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Abstract: A pressurized spherical shell that is continuously corroded will likely buckle and lose
its stability. There are many analytical and numerical methods to study this problem (critical load,
critical thickness, and service life), but the friendliness (operability) in engineering test applications
is still not ideal. Therefore, in this paper, we propose a new non-destructive method by combining
the Southwell non-destructive procedure with the stable analysis method of corroded spherical thin
shells. When used carefully, it can estimate the critical load (critical thickness) and service life of
these thin shells. Furthermore, its procedure proved to be more practical than existing methods; it
can be easily mastered, applied, and generalized in most engineering tests. When used properly, its
accuracy is acceptable in the field of engineering estimations. In the context of the high demand for
non-destructive analysis in industry, it may be of sufficient potential value to be used as a reference
for existing estimating methods based on NDT data.

Keywords: pressurized spherical shell; corrosion; non-destructive method; critical load; critical
thickness; service life; NDT data

1. Introduction

Due to the increasing use of shell-type structures in spacecrafts, submarines, buildings,
and storage tanks, there has been a corresponding increase in the interest of researchers and
practical engineers in the stability of shells. Hemispherical shells are the most important
structural element in engineering applications because they can resist higher pure internal
pressure loads than any other geometric vessel with the same wall thickness and radius.

In practice, most pressure vessels experience external loads due to hydrostatic pressure
or external shocks-. Therefore, they should be designed to withstand the worst load
combinations without failure. Loads transmitted by cylindrical rigid actuators applied on
top of the sphere are considered common external loads. Therefore, it is important to study
its effect on the initial buckling behaviour of such shells. Meanwhile, corrosion is defined
as the gradual destruction of a material due to chemical reactions within the environment.
The most common type of corrosion is uniform corrosion or general corrosion, which is
distributed almost uniformly over the entire exposed surface. General wear can occur
both with the formation of a fully protective ultra-thin coating of corrosion products and
without an oxide layer. The formation of a blocking passivation film, as well as changes in
the concentration of one or the other reactants, may inhibit when the corrosion rate should
decay exponentially (decline) with time [1–3].
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On the other hand, as with other types of damage (e.g., [4]), corrosion can be enhanced
by the applied load [5]. Experimental data suggests that there is a stress corrosion threshold,
after which mechanical stress accelerates corrosion [5–7]. In this case, the stress changes due
to the reduction in shell thickness, and the changed stress in turn enhances the corrosion
process. In general, for the strength analysis of structural elements under mechano-chemical
corrosion conditions, an initial boundary value problem with unknown evolutionary
boundaries must be solved.

In addition to stress, there are many other effects that can affect the corrosion rate,
such as temperature; it has a great influence on the rate of galvanic corrosion of metals. In
the case of neutral-solution corrosion (oxygen depolarization), elevated temperature has a
favourable effect on the overpotential and oxygen diffusion rate for oxygen depolarization
but leads to a decrease in oxygen solubility. When corrosion (hydrogen depolarization)
occurs in acidic media (such as sea water), the corrosion rate increases exponentially
with increasing temperature due to the reduced hydrogen evolution overpotential. An
Arrhenius-type experimental dependence was observed between corrosion rate and tem-
perature [8]. The effect of temperature on acid corrosion, most commonly in hydrochloric
and sulfuric acid, has been the subject of extensive research [9–22]. In hydrochloric acid,
the effective activation energies for corrosion processes vary from 57.7 to 87.8 kJ mol/L,
where most are concentrated around 60.7 kJ mol/L. In some cases, studies were performed
at only three temperature values using a single experimental method, which increased the
likelihood of erroneous determination of the corrosion activation energy. In this regard,
further research is advisable, as it may provide a reliable comparative basis for discussing
the obtained results.

In summary, we know that temperature has a great influence on corrosion rate, corro-
sion and stress can interact with each other, and finally, they can jointly affect the stability
of the shell. In this regard, we should explore the relationships of temperature, corrosion,
and stress to shell stability. Experimental [23], analytical [24–28], and numerical meth-
ods [29–31] were used to study the buckling of (uniformly compressed hemispherical of
moderate thickness) metal shells using corrosion and temperature. A related study [28]
also demonstrated the high accuracy of these methods. However, in practical engineering
applications, they often lack operability and are less friendly to workers.

Non-destructive estimation methods, such as in the field of pressure vessels, have
been a research hotspot due to their advantages of simple operation, widespread use,
and low cost. As one of the non-destructive methods, the non-destructive approach of
Southwell’s column analysis is now extended to spherical shells, which are subjected
to uniform external pressure [32]. However, there are few non-destructive methods for
estimating the buckling of pressure spherical shells of this type. The paper [33] established
a non-destructive estimation method for a spherical shell under external pressure that
can predict its critical load. It is based on an exact first-order solution of the critical stress
and requires two assumptions: one is that the thickness of the shell does not change; and
the second is that the temperature does not affect the critical buckling of the shell. In any
case, when the shell is in a corrosive environment, the thickness of the shell varies and
the effect of temperature on both the stress and the corrosion rate is unavoidable. No
non-destructive method has been found as of yet to predict the critical loads (stresses) of
the shell under this condition, including the service life. Therefore, in the industry, people
still hope to obtain a new lossless method. This method can predict the critical load (or
stress) and critical thickness of the shell under external pressure from corrosion on the basis
of a higher-order (second-order) exact solution. At the same time, we are also oriented to
predict its useful (remaining) life. For this reason, in this paper, we will analytically extend
the Southwell process method for the non-destructive prediction of critical loads, critical
stresses, and service life of hemispherical shells subjected to uniform external pressure
considering corrosion and ambient temperature through rigorous mathematical derivation.
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2. Problem Description

