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GROMOV-WITTEN INVARIANTS OF Sym¢P"

ROB SILVERSMITH

ABSTRACT. We give a graph-sum algorithm that expresses any genus-g Gromov-Witten invariant
of the symmetric product orbifold Sym?P" := [(P")¢/S,] in terms of “Hurwitz-Hodge integrals”
— integrals over (compactified) Hurwitz spaces. We apply the algorithm to prove a mirror-type
theorem for Sym® P" in genus zero. The theorem states that a generating function of Gromov-Witten
invariants of Sym?P" is equal to an explicit power series Igyapr, conditional upon a conjectural
combinatorial identity. This is a first step in the direction of proving Ruan’s Crepant Resolution
Conjecture for the resolution Hilb(®¥ (P?) of the coarse moduli space of Sym? P2.

1. INTRODUCTION

Over the last 20 years, following predictions from string theory [CdIOGP91], mathematicians
have proven a series of results known as mirror theorems; an incomplete list is [GivO8bl [LLY99,
Giv98al, BCFKvS00, [Zin09, [Lilll, JK02, [CCIT15, [(CCEFK15, [FLZ20bl, FLZ20a, [CCIT14]. These
theorems reveal elegant patterns and structures embedded in the collection of (usually genus-
zero) Gromov-Witten invariants of a fixed target manifold or orbifold X. They also allow for
easy computation of these invariants in certain cases where direct computation involves difficult
combinatorial computations. However, the scope of these results, and much of Gromov-Witten
theory in general, is limited to the world of toric geometry; in all cases above, X is a complete
intersection in a toric variety or stack (or a deformation thereof). The essential reason for this is
that computing a Gromov-Witten invariant of a toric variety can be reduced, via the Atiyah-Bott
localization theorem, to evaluating a certain sum over labeled graphs.

In this paper, we study the Gromov-Witten invariants of Sym?P", which has a torus action,
but without a dense orbit. Some aspects of the theory remain similar to the toric case, many new
obstacles must be dealt with, and some interesting new behaviors appear. In the first half of the
paper we use localization to give an algorithm expressing any Gromov-Witten invariant of Sym? P"
explicitly in terms of Hurwitz-Hodge integrals (Theorem. Hurwitz-Hodge integrals are numerical
invariants of a representation of a finite group G; they are defined as integrals over compactified
Hurwitz spaces. Computing them in general is a main stumbling block in orbifold Gromov-Witten
theory.

In order to apply localization to the case of Sym? P", we must carefully describe the torus-invariant
curves on Sym?P" and their deformation theory. We do this in Sections [3| and [4l (These sections
contain the main geometric content of the paper.)

In the second half of the paper, we apply the above algorithm in a recursive form (Theorem |5.5|)
to prove a genus-zero mirror-type theorem for Sym¢® P" (Theorem , which was not possible using
existing techniques. The theorem, which is conditional upon two explicit combinatorial identities
we were unable to prove, gives a formula for a generating function of Gromov-Witten invariants of
Sym?P". The proof of Theorem is notably combinatorial, and the specific combinatorics are of
independent interest, see Remark Theorem is also the only known mirror theorem for a
nonabelian orbifold, besides single points [¢/G].
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Corollary Assuming Identities [7.1] and for any d,r > 1 there is an equality

— 2
ISydeP’T = szmd]P;T mod(x) s

where Jg  ap- is a generating function of genus-zero Gromov-Witten invariants of Sym¢? P" (see
Section , and Ig . ap, 18 the explicit power series (29)).

Remark 1.1. In Theorem and Corollary Igymapr is only defined up to first order in x —

it would be very desirable to generalize this mirror theorem so that it involves a power series I’
with arbitrary powers of x. The primary obstacle is that one must first produce such a power
series — and then check that it satisfies the conditions of Theorem The power series was
produced after much computer experimentation, and we were unable to generalize it to arbitrary
order in x. Furthermore, the combinatorics required to prove that Isymd pr satisfies the conditions of
Theorem are extremely complicated, and we were only able to establish them conditional upon
the conjectural combinatorial identities in Section [7] While there are some systematic methods for
producing such “I-functions” (e.g. [CFKI6]), applying these methods to Sym?P" (or any nonabelian
orbifold) results in the zeroth order truncation of Igymapr in X, losing all combinatorial structure.

