and their
derivations within the context of the lattice element method used here were complemented
in [42]. For ν = 0.25, the cubic array in Figure 1a yielded the exact representation of the
isotropic continuum, while the other values of ν caused small differences to appear in the
shear values [26]. The motion equation was enforced at every node to obtain the following,

Mü + Cu̇ + f − p = 0, (3)

where u is the vector of the generalized nodal displacements, M is the diagonal mass matrix,
C is the damping matrix, and f and p represent the internal and external forces acting on
the nodal masses, respectively. If M and C are diagonal, the system is not coupled, and the
explicit central finite differences could then be used to integrate the equations of motion in
the time domain. As a result, since the nodal coordinates were updated at every time-step,
large displacements were innately handled. The softening law for quasi-brittle materials
proposed by [43] was implemented by the triangular-element constitutive relationship
(OAB) of the LDEM longitudinal and diagonal elements (Figure 1b), which accounted for
the irreversible effects of the crack nucleation and propagation. To ensure that the overall
formulation was diagonal, the model’s damping was assumed proportional to the mass, as
follows:

C = D f M, (4)

where D f is a damping coefficient for filtering unwanted higher frequencies in the nu-
merical simulations. The most effective approach for its determination remained an open
issue in LDEM applications. For example, in [44,45], this coefficient was calibrated by
the direct comparison with experimental measurements from global damping specimens.
The numeric model was simulated under the same loading and boundary conditions
from the experiments, and D f was chosen so the model’s logarithmic decrement matched
the experimental values. An alternative approach was to modify the LDEM’s uni-axial
constitutive law by including a visco-elastic term that depended on the strain velocity.
Here, D f ≅ 2π fmζm was estimated from the model’s energy spectrum, where fm and ζm

represent the natural frequency and damping ratio of the highest energy peak, respectively.
This approach was also used in [46], which explores the influence of D f in more depth in
the application of LDEM for modeling wave propagation in soils.

x

z
y

□Ln

ki

mj

(a)

F

εp εε εm

Damage energy, ED

Elastic strain
energy, ES

EAiK

A

εr

P

BO C

D

(b)

Figure 1. LDEM discretization strategy: (a) Basic cubic module in the solid discretization, and (b)

Constitutive law adopted for LDEM uni-axial elements.

Figure 1b describes the constitutive law assumed by the LDEM model for the force
exerted by a bar as a function of its strain, where εp denotes the elastic limit strain, εm

is the maximum strain experienced by the element up to that point, and εr is the critical
failure strain. Since the area under the curve was proportional to the energy accumulated
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by the bar under strain, for a given point P, the area of the triangle OAP (striped sector)
would be proportional to the energy dissipated by the damage, whereas the OCD (gray
area) would be related to the elastic strain energy stored in the bar. If the external load was
relaxed at point P, the return slope would be lower than the initial slope because the bar
would then be partially damaged. When ε = εr, the damage energy density would equal the
fracture energy, and then the element would fail and lose its load-carrying capacity. Each
element’s equivalent fracture area A∗

i was chosen to ensure that the energy dissipated by
continuum fracture matched its discrete representation. For this purpose, the fracture of a
cubic sample of dimensions Ln × Ln × Ln was considered. The energy dissipated by a cubic
LDEM module and its distribution in the various elements were examined by [47], with an
alternative constitutive relation proposed in [48]. Under compression, as the material was
assumed to remain linearly elastic with an initial slope EA, failure would be induced by
indirect tension. In a quasi-brittle material, tensile collapse stress is commonly reached at
around 1/10 of its compressive strength. Therefore, the model could capture compression
effects indirectly without considering compression-induced damage because tensile failures
are the most common. Shear effects had to be considered in order to capture the post-failure
behavior, as discussed extensively in [27]. Further discussion on the representation of
compression effects on concrete using LDEM were also found in [49].

As described comprehensively by [50], there were two approaches for representing
the material’s random micro-structural features, either separately or simultaneously:

• Introducing small disturbances throughout the mesh with the node coordinates (x, y, z)
defined by:

(xn + rxLn, yn + ryLn, zn + rzLn) (5)

where xn, yn, and zn are the node coordinates for a perfect cubic array, whereas rx,
ry, and rz are normally distributed random numbers with zero mean and variation
coefficient CVp.

• Defining the material’s specific fracture energy G f as a random 3D-field, according to
a Type-III (Weibull) distribution, where the mean and the variation coefficient would
appear as input parameters. This option also considered a spatial correlation (lc) for
G f when lc > Ln.

In addition to the aforementioned approaches, the strains εp and εr (see Figure 1b)
were related the material’s characteristic length deq, as follows:

εp =

√

G f

E deq
, (6)

εr = εpdeq

(

A∗
i

Ai

)(

2

Li

)

. (7)

In Equation (7), A∗ was each element’s equivalent fracture area, defined to ensure that
the energy dissipated by the fracture of the continuum was equal to that of its discrete
counterpart. The sub-index indicated the type of element referenced (diagonal or normal).
Finally, the characteristic length was especially relevant because it represented the minimum
fissure dimension for an unstable fracture to start propagating. According to [51], this
length also related to other significant parameters, such as fragility s:

s =

√

G f E

d
σp

, (8)

where d represents the characteristic length of the structure and σp is the failure stress.
Combining Equations (6) and (8), we obtained the following:
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s =

√

deq

d
, (9)

where deq depends on the characteristic length (dm) of the material, proposed by [52], and
given by:

dm = εpdeq, (10)

these relations are discussed in more detail by [49,53].
In another version of the discrete element approach called Peridynamic, as proposed

by [11], the structure was treated as an arrangement of punctual discrete masses that
represented the density of the continuum, with the functions of the interactions emulating
the links between these points. The level of neighboring (interactions) among nodes was
given by the material parameter called horizon, whose physical meaning was analogous to
deq. The peridynamic approach was used in [24,25], with a constitutive law similar to the
one we adopted in this study.

