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ABSTRACT: The safety and usability of infrastructures such as bridges, roads, and buildings must be monitored throughout their 

useful life. Traditional inspection methods are time-consuming and expensive, and innovative solutions using LiDAR-based 

techniques have developed. This study presents a semi-automatic method for detecting deteriorations on structural elements of a 

bridge using an integrated dataset of point clouds and radiometric information. The method involves using a Terrestrial Laser 

Scanner (TLS) to obtain high-resolution georeferenced point clouds of the bridge beams, which are then filtered to identify four 

classes of deteriorations. Six Machine Learning Classifiers are tested and compared using Overall Accuracy and F1-score metrics. 

The Random Forest emerged as the best-performing. It was then optimised by reducing the input features through an importance 

analysis and the accuracies measured. The results show promise and can be explored further on a larger dataset. The study aims to 

generalise the methodology to transfer it to actual cases. 
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1. INTRODUCTION 

Bridges are a crucial component in countries' infrastructure. 

They enable the transport of raw materials and goods to 

markets, allowing people access to essential services. Hence, 

economic activity is closely linked to the bridge's availability. 

Italy has more than 1034 kilometres of bridges and viaducts 

(“Bridge collapse highlights Italy’s aging infrastructure,” 2021). 

In particular, there are around 2000 highway bridges. Many of 

the bridges date back to the construction boom in the 1930s and 

the post-war recovery programs of the 1960s and are now 

reaching the end of their lifespan. Moreover, most bridges also 

carry significantly more weight than originally expected 

(“Keeping European bridges safe,” 2019). Based on this, 

bridges maintenance, inspection, and monitoring should be an 

aspect of high priority for a country. On one side, it is important 

to ensure the bridge's readiness to maintain the economic 

equilibrium of its surrounding zones. However, on the other 

hand, it is vital to prevent fatal accidents such as the Morandi 

Bridge collapse in Genova (Italy) that caused 43 deaths 

(Mattioli, 2019). Specifically, deteriorations can be caused by 

(i) natural aging of the structure related to prolonged use, type 

of material and frequency of ordinary and extraordinary 

maintenance activities; (ii) extreme environmental conditions, 

such as periods of heavy rainfall or strong gusts of wind; (iii) 

the occurrence of natural or anthropomorphic disturbances, such 

as earthquakes or road accidents that can cause an extraordinary 

structural load (Luechinger et al., 2015).  

 

Currently, the inspection of bridges is a time-consuming 

procedure that involves a team of engineers that carefully 

inspect the structure, looking for any flaws, defects, or 

potentially problematic areas that may require maintenance. In 

addition, some special machinery like snooper trucks is used 

frequently to reach the zones of difficult access of the structure, 

increasing the inspection costs. Moreover, the inspectors should 

operate at large distances from the ground, risking their lives. 

Bridge inspections are specified by different government 

guidelines, which can vary significantly by country. In Italy, 

they are given by the Minister of infrastructure and transport, 

which stipulates the process of risk classification, safety 

evaluation, and monitoring of bridges (Ministero delle 

Infrastrutture e dei Trasporti, 2019). 

 

Some innovative solutions involve using photogrammetry 

techniques on Uncrewed Aerial System (UAS) imagery as cost-

effective tools for bridge inspection. This approach combines 

the advent of computer vision, recent advances in machine and 

deep learning techniques, and the spread of UAS, which provide 

high-resolution georeferenced images and allow for 

automatically detecting deteriorations such as discontinuities 

and defects in a more efficient way (Belcore et al., 2022). UAS  

can also be equipped with multispectral, thermal, and LiDAR 

sensors.  

