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SUPPLEMENTAL MATERIAL
Investigating the potentials and limitations of capillary-fed vapor generators: a

heat and mass transfer study

Roberto Raffaele Meoa, Matteo Morcianoa,b,∗

aDepartment of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
bClean Water Center, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

1. SUPPLEMENTAL NOTE 1 - Heat transfer through the evaporator

Considering a generic control volume Ω and its time-fixed boundary ∂Ω, the partial differential equations describ-
ing the thermal problem can be derived exploiting the Eulerian approach. In detail, the first law of thermodynamics
applied to the control volume (here composed by the pure fluid), assuming zero the contribution related to technical
work, is:

d
dt

∫
Ω

(
ρcp

)
e f f

T = −

∮
∂Ω

∑
i

Φi · n (1)

where
(
ρcp

)
e f f

and T represent the effective heat capacity and the temperature of the control volume, respectively.
Thus, the term on the left-hand side of the equation is the total change of internal energy in the control volume Ω. The
term on the right-hand side represents instead the energy which flows through the borders, that is the scalar product
Φi ·n between the generic thermal flow vectorΦi and the local normal versor n to the border ∂Ω. The latter is defined
positive if outgoing. Note that, the tangential component of flow at the border ∂Ω does not contribute in terms of
energy variation in the control volume. Below, the considered thermal contributions are introduced:

Φdi f f usive = −λe f f ∇T (2)

Φadvective = ṁ cp,w T (3)

Φin = qin (4)

Φevaporative = ṁevap hgl(T ) (5)

where λe f f is the effective thermal conductivity, hgl(T ) the enthalpy of vaporization at a given temperature, and cp,w

the specific heat of water. Moreover, ṁ and ṁevap are the specific mass flow rate vector flowing through the porous
medium and the specific evaporating mass flow rate evaluated in [kg m−2 s−1]. Then, qin is the incoming absorbed
thermal energy. Substituting into the general equation, it is:
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d
dt

∫
Ω

(
ρcp

)
e f f

T = −

∮
∂Ω

(
Φdi f f usive +Φadvective

)
· n+ (6)

−

∮
∂Ω

(
Φin +Φevaporative

)
· n

Since the boundary Ω has been assumed fixed over time, the previous equation can be rewritten as:

∫
Ω

d
dt

((
ρcp

)
e f f

T
)

= −

∮
∂Ω

−λe f f ∇T · n −
∮
∂Ω

ṁ cp,w T · n+ (7)

−

∮
∂Ω

ṁevap hgl (T ) · n −
∮
∂Ω

qin · n

Exploiting the Gauss’s theorem, the surface integrals can be replaced by the volume integrals:

∫
Ω

d
dt

((
ρcp

)
e f f

T
)

=

∫
Ω

∇ · (λe f f ∇T ) −
∫

Ω

∇ ·
(
ṁ cp,w T

)
+ (8)

−

∫
Ω

∇ ·
(
ṁevap hgl (T )

)
−

∫
Ω

∇ · qin

Since the derived law is valid for any volume Ω, small at will, it is possible to write:

d
dt

((
ρcp

)
e f f

T
)

=∇ · (λe f f ∇T ) − ∇ ·
(
ṁ cp,w T

)
+ (9)

− ∇ ·
(
ṁevap hgl (T )

)
− ∇ · qin

Considering half of the horizontal evaporator illustrated in Fig. 1, thus characterized by a width B, length L and
thickness s, completely wet by water, with ṁevap and qin purely orthogonal to the horizontal plane, it is possible to
write the 1-D thermal balance equation:

(
ρcp

)
e f f

∂T
∂t

=λe f f
∂2T

∂x2 − cp,w
∂ (ṁ T )
∂x

+ (10)

−
ṁevap

s
hgl (T ) +

qin

s

which is further developable as: (
ρcp

)
e f f

∂T
∂t

=λe f f
∂2T

∂x2 −
∂ṁ
∂x

cp,w T − ṁ cp,w
∂T
∂x

+ (11)

−
ṁevap

s
hgl (T ) +

qin

s

Then, applying the conservation of mass to the infinitesimal volume shown in Supplemental Fig. 1 we get:

ṁ B s = (ṁ + dṁ) B s + ṁevap B dx (12)

which becomes:

dṁ
dx

= −
ṁevap

s
(13)
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Supplemental Figure 1: Scheme of an infinitesimal control volume of the evaporator.

