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Abstract 

The influence of the ligament size on the brittle failure behaviour of largely cracked elements is 

analysed. To this aim, the following tensile infinite geometries are analysed: (i) a double edge cracked 

plate; (ii) a cylindrical bar with an external circular crack. The configurations can be considered as 

complementary to the Griffith crack and the Penny shaped crack, respectively. The failure size effect 

is investigated through a semi-analytical approach by two different methods: the coupled Finite 

Fracture Mechanics (FFM) criterion and the Cohesive Crack Model (CCM) implementing a 

Dugdale’s type cohesive law. Theoretical predictions are compared with each other and with 

experimental data obtained by tensile testing PMMA samples containing two collinear cracks. 

Strength estimations result accurate. 

Keywords: Finite Fracture Mechanics, Cohesive Crack Model, double edge cracked plate, cracked 

cylindrical bar, ligament size effect, brittle failure. 

Nomenclature 

2a Ligament depth or diameter lch Irwin’s length  

ap Process zone length P Uniaxial remote force 

apc Critical process zone length (r, , y) Cylindrical coordinates system 

E Young’s modulus t Specimen thickness 

G Strain energy w Crack Tip Opening Displacement 

(CTOD) 

Gc Critical strain energy wc Critical CTOD 

h Specimen width w CTOD due to external loading 

IK  Stress Intensity Factor (SIF) wc
 CTOD due to cohesive stress 

IcK  Fracture toughness α Dimensionless ligament size 



IK   SIF due to the external loading  c Dimensionless critical crack 

advancement or process zone length 

cIK 
 SIF due to the cohesive stress c Material tensile strength 

INK  SIF due to distributed force N f Failure net stress 

L Specimen length net
 Net stress 

l Finite crack advancement y Stress field 

lc Critical finite crack advancement v Poisson’s ratio 

    

1. Introduction 

The strength of common structures can be seriously affected by the presence of cracks. Acting as 

stress raisers, they give rise to local stress concentrations, thus reducing the load-bearing capacity of 

the structural element. The influence of cracks on structural integrity has been deeply investigated 

since the well-known works by Griffith (1921) [1], Orowan (1944) [2], Irwin (1957) [3] and others. 

Their contributions developed the fundamentals that underlie the modern theory of Linear Elastic 

Fracture Mechanics (LEFM). Accordingly, the crack propagation can be described by a single 

parameter, the Stress Intensity Factor (SIF), which depends on the geometry and loading conditions. 

Fracture takes place when the SIF equals its critical value, also known as fracture toughness of the 

material.  

LEFM approaches have been widely proposed to describe the failure behaviour of structures 

containing different crack shapes and subjected to different loading conditions, from the static to the 

fatigue regime, see for instance [4]. For LEFM to work, the crack has to be sufficiently large. What 

does it mean “sufficiently large” is sometimes difficult to realize a priori, and numerical simulations 

should be carried out to check the soundness of the approach. Indeed, LEFM fails to deal with very 

short cracks (commonly detected in real elements), according to which the strength approaches that 

of the material: the SIF tends to vanish and the approach provides an infinite failure load. This 

drawback can be overcome by introducing a critical distance at which either the SIF or the stress field 

are evaluated [5].  

On the other hand, there are not so many studies addressing the case of very long cracks (according 

to which the structure is close to fail). Aim of this paper is thus to investigate the effect of the ligament 

size on the failure behaviour of largely cracked elements, both theoretically and experimentally. Two 

structural configurations are taken into account: (i) an infinite tensile plate with two collinear sharp 

cracks; (ii) a cracked infinite cylindrical bar under uniaxial tension. The geometries are somehow 

linked with each other, the latter being obtained by the revolution of the former around the loading 



axis. Moreover, the configurations can be considered as complementary to the Griffith crack and the 

Penny shaped crack [6], respectively. 

As regards the theoretical framework, the coupled Finite Fracture Mechanics approach and the 

Cohesive Crack Model (CCM) method are taken into account. 

