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GROMOV-WITTEN INVARIANTS OF Symd Pr

ROB SILVERSMITH

Abstract. We give a graph-sum algorithm that expresses any genus-g Gromov-Witten invariant
of the symmetric product orbifold Symd Pr := [(Pr)d/Sd] in terms of “Hurwitz-Hodge integrals”
– integrals over (compactified) Hurwitz spaces. We apply the algorithm to prove a mirror-type
theorem for Symd Pr in genus zero. The theorem states that a generating function of Gromov-Witten
invariants of Symd Pr is equal to an explicit power series ISymd Pr , conditional upon a conjectural
combinatorial identity. This is a first step in the direction of proving Ruan’s Crepant Resolution
Conjecture for the resolution Hilb(d)(P2) of the coarse moduli space of Symd P2.

1. Introduction

Over the last 20 years, following predictions from string theory [CdlOGP91], mathematicians
have proven a series of results known as mirror theorems; an incomplete list is [Giv98b, LLY99,
Giv98a, BCFKvS00, Zin09, Li11, JK02, CCIT15, CCFK15, FLZ20b, FLZ20a, CCIT14]. These
theorems reveal elegant patterns and structures embedded in the collection of (usually genus-
zero) Gromov-Witten invariants of a fixed target manifold or orbifold X. They also allow for
easy computation of these invariants in certain cases where direct computation involves difficult
combinatorial computations. However, the scope of these results, and much of Gromov-Witten
theory in general, is limited to the world of toric geometry; in all cases above, X is a complete
intersection in a toric variety or stack (or a deformation thereof). The essential reason for this is
that computing a Gromov-Witten invariant of a toric variety can be reduced, via the Atiyah-Bott
localization theorem, to evaluating a certain sum over labeled graphs.

In this paper, we study the Gromov-Witten invariants of Symd Pr, which has a torus action,
but without a dense orbit. Some aspects of the theory remain similar to the toric case, many new
obstacles must be dealt with, and some interesting new behaviors appear. In the first half of the
paper we use localization to give an algorithm expressing any Gromov-Witten invariant of Symd Pr
explicitly in terms of Hurwitz-Hodge integrals (Theorem 4.5). Hurwitz-Hodge integrals are numerical
invariants of a representation of a finite group G; they are defined as integrals over compactified
Hurwitz spaces. Computing them in general is a main stumbling block in orbifold Gromov-Witten
theory.

In order to apply localization to the case of Symd Pr, we must carefully describe the torus-invariant
curves on Symd Pr and their deformation theory. We do this in Sections 3 and 4. (These sections
contain the main geometric content of the paper.)

In the second half of the paper, we apply the above algorithm in a recursive form (Theorem 5.5)
to prove a genus-zero mirror-type theorem for Symd Pr (Theorem 6.3), which was not possible using
existing techniques. The theorem, which is conditional upon two explicit combinatorial identities
we were unable to prove, gives a formula for a generating function of Gromov-Witten invariants of
Symd Pr. The proof of Theorem 6.3 is notably combinatorial, and the specific combinatorics are of
independent interest, see Remark 1.2. Theorem 6.3 is also the only known mirror theorem for a
nonabelian orbifold, besides single points [•/G].
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Corollary 6.6 Assuming Identities 7.1 and 7.2, for any d, r ≥ 1 there is an equality

ISymd Pr = JSymd Pr mod(x)2,

where JSymd Pr is a generating function of genus-zero Gromov-Witten invariants of Symd Pr (see

Section 2.4), and ISymd Pr is the explicit power series (29).

Remark 1.1. In Theorem 6.3 and Corollary 6.6, ISymd Pr is only defined up to first order in x —

it would be very desirable to generalize this mirror theorem so that it involves a power series I ′

with arbitrary powers of x. The primary obstacle is that one must first produce such a power
series — and then check that it satisfies the conditions of Theorem 5.5. The power series (29) was
produced after much computer experimentation, and we were unable to generalize it to arbitrary
order in x. Furthermore, the combinatorics required to prove that ISymd Pr satisfies the conditions of
Theorem 5.5 are extremely complicated, and we were only able to establish them conditional upon
the conjectural combinatorial identities in Section 7. While there are some systematic methods for
producing such “I-functions” (e.g. [CFK16]), applying these methods to Symd Pr (or any nonabelian
orbifold) results in the zeroth order truncation of ISymd Pr in x, losing all combinatorial structure.

We have three motivations for working with Symd Pr.
• Symd Pr is very concrete, and is therefore a good starting point for studying both non-toric

and non-abelian behavior. While the natural (C∗)r+1-action has infinitely many orbits, it
also has finitely many fixed points; in this sense Symd Pr is not too much more complicated
than a toric variety. On the other hand, it is complicated enough that studying its Gromov-
Witten invariants requires various new methods, which we expect to be useful for studying
the Gromov-Witten theory of other non-toric and non-abelian
• The crepant resolution conjecture. Following physical predictions, Ruan [Rua06], Bryan-

Graber [BG09], and Coates-Iritani-Tseng [CIT09] made a conjecture relating the Gromov-
Witten invariants of an orbifold X to those of a crepant resolution of its coarse moduli
space. This conjecture has been proven in the context of toric geometry [CIJ14]. However,

the crepant resolution Hilb(d)(P2) of the coarse moduli space of Symd Pr was one of Ruan’s
motivating examples; this case has now been open for over a decade. Theorem 6.3 is a first
step towards this case.
• Higher genus invariants of projective space. Costello’s thesis expressed the genus g Gromov-

Witten invariants of a smooth projective variety X in terms of the genus-zero Gromov-Witten
invariants of Symg+1X. Theorem 6.3 provides an efficient way of encoding the latter for
X = Pr. It may be possible to combine Costello’s result with ours to find explicit formulas
for genus-g Gromov-Witten invariants of Pr.

We briefly describe the difficulties caused by the fact that Symd Pr is not toric. To do so, we first
broadly outline the proof of Coates-Corti-Iritani-Tseng of the mirror theorem for a toric stack X
[CCIT15]. The two main ingredients are

(1) An algorithm for expressing Gromov-Witten invariants of X in terms of Hurwitz-Hodge
integrals; this is supplied by localization calculations of Johnson [Joh14] and Liu [Liu13]. The
localization technique roughly involves integrating over the moduli space of torus-invariant
curves C ⊆ X, which is easy: this moduli space is a finite collection of points, in bijection
with codimension-1 cones in the fan of X. The hardest part of the calculation is to find an
explicit expression for the integrand, which is defined in terms of the deformation theory of
the curves C.

(2) A technique of Brown [Bro14], which reinterprets the above algorithm as follows. To each
torus-fixed point σ ∈ X is associated a power series fσ in a variable z; these power series
together encode all genus-zero Gromov-Witten invariants of X. Each power series fσ has a
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collection of simple poles, and using the algorithm, one shows that the power series satisfy
a recursion in the following sense: the residue of fσ at a pole w is expressed as a linear
combination of values fσ′(w) for other fixed points σ′ 6= σ (such that fσ′ has no pole at w).
The recursion uniquely defines fσ for all σ, up to some change of variables.

The outline of the proof of Theorem 6.3 is similar, but with the following differences:

(1′) As mentioned, Theorem 4.5 expresses any Gromov-Witten invariant of Symd Pr in terms
of Hurwitz-Hodge integrals. However, both parts of the calculation are substantially more
difficult than in the toric case. The moduli space of torus-invariant curves is not finite —
rather, it is positive dimensional, disconnected, and quite complicated. Luckily, we are able
to give a complete characterization of the moduli space (Theorem 3.16). Our characterization
is concrete enough to allow us to compute the requisite integrals. The deformation theory of
torus-fixed curves is difficult for essentially the same reason, but again the computation can
be carried out fully (Section 4).

(2′) Theorem 5.5 is analogous to Brown’s description above — we again have a power series
fσ attached to each torus-fixed point σ ∈ Symd Pr. However, these power series no longer
have simple poles, but may have poles of arbitrarily high order. The algorithm again gives
a recursion relation, this time expressing any negative-power Laurent coefficient of fσ in
terms of nonnegative-power Laurent coefficients of fσ′ for other fixed points σ′. We wish to
highlight this feature, both because it is new, and because it is expected to appear in the
Gromov-Witten theory of any nontoric variety with a nontrivial torus action. (The fact that
there are only simple poles in the toric case should be viewed as exceptional.) We hope that
this first example might provide clues for proving other nontoric mirror theorems.

Remark 1.2. We also wish to draw attention to the fact that the combinatorial structure encoded in
Theorems 5.5 and (especially) 6.3 is much more intricate than in the toric case — so much so that
we were not able to give an unconditional version of Theorem 6.3 despite the apparent fact that
combinatorial complexity is the only hurdle — for example, the Chu-Vandermonde identity played a
crucial role in the proof of Theorem 6.3. We hope that the combinatorics in this paper, though not
quite complete, will be a useful case study in proving mirror theorems where high-order poles appear.
The generating functions in this paper exhibit rich combinatorial structure, and are surely important
for further understanding mirror symmetry for symmetric products, so we believe a more systematic
study is worthwhile in the future. This is especially true of the generating functions appearing
on pages 35–38, which are not specific to Symd Pr but instead deal with twisted Gromov-Witten
invariants of an orbifold point. (We note that some of the relevant framework may already exist, e.g.
in the integrable systems literature — though we were unable to find anything that would imply
Identities 7.1 and 7.2. The specific form of these identities, and the other combinatorial tools used
in the proof of Theorem 6.3, are quite unlike anything appearing in the Gromov-Witten theory to
our knowledge.)

1.1. Acknowledgements. This work is based on my Ph.D. thesis. I would like to thank my Ph.D.
advisor, Yongbin Ruan, for introducing me to the area, and for many useful conversations. I am
grateful to David Speyer, Chiu-Chu Melissa Liu, Hsian-Hua Tseng, and Karen Smith for reading
versions of this paper, and helping me to improve it. I am particularly grateful to Hsian-Hua Tseng
for pointing out gaps in the proof given in the original preprint.

This research was supported in part by NSF grants EMSW21-RTG 1045119 and EMSW21-RTG
0943832, and by the NSF GRFP.
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2. Notation, conventions, and background

This section sets up combinatorial conventions, and reviews Atiyah-Bott torus localization,
orbifold Gromov-Witten theory, and moduli spaces of curves called Losev-Manin spaces, which are
used in Section 3.5 to describe the torus invariant curves in Symd Pr.

We always work over C. We write H∗(X) := H∗(X,Q). For a point x of an orbifold X, we write
Gx for the isotropy group of x.

2.1. Multipartitions and graphs. It is convenient to use the language of multisets, denoted with
parentheses, e.g. (a, a, b). We write Mult(Π, a) for the number of times that a appears in Π. We
will refer to multiset unions and intersections, and sums indexed by multisets, without comment.

For an integer d ≥ 0, Part(d) is the set of partitions of d, i.e. the set of multisets of positive integers
that sum to d. A weak composition of d is an ordered tuple of nonnegative integers whose sum is d.
The (finite) set of weak compositions of d of length r is denoted ZPart(d, r). If D ∈ ZPart(d, r), a
multipartition of D is a multiset (Πd)d∈D, with Πd a partition of d. The (finite) set of multipartitions
of D is denoted MultiPart(D). For each partition D ∈ ZPart(d, r), there is a “trivial multipartition”
of D, which we usually denote (abusing notation) by (1, . . . , 1), where every part of every Πd is
equal to 1. There is an “underlying partition” map MultiPart(D)→ Part(

∑
d∈D d).

If Π is a partition, we write SΠ for the group of automorphisms of Π as a multiset (defined
up to isomorphism); e.g. for Π = (1, 1, 1, 2, 2) of 7, we have SΠ = S3 × S2. For σ = (Πd)d∈D a
multipartition of D ∈ ZPart(d, r), we define Sσ :=

∏
d∈D SΠd .

Let Γ = (V (Γ), E(Γ)) be a finite graph. We denote by E(Γ, v) the set of edges incident to v.
The valence val(v) of v ∈ V (Γ) is |E(Γ, v)|. (This is different from some Gromov-Witten theory
literature, where val(v) includes contributions from certain decorations on Γ.) A flag of Γ is a pair
(v, e) ∈ V (Γ)× E(Γ) with e ∈ E(Γ, v). The set of flags of Γ is denoted F (Γ).

2.2. Equivariant cohomology. We will consider actions of the torus T := (C∗)r+1 on various
spaces, e.g. Pr, Symd Pr, and Mg,n(Symd Pr, β). If T acts on a Deligne-Mumford stack X, the
equivariant cohomology H∗T (X) is a module over H∗T (SpecC) ∼= Q[α0, . . . , αr], where −αi is the
weight of the character T → C∗ defined by (λ0, . . . , λr) 7→ λi. We write H∗T,loc(SpecC) for the

localization Q(α0, . . . , αr), and more generally H∗T,loc(X) := H∗T (X)⊗H∗T (SpecC) H
∗
T,loc(SpecC). We

will use the Atiyah-Bott localization theorem, as well as Graber-Pandharipande’s generalization, the
virtual localization theorem.

Theorem 2.1 ([AB84], see [EG98] for statement in the Chow ring). Let T be a torus acting on a
smooth compact manifold X, with fixed point set F . Then the map (ιF )∗ : H∗T,loc(F )→ H∗T,loc(X) is

an isomorphism, where (ιF )∗ is the Gysin map associated to the inclusion F ↪→ X. The inverse
map is ι∗F /eT (NF |X), where eT (NF ) is the equivariant Euler class of the normal bundle to F . In
particular, for α ∈ H∗T,loc(X,SpecC), we have∫

X
α =

∫
X

(ιF )∗

(
ι∗Fα

eT (NF )

)
=

∫
F

ι∗Fα

eT (NF )
.

Theorem 2.2 ([GP99]). Let X be a Deligne-Mumford stack with a T -action and a T -equivariant
perfect obstruction theory E•. Again, let ιF : F ↪→ X denote the inclusion of the fixed locus. Let
[X]vir denote the virtual fundamental class associated to E•. The T -fixed part of E• defines a perfect
obstruction theory on F , with virtual fundamental class [F ]vir. The virtual normal bundle Nvir

F to
F is the T -moving part of E•. Then∫

[X]vir

α =

∫
[F ]vir

ι∗Fα

eT (Nvir
F )

.(1)
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Remark 2.3. The proof in [GP99] requires that X have a global equivariant embedding into a
smooth Deligne-Mumford stack, but this condition was removed in [CKL15].

2.3. Symmetric product stacks. Let X be a scheme over C. There are two common (equivalent)
definitions of SymdX. The first is the stack quotient [Xd/Sd], where Sd acts in the usual way on
Xd. That is, objects and morphisms are described by

Objects:
S̃ Xd

S

f̃

pr Arrows:
S̃ T̃ Xd

S T

f̃

g̃

where vertical maps are Sd-principal bundles, f̃ and g̃ are Sd-equivariant, and the square on the
right is Cartesian. The second definition is given by

Objects:
S′ X

S

f ′

ρ Arrows:
S′ T ′ X

S T

f ′

g′

where vertical maps are degree d étale, and the square on the right is Cartesian. It is a straightforward
exercise to show that the two stacks defined are naturally isomorphic. We will usually use the second,
and we will consistently use the notations S′ → S and f ′ : S′ → X when referring to S-points of
SymdX. The two descriptions are related by the diagram:

S̃ × {1, . . . , d} Xd × {1, . . . , d}

S̃ Xd

S′ = S̃ ×Sd {1, . . . , d} Xd ×Sd {1, . . . , d} X

S SymdX

ρ̃
pr′

f̃

ρ ρ

P

f

pr pr(2)

Here the cube is Cartesian, and the left and right faces consist of étale maps. The composition

S′ → Xd ×Sd {1, . . . , d}
P−→ X is f ′.

Now assume X is smooth. We can understand the tangent bundle to Symd Pr as follows:

Lemma 2.4. There is a natural isomorphism T SymdX ∼= ρ∗(P
∗TX), where ρ and P are as in the

diagram above.

Proof. Since the square is cartesian and consists of étale maps, we have

pr∗(ρ∗(P
∗TX)) ∼= ρ̃∗((pr′)∗(P ∗TX)) = ρ̃∗((pr′ ◦P ∗TX)).

Recall that pr′ ◦P is simply the “universal coordinate map,” so since ρ̃ is a trivial étale cover, there
is a canonical isomorphism

ρ̃∗((pr′ ◦P ∗TX)) ∼=
d⊕
`=1

P ∗` TX
∼= T (Xd).
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Since ρ̃ is Sd-equivariant, there is an induced Sd-action on T (Xd) which agrees with the usual one.
Thus the isomorphism descends to give ρ∗(P

∗TX) ∼= T SymdX. �

Finally, we describe the cyclotomic inertia stack I SymdX → SymdX, see Section 3 of [AGV08].
AssumeX is connected. For each partition σ ∈ Part(d), there is a component (SymdX)σ of I SymdX,

isomorphic to (a trivial gerbe over)
∏
η≥1 SymMult(σ,η)X, and the map (SymdX)σ → SymdX is

(a rigidification followed by) the obvious one. The generic point of (SymdX)σ maps to a point in
SymdX with isotropy group isomorphic to

∏
η≥1 Sη.