All LDEM models used here were implemented with proprietary codes in Fortran, as
discussed in further detail in [54].

3. First Application: AE Events in a Simulated Fracture Process

Before discussing the experimental data in Section 4, we evaluated the proposed LDEM
approach through an entirely simulated test. It concerned the fracture process of a square
plate subjected to prescribed displacements, thus inducing a nominally homogeneous
pure-shear load with linearly increasing amplitude. The corresponding damage process
was evaluated through virtual AE events generated by the acceleration waves induced
within the structure as cracks occurred. The same structure had been previously studied
by [55], using uni-axial and shear stresses to evaluate the influence of the LDEM mesh
orientation on the damage process simulation. In this study, the main focus was to analyze
how the internal ruptures (events) generated the signals captured by the virtual sensors.

3.1. Model Description

This simulation described a concrete-made, 316 mm long by 36 mm thick square plate,
as shown in Figure 2 with its prescribed boundary conditions. The figure also includes
the positions of virtual AE sensors, simulating accelerometers aligned with the direction
normal of the plate’s median plane. The corresponding LDEM model comprised 79× 79× 9
cubic cells, with Ln = 4 mm. All other relevant parameters are shown in Table 1.

y

xz

316.00 mm

3
1
6
.0

0
m

m

S1 S2

δ

δ

ux = δ (t)
uy = uz = 0

. . .

.

.

.

uy =−δ (t)
ux = uz = 0

Figure 2. DEM model of the plate submitted to pure-shear stress, with boundary conditions and AE

sensor positions.
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Table 1. Dimensions and material properties of the plate.

µ(G f ) CV(G f ) CVp E deq ρ ν Ln lc

70 N m−1 100% 2.50% 32 GPa 0.02 m 2400 kg m−3 0.25 4 mm 4 mm

In Table 1, deq = 0.022 m was obtained by assuming σt = 10 MPa, G f = 70 N m−1,
E = 32 GPa, and d = 0.316 m, in Equation (8), yielding s = 0.27. Therefore, replacing s
in Equation (9) resulted in the adopted deq. As that parameter was much smaller than
the plate’s characteristic dimension d = 0.316 m, brittle behavior was expected. We also
observed that the chosen σt was slightly higher than the real value for concrete, as it was
selected to emphasize the model’s fragile behavior and to facilitate the identification of AE
events.

For the random field, the coefficient of variation was determined according to [48],
which showed that CV(G f (solid)) = CV(G f )/2.5 for the LDEM’s cubic arrangement. There-
fore, CV(G f (solid)) = 100/2.5 = 40% in the present case. The correlation lengths lcx, lcy,
and lcz were considered equal to the cubic module’s side. Random mesh variability was
introduced as the normally distributed perturbation with CVp = 2.5%. This was based
on [56], which stated that this value had to be smaller than 2.75% and suggested 2.5% as a
typical value for concrete. The introduction of randomness in the LDEM was discussed in
more general terms by [50].

3.2. Results

The first results referred to the overall damage. As shown in Figure 3a, the final
simulated configuration showed a main diagonal fissure throughout the plate, which was
typical for this test. That information was complemented by the distribution of bars that
surpassed their limit strain εr, from the start of the process to immediately before the main
fracture occurred (Figure 3b). As shown in Figure 3b, a distinctly dense cluster of broken
bars (a crack) appeared where the main fissure began. This region’s dimensions were
nearly 0.022 m, which was consistent with the value of deq in Table 1 and its definition in
Section 2, i.e., the critical crack size that would generate unstable propagation throughout
the specimen.

0 100 200 300
0

100

200

300

S1 S2

x [mm]

y
[m

m
]

(a)

0 100 200 300
0

100

200

300

S1 S2

x [mm]

y
[m

m
]

(b)

Figure 3. (a) Final configuration obtained with DEM model subjected to pure-shear stress. Broken

elements are in red. (b) Spatial distribution of bars where the strain exceeded εr from the beginning to

immediately before the main fracture occurred. The ellipse indicates where the main fissure started.

Figure 4a illustrates the same test regarding the shear stresses along each plate edge
as a function of the distortion angle. Due to the non-homogeneous nature of the material,
the homogeneous stress state was perturbed once the first micro-fracture had appeared.
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Afterwards, it remained approximately homogeneous until the peak load was reached.
Then, unstable fracture propagation took place, leading to large changes in the stress
distribution. We noted that the test concentrated on the damage process leading to collapse,
so the post-peak behavior was not considered. The corresponding energy balance is shown
in Figure 4b. The sudden increases in kinetic and dissipated energies after the normalized
time of 0.80 were clear indicators of unstable growth in the main fissure that had nucleated
during the damage process.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

2

4

6
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xz Rx
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RyRy
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(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
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8

Normalized Time

En
er

gy
[J

]

Dissipated (×4)
Elastic
Kinetic (×50)
max(Ek)

(b)

Figure 4. (a) Global shear stress vs. global distortion obtained with DEM. (b) Global energy balance.