 

More recently, LiDAR-based techniques have become one of 

the most popular methods for object acquisition in the civil 

engineering domain, specifically for health monitoring and 

assessment of surface conditions and damages or irregularities 

combining high-resolution geometric and radiometric 

information with millimetric accuracy (Cao et al., 2017; 

Kaartinen et al., 2022). Nevertheless, methods based on the use 

of cameras are still the most widespread in the monitoring of 

viaducts (Cha et al., 2018), and regardless of the data source, 

Most of the analysis related to lidar data uses very complex 

models based on deep learning for the semantic segmentation of 

the entire generated point cloud (Rashidi et al., 2020). 

 

In this work, we present an alternative to the current bridge 

inspections. We propose an inspection method using Terrestrial 

Laser Scanning technique and Machine Learning (ML) for the 

detection of damages in the structure. Applying ML on highly 

dense 3D point clouds requires an accurate dataset pre-

processing and an optimised pipeline for transformers and 
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classifier modelling. In fact, the presence of the three-

dimensional component and the high density of the acquired 

data makes the application of classical iterative procedures 

typical of supervised learning procedures very cumbersome. In 

this case, it is essential to keep the ram allocation under control 

by planning all phases of the training procedure. 

 

The analysed study area is made up of two beams of a bridge 

that have fallen into disuse and are located in a controlled 

environment for research purposes (Savino et al., 2023). With 

this work, we test the capability of the workflow to improve the 

bridge inspection processes by reducing the use of expensive 

machinery, avoiding people's exposure to dangerous operations, 

and reducing inspection time. In particular, the proposed 

solution involves a point-based supervised classification model 

that utilises Random Forest algorithm. The model leverages 

radiometric features (derived from the visible spectral response 

of the points) and geometric features. We selected the Random 

Forest algorithm through a comparative approach, which 

involved assessing its accuracy metrics and performance time 

against well-established classifiers.  

 

This report is organised as follows. Section 2 describes the 

material and methods; Section 3 introduces the obtained results. 

Section 4 discusses the results. 

 

2. MATERIAL AND METHODS 

The case study in a controlled environment consists of two 

structural beams with the shape of a cushioned inverted 

pyramid, 7.70 m x 1.5 m x 1.5 m, belonging to a bridge built in 

1970 and demolished in September 2018 (Figure 1). The beams 

show clear signs of ageing; both have scorched and rusted irons. 

In some parts, the concrete has detached, and in others, the first 

signs of surface deterioration are visible. 

 

 

 
Figure 1. Up: photo of the studied beams. Bottom: TLS-

generated point clouds of the studied beams. 

2.1 Data acquisition  

The first step of the work involve the acquisition of dense 

geometric and radiometric information of the beam throughout 

the LiDAR technology. The selected beams were subjected to 

an extensive on-site terrestrial integrated survey, combining 

total station and terrestrial laser scanner measurements. These 

activities allows to obtain an accurate 3D reconstruction of the 

beam as well as a radiometric characterization thanks to the 

imaging sensor integrated in the TLS.  

 

To this purpose, the Leica RTC360 was used. It is a high-

precision laser scanner that uses a laser class 1, an eye-safe laser 

with a range of up to 120m. It has an angular resolution of 0.02 

degrees and a point density of up to 4mm at 10m. It can scan at 

a rate of up to 2 million points per second and has a built-in 

GNSS/IMU sensor for accurate registration of scans. The 

scanner also has a colour camera that captures high-resolution 

images, which can be geotagged and used to create detailed, 

textured 3D models. The scanner is equipped with Leica's 

Cyclone FIELD 360 software, which allows to collect and 

register data on-site. The Leica RTC360 does have visual 

SLAM technology built-in called Real-time Context (RTC) 

which allows for the registration of scans while the scanner is in 

motion, by combining visual information from the camera with 

laser scanning data and GNSS/IMU data.  

 

Once acquired, the data has been post-processed to optimize the 

initial on-field scan-to-scan alignment and to evaluate the 

overall accuracy of the model. The software Cyclone Register 

360 by Leica Geosystem has been used to this purpose. Nine 

scans were coregistered mixing the ICP (Besl and McKay, 

1992) and the rigid six-parameter transformation approach.  