Remark 2.5. The map (SymdX)σ → SymdX (after rigidification) may not be an embedding. For
example, consider Sym4X, and let σ = (2, 1, 1). By the above, (Sym4X)σ is a trivial gerbe over
X × Sym2X. The induced map X × Sym2X → Sym4X sends points (a, (b, c)) 7→ (a, a, b, c), but
this identifies the two distinct points (a, (b, b)) and (b, (a, a)) for all a, b ∈ X.

The (equivariant, nonorbifold) cohomology with rational coefficients may be computed explicitly by

the Künneth decomposition, as the Sd-invariant part of H∗T (Xd,Q) =
⊗d

j=1H
∗
T (X,Q). In particular,

for X = Pr, we will use the identification H2
T (Symd Pr,Q) ∼= H2

T ((Pr)d,Q)Sd ∼= H2
T (Pr,Q). We will

abuse notation and write [Hi] ∈ H2
T (Symd Pr,Q) for the element that pulls back to

∑d
j=1 pr∗j [Hi] ∈

H2
T ((Pr)d), where prj is the jth coordinate map and [Hi] is the equivariant fundamental class of the

ith coordinate hyperplane.
Fix a component (I Symd Pr)σ of I Symd Pr. For η ∈ σ, we denote by [Hσ,η,i] the pullback of

[Hi] from the factor of (I Symd Pr)σ ∼=
∏
η≥1 SymMult(σ,η) Pr corresponding to η. We write [Hσ,i] for∑

η[Hσ,η,i].

2.4. (Orbifold) Gromov-Witten theory. Our objects of study are the moduli spacesMg,n(X,β)
of n-marked genus-g stable maps to a smooth proper Deligne-Mumford stack X of degree β,
introduced in [CR02] and [AV02]. See [Liu13], Section 7 for an introduction to the subject (in all
genera). Following [Liu13], we use the technical convention that all gerbes come with the data of a
section.

In this paper we will have either X = Symd Pr or X = BG for some finite group G. We write
(f : C → X) for a C-point of Mg,n(X,β), and

C X

Mg,n(X,β)

f

π

for the universal curve and universal map.
A Gromov-Witten invariant is an integral of the form

〈ψa1

1 γ1, . . . , ψ
an
n γn〉Xg,n,β :=

∫
[Mg,n(X,β)]vir

n∏
j=1

ψ
aj
j ev∗j γj ∈ Q,(3)

where

• [Mg,n(X,β)]vir is the virtual fundamental class,

• ψj is the jth cotangent class on Mg,n(X,β), coming from the cotangent space to the coarse

moduli space of C,1

• the “insertions” γj are in the Chen-Ruan cohomology (see [CR04]) H∗CR(X), and

1Note that locally ψj = rjψj , where rj is the size of the isotropy group at the mark bj , and ψj is the “stacky” cotangent
class.
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• evj :Mg,n(X,β)→ IX is the jth evaluation map.

If X has an action of a torus T , it induces a natural T -action on IX and Mg,n(X,β), and

[Mg,n(X,β)]vir, ψj , and ev∗j γj are naturally equivariant classes (where γj ∈ H∗CR,T (X)). In this

case (3) defines an equivariant Gromov-Witten invariant (an element of H∗T (SpecC), denoted by

〈· · · 〉X,Tg,n,β) via T -equivariant integration.

We introduce some formalism for the case g = 0, which will be used to state and prove Theorems
5.5 and 6.3. Following [CCIT15], the T -equivariant Novikov ring of Symd Pr is

Λnov
T := H∗T,loc(SpecC)[[Q]],

and Givental’s symplectic vector space is

H := H∗CR,T,loc(Symd Pr)[[Q]]((z−1)) = H+ ⊕H−,

where H+ = H∗CR,T,loc(Symd Pr)[[Q]][z] and H− = z−1H∗CR,T,loc(Symd Pr)[[Q]][[z−1]]. Inside H,
there is a special subscheme LSymd Pr — precisely, a formal germ of a subscheme over Spec ΛT

nov,

defined at −1 · z, where 1 ∈ H∗CR,T,loc(Symd Pr) is the fundamental class of the untwisted sector —

called the Givental cone of Symd Pr, which encodes the genus-zero Gromov-Witten invariants of
Symd Pr.

Fix a basis γφ of H∗CR,T,loc(Symd Pr), with Poincaré dual basis γφ. A ΛT
nov[[x]]-valued point of

LSymd Pr is defined to be a power series

−1z + t(z) +

∞∑
n=0

∞∑
β=0

∑
φ

Qβ

n!

〈
t(ψ), . . . , t(ψ),

γφ

−z − ψ

〉Symd Pr,T

0,n+1,β

γφ ∈ H[[x]],

where t(z) ∈ 〈Q, x〉 ⊆ H+[[x]].

Remark 2.6. This definition as stated is both confusing and slightly imprecise. The point is this: as
a formal scheme over Spec ΛTnov, LSymd Pr is characterized (indeed, defined) not just by its C-valued

points or ΛT
nov-valued points but by its points over arbitrary (topological) ΛT

nov-algebras. The
definition given is the most basic nontrivial example, and generalizes in an obvious way. See
Appendix B of [CCIT09] for a complete discussion.

Remark 2.7. Another subtlety is that we may wish to take t(z) to be a power series in z, in which
case it is not immediately obvious that the expression t(ψ) makes sense. In practice this is not a
major concern; the key is that t(z) must be “topologically nilpotent,” which will always be the case
in practice. Again, see Appendix B of [CCIT09].

An important special case is

t(z) = θ =
∑
φ

xφγφ ∈ H∗CR,T,loc(Symd Pr)[[{x}φ]],

where {γφ} is the basis for H∗CR,T,loc(Symd Pr) chosen above. The corresponding ΛTnov[[{x}φ]]-valued

point is called the J-function of Symd Pr and is denoted JSymd Pr(Q, θ,−z). Here t(z) has no nonzero

powers of z, so the invariants appearing in JSymd Pr(Q, θ,−z) have a single ψ-class.
LSymd Pr has several important geometric properties that follow from relations between Gromov-

Witten invariants: see Appendix B of [CCIT09], which also defines LSymd Pr rigorously as a non-

Noetherian formal scheme. For example, it is a cone in a certain sense, hence the name (Proposition
B.2 of [CCIT09]).

Given a vector bundle E on X, there is also a notion of an E-twisted Gromov-Witten invariant
of X. We need this notion only when X = BG, with the trivial action of a torus T . Let E be a

7



T ×G representation. Then Rπ∗f
∗E ∈ K0

T (Mg,n(BG, 0)). An E-twisted Gromov-Witten invariant
of BG is known as a Hurwitz-Hodge integral, and is defined by

〈ψa1

1 γ1, . . . , ψ
an
n γn〉

BG,T,E
g,n,0 :=

∫
[Mg,n(BG,0)]vir

n∏
j=1

ψ
aj
j ev∗j γj ∪ e−1

T (Rπ∗f
∗E).(4)

As above, in genus zero we can define the twisted Lagrangian cone LEBG : a ΛTnov[[x]]-valued point
of LEBG is defined to be

−1z + t(z) +

∞∑
n=0

∑
φ

1

n!

〈
t(ψ), . . . , t(ψ),

γφ

−z − ψ

〉BG,T,E
0,n+1,0

γφ,(5)

for some t(z) ∈ 〈Q, x〉 ⊆ H+[[x]]. Here γφ and γφ are dual bases of H∗T (X) under the twisted
Poincaré pairing, see [CCIT15].

Notation 2.8. In the important case where µ ∼= BG is a T -fixed point of an ambient orbifold Y , and

E = TµY, we write Ltw
µ := LTµYµ .

2.5. Losev-Manin spaces. We recall certain moduli spaces of marked curves, studied originally
by Losev and Manin [LM00].

Definition 2.9. Let k ≥ 1, and fix a 2-element set {0,∞}. An (0|k|∞)-marked Losev-Manin curve
is a connected genus zero (k + 2)-marked nodal curve (C, b0, b1, . . . , bk, b∞), satisfying:

• The irreducible components of C form a chain, with two leaves C0 and C∞,
• The points b0, b1, . . . , bk, b∞ are smooth points of C, with b0 ∈ C0 and b∞ ∈ C∞,
• bi 6= b0 and bi 6= b∞ for i = 1, . . . , k (though it is possible that bi = bj for i 6= j), and
• Each irreducible component of C contains at least one point of b1, . . . , bk.

Theorem 2.10 ([LM00], Theorems 2.2 and 2.6.3). The moduli space of (0|k|∞)-marked Losev-
Manin curves M0|k|∞ is a smooth projective (toric) variety, and there is a natural birational

morphism ϕ :M0,k+2 →M0|k|∞.

Remark 2.11. The spaces M0|k|∞ is an example of a moduli space M0,A of weighted stable curves,
developed later by Hassett [Has03], and Theorem 2.10 is a special case of Theorems 2.1 and 4.1 of
[Has03]. Specifically, there is a natural isomorphismM0|k|∞ →M0,A, where A is the weight datum
(1, ε, ε, . . . , ε, 1) of length k + 2, for ε ≤ 1/k.

Definition 2.12. Let s ≥ 1 be an integer. An order-s orbifold (0|k|∞)-marked Losev-Manin curve
is a (k+ 2)-marked twisted curve (C, b0, b1, . . . , bk, b∞) (in the sense of [Ols07]) whose coarse moduli
space is a k-marked Losev-Manin curve, such that C has orbifold structure only at b0, b∞, and the
nodes of C, all of which have order s.

The moduli space Ms
0|k|∞ of order-s orbifold k-marked Losev-Manin curves has a natural map

Ms
0|k|∞ → M0|k|∞ that comes from taking coarse moduli spaces of curves. Our calculations in

Section 5 will use the following fact, a special case from Lemma 2.3 of [Moo11].

Lemma 2.13. Let ψ0,LM and ψ∞,LM denote the tautological cotangent classes at b0 and b∞ on

M0|k|∞. The pullbacks ϕ∗ψ0,LM and ϕ∗ψ∞,LM along the reduction morphism M0,k+2 → M0|k|∞
are the cotangent classes ψ0 and ψ∞, respectively.

Remark 2.14. Lemma 2.13 holds for order-s orbifold Losev-Manin spaces, either using the cotangent
classes ψ (as we do in this paper), or replacingM0,k+2 with a stacky replacementMs

0,k+2. (Ms
0,k+2

parametrizes curves where b0 and b∞ have order-s orbifold structure, as do any nodes that separate
b0 from b∞.)
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3. The action of (C∗)r+1 on Symd Pr

There is a natural action of T := (C∗)r+1 on Pr. This induces a diagonal action of (C∗)r+1 on
(Pr)d, which commutes with the action of Sd, hence acts on Symd Pr. (The action on a diagram

S
ρ←− S′ f

′
−→ Pr as in Section 2.3 is by postcomposition of f ′.) This T -action on Symd Pr induces an

action on Mg,n(Symd Pr, β) for all n and β.
The goal of this section is Theorem 3.16, which explicitly characterizes the T -fixed locus in

Mg,n(Symd Pr, β). The building blocks of the construction are spaces Mg,n(BG, 0) of admissible
covers from [ACV03]2, the Losev-Manin spaces from Section 2.5, and combinatorial objects called
decorated graphs.

3.1. T -fixed points and 1-dimensional orbits of Symd Pr. We begin by fixing notation for
points and lines in Pr. We will denote the coordinate points of Pr by P0, P1, . . . , Pr, where Pi is the
point where the only nonzero coordinate is the ith one. We denote by L(i1,i2) = L(i2,i1) the line
through Pi1 and Pi2 . We write P(i1,i2) for the “midpoint” of this line, where the i1-th and i2-th
coordinates are equal.

Recall from Section 2.3 that a map f : S → Symd Pr is the same as a degree-d étale cover
ρ : S′ → S, and a map f ′ : S′ → Pr. We use the notation • for SpecC, and d(•) for the union of d
copies of SpecC. Note d(•) is the only degree-d étale cover of •, so (C-valued) points of Symd Pr
are in natural bijective correspondence with maps f ′ : d(•)→ Pr.

Proposition 3.1. Points of Symd Pr with 0- and 1-dimensional T -orbits are classified as follows:

(1) A point (d(•) f ′−→ Pr) ∈ Symd Pr is T -fixed if and only if Im(f ′) ⊆ {P0, . . . , Pr}.
(2) (d(•) f ′−→ Pr) has a 1-dimensional T -orbit if and only if it is not T -fixed and Im(f ′) ⊆
{P0, . . . , Pr} ∪ L(i1,i2) for some 0 ≤ i1, i2 ≤ r.

Proof. (1) follows from the definition of the T -action by post-composition, and that fact that
{P0, . . . , Pr} is the T -fixed locus of Pr.

The r-dimensional subtorus defined by ti1 = ti2 acts trivially on {P0, . . . , Pr} ∪ L(i1,i2), proving
the backwards direction of (2). If Im(f ′) 6⊆ {P0, . . . , Pr} ∪ L(i1,i2), then Im(f ′) contains either two
points on different coordinate lines, or a point not on a coordinate line. In either case, is it is easy
to check explicitly that the T -orbit is at least 2-dimensional. �

Remark 3.2. The T -fixed points of Symd Pr are in natural bijection with the set ZPart(d, r + 1) of
length-(r + 1) weak compositions, where the ith part is the number of points of d(•) mapping to Pi.
We will use this identification from now on.

3.2. T -fixed stable maps to Symd Pr with irreducible source curve. It is well-known (see
[Liu13]) that if X is a Deligne-Mumford stack with an action of a torus T , then a stable map
f : C → X is T -fixed if and only if each component Cν of C maps into the fixed locus XT , or
maps to the closure U of a 1-dimensional T -orbit U, with special points (nodes and marks) and
ramification points mapping to U r U. (In the latter case it follows that Cν is rational; we may
regard f |Cν as a point of M0,2(X,β) for some β.) If T acts with isolated fixed points, we refer to
the two types of components of C as contracted and noncontracted, since those of the first type map
to a single point of X. On contracted components Cν , f factors through BG for some G; thus f |Cν
is an admissible G-cover in the sense of [ACV03]. The following lemma classifies noncontracted
components of T -fixed stable maps to Symd Pr.

2These stacks compactify Hurwitz spaces, and are now usually referred to as moduli spaces of admissible covers,
though [ACV03] reserves that term for the related compactifications defined earlier by Harris-Mumford [HM82].
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Lemma 3.3. Let (f : C → Symd Pr) ∈ M0,2(Symd Pr, β) be a stable map of degree β > 0 with
irreducible source curve. Denote by b1 and b2 the two marked points of C. Denote by ρ : C ′ → C
and f ′ : C ′ → Pr the associated degree d étale cover and map to projective space, respectively. (See
Section 2.3.) Then (f : C → Symd Pr) is T -fixed if and only if all of the following hold:

• C ′ is a disjoint union of rational connected components C ′η. (Since C has two orbifold points,
this means that on coarse moduli spaces, ρ is a cover, fully ramified over b1 and b2.)
• There exist distinct indices 0 ≤ i1, i2 ≤ r such that f ′ maps each component C ′η either

(i) to the line L(i1,i2), or
(ii) to a T -fixed point of Pr.

• On the level of coarse moduli spaces, the restriction f ′|C′η to any component of type (i) is a

cover of L(i1,i2), fully ramified at the two points ρ−1(b1) and ρ−1(b2).
• For each component C ′η, write cη for the degree of ρ|C′η : C ′η → C. For components C ′η of

type (i), write βη for the degree of f ′|C′η : C ′η → L(i1,i2), and qη := βη/cη. Then q := qη is

independent of the type (i) component C ′η.

Proof. The first three statements follow from the fact that C is genus zero with exactly two orbifold
points, and from Proposition 3.1. It is a straightforward computation in coordinates to check that
the last statement is equivalent to the fact that the T -action is compatible with the map ρ, i.e. that
the action of λ ∈ T is equivalent to a coordinate change on C. �

Remark 3.4. The same statement and proof apply to M0,1(Symd Pr, β) and M0,0(Symd Pr, β) and
in these cases we have a slightly stronger statement: since C has at most one orbifold point, it has
no nontrivial étale cover. Thus C ′ ∼= C × {1, . . . , d} and cη = 1 for all η.

From an irreducible T -fixed stable map as in Lemma 3.3, we may extract discrete data (see 2.1
for notation) as follows:

• The rational number q associated to type (i) components of C ′.
• The two compositions f(b1), f(b2) ∈ ZPart(d, r + 1). (See Remark 3.2.)
• A refinement of the above: for each i ∈ {0, . . . , r}, the points of C ′ mapping to Pi are

each counted with a multiplicity cη. Whereas f(b1) remembers only the sum for each i, we
could instead record the list of multiplicities cη. The result is a multipartition Mon(b1) ∈
MultiPart(f(b1)). This multipartition describes the monodromy of f at b1 as a conjugacy
class in Gf(b1). Similarly Mon(b2) ∈ MultiPart(f(b2)).

