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Abstract: The explosion of artificial intelligence methods has paved the way for more sophisticated
smart mobility solutions. In this work, we present a multi-camera video content analysis (VCA)
system that exploits a single-shot multibox detector (SSD) network to detect vehicles, riders, and
pedestrians and triggers alerts to drivers of public transportation vehicles approaching the surveilled
area. The evaluation of the VCA system will address both detection and alert generation performance
by combining visual and quantitative approaches. Starting from a SSD model trained for a single
camera, we added a second one, under a different field of view (FOV) to improve the accuracy and
reliability of the system. Due to real-time constraints, the complexity of the VCA system must be
limited, thus calling for a simple multi-view fusion method. According to the experimental test-bed,
the use of two cameras achieves a better balance between precision (68%) and recall (84%) with
respect to the use of a single camera (i.e., 62% precision and 86% recall). In addition, a system evalu-
ation in temporal terms is provided, showing that missed alerts (false negatives) and wrong alerts
(false positives) are typically transitory events. Therefore, adding spatial and temporal redundancy
increases the overall reliability of the VCA system.

Keywords: smart mobility; object detection; video content analysis; single-shot multibox detector

1. Introduction

Nowadays, the smart city paradigm is changing the asset of the urban environment
thanks to the rapid growth of digital technologies and communication infrastructures.
By interconnecting people and things, smart cities scenarios provide more efficient, fast,
ubiquitous, and accessible services to citizens [1]. In this context, smart mobility applications
are empowered by the high speed and low latency properties of 5G networks [2], being
suitable for ensuring road safety [3] and monitoring dangerous situations [4]. The huge
amount of sensor data and the availability of fast computing resources at the edge of the
5G networks have paved the way to advanced deep learning (DL) models for real-time
video content analysis (VCA) scenarios [5].

Both real-time localization and object classification methods from video streams are
mandatory requirements for VCA solutions. To this aim, different DL architectures based
on convolutional neural networks (CNNs) have recently been proposed [6]. However,
among the most widely exploited approaches, you-only-look-once (YOLO) and single-
shot multibox detectors (SSD) algorithms stand out for their performance and computing
efficiency [7]: the former is indeed one of the fastest and most accurate networks for real-
time object detection [8], while the latter is a benchmark for real-time multi-class object
detection at different scales [9].

In this paper, we consider a driver alert scenario, where an urban intersection is
monitored by two cameras and an SSD-based object detection model is trained to identify,
localize and, eventually, signal the presence of obstacles to public transportation vehicles ap-
proaching the surveilled area. Particular focus will be given to investigating the advantages
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of using two cameras instead of a single one, in terms of object detection and alert genera-
tion performance. To this purpose, the VCA model will be evaluated using qualitative and
tailored quantitative approaches, exploiting both spatial and temporal redundancy.

The paper is organized as follows. First, we discuss relevant literature on the topic.
Then, we recall the SSD-based method adopted, and we thoroughly describe the on-field
implementation. Finally, we present and discuss the results in terms of object detection
performance and the related alert generation performance.

2. Related Works

Object detection and/or tracking via multiple camera sensors is a widespread topic
in computer vision research. Multi-view 3D object recognition [10] consists in reducing
complex 3D object classification tasks to simpler 2D classification tasks by rendering
3D objects into 2D images. Real objects are surrounded by cameras posed at different
viewpoints with configurations leading to multi-view proposals, such as MVCNN [11],
GVCNN [12], View-GCN [13] and RotationNet [14] architectures. These methods use the
most successful image classification networks, i.e., VGG, GoogleNet, AlexNet, ResNet,
as backbone networks. Then, global 3D shape descriptors are obtained by aggregating
selected multi-view features through approaches that account for both content and spatial
relationships between the views.

Transfer learning approaches prove extremely useful, especially when dealing with
scarcely available data. To this end, several open source datasets for object detection
in urban traffic optimization and management have recently become available. These
datasets focus either on pedestrian or vehicle tracking and detection, combining inputs
from multiple cameras and extending visual coverage (e.g., [15,16]).