A model of a spherical shell is considered. It is affected by the external pressure po, and
its inner surface undergoes mechano-chemical corrosion, as shown in Figure 1. Assuming
that the rate of internal corrosion is vo, the corrosion process causes the thickness h of the
shell to change with time t. We adopt the effective stress definition to characterize stress
here, which is commonly used when corrosion is present.
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Figure 1. A spherical shell subjected to both external pressure and internal corrosion.

The problem in this paper is to predict (estimate) the critical thickness, critical stress,
and service life of the spherical shell based on non-destructive testing data in a temperature
and corrosive environment. This is essentially a non-destructive estimation problem
involving variable boundary conditions. For clarity, we describe this complex and combined
problem in two steps.

2.1. Before All, It Is Necessary to Solve the Estimation of the Critical Thickness, Critical Stress, and
Service Life of the Shell Based on NDT Data in a Non-Corrosion and
Temperature-Independent Environment

It involves two sub-problems. First, theoretically, we need to obtain the second-
order buckling critical stress for the spherical shell model (see Appendix A), which is the
accurate solution. Then, based on the format of this second-order solution, a test data-based
estimation method for the shell critical stress will be established by introducing an existing
non-destructive method (see [33]).

The mathematical problem involved in obtaining the second-order buckling critical
stress is related to the solution of the following Equations (1)–(4):

dNx

dθ
+
(

Nx − Ny
)
cot θ −Qx + Ny

(
u
R
+

dw
Rdθ

)
−Qx

(
d2w
Rdθ2 +

w
R

)
= 0, (1)

dQx

dθ
+ Qxcot θ + Nx + Ny + pR + Nx

(
d2w
Rdθ2 +

du
Rdθ

)
+ Ny

(
u
R
+

dw
Rdθ

)
cot θ = 0, (2)

dMx

dθ
+
(

Mx −My
)

cot θ −QxR + My

(
u
R
+

dw
Rdθ

)
= 0, (3)

σ =
pR
2h0

(4)

where u is the displacement of the shell element in x direction, v is the displacement in y
direction, w is the displacement in z direction, t0 is the shell thickness, pcr is the classical
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buckling pressure, Nx, Ny are the resultant forces, Qx, Qy are the shear forces, Mx, My are
the bending moments, and θ, ψ are the angles of the shell element.

When introducing the non-destructive method, the corresponding mathematical prob-
lem involved is how to express the relationship between non-destructively measurable
quantities (such as: w and w/p at any point on the outer surface of the shell) as an equation
of a straight line. The physical quantity to be estimated (e.g., the critical load pcr of the
shell) needs to appear exactly in the expression of the line slope. Assuming that we can
obtain this equation line by non-destructive testing in the elastic stage, the quantity to be
estimated can be obtained immediately. For example, let us take Equation (12) in which the

equation slope is p2
cr

Em3∆2 . Then suppose we get the slope by testing and drawing; therefore,
the only unknown quality in it, pcr, can be expressed (obtained) by the slope easily.

Moreover, the assumptions within this non-destructive method are that the shell
deformation is axisymmetric and the compression in the shell is uniform. At the same time,
it does not assume the specific location of buckling and the number of buckling waves, as
shown in Figure 2.
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Figure 2. The non-destructive method does not assume the exact location of spherical shell buckling
(e.g., the point M or N) and the number of buckling waves.

2.2. Then, on the Basis of the Previous Step 2.1, We Can Further Solve the Problem of Critical Load
(Stress) and Service Life in an Environment Where Corrosion and Temperature Coexist

The mathematical problem that needs to be solved is similar to that in Section 2.1, but
an extra equation (corrosion kinetic equation) needs to be taken into consideration—the
relationships between the corrosion rate (that is, the derivative of thickness), temperature,
and stress:

dh
dt

= − f (σ, T)
dh
dt

= − f (σ, T) (5)

here, for f (σ, T) we adopt:

f (σ, t) = v0 exp(
Vσ

RTg
) (6)

where h is the thickness of the shell, t is the corrosion time, v0 is the initial corrosion rate,
σ is the stress, T is the temperature, Rg is the molar gas constant, and V is the material
molar volume.
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It is noted that the derivation process of Equation (6) is shown in Appendix B, where
we found that the relationship between corrosion rate and temperature conforms to the
Arrhenius type [5]. Meanwhile, it should be observed that according to the physical
definition of shell buckling, the critical thickness in the case described in this section will
be identical to its expression obtained in Section 2.1.

3. Problem Solving

In order to solve the problems highlighted in this paper (see Section 2), we run the
following two steps to explain our methods.