3.3. Decorated graphs. Having classified irreducible components of T -fixed stable maps to
Symd Pr, we will now describe how these components fit together. Following [Liu13], we introduce
combinatorial objects called decorated graphs, which capture the combinatorial data of elements of
(Mg,n(Symd Pr, β))T .

Definition 3.5. An n-marked genus-g Symd Pr-decorated graph (Γ,Mark, {gv},VEval, q,
−−→
Mon) is

• A graph Γ,
• A marking map Mark : {1, . . . , n} → V (Γ),
• A “vertex genus” map V (Γ)→ Z≥0 denoted v 7→ gv,
• A “vertex evaluation” map VEval = (VEval0, . . . ,VEvalr) : V (Γ)→ ZPart(d, r + 1),
• An “edge degree ratio” map q : E(Γ)→ Q>0,
• A “monodromy map” Mon = (Mon0, . . . ,Monr) that assigns to each j ∈ {1, . . . , n} an

element of MultiPart(VEval(Mark(j))) (see Section 2.1), and assigns to each flag (v, e) ∈
F (Γ) an element of MultiPart(VEval(v)),

subject to the conditions:

(1) h1(Γ) +
∑

v∈V (Γ) gv = g.
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(2) Let e be an edge of Γ connecting vertices v and v′. Then there exist two distinct indices
0 ≤ imov(v, e), imov(v′, e) ≤ r such that:
• VEvalimov(v,e)(v)−VEvalimov(v,e)(v

′) > 0.
• If i 6∈ {imov(v, e), imov(v′, e)}, then VEvali(v) = VEvali(v

′) and Moni(v, e) = Moni(v
′, e)

(as partitions of VEvali(v)).
• There are containments Monimov(v,e)(v

′, e) ⊆ Monimov(v,e)(v, e) and Monimov(v′,e)(v, e) ⊆
Monimov(v′,e)(v

′, e), and the relation between complements holds:

Monimov(v,e)(v, e) r Monimov(v,e)(v
′, e) = Monimov(v′,e)(v

′, e) r Monimov(v′,e)(v, e).

• For η ∈ Monimov(v,e)(v, e) r Monimov(v,e)(v
′, e), we have η ∈ 1

q(e)Z.

(3) If v ∈ V (Γ) with gv = 0, E(Γ, v) = {ev}, and Mark−1(v) = ∅, then Mon(v, ev) is the “trivial”
multipartition of MultiPart(VEval(v)) whose elements are all 1.

(4) If v ∈ V (Γ) with gv = 0, E(Γ, v) = {ev}, and Mark−1(v) = {j}, then Mon(v, ev) = Mon(j).
(5) If v ∈ V (Γ) with gv = 0, E(Γ, v) = {e1

v, e
2
v}, and Mark−1(v) = ∅, then Mon(v, e1

v) =
Mon(v, e2

v).

For brevity, we will write Γ instead of (Γ,Mark, {gv},VEval, q,
−−→
Mon). For a fixed Γ, we introduce

notation:

• Each part η of the multipartitions Mon(v, e) and Mon(j) is an element of one of the multisets
(Mon0, . . . ,Monr), and we write i(η) for the element of {0, . . . , r} such that η ∈ Moni(η).
• Let Mov(e) be the difference multiset Monimov(v,e)(v, e)rMonimov(v,e)(v

′, e), and let Stat(e) :=
Mon(v, e) r Mov(e) be its complement. By condition 2, Mov(e) and Stat(e) depend on e
rather than (v, e). Mov(e) is the submultiset of “moving parts” of Mon(v, e) (or Mon(v′, e)),
and Stat(e) is the submultiset of “stationary parts”. Note that Stat(e) is a {0, . . . , r}-labeled
multiset. We write mov(e) := |Mov(e)|.
• Let Mon(e) be the partition

⋃
k Monk(v, e) of d, which again by condition 2 depends only

on e. Note that unlike Mon(v, e) and Mon(j), Mon(e) is only a partition of d, rather than a
multipartition.
• For v satisfying any one of conditions 3, 4, or 5, we write Mon(v) for Mon(v, ev) or

Mon(v, e1
v) = Mon(v, e2

v).
• For an edge e ∈ E(Γ), let β(e) =

∑
η∈Mov(e) βη(e) :=

∑
η∈Mov(e) q(e)η. Let β(Γ) =∑

e∈E(Γ) β(e).

• Denote by Graphsg,n(Symd Pr, β) the finite set of n-marked genus-g Symd Pr-decorated
graphs Γ with β(Γ) = β. We refer to these as simply “decorated graphs” when no confusion
is possible.

Lemma 3.6. There is a natural map

Ψ : (Mg,n(Symd Pr, β))T → Graphsg,n(Symd Pr, β).

Proof. Let (f : (C, b1, . . . , bn) → Symd Pr) ∈ (Mg,n(Symd Pr, β))T . Define sets V (Γ) equal to the

set of connected components of f−1((Symd Pr)T ), and E(Γ) the set of noncontracted irreducible
components of C. By Lemma 3.3, associated to each noncontracted irreducible component of C are
two T -fixed points Pi1 and Pi2 , so these define a graph Γ.

We now define the various decorations of Γ. Let Mark(j) be the connected component of
f−1((Symd Pr)T ) containing bj . Let VEval(v) be the (r + 1)-tuple representing the T -fixed point
f(v), from Section 3.1. Let q(e) = q be the rational number determined by Lemma 3.3. Let Mon(j)
be the monodromy of f at bj . This is a conjugacy class in the isotropy group Gf(bj), and these are

in natural bijection with MultiPart(VEval(Mark(j))). Finally, let Mon(v, e) be the monodromy of
11



f at the point ξ(v, e) where the connected component v meets the irreducible component e; this
monodromy is naturally an element of MultiPart(VEval(v)).

Condition (2) for decorated graphs follows from the description in Lemma 3.3. Condition (3)
follows from Remark 3.4. Condition (4) holds because for such v, ξ(v, ev) and bj are the same
point of C. Condition (5) is true for the same reason, together with the fact that the inverse of a
conjugacy class in Sd is itself. �

3.4. Classifying the connected components of (Mg,n(Symd Pr, β))T . The map in Lemma 3.6

gives a stratification of (Mg,n(Symd Pr, β))T into (as we will see) locally closed substacks. In this
section we describe how the strata fit together. To be precise, what we show does not quite classify
connected components, but rather certain open and closed substacks — see Remark 3.18.

Notation 3.7. Let (f : C → Symd Pr) ∈ Ψ−1(Γ). If v ∈ V (Γ), then from Lemma 3.6, v corresponds
to a subcurve of C. We denote this by Cv. Similarly, for e ∈ E(Γ), we write Ce for the corresponding
irreducible component of C. For (v, e) ∈ F (Γ), we write ξ(v, e) for the point v ∩ e ∈ C, again using
the notation of the proof of Lemma 3.6. We say (v, e) is a special flag if ξ(v, e) is a special point,
equivalently if gv > 0 or val(v) > 1 or Mark−1(v) 6= ∅. Note that the isotropy group at ξ(v, e) (resp.
bj) has order lcm(Mon(v, e)) (resp. lcm(Mon(j))). For brevity we denote this by r(v, e) (resp. rj).

We adopt the following notation from [Liu13], corresponding to conditions 3, 4, and 5 in Definition
3.5:

V 1(Γ) = {v ∈ V (Γ)|gv = 0, val(v) = 1,
∣∣Mark−1(v)

∣∣ = 0}
V 1,1(Γ) = {v ∈ V (Γ)|gv = 0, val(v) = 1,

∣∣Mark−1(v)
∣∣ = 1}

V 2(Γ) = {v ∈ V (Γ)|gv = 0, val(v) = 2,
∣∣Mark−1(v)

∣∣ = 0}
V S(Γ) = V (Γ) r (V 1(Γ) ∪ V 1,1(Γ) ∪ V 2(Γ)).

We call vertices in V S(Γ) stable. A vertex v is stable if and only if Cv is 1-dimensional (rather than
a single point).

For v ∈ V 1(Γ) ∪ V 1,1(Γ), we always write E(Γ, v) = {ev = (v, v′)}. For v ∈ V 2(Γ), we always
write E(Γ, v) = {e1

v = (v, v1), e2
v = (v, v2)}.

Definition 3.8. Let Γ ∈ Graphsg,n(Symd Pr, β), and let e1, e2 ∈ E(Γ). We say e1 and e2 are

combinable, and write e1‖e2, if there exists v ∈ V 2(Γ) with {e1, e2} = {e1
v, e

2
v} and the following

hold:

• q(e1) = q(e2),
• imov(v1, e1) = imov(v, e2) and imov(v, e1) = imov(v2, e2).

Denote by P ⊆
(
E(Γ)

2

)
the set of pairs {{e1, e2} : e1‖e2}.

Definition 3.9. Let (v, e) ∈ F (Γ). We say (v, e) is a steady flag if either of the following holds:

(1) v 6∈ V 2(Γ), or
(2) v ∈ V 2(Γ) and {e1

v, e
2
v} 6∈ P.

Definition 3.10. Let Γ ∈ Graphsg,n(Symd Pr, β) and let e1‖e2 be a pair of combinable edges. We

may define a new decorated graph Comb(Γ, e1‖e2) ∈ Graphsg,n(Symd Pr, β) by combining e1 and
e2. In other words, we delete the vertex v and the edges e1 and e2, and add an edge e12 = (v1, v2)
with q(e12) = q(e1) = q(e2), Mon(v1, e12) = Mon(v1, e1), and Mon(v2, e12) = Mon(v2, e2). (See
Figure 1.) It is easy to check that Comb(Γ, e1‖e2) satisfies the two conditions of a decorated graph,
and that Mov(e12) = Mov(e1) ∪Mov(e2), and Mon(e12) = Mon(e1) = Mon(e2). There is a natural
map φe1,e2 : E(Γ) → E(Comb(Γ, e1‖e2)) with φe1,e2(e1) = φe1,e2(e2) = e12, and φe1,e2(e) = e for
e ∈ E(Γ) r {e1, e2}.

12



Γ1 •v1 e1 e2
•v •v2 Γ2 Γ1 •v1 e12

•v2 Γ2

Figure 1. Combining edges

Γ1 •v1 e1
•v
e2 = e′1

•v
′

e′2
•v′2 Γ2 Γ1 •v1 e

•v′2 Γ2

Γ1 •v1
e1
•v

e2
•v2

Γ2

•v′1
e′1
•v
′

e′2
•v′2 Γ3 Γ1 •v1

e12
•v2

Γ2

•v′1
e′12

•v′2 Γ3

Figure 2. Combining two pairs of edges

Proposition 3.11. Let Γ ∈ Graphsg,n(Symd Pr, β), and let e1‖e2 and e′1‖e′2 be two distinct pairs of
combinable edges of Γ. Then φe1,e2(e′1)‖φe1,e2(e′2) as edges of Comb(Γ, e1‖e2) and φe′1,e′2(e1)‖φe′1,e′2(e2)

as edges of Comb(Γ, e′1‖e′2). Also, combining pairs commutes, i.e.

Comb(Comb(Γ, e1‖e2), e′1‖e′2) ∼= Comb(Comb(Γ, e′1‖e′2), e1‖e2),

and this isomorphism identifies the maps φe1,e2 ◦ φe′1,e′2 and φe′1,e′2 ◦ φe1,e2 .

Proof. There are two cases, pictured in the left side of Figure 2; either the pairs e1‖e2 and e′1‖e′2 share
an edge, or they do not. Suppose we are in the first case, i.e. the top line of Figure 2. By definition
of φe1,e2 , the edges φe1,e2(e′1) and φe1,e2(e′2) meet at v′ (precisely, at the corresponding vertex in
Comb(Γ, e1 ‖e2)), and satisfy the three conditions of Definition 3.8. Thus φe1,e2(e′1)‖φe1,e2(e′2).
Similarly φe′1,e′2(e1)‖φe′1,e′2(e2). To see that Comb(Comb(Γ, e1‖e2), e′1‖e′2) ∼= Comb(Comb(Γ, e′1‖
e′2), e1‖e2), we note that both are obtained from the graph in Figure 2 by replacing the three edges
shown with a single edge e connecting v1 to v′2. The decorations on this edge are:

• q(e) := q(e1) = q(e2) = q(e′2),
• Mon(e) := Mon(e1) = Mon(e2) = Mon(e′2),
• imov(v1, e) := imov(v1, e1) = imov(v, e2) = imov(v′, e′2), and
• imov(v′2, e) := imov(v2, e

′
2) = imov(v′, e2) = imov(v, e1),

where the equalities follow from e1‖e2 and e2‖e′2. The maps φe1,e2 ◦ φe′1,e′2 and φe′1,e′2 ◦ φe1,e2 both

send all of e1, e2 = e′1, and e′2 to e.
The second case (the bottom line of 2) is a special case of this argument, so we omit it. �

Corollary 3.12. Let Γ ∈ Graphsg,n(Symd Pr, β), and let E be any subset of the set P(Γ) of pairs

of combinable edges in Γ. Then there is a well-defined graph Comb(Γ, E) ∈ Graphsg,n(Symd Pr, β)
obtained by combining all edge pairs in E, in any order, and a well-defined associated map φE :
E(Γ)→ E(Comb(Γ, E)). Furthermore, E is determined by the graphs Γ and Comb(Γ, E), and the
map φE .

Proof. The existence statement comes from repeatedly applying Proposition 3.11. The uniqueness
statement amounts to the fact that if e1‖e2 is a combinable pair of edges in Γ, then φE(e1) = φE(e2)

13



· · ·

· · ·

C ′η

· · · · · ·C • •

Le

• Pimov(v1,e)

• Pimov(v2,e)

Figure 3. A portion of a map in Ψ−1(Γ0), with η = 1 and q(e) = 3

if and only if (e1, e2) ∈ E . This follows from factoring φE as a sequence of edge combination maps as
in Definition 3.10. �

Corollary 3.12 may be restated as follows. Definition 3.10 determines a partial order ≤ on
Graphsg,n(Symd Pr, β), where Γ′ ≤ Γ if Γ′ can be obtained from Γ by combining edges. Corollary

3.12 then states that for Γ ∈ Graphsg,n(Symd Pr, β), there is a natural order-reversing bijection
between {Γ′ : Γ′ ≤ Γ} and {subsets of P(Γ)}, where the latter is partially ordered by inclusion.
In particular, associated to Γ is a unique minimal decorated graph Comb(Γ,P(Γ)). Denote by
Graphsmin

g,n (Symd Pr, β) the set of ≤-minimal elements of Graphsg,n(Symd Pr, β).

Theorem 3.13. Let Γ0 ∈ Graphsg,n(Symd Pr, β). The closure of Ψ−1(Γ0) is⋃
Γ∈Graphsg,n(Symd Pr,β)

Γ0≤Γ

Ψ−1(Γ),

where Ψ is the map from Lemma 3.6.

Lemma 3.14. Let Γ0 = •v1
e •v2, where each of v1 and v2 contains a single marked point,

b1 and b2, and gv1 = gv2 = 0. Let f : C → Symd Pr be in the closure of Ψ−1(Γ0), and let
ρ : C ′ → C and f ′ : C ′ → Pr be the associated maps. Write C ′η for a noncontracted irreducible
component of C ′, corresponding to η ∈ Mov(e) ⊆ Mon(e), as described in Lemma 3.3. Denote by
Le := L(imov(v1,e),imov(v2,e)) the line in Pr connecting Pimov(v1,e) and Pimov(v2,e). Then:

(1) C and C ′η are nodal chains of rational curves,
(2) f ′|C′η maps one irreducible component of C ′η to Le with degree βη(e) = q(e) · η (on coarse

moduli spaces), and is fully ramified at the two special points of this component, and
(3) f ′|C′η contracts all other irreducible components of C ′η to one of the endpoints of Le.

That is, the restriction to C ′η of a point in Ψ−1(Γ0) may be represented as in Figure 3 (where despite
appearances we mean for the map to Le to have a single preimage point over each of Pimov(v1,e) and
Pimov(v2,e)).

Proof of Lemma. Let f : C → Pr be a family over S of stable maps whose generic fiber is in Ψ−1(Γ0),
and let s ∈ S such that the fiber over s is the stable map f : C → Symd Pr. After an étale base
change S̃ → S, C′ is a union of connected components C′η indexed by Mon(e), and the maps C′η → C
have degrees determined by Mon(e). Fix η ∈ Mov(e).

Consider the Stein factorization of f ′ relative to S:
14



C′η C′η Pr × S Prsf

f ′

f ′

(The map sf contracts connected components of fibers of C′η over Pr × S.) On a generic fiber of

C′η over S, the divisors f ′
∗
(Pimov(v1,e) and f ′

∗
(Pimov(v2,e) are each supported on a single point. By

the definition of sf, on the special fiber C ′η, these divisors are each supported on a connected locus,

hence a single point — specifically, the points sf(ρ−1(b1)) and sf(ρ−1(b2)), respectively. As any
component of C ′η maps surjectively to Le, this implies that C ′η is irreducible. This proves claims (2)
and (3).