Thus, the 1-D energy balance equation finally becomes:

(
ρcp

)
e f f

∂T
∂t

=λe f f
∂2T

∂x2 − ṁ cp,w
∂T
∂x

+ (14)

−
ṁevap

s

[
hgl (T ) − cp,w T

]
+

qin

s

In order to solve the differential equation obtained, it is necessary to express the specific evaporating mass flow
rate ṁevap (kg m2 s−1) as a function of temperature. Here, the mass evaporation rate can be interpreted via the mass
transfer coefficient Kv, due to partial pressure gradient, and the partial pressure driving force:

ṁevap = Kv ∆pv (15)

With the aim of establishing whether or not the study can be simplified by assuming a constant temperature
throughout the evaporator, the steady-state thermal problem is considered:

λe f f
∂2T

∂x2 − ṁ cp,w
∂T
∂x
−

ṁevap

s

[
hgl (T ) − cp,w T

]
+

qin

s
= 0 (16)

In order to solve the differential equation obtained, we resort to the Matlab’s solver ode15s, adequate when dealing
with differential equations of type ”stiff”. The input solver characteristic odefun of the associated differential system
is:

ode f un =


u′ = v

v′ =
cp,w

λe f f
w v − w′

(
hgl(u)−cp,w u

λe f f

)
− 1

λe f f

qin
s

w′ = −
ṁevap

s

(17)

where u = T ,v = dT
dx and w = ṁ. Then, it is necessary to impose three boundary conditions:

1. Dirichlet boundary condition: fixed temperature at the inlet of the horizontal evaporator, namely Tx=0, z=H = Tsea,
as the sea is considered an infinite heat capacity;

2. Neumann boundary condition: dT
dx

∣∣∣
x=L, z=H = 0, because of the symmetry;

3. Dirichlet boundary condition: ṁ
∣∣∣
x=L, z=H = 0, because of the symmetry.

The numerical integration starts in x = L, where guessed initial value of T is imposed. Then, the resulting
temperature profile and in particular the solved temperature value at x = 0 is compared with the value imposed by
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the Dirichlet boundary condition, namely Tsea. The guessed value Tx=L is iterated until Tx=0 ≈ Tsea is respected. The
bisection method has been implemented for iterating and finding the solution to the problem, as described below and
reported in the flowchart of Supplemental Fig. 2. In detail, the iterative solution is described below:

Start

Initialize 𝑇𝑥=𝐿, 𝑚𝑖𝑛 = 𝑖𝑛𝑓 and 𝑇𝑥=𝐿, 𝑚𝑎𝑥 = 𝑠𝑢𝑝 | Δ𝑇𝑒𝑟𝑟 𝑇𝑥=𝐿, 𝑚𝑖𝑛 ⋅ Δ𝑇𝑒𝑟𝑟 𝑇𝑥=𝐿, 𝑚𝑎𝑥 < 0

Initialize tollerance value toll

𝑎𝑣𝑒 =
𝑖𝑛𝑓 + 𝑠𝑢𝑝

2

Calculate 𝑇(𝑥) by ode15s

|𝑇𝑥=0 − 𝑇𝑠𝑒𝑎| > 𝑡𝑜𝑙𝑙 F
END

𝑇𝑥=0 < 𝑇𝑠𝑒𝑎𝑖𝑛𝑓 = 𝑎𝑣𝑒 𝑠𝑢𝑝 = 𝑎𝑣𝑒

T

FT

Supplemental Figure 2: Flowchart showing the iterative solution method employed.

- two guessed temperature values are defined: the lower one (namely, in f ) and the upper one (namely, sup);

- the average value ave between in f and sup is calculated. ave is the initial guessed value, applied in x = L, which is
used as input for ode15s.

- Ode15s numerically calculate the temperature distribution in the evaporator. Then, the error ∆Terr,% =
Tx=0−Tsea

Tsea
%,

obtained considering the attempted value Tx=L equal to ave, is calculated;

- if the value ∆Terr,% is larger than the fixed tolerance, the moving extremes in f and sup must be updated and the
iteration continues. In particular, if the tolerance is not respected and Tx=0 < Tsea, the mobile extreme in f
is updated and replaced with ave value. If the tolerance is not respected and Tx=0 > Tsea, the upper moving
extreme sup is set equal to ave.