We have three motivations for working with Sym?P".

e Sym?P" is very concrete, and is therefore a good starting point for studying both non-toric

and non-abelian behavior. While the natural (C*)"*!-action has infinitely many orbits, it
also has finitely many fixed points; in this sense Sym®P" is not too much more complicated
than a toric variety. On the other hand, it is complicated enough that studying its Gromov-
Witten invariants requires various new methods, which we expect to be useful for studying
the Gromov-Witten theory of other non-toric and non-abelian

The crepant resolution conjecture. Following physical predictions, Ruan [Rua06], Bryan-
Graber [BG09], and Coates-Iritani-Tseng [CIT09] made a conjecture relating the Gromov-
Witten invariants of an orbifold X to those of a crepant resolution of its coarse moduli
space. This conjecture has been proven in the context of toric geometry [CLJ14]. However,
the crepant resolution Hilb(@ (P2) of the coarse moduli space of Sym?P" was one of Ruan’s
motivating examples; this case has now been open for over a decade. Theorem [6.3|is a first
step towards this case.

Higher genus invariants of projective space. Costello’s thesis expressed the genus g Gromov-
Witten invariants of a smooth projective variety X in terms of the genus-zero Gromov-Witten
invariants of Sym9™! X. Theorem [6.3] provides an efficient way of encoding the latter for
X =P". It may be possible to combine Costello’s result with ours to find explicit formulas
for genus-g Gromov-Witten invariants of P".

We briefly describe the difficulties caused by the fact that Sym? P is not toric. To do so, we first
broadly outline the proof of Coates-Corti-Iritani-Tseng of the mirror theorem for a toric stack X
[CCIT15]. The two main ingredients are

(1)

An algorithm for expressing Gromov-Witten invariants of X in terms of Hurwitz-Hodge
integrals; this is supplied by localization calculations of Johnson [Joh14] and Liu [Liul3]. The
localization technique roughly involves integrating over the moduli space of torus-invariant
curves C' C X, which is easy: this moduli space is a finite collection of points, in bijection
with codimension-1 cones in the fan of X. The hardest part of the calculation is to find an
explicit expression for the integrand, which is defined in terms of the deformation theory of
the curves C.

A technique of Brown [Brol4], which reinterprets the above algorithm as follows. To each
torus-fixed point o € X is associated a power series f, in a variable z; these power series
together encode all genus-zero Gromov-Witten invariants of X. Each power series f, has a
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collection of simple poles, and using the algorithm, one shows that the power series satisfy
a recursion in the following sense: the residue of f, at a pole w is expressed as a linear
combination of values f,/(w) for other fixed points ¢’ # o (such that f,» has no pole at w).
The recursion uniquely defines f, for all o, up to some change of variables.

The outline of the proof of Theorem [6.3]is similar, but with the following differences:

(1') As mentioned, Theorem expresses any Gromov-Witten invariant of Sym?P" in terms
of Hurwitz-Hodge integrals. However, both parts of the calculation are substantially more
difficult than in the toric case. The moduli space of torus-invariant curves is not finite —
rather, it is positive dimensional, disconnected, and quite complicated. Luckily, we are able
to give a complete characterization of the moduli space (Theorem . Our characterization
is concrete enough to allow us to compute the requisite integrals. The deformation theory of
torus-fixed curves is difficult for essentially the same reason, but again the computation can
be carried out fully (Section [4)).

(2") Theorem is analogous to Brown’s description above — we again have a power series
f, attached to each torus-fixed point o € Sym?P". However, these power series no longer
have simple poles, but may have poles of arbitrarily high order. The algorithm again gives
a recursion relation, this time expressing any negative-power Laurent coefficient of f, in
terms of nonnegative-power Laurent coefficients of f,/ for other fixed points ¢’. We wish to
highlight this feature, both because it is new, and because it is expected to appear in the
Gromov-Witten theory of any nontoric variety with a nontrivial torus action. (The fact that
there are only simple poles in the toric case should be viewed as exceptional.) We hope that
this first example might provide clues for proving other nontoric mirror theorems.

Remark 1.2. We also wish to draw attention to the fact that the combinatorial structure encoded in
Theorems and (especially) is much more intricate than in the toric case — so much so that
we were not able to give an unconditional version of Theorem despite the apparent fact that
combinatorial complexity is the only hurdle — for example, the Chu-Vandermonde identity played a
crucial role in the proof of Theorem We hope that the combinatorics in this paper, though not
quite complete, will be a useful case study in proving mirror theorems where high-order poles appear.
The generating functions in this paper exhibit rich combinatorial structure, and are surely important
for further understanding mirror symmetry for symmetric products, so we believe a more systematic
study is worthwhile in the future. This is especially true of the generating functions appearing
on pages which are not specific to Sym?P" but instead deal with twisted Gromov-Witten
invariants of an orbifold point. (We note that some of the relevant framework may already exist, e.g.
in the integrable systems literature — though we were unable to find anything that would imply
Identities [7.1] and [7.2] The specific form of these identities, and the other combinatorial tools used
in the proof of Theorem [6.3] are quite unlike anything appearing in the Gromov-Witten theory to
our knowledge.)

