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Abstract— Goal: Artificial intelligence applied to medical 

image analysis has been extensively used to develop non-invasive 

diagnostic and prognostic signatures. However, these imaging 

biomarkers should be largely validated on multi-center datasets 

to prove their robustness before they can be introduced into 

clinical practice. The main challenge is represented by the great 

and unavoidable image variability which is usually addressed 

using different pre-processing techniques including spatial, 

intensity and feature normalization.  The purpose of this study is 

to systematically summarize normalization methods and to 

evaluate their correlation with the radiomics model 

performances through meta-analyses. This review is carried out 

according to the PRISMA statement: 4777 papers were collected, 

but only 74 were included. Two meta-analyses were carried out 

according to two clinical aims: characterization and prediction of 

response. Findings of this review demonstrated that there are 

some commonly used normalization approaches, but not a 

commonly agreed pipeline that can allow to improve 

performance and to bridge the gap between bench and bedside. 

 
Index Terms—abdominal MRI, artificial intelligence, multi-

center database, normalization, radiomics. 

 

Impact Statement— Our research demonstrated the lack of a 

standardized abdominal pre-processing pipeline to normalize 

MRI images and features across centers. As a consequence, we 

proved the need to select the most suitable normalization 

methods depending on image characteristics and clinical 

questions. 

 

I. INTRODUCTION 

URRENTLY, the role of medical imaging is evolving 

from being mainly a diagnostic tool to gaining a central 

role in the context of personalized precision medicine [1]. This 

paradigmatic shift was made possible by the development of 

radiomics, which allows the extraction, from medical images, 
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of quantitative features providing useful information on 

diagnosis and prognosis [1], [2]. Despite the encouraging 

results provided by recent studies [3]–[6], there is still no 

radiomics-based systems used in clinical practice for 

abdominal imaging. This is mainly due to the lack of multi-

center clinical trials for both system development and 

validation [7]. The acquisition of images from several 

institutions is surely complex for many technical reasons, in 

addition to legal, ethical and administrative issues [8]. From 

the technical point of view, the most relevant obstacle is 

represented by the unavoidable high image intensity 

distribution variability due to different scanners, acquisition 

protocols, reconstruction settings and the patients’ 

characteristics. This issue is particularly relevant when a 

multi-center dataset is used, and multi-center validation is 

compelling for developing robust, reproducible, and 

statistically relevant results. 

Different standardization guidelines have been proposed to 

address the above-mentioned problem in the case of computer 

tomography (CT) and positron emission tomography 

(PET)/CT imaging, while they are not available for Magnetic 

Resonance Imaging (MRI) [9]. However, signal intensities of 

MRI are non-standardized and highly dependent on 

manufacturer and acquisition protocol parameters [10]. 

Therefore, bigger efforts are needed to solve problems related 

to low repeatability and reproducibility. 

Currently, different pre-processing algorithms have been 

implemented to reduce the variability [11]–[13], especially in 

studies involving retrospective databases when it is not 

feasible to use standardized imaging acquisition protocols [1]. 

The most used approach is normalization, including a set of 

techniques in which values are shifted and/or rescaled, and 

that could be applied to parameters related to different image 

characteristics, i.e., physical dimensions (spatial 

normalization), pixels intensity (intensity normalization) and 

radiomics features (feature normalization).  

The aim of this study is to systematically review 

normalization approaches applied to multi-center abdominal 

MRI, to assess whether it is possible to provide guidelines or 

evidences about the performances of the most frequently used 

methods. Even if this topic was widely addressed for the brain 

[14], [15], to the best of our knowledge, there is no systematic 

review regarding the abdominal area in the literature. As a 

secondary endpoint, we conducted different meta-analyses to 
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understand the impact of normalization methods on radiomics 

models, according to their aim. 

II. METHODS 

A. Search strategy  

This review was carried out according to the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) statement. Relevant articles were identified by 

searching three databases: PubMed, Web of Science and 

Scopus. The query used for the literature search was "MRI" 

AND "multicenter" AND ("database" OR "trial" OR 

"standardization" OR "normalization") AND ("radiomics" OR 

“Artificial Intelligence” OR “Machine Learning” OR "Deep 

Learning").  

Literature searching, study identification, and data extraction 

from eligible studies were performed by one investigator with 

experience in abdominal radiomics field research (J.P.). 

B. Eligibility criteria 

Searched studies had to further come across the following 

eligibility criteria to be incorporated in the present review: (i) 

written in English; (ii)  AI radiomics-based studies; (iii) 

published between January 2012 (when the radiomics 

definition has been first published by Lambin et al.[2]) and 

December 2022; (iv) based on a multi-center MRI database; 

(v) original research work published in a peer-reviewed 

journal.  

