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Abstract—In recent years, a number of computationally ef-
ficient models have been developed that adequately describe
the static and dynamic behavior of the Vertical Cavity Surface
Emitting Laser (VCSEL). In order to correctly recreate the
behavior of existing laser sources, a large number of physical
parameters must be specified. Finding these unknown physical
characteristics in experimental curves may be time-consuming,
and mainly requires trial and error processes or regression
analysis. Instead of manually analyzing experimental data to find
the best VCSEL parameters, we propose a Machine Learning
(ML) based solution to automate the process. The proposed
approach exploits the parametric dataset obtained from Light-
current and Small-signal modulation responses to extract the
required model parameters. Excellent results are obtained in
terms of relative prediction error.

Index Terms—Vertical Cavity Surface Emitting Laser, Machine
learning, Circuit-level models

I. INTRODUCTION

Lasers are currently utilized in various applications, includ-
ing data transmission, marking, cutting, additive manufactur-
ing, etc. [1], [2], [3], [4], [5], [6]. In order to provide an insight
on the behaviour of these sources and to help in the design
process, a large number of models have been developed in the
last decades to describe the various families of devices used
for those application, each describing the specific properties
of the various laser sources and applications.

Approaches based on numerical models provide compre-
hensive, general solutions via approximation and can include
a large number of linear and non-linear physical effects to
improve the accuracy of the results. In general, however, it
is computationally costly to identify the value of the correct
parameters to reproduce the experimental evidence. A compre-
hensive systematic analysis of all potential combinations of the
parametric space is required to identify the ideal parametric
blend. This procedure is time-consuming, lasting in some
cases days or weeks, and unfocused, squandering energy,
time, and money. Simultaneously, once this time-consuming
approach identifies the ideal parametric combination, tiny
adjustments can alter the optimal operating point, necessitating
a fresh round of experimental trials to identify a new optimal
combination of parameters. This makes laser modeling ex-

tremely difficult for precise and realistic characterization. In
this regard, ML has lately proven to be a viable alternative [7],
as it can define a model directly from experimental data. The
ML-based models are completely agnostic and simply require
a substantial size of data to characterize the lasers of various
families, which are used in a wide variety of applications.

Various laser families have been introduced during the past
few decades, including VCSELs. Recently, numerous compu-
tationally efficient models have been developed to precisely
define the static and dynamic behavior of VCSELs. These
models serve a crucial role in comprehending the physical
properties of VCSELs, which enables further optimization of
these devices. In addition, they are an essential resource for
simulating VCSEL sources as part of larger optoelectronic
systems in a realistic manner. In fact, so-called ”circuit-level
models” of VCSEL are accessible in modeling environments
such as the Synopsys OptSim circuit simulation environ-
ment [8].

In order to acquire accurate results from the numerical
simulation of the entire photonic system, various physical
parameters must be specified appropriately in these models
to mimic the behavior of current laser sources accurately. We
offer a machine learning-based method already applied to laser
parametric extraction and inverse design challenges [7]. The
suggested ML-based approach to the issue permits the efficient
extraction of the necessary VCSEL parameters from experi-
mental data and has the capability to define the parameters in
real-time. The suggested solution can be implemented in two
phases. The first phase is related to the parameter at a constant
temperature, whereas the second phase is related to varying
temperatures. Here, the scope of this analysis is to consider
the first phase only, i.e., parameters extraction at a constant
temperature. Still, the procedure can be easily extended to the
second phase also, and it can be applied to different laser
families.

The manuscript is organized as follows. In Section II, we
describe the main equations of the considered VCSEL model,
available in Synopsys OptSim [8]. In Section III, we discuss
the generation of the dataset for the ML agent training and
validation along with the architecture of the ML model. In
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Fig. 1: ML assisted VCSEL parameters extraction.

Section IV, we present the results of such training. Finally,
we draw our conclusions in Section V.

TABLE I: Parameters investigated and variation ranges for
generating dataset at 25 °C.