 

2.2 Pre-processing 

The pre-processing phase consists of four main steps to prepare 

the dataset for classification: i) identifying the classes, ii) 

extracting features, iii) labelling and splitting the data into 

training and testing sets, and iv) denoising and scaling step, 

performed to further enhance the quality of the data. 

i) Classes identification 

Four classes (Figure 2) describe the classification system, as 

(Table 1) illustrates. 

  

Class name Labelled points 

bare irons (BI) 46’776 

deteriorated concrete (DC) 172’503 

healthy surface (HS) 581’046 

surface alterations (SA) 8’901 

Table 1. Classes of the classification 

Figure 2. The four classes 

i) Feature extraction 

To enhance the information content of the data, derivative 

features were computed for each point. This process, known as 
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feature extraction, involves selecting and transforming raw data 

into a set of informative features that are easier to work with 

and analyse. Feature extraction is particularly crucial when 

dealing with large and complex datasets, as it can improve 

classification accuracy and reduce the risk of overfitting in 

machine learning. 

 

The feature extraction process described in this study involved 

computing both radiometric and geometrical features based on 

the RGB information of each point. Table 2 provides a 

summary of the computed features. Geometrical features were 

calculated by describing the relationship between each point and 

its nearest neighbouring points, identified using a sphere of 

radius 0.05m. The geometric features were calculated with the 

Cloud Compare software (“CloudCompare,”, 2023), while the 

radiometric features in the Python environment using the Scikit 

library (Pedregosa et al., 2011). 

 

The final classification dataset consisted of 28 features: RGB 

information, the intensity, 17 geometric features and 7 

radiometric features for each point of the cloud (Table 2).  

 

Feature Formula/note 

R Red [0-255] 

G Green [0-255] 

B Blue [0-255] 

Intensity 
The strength of the return signal from the 

LiDAR sensor, [0-1] 

RonG Red /Green 

RonB Red/Blue 

GonR Green/Red 

GonB Green/Blue 

BonR Blue/Red 

BonG Blue/Green 

NDTI 

(Normalised 

Difference 

Turbiudity 

Index) 

(Red- Green) / (Red+ Green) 

Eigenentropy 

A measure of the randomness or 

uncertainty of the distribution of 

eigenvalues. 

Eigenvalues 

sum 

The sum of the eigenvalues of the points in 

the point cloud. 

first eigenvalue The largest eigenvalue of the point cloud. 

First ord mom The first-order moment of the point cloud. 

Linearity 
It measures how elongated or linear the 

point cloud is along its principal axis. 

Mean curvature 
A measure of the average curvature of the 

surface at each point in the point cloud. 

normal change 

rate 

A measure of how rapidly the surface 

normal vector changes over the point 

cloud. 

Omnivariance 

A measure of the overall variance of the 

point cloud. It is computed as the product 

of all three eigenvalues. 

PCA1 The principal components of the point 

cloud computed using principal component 

analysis. PCA1 and PCA2 represent the 

two largest eigenvectors of the point cloud. 
PCA2 

Roughness 
A measure of the surface roughness of the 

point cloud. 

Second 

eigenvalue 

The second-largest eigenvalue of the point 

cloud. This can be used as a measure of the 

point cloud's elongation along its 

secondary axis. 

Sphericity 
A measure of how spherical the point 

cloud is. 

Surface density 
A measure of the point density on the 

surface of the point cloud. 

Surface var 
A measure of the variation in the surface 

normals of the point cloud. 

Third 

eigenvalue 
The smallest eigenvalue of the point cloud. 

Verticality 
A measure of how vertical the point cloud 

is. 

Table 2. Derivative features calculated for the point cloud. 