Since f ′ is T -fixed, the above implies that a component of C ′η not contracted by f ′ has exactly

two points that are nodes or are in ρ−1(b1) or ρ−1(b2).
If C is not a chain, then since it is genus zero, some component D has only one special point. By

stability, there is a component of ρ−1(D) that is not contracted by f ′. This contradicts the previous
paragraph. Thus C is a chain, and it follows that each C ′η is a chain. This proves claim (1). �

Proof of Theorem 3.13. It is sufficient to consider the situation of Lemma 3.14. To see this, note
that any Γ0 ∈ Graphsg,n(Symd Pr, β) may be decomposed into subgraphs of the form in the Lemma,
together with single-vertex graphs, glued at marked points. There is a corresponding decomposition
of Ψ−1(Γ0) as a product (up to a finite morphism), and this decomposition extends to the closure
(see [AGV08], Section 5.2, or [Liu13], Section 9.2). Thus we may treat each factor of the product
separately.

First, we show

Ψ−1(Γ0) ⊆
⋃

Γ≥Γ0

Ψ−1(Γ).

Let (f : C → Pr) ∈ Ψ−1(Γ0). By Lemma 3.14, we conclude:

• Ψ(f : C → Symd Pr) is a chain.
• The degree ratios q(e) are equal for all edges e.
• The partitions Mon(e) are equal for all edges e.
• For any edge e = (v, v′), where v and Mark(1) are on the same connected component of

Γ r {e}, we have imov(v, e) = imov(v1, e12) and imov(v′, e) = imov(v2, e12). (This follows from
the proof of Lemma 3.14.

Thus any pair of adjacent edges in Ψ(f : C → Symd Pr) is combinable. Combining them all yields
Γ0, i.e. Γ0 ≤ Ψ(f : C → Symd Pr).

For the reverse inclusion, first suppose Γ ≥ Γ0 has a single pair of combinable edges, i.e.

Γ = •v1
e1 •v

e2 •v2.

Fix (f : C → Symd Pr) ∈ Ψ−1(Γ). We will construct a family f : C → Symd Pr over C whose
restriction to 0 ∈ C is the map f : C → Symd Pr.

By Lemma 3.3 and by representability of f : C → Symd Pr, the orbifold points and nodes of
C have order lcm(Mon(e1)) = lcm(Mon(e2)). Thus C is isomorphic to V (xy) ⊆ [P2/µlcm(Mon(e1))],

where P2 has coordinates x, y, z, and lcm(Mon(e1)) acts by multiplication by inverse roots of unity
on the first two coordinates. Define C so that Ct = V (xy − tz2) for t ∈ C. Precisely, C is an open
subset of

[
B`[1:0:0],[0:1:0]P2/µlcm(Mon(e1))

]
.
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For η ∈ Mon(e1) a part, there is an étale quotient map ρ̃ : [P2/µη]→ [P2/µlcm(Mon(e1))]. As above,

define (C′η)t = V (xy − tz2) ⊆ [P2/µη].

We must now define a map f̃ ′ : C′η → Pr for each η ∈ Mon(e1). As Pr is a variety, it is enough to
define this on coarse moduli spaces. We choose isomorphisms of the fibers (C′η)0 and C0 with C ′η and C

respectively, such that the maps ρ̃ and ρ are identified. Then f ′ defines a map f̃ ′0 : (C′η)0 → Le1 = Le2 .
(The case where C ′η is contracted is trivial, so we assume it is not contracted.) By Lemma 3.14,

after equivariantly identifying Le1
∼= P1, f̃ ′0 is given (without loss of generality, on coarse moduli

spaces) by

[x : 0 : z] 7→ [0 : 1]

[0 : y : z] 7→ [yβη(e1) : zβη(e1)].

It remains to extend this to a map f̃ ′ : C′η → Le1 that is fixed with respect to the T -action, i.e. fully
ramified over the endpoints of Le1 . We observe that the rational map

[x : y : z] 7→ [yβη(e1) : zβη(e1)]

is regular after blowing up the point [1 : 0 : 0]. This defines a map f̃ ′ as desired. Doing this for all η

shows that f : C → Symd Pr is in Ψ−1(Γ0).
If Γ has more than one pair of combinable edges, we apply this argument repeatedly. �

Corollary 3.15. (Mg,n(Symd Pr, β))T is a disjoint union of open and closed substacks Ψ−1(Γ), for

Γ ∈ Graphsmin
g,n (Symd Pr, β). We define MΓ := Ψ−1(Γ).

3.5. Explicit description of MΓ. The rest of this section proves the following:

Theorem 3.16. For a stable vertex v or edge e = (v1, v2) of a minimal decorated graph Γ =
(Γ,Mark, {gv},VEval, q,Mon) ∈ Graphsmin

g,n (Symd Pr, β), we define

Mv : =M
gv ,
−−→
Mon(v)

(BSVEval(v), 0)

Me : =

Mlcm(Mon(e))
v1|mov(e)|v2

/ ∏
η∈Mov(e)

µβη(e) wrSe

 ,
where:

•
−−→
Mon(v) is the list of multipartitions {Mon(i)}i∈Mark−1(v) ∪ {Mon(v, e)}e∈E(Γ,v),

• Mlcm(Mon(e))
v1|mov(e)|v2

is the order lcm(Mon(e)) orbifold Losev-Manin space with mov(e) marked

points b1, . . . , bmov(e) and labeling set {v1, v2}, from Section 2.5,
• Se is the group CStat(e) × SMov(e), where CStat(e) is the centralizer of any element of the

conjugacy class Stat(e) in
∏r
i=0 S|Stat(e)i|, and acts trivially on the Losev-Manin space,

• A generator of µβη(e) acts by translating the marked point bη by e2πi/q(e), and
• wr denotes the wreath product.

Then the substack MΓ associated to Γ is isomorphic to a

( ∏
(v, e) steady

CVEval(v)(Mon(v, e))

)
-gerbe

over  ∏
v∈V S(Γ)

Mv ×
∏

e∈E(Γ)

Me

/Aut(Γ)

 ,(6)

16



where CVEval(v)(Mon(v, e)) is the centralizer in GVEval(v) of any element of the conjugacy class
Mon(v, e), modulo the subgroup generated by that element.

Proof of 3.16. Using Theorem 3.13, Lemma 3.14, and the gluing morphisms for Mg,n(X,β) (see

[AGV08], Section 5.2), MΓ is a

( ∏
(v, e) steady

CVEval(v)(Mon(v, e))

)
-gerbe over

 ∏
v∈V (Γ)

M
gv ,
−−→
Mon(v)

(BSVEval(v), 0)×
∏

e∈E(Γ)

MΓe

/Aut(Γ)

 ,
where Γe = •v1

e •v2, and the decorations are inherited from Γ, with gv1 = gv2 = 0. (Note

that the two vertices of Γe are labeled, i.e. Aut(Γe) = 1.)
(The gerbe structure appears because gluing morphisms are fibered over the rigidified inertia

stack I Symd Pr, see [AGV08] or [Liu13]. The group CVEval(v)(Mon(v, e)) is the isotropy group of

I Symd Pr at the point of I Symd Pr corresponding to Mon(v, e).)
We need to show that, for all e = (v1, v2) ∈ E(Γ), we have

MΓe
∼=

Mlcm(Mon(e))
v1|mov(e)|v2

/ ∏
η∈Mov(e)

µβη(e) wrSe

 .
Write Pe := P(imov(v1,e),imov(v2,e)) for the midpoint of Le. For (f : C → Pr) ∈ MΓe , consider the
preimage of Pe under the associated map f ′ : C ′ → Pr. By Lemma 3.14, C ′ is a union of connected
components C ′η for η ∈ Mon(e), and if η ∈ Mov(e) then the preimage of Pe on C ′η consists of βη(e)
points on the single noncontracted component of C ′η. These points are µβη(e)-translates of each
other, under the natural action that fixes the two special points.

After a principal
(∏

η∈Mov(e) µβη(e) wrSe

)
-cover M̃Γe → MΓe , we may fix a labeling of the

connected components C ′η, and label a distinguished preimage of Pe on C ′η for η ∈ Mov(e). (The
Se-cover removes all automorphisms of stable maps induced by automorphisms of the image curve
that commute with the monodromy at bv1 and bv2 .) Remembering the images of these distinguished
points under ρ yields a nodal chain of rational curves with mov(e) labeled marked points, none of
which coincides with bv1 or bv2 . The stability condition for M0,{Mon(e),Mon(e)}(Le, β(e)) implies that
this is a Losev-Manin curve, with orbifold points of order lcm(Mon(e)) at marked points and nodes.

This construction works in families, so it defines a map M̃Γe →M
lcm(Mon(e))
v1|mov(e)|v2

, which is equivariant

by definition with respect to the action of
∏
η∈Mov(e) µβη(e) wrSe. This gives a map

Φ :MΓe →

Mlcm(Mon(e))
v1|mov(e)|v2

/ ∏
η∈Mov(e)

µβη(e) wrSe

 .
We now construct an inverse to this map. Let (C, bv1 , b1, . . . , bmov(e), bv2) ∈ Mlcm(Mon(e))

v1|mov(e)|v2
be a

Losev-Manin curve whose points are indexed by the multiset Mov(e). Fix a curve C ′ =
⊔
η∈Mon(e)C

′
η

with étale maps ρη : C ′η → C of degree η. This may be done uniquely up to isomorphism. Also,
uniquely up to isomorphism (of C ′ commuting with ρ : C ′ → C), for each η ∈ Mov(e) ⊆ Mon(e) we
may choose a preimage point b′η ∈ C ′η of the corresponding marked point bη ∈ C. Finally, there is a
unique map f ′ : C ′ → Pr that sends:

• C ′η to a T -fixed point, for η 6∈ Mov(e),
17



• C ′η to Le with degree βη(e), with b′η mapping to Pe, ρ
−1(bv1) mapping to Pimov(v1,e) and

ρ−1(bv2) mapping to Pimov(v2,e), for η ∈ Mov(e).

Again, this works in families, and defines a map Θ̃ : Mlcm(Mon(e))
v1|mov(e)|v2

→ MΓe , which we claim is

invariant under the action of
∏
η∈Mov(e) µβη(e) wrSe. Indeed, acting by e2πi/q(e) on bη translates the

preimage b′η by some power of e2πi/βη(e), and commutes with f ′. Thus Θ̃ descends to a map

Θ :

Mlcm(Mon(e))
v1|mov(e)|v2

/ ∏
η∈Mov(e)

µβη(e) wrSe

→MΓe ,

which is by construction an inverse to Φ. �

Corollary 3.17. The
(∏

η∈Mov(e) µβη(e) wrSe

)
-action on Mlcm(Mon(e))

v1|mov(e)|v2
extends to the universal

curve, so we have a universal curve on Me, and by gluing, a universal curve on the left side of (6).
The isomorphism of 3.16 naturally identifies this with the universal curve on MΓ.

Proof. The first statement is by definition of the action, and the second is immediate from the proof
of Theorem 3.16. �

Remark 3.18. Theorem 3.16 shows in particular that MΓe is irreducible, so connected components
of (Mg,n(Symd Pr, β))T are indexed by minimal decorated graphs with the additional data of a

connected component of M
g,
−−→
Mon(v)

(BSVEval(v), 0) for each v. (These connected components in turn

can computed using elementary group theory.)

Notation 3.19. For a special flag (v, e) ∈ F (Γ), we denote by ψMe
v the ψ-class on Me at the point

labeled by v. If v ∈ V S(Γ), we denote by ψMv
e the ψ-class on Mv at the marked point ξ(v, e). We

use the same notation for the ψ-classes.

4. The virtual normal bundle and virtual fundamental class of MΓ

In this section we compute the Euler class of the virtual normal bundle to MΓ, and show that
the virtual fundamental class of MΓ is equal to its fundamental class. Some of the arguments are
“classical,” and we will refer the reader to [Liu13] for these.

In this section we fix Γ ∈ Graphsmin
g,n (Symd Pr, β). Let π : C → MΓ and ρ : C′ → C denote the

universal curve and universal étale cover, respectively:

C′ Pr

C Symd Pr

MΓ

f ′

ρ

f

π

By a standard argument (see [Liu13]), we have an exact sequence of T -equivariant sheaves on
Mg,n+1(Symd Pr, β) giving the perfect obstruction theory3

0→ Aut(C)→ R0π∗(C, f∗T Symd Pr)→ Def(C, f)→(7)

→ Def(C)→ R1π∗(C, f∗T Symd Pr)→ Obs(C, f)→ 0,

3We will always use the notation in (7) for higher direct image sheaves, writing e.g. Riπ∗(C, f∗T Symd Pr) instead of
Riπ∗f

∗T Symd Pr. This is because we will restrict π to various substacks of C, and wish to avoid confusion.
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where Aut(C) (resp. Def(C)) is the sheaf on Mg,n+1(Symd Pr) of infinitesimal automorphisms
(resp. deformations) of the marked source curve C. (See [Liu13] for rigorous definitions.) For
(f : C → Symd Pr) ∈MΓ, we also have a normalization exact sequence computing the fibers of the
middle terms:

0→ H0(C, f∗T Symd Pr)→
⊕
ν

H0(Cν , f
∗T Symd Pr)→

⊕
ξ

H0(ξ, f∗T Symd Pr)→(8)

→ H1(C, f∗T Symd Pr)→
⊕
ν

H1(Cν , f
∗T Symd Pr)→ 0,

where ν runs over the set of irreducible components of C, and ξ runs over nodes of C. The sequences
(7) and (8) each split as direct sums of two exact sequences: the T -fixed part and the T -moving
part. We use the notations Aut(C)fix and Aut(C)mov (and similar) to denote the T -fixed subsheaf or
subspace and its T -invariant complement. By definition (see [GP99]), the Euler class of the virtual
normal bundle eT (Nvir

Γ ) is

eT (Def(C, f)mov)

eT (Obs(C, f)mov)
=
eT (Def(C)mov)eT (R0π∗(C, f∗T Symd Pr)mov)

eT (Aut(C)mov)eT (R1π∗(C, f∗T Symd Pr)mov)
∈ H∗T (MΓ),(9)

and the virtual fundamental class [MΓ]vir ofMΓ is eT (Obs(C, f)fix). We compute the various terms
of (7) and (8) one by one. It is convenient to compute by pulling back to the canonical Aut(Γ)-cover

Mrig
Γ of MΓ, so that the correspondence between C and Γ is more concrete.

The sheaves Aut(C) and Def(C). In the toric case, from [Liu13] we have

eT (Aut(C)mov) =
∏

v∈V 1(Γ)

eT (Tξ(v,ev)C) =
∏

v∈V 1(Γ)

ψMev
v .(10)

The same argument and answer apply here, using (Theorem 3.13 and) the observation that
combining edges gives a natural identification of V 1(Γ). Briefly, moving automorphisms come
from noncontracted components with only one special point, and correspond to vector fields on such
a component that are nonvanishing at the nonspecial T -fixed point.

Similarly, in the toric case [Liu13] gives

eT (Def(C)) =

 ∏
v∈V 2(Γ)

(v, e1v) steady

(−ψ
M

e1v
v − ψ

M
e2v

v )


 ∏

(v,e)∈F (Γ)

v∈V S(Γ)

(−ψMv
e − ψMe

v )

 .(11)

This is again correct in our case. The factors in (11) come from smoothing nodes. (Classically,
the deformation space of a node is the tensor product of the tangent spaces to the two branches.)
Therefore the observation we need is that the nodes that do not appear in (11) have T -fixed
deformation space. We will use the following notation.

Definition 4.1. A node ξ is called steady4 if TξC1 ⊗ TξC2 has a nontrivial torus action, where C1

and C2 are the branches of ξ.

Remark 4.2. Steady nodes are exactly those of the form ξ(v, e) for (v, e) a steady flag. By Theorem
3.13, if Ψ(f : C → Symd Pr) = Γ (i.e. it is minimal), then all nodes of C are steady nodes.

Furthermore, the set of steady nodes is canonically identified for any two points of Mrig
Γ .

4This is similar, but not identical, to the definition of a breaking node from [OP10].
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The factors in (11) are in correspondence with steady nodes.

The bundles R0π∗(C, f∗T Symd Pr) and R1π∗(C, f∗T Symd Pr). We use the sequence (8). The
computation is similar to the original one by Kontsevich [Kon95] (and the orbifold computations of
Johnson [Joh14] and Liu [Liu13]), but requires some care due to the edge moduli spaces.

Note that normalization does not commute with base change, so (8) cannot naively be applied to
commute Riπ∗(C, f∗T Symd Pr). However, normalization of steady nodes does commute with base

change on Mrig
Γ , due to the canonical identification of nodes above. Thus we have the sequence

0→ R0π∗(C, f∗T Symd Pr)→
⊕
ν

R0π∗(Cν , f∗T Symd Pr)→
⊕
ξ

R0π∗(ξ, f
∗T Symd Pr)→(12)

→ R1π∗(C, f∗T Symd Pr)→
⊕
ν

R1π∗(Cν , f∗T Symd Pr)→ 0,

where ν runs over closures of maximal subcurves of C containing only non-steady nodes, and ξ runs
over steady nodes. Observe that either Cν is contracted by f , or each fiber Cν of Cν contains only
noncontracted components.