3.1. First Step: Establish a Non-Destructive Method for Predicting Spherical Shell Life Regardless
of Corrosion and Temperature

From (A50) in Appendix A.1, we rewrite the it as:

2Em
1− v2 =

p
ϕ

(7)

Here, m is the ratio of the thickness to the radius of the sphere.
We rewrite Equation (A51) in Appendix A.1 as:

p2
cr = Em.Em.m2

(
2√

3(1− v2)
− mν

1− v2

)2

, (8)

here, m = h0
R .

Let ∆ = 2√
3(1−v2)

− mν
1−v2 , from Equations (7) and (8), we can obtain:

p
φ
=

2Em
1− v2 =

2p2
cr

Em3(1− v2)∆2 (9)

and then
1
φ
=

2Em
1− v2 =

2p2
cr

pEm3(1− v2)∆2 (10)

By substituting Equation (10) into Equation (A69) in Appendix A.2, we get:

w ∼=
B′0(v− 1)

1 + 1−v2

2 . 2p2
cr

pEm3(1−v2)∆2

(11)

As can be seen from the equations above, we have successfully established the rela-
tionship between the displacement and the pressure of the shell by appropriately rewriting
the form of the second-order critical load and combining the relationship between the
displacement w and the rotation angle ϕ shown in Equation (5).

By cross-multiplying in Equation (11), we can achieve:

w +
p2

cr
Em3∆2

w
p
= B′0(v− 1). (12)

Formally, Equation (12) is the equation of a straight line following the Southwell
procedure described in Section 2.1. It has w as one axis and w/p as another. Furthermore,
the expression of the slope of this line contains the unknown critical load pcr. Therefore, the
slope of this line can be gained experimentally, and the critical load can then be obtained.

Let S = p2
cr

Em3∆2 ; Equation (12) can be rewritten as:

w + S
w
p
= B′0(v− 1) (13)
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one can get:
pcr = m∆

√
SEm (14)

By substituting Equation (A53) in Appendix A.1 into Equation (7), we get:

φ =
(h∗)2

√
1−v2

3

Rh
. (15)

Substituting Equation (15) into (A69) in Appendix A, we get:

w + J(wh) = B′0(v− 1), (16)

where:

J =
R
√

3(1− v2)

2(h∗)2 , (17)

then we obtain:

h∗ =
√

R 4
√

3(1− v2)√
2J

. (18)

With the previous steps, we have obtained a non-destructive estimation of the critical
thickness (see Equation (18)) in the same way that we have used to solve the critical load
above (see Equation (14)).

3.2. Second Step: Establish a Non-Destructive Method for Predicting Critical Load, Critical
Thickness, and Service Life of Spherical Shells in the Presence of Corrosion and Temperature

According to the description in Section 2.2, this case requires an additional corrosion-
rate equation than in Section 2.1—see (A77) in Appendix B.

Considering Equation (10), from Equation (A77) we obtain:

dσ

dt
=

2σ2

pR
v0 exp

(
Ec0

(
1− Ec

T

))
exp

(
Vσ

RgT

)
. (19)

Through performing variable separation on Equation (19) in [t0, t∗], [σ0, σ∗], we get:

σ−2 exp
(
− Vσ

RgT

)
dσ =

2
pR

v0 exp
(

Ec0

(
1− Ec

T

))
dt, (20)

where, t0 refers to the initial time, t* to the service life, σ0 to the stress at time t0, and σ* to
the critical stress.

Integrating Equation (20), we get:

∫ σ∗

σ0

exp
(
− Vσ

RgT

)
σ−2dσ =

2
pR

v0 exp
(

Ec0

(
1− Ec

T

)) ∫ t∗

t0

dt. (21)

Considering that Equation (10) establishes consistency, through σ ≡ pR
2h , the service

life t* can be obtained:

t∗ =
h0σ0

υ0

[
−Eco(1− Ec/T

] ∫ σ∗

σ0
σ−2exp(

−Vσ

RgT
)dσ. (22)

If we still consider Equation (10), Equation (A77) can be transformed into:

dh
dt

= v0 exp
(

Ec0

(
1− Ec

T

))
exp

(
VpR

2RgTh

)
. (23)
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In order to separate the variables t and h in [t0, t*] and [h0, h*], first we get:

exp
(
− VpR

2RgTh

)
dh = v0 exp

(
Ec0

(
1− Ec

T

))
dt, (24)

then: ∫ h∗

h0

exp
(
− VpR

2RgTh

)
dh = v0 exp

(
Ec0

(
1− Ec

T

)) ∫ t∗

t0

dt, (25)

and finally:

t∗ =
1

v0 exp
(

Ec0

(
1− Ec

T

)) ∫ h∗

h0

exp
(
− VpR

2RgTh

)
dh + t0. (26)

Note that in this section we still have pcr = m∆
√

SEm, σ∗ = mR∆
√

SEm
2h0

, and

h∗ =
√

R 4
√

3(1−v2)√
2J .

4. Example Analysis

The whole process described above (including those in Appendices A and B), showed
that the non-destructive method of this paper used mathematical logic rigorously. To
further validate it, we compare its results with those of other methods on this section. Due
to the limitation of NDT data found in literature on these kinds of shells, we compare
our method within a special case in Section 2.1 (without corrosion and temperature) with
another existing method.