1.1. Acknowledgements. This work is based on my Ph.D. thesis. I would like to thank my Ph.D.
advisor, Yongbin Ruan, for introducing me to the area, and for many useful conversations. I am
grateful to David Speyer, Chiu-Chu Melissa Liu, Hsian-Hua Tseng, and Karen Smith for reading
versions of this paper, and helping me to improve it. I am particularly grateful to Hsian-Hua Tseng
for pointing out gaps in the proof given in the original preprint.

This research was supported in part by NSF grants EMSW21-RTG 1045119 and EMSW21-RTG

0943832, and by the NSF GRFP.
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2. NOTATION, CONVENTIONS, AND BACKGROUND

This section sets up combinatorial conventions, and reviews Atiyah-Bott torus localization,
orbifold Gromov-Witten theory, and moduli spaces of curves called Losev-Manin spaces, which are
used in Section to describe the torus invariant curves in Sym?P’.

We always work over C. We write H*(X) := H*(X,Q). For a point x of an orbifold X, we write
G for the isotropy group of .

2.1. Multipartitions and graphs. It is convenient to use the language of multisets, denoted with
parentheses, e.g. (a,a,b). We write Mult(Il, a) for the number of times that a appears in II. We
will refer to multiset unions and intersections, and sums indexed by multisets, without comment.

For an integer d > 0, Part(d) is the set of partitions of d, i.e. the set of multisets of positive integers
that sum to d. A weak composition of d is an ordered tuple of nonnegative integers whose sum is d.
The (finite) set of weak compositions of d of length r is denoted ZPart(d,r). If D € ZPart(d,r), a
multipartition of D is a multiset (I13)4ep, with II; a partition of d. The (finite) set of multipartitions
of D is denoted MultiPart(D). For each partition D € ZPart(d, r), there is a “trivial multipartition”
of D, which we usually denote (abusing notation) by (1,...,1), where every part of every Il; is
equal to 1. There is an “underlying partition” map MultiPart(D) — Part(}_ ;. d).

If IT is a partition, we write Sy for the group of automorphisms of II as a multiset (defined
up to isomorphism); e.g. for IT = (1,1,1,2,2) of 7, we have Si; = S3 x Sy. For 0 = (Ilg)gep a
multipartition of D € ZPart(d,r), we define Sy := [];cp Sm,-

Let I' = (V(I'), E(I")) be a finite graph. We denote by E(I',v) the set of edges incident to v.
The wvalence val(v) of v € V(I') is |E(I',v)|. (This is different from some Gromov-Witten theory
literature, where val(v) includes contributions from certain decorations on I'.) A flag of T' is a pair
(v,e) € V(I') x E(T") with e € E(I',v). The set of flags of I' is denoted F(T").

2.2. Equivariant cohomology. We will consider actions of the torus T := (C*)"*! on various
spaces, e.g. P", Sym?P", and mgm(Symd P, 5). If T acts on a Deligne-Mumford stack X, the
equivariant cohomology H7(X) is a module over H}.(SpecC) = Qlay, ..., o], where —q; is the
weight of the character 7' — C* defined by (Ag,...,Ar) = Ai. We write Hr,, (SpecC) for the
localization Q(ao, . .., oy ), and more generally Hy. . .(X) 1= H}(X) ® gz (specC) HT joc(SPecC). We
will use the Atiyah-Bott localization theorem, as well as Graber-Pandharipande’s generalization, the
virtual localization theorem.

Theorem 2.1 (JAB84], see [EGI8| for statement in the Chow ring). Let T' be a torus acting on a
smooth compact manifold X, with fized point set F'. Then the map (¢r)s @ Hf oo (F) — Hp oo (X) s
an isomorphism, where (tp). is the Gysin map associated to the inclusion F — X. The inverse
map is tp/er(Np|x), where er(NF) is the equivariant Euler class of the normal bundle to F. In
particular, for a € H;JOC(X Spec C), we have

/a‘/ r)s <T3§YF>):/FT<FJ§YF>

Theorem 2.2 ([GP99]). Let X be a Deligne-Mumford stack with a T-action and a T-equivariant
perfect obstruction theory E®. Again, let 1p : F' — X denote the inclusion of the fized locus. Let
[X]V' denote the virtual fundamental class associated to E®. The T-fized part of E® defines a perfect
obstruction theory on F, with virtual fundamental class [F]"*. The virtual normal bundle N} to
F is the T-moving part of E®. Then

Upo
(1) / ‘= / F viry) ’
[X]vir [F)vir eT(NF )
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Remark 2.3. The proof in [GP99] requires that X have a global equivariant embedding into a
smooth Deligne-Mumford stack, but this condition was removed in [CKLI5].