We then analyzed the same results in terms of the AE signals captured by the virtual
sensors S1 and S2. As shown in Figure 5, the analysis was performed according to the
b-value parameter, which has been widely used in seismology in connection with the
Gutenberg–Richter (G-R) law [57]. As damage progressed, the acoustic waves appeared
within the structure as the fissures were formed. These wave amplitudes were a measure
of the fissure sizes and, therefore, of the damage extension. Mathematically, each wave
connected with an event, and the G-R law determined that the cumulative number N of
events with amplitudes larger than or equal to a given cutoff amplitude A, according to the
following:

N(≥ A) = cA−b. (11)

Otherwise, in the bi-log domain:

N(≥ A) = log(c)− b log(A), (12)

where c and b reflect both the intrinsic material properties and the boundary conditions
applied to the structure, respectively. This relation has been widely investigated in several
works, such as [19,21,22]. In particular, ref. [29] interpreted the b-value as one-half of the
fractal dimension of an AE event. According to this interpretation, during the damage
process, the b-value was expected to change from an ideal initial value around b = 1.5 (D = 3)
to a final result close to b = 1.0 (D = 2), because the individual (punctual) micro-fissures
tended to combine with the main crack.
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As shown in Figure 5, the calculation of the b-value was superposed to the AE am-
plitude distribution during the simulated process. We noticed the sharp decrease in the
b-value as the AE activity increased, which agreed with other works, such as [39] and the
seismic records of the Aquila region in Italy, as described in [58].
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0
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(g)

b-
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e

(a) (b) (c) (d) (e) (f) (g)

Figure 5. Correlation of b-value variations with the AE amplitude distribution during the simulated

fracture process.

Figure 6 depicts the AE signals from the virtual sensors S1 and S2 captured during
the test. Two events were highlighted: one at the beginning of the damage process and the
very last event before the rupture. This information was complemented by the number of
broken bars during the time interval of each event: (0.504, 0.512) for event 1 and (0.979,
0.987) for event 2. We observed that event 1 was associated with the rupture of only 1
bar, whereas several broken bars appeared for event 2. The link between event 2 and the
space–time distribution of the broken bars is shown in Figures 7 and 8.
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Figure 6. AE signals during the simulated damage process, with the bars broken throughout each
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Figure 7. Results of AE magnitudes as increments of dissipated energy and kinetic energies for (a)

Event 1 and (b) Event 2.

Figure 8. Spatial and temporal distribution of elastic, dissipated, and kinetic energy increments

during event 2.

In Figure 7, the responses of the two highlighted events in Figure 6 are shown in more
detail. The delay between an AE event and its corresponding energy increment was due
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to the traveling of the elastic wave from the perturbation source to the virtual sensor. We
noted the differences in the magnitudes due to the number of broken bars: only 1 for event
1 and about 1000 for event 2. We also observed that the signal from S1 suggested that event
2 could be regarded as 2 events separated by a brief period of silence.

Figure 8 depicts the spatial distribution of energy increments for event 2, between the
0.980 and 0.986 instants of normalized time. We noted the high amount of elastic energy at
the event’s end, indicating its tendency towards continued propagation during the process.
Moreover, two primary sources were identified in the event’s buildup, reinforcing the
concept that it could be treated as two separate events: one produced by the blue and
light-blue broken bars and another from the yellow to the red broken bars.

In Figure 9, the simulated damage process is illustrated through increments of kinetic
and dissipated energies, i.e., ∆Ei = Ei

t+dt − Ei
t, where dt is the integration time-step, and

Ei
t+dt and Ei

t are the energy values in 2 successive steps, with a sub-index indicating
whether they were dissipated or kinetic energy. We noted that the peaks of the incremental
kinetic energy coincided with the AE events indicated by the virtual sensors, which was
expected because the AE events were directly related to the kinetic energy, i.e., the “energy
that makes noise”, according to [59]. Furthermore, as shown in Figure 9, the energy had
dissipated in two ways: smooth or spasmodic. The latter was associated with avalanches
of the dissipated energy that also contributed to the local kinetic energy increments. A
thorough discussion of the correlation between the energy increments and the acoustic
emission signals was found in [60].
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Figure 9. AE magnitudes for sensor S1 and the corresponding increments of kinetic and dissipated

energies.

4. Second Application: Three-Point Bending Test and Comparison to
Experimental Data

In this section, the damage to the two Berea Sandstone beams was simulated with an
LDEM model. The simulated results were evaluated through a direct comparison with the
experimental AE data by [41].

4.1. Model Description

The beam geometry and the sensor positions are shown in Figure 10a, where ζ = 0.0
and 0.4 defines the fissure’s position in each case. A three-point-bending test was performed
by controlling the displacement velocity in the fissure’s mouth (CMOD). The boundary
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conditions are shown in Figure 10b, which also illustrates how the main fissure was
modeled in the numerical model: The bars’ constitutive laws were modified, reducing their
corresponding strength values.

The respective LDEM model was built with 73 × 27 × 12 cubic modules, with sides
of 2.25 mm, that were excited through a constant-velocity-prescribed displacement. The
model parameters were based on those in [41] and presented in Table 2. Two pre-fissure
configurations were considered with st = 0.5ζsa, where ζ = 0 and ζ = 0.40.

Py

h
=

6
0
.0

0
m

m

sa=146.80 mm

st=0.50ζ sa

AE sensors

Pre-fissure

a
=

1
2
.0

0
m

m

e=25.00 mm

(a)

x
y

uy = vt

uy = 0,

uz = 0

εp ≈ 0,

εr ≈ 0

ux = 0,

uy = 0,

uz = 0

st

(b)

Figure 10. (a) Three-point-bending test. (b) LDEM model details.

Table 2. Input parameters used in the LDEM simulation.

µ(G f ) CV(G f ) E deq ρ ν Ln lc

7.3 N m−1 65% 15 GPa 0.012 m 2800 kg m−3 0.25 2.25 mm 2.25 mm

Important considerations regarding the model calibration were as follows:

• The Young’s modulus for Berea Sandstone, as presented in [41], was in the range from
12 GPa to 15 GPa. In this study, it was considered 15 GPa to better adjust the curve
force vs. global vertical displacement, as shown in Figure 11 (red line).