An overview of recent multi-camera solutions for object detection is presented below.
In [17], a novel multi-view region proposal network that infers the vehicles position on
the ground plane by leveraging multi-view cross-camera scenarios is presented, whereas
an end-to-end DL method for multi-camera people detection is studied in [18]. In [19],
a vehicle detection method that applies transfer learning on two cameras with different
focal length is proposed. The processing consists of two steps: first, a mapping relationship
between input images from the cameras is calculated offline through a robust evolutionary
algorithm; then, CNN-based object detection is performed online. More specifically, after
a vehicle region is detected from one camera, it is transformed into a binary map. This
map is then used to filter CNN feature maps computed for the other camera’s image. It
is important to outline that finding the relationship between the two cameras is crucial
to solve the problem of duplicated detection, as different cameras may focus on the same
vehicles. The same problem is raised in [20], where the authors present a novel edge-AI
solution for vehicles counting in a parking area monitored via multiple cameras. They
combine a CNN-based technique for object localization with a geometric approach aimed
at analyzing the shared area between the cameras and merging data collected from them.
Multi-camera object detection is also investigated in [21], which presents an autonomous
drone detection and tracking system exploiting a static wide-angle camera and a lower-
angle camera mounted on a rotating turret. In order to save computational resources
and time, the frame coming from the second camera is overlaid on the static camera’s
frame. Then, a lightweight version of YOLOv3 detector is developed to perform the
object detection. Another recent work on multi-camera fusion for CNN-based object
classification [22] devised three fusion strategies: early, late and score fusion. A separate
CNN was first trained on each camera. Afterward, feature maps were stacked together
and processed either from the initial layers (early fusion) or at the penultimate layers (late
fusion). In addition, score fusion was performed, by aggregating the softmax classification
scores in three possible ways: by summing, or by multiplying, the scores across cameras,
or by taking the maximum score across them. Results showed that late and score fusion
led to an accuracy improvement, with respect to early fusion and single camera proposals.
Multi-camera detection has gained increasing importance in several areas besides smart
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mobility applications. For example, several solutions have recently been proposed in the
area of fall detection for remote monitoring of fragile patients. In [23], multi-camera
fusion is performed by combining models trained on single cameras together into a global
ensemble model at the decision-making level, providing higher accuracy with respect to
local single-camera models and avoiding computationally expensive cameras calibration.
The dual-stream fused neural network method, proposed in [24], first trains two deep
neural networks to detect falls by using two single cameras and then merges the results
through a weighted fusion of prediction scores. The obtained results overcome the existing
methods in this domain.

All these proposals deal with high-intensity computational methods, while, on the
contrary, real-time field-deployable applications impose computational complexity con-
straints as well. To solve this key issue, we propose here a simple but effective dual-view
fusion and detection method and compare its performance with real field experiments [25].
In particular, our solution exploits a transfer learning approach, which consists in training
the object detection model on a single camera, in updating it through an additional training
by feeding the other camera’s images, and then by fusing the single detection signals to
generate alerts at the decision level. This speeds up the overall training time and saves
computational resources, with respect to other existing decision-making level camera fusion
approaches, such as [22,23].

3. Video Content Analysis System
3.1. Single-Shot Multibox Detector Model

The SSD network is composed of a backbone stage for feature extraction and a head
stage for determining the output. The backbone is a feature pyramid network (FPN) [26],
which is a CNN able to extract feature maps representing objects at different scales. It
comprises a bottom-up pathway connected to a top-down pathway via lateral connections.
The SSD head is a sequence of output maps, which determines the output of the network
in the form of bounding box coordinates and object classes. Additionally, the SSD network
exploits the concept of priors (also known as anchor boxes), a special kind of box whose
predefined shape can guide the network to correctly detect objects of the desired class.

The SSD head is composed of multiple output maps (grids) with different sizes. Each
grid decomposes the image into cells, and each cell expresses whether or not it belongs
to a particular object, in terms of bounding box coordinates and object class. Lower
resolution output maps (i.e., smaller size grids), having larger cells, can detect larger scale
objects; in contrast, larger size output grids, having denser cells, are used to predict smaller
objects. The use of multiple outputs improves the accuracy of the model significantly, while
maintaining the ability to predict objects in real time.

3.1.1. Loss Function

The training of the SSD model is based on the minimization of the following loss
function L:

L = Lloc + Lcon f + Lboxiness, (1)

where Lloc evaluates the object localization of the model, Lcon f evaluates the object clas-
sification ability and Lboxiness term refers to the boxiness, i.e., the ability of discriminating
boxes from background throughout SSD output grids.

Considering object localization, we define ygt = (x, y, w, h) as the ground truth box
coordinates vector for a generic object, with x, y expressing box center coordinates, w the
box width and h the box height. Similarly, we denote with ypr = (xpr, ypr, wpr, hpr) the
predicted box coordinates vector for that same object. A discrepancy between the real
and predicted box positions is measured by the vector a .