By Section 2.3, we have

Riπ∗(Cν , f∗T Symd Pr) = Riπ∗(Cν , ρ∗(f ′)∗TPr) = Ri(π ◦ ρ)∗(Cν ′, (f ′)∗TPr).

(The second equality follows from the fact that ρ is étale, hence ρ∗ is exact.) After an étale base

change, we may distinguish the connected components of fibers of C′ν →M
rig
Γ . In other words, we

may write

C′ν =
⊔
η

C′ν,η,

where C′ν,η has connected fibers. Then

Riπ∗(C′ν , (f ′)∗TPr) =
⊕
η

Ri(π ◦ ρ)∗(C′ν,η, (f ′)∗TPr).(13)

If Cν = Cv is contracted, then (f ′)∗TPr is trivial on C′ν,η. Thus we have

Ri(π ◦ ρ)∗(C′ν,η, (f ′)∗TPr) ∼= Ri(π ◦ ρ)∗(C′ν,η,OC′ν,η)⊗ TPi(η)
Pr,

where as i(η) ∈ {0, . . . , r} is the label of η, i.e. Pi(η) = f ′(C′ν,η). In particular,

R0π∗(Cv, f∗T Symd Pr)fix = R1π∗(Cν , f∗T Symd Pr)fix = 0.(14)

The bundle R1π∗(Cv, f∗T Symd Pr)mov is nontrivial, and is isomorphic to a Hurwitz-Hodge bundle
(see [Liu13], Section 7.5). However, note that eT (Rπ∗(Cv, f∗T Symd Pr)) is the inverse of the twisting
class from (5). We will use this fact in Section 5 in our characterization of LSymd Pr , and in Section
6 to apply the orbifold quantum Riemann-Roch theorem.

Similarly for a steady node ξ(v, e), we have

R0π∗(ξ(v, e), f
∗T Symd Pr)fix = 0

R0π∗(ξ(v, e), f
∗T Symd Pr)mov = T(VEval(v),Mon(v,e))I Symd Pr =

⊕
η∈Mon(v,e)

TPi(η)
Pr.(15)

Suppose Cν is not contracted. The components C′ν,η are in bijection with Mon(e), where e is the

edge of Γ corresponding to Cν .) First, we argue that R1(π ◦ ρ)∗(C′ν,η, (f ′)∗TPr) vanishes for all η.
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The normalization exact sequence for a fiber C ′ν,η reads:

0→ H0(C ′ν,η, (f
′)∗TPr)→

⊕
ν∈ν

H0(C ′ν,η, (f
′)∗TPr)→

⊕
ξ

H0(ξ, (f ′)∗TPr)→

→ H1(C ′ν,η, (f
′)∗TPr)→

⊕
ν∈ν

H1(C ′ν,η, (f
′)∗TPr)→ 0,

where we also denote by ν the set indexing irreducible components Cν of Cν (equivalently, irreducible
components C ′ν,η of Cν,η). For each ν ∈ ν, we have

H1(Cν , (f
′)∗TPr) = 0(16)

by convexity of Pr. We claim that the map⊕
ν∈ν

H0(C ′ν,η, (f
′)∗TPr)→

⊕
ξ

H0(ξ, (f ′)∗TPr)

is surjective, so that H1(C ′ν,η, (f
′)∗TPr) = 0. (The map takes the difference of the sections on

the two branches of a node.) If C ′ν,η has a component C ′ν0,η not contracted by f ′, there is at

most one, by Lemma 3.14. On any other component C ′ν,η, we have (f ′)∗TPr ∼= OC′ν,η ⊗ TP
r, i.e.

H0(C ′ν,η,OC′ν,η ⊗ TP
r) ∼= TPr. Fix an arbitrary section s ∈ H0(C ′ν0,η, (f

′)∗TPr). Then “working

outward” from C ′ν0,θ
shows that the map is surjective. The case where f ′ contracts C ′ν,η is similar

and simpler.
Next, we compute R0(π ◦ ρ)∗(C′ν,η, (f ′)∗TPr). If C′ν,η is contracted, (f ′)∗TPr is trivial and we have

R0(π ◦ ρ)∗(C′ν,η, (f ′)∗TPr) ∼= TPr ⊗OMrig
Γ

by properness of π ◦ ρ. Suppose C′ν,η is not contracted. Consider the Stein factorization of f ′|C′ν,η
relative to π ◦ ρ:

C′ν,η C′ν,η Pr

Mrig
Γ

sf

f ′

π◦ρ
f ′′

π◦ρ

If (f : C → Symd Pr) is in the dense open substack Ψ−1(Γ) ⊆Mrig
Γ , then Cν is irreducible, hence

so is C ′ν,η. This, with the fact that C′ν,η is not contracted, implies that sf is birational. By the
projection formula for coherent sheaves,

(π ◦ ρ)∗(f
′)∗TPr = (π ◦ ρ)∗sf

∗(f ′′)∗TPr

= (π ◦ ρ)∗sf∗sf
∗(f ′′)∗TPr

= (π ◦ ρ)∗((f
′′)∗TPr ⊗ sf∗OC′ν,η)

= (π ◦ ρ)∗(f
′′)∗TPr.

After an étale base change onMrig
Γ , the map f ′′ trivializes C′ν,η. Thus R0(π ◦ ρ)∗(C′ν,η, (f ′′)∗TPr) is a

trivial vector bundle. Calculation of the T -weights of this vector bundle is identical to Kontsevich’s
calculation in Section 3.3.4 of [Kon95], which uses the Euler sequence on Pr. The weights are

A

βη(e)
αimov(v1,e) +

B

βη(e)
αimov(v2,e) − αi,(17)
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where 0 ≤ A,B ≤ βη(e), A + B = βη(e), and i ∈ {0, . . . , r}. Note that this is zero exactly
when A = 0 and i = imov(v2, e), or B = 0 and i = imov(v1, e). (These factors contribute to
eT (R0(π ◦ ρ)∗(C′ν,η, (f ′′)∗TPr)fix).) Putting together (15) and (17), for ν noncontracted, the Euler

class eT (R0(π ◦ ρ)∗(C′ν , (f ′′)∗TPr)mov) is equal to

 ∏
η∈Stat(e)

∏
i 6=i(η)

(αi(η) − αi)

 ∏
η∈Mov(e)

∏
A+B=βη(e)

0≤i≤r
(A,i)6=(0,imov(v2,e))
(B,i)6=(0,imov(v1,e))

(
A

βη(e)
αimov(v1,e) +

B

βη(e)
αimov(v2,e) − αi

)
.

(18)

Summary. We collect the arguments of this section in the following two statements.

Proposition 4.3. For any minimal decorated graph Γ, MΓ is smooth, and the virtual fundamental
class is equal to the fundamental class.

Proposition 4.4. The equivariant Euler class eT (Nvir
MΓ

) of the virtual normal bundle to MΓ is
∏
v∈V 2(Γ)(−ψ

M
e1v

v − ψ
M

e2v
v )

∏
(v,e)∈F (Γ)

v∈V S(Γ)

(−ψMv
e − ψMe

v )

∏
v∈V 1(Γ) ψ

Mev
v



·
∏

e∈E(Γ)


 ∏

η∈Stat(e)
i 6=i(η)

(αi(η) − αi)

 ∏
η∈Mov(e)
A+B=βη(e)

0≤i≤r
(A,i)6=(0,imov(v2,e))
(B,i)6=(0,imov(v1,e))

(
A

βη(e)
αimov(v1,e) +

B

βη(e)
αimov(v2,e) − αi

)


·

(∏
v∈V 1(Γ)∪V 1,1(Γ)∪V 2(Γ) eT (T(VEval(v),Mon(v))I Symd Pr)∏

(v,e)∈F (Γ) eT (T(VEval(v),Mon(v,e))I Symd Pr)

)

·

 ∏
v∈V S(Γ)

eT (Rπ∗(Cv, f
∗T Symd Pr))mov

 .

Proof of Proposition 4.3. Recall from Theorem 2.2 that the virtual fundamental class of MΓ is
obtained from the fixed part of the perfect obstruction theory on Mg,n(Symd Pr, β). By (15), the

fixed part of
⊕

ξ R
0π∗(ξ, f

∗T Symd Pr) is zero. Thus by (12),

R1π∗(C, f∗T Symd Pr) ∼=
⊕
ν

R1π∗(Cν , f∗T Symd Pr).

But we showed, in (14) and (16), that
⊕

ν R
1π∗(Cν , f∗T Symd Pr) has no fixed part. Thus

R1π∗(C, f∗T Symd Pr) has no fixed part. By Proposition 5.5 of [BF97], the Proposition follows.
(Smoothness already followed easily from Theorem 3.16.) �

Proof of Proposition 4.4. The first line is the contribution from Def(C)mov and Aut(C)mov, from (10)
and (11). The second line is the contribution of noncontracted components to Rπ∗(C, f∗T Symd Pr),
from (18) and (16). The third line is the contribution of steady nodes to Rπ∗(C, f∗T Symd Pr), from
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(15). (The numerator corrects for the fact that F (Γ) overcounts the steady nodes.) The last line is
the contribution of contracted components to Rπ∗(C, f∗T Symd Pr)mov, by definition. �

Theorem 4.5. The results of this section, together with Corollary 3.15 and Theorem 3.16, provide
an algorithm to compute any Gromov-Witten invariant of Symd Pr (for any d) in terms of Hurwitz-
Hodge integrals, i.e. twisted Gromov-Witten invariants of BG for G a product of symmetric groups.

Proof. Applying the virtual localization theorem 2.2, a genus-g Gromov-Witten invariant of Symd Pr
is expressed as a sum ∑

Γ∈Gmin
g,n (Symd Pr,β)

∫
MΓ

ι∗α

eT (Nvir
MΓ

)
.

By Theorem 3.16, MΓ is a finite cover of a product of Losev-Manin spaces Me (Section 2.5) and
spaces Mv = M

gv ,
−−→
Mon(v)

(BSVEval(v), 0) of admissible covers. The factors Me can be integrated

over using Lemma 2.13, since the only cohomology classes in the integrands are ψ classes at the two
distinguished marked points (cf. (23) in the proof of Theorem 5.5). The remaining integrals are
over the factors Mv. The integrand contains the factor∏

v∈V S(Γ)

1

eT (Rπ∗(Cv, f∗T Symd Pr))mov
,

as well as ψ classes and classes pulled back along evaluation maps, and is thus a twisted Gromov-
Witten invariant of BSV Eval(v). �

5. Characterization of the Givental cone LSymd Pr

In this section, we apply the results of Sections 3.2 and 4 to give a criterion (Theorem 5.5) that
exactly determines whether a given power series lies on the Givental cone LSymd Pr . For the rest
of the paper, we work only in genus zero, so we refer to “decorated trees” rather than “decorated
graphs.”

Definition 5.1. Fix (µ, σ) ∈ (I Symd Pr)T . Let Υ(µ, σ) ⊆ Graphs0,2(Symd Pr, β) be the set of

1-edge decorated trees κ = •v1
e •v2, with gv1 = gv2 = 0, marking set {bn+1, b•}, with

Mark(n+ 1) = v1 and Mark(•) = v2, such that µ = VEval(v1) and σ = Mon(v1, e).

Notation 5.2. For κ ∈ Υ(µ, σ), we write (using the notation of Definition 3.5):

• q(κ) := q(e),
• Mov(κ) := Mov(e),
• mov(κ) := mov(e),
• Stat(κ) := Stat(e),
• for η ∈ Mov(κ), βη(κ) := βη(e) = q(e) · η,
• β(κ) =

∑
η∈Mov(κ) βη(κ)

• imov
1 (κ) := imov(v1, e),

• imov
2 (κ) := imov(v2, e),

• µ′(κ) := VEval(v2),
• σ′(κ) := Mon(v2, e), and
• r(κ) := r(v1, e) = r(v2, e) = rn+1.

We also define:

w(κ) :=
αimov

1 (κ) − αimov
2 (κ)

q(κ)
∈ H2

T (SpecC).

Remark 5.3. Note that w(κ) is equal to the T -weight of the tangent space to the coarse moduli
space of the source curve C at bn+1; this is because q(κ) is defined via coordinates on this coarse
moduli space (see Lemma 3.3).
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Definition 5.4. Let κ ∈ Υ(µ, σ) and let a ∈ Z>0 We define the recursion coefficient

RC(κ, a) =
(−1)mov(κ)−a

q(κ)mov(κ)

(
σimov

1 (κ)

Mov(κ)

)(
mov(κ)− 1

a− 1

)
· 1∏

η∈Mov(κ)

∏
1≤B≤βη(κ)

0≤i≤r
(B,i)6=(βη(κ),imov

2 (κ))

(
βη(κ)−B
βη(κ) αimov

1 (κ) + B
βη(κ)αimov

2 (κ) − αi
) ,

where
(σimov

1 (κ)

Mov(κ)

)
is the number of ways of choosing Mov(κ) as a subpartition of σimov

1 (κ) with specified

parts.

The following theorem and its proof are in the same spirit as Theorem 41 of [CCIT15], which in
turn is adapted from Theorem 2 of [Bro14].

Theorem 5.5. Let f be an element of H[[x]] such that f |Q=x=0 = −1z, where 1 denotes the

fundamental class of Symd Pr ⊆ I Symd Pr. Then f is a ΛT
nov[[x]]-valued point of LSymd Pr if and

only if for each T -fixed point (µ, σ) ∈ I Symd Pr, the following three conditions hold:

(I) The restriction f(µ,σ) along ι(µ,σ) : (µ, σ) ↪→ I Symd Pr is a power series in Q and x, such
that each coefficient of this power series is an element of H∗T,loc(•)(z). Each coefficient is
regular in z except for possible poles at z = 0, z =∞, and

z ∈ {w(κ) : κ ∈ Υ(µ, σ)}.

(II) The Laurent coefficients of f(µ,σ) at the poles (other than z = 0 and z = ∞) satisfy the
recursion relation:

Coef(fµ,σ, (w − z)−a) =
∑

κ∈Υ(µ,σ)

w(κ)=w
mov(κ)≥a

Qβ(κ) RC(κ, a) Coef(f(µ′(κ),σ′(κ)), (w − z)mov(κ)−a)(19)

for a > 0, and
(III) The restriction fµ along ιµ : Iµ ↪→ I Symd Pr is a ΛTnov[[x]]-valued point of Ltw

µ .

Remark 5.6. In (III), ΛTnov is the equivariant Novikov ring associated to Symd Pr, not µ. In other
words, ΛTnov[[x]] = H∗CR,T,loc(µ)[[Q, x]].

Remark 5.7. The major difference between Theorem 5.5 and the corresponding theorems in [CCIT15]
and [Bro14] is that condition (II) gives a recursive relation for all negative-exponent Laurent
coefficients at z = w(κ), in terms of nonnegative-exponent ones. In [CCIT15] and [Bro14], only
stacks with isolated 1-dimensional T -orbits are considered. Thus in that case, the poles at z = w(κ)
are simple, and a recursive relation is given for their residues.

Proof. Let f be a ΛTnov[[x]]-valued point of LSymd Pr . By definition, we can write

f = −1z + t(z) +
∞∑
n=0

∞∑
β=0

∑
φ

Qβ

n!

〈
t(ψ), . . . , t(ψ),

γφ

−z − ψ

〉Symd Pr,T

0,n+1,β

γφ

= −1z + t(z) +

∞∑
n=0

∞∑
β=0

Qβ

n!
(evn+1)∗

 n∏
j=1

ev∗j t(ψ) ∪ 1

−z − ψ
∩ [M0,n+1(Symd Pr, β)]vir


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for t(z) ∈ H+[[x]] with t|Q=x=0 = 0. The restriction f(µ,σ) is then

−δσ=(1,...,1)z + ι∗(µ,σ)t(z)

+
∞∑
n=0

∞∑
β=0

Qβ

n!
ι∗(µ,σ)

(evn+1)∗

 n∏
j=1

ev∗j t(ψ) ∪ 1

−z − ψ
∩ [M0,n+1(Symd Pr, β)]vir

 .

Using the projection formula, we write

ι∗(µ,σ)

(evn+1)∗

 n∏
j=1

ev∗j t(ψj) ∪
1

−z − ψn+1

∩ [M0,n+1(Symd Pr, β)]vir


= |Cµ(σ)|

∫
Symd Pr

(ι(µ,σ))∗ι
∗
(µ,σ)

(evn+1)∗

 n∏
j=1

ev∗j t(ψj) ∪
1

−z − ψn+1

∩ [M0,n+1(Symd Pr, β)]vir


= |Cµ(σ)|

∫
Symd Pr

[(µ, σ)] ∪

(evn+1)∗

 n∏
j=1

ev∗j t(ψj) ∪
1

−z − ψn+1

∩ [M0,n+1(Symd Pr, β)]vir



= |Cµ(σ)|
∫

Symd Pr

(evn+1)∗

 n∏
j=1

ev∗j t(ψj) ∪
ev∗n+1([(µ, σ)])

−z − ψn+1

∩ [M0,n+1(Symd Pr, β)]vir


= |Cµ(σ)|

∫
[M0,n+1(Symd Pr,β)]vir

 n∏
j=1

ev∗j t(ψj) ∪
ev∗n+1([(µ, σ)])

−z − ψn+1


= |Cµ(σ)|

〈
t(ψ), . . . , t(ψ),

[(µ, σ)]

−z − ψ

〉Symd Pr,T

0,n+1,β

.