In order to obtain a unique solution, ∆Terr = Tx=0 − Tsea should show a monotonic trend when the value Tx=L is
iterated. Besides, ∆Terr must also assume opposite values in sign at the extremes of the designated temperature range
Tx=L,min and Tx=L,max. The two extreme values of temperatures Tx=L,min and Tx=L,max should first be initialized, so that:

∆Terr(Tx=L,min) · ∆Terr(Tx=L,max) < 0 (18)

The used tolerance value ∆Terr,%, which determines the end of the itarative procedure, is:

Tx=0 − Tsea

Tsea
=

∆Terr

Tsea
≈ 0.1% (19)

where the value is selected to avoid excessive computational time while still ensuring acceptable accuracy.
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Supplemental Figure 3: Heat transfer in the horizontal evaporator. a) Temperature profile versus the normalized distance from the inlet of the
horizontal evaporator; b) Temperature gradient versus the normalized distance from the inlet of the horizontal evaporator; c) Effective and simplified
(namely evaluated considering a constant temperature throughout the evaporator) specific mass flow rate versus the normalized distance from the
inlet of the horizontal evaporator. The distance x is normalized to half of the length of the evaporator L.

2. SUPPLEMENTAL NOTE 2 - Linear momentum balance equation

Having defined a local fixed reference system, characterized by the Eulerian coordinate ζ with its origin at the
inlet section of the horizontal evaporator (see Fig. 1), the wicking velocity variation of the fluid ∆ẋ(ζ) due to the
evaporation can be expressed as:

∆ẋ(ζ) =
Ṁevap,cumulative(ζ)

ρBsε
=

qinBζ
hgl(T )−cp,w T

ρBsε
(B1)

=
1
ρε

qin
s

hgl(T ) − cp,w T
ζ

where the same variables and notation used in Eqs. 13 and 14 are exploited. In this Appendix, the integral terms
included in the system of equations 14 able to describe the fluid flow in the L-shaped wick-based component are
developed in detail. The development takes into account that ζ̇ = 0, being the derivative of an Eulerian coordinate
fixed in time. The integral inertial term is:

∫ x f ront

0
ẍ(ζ)dζ = (B2)

=

∫ x f ront

0

d
dt

żinlet −
1
ερ

qin
s

hgl(T ) − cp,w T
ζ

 dζ

=

∫ x f ront

0

z̈inlet −
1
ερ

qin
s

hgl(T ) − cp,w T
ζ̇

 dζ

which becomes: ∫ x f ront

0
ẍ(ζ)dζ = z̈inlet x f ront (B3)

Then, the integral term related to viscous losses in the horizontal evaporator is:

5



∫ x f ront

0
ẋ(ζ)dξ = (B4)

=

∫ x f ront

0

żinlet −
1
ερ

qin
s

hgl(T ) − cp,w T
ζ

 dζ

=

ẋ f ront +
1
ερ

qin
s

hgl(T ) − cp,w T
x f ront

 x f ront+

−
1

2ερ

qin
s

hgl(T ) − cp,w T
x2

f ront

Finally, by expliciting these terms in the system of Eqs. 14, we can derive the equation Eq. 19.

3. SUPPLEMENTAL NOTE 3 - On the dynamic pressure contribution

Here, the purpose is to demonstrate the negligible effect of the dynamic pressure term in Eq. 23:

0 = d −
(

1
2

ẋ f ront + bx f ront

)
ẋ f ront −

1
2

bcx2
f ront (C1)

where the constant b (assuming that the radius of the capillary is of the order of millimeters) is equal to:

b =
εµ

ρK
=

εµ

ρεΓR2 ≈
1.2 · 10−5

R2 (C2)

Therefore, b ranges from 50 to 5000 s−1, in case of D = 1 mm and 100 µm, respectively. In turn b multiplies x f ront,
which is of the order of meters. The term 1

2 ẋ f ront, except in the very first moments, is instead of the order of a few
mm s−1, i.e. thousandths of m s−1, tending to 0 as the flow progresses. It is therefore negligible for the calculation of
impregnation times.
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