C. Exclusion criteria 

Studies were excluded based on any of the following 

criteria: (i) papers assessing image quality, (ii) papers 

describing only harmonization or standardization acquisition 

pipelines without using them for the development of a 

radiomics signature or AI model for 

detection/characterization/prognosis, (iii) papers describing 

challenges or online databases, and (iv) not clearly specifying 

the pre-processing step. 

D. Papers analysis 

For all included papers, the following information was 

collected (when available either on the manuscript or in 

supplementary materials): organ of interest, clinical aim, 

publication year, database details, normalization approach and 

method, radiomics features extracted, developed radiomics 

model, distinguishing between Machine and Deep Learning 

(ML and DL), and performances on the validation set. We 

grouped clinical aims in three categories: (i) detection as the 

capability to detect the pathologic tissue, i.e., its presence, and, 

if confirmed, its localization on the medical image; (ii) 

characterization as the ability to predict the clinical outcome; 

and (iii) prediction of therapy response, only appliable on 

pathologic tissues. 

E. Meta-Analysis 

We conducted different meta-analyses on the model 

performances, according to the aim, i.e., detection, 

characterization, response to therapy. We considered the area 

under the curve (AUC) and its Confidence Interval (CI) as the 

performance metric, which was the most frequently evaluated 

parameter among the studies. We excluded papers that did not 

report AUC and neither its standard deviation, standard error 

or CI values, and that weren’t validated on an external dataset, 

since this does not determine model reproducibility and 

generalizability to new and different patients [16]. 

The random-effects model was used to calculate the pooled 

AUC and to produce the forest plot. Cochran’s Q and the I2 
statistic were calculated. Cochran's Q statistic tests the studies' 

heterogeneity, under the null hypothesis H0 that all studies are 

homogeneous (a p-value<0.05 was considered statistically 

significant). The I2 value was used to quantify heterogeneity, 

providing an estimate of the percentage of variability among 

included studies: values of 25% and less are usually 

considered to be low, 25% - 50% moderate and above 75% are 

considered high. In case of detected heterogeneity, a 

moderator analysis was carried out by dividing studies into 

subgroups according to the organ, for each aim. Subgroups 

containing only one paper were excluded from the meta-

analysis. The weight of each study was calculated with the 

inverse variance method, in which the weight given to each 

study is inverse of the variance of the effect estimate, 

minimizing the uncertainty of the pooled effect estimate [17]. 

The meta-analysis and the described statistical analyses were 

performed using R and the metafor package [18].  

III. RESULTS AND DISCUSSIONS 

A. Papers collection 

During the identification step, 4777 papers were collected 

from three search databases. Among them 1574 were duplicate 

records, therefore they were excluded resulting in a total of 

3203 papers. During the screening step, 3069 were excluded 

Fig. 1: Flow chart of the selection process of the studies included in the 

present review. At first, the author searched the 3 databases to identify the 

relevant articles for the study (Identification). Then, she screened the 
initially obtained studies considering the eligibility and exclusion criteria 

(Screening), and finally, selected the articles used for the study, based on the 

research objectives (Included). 
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as they did not meet the eligibility criteria. Of the remaining 

134 papers, 60 were eliminated after reviewing the study 

context and design. Finally, 74 papers were included in the 

final analysis. Fig. 1 reports the selection process and the 

number of papers per aim. All comparison tables reporting the 

normalization approaches, features, models, and performances 

are included in the supplementary materials, one for each 

organ.   

B. Clinical analysis 

All included papers have been published since 2015, with 

an increase from 2019. The most studied organs are the 

prostate [3], [19]–[40] (S-Table I), female pelvis [4], [41]–[52] 

(S-Table II), and rectum [5], [53]–[69] (S-Table III), while a 

lower number of publications were related to the liver [6], 

[70]–[75] (S-Table IV), and a miscellaneous group of organs 

including kidney [76]–[80], bladder [81], [82], pancreas [83], 

[84], and soft abdominal tissues [85]–[89] (S-Table V). As 

shown in fig. 2, the first study applying ML on multi-center 

databases was published in 2015 for the characterization of 

liver fibrosis, classifying them into five groups, ranging from 

no-fibrosis (0) to cirrhosis (5) [70]. Subsequently, two studies 

were published in 2017 developing ML models for prostate 

cancer detection: one assessing the differences between the 

transactional and peripherical zone of the prostate [40], while 

the other providing useful information for radiotherapy dose 

differentiation treatments [36].  