The first equality uses the identification of
∫

Symd Pr ◦ι(µ,σ) with the identity map SpecC→ SpecC
on coarse moduli spaces, and the factor |Cµ(σ)| corrects for the isotropy at (µ, σ) ∈ I Symd Pr.
(Recall that Cµ(σ) denotes the centralizer of any element of σ in Gµ.) In summary,

f(µ,σ) = −δσ=(1,...,1)z + t(µ,σ)(z)(20)

+

∞∑
n=0

∞∑
β=0

|Cµ(σ)|Qβ

n!

〈
t(ψ), . . . , t(ψ),

[(µ, σ)]

−z − ψ

〉Symd Pr,T

0,n+1,β

,

where t(µ,σ)(z) := ι∗(µ,σ)t(z). Now we calculate (20) by virtual torus localization (see Theorem 2.2).

Namely, we may write

|Cµ(σ)|
〈

t(ψ), . . . , t(ψ),
[(µ, σ)]

−z − ψ

〉Symd Pr,T

0,n+1,β

=
∑

Γ∈Graphsmin
0,n+1(Symd Pr,β)

Contr(µ,σ)(Γ).(21)

We can partition Graphsmin
0,n+1(Symd Pr, β) into three subsets:

(i) Γ such that (VEval(Mark(n+ 1)),Mon(n+ 1)) 6= (µ, σ),
(ii) Γ such that (VEval(Mark(n+ 1)),Mon(n+ 1)) = (µ, σ) and Mark(n+ 1) ∈ V 1,1(Γ), and

(iii) Γ such that (VEval(Mark(n+ 1)),Mon(n+ 1)) = (µ, σ) and Mark(n+ 1) ∈ V S(Γ).

In some literature, e.g. [CFK14], decorated trees of type (ii) are called recursion type and those of
type (iii) are called initial type. (We will see below, however, that in our setup both types are used
recursively.) Let v1 := Mark(n+ 1).
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For a tree Γ of type (i), the restriction ev∗n+1([(µ, σ)]) vanishes, hence Contr(µ,σ)(Γ) = 0. For
this reason, we may simplify our notation, and write Contr(Γ) := Contr(µ,σ)(Γ), where µ =
VEval(Mark(n+ 1)) and σ = Mon(n+ 1).

If Γ is a tree of type (iii), then by Theorem 3.16 and Corollary 3.17, ψn+1 is pulled back from

M
0,
−−→
Mon(v1)

(BGµ, 0), where Gµ is the isotropy group of µ. Since this stack parametrizes maps that

factor through the fixed point µ, the action of T is trivial, hence

H∗T,loc(M0,
−−→
Mon(v1)

(BGµ, 0)) ∼= H∗(M
0,
−−→
Mon(v1)

(BGµ, 0))⊗H∗T,loc(•).

In particular, ψn+1 is nilpotent. It follows that Contr(Γ) is a polynomial in z−1, hence has a pole
only at z = 0.

Finally, let Γ be a tree of type (ii). By (1), we have

Contr(Γ) = |Cµ(σ)|
∫

[MΓ]′

1

eT (Nvir
Γ )

ι∗Γ

 n∏
j=1

ev∗j t(ψ) ∪
ev∗n+1[(µ, σ)]

−z − ψn+1

 ,(22)

where ιΓ is the inclusion MΓ ↪→M0,n+1(Symd Pr, β). Note that evn+1 ◦ιΓ factors through (µ, σ),

hence ι∗Γ ev∗n+1[(µ, σ)] is the weight eT (T(µ,σ)I Symd Pr).
Then Γ has a decorated subtree κ ∈ Υ(µ, σ), obtained by removing all edges except for e := ev1

(and necessary vertices), and all marked points except bn+1. Let Γ r κ denote the tree obtained
by pruning κ. That is, Γ r κ ∈ Graphsmin

0,n+1(Symd Pr, β − β(κ)) is defined by V (Γ r κ) = V (Γ) r
{v1}, E(Γ r κ) = E(Γ) r e, and decorations Mark, VEval, q, and Mon are unchanged, except
Mark(n+ 1) := v2, where v2 is the common vertex of κ and Γ r κ. Observe that an automorphism
of Γ fixes bn+1, and therefore fixes e, so we have Aut(Γ) = Aut(Γ r κ). Thus by Theorem 3.16, up
to a CVEval(v2)(Mon(v2, e))-gerbe, we may write

MΓ
∼=Me ×MΓrκ.

We factor the T -equivariant map MΓ → SpecC through the second projection, i.e. we integrate
over Me:

Contr(Γ) =
|Cµ(σ)|

∣∣Cµ′(κ)(σ
′(κ))

∣∣
r(κ)

∫
[MΓrκ]′

∫
Me

eT (T(µ,σ)I Symd Pr)
eT (Nvir

Γ )
ι∗Γ

 n∏
j=1

ev∗j t(ψ) ∪ 1

−z − ψn+1

 .

The factor
∣∣Cµ′(κ)(σ

′(κ))
∣∣ /r(κ) is the order of CVEval(v2)(Mon(v2, e)). From Proposition 4.4, we

may write

eT (T(µ,σ)I Symd Pr)
eT (Nvir

Γ )
=

1

W
·
eT (T(µ′(κ),σ′(κ))I Symd Pr)

e(Nvir
Γrκ)(−ψMv2

e − ψMe
v2 )

,

where

W : =

∏
η∈Stat(κ)

∏
i 6=i(η)(αi(η) − αi)

eT (T(µ,σ)I Symd Pr)

∏
η∈Mov(κ)

∏
A+B=βη(κ)

0≤i≤r
(A,i)6=(0,imov(v2,e))
(B,i)6=(0,imov(v1,e))

(
A

βη(κ)
αimov(v1,e) +

B

βη(κ)
αimov(v2,e) − αi

)

=
∏

η∈Mov(κ)

∏
1≤B≤βη(κ)

0≤i≤r
(B,i)6=(βη(κ),imov(v2,e))

(
βη(κ)−B
βη(κ)

αimov(v1,e) +
B

βη(κ)
αimov(v2,e) − αi

)
∈ H∗T,loc(SpecC)
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Note that the cancellation in the last step removes the factors where B = 0, and that 1/W is the
product appearing in RC(κ, a).

To avoid confusion, we write ψ
Γ
n+1 (resp. ψ

Γrκ
n+1) for the ψ-class at the (n+1)st marked point onMΓ

(resp. MΓrκ), recalling that on Γ r κ we defined Mark(n+ 1) = v2. We also have ι∗Γψ
Γ
n+1 = ψ

Me

v1
.

The T -weight on ψ
Me

v1
is −w(κ) (see Notation 5.2), so we have

ψ
Me

v1
= ψ

ne
v1
− w(κ) ∈ H∗T (MΓ) ∼= H∗(MΓ)⊗H∗T (SpecC),

where ψ
ne
v1

denotes the nonequivariant ψ-class. Similarly ψ
Me

v2
= ψ

ne
v2

+ w(κ). Then since ι∗Γ ev∗j t(ψ)

is pulled back from MΓrκ,

Contr(Γ) =
|Cµ(σ)|

∣∣Cµ′(κ)(σ
′(κ))

∣∣
r(κ)

eT (T(µ′(κ),σ′(κ))I Symd Pr)
W

·
∫

[MΓrκ]′

 ι∗Γ
(∏n

j=1 ev∗j t(ψ)
)

eT (Nvir
Γrκ)

∫
Me

1

(−ψΓrκ
n+1 − ψne

v2
− w(κ))

1

(−z − ψne
v1

+ w(κ))

 .

We compute the last integral using the fact that w(κ) is invertible, and Lemma 2.13, which says we
may integrate on M0,k+2 instead of Me. We use

r(κ)(−ψΓrκ
n+1 − ψv2) = −ψΓrκ

n+1 − ψv2
= ψ

Γrκ
n+1 − ψ

ne
v2
− w(κ).

It is well-known (see e.g. [Koc01], Lemma 1.5.1) that∫
M0,k

ψm1 ψ
k−3−m
2 =

(
k − 3

m

)
.(23)

By Lemma 2.13, this identity holds on M0|k|∞ also. Thus:∫
Me

1

(−ψΓrκ
n+1 − ψ

ne
v2
− w(κ))

1

(−z − ψne
v1

+ w(κ))

=
1

|Se|
∏
η∈Mov(κ) βη(κ)

∫
Mv1|mov(κ)|v2

( ∞∑
m1=0

(ψv2
)m1

(−ψΓrκ
n+1 − w(κ))m1+1

)( ∞∑
m2=0

(ψv1
)m2

(−z + w(κ))m2+1

)

=
1

|Se|
∏
η∈Mov(κ) βη(κ)

∑
m1+m2=mov(κ)−1

(
mov(κ)−1

m1

)
(−ψΓrκ

n+1 − w(κ))m1+1(−z + w(κ))m2+1

(24)

=
1

|Se|
∏
η∈Mov(κ) βη(κ)

(−z − ψΓrκ
n+1)mov(κ)−1

(−ψΓrκ
n+1 − w(κ))mov(κ)(−z + w(κ))mov(κ)

.

The last equality in (24) comes from expanding

((−z + w(κ)) + (−ψΓrκ
n+1 − w(κ)))mov(κ)−1

27



via the binomial theorem. Altogether, we have

Contr(Γ) =
|Cµ(σ)|

∣∣Cµ′(κ)(σ
′(κ))

∣∣
|Se|

∏
η∈Mov(κ) βη(κ)

eT (T(µ′(κ),σ′(κ))I Symd Pr)
W · (−z + w(κ))mov(κ)

(25)

·
∫

[MΓrκ]′

 ι∗Γ
(∏n

j=1 ev∗j t(ψ)
)

eT (Nvir
Γrκ)

(−z − ψΓrκ
n+1)mov(κ)−1

(−ψΓrκ
n+1 − w(κ))mov(κ)

 .

For fixed β0, and n0, from (21), the coefficient of Qβ0xn0 in f(µ,σ) only has contributions from

Γ ∈ Graphs0,n(Symd Pr, β) for β + n ≤ β0 + n0. This is because t(z) ∈ 〈Q, x〉, so if H[[x]] is graded
by giving Q and x degree 1, then the (n, β) term in (20) has degree at least n+ β. In particular,⋃
β+n≤β0+n0

Graphs0,n(Symd Pr, β) is a finite set. Thus (21) and (25) realize the contribution to

such a coefficient from trees of type (ii) as a finite sum of rational functions with poles at the weights
κ. Together with the analysis above for types (i) and (iii), this proves that f(µ,σ) satisfies condition
(I) of the Theorem.

We consider the Laurent coefficient Coef(Contr(Γ), (w−z)−a). By (25), Coef(Contr(Γ), (w−z)−a)
is zero if w 6= w(κ), or if mov(κ) < a. Otherwise,

Coef(Contr(Γ), (w − z)−a)

=
1

(mov(κ)− a)!

(
dmov(κ)−a

d(w(κ)− z)mov(κ)−a (w(κ)− z)mov(κ) Contr(Γ)

)∣∣∣∣∣
z 7→w(κ)

=
(−1)mov(κ)−a |Cµ(σ)|

∣∣Cµ′(κ)(σ
′(κ))

∣∣ (mov(κ)−1
a−1

)
W |Se|

∏
η∈Mov(κ) βη(κ)

∫
[MΓrκ]′

 ι∗Γ
(∏n

j=1 ev∗j t(ψ)
)

eT (Nvir
Γrκ)

eT (T(µ′(κ),σ′(κ))I Symd Pr)

(−ψΓrκ
n+1 − w(κ))mov(κ)−a+1

 .

Now, summing over all Γ of type (ii) with associated subtree κ yields

(−1)mov(κ)−a |Cµ(σ)|
∣∣Cµ′(κ)(σ

′(κ))
∣∣ (mov(κ)−1

a−1

)
W |Se|

∏
η∈Mov(κ) βη(κ)

〈
t(ψ), . . . , t(ψ),

[(µ′(κ), σ′(κ))]

(−ψΓrκ
n+1 − w(κ))mov(κ)−a+1

〉Symd Pr,T

0,n+1,β−β(κ)

.

(26)

On the other hand, the coefficient Coef(f(µ′(κ),σ′(κ)), (w(κ)− z)mov(κ)−a) is

∑
β≥0
n≥0

∣∣Cµ′(κ)(σ
′(κ))

∣∣Qβ
n!

〈
t(ψ), . . . , t(ψ),

[(µ′(κ), σ′(κ))]

(−ψΓrκ
n+1 − w(κ))mov(κ)−a+1

〉Symd Pr,T

0,n+1,β

(27)

We compute
|Cµ(σ)|

|Se|
∏
η∈Mov(κ) βη(κ) explicitly:

|Cµ(σ)| = |Sσ|
∏
η∈σ

η

|Se| = |CStat(κ)|
∣∣SMov(κ)

∣∣ =
∣∣SStat(κ)

∣∣ ∣∣SMov(κ)

∣∣ ∏
η∈Stat(κ)

η

|Cµ(σ)|
|Se|

∏
η∈Mov(κ) βη(κ)

=
|Sσ|

∏
η∈Mov(κ) η∣∣SStat(κ)

∣∣ ∣∣SMov(κ)

∣∣∏
η∈Mov(κ) βη(κ)

=
1

q(κ)mov(κ)

(
σimov

1
(κ)

Mov(κ)

)
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With (26) and (27), this proves (II). Note that the contribution from all graphs of type (ii) (and
the term t(µ,σ)(z)) is

τ (µ,σ)(z) := t(µ,σ)(z) +
∑

κ∈Υ(µ,σ)
a≤mov(κ)

Qβ(κ) RC(κ, a)

(w(κ)− z)a
Coef(f(µ′(κ),σ′(κ)), (w(κ)− z)mov(κ)−a).(28)

The proof of condition (III) is identical to that of condition (C3) in [CCIT15], and we reproduce
the argument here for convenience.

Consider a decorated tree Γ of type (iii). We write v := Mark(n+ 1) ∈ V S(Γ). The marked
points ofMv correspond to (1) elements of Mark−1(v), and (2) edges e ∈ E(Γ, v). To e is associated
a maximal subtree Γe containing v, with E(Γe, v) = e. We decorate Γe so that Mark−1(v) = b, and
the rest of the decorations inherited from Γ. We will then write Contr(Γ) in terms of Contr(Γe) for
e ∈ E(Γ, v), and integrals over the vertex moduli space Mv.

We apply (22) again. After an étale base change M̃Γ → MΓ, we may label the subtrees Γe.

(Write M for the degree of this base change.) We then write M̃Γ
∼=Mv ×

∏
e∈E(Γ,v)MΓe . Now we

again apply Proposition 4.4, to see that

1

eT (Nvir
Γ )

= e−1
T (Rπ∗(Cv, f

∗T Symd Pr))
∏

e∈E(Γ,v)

r(v, e)eT (T(µ,Mon(v,e))I Symd Pr)

(−ψMv

e − ψMe

v )eT (Nvir
Γe

)

Observe that
eT (T(µ,Mon(v,e))I Symd Pr)

(−ψMv
e −ψMe

v )
is the insertion at b in Contr(Γe)|

z 7→ψMv
e

. Thus

Contr(Γ) =
1

M

∫
Mv

 ∏
e∈E(Γ,v)

|Cµ(σ)|Qβ(Γe) Contr(Γe)|
z 7→ψMv

e

 ∪
 ∏
i∈Mark−1(v)

t(ψi)


∪
eT (T(µ,σ)I Symd Pr)
−z − ψn+1

∪ e−1
T (Rπ∗(Cv, f

∗T Symd Pr)).

This is almost a twisted Gromov-Witten invariant of VEval(v), but not quite, since there are
restrictions on the monodromies at the marked points. Summing over Γe for a single e, with
everything else fixed, gives the insertion τ (µ,Mon(v,e))(ψ), where the initial term comes from replacing
Γe with a marked point. Thus summing over all σ, and over all Γ of type (iii), gives

∞∑
m=2

∑
σ

1

m!

〈
τµ(ψ), . . . , τµ(ψ),

[(µ, σ)]

−z − ψn+1

〉VEval(v),T,tw

0,m+1,0

1(µ,σ) ∈ H∗T,loc(Iµ),

where 1(µ,σ) is the fundamental class of (µ, σ) ∈ Iµ, and τµ(z) =
∑

σ′∈MultiPart(µ) τ (µ,σ′)(z)1(µ,σ).

Adding in the contributions from type (ii) graphs, summing (20) over σ yields:

fµ =
∑
σ

f(µ,σ)1µ,σ = −1µz + τµ(z) +

∞∑
m=2

∑
σ

1

m!