FFM is a fracture criterion [7],[8]  resting on the assumption of finite crack advance and based on the 

fulfilment of two coupled conditions: a stress constraint, considering the stress field in front of the 

crack tip, and an energy requirement, involving the strain energy release rate. The approach is able to 

catch the transition from a strength- to a toughness-governed regime as the crack length varies [8]. 

This peculiarity is observed also by implementing the CCM (e.g. [9]), herein developed considering 

Dugdale’s constitutive law. More in detail, the cohesive stress, acting in the process zone ahead of 

the crack tip, is constant and equal to the ultimate tensile strength of the material. As highlighted in 

[10],[11],  CCM  can be expressed by a system of two equations, a stress conditions and an energy 

balance. Thus, the process zone which characterizes CCM can be seen as the counterpart of the finite 

crack increment charactering FFM. Fair to excellent agreement were found between FFM and CCM 

failure predictions for different cracked structures [6],[12],[13],[14],[15],[16]. 

Finally, as concerns the experimental part, uniaxial tensile tests are carried out on PMMA cracked 

samples by varying the structural dimension in order to cover the widest possible range of sizes. FFM 

and CCM results are compared with experimental ones.  

 

2. Geometries under investigation 

In this study, two different structural cracked configurations are analysed.  

The first one consists of two collinear sharp cracks in an infinite slab (i.e, a double edge cracked plate) 

under uniaxial (nominal) net tension net = P/2a. Here 2a is the ligament depth and P is the uniaxial 

remote force along y, (r,y) being the Cartesian frame of reference (Fig. 1a). Considering an isotropic 

and homogenous material, thanks to the symmetry of the geometry, two symmetric cracks are 

expected to simultaneously initiate from the crack tips along the r-axis. 

The stress field and SIF functions related to this geometry are [17]: 
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Fig. 1 (a) Double edge cracked plate and (b) cracked cylindrical bar. 

The second one is represented by a cracked cylindrical bar subjected to uniaxial net tension net = 

P/a2, where 2a is the ligament diameter (Fig. 1b). This configuration is obtained through the 

revolution of a slice of the previous one around the y axis. A cylindrical coordinate system (r, , y) is 

considered, whose origin coincides with the centre of the ligament surface, in the y = 0 plane. Thanks 

again to symmetry, a circular crack is expected to initiate under Mode I opening conditions in the r - 

  plane. 

For this geometry the stress field can be expressed in the following form [19]: 
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whereas the SIF can be expressed as[18]: 

2
I

P
K

a a



                                                                                   (4) 

Note that relationships (1-4) reveal exact functions [18]. 
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3. Finite Fracture Mechanics 

Following the coupled FFM approach, a crack propagates by a finite crack advancement l when a 

stress requirement and the energy balance are simultaneously satisfied. According to the formulation 

proposed by Leguillon (2002) [7], the stress condition requires that the normal stress y must exceed 

the material tensile strength c over a finite distance l. The energy balance ensures that the strain 

energy G available for a crack increment l is larger than the energy necessary to create the new 

fracture surface Gcl. The condition can be recast considering Irwin’s relationship for the SIF KI  = 

GE’ and fracture toughness KIc = (GcE’), E’ being the Young’s modulus of the material under plain 

strain conditions. Particularizing FFM formulation to the (positive) geometry containing collinear 

cracks (Fig. 1a), we have:  
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The approach can be also developed considering an average stress condition [8],[20] instead of a 

punctual one, leading to the present avg-FFM formulation: 
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On the other hand, taking into account the cracked cylindrical bar (Fig. 1b), line integrals must be 

replaced by surface ones, as the geometry is now three-dimensional. Thus, for this configuration, 

FFM can be expressed as:  
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whereas the following avg-FFM formulation is achieved: 
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At failure conditions (P=Pf), the unknowns of FFM systems (5) and (7) (or (6) and (8) for the average 

formulation) are represented by the failure stress f  (i.e., the critical value of the net stress net) and 

the critical crack advancement lc, which results to be a structural parameter, since it depends on both 

geometry and material properties. 