= |ygt − ypr|, with coordinates
(a1, a2, a3, a4) = (|x− xpr|, |y− ypr|, |w− wpr|, |h− hpr|).
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The Lloc term is then computed through the pseudo-Huber loss function [27]:

Lloc =
4

∑
i=1

δ2
(√

1 +
( ai

δ

)2 − 1
)

, (2)

with δ being a fixed quantity that controls the steepness of the function. The pseudo-Huber
loss provides the best performance, with minimal computational costs with respect to the
Huber and other types of loss functions [28]. In this study, δ was set to 1.5, following
preliminary training runs.

Referring to object classification, let yc be the true class label for each class c = 1, . . . , N,
where N is the number of classes. Additionally, let p̂c be the corresponding class probability
estimates. The second loss term, Lcon f , is then a cross-entropy loss, computed as follows:

Lcon f = −
N

∑
c=1

yc log( p̂c) (3)

After prediction, the SSD model also outputs an estimate of the boxiness, expressed
as a real value bpr ∈ [0, 1], which can be interpreted as the model confidence in recog-
nizing whether any object is present in each cell of the network output grids. Conse-
quently, the quantity bbg = 1− bpr defines the level of confidence of each cell to be part of
the background.

The last term Lboxiness relies on a focal loss function [29], which is chosen for its ability
to penalize the false positives, i.e., the background points wrongly detected as objects by
the model. The boxiness loss Lboxiness is then computed as

Lboxiness = −
[

α bγ
bglog(bpr) + (1− α) bγ

pr log(bbg)

]
, (4)

where the parameter α acts as a weight for those cells being covered by a box and
1− α acts as weight for the background cells; the parameter γ controls the shape of the
function. Higher values of γ require lower loss values to better distinguish boxes from
background (i.e., to have bpr > 0.5). The attention of the model is thus devoted to the
harder-to-detect samples.

3.1.2. Network Parameters, Training and Testing

Non-maximum suppression (NMS) [30] was performed to refine the predictions of
the model. Indeed, it may often occur that multiple boxes are predicted for the same
ground truth object. The NMS algorithm filters out the predicted boxes based on the class
confidence and the intersection over union (IoU) method [31] between them. In particular,
for a given SSD output grid and class, for each real object, the predicted box (if any) with
the highest class confidence is picked. This box is then chosen as a reference to compute the
IoU between itself and all the other predicted boxes, keeping only those with a value below
a threshold. In our case, we fixed this threshold at 0.1. Choosing such a low value allows
to filter out boxes characterized by even small overlaps with the reference one, therefore
reducing the presence of false positives.

Table 1 summarizes the properties and parameters of the SSD model adopted in this
work. The choice of the SSD output grids dimensions was guided by a preliminary analysis
on a range of suitable values, performed to individuate a proper balance between model
accuracy and computational complexity. Additionally, the selection of regions of interest
from the foreground area, as better detailed in the scenario definition, required lower
sized grids, able to capture bigger foreground objects. The network is trained to recognize
three classes of objects: ‘vehicle’, ‘rider’, and ‘pedestrian’.
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Table 1. Parameters and properties of the adopted SSD.

Output grids 24 × 40, 12 × 20, 6 × 10 and 3 × 5

Priors 1 × 1, 2 × 1, 4 × 1, 1 × 4 and 1 × 2

# trainable parameters 5000

Learning rate 10−4

δ 1.5

α 0.85

γ 2

IoU threshold 0.1

3.2. VCA Architecture

We define here the main pipeline of the VCA system for alert generation, whose
inference and training/retraining flowcharts are sketched in Figure 1. The first pipeline
(Figure 1a) sketches the object detection blocks employed to generate alerts (inference
phase) by exploiting image fusion on both cameras. The second pipeline (Figure 1b) focuses
on retraining the baseline SSD by adding TLC2 images via transfer learning, thus obtaining
a final model, i.e., SSDret. More specifically, the inference block diagram shows the real-
time processing pipeline adopted to generate the alarm signal AL by fusing together the
single-view alerts AL1 and AL2 produced by the alert generation blocks AG1 and AG2 that
are fed by the output of the SSDret object detectors attached to the single camera TLC1
and TLC2, respectively. The two cameras have a broad field of view, but in order to define
the area of potential danger to be monitored, a region of interest (ROI) is determined and
adapted for each camera. The alert AL is then employed to alert the driver by activating
visual and acoustic alarms on the bus console. The final inference stage AL is designed to
integrate the two independent outputs of the single alert generators related to each camera
view and to perform information fusion at the decision level with the aim of increasing the
overall reliability and accuracy of the system.