〈
τµ(ψ), . . . , τµ(ψ),

[(µ, σ)]

−z − ψn+1

〉VEval(v),T,tw

0,m+1,0

1(µ,σ),

where 1µ is the untwisted fundamental class on Iµ. This shows that fµ is a ΛTnov[[x]]-valued point of
Ltw
µ .
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The converse also requires no modification from [CCIT15]. Suppose f satisfies the conditions of
the theorem. By conditions (I) and (II), we may uniquely write

fµ = −1µz +
∑

σ∈MultiPart(µ)

τ (µ,σ)1(µ,σ) +O(z−1),

where τ (µ,σ)(z) is the expression in (28), for some t(µ,σ)(z) ∈ ι∗µ(H+)[[x]]. We claim that the set
{t(µ,σ)(z)} for all fixed points (µ, σ) determines f . By the localization isomorphism, if suffices to
show that it determines f(µ,σ) for all (µ, σ). We induct on the degree β + k, where k is the exponent
of x. The base case β = k = 0 is taken care of by the assumption f |Q=x=0 = −1z. Assume the
coefficients of f(µ,σ) up to degree β+k are determined by {t(µ,σ)}. Consider the coefficients of degree
β + k + 1. Some of these appear in t(z), but these are given. Some of them appear in τ (µ,σ)(z), but

these are determined since they are of the form: Qβ(κ) multiplied by a factor determined by the
inductive hypothesis. The sum of all of these terms is in H∗CR,T,loc(µ)[[Q, x]][[z]].

Finally, some of them appear in O(z−1). However, condition (III) and (5) show that these are
determined by terms of −1z + τ (µ,σ)(z) of degree at most β + k + 1. Since all such terms are
determined by t(µ,σ) and induction, the degree β + k + 1 coefficients of f(µ,σ) are determined. Thus
in fact f is determined by {t(µ,σ)(z)}.

Again by the localization isomorphism, the set {t(µ,σ)(z)} corresponds uniquely to an element

t(z) ∈ H+[[x]] that restricts to each t(µ,σ)(z). This in turn corresponds uniquely to a ΛTnov[[x]]-valued
point fGW of Lx. By the uniqueness argument above we have f = fGW. �

Remark 5.8. No modifications are required to replace ΛT
nov[[x]] in the statement of Theorem 5.5

with a finitely generated graded ΛTnov-algebra.

6. The I-function and mirror theorem

In this section we introduce a function ISymd Pr(Q, t,x,−z), and show that it satisfies the conditions
of Theorem 5.5, conditional upon two combinatorial identities that we checked extensively by
computer, but were unable to prove. (See Section 7.) That is, we prove that these identities
imply ISymd Pr(Q, t,x,−z) is a ΛTnov[[t,x]]/(x)2-valued point of LSymd Pr , where t = {t0, . . . , tr} and

x = {xπ}π∈Part(d) are formal variables.
The (first order) I-function ISymd Pr(Q, t,x, z) is defined by its restrictions to the T -fixed points

ιµ,σ : (µ, σ) ↪→ I Symd Pr as follows:

ι∗(µ,σ)ISymd Pr(Q, t,x, z) :=
(
zδσ,(1,...,1)1σ + xπ(σ)1σ

)∑
β≥0

exp

 r∑
i=0

ti

β +
r∑
j=0

µj(αj − αi)/z

Qβ

·
∑

(Lη)η∈σ
Lη≥0∑
Lη=β

 r∏
j=0

∏
η∈σj

1∏Lη
γ=1

∏r
i=0

(
αj − αi + γ

η z
)
 ,(29)

where 1σ is the fundamental class of (µ, σ) ∈ Iµ. We will use the notations

I(µ,σ)(Q, t,x, z) := ι∗(µ,σ)ISymd Pr(Q, t,x, z)

and

Iµ(Q, t,x, z) :=
⊕

σ∈MultiPart(µ)

I(µ,σ)(Q, t,x, z).
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Remark 6.1. As in Remark 2.7, we have ISymd Pr(Q, t,x, z) 6∈ H∗(I Symd Pr,Q)[[Q, t,x]]((z−1)) due
to the presence of arbitrarily high powers of z. The “topological nilpotence” condition we alluded
to is simply to say that for a fixed monomial in the variables ti and xπ, the powers of z in that
monomial’s coefficient are bounded above.

Remark 6.2. ISymd Pr may be decomposed into pieces that we might naturally regard as ISymd Cr . If

we introduce variables xj,π, where 0 ≤ j ≤ r and π is a partition of µj , and set
∏

0≤j≤r xj,πj = x∪πj ,
then we may repeatedly switch orders of summation and products to write

Iµ(Q, t,x, z) = Iµ(Q, t, 0, z) +
r∏
j=0

Ij,µj (Q, t,x, z),(30)

where

Ij,d(Q, t,x, z) =
∑

π∈Part(d)

xj,π1j,π
∏
η∈π

∑
β≥0

Qβ exp (
∑r

i=0 ti(β + η(αj − αi)/z))∏r
i=0

∏β
γ=1(αj − αi + γ

η z)
.

Here 1j,π is the pullback of 1π along the natural isomorphism IBGµ →
∏r
j=0 IBSµj .

We now prove:

Theorem 6.3. Assuming Identities 7.1 and 7.2 hold, ISymd Pr(Q, t,x,−z) is a ΛT
nov[[t,x]]/(x2)-

valued point of LSymd Pr .

Remark 6.4. This result is weaker than that in the original preprint, where ΛT
nov[[t,x]] appeared

without the quotient by the ideal (x)2, and the dependence on Identities 7.1 and 7.2 was omitted.
We do not know if it is possible to find an explicit formula for a (nontrivial) ΛTnov[[t,x]]-valued point
of LSymd Pr .

Proof. We must prove that the criteria in Theorem 5.5 are satisfied. The form of (29) implies that

the coefficient of Qβxπt
a is a rational function in z with poles at z = 0, z =∞, and z =

αi1−αi2
q ,

where i1 = i(η) for some η ∈ σ, and q ∈ 1
ηZ. This is exactly the set of values arising as w(κ) for

κ ∈ Υ(µ, σ). This proves (I).
To prove (II), we fix µ ∈ ZPart(d, r + 1), σ ∈ MultiPart(µ), β ≥ 0, L = (Lη)η∈σ as in (29),

a ∈ Z>0, distinct elements i1, i2 ∈ {0, . . . , r} such that µi1 6= 0, and q ∈ Q such that q ∈ 1
ηZ for

some η ∈ σi1 . Let w =
αi1−αi2

q .

First, assume that σ is not the trivial multipartition of µ. The term of I(µ,σ)(Q, t,x,−z)
corresponding to L is Tσ,L(z)xπ(σ)1σQ

β, where:

Tσ,L(z) =
r∏
j=0

∏
η∈σj

HLη ,j,η(z)(31)

and

Hβ,j,η(z) =
exp (

∑r
i=0 ti (β + η(αj − αi)/(−z)))∏β
γ=1

∏r
i=0

(
αj − αi − γ

η z
)(32)

Let σL = {η ∈ σi1 : Lη ≥ qη}, and recall Notation 5.2. Given a nonempty submultiset M ⊆ σL,
there is a unique κM ∈ Υ(µ, σ) such that w(κM ) = w and Mov(κ) = M, and we may define
L′(κM ) = (L′(κM )η)η∈σ′(κM ) by letting L′(κM )η = Lη − qη for η ∈M . Note that such η are parts of
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σ′i2(κM ), and that we have
∑

η∈σ′(κM ) L
′(κM )η = β−β(κM ). Therefore, to prove (II), it is sufficient

to show that

Coef(Tσ,L(z), (w − z)−a) =
∑
M⊆σL
|M |≥a

RC(κM , a) Coef(Tσ′(κM ),L′(κM )(z), (w − z)|M |−a),(33)

since adding up (33) over all L and β yields (19).
Note that HLη ,j,η(z) has a pole at w if and only if j = i1 and η ∈ σL, and in this case HLη ,j,η(z)

has a simple pole at w, coming from the factor (γ, i) = (qη, i2) in the denominator. Thus Tσ,L(z)
has a pole at w of order exactly |σL|. Define

H̃µ,σ,L,j,η(z) =

{
(w − z)HLη ,j,η(z) j = i1, η ∈ σL
HLη ,j,η(z) else.

If a > |σL| , then both sides of (33) are zero, so assume a ≤ |σL|. By the product rule, the left side
of (33) is equal to

1

(|σL| − a)!

(
d|σL|−a

d(w − z)|σL|−a
(w − z)|σL|Tσ,L(z)

)
z 7→w

=
∑

(k(j,η))0≤j≤r,η∈σj∑
j,η k(j,η)=|σL|−a

r∏
j=0

∏
η∈σj

H̃
(k(j,η))

Lη ,j,η
(w)

k(j,η)!
.(34)

Similarly, the right side of (33) is equal to

∑
M⊆σL
|M |≥a

RC(κM , a)
∑

(k(j,η))0≤j≤r,η∈σ′
j
(κM )∑

j,η k(j,η)=|σL|−a

r∏
j=0

∏
η∈σ′j(κM )

H̃
(k(j,η))

L′(κM )η ,j,η
(w)

k(j,η)!
.(35)

We may switch the order of summation in (35), using the natural bijection between the parts of
σ and σ′ji(κM ). Note that this bijection identifies the parts of M ⊆ σi1 with parts of σ′i2(κM ). For

η 6∈M we have L′(κM )η = Lη, so the result is:

∑
(k(j,η))0≤j≤r,η∈σj∑
j,η k(j,η)=|σL|−a

∑
M⊆σL
|M |≥a

RC(κM , a)

( ∏
0≤j≤r
η∈σj
η 6∈M

H̃
(k(j,η))

Lη ,j,η
(w)

k(j,η)!

) ∏
η∈M

H̃
(k(j,η))

Lη−qη,i2,η(w)

k(i2,η)!
(36)

=
∑

(k(j,η))0≤j≤r,η∈σj∑
j,η k(j,η)=|σL|−a

∑
M⊆σL
|M |≥a

(−1)|M |−a
(
σi1
M

)(
|M | − 1

a− 1

)( ∏
0≤j≤r
η∈σj
η 6∈M

H̃
(k(j,η))

Lη ,j,η
(w)

k(j,η)!

)

·
∏
η∈M

H̃
(k(j,η))

Lη−qη,i2,η(w)

k(i2,η)! · q ·
∏

0≤i≤r
1≤γ≤qη

(γ,i) 6=(qη,i2)

(
qη−γ
qη αi1 + γ

qηαi2 − αi
) .

Consider a single summand S(k(j,η)) of the leftmost sum in (36). Fix a subset

U ⊆ σL ∩ {(j, η) : k(j,η) > 0},

and consider the contribution S((k(j,η));U) to S(k(j,η)) from all M such that

M ∩ {(j, η) : k(j,η) > 0} = U.
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By definition, we have S(k(j,η)) =
∑

U⊆σL∩{(j,η):k(j,η)>0} S((k(j,η));U). Explicitly,

S((k(j,η));U) =
∑

U⊆M⊆σL
|M |≥a

(−1)|M |−a
(
σi1
M

)(
|M | − 1

a− 1

)( ∏
0≤j≤r
η∈σj
η 6∈M

H̃
(k(j,η))

Lη ,j,η
(w)

k(j,η)!

)

·

(∏
η∈U

H̃
(k(j,η))

Lη−qη,i2,η(w)

k(j,η)! · q ·
∏

0≤i≤r
1≤γ≤qη

(γ,i)6=(qη,i2)

(
qη−γ
qη αi1 + γ

qηαi2 − αi
))(37)

·

( ∏
η∈MrU

H̃Lη−qη,i2,η(w)

k(j,η)! · q ·
∏

0≤i≤r
1≤γ≤qη

(γ,i)6=(qη,i2)

(
qη−γ
qη αi1 + γ

qηαi2 − αi
)).

From (32), a simple direct computation using the two identities

Lη + µi1
αi1 − αi
−w

+ µi2
αi2 − αi
−w

= (Lη − qη) + (µi1 − qη)
αi1 − αi
−w

+ (µi2 + qη)
αi2 − αi
−w

.(38)

and

αi2 − αi −
γ

η
w = αi1 − αi −

γ + qη

η
w.(39)

shows that ∏
η∈MrU

H̃Lη−qη,i2,η(w)

k(j,η)! · q ·
∏

0≤i≤r
1≤γ≤qη

(γ,i)6=(qη,i2)

(
qη−γ
qη αi1 + γ

qηαi2 − αi
) =

∏
η∈MrU

H̃Lη ,i1,η(w)

k(i1,η)!
.(40)

(Specifically, (38) is used to show that the product of exponential factors appearing on both sides of
(40) are identical, and (39) is used to show that for each η, the corresponding products of factors

(αj − αi − γ
η z) on each side of (40) are identical. The factor 1

q matches with (w−z)
αi1−αi−

γ
η
z
, where

(γ, i) = (qη, i2), on the right side of (40).)
By (40), the product expressions in (37) are independent of M , i.e. we may rewrite (37):

S((k(j,η));U) =

( ∏
0≤j≤r
η∈σj
η 6∈U

H̃
(k(j,η))

Lη ,j,η
(w)

k(j,η)!

)(∏
η∈U

H̃
(k(j,η))

Lη−qη,i2,η(w)

k(j,η)! · q ·
∏

0≤i≤r
1≤γ≤qη

(γ,i)6=(qη,i2)

(
qη−γ
qη αi1 + γ

qηαi2 − αi
))(41)

·

( ∑
U⊆M⊆σL
|M |≥a

(−1)|M |−a
(
σi1
M

)(
|M | − 1

a− 1

))
.

The last sum in (41) is equal to

|σL|−a∑
m=0

(−1)m
(
m+ a− 1

a− 1

)(
|σL| − |U |
m+ a− |U |

)
=

|σL|−a∑
m=0

(
−a
m

)(
|σL| − |U |
|σL| − a−m

)
=

(
|σL| − a− |U |
|σL| − a

)
,
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where we have used the Chu-Vandermonde identity (as well as the usual conventions for binomial
coefficients with negative first argument). Thus S((k(j,η));U) = 0 for U 6= ∅, i.e.

S(k(j,η)) = S((k(j,η)); ∅) =
∏

0≤j≤r
η∈σj

H̃
(k(j,η))

Lη ,j,η
(w)

k(j,η)!
.

This is precisely to say that (36) and (34) agree, proving (II) in the case when σ is nontrivial.
Lastly, we treat the case where σ is the trivial multipartition of µ, so I(µ,σ) has a factor z + xσ.

We must therefore also prove the analog of (33) for zTσ,L(z). Very little modification is required. In
fact, our argument never mentioned the exact form of Hβ,j,η(z) for η 6∈ σL — using this, it is easy
to see that any multiple g(z)Tσ,L(z) satisfies (33). This completes the proof of (II).

Finally, we prove (III) using Tseng’s orbifold quantum Riemann-Roch (OQRR) operator. It is
sufficient to prove the statement for the specializations Iµ(Q, 0,x,−z), since (1) Q may be rescaled

to absorb etiβ, and (2) the string equation shows that Ltw
µ is invariant under multiplication by

e−
∑r
j=0 tiµj(αj−αi)/z.

The OQRR operator is expressed in terms of the tangent bundle F = Tµ Symd Pr over µ =
(µ0, . . . , µr). Note that F splits into subbundles Fj,i, where 0 ≤ i, j ≤ r and i 6= j; here Fj,i consists
of tangent vectors along which the µj points at the coordinate point Pj ∈ Pr move along the
coordinate line L(j,i). Note that (t0, . . . , tr) ∈ (C∗)r+1 acts on Fj,i by multiplication by ti/tj . The
isotropy group Gµ acts on Fj,i, and may prevent it from decomposing further.

For each multipartition σ = (σ0, . . . , σr) of µ, let Fj,i,σ denote the pullback of Fj,i along σ ↪→
Iµ → µ.5 In [Tse10], one must describe, for each q ∈ Q, the eigenbundle F qj,i,σ of Fj,i,σ on which

a representative α = (α0, . . . , αr) ∈ Gµ ∼= Sµ0 × · · · × Sµr of σ acts with eigenvalue q |Gµ|. By
definition of Fj,i, α acts by a permutation matrix associated to the cycle type of αj ; the eigenvalues

are therefore
⊔
η∈σj{1, e

2πi/η . . . , e2πi(η−1)/η}. Equivalently,

chk(F
(q lcm(σj))
j,i,σ ) =

{
#{η ∈ σj : q ∈ 1

ηZ} k = 0

0 k > 0,
(42)

Define a collection of formal variables s = (s
(j,i)
k ) for 0 ≤ i, j ≤ r, i 6= j, and k ≥ 0. These define

a family of multiplicative characteristic classes

cs(F ) =
∏

0≤i≤r
i 6=j

exp

∑
k≥0

s
(j,i)
k chk(Fj,i)

 ,

with the specialization

s
(j,i)
k =

{
− log(αj − αi) k = 0

(−1)k(k − 1)!(αj − αi)−k k ≥ 1
(43)

giving the equivariant Euler class cs(F ) = eT (F ) (see [CR10], Lemma 4.1.2). Under this specializa-

tion, s(j,i)(x) :=
∑

k≥0 s
(j,i)
k

xk

k! satisfies exp(s(j,i)(x)) = (αj − αi + x)−1.