• G f was considered a random field with a Weibull distribution, with a mean value
computed by considering Pcrit = 736.8 N, as shown in Figure 11, and using the classi-
cal fracture-intensity factor expression for the three-point-bending test, as provided
in Equations (13) and (14) [61], yielding KIc = 345,860 Nm−3/2, and G f = KIc

2/E =

7.9 N m−1.

KI =
Py

e
√

h
f
( a

h

)

, (13)

where

f
( a

h

)

=

3
Sa

h

√

a

h

2
(

1 + 2
a

h

)(

1 −
a

h

)3/2

[

1.99 −
a

h

(

1 −
a

h

)

(

2.15 − 3.93
a

h
+ 2.7

a2

h2

)]

. (14)

• The material porosity used by [41] was in the [0.1 mm–0.8 mm] interval, which
was lower than the discretization level adopted in this study. For this reason, we
assumed lo = lc, meaning that the random generation of each bar would be statistically
independent. However, in the same reference, the variations in the tensile stress
test were about 6% (σu = [3.4 MPa–3.6 MPa]), whereas it was around 10% in [62] for
sandstone specimens with the same dimensions. Previous studies using LDEM on
tensile specimens with similar sizes showed that to obtain a CV(σu) close to 10%,
the bars’ CV(G f ) had to be about 65%. The links between the toughness random
field properties and the global parameter variations were discussed in more detail
in [50,63].
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• The material’s characteristic length deq was based on the Carpinteri number, assum-
ing σp = 3 MPa. This parameter was slightly lower than the range used in [41]
[3.4 MPa–3.6 MPa], and slightly higher than the values presented by [62]. The corre-
sponding value for s was computed using Equation (8):

s =

√

GcE

d
σp

=

√

7.3 N m−115 GPa

0.06 m
3 MPa

= 0.45, (15)

Then, based on s and using Equation (8), we obtained deq = s2d = 0.452 × 0.06 m =
0.012 m. For a detailed discussion between deq and s, see [53].
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Figure 11. Comparison of experimental [41] and simulated LDEM results for (ζ = 0%).

4.2. Results

The results from the simulated model are shown in Figures 11–16. In Figure 11,
simulation results are directly compared to the corresponding experimental results obtained
by [41], for ζ = 0%. The best approximation from the numerical model occurred when
CV(G f ) = 65%, as observed in Section 4.1.
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Figure 12. The AE evolution during the simulation for both analyzed configurations. The load vs.

normalized time is also presented.
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Figure 12 depicts the progression of the AE events in normalized time, accompanied
by the load applied to both configurations. The simulated increases in the kinetic and
dissipated energies are also presented. As in Section 3, there was a clear correspondence
between the identified AE events and the energy spikes that signaled damage.

Figure 13 illustrates the global energy balances of the two configurations. The structure
was more fragile when the fissure was not centered (ζ = 40%), which was corroborated by
the sharper spike in the damage energy in the off-centered case.
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Figure 13. Simulated energy balances for the two configurations are presented.

Figure 14 illustrates the simulated configurations immediately before and after the
main fissure’s unstable propagation. Damaged elements (i.e., those with ε ≥ εp) are in blue,
whereas the fractured elements (when ε ≥ εr) are in red. For the centered case (Figure 14a),
a spasmodic local failure appeared at the normalized instant t = 0.85, which was identified
as many damaged bars around the pre-fissure’s head and confirmed by the energy balance
in Figure 13a. It was also apparent that the non-centered case generated many more broken
and damaged bars than the centered example. That was also confirmed in Figure 13: the
energy dissipated by damage was nearly 50% greater than the non-centered pre-fissure.
Finally, it was also clear that the energy had dissipated due to the final collapse because the
ζ = 40% configuration was substantially higher than that of ζ = 0%, as evidenced by the
number of damaged/broken bars (Figure 14a,b) and the corresponding variations in the
dissipated (i.e., damage) energies in the energy balance at the failure instant, as shown in
Figure 13.

The simulated acoustical energy release was calculated in the same way in these tests,
as described in Section 3.2, and then compared to the experimental results in [41]. The
corresponding energy values for the latter were estimated from the AE data according to
E ∝ Amax

2, where Amax is the maximum amplitude of each AE signal, and their spatial local-
ization was performed through the standard procedure according to [31]. The comparison
between the experimental and simulation results is shown in Figures 15 and 16, consid-
ering the events between 0.9 and 1 in normalized time. When the fissure was displaced
from the center by 40%, it became inclined with respect to the applied load. Therefore, a
new coordinate system was established, with its origin at the tip of the fissure and aligned



Appl. Sci. 2023, 13, 5119 14 of 19

with the expected fracture path. Mathematically, these coordinate transformations were
expressed as follows:

x0 = x cos(ψ)− (y − 11) sin(ψ)

y0 = x sin(ψ)− (y − 11) cos(ψ)
(16)

where all displacements are given in mm. The angle ψ corresponded to the inclination
of the fracture path, as shown in Figure 16d, as 27.8° for ζ = 40%. At first, the simulation
results suggested a significant deviation from the experiment due to the large number of
AE events that occurred left of the origin, as shown in Figure 16a. However, such events
were relatively sparse, as compared to those immediately around the fissure, indicating
that most of the AE emissions tended to be concentrated in the same region, as in the
experiment. We confirmed this conclusion by generating the corresponding histograms
for the new coordinate system and observing that most AE events had aligned with the
“tilted” y-axis, i.e., along the fracture’s path.

(a) Normalized Time=0.99 (b) Normalized Time=0.99

(c) Final Configuration (d) Final Configuration

Figure 14. Damage evolution of the DEM for ζ = 0%, and 40% for 3 moments during the simulation.
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Figure 15. Event localization and corresponding normalized AE energy histogram for the centered

fissure. (a) LDEM simulation result, (b) Experimental results.
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Figure 16. Events localization and normalized AE Energy histogram associated for the non-centered

fissure. (a) LDEM simulation results, (b) Experimental results.