TLC1

TLC2

SSD!"#

SSD!"#

AG1

AG2

AF
AL

AL1

AL2

OD1

OD2

(a)

TLC1

TLC2

SSD

Open source
images

SSD!"#Retraining

(b)

Figure 1. Flowchart of the procedures exploited for the proposed VCA system, sketching the alert
generation and fusion (a) based on model SSDret, obtained via a retraining process (b). (a) Inference.
(b) Retraining.
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Figure 1b shows the retraining procedure adopted to update the baseline SSD network
of the single-view system (that uses only TLC1 data) by including also images from
the TLC2 camera. In fact, the baseline SSD model (i.e., the green block in Figure 1b)
is preliminarily trained on a set of images extracted from three open-source datasets (Open
Images Dataset [32], ETH Pedestrian Dataset [33] and EuroCity Dataset [34]) that contain
annotated images of urban traffic scenes. Afterward, the images captured by TLC1 were
added to these datasets to complete the training of the baseline SSD model. To further
improve the flexibility, reliability and, in particular, the detection accuracy of the VCA
system, the baseline SSD model was later retrained on a set of 10,000 additional images
acquired from the TLC2 camera. The term retraining refers to the procedure of updating
the parameters of a previously trained model based on the addition of new data by transfer
learning methods [35]. From now on, we will refer to the final retrained model as SSDret
(blue block in Figure 1b). The generalizing capabilities of the baseline SSD and the retrained
SSDret models were assessed using a test dataset consisting of frames extracted from a 1-h
video, for both cameras. Both videos were first synchronized and cut to align the start
and end time stamps, then converted from the h263 format to the mp4 format using the
FFmpeg tool [36] (with compression factor 1.25). Finally, 1000 frames were extracted for
each recording.

3.3. Data Labeling

YOLOv5x [37], one of the state-of-the-art YOLO networks for object detection in real-
time applications, was adopted to define ground truth boxes, i.e., to label the objects actually
present in each image. For this purpose, YOLOv5x was applied on each image of the
training, retraining, and test datasets in order to recognize objects of the classes ‘Car’, ‘Bus’,
‘Truck’, ‘Motorcycle’, ‘Bicycle’, and ‘Pedestrian’. Then, these classes were grouped into three
more generic classes, namely ‘Vehicle’, ‘Rider’, and ‘Pedestrian’. Ground truth boxes were
provided in the YOLO format (xcenter, ycenter, width, height), and subsequently converted
in the SSD format (xmin, ymin, width, height). The results of this automatic labeling step
were then manually inspected to verify the presence of sufficiently accurate ground truth
boxes. In the presence of detection errors inside the monitored area, the corresponding
images were removed from the dataset. Based on the ground truth boxes, we also defined
the number of ground truth alerts, which were raised any time at least one ground truth
box was detected within the ROI.

4. Driver Alert Use Case
4.1. Scenario Definition

Piazza Caricamento is one of the locations with the highest concentration of pedestrian
and road traffic in the historic center of Genoa, Italy, as it connects the east and west areas of
the city and, above all, it is located nearby the main tourist attractions (e.g., the aquarium,
the pedestrian area on the harbor, and the most important architectural and artistic sites
of the city). The area monitored by the proposed VCA system is the intersection between
the pedestrian area of the harbor, the vehicular access to the parking lot, and the access
roads to the underground tunnel below Piazza Caricamento corresponding to the latitude
and longitude coordinates 44.4110720922656 N, 8.928069542327654 E (expressed in decimal
degrees). A dedicated public transportation bus lane, which is characterized by limited
visibility, interconnects with the monitored intersection. The area is often crowded with
pedestrians and vehicles frequently passing through to access the car parking. Hence,
potential collisions with buses coming from their dedicated lane represent a real risk sce-
nario that makes Piazza Caricamento a suitable location to implement a VCA system. The
proposed solution consists in an automatic system able to detect the presence of pedestrians
and/or vehicles inside the area via VCA processing, and to generate an appropriate alert
to the bus approaching the intersection. Real-time monitoring is performed via two Bosh
DINION IP Bullet 6000I HD, 2, 8–12 MM cameras, which are professional surveillance HD
cameras compliant with the SMPTE 296M-2001 standard [38] and ONVIF profiles G and



Sensors 2023, 23, 3195 7 of 15

S [39] to guarantee the interoperability with the AI components. We will refer to these
cameras as TLC1 and TLC2.