5In fact Fj,i,σ splits further, with a subbundle for each distinct integer appearing in σj . We will not need this splitting
directly, but it is related to the choice of variables in the proof of Claim 6.5 below.
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Let Bm denote the mth Bernoulli polynomial; recall that Bm(0) is the m-th Bernoulli number.
The OQRR operator for F =

⊕r
j≥0

⊕
0≤i≤r
i 6=j

Fj,i is

∆ =
⊕

σ∈MultiPart(µ)

exp

 r∑
j=0

∑
0≤i≤r
i 6=j

∑
q∈Q∩[0,1)

∑
k≥0

∑
m≥0

s
(j,i)
k

Bm(q)

m!
chk+1−m(F

(q)
j,i,σ)zm−1



=
⊕

σ∈MultiPart(µ)

exp

 ∑
0≤i,j≤r
i 6=j

∑
η∈σj

η−1∑
`=0

∑
m≥1

s
(j,i)
m−1

Bm(`/η)

m!
zm−1



=
⊕

σ∈MultiPart(µ)

exp

 ∑
0≤i,j≤r
i 6=j

∑
η∈σj

∑
m≥1

s
(j,i)
m−1

Bm(0)

m!
(z/η)m−1

 ,

where the second equality is by (42) and the third equality is from the following identity, easily
proved via generating functions of Bernoulli polynomials:∑

0≤`≤η−1

Bm(`/η) =
Bm(0)

ηm−1
.

Let

G(j,i)(x, z) =
∑
n,m≥0

s
(j,i)
n+m−1

Bm(0)

m!

xn

n!
zm−1,(44)

so that

∆ =
⊕

σ∈MultiPart(µ)

exp

 ∑
0≤i,j≤r
i 6=j

∑
η∈σj

G(j,i)(0, z/η)

 .

By definition of the Bernoulli polynomials, the coefficient of s
(j,i)
k in G(j,i)(x, z) is the degree k

part of ex

ez−1 . For a ∈ C, the equation

ex+az

eaz − 1
=

ex

eaz − 1
+ ex

implies the functional equation G(j,i)(x+ az, az)−G(j,i)(x, az) = s(j,i)(x). Applying this repeatedly
shows that (after the specialization (43)) we have Iµ(Q, 0,x,−z) = ∆

(
Iuntw
µ (Q,x, s,−z)

)
, where

Iuntw
µ (Q,x, s,−z) =

∑
σ∈MultiPart(µ)

(
zδσ,(1,...,1)1σ + xπ(σ)1σ

) r∏
j=0

∏
η∈σj

∑
β≥0

Qβηβ

β!(−z)β
exp

− ∑
0≤i≤r
i 6=j

G(j,i)(−βz/η, z/η)

 .

Let ν(j) = (0, . . . , 0, 1, 0, . . . , 0) ∈ ZPart(1, r + 1), where the 1 is in the j-th position, and let ρ(j)
be the unique element of MultiPart(ν(j)). Note the relationship:

Iuntw
µ (Q,x, s,−z) =

∑
σ∈MultiPart(µ)

(
zδσ,(1,...,1)1σ + xπ(σ)1σ

) r∏
j=0

∏
η∈σj

η

z
Iuntw
ν(j) (Q, s,−z/η).(45)

It is now sufficient to prove:
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Claim 6.5. Assuming Identities 7.1 and 7.2, Iuntw
µ (Q,x, s,−z) is a Λnov[[x, s]]/(x)2-valued point of

the (untwisted) Lagrangian cone Lµ.

If we prove Claim 6.5, it will imply that Iµ(Q, 0,x,−z) is a ΛTnov[[x]]-valued point of the s-twisted
Lagrangian cone of BGµ for s as in (43) — which is precisely Ltw

µ .

Proof of claim 6.5. We prove a slightly stronger statement, replacing the variables xπ(σ) in Iuntw
µ

with new variables xσ in the obvious way. Define deg(s
(j,i)
k ) = k + 1. We will prove that Iuntw

µ is on
Lµ by induction on the degree. For the base case, [JK02, Proposition 3.4] shows that the J-function
J(Q,x,−z) ∈ Lµ is given by

J(Q,x,−z) = −z exp(Q/(−z))

1 +
∑

σ∈MultiPart(µ)

xσ
−z

1σ

 mod(x)2.(46)

That is, Iuntw
µ (Q,x, 0,−z) = J(dQ,x,−z) ∈ Lµ.

For the inductive step, suppose that Iuntw
µ lies on Lµ up to degree M in the variables s(j,i). We

will show that Iuntw
µ lies on Lµ up to degree M + 1. It is sufficient to show that all derivatives

∂Iuntw
µ

∂s
(j,i)
k

lie in the tangent space TIuntw
µ
Lµ up to degree M [CCIT09, p.393]. Let −z + tµ be the part of

Iuntw
µ (Q,x, s,−z) with nonnegative z-exponents, and for σ ∈ MultiPart(µ), define

τσ(tµ) =
∑
n≥1

1

n!
〈1, 1σ, tµ, . . . , tµ〉µ0,n+2 .(47)

Then by [CCIT09, Prop. B.4], TIuntw
µ
Lµ is freely generated as a Λnov[[x, s, z]]/(x)2-module by the

derivatives ∂σJ(τ,−z)|τ=τ(tµ) with respect to the variables Q and xσ. From (46), we have:

∂(1,...,1)J(τ,−z)|τ=τ(tµ) = exp(τ (1,...,1)(tµ)/(−z))

1 +
∑

σ∈MultiPart(µ)

τσ(tµ)

−z
1σ


∂σJ(τ,−z)|τ=τ(tµ) = exp(τ (1,...,1)(tµ)/(−z))1σ for σ 6= (1, . . . , 1).

We must therefore show that 1
exp(τ (1,...,1)(tµ)/(−z))

∂Iuntw
µ

∂s
(i0,j0)
k0

is in the Λnov[[x, s, z]]/(x)2-module generated

by:

1 +
∑

σ∈MultiPart(µ)

τσ(tµ)

−z
1σ and 1σ for σ 6= (1, . . . , 1),(48)

for any 0 ≤ i0, j0 ≤ r with i0 6= j0 and any k0 ≥ 0. For convenience, define

f
(i0,j0)
µ,k0

(−z) : =
1

exp(τ (1,...,1)(tµ)/(−z))
∂Iuntw

µ

∂s
(i0,j0)
k0

and gµ(−z) : =
Iuntw
µ /z

exp(τ (1,...,1)(tµ)/(−z))
.(49)

By (45) and the product rule, we have

∂Iuntw
µ

∂s
(i0,j0)
k0

=
∑

σ∈MultiPart(µ)

(
zδσ,(1,...,1)1σ + xσ1σ

) ∑
0≤j1≤r
η1∈σj1

η1

z

∂Iuntw
ν(j1)(Q, s,−z/η1)

∂s
(i0,j0)
k0

∏
0≤j≤r
η∈σj

(j,η) 6=(j1,η1)

η

z
Iuntw
ν(j) (Q, s,−z/η).

(50)
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Observe that Identity 7.1 in Section 7 implies

τ (1,...,1)(tµ) =
∑

0≤j≤r
µjτ

ρ(j)(tν(j)),

where ν(j) and ρ(j) are as in (45). Thus (50) implies:

f
(i0,j0)
µ,k0

(−z) =
∑

σ∈MultiPart(µ)

(
zδσ,(1,...,1)1σ + xσ1σ

) ∑
0≤j1≤r
η1∈σj1

η1

z
f

(i0,j0)
ν(j1),k0

(−z/η1)
∏

0≤j≤r
η∈σj

(j,η)6=(j1,η1)

gν(j)(−z/η)

(51)

=
∑

σ∈MultiPart(µ)

(
zδσ,(1,...,1)1σ + xσ1σ

) ∏
0≤j≤r
η∈σj

gν(j)(−z/η)

 ∑
η∈σj0

η

z

f
(i0,j0)
ν(j0),k0

(−z/η)

gν(j0)(−z/η)
.

(In the second equality, we have used the fact that f
(i0,j0)
ν(j1),k0

(−z/η) = 0 if j0 6= j1, which is immediate

from the definition of Iuntw
µ .)

By the mirror theorem for Sym1 Pr = Pr (specifically, the proof on [CCIT15, p.31]), we have
Iuntw
ν(j) ∈ Lν(j). Thus 1

z I
untw
ν(j) ∈ TIuntw

ν(j)
Lµ′ , by the tangent space property of Lν(j) [Giv04, Thm. 1]. In

particular, 1
z I

untw
ν(j) (Q, s,−z/η) is divisible by exp(−ητρ(j)(tν(j))/z), where by “divisible”, we mean

that the ratio contains only nonnegative powers of z; in other words, gν(j)(−z/η) contains only

nonnegative powers of z. Similarly, because Iuntw
ν(j) ∈ Lν(j), we have that f

(i0,j0)
ν(j1),k0

(−z/η1) contains

only nonnegative powers of z. That is, the first line of (51) implies f
(i0,j0)
µ,k0

(−z) is of the form:

1 · (power series in z) +
∑

σ∈MultiPart(µ)

xσ1σ
−z

· (power series in z) +O(x)2.

In order to show f
(i0,j0)
µ,k0

(−z) is in the Λnov[[x, s, z]]/(x)2-module generated by (48), it remains to

show that for all σ ∈ MultiPart(µ) with σ 6= (1, . . . , 1), the coefficient of z−1 · 1σ in (51) is equal to
−τσ(tµ) times the coefficient of z0 · 1 in (51). In other words, we must show:

xσ

 ∏
0≤j≤r
η∈σj

gν(j)(0)

 ∑
η∈σj0

η
f

(i0,j0)
ν(j0),k0

(0)

gν(j0)(0)
= τσ(tµ)

 ∏
0≤j≤r

1≤a≤µj

gν(j)(0)

 ∑
1≤a1≤µj0

f
(i0,j0)
ν(j0),k0

(0)

gν(j0)(0)
.

After cancellation, this is precisely the statement of Identity 7.2. �

Claim 6.5 completes the proof of (III), and hence of Theorem 6.3. �

From (29), we compute that (assuming r > 0) we have

ISymd Pr(Q, t,x, z) = 1 · z +

r∑
i=0

tiHi +
∑

σ∈MultiPart(µ)

xσ1σ +O(z−1),

where [Hi] is as in Section 2.3. By definition of JSymd Pr (from Section 2.4), Theorem 6.3 implies:

Corollary 6.6. Assuming Identities 7.1 and 7.2, we have

ISymd Pr(Q, t,x, z) = JSymd Pr(Q, θ, z) mod(x)2,
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where θ =
∑r

i=0 tiHi +
∑

σ∈MultiPart(µ) xσ1σ.

7. Appendix: Conjectural Combinatorial Identities

The Mirror Theorem 6.3 is conditional upon the following two conjectural combinatorial identities.
Let tµ denote the part of Iuntw

µ with nonnegative powers of z, and let τσ(tµ) be as in (47). We
conjecture the following:

Identity 7.1. For all µ ≥ 1, we have

τ (1,...,1)(tµ) =
∑

0≤j≤r
µj

∑
n0,n1,...≥0

(1 +
∑

k≥0 knk)
−2+

∑
k≥0 nk∏

k≥0 nk!(k!)nk
Q1+

∑
k≥0 knk

∏
k≥0

 ∑
0≤i≤r
i 6=j

s
(j,i)
k


nk

+O(x2).

Identity 7.2. Let µ ≥ 1, and let σ be a partition of µ that is not equal to (1, . . . , 1). Then

τσ(tµ) = xσ
∏

0≤j≤r
gν(j)(0)|σj |−µj +O(x)2,

where gµ(−z) is as in (49). (Recall that ν(j) ∈ ZPart(1, r + 1) is the composition with 1 in the jth
entry, and ρ(j) is the unique multipartition of ν(j).)

Both identities are entirely combinatorial in nature, as τ (1,...,1)(tµ), τσ(tµ), and gν(j)(0) are
entirely explicit. Specifically, one uses the formulas [Koc01, Lemma 1.5.1] and [JK02, Prop. 3.4],
both of which we have already used extensively in this paper, to evaluate the integrals appearing in
τ (1,...,1)(tµ) and τσ(tµ) in terms of multinomial coefficients. The resulting expressions for τ (1,...,1)(tµ)
and τσ(tµ) are iterated sums over partitions.

We expect that both identities can be proved via cleverly switching the order of summation,
and applying basic multinomial coefficient identities or generating function techniques. (In the
introduction we speculated that tools from integrable systems might also yield a less-hands-on
proof.) However, due to the complicatedness of the generating functions involved, we were not able
to complete either proof. We instead conclude with some relevant observations and experimental
verifications of both identities to small order.

Notes about Identity 7.1:

(1) The variables xσ are entirely absent from Identity 7.1, as follows. The invariants appearing

in τ (1,...,1)(tµ) are of the form

〈1, 1, tµ, . . . , tµ〉µ0,n+2 .

For σ 6= (1, . . . , 1), the class 1σ always appears with an xσ factor in tµ. As we are working
modulo (x)2, the only contributions are from invariants with at most one nontrivial class
1σ. By [JK02, Prop. 3.4], invariants with exactly one nontrivial class 1σ vanish. Thus we
may replace tµ in Identity 7.1 with t0

µ, where t0
µ denotes the coefficient of 1 in tµ.

(2) The difficulty in proving Identity 7.1 is not due to the presence of Bernoulli numbers in
the definition of Iuntw

µ ; in fact the Bernoulli numbers appear to play no role whatsoever, as
Identity 7.1 is a special case of the following more general formula. Let

f = −z
∏

0≤j≤r

∑
β≥0

Qβ

β!(−z)β
exp

 ∑
k≥0

0≤`≤k+1

c
(j)
k,`z

kβ`



µj

.(52)
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Then experimentally we appear to have

τ (1,...,1)(tf ) = −
∑

0≤j≤r
µj

∑
n0,n1,...≥0

1 +
∑
k≥0

knk

−2+
∑
k≥0 nk

(−Q)1+
∑
k≥0 knk

∏
k≥0

((k + 1)c
(j)
k,k+1)nk

nk!
,

(53)

where −z + tf denotes the part of f with nonnegative powers of z. Using Note (1), Identity
7.1 is the special case where

c
(j)
k,` =

∑
i 6=j

Bk−`+1(0)

`!(k − `+ 1)!
s

(j,i)
k .

(Indeed, the absence of ck,` for ` ≤ k in (53) shows that the Bernoulli numbers Bm(0) for
m > 0 are entirely irrelevant.) Note that we require ` ≤ k + 1 in (52) because, in the

expression G(j,i)(−βz/η, z/η) from (44), the power of β is always at most one more than
the power of z.

(3) Writing

t0
µ = 1 · (y0 + y1z + y2z

2 + · · · ),

and evaluating the integrals 〈
1, 1, t0

µ, . . . , t
0
µ

〉µ
0,n+2

,

gives the expression

τ (1,...,1)(t0
µ) =

∞∑
n=1

∑
ζ∈ZPart(n−1,n)

1

|Sζ |

(
n− 1

ζ

)∏
η∈ζ

yη.

We may compute each yi explicitly. For example, if we set every ck′,`′ to zero except for one,
say ck,`, and we have µj = 0 for all but one j, then we have:

yη = (−1)ηµj !
∑

N≥η/k

(c
(j)
k,`)

N QkN−η+1

N !(kN − η + 1)!

∑
π∈ZPart(kN−η+1,µj)

(
kN − η + 1

π

)(∑
λ∈π λ

`
)N

|Sπ|
.

(4) Some straightforward combinatorial identities can be used to expand τ (1,...,1)(tµ) as a
polynomial in µ, whose coefficients are sums over partitions. Experimentally, the coefficient
of µm “miraculously” cancels to give zero whenever m > 1. (Indeed, proving this “linearity”
would suffice for the purpose of Theorem 6.3; we do not need the explicit formula.)

(5) Figure 4 verifies Identity 7.1 for µ = (1, 0, . . .) and µ = (3, 0, . . .), to second order in

sk =
∑

1≤i≤r s
(i,0)
k for k ≤ 2 (and to zeroth order in sk for k > 2).

Notes about Identity 7.2:

(6) The same argument as in Note (1) shows that τσ(tµ) ∈ xσ · C[[Q, {s(j,i)
k }]] +O(x2). As in

Note (3), it is straightforward to expand τσ(tµ) as an explicit sum over partitions.
(7) Unlike in Note (2), the Bernoulli numbers do appear to play a nontrivial role in Identity 7.2.
(8) Figure 5 verifies Identity 7.2 for σ = {4}, σ = {4, 1}, and σ = {3, 2}, to the same orders in

sk as above. Observe in particular that Identity 7.2 predicts that τσ(tµ) is identical for these
three choices of σ. (By σ = {4, 1}, we really mean µ = (5, 0 . . . , ) and σ = ({4, 1}, {}, . . .).)
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Figure 4. Experimental verification of Identity 7.1

Figure 5. Experimental verification of Identity 7.2
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