2.3. Symmetric product stacks. Let X be a scheme over C. There are two common (equivalent)
definitions of Sym? X. The first is the stack quotient [X?/S,], where S; acts in the usual way on
X4, That is, objects and morphisms are described by

i
~ F ~ m
§ L, xd ST T — x4
Objects: lpr Arrows: l l g
S S— T

where vertical maps are Sy-principal bundles, f and g are Sg-equivariant, and the square on the
right is Cartesian. The second definition is given by

f/
N e s T 3X
Objects: lp Arrows: l l g
S —T

where vertical maps are degree d étale, and the square on the right is Cartesian. It is a straightforward
exercise to show that the two stacks defined are naturally isomorphic. We will usually use the second,
and we will consistently use the notations S — S and f’: S’ — X when referring to S-points of
Sym? X. The two descriptions are related by the diagram:

Sx{1,...,d} X% x{1,...,d}
\ ) \‘
~ pr
S f Xd
(2) 5 pr l pr
' =8 xg,{1,...,d} —|— X9xg, {1,...,d} —L X

x ~

S ! Sym? X

Here the cube is Cartesian, and the left and right faces consist of étale maps. The composition
S = Xxg {1,....d} 5 X is f'.
Now assume X is smooth. We can understand the tangent bundle to Sym?P" as follows:

Lemma 2.4. There is a natural isomorphism T Sym® X = p,(P*TX), where p and P are as in the
diagram above.

Proof. Since the square is cartesian and consists of étale maps, we have
pr*(p.(P*TX)) 2 5 ((pr')* (P*TX)) = pu (' oP*TX)).

Recall that pr’ oP is simply the “universal coordinate map,” so since p is a trivial étale cover, there
is a canonical isomorphism

d
pu((pr' oP*TX)) = P P;TX = T(XY).
/=1
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Since j is Sg-equivariant, there is an induced Sg-action on T'(X?) which agrees with the usual one.
Thus the isomorphism descends to give p.(P*TX) 2 T Sym? X. O

Finally, we describe the cyclotomic inertia stack I Sym? X — Sym? X, see Section 3 of [AGV0S].
Assume X is connected. For each partition o € Part(d), there is a component (Symd X)yof I Sym? X,
isomorphic to (a trivial gerbe over) [, -, SymMwt(@m) X and the map (Sym? X), — Sym? X is
(a rigidification followed by) the obvious one. The generic point of (Syde )o maps to a point in
Sym? X with isotropy group isomorphic to Hn21 Sy

Remark 2.5. The map (Sym? X), — Sym? X (after rigidification) may not be an embedding. For
example, consider Sym* X, and let ¢ = (2,1,1). By the above, (Sym* X), is a trivial gerbe over
X x Sym? X. The induced map X x Sym? X — Sym®* X sends points (a, (b,c)) — (a,a,b,c), but
this identifies the two distinct points (a, (b, b)) and (b, (a,a)) for all a,b € X.

The (equivariant, nonorbifold) cohomology with rational coefficients may be computed explicitly by
the Kiinneth decomposition, as the Sy-invariant part of H}(Xd, Q) = ®;l:1 H7(X,Q). In particular,
for X = P", we will use the identification HZ(Sym?P", Q) = H2((P")?, Q)% = HZ(P",Q). We will
abuse notation and write [H;] € HZ(Sym?P",Q) for the element that pulls back to 2?21 pri[H;] €
H2((P™)?), where pr; is the jth coordinate map and [H;] is the equivariant fundamental class of the
ith coordinate hyperplane.

Fix a component (I Sym?P"), of I Sym?P". For 1 € o, we denote by [Hop,i] the pullback of
[H;] from the factor of (I Sym?P"), = [T,>1 Sym™Mut (@) P corresponding to 1. We write [H, ;] for

2 n[Hon,il-

2.4. (Orbifold) Gromov-Witten theory. Our objects of study are the moduli spaces M (X, 3)
of n-marked genus-g stable maps to a smooth proper Deligne-Mumford stack X of degree [,
introduced in [CR02] and [AV(2]. See [Liul3], Section 7 for an introduction to the subject (in all
genera). Following [Liul3], we use the technical convention that all gerbes come with the data of a
section.

In this paper we will have either X = Sym?P" or X = BG for some finite group G. We write
(f : C = X) for a C-point of Mg, (X, ), and

C%X

lw
Mg,n(X7 /8)

for the universal curve and universal map.
A Gromov-Witten invariant is an integral of the form
n

(3) @ T = [ [[37 evin; €0,

(Mg, n (X, BV 5254
where
o [My,(X,B)]"" is the virtual fundamental class,
e ¢, is the jth cotangent class on Mgn(X,B), coming from the cotangent space to the coarse

moduli space of C’D
e the “insertions” +; are in the Chen-Ruan cohomology (see |[CR04]) Hfp(X), and