As previously noted, only objects within each ROI of the cameras can generate
an alert to be sent to the driver. As a result, the two ROIs strictly overlap. Since our
SSD model involves multiple output grids, the ROI was resized for each of them based
on their dimension. Figure 2 displays the fields of view covered by the two cameras and
reports the selected ROIs for each adopted grid.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Regions of interest (ROIs) inside the monitored area (green rectangles), for each considered
SSD output grid on TLC1 (left column) and TLC2 (right column). (a) ROI on TLC1 for output grid
of size 3 × 5. (b) ROI on TLC2 for output grid of size 3 × 5. (c) ROI on TLC1 for output grid of
size 6 × 10. (d) ROI on TLC2 for output grid of size 6 × 10. (e) ROI on TLC1 for output grid of size
12 × 20. (f) ROI on TLC2 for output grid of size 12 × 20.

As further emphasized in the following sections, the main goal of our work is to
understand to what extent the joint use of two cameras can represent an added value for
the VCA task with respect to the use of a single camera (either TLC1 or TLC2).

4.2. Performance Evaluation

Two types of performance figures will be considered to evaluate the VCA monitoring
system, namely object detection performance, that is the ability of the system to correctly
identify different classes of objects inside the ROI, and alert generation performance, that is
the ability of the system to trigger an alert if and only if at least one object is present in the
monitored area.
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For the sake of simplicity, the system performance results were assessed considering
only 3 grids (i.e., 12 × 20, 6 × 10 and 3 × 5) with priors of size 1 × 2 (more suitable for
identifying people) and priors of size 2 × 1 (more suitable for identifying vehicles).

Finally, the VCA system performance results were evaluated also in terms of computa-
tion time required for object detection and alert generation. The average inference time per
frame was assessed locally on a host equipped with an Intel Core i5 dual-core processor at
2.6 GHz, 8 GB RAM memory banks, and running the macOS 10.15.7 operating system.

4.2.1. Object Detection Performance

The ability of each component of SSDret (according to the aforementioned grids and
priors) to identify objects of different classes inside the ROI was evaluated by calculating the
average confusion matrix over the whole test dataset, for each camera, namely the average
number of correctly identified objects (TPobj), the average number of undetected objects
(FNobj), and the average number of objects detected but not actually present in the ground
truth image (FPobj). The obtained values were then compared with the average number of
real objects per image. Then, in order to measure the object detection performance from
a comprehensive point of view, precision (PREobj) and recall (RECobj) were assessed for
each considered frame, both individually for single grids and priors, and aggregating all
outputs. Precision measures the number of correctly identified objects to the total number
of detected objects, whereas recall measures the number of correctly detected objects to
the total number of ground truth objects. These metrics were then averaged across all the
frames in the test dataset (i.e., 1000 frames).

4.2.2. Alert Generation Performance

The ability of SSDret to generate alerts when an object is inside the ROI was assessed
by calculating the confusion matrix over the entire test dataset, considering two possible
outputs of the system, namely the presence of an alert (alert = 1) or its absence (alert = 0),
for each input image. The following elements of the confusion matrix were considered: the
total number of correctly generated alerts (TPalert), the total number of ground truth alerts
not triggered by the system (FNalert), the total number of alerts incorrectly triggered by the
system (FPalert), and the total number of non-alert situations in which the alert is correctly
not triggered by the system (TNalert). It is also important to underline that, in light of
the technological implementation of the alerts triggering system of each camera, incorrect
alerts (either FNalert or FPalert) were only triggered when no true positives had already been
generated for the same image.

As previously described, SSD models provide different outputs from output maps of
different sizes. Therefore, system performance was first evaluated by considering alerts
detected individually by each grid and prior and then by evaluating the total amount of
alerts identified by the aggregation of all grids and all priors. Alert generation performance
was evaluated both individually on the two cameras (TLC1 and TLC2, separately) and then
on their fusion. In the latter case, an alert is generated when at least one of the two cameras
detects an object within the ROI.

Since the frames considered in our use case are temporally continuous, we also decided
to evaluate if the presence of FNalert and FPalert could be considered a transient phenomenon
or not. Hence, we computed also the FN∗alert and FP∗alert, representing the false negatives
and false positives occurred at least in two consecutive frames. Any FNalert or FPalert events
present in just one frame were therefore considered spurious and avoided by waiting for
the next frame before performing inference.