Parameter Range
Current injection efficiency ηi 0.7 to 1

Output power conversion factor kf 1×108 to 6×108

Photons lifetime τ p 2 ps to 3.5 ps
Carrier lifetime τ n 0.5 ns to 5 ns
Gain coefficient g0 −30 000 s−1 to −1000 s−1

Gain coefficient parameter ag0 5000 to 30 000
Gain coefficient parameter bg0 1000 to 20 000

Carrier transparency number ntr 2×106 to 3×107

Transparency number parameter cn0 −10 to 10
Gain saturation factor ε 1×10−8 to 2×10−6

Leakage current factor I lo 0 A to 3×104 A
Leakage current empirical parameter a0 1000 K to 8000 K

Overlap coefficient ρ 0.1 to 1
Diffusion parameter hdiff 1 to 20

VCSEL thermal impedance Rth 500 K W−1 to 8000 K W−1

II. VERTICAL CAVITY SURFACE EMITTING LASERS
MODEL

The VCSEL model used for our analysis is an evolution
of the model originally proposed in [9]. The current model,
implemented in an OptSim block, uses a mean field approach
and is based on a set of rate equations.

In cylindrical geometry, the carrier number in the active
medium is expanded in the Bessel series, with the position
independent terms N0 and N1 being considered [9]:

N(r) = N0 −N1J0(σ1r/R) (1)

with σ1 first non zero root of J1, r distance with respect to
the VCSEL symmetry axis, R active layer radius, J0(x) and
J1(x) first kind Bessel functions. The rate equations describing
the temporal evolution of the spatially independent carrier
numbers N0 and N1 read

∂N0

∂t
=

ηiI

q
− N0

τ n
− G [γ00(N0 −N t)− γ01N1]

1 + εS
S − I l

q
(2)
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Fig. 2: Parallel architecture of a deep neural network

∂N1

∂t
=−N1

τ n
(1+hdiff)+

G [ϕ100(N0 −N t)− ϕ101N1]

1 + εS
S (3)

with ηi current injection efficiency, I injected current, q
electron charge, τ n carrier lifetime, G gain, γ100, γ101, ϕ100
and ϕ101 mode overlap coefficients [9] calculated by OptSim
as a function of the ratio ρ between the characteristic radius
Rm and R, Nt carrier transparency number, ε gain saturation
factor, I l leakage current, and hdiff diffusion parameter.

While parasitic electrical effects can be introduced in Opt-
Sim and more realistic bias-tee connections can be included,
for the purpose of this study we assume a simple direct drive
of the laser. The temporal evolution the photon number in the
cavity S is described as

∂S

∂t
= − S

τ p
+

βspN0

τ n
+

G [γ00(N0 −N t)− γ01N1]

1 + εS
S (4)

with τ p photons lifetime and βsp spontaneous emission co-
efficient. The output power P out is simply calculated as the
product between the cavity photon number and a scaling
coefficient kf.

An additional equation improves the model in [9] allowing
to include in the simulation the evolution of the field phase
ϕ [10]:

∂ϕ

∂t
=

α

2

G [γ00(N0 −N tr)− γ01N1]

1 + εS
(5)

with α linewidth enhancement factor. In order to introduce
in the model the effects related to the temperature T , a
phenomenological representation of the gain G, the carrier
transparency number Nt, an the leakage current I l is used:

G(T ) = G0
ag0 + ag1T + ag2T

2

bg0 + bg1T + bg2T 2
(6)

N t(T ) = N tr
(
cn0 + cn1T + cn2T

2
)

(7)

I l(T ) = I l0 exp

(
−a0 + a1N0 + a2N0T − a3/N0

T

)
(8)

with I l0 leakage factor; ag0-ag2, bg0-bg2, cn0-cn2, and a0-a3 are
fitting coefficients.
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Fig. 3: Relative predicting error of ML agent for the 15 considered parameters. Values in the plot each histogram indicate the
relative error standard deviation.

TABLE II: Parameters used to describe the temperature depen-
dence of gain, transparency carrier and leakage current ([9],
device B).