The NDT data adopted here is taken from an experiment described in [33]. To maintain
consistency with the experimental model of [33], we also apply internal suction to our FE
model to simulate equivalently the external pressure. The geometric parameters for the
FE model (meeting thin wall hypothesis) are: the radius of shell r = 0.05 m and the wall
thickness h0 = 0.0005 m, yielding a h0/r ratio of 0.01. The mechanical properties are: the
Young modulus E = 650 MPa, Poisson ratio ν = 0.4, and density ρ = 1150 kg/m3.

A 1/8 symmetrical spherical shell model built by the ANSYS software is shown in
Figure 3. The first two buckling modes obtained from the eigenvalue buckling analysis are
shown in Figure 4.
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First, we calculate the value of p∗ using the described method. The results for w and
w/p are plotted in Figure 5.

Within the plot, it is shown that the fitting line equation for the w and w/p points is:

w + 7.27385 w/p = 16.59268, (27)

therefore, we get S = 7.27385 by Equation (13), and then obtain p∗ = 0.08593 through
Equation (14).
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In order to verify the practicality and accuracy of this method, we also calculate the
p∗ value adopting the other five existing methods, including one-order analytical value,
numerical value, two-order analytical value, etc., which are shown in Table 1. The highest
error is produced from the numerical method of [33], while the lowest error is produced
from the lowest eigenvalue method.

Table 1. Critical load of our method comparing with other methods.

Method No. 1st 2nd 3rd 4th 5th 6th

Method name
The lowest

Eigenvalue method

Traditional
one-order analytical

method

Non-destruction Analytical
two-order

method [33]

Numerical
method [33]

Experimental
method [33]Our method

Critical load value p∗ 0.081574 0.08127 0.08593 0.08189 0.08790 0.07800

Formulas

[K] + λi [S]){ψi} = 0.
Here [K],[S] are the
constants, λi is the

buckling load
multiplier, {ψi} is

the buckling mode.

pcr =
2Em2√

3(1−v2)
pcr = m∆

√
SEm

pcr =
2Em2√

3(1−v2)
−

Em3v
(1−v2)

Ansys FEM
software.

Non-
destructive

Testing

Relative Error 0.03718 0.04193 0.10167 0.04988 0.12692 Reference

Because the error values from our method, when used correctly, are within the range of
the other approaches, its accuracy can be considered acceptable in the field of engineering.
Besides that, compared with other methods, there is no doubt that our method is the most
practical and easiest one to operate in engineering.
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From Table 1, we also note that the experimental values are the smallest relative to any
other method (numerical methods of various orders, analytical methods, etc.). There may
be several reasons to explain this behavior: for example, the roundness of the actual shell
(not ideal), but with geometric imperfections; also, the realistic boundary support is not a
100%-hinged support or a 100%-fixed support either. However, we use the 100%-hinged
support in the numerical model for simplification.

5. Practical Implementation of This Method

This method is friendly to inspectors working for practical projects and easy to im-
plement. Its general steps are as follows: basically, we should apply an external uniform
pressure (or equivalent uniform pressure) p by n times to the shell. Here, p = p0 + ∆pi,
i = 1, 2, 3, . . . , n. At the same time, we record the deformation wi after each loading.
Here, the parameter S can be obtained through Equation (13). Then the pcr is obtained by
Equation (14). Then by the same way, we can obtain parameter J by Equation (17), and
accordingly obtain h∗ by Equation (18), and finally obtain t∗ by Equation (26).

6. Conclusions

The highlight of this study is that it proposes a non-destructive method based on
the Southwell procedure to estimate the critical load, critical thickness, and service life of
internally corroded shells under external pressure while considering the temperature’s
effect. Of course, it is also applicable for the shell in special cases, such as industrial
environments without corrosion or temperature.

Based on rigorous theories (shell stability theory, the Southwell plot method, and
corrosion dynamic theory), and following a scientific route from simple to complex, we
derived and acquired our new method step-by-step. We first derived the critical load
and critical thickness of the spherical shell in the absence of corrosion and temperature
using the Southwell procedure method. Second, we derived non-destructive methods for
critical load, critical thickness, and service life prediction under corrosion and temperature
conditions. Third, we compared our method with other methods.

The results show that, if used properly, engineering precision requirements can be met.
Furthermore, when the results are carefully interpreted, this technique provides useful
estimates of elastic buckling loads (critical thickness and service life). The utility of this
approach lies in the fact that it is versatile, simple, and non-destructive. Furthermore, it
does not require any assumptions about the buckling wave number or the precise location
of buckling.

It has to be pointed out that since the service life of a spherical shell is usually very
long (and so is its corrosion process), NDT data for the shells that are regularly detected,
especially those collected regularly during the shell corrosion process, and fully recorded
and published data, has not been found. A very small part of it was found in some data
from experiments, which is employed in this paper in Section 4. This is why the method in
this paper cannot be successfully verified in more working conditions currently. However,
the authors will try to obtain (retrieve data from peer industries) NDT data under more
operating conditions to fully evaluate the non-destructive prediction ability of this method
for the shell service life (such as serving in corrosive and temperature environments) in the
near future.