 

ii) Labelling of train-test splitting 

The training and test datasets were manually labelled based on 

the 3D visualisation of RGB and intensity. The number of 

points for each class can be found in Table 1. Subsequently, the 

dataset was randomly split into two subsets: a training set 

consisting of 70% of the data and a test set consisting of the 

remaining 30% 

 

iii) Denoising and scaling 

To ensure high-quality data, both the training and test datasets 

were cleaned of null or infinite records. Additionally, each 

feature was scaled using the MinMaxScaler algorithm available 

in the Scikit learn library. The scaler was applied to determine 

the minimum and maximum values of each feature and then 

scale the data by subtracting the minimum value and dividing 

the result by the range (i.e., maximum value minus minimum 

value). This scales the data to a range of [0, 1], which benefits 

many machine learning classifiers. 

 

The scaler was fit to the training data only to avoid data 

leakage, and the same scaling was applied to the test data. This 

ensures that the scaling of the test data is consistent with that of 

the training data and prevents the model from seeing any 

information about the test data during training. 

 

2.3 Classification model and prediction 

The chosen approach for this study is a supervised point-based 

classification model. To enhance the model's robustness, we 

compared various classifiers. We selected some of the most 

popular and widely used classifiers and implemented them 

using an automatic pipeline in Python. Specifically, the 

classifiers we evaluated were Random Forest, Neural Network, 

Support Vector Machine (SVM), Decision Tree, Perceptron, 

and Naive Bayes. The parameters selected for each are shown in 

(Table 3). 

Algorithm Parameters 

Random 

Forest 

n_estimators=100, max_features='auto', 

criterion='gini', max_depth=None, 

min_samples_split=2, min_samples_leaf=1, 

bootstrap=True, n_jobs=None 

Neural 

Network 

(MLP) 

hidden_layer_sizes=(100,), activation='relu', 

solver='adam', alpha=0.0001, batch_size='auto', 

learning_rate='constant', 

learning_rate_init=0.001, max_iter=200, 

shuffle=True, random_state=None, tol=1e-4, 

verbose=False, warm_start=False, 

momentum=0.9, nesterovs_momentum=True, 

early_stopping=False, validation_fraction=0.1, 

beta_1=0.9, beta_2=0.999, epsilon=1e-8, 

power_t=0.5 

SVM 

C=1.0, kernel='rbf', degree=3, gamma='scale', 

coef0=0.0, shrinking=True, probability=False, 

tol=1e-3, cache_size=200, class_weight=None, 
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verbose=False, max_iter=-1, 

decision_function_shape='ovr', 

break_ties=False, random_state=None 

Decision 

Tree 

criterion='gini', splitter='best', 

max_depth=None, min_samples_split=2, 

min_samples_leaf=1, 

min_weight_fraction_leaf=0.0, 

max_features=None, random_state=None, 

max_leaf_nodes=None, 

min_impurity_decrease=0.0, 

min_impurity_split=None, class_weight=None, 

presort='deprecated', ccp_alpha=0.0 

Perceptron 

penalty=None, alpha=0.0001, 

fit_intercept=True, max_iter=1000, tol=1e-3, 

shuffle=True, verbose=0, eta0=1.0, 

n_jobs=None, random_state=0, 

early_stopping=False, validation_fraction=0.1, 

n_iter_no_change=5, class_weight=None, 

warm_start=False 

GaussianNB 
priors=None 

var_smoothing=1e-9 

Table 3. Tested algorithms and parameters. 

 

The performances of the classifiers were compared by 

calculating the overall accuracy, the F1, the precision, the recall 

scores and the training timing on the test dataset. 

 

The best-performing algorithm, Random Forest (RF), was 

applied to the entire (not labelled) dataset. Random forest 

algorithm embeds the computing of feature importance. 

(Breiman, 2001). Based on the GINI impurity criteria, the 

variables with large GINI gains are more significant because 

they have lower impurities. The threshold of 0.75*median 

values of importance was selected. Finally, the reduced RF 

model was validated and applied to the entire dataset.  