The turning year, in which the number of papers showed a 

big rise also in other abdominal organs, was 2020. This might 

be due to the increasing number of public databases [90]–[92] 

and/or collaboration between institutions. Moreover, also a 

growing interest related to DL models was observed in the 

literature from this year. Considering the clinical question, as 

shown in the supplementary materials, ML is used to non-

invasively characterize pathological tissues in 67% of the 

papers (38/57), predict the therapy response in 25% (14/57) 

and detect the disease in 8% (5/57), while DL is mostly used 

for detection (10/17 of papers) while only 6/17 (35%) and 

1/17 (6%) of papers focus on characterization and therapy 

response, respectively.  

C. Technical analysis 

Fig. 3 shows that 77% of papers developed ML radiomics 

systems, while the remaining 23% were based on DL. In both 

cases, most of the studies (>70%) used the multi-center 

database to externally validate the model. Focusing on the ML 

systems, we analyzed the extracted radiomics feature groups. 

As shown by the bar diagram, the Gray-Level Co-Occurrence 

Matrix (GLCM) is the most used one, followed by the Gray-

Level Run Length Matrix (GLRLM) and the First Order. 

Interestingly, since 2021 deep learning features [93] were 

introduced, e.g., Hiremath et al.[22] and Liu et al. [94]. 

Of note, since 2019, 15/74 papers include clinical features, 

available from routine practice, into their model in order to 

increase the predictive potential usefulness (S-Table I-V).  

1) Normalization approaches 

The following normalization approaches were used on MRI 

datasets: 

• Spatial normalization: a process that changes the 

spatial characteristics of the image, e.g., the pixel’s 

resolution, the Field of View (FOV), sequences 

orientation, etc. All methods apply geometrical 

transformations (e.g., resampling to obtain a fixed 

Fig. 2: This combined graph shows the distribution of the number of papers related to the abdominal organs (bars) and radiomics models (lines) from 2015 to 

2022.  
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pixel resolution), which do not need normalization 

parameters. This approach allows obtaining images 

including almost the same anatomical regions, thus 

avoiding histogram mismatches due to different 

FOVs rather than signal intensity dissimilarities.  

However, spatial modifications may alter the organs' 

morphology, undermining the clinical significance. 

• Intensity normalization: a process that rescales the 

pixel intensity values to the same range. Most 

methods allow evaluating the normalization 

parameters independently on the sequences, except 

those which need a normalization reference, e.g., 

hist_norm [95], and NyulUdupa [96]. At the same 

time, modifying the histogram distribution may alter 

the clinical significance of both healthy and 

pathological tissues. 

• Feature normalization: a process that rescales values 

of the radiomics feature extracted to the same range. 

On one hand, all methods allow reducing the 

differences between the features, without altering the 

clinical significance. On the other hand, a training set 

is needed to evaluate the normalization parameters.  

Among all, intensity normalization is applied on 61/74 

(82%) papers, being the most frequent, while the feature and 

spatial normalizations on 27/74 (36%) and 48/74 (65%) 

papers, respectively. In 52/74 studies the images underwent 

more than one normalization approach: 6/74 (8%) both 

intensity and feature, 34/74 (46%) spatial and intensity, 2/74 

(3%) spatial and feature, and 10/74 (14%) all three 

approaches. Colored boxes in fig. 4 list the normalization 

methods used for each approach.  

In general, three methods are currently used for spatial 

normalization: registration to align the sequences and reduce 

the motion artefacts, resampling to obtain the same resolution, 

and resizing to obtain the same size for all images. The most 

commonly applied method is resampling (31/48), which has 

been used individually in 12/16 studies on the prostate, 4/5 on 

the liver, and 6/9 in the miscellaneous group. Moreover, it has 

been applied in combination with at least another spatial 

normalization method in 14/48 papers, i.e., resampling and 

resizing on the female pelvis (4/9), and the rectum (3/9). 

Registration is the least frequently used method (10/48) 

among all organs. For intensity normalization, the two most 

used methods are the standardization (z-score) of the intensity 

distribution, which is applied on 21/61, and custom algorithms 

on 31/61, including normalization using pre-defined values, 

discretization of the distributions, the use of Advanced 

Normalization Tools (ANTs) or filters, the application of DL 

methods for harmonizing the image, or the combination of 

more than one method. The remaining 9/61 papers applied one 

of the following methods: min-max or 3sigma scaling and 

mean centering (mean-cent), and histogram normalization 

(hist-norm) which matches the original distribution to a 

histogram reference (e.g., healthy subject, other organs, etc.). 