In summary, the highlight of this method in evaluating critical loads (thickness, life-
time) for shells is that it is non-destructive. Additionally, it is the first time introducing the
Southwell plot method into the stabilization analysis of shells of time-varying thickness.
Its precision meets engineering requirements, and more importantly, it is practice- and
implementation-friendly.
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Notation List

S slope of w vs. w/p line
u displacement of the shell element in x direction
v displacement of the shell element in y direction
w displacement of the shell element in z direction
U0 effect of initial imperfections
V shearing force in straight members in y direction (buckling coefficient to be

determined experimentally)
εx unit elongation or strain in x-direction
εy unit elongation or strain in y-direction
εy unit elongation of middle surface in x-direction
ε2 unit elongation of middle surface in y-direction
µ Poisson’s ratio
χy change of curvature in x-direction
χx change of curvature in y-direction
t0 thickness of the shell
pcr buckling pressure
H( ) mathematical operator
Nx, Ny resultant forces
Qx, Qy shear forces
Mx My bending moments
po outer pressure
vi inner mechano-chemical corrosion rate
t time
h thickness
σ principal stress
σe effective stress
r distance between a point in the shell material and the origin of the coordinate

system/radius of two concentric spheres
ro distance between the point in the outer shell surface and the origin of the coordinate

system
b corrosion inhibition effect
dr radius of two concentric spheres
dθ, dϕ top angles of four wedge-shaped sections
rc midsurface radius
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x thickness to midsurface radius ratio
t* time required for a corroded pressure shell to fail for the first time due to buckling

or yielding
h corresponding thickness of the shell under the critical failure state

Appendix A. Buckling Formulas for Spherical Shells in the Case of Section 2.1
(without Corrosion and Temperature)

Appendix A.1. Derivation of the Second-Order Critical Buckling Load (Stress)
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Figure A1. Hemispherical shells and one-half analysis model.
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Using the above derived angles instead of the initial ones, dθ, sin θdψ, and cos θdψ,
the equations of equilibrium of the element ABCD become [33]:

w + 7.27385 w/p = 16.59268, (A1)

dQx

dθ
+ Qxcot θ + Nx + Ny + pR + Nx

(
d2w
Rdθ2 +

du
Rdθ

)
+ Ny

(
u
R
+

dw
Rdθ

)
cot θ = 0, (A2)

dMx

dθ
+
(

Mx −My
)

cot θ −QxR + My

(
u
R
+

dw
Rdθ

)
= 0. (A3)
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Here, u is the displacement of the shell element in x direction, v is the displacement of
the shell element in y direction, w is the displacement of the shell element in z direction, t0
is the thickness of the shell, pcr is the classical buckling pressure, Nx, Ny are the resultant
forces, Qx, Qy are the shear forces, Mx, My are the bending moments, and θ, ψ are the angles
of the shell element.

If a spherical shell is submitted to a uniform external pressure, there will be a uniform
compression whose magnitude is:

σ =
pR
2h0

. (A4)

Let u,v, and w represent the components of small displacements during buckling from
the compressed spherical form, then Nx and Ny differ little from the uniform compressive
force pR

2 and become:

Nx = − pR
2

+ N′x, (A5)

Ny = − pR
2

+ N′y , (A6)

where N′x and N′y are the resultant forces due to small displacements u, v, and w.
Due to the stretching of the surface, p becomes p(1 + ε1 + ε2). Therefore, substituting

Equations (A5) and (A6) back into the differential equations of equilibrium (A1), (A2), and
(3), and simplifying and neglecting the small terms, such as the products of N′x, N′y, and
Qx with the derivations of u, v, and w, we obtain:

dN′x
dθ

+
(

N′x − N′y
)

cot θ −Qx − 0.5pR
(

u
R
+

dw
Rdθ

)
= 0, (A7)

dQx
dθ + Qxcot θ + N′x + N′y

+ pR
(

du
Rdθ +

u
R cot θ − 2w

R

)
− 0.5pR

(
du
dθ + d2w

adθ2

)
+

−0.5pRcot θ
(

u
R + dw

Rdθ

)
= 0,

(A8)

dMx

dθ
+
(

Mx −My
)
cot θ −QxR = 0. (A9)

From Equation (A9) we get:

Qx =
dMx

Rdθ
+
(

Mx −My
)cot θ

R
. (A10)

Substituting Qx into the Equations (A7) and (A8), and considering the following equations:

σx =
E

1− µ2

(
εx + µεy

)
=

N′x
h

, (A11)

σy =
E

1− µ2

(
εy + µεx

)
=

N′y
h

, (A12)

Mx = D
(
χx + µχy

)
, (A13)

My = D
(
χy + µχx

)
, (A14)

together with:

εx =
∂u
∂x

+
1
2

(
∂w
∂x

)2
, (A15)
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εy =
∂v
∂y

+
1
2

(
∂w
∂y

)2
, (A16)

χx = −∂2w
∂x2 , (A17)

χy = −∂2w
∂y2 , (A18)

Here, εx is the unit elongation or strain in the x-direction, εy is the unit elongation
or strain in the y-direction, ε1 is the unit elongation of middle surface in the x-direction,
ε2 is the unit elongation of middle surface in the y-direction, µ is Poisson’s ratio, χy is the
change of curvature in the x-direction, and χx is the change of curvature in the y-direction.