5. Results
5.1. Object Detection Performance

A base model was trained on a set of images composed by TLC1 images and external
images from open-source datasets on mobility scenarios. The base model was then retrained
on a dataset extracted from TLC2 recordings yielding SSDret. The procedure of retraining
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(on TLC2 images only) an already pre-trained model offers several advantages over training
from scratch (using TLC1 and TLC2 images). Notably, retraining was faster than the full
training. Specifically, the time required to retrain the model was more than 10 times shorter
than the original training time of the baseline SSD (i.e., 42 h). Table 2 reports the obtained
object detection performance for each camera, each grid, and each prior separately in terms
of mean confusion matrix over the entire test dataset. Average precision and average recall
were also computed.

Table 2. Mean and standard deviation (between parentheses) of TPobj, FPobj, FNobj and percentage of
PREobj and RECobj for each camera, grid, and prior of the SSDret model.

TLC1 TLC2

#Real
Objects

TPobj FPobj FNobj PREobj RECobj #Real
Objects

TPobj FPobj FNobj PREobj RECobj

Grid: 12 × 20
Prior: 1 × 2

0.19
(0.80)

0.10
(0.55)

0.04
(0.20)

0.08
(0.87)

55% 54% 0.71
(1.43)

0.24
(0.79)

0.22
(0.57)

0.40
(0.96)

43% 31%

Grid: 12 × 20
Prior: 2 × 1

0.02
(0.31)

0.02
(0.24)

0.08
(0.36)

0.005
(0.13)

11% 66% 0.34
(1.18)

0.24
(0.99)

0.28
(0.65)

0.10
(0.61)

24% 67%

Grid: 6 × 10
Prior: 1 × 2

0.05
(0.35)

0.05
(0.30)

0.15
(0.42)

0.02
(0.23)

19.76% 63.46% 0.13
(0.48)

0.07
(0.36)

0.07
(0.27)

0.06
(0.28)

37% 43%

Grid: 6 × 10
Prior: 2 × 1

0.005
(0.08)

0.005
(0.10)

0.18
(0.47)

0.00
(0.00)

1.6% 100% 0.08
(0.40)

0.01
(0.14)

0.08
(0.35)

0.07
(0.43)

15% 21%

Grid: 3 × 5
Prior: 1 × 2

0.01
(0.14)

0.00
(0.05)

0.07
(0.25)

0.01
(0.13)

4.11% 42.86% - - 1.70
(0.59)

- 0% -

Grid: 3 × 5
Prior: 2 × 1

0.001
(0.03)

0.00
(0.00)

0.08
(0.28)

0.001
(0.03)

0% 0% 0.07
0.33

0.04
0.23

1.63
0.56

0.03
(0.19)

1.3% 61.44%

According to Table 2, it appears that the TLC1 images contain fewer ground truth
objects inside the ROI than the TLC2 ones. However, no ground truth events filmed by
TLC2 are captured by the 3 × 5 grid with 1 × 2 prior. Hence, it was not possible to calculate
TPobj, FNobj and recall in that case. Since the number of false positives is on average higher
than the number of false negatives, PREobj is lower than RECobj, except when considering
a 12× 20 grid with 1× 2 prior. In addition, we can observe how grids with a larger number
of cells (i.e., 12 × 20 and 6 × 10) are generally able to detect more objects than the smallest
grid (i.e., 3 × 5). This may be due to the fact that objects within the ROI are typically in
the background and thus more easily detected by denser grids, characterized by smaller
cell sizes.

The global object detection performance results of SSDret on both cameras were then
evaluated in terms of precision and recall, reported in Table 3. These values were obtained
by considering all the grids and priors used to define the model’s architecture (as defined in
Table 1). TLC1 yielded a low precision of about 17% and a satisfying recall, equal to about
90%. In contrast, TLC2 yielded a much higher precision of about 73% and recall similar to
TLC1 (i.e., about 89%).

Table 3. Global object detection performance of SSDret for each camera by considering all the grids
and priors as defined in Table 1. Precision: PREobj; Recall: RECobj.