 

3. RESULTS 

3.1 TLS data acquisition 

The nine acquired scans has been cleaned from the moving 

objects as well as from the surrounding environment, resulting 

in a final point cloud of 13,295,430 points. 15 markers located 

on the beams have been side-shot measured with a total station 

and connected to a georeferenced topographic network 

materialized around the beams. These marked has been used to 

perform relative scan registration and to asses simultaneously 

the point cloud accuracy. At the same time, an ICP algorithm 

has been performed on the nine scans performing 21 scan-to-

scan bounding. The RMSE for the markers is 3 millimeters as 

reported in Table 4. with the overall statistics. The final result is 

a set of georeferenced metric coordinates, each associated with 

intensity values and radiometric information in Red, Green, and 

Blue (RGB) channels. 

 

 Target ICP 

Min [m] 0.001 0.002 

Max [m] 0.004 0.011 

Mean [m] 0.003 0.006 

St.Dev. [m] 0.001 0.002 

Table 4. Overall errors statistics after scan coregistration. 

 

3.2 Pre-processing 

The dataset for classification consists of 566'458 training points 

and 242'768 test points with 28 features. The cloud was 

imported as Panda dataframe variable, scaled between 0 and 1, 

denoised from null and infinite values, and associated with 

position-indexed information (X, Y, Z). 

 

3.3 Classification model and prediction 

The classifiers performed outstanding, reaching values never 

below 0.90 overall accuracy (OA). As Table 5 shows Random 

Forest and neural network models reach the highest OA, 

followed by SVM and decision tree. 

Classifier Accuracy Precision Recall F1 Time [s] 

Decision 

Tree 
0.98 0.94 0.94 0.94 29 

Random 

Forest 
0.99 0.97 0.95 0.96 287 

SVM 0.98 0.95 0.92 0.93 698 

Naive 

Bayes 
0.92 0.73 0.81 0.75 <1 

Perceptron 0.97 0.88 0.87 0.87 4 

Neural 
Network 

0.99 0.96 0.94 0.95 779 

Table 5. Overall accuracy of the tested classifiers 

 

Of the best-performing classifiers, RF was chosen because the 

model is relatively more straightforward and quicker to train. 

Feature importance analysis selected 11 features out of 28 

(Table 6), showing strong significance of the Third eigenvalue 

over the other features, followed by PCA1 and surface 

variability. 

 

Feature Importance (GINI) 

Third eigenvalue     0.458660 

PCA1 0.089493 

Surface var     0.083333 

PCA2     0.065072 

Sphericity    0.060801 

B 0.056356 

Verticality     0.048714 

Second eigenvalue     0.045632 

G     0.035088 

First eigenvalue     0.028986 

R 0.027865 

Table 6. Importance values of the 11 most important features 

 

From a visual point of view, the classifier clearly detects the 

uncovered bars and concrete alteration areas of the input cloud. 

It is less precise on the alteration areas of healthy surfaces and 

surfaces. 

Figure 3. Classified cloud. SA: Surface Alterations; HS: 

Healthy Surface; DC: Deteriorated Concrete; BI: Bare Irons. 
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4. DISCUSSION 

In order to develop a method that was capable of identifying the 

deterioration of a reinforced concrete infrastructure, it was 

decided to focus on the most common ones, which are 

responsible for the reduction in the resistance of the structural 

element. In particular, exposing irons to air and water can cause 

the armor to corrode, which can lead to rust. Rust causes the 

reinforcement to increase in volume, causing the surrounding 

concrete to fracture and the structure to lose strength. Moreover, 

the exposure of the bars can cause deformations in the 

reinforced concrete structure due to thermal expansion of the 

reinforcement. These reasons led us to the choice of the four 

classes (healthy surface, bare irons, deteriorated concrete, 

surface alterations, i.e.g, water infiltration) described in Section 

2. The four classes used in this study are meant to serve as a 

general illustration, as the types of deteriorations observed in 

these types of beams are not highly variable. However, the 

identified classes can be viewed as initial macro-classes, within 

which more detailed sub-classes can be identified. 