 

 

 

3.1 FFM implementation 

Introducing Eqs. (1) and (2) into Eq. (5), FFM can be now implemented for the cracked plate 

configuration in critical conditions (P=Pf): 
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where c = lc/a is the dimensionless critical crack advancement, lch = (KIc/c)
2 is the well known 

Irwin’s length, and α=a/lch is the dimensionless ligament size. Analogously, considering Eqs. (1), (2) 

and (6), the avg-FFM can be put in the following form: 
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On the other hand, the FFM approach can be implemented for the cracked cylindrical bar introducing 

the stress field (3) and the SIF (4) into either Eq. (7) according to its original formulation  
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or Eq. (8) for its average version: 
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Depending on the geometry at hand, FFM estimations are obtained by equalling the right-hand sides 

of Eq. (9) (cracked plate) or of Eq.(11) (cracked cylindrical bar) to get c through the solution of an 

implicit equation. This value must be then introduced into one of the two equations in (9) or in (11) 

in order to obtain the dimensionless failure stress f/c. The avg-FFM systems expressed by Eq. (10) 

or by Eq. (12) can be solved analogously. 

4. Cohesive Crack Model 

For the two configurations analysed in this study is possible to achieve semi-analytical solutions even 

by means of CCM, using a Dugdale-type cohesive law Fig. 2.  

 

Fig.2 Dugdale’s cohesive law. 

 

According to this model, a process zone of length ap appears in front of the crack tip where the 

cohesive stress is constant and equal to c (Fig. 3). The length of the process zone ap increases as the 

external load increases, till reaching the critical value apc when net equals the failure stress f. To 

determine the two unknowns, apc and f, CCM requires the fulfilment of two conditions. The former 

one is a stress requirement, imposing a vanishing SIF KI at the fictitious crack tip, r = a – ap, such to 

eliminate the stress singularity. Considering the superposition principle, KI can be expressed as a 

combination of the SIFs due to the external loading KI and to the cohesive stress KIc
: 

0
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Fig. 3 Cohesive stress c acting on the process zone ap for the (a) cracked plate and (b) cracked cylindrical bar. 

 

The latter is an energy requirement: crack growth will occur when the crack tip opening displacement 

(CTOD) reaches the critical value wc = Gc/c. Once again, superposition yields:  

 

c cww ww                              (14) 

 

where w and wc
 are the CTODs related to the external loading and the cohesive stress, respectively.  

 

4.1 CCM implementation 

In order to implement Eq. (13), the SIFs expressions for KI  are given by Eqs. (2) and (4), whereas 

those for KIc are provided by the SIF handbook [18]: 
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where Eqs. (15) and (16) refer to the cracked plate and bar, respectively. 

On the other hand, in order to manage Eq. (14), the expressions for the CTODs w and wc
 in the 

cracked plate are provided by [18]: 
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whereas those related to the cracked cylindrical bar can be obtained exploiting Paris’ equation as: 
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Here KIN is the SIF related to distributed force N, per unit length, acting at the crack onset point [18] 

(i.e, a ring): 
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. 

The relationships providing the SIF and CTOD functions through Eqs. (15-20) are exact [18]. 

Introducing Eqs. (2) and (15) into Eq. (13), the former CCM requirement can be formalized. The 

latter is achieved considering Eq. (14) and computing the CTODs through Eqs. (17a,b), and exploiting 

Eqs. (2-4). In formulae: 
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where c = apc/a is now the dimensionless critical process zone length. 

Analogously, considering KI and KIc
 provided by Eq. (4) and (16), respectively, the CCM for the 

cracked bar can be put in the following form: 



     

     

21

21

0

2
cos 1 1 1 1

1 2
cos 1 1 1 1

2

c

f

c c c

c

f

c

t t t dt




  

 



  





          

        
   



                                                 (22) 

where the second equation is obtained computing the CTODs provided by Eqs. (18) and (19). 