TLC1 TLC2

PREobj 17% 73%

RECobj 90% 89%



Sensors 2023, 23, 3195 10 of 15

5.2. Alert Generation Performances

Alert generation performance was first evaluated separately on the two cameras and
then considering the fusion between the alerts generated by the two, as shown in Table 4.
The results reported in Table 4 are consistent with those shown in Table 2 since grids with a
larger number of cells (i.e., 12 × 20 and 6 × 10) are able to generate more alerts than the
smallest grid (i.e., 3 × 5). In particular, with the exception of the 3 × 5 grid that mostly
detects vehicles, most of the alerts seem to be raised by objects that correspond to the prior
of size 1 × 2 (i.e., pedestrians in the ROI). From these results, we can observe that both
the number of ground truth alerts and the number of correctly predicted alerts (TPalert)
increase when considering the data fusion of both cameras (fusion(TLC1,TLC2)), compared
to the individual TLC1 and TLC2. Figure 3 shows an example of an alert correctly detected
by TLC2 but not by TLC1. This image would therefore constitute an FN event considering
only TLC1, but it is correctly classified as a TP event when fusion(TLC1,TLC2) is considered.

Table 4. Number of ground truth alerts and TPalert for each grid and prior using single camera
processing (TLC1, TLC2) and data fusion of both cameras (fusion(TLC1,TLC2)).

TLC1 TLC2 Fusion(TLC1,TLC2)

Ground Truth Alerts TPalert Ground Truth Alerts TPalert Ground Truth Alerts TPalert

Grid: 12 × 20
Prior: 1 × 2 62 54 41 27 76 61

Grid: 12 × 20
Prior: 2 × 1 9 6 29 25 34 28

Grid: 6 × 10
Prior: 1 × 2 66 49 29 23 76 57

Grid: 6 × 10
Prior: 2 × 1 8 8 3 0 11 8

Grid: 3 × 5
Prior: 1 × 2

3 2 2 0 5 2

Grid: 3 × 5
Prior: 2 × 1

7 4 3 0 10 4

Figure 3. Example of the same object correctly detected within the ROI (green area) by TLC2 (right),
but missed by TLC1 (left). Ground truth boxes are shown in blue, while predicted boxes are shown
in red.

If we focus, for example, on the 12 × 20 grid and the 1 × 2 prior (Table 4), we can
observe that TLC1 alone detects 62 ground truth alerts (54 TPalert), while TLC2 detects
41 ground truth alerts (27 TPalert) and fusion(TLC1,TLC2) detects 76 ground truth alerts
(61 TPalert). These results confirm how different grids and priors are able to identify
different objects, and consequently generate different alerts. For this reason, we finally
evaluated the global alert generation performance results, obtained by combining all the
outputs provided by different priors and grids and by considering the temporal continuity
of the frames. The results of this global evaluation are reported in Table 5.
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Table 5. Ground truth alerts, TPalert, TNalert, FPalert, FNalert, FP∗alert and FN∗alert obtained from all
grids and priors, on single cameras (TLC1, TLC2) and their fusion (fusion(TLC1,TLC2)).

Ground Truth Alerts TPalert TNalert FPalert FNalert FP∗
alert FN∗

alert

TLC1 89 77 865 46 12 2 0
TLC2 74 59 908 18 15 1 2

fusion(TLC1,TLC2) 125 105 827 48 20 3 3

The estimated average elapsed time during the inference phase for the whole alert
generation process on a single camera is about 0.46 s per frame, while the elapsed time of
the decision fusion is about 1.8 · 10−6 s and may be neglected. Thus, the total inference time
of the multi-camera VCA system (not parallelized) is about 0.92 s per frame.

6. Discussion

A VCA monitoring system based on a SSD architecture was implemented and evalu-
ated in terms of its ability to detect objects in the surveilled area and its related ability to
generate alerts. Specifically, the VCA system foresees possible dangerous situations inside
a intersection through the use of a multi-camera deep learning-based object detection
system. The choice to merge data at the decision level was motivated by its simplicity,
which allows to operate within the time constraints dictated by a real-time application.
In addition, the system built in this way can easily compensate for the lack of one of the
two possible inputs, ensuring robustness against possible failures or damages to the system.