Overall, the localization of events and the energy distribution yielded by the simulated
models agreed with the experimental results in [41], indicating that the proposed LDEM
approach was a valuable tool for analyzing damage in quasi-brittle structures. However, a
few relevant discrepancies were noted:

• A significant part of the experimental AE events occurred below the pre-fissure’s head,
whereas almost none appeared in the LDEM simulation. That difference was probably
due to unintended damage in the pre-fissure region during the specimen preparation.

• The simulations indicated noticeable AE activities in regions other than along the
main crack, such as in the vicinity of the load application (both tests) and in the
horizontal direction crossing the top of the main fissure’s head (non-centered case).
No such activity occurred in the corresponding regions during the experiments. These
discrepancies were probably derived from the determination methods for identifying
AE activity: The events in the numerical data were calculated from the kinetic energy
produced inside the model, free from the attenuation that affected the signals captured
by the sensors.

5. Conclusions

In the present work, the damage process of quasi-brittle materials was studied using
the acoustic emission (AE) technique and a version of the lattice discrete element method
(LDEM).The effectiveness of combining the two approaches was explored through two
applications, each illustrating different aspects of these analysis tools. The most important
observations from each application were the following:

• The first study used simulations to illustrate the LDEM’s ability to emulate the typical
results of AE tests, such as the spatial and temporal distributions of signals captured by
AE sensors. It also yielded the calculations of the global parameters usually employed
in AE methods for predicting local and global damage-induced instabilities.
Those parameters were complemented by capturing the temporal and spatial distribu-
tions of the simulated elastic, dissipated, and kinetic energies involved. These were
then used in an inverse analysis, linking the signals from the virtual AE sensors with
the element-breaking events that caused their emission. These signal patterns were
consistent with the system’s kinetic energy progression, i.e., every large-amplitude AE
signal could be traced back to a correspondingly significant variation in the energy.
By avoiding the numerous hard-to-track variables that characterize any experimental
work, this approach showed a clear cause–effect link between the damage processes
and the conclusions reached in our AE-based analysis, thus confirming AE coef-
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ficients as reliable failure predictors. The extension of this concept to real-world
systems is subject to the effects of many extraneous factors, reducing the effectiveness
accordingly. Nevertheless, AE analysis remains a valuable method for identifying
global tendencies in structures undergoing damage, as indicated by Wilson in their
re-normalization group procedure [64], and in other works addressing quasi-brittle
materials [1,29,30,60].

• The second application used numerical simulations combined with the AE analysis of
the experimental data from an actual pre-fissured sandstone beam undergoing damage.
Here, the simulations were used not to mimic the experiment and corroborate the
calculations of AE coefficients but to investigate the time–space distributions of the
events, so the AE results could be linked to their probable causes in the structure’s
interior as the damage progressed. The main points observed in this study are the
following:

– The simulation results of the LDEM model were qualitatively similar to the
damage patterns observed experimentally, especially regarding the orientation of
the major cracks.

– The wave attenuation as it traveled throughout the structure was a primary
limitation in identifying damage patterns through AE coefficients because it
masked the corresponding signals from the data-acquisition apparatus.

In summary, the results of both tests showed that the combination of AE coefficients
and LDEM models could be a valuable quantitative procedure for linking the material
properties of the studied systems with their characteristic damage patterns. In particular,
it highlighted the spasmodic nature of the damage processes in quasi-brittle materials,
pointing to the successive formation of small, local instabilities, followed by the localization
effects as the primary cause for such patterns.

Author Contributions: Conceptualization, B.N.R.T., G.B., I.I. and G.L.; methodology, B.N.R.T., G.B.,

I.I. and G.L.; software, B.N.R.T. and G.B.; validation, B.N.R.T. and G.B.; formal analysis, B.N.R.T.,

G.B. and I.I.; investigation, B.N.R.T., G.B. and M.S.; resources, I.I., and G.L.; data curation, I.I.

and G.L.; writing—original draft preparation, B.N.R.T., G.B., M.S. and I.I.; writing—review and

editing, B.N.R.T., G.B., M.S., I.I. and G.L.; visualization, B.N.R.T.; supervision, G.L. and I.I.; project

administration, I.I.; funding acquisition, I.I. and G.L. All authors have read and agreed to the

published version of the manuscript.

Funding: This research was funded by CNPq and CAPES (Brazil), and the sponsorship guaranteed

the basic research funds provided by Politecnico di Torino.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the financial support received from the Brazilian

National Council for Scientific and Technological Development (CNPq, Brazil) and from the Co-

ordination for the Improvement of Higher Education Personnel (CAPES-Brazil). The sponsorship

guaranteed with basic research funds provided by Politecnico di Torino, Italy, for its financial aid in

this work is also acknowledged.

Conflicts of Interest: The authors declare no existing or potential conflict of interest regarding the

research, authorship, and/or publication of this article.

Abbreviations

The following abbreviations were used in this manuscript:

AE Acoustic Emission

CMOD Crack Mouth-Opening Displacement

LDEM Lattice Discrete Element Method



Appl. Sci. 2023, 13, 5119 17 of 19

References

1. Rundle, J.B.; Turcotte, D.L.; Shcherbakov, R.; Klein, W.; Sammis, C. Statistical physics approach to understanding the multiscale

dynamics of earthquake fault systems: Statistical Physics of Earthquakes. Rev. Geophys. 2003, 41. [CrossRef]

2. Needleman, A. A Continuum Model for Void Nucleation by Inclusion Debonding. J. Appl. Mech. 1987, 54, 525–531. [CrossRef]

3. Belytschko, T.; Chen, H.; Xu, J.; Zi, G. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous

enrichment. Int. J. Numer. Methods Eng. 2003, 58, 1873–1905. [CrossRef]

4. Park, T.; Ahmed, B.; Voyiadjis, G.Z. A review of continuum damage and plasticity in concrete: Part I —Theoretical framework.