CCM strength estimations through Eqs. (21) and (22) are obtained by a procedure resembling that for 

the FFM systems (Section 3).  The value of c obtained by equalling the right-hand sides of Eq. (21) 

or (22) must be introduced into one of the two corresponding equations to obtain the dimensionless 

failure stress f/c. 

 

 

5. FFM and CCM results 

In Sections 4 and 5 we have developed the theoretical framework for the two geometries at hand: 

- Cracked plate: FFM, Eq. (9); avg FFM, Eq. (11); CCM, Eq. (21). 

- Cracked cylindrical bar: FFM, Eq. (10); avg FFM, Eq. (12); CCM, Eq. (22).  

Strength predictions for the first and the second configuration are represented in Figs. 5a and 5b, 

respectively. Theoretical results show a similar trend for the two geometries. Avg-FFM and CCM 

both provide a dimensionless failure load f/c  1 for vanishing ligaments. Instead, FFM converges 

to /2 (cracked plate) and 2 (cracked cylindrical bar) as α = a/lch  0. This represents a drawback of 

FFM with respect to the two other methods, although not so relevant for the size range of practical 

interest.  

 



 

Fig. 5 Strength estimations provided by FFM (dashed line), avg-FFM (dotted-dashed line) and CCM 

(continuous line) for (a) the cracked plate and (b) the cracked bar.  

 

Fig. 6 Critical crack advancement lc/lch provided by FFM (dashed line) and avg-FFM (dotted-dashed line), 

critical process zone length apc/lch given by CCM (continuous line) for (a) the cracked plate and (b) the cracked 

cylindrical bar.  

In Figs. 6a and 6b the normalized critical crack advancement lc/lch and critical process zone length 

apc/lch are reported as function of the normalized half ligament α = a/lch. Considering FFM, lc/lch 

increases as the ligament increases for both configurations, providing lc/lch  1 / (2) for α  . A 

similar trend is detected taking into account avg-FFM, but for the limit lc/lch  2/ for α  . 

Analogously, also CCM provides a limit value for large ligaments: as α increases, apc/lch  /8 (the 

classical Dugdale’s process zone estimate at incipient failure). However, unlike FFM approaches, 

apc/lch increases as a/lch decreases down to 0.57 for the cracked plate and to 0.69 for the cracked bar. 

Below these thresholds, apc solutions by Eqs (21) and (22) become larger than the semi-ligament 

depth (or radius) a and thus are not acceptable. The actual solution is simply apc = a, i.e. the process 

(a) (b) 

(b) (a) 



zone covers the whole ligament and f = c. 

 

5.1 Experimental investigation 

In order to validate the theoretical framework, uniaxial tensile tests were carried out on double edge 

cracked PMMA samples (Fig. 7). They were machined from a PMMA sheet by laser cutting. The 

crack tips were then sharpened by a fresh razor blade, and hence, the effect of the root radius can be 

considered negligible. In order to catch failure size effects, three different geometries were considered 

(Table 1, Fig. 8a) and four specimens were tested for each configuration for a total of 12 tested 

samples. They were characterised by a ratio a/h = 0.1 and by a length L at least three times greater 

than the width h, in order to approach an infinite geometry assumption. Finite element analyses were 

carried out through ANSYS  code in order to verify what mentioned above (see also Gupta and 

Erdogan [21]). Finally, the thickness t = 5 mm was set large enough to ensure of the plane strain 

conditions, satisfying the requirement t  2.5 lch [5], lch being generally comprised between 0.2 mm 

and 1 mm for PMMA [5],[22]. 

Experiments were carried out with a constant displacement rate of 0.5 mm/min. The failure loads Pf 

at which the crack started to propagate are reported in Table 1. 

 

Fig. 7 Geometry of the tensile cracked specimens. 
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Table 1 Tensile tests on PMMA cracked specimens: Characteristic dimensions and recorded failure loads. 