INote that locally Ej = r;j%;, where r; is the size of the isotropy group at the mark b;, and 1; is the “stacky” cotangent
class.
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o ev; : My ,(X,B8) = IX is the jth evaluation map.
If X has an action of a torus T, it induces a natural T-action on IX and ﬂg,n(X, B), and
[(Mgn(X,B)]¥", 9, and ev;v; are naturally equivariant classes (where v; € Hfp 7(X)). In this
case defines an equivariant Gromov- Witten invariant (an element of H}.(Spec C), denoted by
(- >§(;LTB) via T-equivariant integration.
We introduce some formalism for the case g = 0, which will be used to state and prove Theorems
and Following [CCIT15), the T-equivariant Novikov ring of Sym? P" is

AP = Hr o0 (Spec C)[[Q1];

and Givental’s symplectic vector space is
H = Hopraoo(Sym PH[[QI((z 7)) = HY @ 1™,

where Ht = HERT’IOC(SymdIP”’)[[Q]][Z] and H~ = z_ngRT’lOC(Symd]P”")[[Q]][[2_1]]. Inside H,
T

there is a special subscheme Esymd pr — precisely, a formal germ of a subscheme over Spec A,

defined at —1 - 2, where 1 € H, R’T’loc(Symd P") is the fundamental class of the untwisted sector —

called the Givental cone of Sym?P", which encodes the genus-zero Gromov-Witten invariants of
Sym?Pr.

Fix a basis 74 of HERTIOC(Symd P"), with Poincaré dual basis y%. A A
L'Symd pr is defined to be 7a7power series

o0 00 Ié; o o Sym?P". T
et + XY S L (@), ) el

n=08=0 ¢ —& = Q;Z) 0,n+1,5
where t(z) € (Q,z) C H1[[z]].

T

nov[[x]]_valued point of

Remark 2.6. This definition as stated is both confusing and slightly imprecise. The point is this: as

a formal scheme over Spec AL | [ apr is characterized (indeed, defined) not just by its C-valued

nov’ Sym!

points or Al -valued points but by its points over arbitrary (topological) Al -algebras. The
definition given is the most basic nontrivial example, and generalizes in an obvious way. See

Appendix B of [CCIT09] for a complete discussion.

Remark 2.7. Another subtlety is that we may wish to take t(z) to be a power series in z, in which
case it is not immediately obvious that the expression t(¢)) makes sense. In practice this is not a
major concern; the key is that t(z) must be “topologically nilpotent,” which will always be the case

in practice. Again, see Appendix B of [CCIT09].

An important special case is

t(z) =0= Z%% € Hé’R,T,loc(Symd PO[[{z}sl],
]

where {74} is the basis for Hf R’T’IOC(Symd PT) chosen above. The corresponding AL [[{z}]]-valued

nov
point is called the J-function of Sym?P" and is denoted Jsymipr (@, 0, —2). Here t(2) has no nonzero
powers of z, so the invariants appearing in szmd pr(Q, 0, —2) have a single v-class.

Esymd pr has several important geometric properties that follow from relations between Gromov-
Witten invariants: see Appendix B of [CCIT09], which also defines Esymd pr Tigorously as a non-
Noetherian formal scheme. For example, it is a cone in a certain sense, hence the name (Proposition
B.2 of [CCIT09]).

Given a vector bundle E on X, there is also a notion of an E-twisted Gromov-Witten invariant

of X. We need this notion only when X = BG, with the trivial action of a torus T'. Let F be a
7



T x G representation. Then R, f*E € K%(M,,(BG,0)). An E-twisted Gromov-Witten invariant
of BG is known as a Hurwitz-Hodge integral, and is defined by

(4) <E(111’713 R 7@Zn7n>ii70ﬂE = / H@Z} eV v Uep (Rﬂ'*f E)
[Mg,n(BG, 0)]"" -

As above, in genus zero we can define the twisted Lagrangian cone L% : a AL [[z]]-valued point
of L, is defined to be

© BG,T,E
®) et + 0 (D@ 2 )

n=0 ¢ 0,n+1,0

for some t(z) € (Q,z) C HT[[z]]. Here 74 and v¢ are dual bases of H;(X) under the twisted
Poincaré pairing, see [CCIT15].

Notation 2.8. In the important case where p = BG is a T-fixed point of an ambient orbifold Y, and

E =T,Y, we write L} := .CZ“Y.

2.5. Losev-Manin spaces. We recall certain moduli spaces of marked curves, studied originally
by Losev and Manin [LMO0].

Definition 2.9. Let £ > 1, and fix a 2-element set {0,00}. An (0|k|oco)-marked Losev-Manin curve
is a connected genus zero (k 4 2)-marked nodal curve (C, b, b1, ..., bk, bso ), satisfying:

The irreducible components of C' form a chain, with two leaves Cy and Cy,

e The points bg, b1, . . ., bx, b are smooth points of C', with by € Cy and by € Co,

e b; # by and b; # by for i = 1,...,k (though it is possible that b; = b; for i # j), and
e Each irreducible component of C' contains at least one point of by, ..., bg.