Most papers related to the prostate (10/20) and miscellaneous 

(8/10) have developed custom methods for the intensity 

normalization, while the z-score is frequently applied to 

female pelvis (5/10) and rectal (7/16), and hist-norm on the 

liver (2/5). More details are in S-Table I-V. Regarding feature 

normalization, only three methods have been found in the 

included papers and are almost equally used: i.e., rescaling 

according to the minimum and maximum feature values (min-

max) is applied on 6/27 papers, standardization (z-score) on 

9/27, and harmonization using ComBat [12] on 5/27. The first 

two methods are very easy to implement and could be applied 

on different centers without a training phase, i.e., using the 

same normalization parameters derived from the previously 

included dataset. Conversely, the ComBat method can only 

normalize features across different centers by using values 

computed on a subset of data from each center that will be 

Fig. 3: The pie graph (on the left) shows the distributions of the models developed among the included papers. Specifically, the percentage related to the 
internal (Int.) and external (Ext.) validations are presented for both Machine Learning (ML) (blue) and Deep Learning (DL) (orange). The bar diagram (on 

the right) shows the percentage of different radiomics feature groups extracted in the ML studies. 

 

This article has been accepted for publication in IEEE Open Journal of Engineering in Medicine and Biology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJEMB.2023.3271455

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 
Emerging Topics 

 

 

normalized. Therefore, it requires available and labelled data 

from all centers/scanners included in the dataset, not allowing 

the direct application of previously determined normalization 

parameters on external validation cohorts [8]. Of note, 5/27 

papers declared they applied a features normalization 

approach without specifying which method, and 1/27 

combined both ComBat and z-score. Observing the S-Tables I-

V, the z-score is mostly applied on the rectum (3/6), the min-

max on the prostate (3/5), while the ComBat on the female 

pelvis (4/7). 

D. Meta-Analysis 

The 22 papers included in the meta-analysis are reported in 

the supplementary tables in bold. We did not perform the 

meta-analysis on detection, since there were not enough 

studies that could be included for this purpose. 

Concerning the 16 papers addressing the characterization 

(fig. 5), the studies are statistically heterogeneous 

(heterogeneity=85%, p-value<0.01), and differences are 

partially explainable using the organs as the moderator 

(residual heterogeneity: 51%, p-value=0.02). 

Considering each organ separately, only the kidney showed 

high significant heterogeneity between the two included 

studies (p-value<0.01), which differ in that one of them 

applies features normalization in addition to spatial and 

intensity normalizations. This behavior might suggest that in 

this case normalizing the features does not improve the 

performance (AUC=0.60 vs AUC=0.87), however, the sample 

size is very small to strongly assume this point. It is 

noteworthy that the papers related to the liver, rectal and 

prostate show very low heterogeneity (I2 = 0% for the three 

organs) even though they applied very different normalization 

approaches. This might suggest that there is no preferable 

normalization strategy when dealing with these organs. 

Considering average results, two organs reach an average 

AUC higher than the overall pooled AUC, i.e., female pelvis 

(0.88 vs 0.81) and prostate (0.82 vs 0.81). It is noteworthy 

that, in studies regarding the female pelvis papers, ComBat 

feature normalization seems to slightly increase performances 

(AUC=0.86 and 0.91 vs 0.85). However, there is not a clear 

correlation between the used approach and performance, 

therefore it is not possible to define a pathway for MRI 

variability reduction.  

Concerning the 6 papers addressing the prediction of 

response to therapy (fig. 6), the overall study heterogeneity is 

98% (p-value<0.01), partially explainable using the organs as 

the moderator (residual heterogeneity: 83%). In this case, the 

performances of the two groups were statistically different (p-

value<0.01), and in particular results on female pelvis were 

higher than rectal cancer (AUC = 0.96 vs 0.72, respectively), 

but both groups showed a heterogeneity higher than 75%.  

Focusing on the rectal area, all papers applied both spatial and 

intensity methods, except Song et al. [69] which performed 

also features normalization, yielding more robust 

performances on a larger population. Regarding the female 

pelvis, we observed that the two included studies applied 

intensity normalization using the z-score method, in 

combination with either spatial or feature normalization. In 

particular, the latter approach allowed reaching higher results 

(AUC=0.99 vs AUC=0.92). However, since there were only 

two papers in this group, we cannot strongly assume that the 

combination of z-score and features normalization is more 

suitable for this organ.  