 

h [mm] a [mm] L [mm] Pf [N] 

10 1 90 632.4 

 604.8 

661.5 

621.7 

20 2 90 841.3 

 837.8 

 893.7 

- 

40 4 150 1245 

   1235 

   1188 

   1161 

 

 

 

Fig. 8 (a) Three different geometries analysed in the study and (b) force – extension curve obtained for the 

geometry referring to a = 1 mm. 

The failure was of brittle character and plastic deformation was negligible around the crack tip during 

the tests, as evident from the force – extension curve shown in Fig. 8b. 

(a) (b) 



The mechanical properties for PMMA are reported in Table 2 (note that lch = 1.02 mm). The ultimate 

strength c was evaluated experimentally following ASTM D638-14 standard code [23] and testing 

three dog - bone specimens while employing the Digital Image Correlation (DIC) approach to 

measure strains (Figs 9a, b).  

 

  

Fig. 9 PMMA: (a) Example of dog – bone specimen and (b) stress – strain curve recorder to determine c. 

 

Analogously to the tensile strength c, also Young’s modulus E and Poisson’s Ratio v were evaluated 

experimentally following the procedure described in ASTM D638-14 standard code. Instead, the 

fracture toughness KIc was determined based on the results obtained for the largest tested 

configuration, a = 4 mm, where the crack length is sufficiently large to fall within the LEFM range 

of validity. Thus, the fracture toughness was computed as KI= KIc, where KI is provided by Eq. (2): 

the value falls in the common range evaluated for PMMA [24],[25] (Table 2).   

 

Table 2 PMMA mechanical properties. 

c [MPa] KIc [MPam] E [GPa] v 

67.32  0.65 2.15  0.07 2.90  0.11 0.38  0.017 

 

In Fig. 10 the theoretical estimations are plotted against experimental results, showing a fairly good 

agreement. Indeed, taking into account FFM predictions, the maximum deviation from the average 

value of the experimental failure stress is equal to 8% for the first configuration (a = 1 mm), 2.5% for 

(b) (a) 



the second (a = 2 mm) and 1% for the third one (a = 4 mm). CCM predictions are nearly the same. 

Instead, considering avg-FFM, the discrepancy is a little higher: 19%, 8% and 4%, respectively.  Note 

that all the three analysed criteria (FFM, avg-FFM and CCM) provide conservative failure 

estimations. 

 

 Fig. 10 Tensile tests on PMMA specimens: comparison between experimental results and strength estimations 

provided by FFM (dashed line), avg-FFM (dotted-dashed line) and CCM (continuous line). 

The theoretical deviations from experimental results might depend on the value of c considered in 

the calculations. Indeed, the failure mechanism of PMMA plain specimens is always influenced by 

the presence of micro‐cracks/defects and crazing phenomena [5],[26]. Thus, the effective tensile 

strength can be higher than that evaluated experimentally, up to twice [5],[27]. Considering an 

ultimate strength equal to 80 MPa, for instance, yields a maximum deviation equal to 7% for FFM 

and to 15% for avg-FFM. Finally, it should be underlined that LEFM results match quite well the 

above data. Unfortunately, it was not possible to machine and test smaller samples, in order to fully 

investigate the range where LEFM predictions reveal meaningless (a < 1 mm). Testing materials 

which are less brittle than PMMA would probably allow to overcome this drawback. 

6. Conclusions 

 

1. The failure behaviour of largely cracked structures was investigated by two different approaches: 

FFM and CCM. Two geometries were analysed: a double edge cracked plate and a circularly 

cracked cylindrical bar. 

2. Both FFM and CCM are based on the fulfilment of a stress requirement and an energy condition, 

resulting in a crack extension/process zone depending on the ligament size.  



3. The analysis was developed semi-analytically for both criteria through the exact functions for the 

stress field, the SIFs and the CTODs available in the Literature. 

4. Whereas avg-FFM and CCM predictions showed a reasonable failure trend, FFM failed to predict 

the failure stress at small size providing a value higher than the tensile strength. 

5. Experimental tests were carried out on double edge cracked tension samples made of PMMA. 

Despite what underline before, FFM reveals the most accurate criterion for failure stress 

predictions.   
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