Theorem 2.10 ([LMO00|], Theorems 2.2 and 2.6.3). The moduli space of (0|k|oc)-marked Losev-
Manin curves M0|k|oo is a smooth projective (toric) variety, and there is a natural birational

morphism ¢ : Mo 42 = Mojgjoo-

Remark 2.11. The spaces /\/l0| kloo 18 an example of a moduli space M 4 of weighted stable curves,
developed later by Hassett [Has03|, and Theorem is a special case of Theorems 2.1 and 4.1 of
[Has03]. Specifically, there is a natural isomorphism Mmm — Mo, 4, where A is the weight datum
(1,e,€,...,¢1) of length k + 2, for e < 1/k.

Definition 2.12. Let s > 1 be an integer. An order-s orbifold (0|k|oo)-marked Losev-Manin curve

a (k + 2)-marked twisted curve (C, by, b1, ..., bk, bso) (in the sense of [Ols07]) whose coarse moduli
space is a k-marked Losev-Manin curve, such that C has orbifold structure only at by, bso, and the
nodes of C, all of which have order s.

The moduli space MSI k|oo Of order-s orbifold k-marked Losev-Manin curves has a natural map

Ma,dm — MOIkloo that comes from taking coarse moduli spaces of curves. Our calculations in
Section [5| will use the following fact, a special case from Lemma 2.3 of [Mool1].

Lemma 2.13. Let vo v and oo, v denote the tautological cotangent classes at by and bo on
MOWOO. The pullbacks ©*o Ly and ©*Yoo s along the reduction morphism Mo o — Mo\kbo
are the cotangent classes 1y and 1V, Tespectively.

Remark 2.14. Lemma [2.13 holds for order-s orbifold Losev-Manin spaces, either usmg the cotangent
classes ¢ (as we do in this paper), or replacing Mo k12 with a stacky replacement M 2 (Mg 2
parametrizes curves where by and b, have order-s orbifold structure, as do any nodes that separate
bo from bs.)
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3. THE ACTION OF (C*)"+! oN Sym?P"

There is a natural action of T := (C*)"*! on P". This induces a diagonal action of (C*)"*! on
(P7)4, which commutes with the action of Sy, hence acts on Sym?P". (The action on a diagram

5 & 5 Ly Proas in Section is by postcomposition of f’.) This T-action on Sym?P" induces an
action on ﬂgm(Symd P", B) for all n and 3.

The goal of this section is Theorem which explicitly characterizes the T-fixed locus in
M, (Sym? P, B). The building blocks of the construction are spaces My ,(BG,0) of admissible
covers from [ACVOSJEL the Losev-Manin spaces from Section and combinatorial objects called
decorated graphs.

3.1. T-fixed points and 1-dimensional orbits of Sym?P". We begin by fixing notation for
points and lines in P". We will denote the coordinate points of P” by Py, P, ..., P., where P; is the
point where the only nonzero coordinate is the ith one. We denote by L;, ;,) = L(;,,,) the line
through P, and P;,. We write F; for the “midpoint” of this line, where the i1-th and io-th
coordinates are equal.

Recall from Section that a map f : S — Sym?P" is the same as a degree-d étale cover
p:S" — S, and amap f': S — P". We use the notation e for Spec C, and d(e) for the union of d
copies of Spec C. Note d(e) is the only degree-d étale cover of e, so (C-valued) points of Sym? P"
are in natural bijective correspondence with maps f' : d(e) — P".

1,82)

Proposition 3.1. Points of Sym®P" with 0- and 1-dimensional T-orbits are classified as follows:
(1) A point (d(e) EiR P7) € SymeP" is T-fized if and only if Im(f') C {Py,..., Pr}.

(2) (d(e) EiN P") has a 1-dimensional T-orbit if and only if it is not T-fixzed and Im(f") C
{Po,...,P-} U L, i) for some 0 <y, ip <.

Proof. follows from the definition of the T-action by post-composition, and that fact that
{Py, ..., P} is the T-fixed locus of P".

The r-dimensional subtorus defined by t;, = t;, acts trivially on {Fy, ..., P.} U L, 4,), proving
the backwards direction of (2). If Im(f') € {Py,..., P} U L, 45), then Im(f’) contains either two
points on different coordinate lines, or a point not on a coordinate line. In either case, is it is easy
to check explicitly that the T-orbit is at least 2-dimensional. O

Remark 3.2. The T-fixed points of Sym?P" are in natural bijection with the set ZPart(d,r 4 1) of
length-(r + 1) weak compositions, where the ith part is the number of points of d(e) mapping to P;.
We will use this identification from now on.