Then they can be written as:

ε1 =
du

Rdθ
− w

R
, (A19)

ε2 =
u
R

cot θ − w
R

, (A20)

χx =
u
R

cot θ − w
R

, (A21)

χy =
d2w

R2dθ2 +
du

R2dθ
, (A22)

χy =

(
u

R2 +
d2w
R2dθ

)
cot θ, (A23)

And then we get:

N′x =
Eh0

1− v2

[
du

Rdθ
− w

R
+ v
(

u
cot θ

R
− w

R

)]
, (A24)

N′y =
Et0

(1− v2)R

[
u cot θ − w + v

(
du
dθ
− w

)]
, (A25)

Mx = − D
R2

[
du
dθ

+
d2w
dθ2 + v

(
u +

dw
dθ

)
cot θ

]
, (A26)

My = − D
R2

[(
u +

dw
dθ

)
cot θ + v

(
du
dθ

+
d2w
dθ2

)]
. (A27)

Now, introducing two dimensionless parameters, α and ϕ—which are defined as

α =
D(1−v2)

R2Eh0
= h0

12R2 and ϕ =
pR(1−v2)

2Eh0
—and using the elastic law to express the forces

and moments in terms of u and w, one obtains the differential equations of equilibrium
((A7) and (A8)):

(1 + α)
[

d2u
dθ2 + cot θ du

dθ −
(
v + cot2 θ

)
u
]
− (1 + v) dw

dθ + α
[

d3w
dθ3 + cot θ d2w

dθ2 −
(
v + cot2 θ

) dw
dθ

]
± ϕ

(
u− dw

dθ

)
= 0,

(A28)

(1 + v)
[

du
dθ + u cotθ − 2w

]
+

+α
[

d3u
dθ3 − 2cot θ d2u

dθ2 +
(
1 + v + cot2θ

)( du
dθ + d2w

dθ2

)
− cot θ

(
2− v + cot2θ

)
(u + 1)− d4w

dθ4

+− 2cot θ d3w
dθ3

]
− ϕ

[
−ucotθ − du

dθ + 4w + cot dw
dθ + d2w

dθ2

]
= 0.

(A29)
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These two equations may be simplified by neglecting, in comparison with unity, the
first term, since the shell is thin, and therefore, the h0

R ratio is very small. Moreover, due
largely to angular displacement χ, we make good use of this situation by introducing an
auxiliary variable u, such that u = − dψ

dθ .
Thus, the expressions in the brackets in Equation (A29) become identical. Then, using

the mathematical operator H, it turns to:

H( ) =
d2(. . .)

dθ2 + cot θ
d(. . .)

dθ
+ 2(. . .), (A30)

d
dθ

[H(ψ) + αH(w)− (1 + v)(ψ + w)− α(1 + v)w− ϕ(ψ + w)] = 0. (A31)

The fourth term, containing the factor, may be neglected in comparison with the third
in Equation (A31). Integrating the Equation (A31) with respect to θ and assuming that the
constant of integration is equal to zero, we obtain:

H(ψ) + αH(w)− (1 + v)(ψ + w)− ϕ(ψ + w) = 0, (A32)

αHH(ψ + w)− (1 + v)H(ψ)− (3 + v)αH(w)
+2(1 + v)(ψ + w)+

+ϕ[−H(ψ) + H(w) + 2(ψ + w)] = 0.
(A33)

Now, any regular function of cosθ in the interval −1 ≤ cosθ ≤ 1 may be expanded in
a series of Legendre functions:

P0(cosθ) = 1,
P1(cos θ) = cosθ,

P2(cosθ) = 0.25(cos2θ + 1),
Pn(cosθ) = 2 1×3×5×...×(2n−1)

2nn! ×
×
[
cosnθ + 1

1 ×
n

2n−1 cos(n− 2)θ

+ 1×3
1×2 ×

n(n−1)
(2n−1)(2n−3)cos(n− 4)θ + . . .

]
d2 pn
dθ2 + cot θ

dpn
dθ + n(n + 1)pn = 0,

(A34)

H(Pn) = −λn pn, (A35)

HH(Pn) = λ2
n pn, (A36)

in which λn = n(n + 1)− 2, and n is an integer.
Assuming the general expressions of ψ and w for any symmetrical buckling of spherical

shells, we have:

ψ =
∞

∑
n=0

AnPn (A37)

w =
∞

∑
n=0

BnPn, (A38)

Substituting them back to Equations (A35) and (A36), we can have:

∞

∑
n=0
{An[λn + (1 + v) + ϕ] + Bn[αλn + (1 + v) + ϕ]}Pn = 0, (A39)

∞

∑
n=0

{
An
[
λ2

n + (1 + v)(λn + 2) + ϕ(λn + 2)
]

+Bn
[
αλ2

n + (3 + v)αλn + 2(1 + v)− ϕ(λn − 2)
]}Pn = 0. (A40)
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The Legendre functions form a complete set of functions. Therefore, the two series
cannot vanish identically unless each coefficient vanishes.