Comparing the TLC1 and TLC2 cases, it can be seen that the former has a rather
low precision in detecting objects. This result is further confirmed by the performance
results of alert generation (Table 5). Provably, the precision of TLC1 in terms of alert
generation is lower than the corresponding TLC2 precision (i.e., 62% and 77%, respectively).
As a result, fusion(TLC1,TLC2) reaches a higher precision (i.e., 69%) with respect to TLC1
alone. In contrast, the recall of TLC1 in terms of alert generation is slightly higher than the
corresponding TLC2 recall (i.e., 86% and 80%, respectively). As a result, fusion(TLC1,TLC2)
yields a higher recall (i.e., 84%) with respect to TLC2 alone. In summary, by combining
the two cameras, there is a significant increase in precision with respect to TLC1 alone
and a slight improvement in recall compared to TLC2. The monitoring system based
on SSDret yields quite satisfactory alert generation accuracy when considering a single
camera (i.e., about 94%).This means that the retraining phase did not erase what the model
learned from TLC1 images, i.e., there is no catastrophic forgetting [40]. Although accuracy
remains almost stable (93%) when considering fusion(TLC1,TLC2), the introduction of
a second camera TLC2 improves the overall safety by allowing the identification of a higher
number of real dangerous situations (i.e., 125 ground truth alerts) within the area of interest.
In fact, the combination of TLC1 and TLC2 enables the triggering of 40% more ground truth
alerts than TLC1 alone. The increase in the number of alerts is mainly due to the different
framing of the two cameras, and thus the increased field of view of the object detection
system. Consequently, also the absolute number of TPalert increases (from 77 to 105) after
the outputs of the two cameras are merged. Since we are dealing with a highly unbalanced
dataset, where the number of dangerous situations is considerably lower than the number
of safe situations, it could be useful to evaluate the F1-score. Specifically, it can be seen that
the use of two cameras results in an F1-score of 75%, which is higher than that obtained by
using TLC1 alone (i.e., 73%).

By using not only spatial redundancy, i.e., the different views of the same monitored
area captured by TLC1 and TLC2, but also the temporal continuity of the frames, we can
design a post-processing algorithm that uses the information of two or more consecutive
video frames instead of a single one as assumed so far. In this case, the actual output
alert signal is generated if it is triggered by at least two consecutive frames. By exploiting
the temporal continuity, the amount of wrong predictions is reduced, as indicated in
Table 5, where FP∗alert and FN∗alert (i.e., the number of FPs and FNs persisting in at
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least two consecutive frames) are consistently lower than FPalert and FNalert, respectively.
This reduction in the number of false and missed alarms proves that FPs and FNs are
generally spurious events that can be easily removed by considering a certain time window.
However, it is worth noting that this method introduces a one-frame delay in the alert
signal generation stage.

In addition, a local evaluation of the total inference time per frame was performed,
demonstrating the ability of the proposed multi-camera VCA system to generate the alert in
a sufficiently short time (less than 1 s), which is compatible with the system requirements to
make a decision in real time. However, more precise evaluations will be needed following
specific on-site deployment.

This study presents some limitations. First of all, the multi-camera system was evalu-
ated using a single fusion technique directly applied at the decision level. In future studies,
different data fusion techniques, including early and late fusion at different depths of the
network, should be compared to evaluate possible further improvements in terms of the
system reliability. Moreover, although the network was originally trained on a hetero-
geneous set of images from the experimental test-bed (TLC1) and open source datasets,
the dataset used for retraining SSDret included only TLC2 frames captured in daytime.
Therefore, it will be necessary to evaluate the system’s ability to generalize in different
scenarios, such as its robustness in different weather and light conditions (e.g., day/night
and sunny/rainy weather). Lastly, at the current stage, possible security issues following
malicious attacks on the main components of the system (e.g., cameras, onboard units, and
edge servers) have not been considered yet. In particular, the alert generation system could
be vulnerable to adversarial attacks aimed at changing the output of the system, which
could cause potential dangerous situations. In the future, it will be necessary to devise
robust solutions to these types of attacks, such as considering the introduction of a Bayesian
layer in the vision system [41].

7. Conclusions

This work focuses on the development and evaluation of an single-shot multibox
detector-based object detection system applied to an urban scenario. In particular, we
evaluated the effectiveness of adding a second camera (TLC2) in terms of detecting potential
hazardous situations within the region of interest. The introduction of a second camera,
in addition to the first one (TLC2) not only makes the video content analysis system more
robust with respect to possible failures due to TLC1 malfunctions but also leads to a higher
number of correctly detected alarms thanks to a wider coverage of the surveilled area.
Furthermore, the number of false negative (FN-type) events is reduced by considering
temporal continuity in successive frames. In the specific smart mobility use case, FN-type
errors were considered to be more important than false positive (FP-type) errors. Indeed,
the number of negative events misclassified as positive (i.e., FP-type), will result in alarms
that do not correspond to the presence of objects or obstacles in the region of interest.
Such errors are considered less critical because they simply cause unnecessary alerts to be
sent, without endangering the driver. However, in the long run, these redundant alarms
may make the driver less confident in the system’s ability to correctly identify dangerous
situations. Future studies will focus on further validation of the proposed solution. Finally,
the formalization of an algorithm that can leverage the temporal continuity provided by
videos, instead of relying on individual frames, could be investigated.
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