3.2. T-fixed stable maps to Sym?P" with irreducible source curve. It is well-known (see
[Liul3]) that if X is a Deligne-Mumford stack with an action of a torus 7', then a stable map
f:C — X is T-fixed if and only if each component C, of C' maps into the fixed locus X7, or
maps to the closure U of a 1-dimensional T-orbit U, with special points (nodes and marks) and
ramification points mapping to U ~\. U. (In the latter case it follows that C,, is rational; we may
regard f|c, as a point of Mo a(X, ) for some 8.) If T' acts with isolated fixed points, we refer to
the two types of components of C' as contracted and noncontracted, since those of the first type map
to a single point of X. On contracted components C,,, f factors through BG for some G thus f|c,
is an admissible G-cover in the sense of [ACV03|. The following lemma classifies noncontracted
components of T-fixed stable maps to Sym? P".

2These stacks compactify Hurwitz spaces, and are now usually referred to as moduli spaces of admissible covers,
though [ACV03] reserves that term for the related compactifications defined earlier by Harris-Mumford [HMS82].
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Lemma 3.3. Let (f : C — Sym?P") € Moo(Sym?P", 3) be a stable map of degree 3 > 0 with
irreducible source curve. Denote by by and by the two marked points of C. Denote by p: C' — C
and f': C" — P" the associated degree d étale cover and map to projective space, respectively. (See
Section ) Then (f : C — Sym?@P") is T-fized if and only if all of the following hold:
e (' is a disjoint union of rational connected components 0{7. (Since C' has two orbifold points,
this means that on coarse moduli spaces, p is a cover, fully ramified over by and bs.)
e There exist distinct indices 0 < i1,io < r such that f' maps each component C’T’7 either
(i) to the line L, ;,), or
(ii) to a T-fized point of P".
e On the level of coarse moduli spaces, the restriction f’]q/7 to any component of type (i) is a
cover of L, iy, fully ramified at the two points p~1(b1) and p~1(b).
e For each component C’;], write ¢, for the degree of p|(;% : C’,’7 — C'. For components C7/7 of
type (i), write 3, for the degree of f’\c;] 1 Cf = Ly gy, and gy = By/cy. Then q := gy is
independent of the type (i) component C;].

Proof. The first three statements follow from the fact that C' is genus zero with exactly two orbifold
points, and from Proposition [3.1} It is a straightforward computation in coordinates to check that
the last statement is equivalent to the fact that the T-action is compatible with the map p, i.e. that
the action of A € T is equivalent to a coordinate change on C'. g

Remark 3.4. The same statement and proof apply to Mo,l(Symd P", 3) and Mo,o(Symd P", 3) and
in these cases we have a slightly stronger statement: since C' has at most one orbifold point, it has
no nontrivial étale cover. Thus C' = C' x {1,...,d} and ¢, = 1 for all 7.

From an irreducible T-fixed stable map as in Lemma we may extract discrete data (see
for notation) as follows:

e The rational number ¢ associated to type (i) components of C".

e The two compositions f(by), f(b2) € ZPart(d,r + 1). (See Remark [3.2])

e A refinement of the above: for each i € {0,...,r}, the points of C' mapping to P; are
each counted with a multiplicity c,. Whereas f(b;) remembers only the sum for each i, we
could instead record the list of multiplicities ¢,. The result is a multipartition Mon(b;) €
MultiPart(f(b1)). This multipartition describes the monodromy of f at b; as a conjugacy
class in G (). Similarly Mon(bz) € MultiPart(f(bz)).

3.3. Decorated graphs. Having classified irreducible components of T-fixed stable maps to
Sym?P", we will now describe how these components fit together. Following [Liul3], we introduce
combinatorial objects called decorated graphs, which capture the combinatorial data of elements of

(M%n(symd ]P)T7 /6))T

Definition 3.5. An n-marked genus-g Sym® P"-decorated graph (I', Mark, {g,}, VEval, q,l\Ton) is
A graph T,

A marking map Mark : {1,...,n} — V(I),

A “vertex genus” map V(I') — Z>( denoted v — gy,

A “vertex evaluation” map VEval = (VEvaly, ..., VEval,) : V(I') — ZPart(d,r + 1),

An “edge degree ratio” map q : E(I') — Qxo,

A “monodromy map” Mon = (Mony,...,Mon,) that assigns to each j € {1,...,n} an
element of MultiPart(VEval(Mark(j))) (see Section [2.1]), and assigns to each flag (v,e) €
F(I') an element of MultiPart(VEval(v)),

subject to the conditions:
(1) ha(T) + X pevr) 9o = 9-
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(2) Let e be an edge of I' connecting vertices v and v'. Then there exist two distinct indices
0 <i™%V(v,e),i™V(v/,e) < r such that:
o VEvalmov(y ¢)(v) — VEvaljmov(, ¢y (') > 0.
o Ifi & {i™(v,e),i™ (v, e)}, then VEval;(v) = VEval;(v') and Mon;(v, e) = Mon; (v, €)
(as partitions of VEval;(v)).
e There are containments Mon;mov(, ¢y (v, €) € Monmov(, ¢y (v, €) and Monmov (s o) (v, €) C
Mon;mov () (v', €), and the relation between complements holds:

Mon;mov (y,¢) (U, €) \ Mot mov (4, ¢) (v, €) = Monmov (i ¢) (v, €) \ Mol mov (4 o) (v, €).

e For 17 € Monmov(y ¢) (v, €) \ Monmov(, ¢y (v, €), we have n € ﬁZ.