From Equation (A29) we can get:

Bn = −An[λn + (1 + v) + ϕ]

αλn + (1 + v) + ϕ
, (A41)

and eliminating Bn from the above set of equations, Equation (A41) can then be written as:

An
[
αλ2

n + (1 + v)(λn + 2)+
]

− An [λn+(1+v)+ϕ]

[αλn+(1+v)+ϕ][αλ2
n+(3+v)αλn+2(1+v)−ϕ(λn−2)]

,
(A42)

An

(
1− v2

)
λn + αλn

[
λ2

n + 2λn + (1 + v)2
]
− ϕλn[λn + (1 + 3v)] = 0. (A43)

Buckling of the shells becomes possible if these equations, for some value of n, yield
for An and Bn a solution different than zero, which means a trivial solution; in other words,
having a zero determinant of the system of equations. Thus:(

1− v2
)

λn + αλn

[
λ2

n + 2λn + (1 + v)2
]
− ϕλn[λn + (1 + 3v)] = 0, (A44)

a solution of which is λn = 0, which corresponds to a value of n equals to unity. Substituting
this value of λn into Equation (A40), one obtains:

A1 = −B1. (A45)

Now, for λn 6= 0, other than zero:

ϕ =

(
1− v2)+ α

[
λ2

n + 2λn + (1 + v)2
]

λn + (1 + 3v)
, (A46)

which yields for its minimum, or for dϕ
dλn

after simplification:

λ2
n + 2(1 + 3v)λn −

1 + v2

α
= 0, (A47)

λn = −(1− 3v)λn +

√
1− v2

α
, (A48)

ϕmin = 2
√
(1− v2)α− 6vα, (A49)

ϕ =
pR
(
1− v2)

2Eh0
, (A50)

and ϕmin yields the first pcr critical load [33]:

pcr =
2Eh2

0 ϕmin

R(1− v2)
=

2Eh0

R(1− v2)

[√
1− v2

3
× h0

R
− vh0

2R2

]
, (A51)

σcr =
pcrR
2h

=
E

1− v2

[√
1− v2

3
× h0

R
− vh0

2R2

]
. (A52)

Equation (A51) was derived with the assumption that the shell wall thickness is
specified, whereas the critical value of external pressure Q is the unknown quantity.
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On the contrary, if we assume that the external pressure Q value is specified, then the
shell wall thickness h*, corresponding to the stability loss, will be equal to:

h∗ =
4
√

3(1− v2)
√

pR
√

2E
. (A53)

Appendix A.2. Derive the Relationship between w and ϕ of the Spherical Shell

In 1934, Southwell began using his approach on columns. In this part of the section,
an attempt is made to demonstrate that uniformly compressed spherical shells can also be
analyzed by the Southwell procedure. In the derivation of the formula, as it was done for the
classical theory of buckling shells (see previous part), it is assumed that the displacements
u and w may be expressed as [33]:

ψ =
du
dθ

=
∞

∑
n=0

AnPn, (A54)

w =
∞

∑
n=0

BnPn, (A55)

where Pn is the Legendre functions of the orders n, while An and Bn are the real constants
from before:

ψ0 =
∞

∑
n=0

A′nPn, (A56)

w0 =
∞

∑
n=0

B′nPn. (A57)

Additionally, it is assumed that the manufacturing imperfections of ψ0 is equal to
zero. Thus, it is tried only with the direction w.

When the compressive load p is applied to the shell, each point of the middle surface
undergoes elastic displacements u and w, and its normal distance from the reference sphere
then becomes w + w0. It is assumed that w0 is from the order of the elastic deformation,
and then the element of the shell looks like the deformed elements, which are used to
establish the differential equations of the buckling problem. Again, going through the
same procedure, one finds that the terms of those equations belong to two groups (see the
proceeding section). In those terms, which contain the factor ϕ, the quantities u and w
describe the difference in shape between the deformed element and an element of a true
sphere. In these terms, w must now be replaced by w + w0. On the other hand, all terms
that do not have the factor ϕ, can be traced back to terms of the elastic law, and represent
the stress resultants acting on the shell element. Before the application of the load, the shell
is free of stress, and the stress resultants depend only on the elastic displacements u and w.
Consequently, in all these terms, w does not need to be replaced by w + w0, but stays w.

Thus, one arrives at the following set of differential equations:

H(ψ + w) + αH(w)− (1− v)(ψ + w)− ϕ(ψ + w + w0) = 0, (A58)

αHH(ψ + w)− (1 + v)H(ψ)− (3 + v)αH(w)
+2(1 + v)(ψ + w)+

ϕ[−H(ψ) + H(w + w0) + H(w + w0) + 2(ψ + w + w0)] = 0,
(A59)

in which HH denotes the same operator as before:

H( ) =
d2(. . .)

dθ2 + cotg
d(. . .)

dθ
+ 2(. . .), (A60)
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An(λn + 1 + v + ϕ) + Bn(αλn + 1 + v + ϕ) = −B′n ϕ, (A61)

An
(
αλ2

n + λn + 2 +vλn + 2v + ϕλn + 2ϕ)
+Bn

(
αλ2

n + 3αλn + vαλn + 2 + 2v
−ϕλn + 2ϕ)
= B′n ϕ(λn − 2).