Int. J. Damage Mech. 2022, 31, 901–954. [CrossRef]

5. Voyiadjis, G.Z.; Ahmed, B.; Park, T. A review of continuum damage and plasticity in concrete: Part II —Numerical framework.

Int. J. Damage Mech. 2022, 31, 762–794. [CrossRef]

6. Jivkov, A.P.; Yates, J.R. Elastic behaviour of a regular lattice for meso-scale modelling of solids. Int. J. Solids Struct. 2012, 49,

3089–3099. [CrossRef]

7. Mastilovic, S.; Rinaldi, A. Two-Dimensional Discrete Damage Models: Discrete Element Methods, Particle Models, and Fractal

Theories. In Handbook of Damage Mechanics; Voyiadjis, G.Z., Ed.; Springer: New York, NY, USA, 2013; pp. 1–27. [CrossRef]

8. Jenabidehkordi, A. Computational methods for fracture in rock: A review and recent advances. Front. Struct. Civ. Eng. 2019, 13,

273–287. [CrossRef]

9. Atilgan, A.; Durell, S.; Jernigan, R.; Demirel, M.; Keskin, O.; Bahar, I. Anisotropy of Fluctuation Dynamics of Proteins with an

Elastic Network Model. Biophys. J. 2001, 80, 505–515. [CrossRef]

10. Rosenberg, E. Fractal Dimensions of Networks; Springer International Publishing: Cham, Switzerland, 2020. [CrossRef]

11. Silling, S.; Askari, E. A Meshfree Method Based on the Peridynamic Model of Solid Mechanics. Comput. Struct. 2005, 83,

1526–1535. [CrossRef]

12. Madenci, E.; Oterkus, E. Peridynamic Theory and Its Applications; Springer: New York, NY, USA, 2014. [CrossRef]

13. Sheikhbahaei, P.; Mossaiby, F.; Shojaei, A. An efficient peridynamic framework based on the arc-length method for fracture

modeling of brittle and quasi-brittle problems with snapping instabilities. Comput. Math. Appl. 2023, 136, 165–190. [CrossRef]

14. Shojaei, A.; Hermann, A.; Seleson, P.; Silling, S.A.; Rabczuk, T.; Cyron, C.J. Peridynamic elastic waves in two-dimensional

unbounded domains: Construction of nonlocal Dirichlet-type absorbing boundary conditions. Comput. Methods Appl. Mech. Eng.

2023, 407, 115948. [CrossRef]

15. Ongaro, G.; Bertani, R.; Galvanetto, U.; Pontefisso, A.; Zaccariotto, M. A multiscale peridynamic framework for modelling

mechanical properties of polymer-based nanocomposites. Eng. Fract. Mech. 2022, 274, 108751. [CrossRef]

16. Shojaei, A.; Hermann, A.; Cyron, C.J.; Seleson, P.; Silling, S.A. A hybrid meshfree discretization to improve the numerical

performance of peridynamic models. Comput. Methods Appl. Mech. Eng. 2022, 391, 114544. [CrossRef]

17. Pierce, F.T. Tensile Tests for Cotton Yarns: “The Weakest Link” Theorems on the Strength of Long and of Composite Specimens. J.

Text. Inst. Trans. 1926, 17, 355–368. [CrossRef]

18. Daniels, H.E. The Statistical Theory of the Strength of Bundles of Threads. I. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1945,

183, 405–435. [CrossRef]

19. Hansen, A.; Hemmer, P.C.; Pradhan, S. The Fiber Bundle Model: Modeling Failure in Materials; Statistical Physics of Fracture and

Breakdown, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015.

20. de Arcangelis, L.; Redner, S.; Herrmann, H. A random fuse model for breaking processes. J. Phys. Lett. 1985, 46, 585–590.

[CrossRef]

21. Biswas, S.; Ray, P.; Chakrabarti, B.K. Statistical Physics of Fracture, Breakdown, and Earthquake: Effects of Disorder and Heterogeneity;

John Wiley & Sons: Weinheim, Germany, 2015.

22. Alava, M.J.; Nukala, P.K.V.V.; Zapperi, S. Statistical Models of Fracture. Adv. Phys. 2006, 55, 349–476. [CrossRef]

23. Rabczuk, T.; Bordas, S.; Zi, G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and

junction in statics and dynamics. Comput. Mech. 2007, 40, 473–495. [CrossRef]

24. Rossi Cabral, N.; Invaldi, M.A.; Barrios D’Ambra, R.; Iturrioz, I. An alternative bilinear peridynamic model to simulate the

damage process in quasi-brittle materials. Eng. Fract. Mech. 2019, 216, 106494. [CrossRef]

25. Friedrich, L.F.; Colpo, A.B.; Kosteski, L.E.; Vantadori, S.; Iturrioz, I. A novel peridynamic approach for fracture analysis of

quasi-brittle materials. Int. J. Mech. Sci. 2022, 227, 107445. [CrossRef]

26. Nayfeh, A.H.; Hefzy, M.S. Continuum Modeling of Three-Dimensional Truss-Like Space Structures. AIAA J. 1978, 16, 779–787.

[CrossRef]

27. Colpo, A.; Vantadori, S.; Friedrich, L.; Zanichelli, A.; Ronchei, C.; Scorza, D.; Iturrioz, I. A novel LDEM formulation with crack

frictional sliding to estimate fracture and flexural behaviour of the shot-earth 772. Compos. Struct. 2023, 305, 116514. [CrossRef]

28. Richter, C.F. Elementary Seismology; W. H. Freeman and Company: San Francisco, CA, USA; Bailey Bros. & Swinfen Ltd.: London,

UK, 1958; Volume 2.