Parameter Value
Gain coefficient parameter ag1 8.282 K−1

Gain coefficient parameter ag2 0.088 46 K−2

Gain coefficient parameter bg1 −49.41 K−1

Gain coefficient parameter bg2 8.2 K−2

Transparency number parameter cn0 6.521
Transparency number parameter cn1 −0.0336 K−1

Transparency number parameter cn2 6.012×105 K−2

Leakage current parameter a1 1.98×10−4 K
Leakage current parameter a2 9.377×10−9

Leakage current parameter a3 6.634×108 K

Finally, the device internal temperature is calculated as

T = T ref + (P in − P out)Rth − τth
dT

dt
(9)

with T ref ambient temperature (set to 25 °C for this analysis),
P in electrical power entering the device, Rth thermal resis-
tance, and τ th thermal time constant.

III. DATASET GENERATION AND MACHINE LEARNING
MODEL

We consider a single mode VCSEL emitting at 683 nm.
At a constant temperature of 25 °C, the dataset of 10 000
simulations is created by altering the values of the parameters
listed in Tab. I and holding the other parameters constant;

for the parameters listed in Tab. II the reported value is used,
while the remaining parameters are configured with the default
values supplied by OptSim. The dataset is populated with 16
samples of the computed Light-current (L-I) curve, generated
for linearly spaced injected currents I ranging from 1 mA to
25 mA, an interval consistent with the investigated parameter
ranges, for each set of parameters. In addition, small-signal
modulation responses are numerically computed [11] at 6 mA,
12 mA, 18 mA, and 24 mA; for each curve, 16 samples are
saved at frequencies logarithmically spaced between 10 kHz
and 50 GHz. Each dataset record is then composed by 16+16×
4 = 80 values.

This work focuses mainly on extracting the 15 parameters
provided in Tab. I. The extraction of 15 parameters using a
data-driven approach is accomplished by simulating an ML
agent primarily based on a Deep neural network (DNN)
architecture with three hidden layers and 20 neurons per
layer [12]. Mean square error (MSE) is utilized as the loss
function in the proposed DNN model. The activation function
is ReLU. The DNN model is configured with 1000 training
steps and a learning rate of 0.01 by default. The training set
proportion is 70%, and the test set proportion is 30% of the
entire dataset. The suggested DNN is developed utilizing a
Deep learning system ToolboxTM of Matlab® platform.

To increase the accuracy of predictions, we suggest a
parallel DNN architecture. The DNN agent is trained using
a piece of data created at a constant temperature (see Tab. I),
and the remaining portion of the same dataset is used to assess



the ML’s ability to extract these experimental data parameters
as described in Tab. I.

IV. RESULTS AND DISCUSSION

In order to assess the DNN unit’s accuracy in predicting,
we look at the relative prediction error (∆) for each parameter
in the test set:

∆ =
Predicted Value − Actual Value

Actual Value
(10)

In Fig. 3 the ML agent results are shown in a histogram
of the relative error of the parameters under consideration,
together with the standard deviation (σ) of the relative error
histogram. In addition, the MSE for all considered parameters
at the completion of the training phase is less than 0.1.

The suggested approach can rapidly obtain an accurate set
of VCSEL parameters using a fully automated and agnostic
procedure. The simulation requires a few hours of compute
time on the most up-to-date workstations to produce the
datasets and train the ML agents. Moreover, in a more complex
application, the proposed model can be easily scaled up with
a high level of accuracy for a larger number of parameters
(compared to the 15 parameters analyzed in this work) due
to its parallel architecture, which has the capacity to be
rapidly expanded without compromising accuracy, enabling
the proposed architecture to be advantageously adapted for
studying other laser classes.

Finally, for a specific device, temperature related fitting
coefficient, listed in Tab. II, can be extracted training an
additional network with simulations performed at different
temperature. In this condition, parameters listed in Tab. I
would be fixed to the value extracted by the first agent and the
values in Tab. II would be the returned by the newly trained
agent.

V. CONCLUSIONS

We proposed an approach based on machine learning that
can efficiently extract the necessary VCSEL parameters from
experimental data. The proposed method can fully automate
the extraction of an accurate set of 15 VCSEL parameters
in real-time. In addition, is not limited to the proposed case
but it is extensible to a larger number of parameters in more
complex models.
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