(A62)

Thus, the problem is reduced to solving this set of equations. Eliminating An from
the above set of equations:[

α(α− 1)λ3
n + ( ϕα− 2α + ϕ)λ2

n
+
(
vα + v2 + 2ϕv + ϕ + 2ϕ2 − 1− α− 3vα− v2α + vϕ

−αϕ− vαϕ)λn]Bn = −B′n ϕ
[
(α + 1)λ2

n + (2v + 2ϕ)λn
]
,

(A63)

Bn = − B′n ϕλn[(α + 1)λn + 2(v + ϕ)]

[−αλ2
n(1− α) + (ϕ− 2α + ϕα)λn + v(3ϕ− 2α) + ϕ + v2 − α− 1]λn

, (A64)

After canceling λn, and neglecting the small quantities as α, ϕ, and their products in
comparison with unity, we obtain:

Bn = − B′n ϕ[λn + 2(v + ϕ)]

−αλ2
n + (ϕ− 2α + ϕα)λn + v2 − 1

. (A65)

Coming back to the definition of the displacement w, one may write the equation
w = ∑∞

n=0 BnPn—or writing it in detail:

w = B0P0 + B1P1 + B2P2 + · · · · · ·
w =

[
B0 + 0.25B2 +

9
64 B4 + · · ·

]
+
[
B1 +

3
8 B3 + · · ·

]
cos θ + [B2 + · · ·] cos 2θ+

(A66)

here λn = n(n + 1)− 2, which is the minimum for n = 1
2 ; therefore, it has the same values

for n equals to minus one and zero. Since n must be an integer, it is chosen as zero, which
yields λ = −2, and corresponds to B0, which is a function of λn, and gets smaller when
λn becomes greater. Thus, it is possible to neglect all the terms and simply write w ∼= B0
since the terms which contain cos θ, cos 2θ . . . are much smaller—so, buckling is usually
expected at the places where θ is large [33]:

w ∼=
B′0 ϕ[−2 + 2(v + ϕ)]

4α + (ϕ− 2α + ϕα)2 + 1− v2 , (A67)

w ∼=
2B′0 ϕ(v + ϕ− 1)

2ϕ(1 + ϕ) + 1− v2 , (A68)

w ∼=
B′0(v− 1)

1 + 1−v2

2ϕ

. (A69)

Appendix B. Deriving the Corrosion Rate of the Spherical Shell as a Function of
Temperature and Stress, Based on the Arrhenius Type

It is assumed that the shell is subjected to the simultaneous action of a constant
external pressure Q and uniform internal corrosion. The rate of the thickness decrease at
each moment of time t is equal to the corrosion rate [5]:

dh
dt

= − f (σ, T)
dh
dt

= − f (σ, T), (A70)
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where f (σ, T) is a sufficiently smooth function of compressive stress σ, defined by Equation
(A2), and the temperature T. The corrosion rate dependence on the stress value, according
to experimental data, can be approximated by exponential function suggested in [1], while
the temperature effect is usually described by the Arrhenius-type law [11]. Combination of
both functions yields the following relation Equation (A73).

Temperature has a great effect on the rate of metal electrochemical corrosion. In the
case of corrosion in a neutral solution (oxygen depolarization), the increase of the corrosion
rate increases exponentially with temperature increase because the hydrogen evolution
overpotential decreases. Experimental dependence of the Arrhenius type is observed
between the corrosion rate and temperature. Using the current density jcorr, we express the
corrosion rate [1]:

jcorr = λ exp(Ea/RgT). (A71)

where Ea is the effective activation energy of the corrosion process in kJ mol−1, Rg is
the molar gas constant in J mol−1 K−1, T is the absolute temperature in K, λ is the pre-
exponential factor, and jcorr is the corrosion current density, A cm−2. Equation (A71)
provides the determination of the effective activation energy of the corrosion process.

When σ = 0, Ea = Eco, we have T = T0, and jcorr = λ exp(Ec0/RgT).
Moreover, when σ 6= 0, T = T, and Ea = Ec, we get:

jcorr = λ exp(Ec/RgT). (A72)

Considering f (σ, t) = v0 exp
(

Vσ
RgT

)
[1], and then using linear scale method, we get:

v = v0

exp
(

EC
RgT

)
exp

(
E0

RgT0

) exp
(

Vσ

RgT

)
= v0 exp(Ec0

(
1− Ec

T

)
) exp

(
Vσ

RgT

)
. (A73)

From the above equation, we know:

dh
dt

= f (σ) , σ ≡ pR
2h

, (A74)

therefore, we can easily get:

dh
dt

=
d
(

pR
2σ

)
dσ

dσ

dt
= − 1

2σ2 pR
dσ

dt
, (A75)

and thus:
dσ

dt
=

2σ2

pR
dh
dt

. (A76)

Finally, we have [5]:

dh
dt

= v0 exp
(

Ec0

(
1− Ec

T

))
exp

(
Vσ

RgT

)
. (A77)

in which Rg is the molar gas constant, V is the material molar volume, Eco = Eco
RgT0

, and

Ec =
Ec
Eco

.
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