29. Carpinteri, A.; Lacidogna, G.; Puzzi, S. From Criticality to Final Collapse: Evolution of the “b-Value” from 1.5 to 1.0. Chaos

Solitons Fractals 2009, 41, 843–853. [CrossRef]

30. Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Natural Time Analysis: The New View of Time; Springer: Berlin/Heidelberg, Germany, 2011.

[CrossRef]

31. Grosse, C.; Ohtsu, M. (Eds.) Acoustic Emission Testing; Springer: Berlin/Heidelberg, Germany, 2008. [CrossRef]

http://doi.org/10.1029/2003RG000135
http://dx.doi.org/10.1115/1.3173064
http://dx.doi.org/10.1002/nme.941
http://dx.doi.org/10.1177/10567895211068174
http://dx.doi.org/10.1177/10567895211063227
http://dx.doi.org/10.1016/j.ijsolstr.2012.06.010
http://dx.doi.org/10.1007/978-1-4614-8968-9_23-1
http://dx.doi.org/10.1007/s11709-018-0459-5
http://dx.doi.org/10.1016/S0006-3495(01)76033-X
http://dx.doi.org/10.1007/ 978-3-030-43169-3
http://dx.doi.org/10.1016/j.compstruc.2004.11.026
http://dx.doi.org/10.1007/978-1-4614-8465-3
http://dx.doi.org/10.1016/j.camwa.2023.02.020
http://dx.doi.org/10.1016/j.cma.2023.115948
http://dx.doi.org/10.1016/j.engfracmech.2022.108751
http://dx.doi.org/10.1016/j.cma.2021.114544
http://dx.doi.org/10.1080/19447027.1926.10599953
http://dx.doi.org/10.1098/rspa.1945.0011
http://dx.doi.org/10.1051/jphyslet:019850046013058500
http://dx.doi.org/10.1080/00018730300741518
http://dx.doi.org/10.1007/s00466-006-0122-1
http://dx.doi.org/10.1016/j.engfracmech.2019.106494
http://dx.doi.org/10.1016/j.ijmecsci.2022.107445
http://dx.doi.org/10.2514/3.7581
http://dx.doi.org/10.1016/j.compstruct.2022.116514
http://dx.doi.org/10.1016/j.chaos.2008.04.010
http://dx.doi.org/10.1007/978-3-642-16449-1
http://dx.doi.org/10.1007/978-3-540-69972-9


Appl. Sci. 2023, 13, 5119 18 of 19

32. Shiotani, T.; Fujii, K.; Aoki, T.; Amou, K. Evaluation of Progressive Failure Using Ae Sources and Improved b-value on Slope

Model Tests. In Progress in Acoustic Emission VII, Proceedings of the 12th International Acoustic Emission Symposium, Sapporo, Japan,

17–20 October 1994; Kishi, T., Ed.; Japanese Society for Non-Destructive Inspection: Tokyo, Japan 1994; Volume 7, pp. 529–534.

33. Colombo, I.S.; Main, I.G.; Forde, M.C. Assessing Damage of Reinforced Concrete Beam Using b-value Analysis of Acoustic

Emission Signals. J. Mater. Civ. Eng. 2003, 15, 280–286. [CrossRef]

34. Turcotte, D.L.; Newman, W.I.; Shcherbakov, R. Micro and Macroscopic Models of Rock Fracture. Geophys. J. Int. 2003, 152,

718–728. [CrossRef]

35. Potirakis, S.; Mastrogiannis, D. Critical features revealed in acoustic and electromagnetic emissions during fracture experiments

on LiF. Phys. A Stat. Mech. Its Appl. 2017, 485, 11–22. [CrossRef]

36. Niccolini, G.; Potirakis, S.M.; Lacidogna, G.; Borla, O. Criticality Hidden in Acoustic Emissions and in Changing Electrical

Resistance during Fracture of Rocks and Cement-Based Materials. Materials 2020, 13, 5608. [CrossRef]

37. Lacidogna, G.; Piana, G.; Accornero, F.; Carpinteri, A. Multi-technique damage monitoring of concrete beams: Acoustic Emission,

Digital Image Correlation, Dynamic Identification. Constr. Build. Mater. 2020, 242, 118114. [CrossRef]

38. Rojo Tanzi, B.N.; Sobczyk, M.; Becker, T.; Segovia González, L.A.; Vantadori, S.; Iturrioz, I.; Lacidogna, G. Damage Evolution

Analysis in a “Spaghetti” Bridge Model Using the Acoustic Emission Technique. Appl. Sci. 2021, 11, 2718. [CrossRef]

39. Friedrich, L.; Colpo, A.; Maggi, A.; Becker, T.; Lacidogna, G.; Iturrioz, I. Damage process in glass fiber reinforced polymer

specimens using acoustic emission technique with low frequency acquisition. Compos. Struct. 2021, 256, 113105. [CrossRef]

40. Friedrich, L.F.; Rojo Tanzi, B.N.; Colpo, A.B.; Sobczyk, M.; Lacidogna, G.; Niccolini, G.; Iturrioz, I. Analysis of Acoustic Emission

Activity during Progressive Failure in Heterogeneous Materials: Experimental and Numerical Investigation. Appl. Sci. 2022, 12,

3918. [CrossRef]

41. Lin, Q.; Mao, D.; Wang, S.; Li, S. The Influences of Mode II Loading on Fracture Process in Rock Using Acoustic Emission Energy.

Eng. Fract. Mech. 2018, 194, 136–144. [CrossRef]

42. Kosteski, L.; Barrios D’Ambra, R.; Iturrioz, I. Crack propagation in elastic solids using the truss-like discrete element method. Int.

J. Fract. 2012, 174, 139–161. [CrossRef]

43. Hillerborg, A. A Model for Fracture Analysis; Report TVBM; Division of Building Materials, LTH, Lund University: Lund, Sweden,

1978; Volume 3005.