 

The feature extraction process necessary for applying predictive 

models included the computation of radiometric and geometric 

features. Therefore using a large number of features (17 

geometric, 7 radiometric, and 3 RGB), it was possible to best 

generalise the model, avoiding the problem of overfitting and 

improving its final accuracy.  

 

Selecting the appropriate input features remains a challenge in 

this study. In this preliminary work, we did not extensively 

analyse each class's response to different features. Given the 

small size of the dataset, we opted to compute as many features 

as possible and then eliminate the less important ones. This 

backward approach enables the evaluation of all features, but it 

can be time-consuming. 

 

For the correct training of the predictive model, it was also 

necessary to scale the features with respect to a common range 

(typically between zero and one). This procedure helped for (i) 

reducing the sensitivity to small changes in the data, (ii) 

improving the convergence of machine learning algorithms, and 

(iii) avoiding the predominance of one feature over the others 

(this problem occurs when the values of a feature are very 

different to the values of the other features as per radiometric 

values [0-255] and other features). It would be necessary to test 

other scalers to determine if they outperform the MinMaxScaler 

in some way, as using the MinMaxScaler may cause the data 

resolution to flatten, leading to data leakage. However, in this 

study, the MinMaxScaler was chosen because it is less sensitive 

to the presence of outliers compared to other scalers, such as the 

StandardScaler or RobustScaler.  

 

In order to use point-based supervised classification algorithms, 

it was necessary to carry out the manual labelling operation of a 

portion of the dataset; in turn, this is randomly split into a 

training (70%) and a test (30%) dataset. In this way, the training 

portion was used precisely to train the model to recognise the 

classes according to the relationships between the features; the 

test portion, on the other hand, was used to calculate the 

effectiveness of the prediction through the metrics of Overall 

Accuracy, Recall, Precision, and the F1 Score. The efficiency of 

the prediction model depends on the quality of the manual 

labelling, during which procedure it is necessary to identify 

portions of the dataset that exhaustively exemplify the 

considered classes. Furthermore, this operation is strongly 

dependent on the manual dexterity of the operator and his 

ability in segmenting the point cloud. Another aspect to 

consider when choosing the sample data to be labelled for each 

class is the number of samples themselves, since many 

classifiers respond to the ratio of training classes. In general, it 

is preferable to have a number of examples for each class 

proportionate to the extent of each class in the entire dataset. 

For this reason, some classes (such as bare irons) that affect a 

small portion of the entire dataset were selected for manual 

labelling in fewer numbers than other classes (e.g. healthy 

surfaces). 

 

In our study, we considered different classifiers in order to 

identify the one that best suited the pre-established objective. 

The best algorithm was chosen considering the aforementioned 

metrics and time. As shown in Table 5, the Random Forest 

model is the best-performing method overall. While it's not the 

fastest method (the time it takes to train the model is the third 

highest), it performs better in terms of Overall accuracy, 

Precision, Recall and F1 Score. The Decision Tree method is 

the second-best classifier, which takes much less time to train at 

the expense of slightly lower values on the metrics. 

 

Further considerations were carried out considering the best 

classifier (RF). Results show that the "third eigenvalue" is the 

more determining parameter, followed by "PCA1" and "Surface 

variation". The third eigenvalue represents the variance 

explained by the third principal component. The third principal 

component is a linear combination of the original variables that 

explains the largest amount of residual variance after the first 

two principal components have been considered. The first 

principal component (PCA1), is the linear combination of 

variables that explains most of the variance in the data; it 

represents the direction along which the data vary the most and 

can be interpreted as a sort of "main axis" of the same. Finally, 

the Surface Variation it is a metric used to describe the 

roughness or complexity of a surface. It indicates how much 

height variation exists on a surface, i.e. the difference between 

the highest and lowest point of the surface itself. 