 
Fig. 4: This is the knowledge map of the most used normalizations among the included papers, showing the main approaches and methods followed. Each 

node represents a normalization approaches, while the boxes include the methods adopted. For each node it is showed the rate of each approach separately, 
and the rate of multi-approach normalizations. All rates are evaluated with respect to the amount of the included papers. The sizes of the words denote the 

number of publications related to the method. The dark blue line groups the total amount of the included papers. 
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Considering all the above results, it is not possible to extract 

clear indications on the type of pre-processing for reducing 

abdominal MRI variability, mainly because we found a 

multiplicity of algorithms and pipelines applied. Moreover, no 

definite correlation between normalization and performance 

emerges from the meta-analyses, since most of the considered 

subgroups were very small. Both aspects could be partially 

associated to the quite recent interest in multi-center studies 

concerning abdominal MRI, increased only from 2020. 

The prostate was the only organ showing a low 

heterogeneity with a sufficiently high number of included 

papers: in this case, the most used methods for the 

characterization aim are resampling for spatial and min-max 

for features normalizations. Conversely, intensity 

normalization was preferably applied using custom algorithms, 

tailored by each research group considering the characteristics 

of the organ, i.e., its heterogeneity and the presence of small 

lesion difficult to be detected even by experts, and clinical 

task. For these reasons, we strongly recommend to carefully 

analyze the available images and aim.  

 
Fig. 5: Forest plot of the studies addressing characterization aim for the pooled area under the curve (AUC) and 95% confidence interval (CI). Horizontal 

CI lines represent 95% confidence interval of the point estimates, while the vertical dash represents the overall pooled AUC. The diamond represents the 
pooled AUC and its 95% CI obtained for each subgroup and considering the 14 papers all together.  

Note: Intensity Normalization (IN), Spatial Normalization (SN), Feature Normalization (FN). 
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Regarding both the rectal are and female pelvis, we noticed 

that resampling and resize have become a standard step since 

2021. Moreover, the combination with z-score intensity 

normalization seems to lead to higher results for 

characterization and therapy response aims.  

In recent years, several efforts have been made toward the 

implementation of new approaches based on DL algorithms, 

i.e., transfer learning, data synthesis, thanks to their capability 

to learn from a given datasets [51], [82], [83]. Despite recent 

success, DL is not always a feasible approach for every 

clinical aim, since it requires a large amount of well annotated 

data. This is not a straightforward task for different reasons, 

including the lack of data for rare diseases, and lack of clinical 

check on the reference standard of most publicly available 

datasets. 

This systematic review highlighted the shortage of 

evidences and guidelines on normalization approaches for 

abdominal MRI, differently from the agreed pipelines related 

to the brain [14], [97]. Up to now, an initial agreement was 

obtained by introducing Image Biomarker Standardization 

Initiative (IBSI), a protocol which works towards 

standardizing the extraction of radiomics features but does not 

suggest any pre-processing pipelines [98].  

Several insights emerge from our analyses. First, it could be 

useful to evaluate how the different normalizations really 

affect the model performances. In this review, it was not 

possible to carry out this evaluation per each study since most 

of them did not present the results without applying the 

normalization. Then, despite being able to identify the most 

commonly used normalization approaches, we could not 

provide precise explanations of the reason behind, since the 

majority of the collected papers did not justify the choice or 

provided evidences of pros and cons of different 

methodologies. Finally, the number of studies included in the 

two meta-analyses is lower than the reviewed articles, since 

not all of them evaluated the performances using the same 

metric and externally validated their models.  
Our preliminary findings should be further validated using a 

larger amount of paper. This could be achieved by including 

other normalization methods applied on different AI-based 

system development steps, such as feature selection and 

dimensionality reduction, [99], and feature filtering [100]. 

IV. CONCLUSION 

Recently the need to define a suitable and useful 

normalization method for the reduction of multi-center MRI 

database variability for all abdominal organs has increased. 

Thanks to the findings obtained by the systematic review and 

meta-analyses carried out on subgroups of papers, we 

observed that there are some commonly used approaches, but 

not clear guidelines on different methodologies. Therefore, the 

definition of an abdominal pre-processing pipeline is still 

ongoing research, and it is of crucial importance to keep 

working on defining a proper methodology to reduce the 

multi-center database variability. In conclusion, we suggest 

carefully selecting the proper normalization approach 

considering the MRI database provided, the clinical aim, and 

the radiomics model.  

SUPPLEMENTARY MATERIALS 

In the supplementary materials the reader will find five 

comparison tables collecting all information obtained by the 

paper analysis. Each table refers to different abdominal 

organs.  

 
Fig. 6: Forest plot of the studies addressing the therapy response prediction aim for the pooled area under the curve (AUC) and 95% CI. Horizontal lines 

represent 95% confidence interval of the point estimates, while the vertical dash represents AUC of individual studies. The diamond means the pooled AUC 

of each subgroup and of all 6 papers.  

Note: Intensity Normalization (IN), Spatial Normalization (SN), Feature Normalization (FN). 
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