44. Dimarogonas, A.D. Vibration for Engineers, 2nd ed.; Prentice-Hall International Prentice Hall: London, UK, 1996.

45. Dassault Systèmes Americas Corp®. SIMULIA Academic Research, Release 2016; Abaqus: Waltham, MA, USA, 2016.

46. Iturrioz, I.; Riera, J.D. Assessment of the Lattice Discrete Element Method in the simulation of wave propagation in inhomogeneous

linearly elastic geologic materials. Soil Dyn. Earthq. Eng. 2021, 151, 106952. [CrossRef]

47. Iturrioz, I.; Riera, J.D.; Miguel, L.F.F. Introduction of Imperfections in the Cubic Mesh of the Truss-Like Discrete Element Method.

Fatigue Fract. Eng. Mater. Struct. 2014, 37, 539–552. [CrossRef]

48. Kosteski, L.E. Aplicação Do Método Dos Elementos Discretos Formado Por Barras No Estudo Do Colapso De Estruturas. Ph.D.

Thesis, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil, 2012.

49. Birck, G.; Rinaldi, A.; Iturrioz, I. The fracture process in quasi-brittle materials simulated using a lattice dynamical model. Fatigue

Fract. Eng. Mater. Struct. 2019, 42, 2709–2724. [CrossRef]

50. Puglia, V.B.; Kosteski, L.E.; Riera, J.D.; Iturrioz, I. Random Field Generation of the Material Properties in the Lattice Discrete

Element Method. J. Strain Anal. Eng. Des. 2019, 54, 236–246. [CrossRef]

51. Carpinteri, A. Application of Fracture Mechanics to Concrete Structures. J. Struct. Div. 1982, 108, 833–848. [CrossRef]

52. Taylor, D. The Theory of Critical Distances: A New Perspective in Fracture Mechanics; Elsevier: Amsterdam, The Netherlands; Boston,

MA, USA, 2007.

53. Kosteski, L.E.; Iturrioz, I.; Lacidogna, G.; Carpinteri, A. Size effect in heterogeneous materials analyzed through a lattice discrete

element method approach. Eng. Fract. Mech. 2020, 232, 107041. [CrossRef]

54. Rojo Tanzi, B.N. Análise do Processo de Dano com a Técnica de Emissão Acústica e Métodos Discretos. Master’s Thesis,

Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil, 2020.

55. Birck, G.; Riera, J.D.; Iturrioz, I. Numerical DEM simulation of AE in plate fracture and analogy with the frequency of seismic

events in SCRs. Eng. Fail. Anal. 2018, 93, 214–223. [CrossRef]

56. Riera, J.D.; Miguel, L.F.F.; Iturrioz, I. Study of imperfections in the cubic mesh of the truss-like discrete element method. Int. J.

Damage Mech. 2014, 23, 819–838. [CrossRef]

57. Gutenberg, B.; Richter, C.F. Magnitude and Energy of Earthquakes. Nature 1955, 176, 795. [CrossRef]

58. Cutugno, P. Space-Time Correlation of Earthquakes and Acoustic Emission Monitoring of Historical Constructions. Ph.D Thesis,

Politecnico di Torino, Torino, Italy, 2017.

59. Carpinteri, A.; Lacidogna, G.; Corrado, M.; Di Battista, E. Cracking and Crackling in Concrete-Like Materials: A Dynamic Energy

Balance. Eng. Fract. Mech. 2016, 155, 130–144. [CrossRef]

60. Iturrioz, I.; Lacidogna, G.; Carpinteri, A. Experimental Analysis and Truss-Like Discrete Element Model Simulation of Concrete

Specimens Under Uniaxial Compression. Eng. Fract. Mech. 2013, 110, 81–98. [CrossRef]

61. Anderson, T. Fracture Mechanics: Fundamentals and Applications, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2017. [CrossRef]

62. van Vliet, M.R.; van Mier, J.G. Size effect of concrete and sandstone. HERON 2000, 45, 91–108.

http://dx.doi.org/10.1061/(ASCE)0899-1561(2003)15:3(280)
http://dx.doi.org/10.1046/j.1365-246X.2003.01884.x
http://dx.doi.org/10.1016/j.physa.2017.05.025
http://dx.doi.org/10.3390/ma13245608
http://dx.doi.org/10.1016/j.conbuildmat.2020.118114
http://dx.doi.org/10.3390/app11062718
http://dx.doi.org/10.1016/j.compstruct.2020.113105
http://dx.doi.org/10.3390/app12083918
http://dx.doi.org/10.1016/j.engfracmech.2018.03.001
http://dx.doi.org/10.1007/s10704-012-9684-4
http://dx.doi.org/10.1016/j.soildyn.2021.106952
http://dx.doi.org/10.1111/ffe.12135
http://dx.doi.org/10.1111/ffe.13094
http://dx.doi.org/10.1177/0309324719858849
http://dx.doi.org/10.1061/JSDEAG.0005928
http://dx.doi.org/10.1016/j.engfracmech.2020.107041
http://dx.doi.org/10.1016/j.engfailanal.2018.06.024
http://dx.doi.org/10.1177/1056789513513917
http://dx.doi.org/10.1038/176795a0
http://dx.doi.org/10.1016/j.engfracmech.2016.01.013
http://dx.doi.org/10.1016/j.engfracmech.2013.07.011
http://dx.doi.org/10.1201/9781315370293


Appl. Sci. 2023, 13, 5119 19 of 19

63. Kosteski, L.E.; Iturrioz, I.; Friedrich, L.F.; Lacidogna, G. A study by the lattice discrete element method for exploring the fractal

nature of scale effects. Sci. Rep. 2022, 12, 16744. [CrossRef]

64. Wilson, K.G. Problems in Physics with many Scales of Length. Sci. Am. 1979, 241, 158–179. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1038/s41598-022-20137-3
http://dx.doi.org/10.1038/scientificamerican0879-158