 

Performing an overall visual analysis of the beam's deterioration 

classification, it is well performed on both beams under 

investigation. Damages of greater extent and severity are 

correctly identified, and some errors are made regarding less 

widespread and more specific damages. However, it is 

necessary to improve the model to identify in greater detail 

small areas where different classes coexist. Certainly, it is 

necessary to test the model on larger areas, expanding the 

training and test datasets, and evaluate its replicability in 

different operating and deterioration conditions; moreover, 

implementing a voxel-based approach could improve the 

classification, shortening the time and reduce the salt and 

pepper effect. 

 

In any case, to the best of our knowledge, this study fits into a 

scientific gap and represents a first attempt to propose a 

standardised procedure for the classification of structural 

deteriorations by combining the use of LiDAR point clouds and 

artificial intelligence. Although the model presented here is 

relatively simple to implement, it lays the foundation for some 

important considerations. For relatively straightforward tasks 

such as detecting deterioration in viaducts, simple classification 

models based on the analysis of individual points are already 

effective. This leads us to believe that LiDAR point clouds 

could be used instead of carrying out visual inspections or using 

drone images as a database, which would speed up detection 

and localisation. While the image classification process is 

generally faster, the problem of geolocating the damaged area 

and determining its extent remains. Scaling the shot (knowing 
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the internal parameters of the camera) and locating it in areas 

where the GNSS signal (the most common method for 

localisation) is often poor, given that the satellite signal is 

shielded by the bridge, can be challenging. Moreover, when 

working with images, it is not uncommon for the same defect to 

appear in different shots and therefore be counted twice. To 

overcome this, it is possible to work on photogrammetric point 

clouds derived from images, but with current technologies, the 

processing still takes a long time and is not suitable for near 

real-time analysis in the field. LiDAR point clouds, on the other 

hand, can be generated very quickly (e.g. in this work, 1.30 min 

per scan) and automatically aligned. The same algorithm could 

also be applied to LiDAR clouds generated by SLAM systems, 

which are mounted on autonomous vehicles. We plan to 

continue our work on this aspect by proposing a near real-time 

solution for the rapid and effective detection of defects using 

lidar sensors mounted on aerial drones. 

5. CONCLUSIONS

The issue of structural monitoring of bridges is of primary 

importance to ensure the safety and economy of a country, 

especially in Italy. However, traditional monitoring techniques 

are commonly time-consuming and safely risky. In this study, 

we propose and test an alternative workflow for monitoring this 

kind of infrastructure; our approach can improve the bridge 

inspection processes and increase the safety of the surveyors 

involved. 

The use of a high-precision Terrestrial Laser Scanner data 

suitably pre-processed combined with the application of 

machine learning algorithms lays the foundations for carrying 

out monitoring analyses in a faster and safer way; at the same 

time, it can guarantee the same reliability compared to 

traditional techniques, which are more time-consuming and 

safety-risky. 

The acquired data consists of a coloured LiDAR point cloud 

from which geometric, radiometric, and intensity features have 

been extracted, which were further denoised and scaled. After 

labelling a portion of the dataset and subsequently dividing it 

into training and test data, several unsupervised point-based 

classification methods were tested. The results are promising, 

and all the tested models returned excellent performances 

(Overall Accuracy greater than 90%). Among these, it was 

decided to consider the most efficient method (RF) in terms of 

OA and time of processing, with which it was possible to 

quantify and evaluate the importance of each feature. 

Nevertheless, further considerations and evaluations must be 

explored, and different conditions should be examined in depth. 

The classification and prediction model can be further 

improved, i.e., by increasing the number of training points for 

each class; moreover, it is necessary to evaluate the replicability 

of the method, monitoring additional bridge beams, 

characterised by damage and alterations of different entities, 

extensions, and severity. 
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