(3) Ifv € V(T) with g, = 0, E(T,v) = {e,}, and Mark™!(v) = @, then Mon(v, e,,) is the “trivial”
multipartition of MultiPart(VEval(v)) whose elements are all 1.

(4) If v € V() with g, = 0, B(T,v) = {e,}, and Mark~!(v) = {5}, then Mon(v, e,) = Mon(j).

(5) If v € V(I') with g, = 0, E(T,v) = {el,e?}, and Mark™'(v) = 0, then Mon(v,e}) =
Mon(v, €2).

—
For brevity, we will write I' instead of (I', Mark, {g, }, VEval, g, Mon). For a fixed I", we introduce
notation:

e Each part n of the multipartitions Mon(v, e) and Mon(j) is an element of one of the multisets
(Mony, ..., Mon,), and we write i(n) for the element of {0,...,7} such that n € Mon;,).

e Let Mov(e) be the difference multiset Mon;mov (y,¢) (v, €) \Mon;mov (4, ¢) (v', €), and let Stat(e) :=
Mon(v, e) ~ Mov(e) be its complement. By condition [2, Mov(e) and Stat(e) depend on e
rather than (v,e). Mov(e) is the submultiset of “moving parts” of Mon(v, e) (or Mon(v’, €)),
and Stat(e) is the submultiset of “stationary parts”. Note that Stat(e) is a {0, ..., r}-labeled
multiset. We write mov(e) := [Mov(e)|.

e Let Mon(e) be the partition (J, Mong(v, e) of d, which again by condition [2| depends only
on e. Note that unlike Mon(v, e) and Mon(j), Mon(e) is only a partition of d, rather than a
multipartition.

e For v satisfying any one of conditions or [5, we write Mon(v) for Mon(v,e,) or
Mon(v, el) = Mon(v, €2).

e For an edge e € E(T'), let B(e) = X enove) Bnl€) = 2 emov(e) 4(€)n- Let B(I) =
ZeeE(I‘) B(e).

e Denote by Graphsgﬂn(Symd P", B) the finite set of n-marked genus-g Sym?P"-decorated
graphs I with G(I") = 5. We refer to these as simply “decorated graphs” when no confusion
is possible.

Lemma 3.6. There is a natural map
U (mg,n(Symd P, AT — Graphsgm(Symd P, 5).

Proof. Let (f : (C,b1,...,b,) — Sym?P") € (ﬂgm(Symd P, 8))T. Define sets V(I') equal to the
set of connected components of f~((Sym?P")T), and E(I") the set of noncontracted irreducible
components of C'. By Lemma [3.3] associated to each noncontracted irreducible component of C' are
two T-fixed points P;, and P;,, so these define a graph I'.

We now define the various decorations of I'. Let Mark(j) be the connected component of
F71((Sym?P")T) containing b;. Let VEval(v) be the (r 4+ 1)-tuple representing the T-fixed point
f(v), from Section Let g(e) = ¢ be the rational number determined by Lemma Let Mon(j)
be the monodromy of f at b;. This is a conjugacy class in the isotropy group Gy ;;), and these are

in natural bijection with MultiPart(VEval(Mark(7))). Finally, let Mon(v, e) be the monodromy of
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f at the point (v, e) where the connected component v meets the irreducible component e; this
monodromy is naturally an element of MultiPart(VEval(v)).

Condition for decorated graphs follows from the description in Lemma Condition
follows from Remark [3.4. Condition holds because for such v, {(v,e,) and b; are the same
point of C. Condition is true for the same reason, together with the fact that the inverse of a
conjugacy class in Sy is itself. O

3.4. Classifying the connected components of (ﬂg,n(Symd P, 3))T. The map in Lemma
gives a stratification of (M, (Sym?P", )T into (as we will see) locally closed substacks. In this
section we describe how the strata fit together. To be precise, what we show does not quite classify
connected components, but rather certain open and closed substacks — see Remark

Notation 3.7. Let (f : C — Sym?P") € U~(I"). If v € V(T'), then from Lemma v corresponds
to a subcurve of C. We denote this by C,. Similarly, for e € E(T"), we write C, for the corresponding
irreducible component of C. For (v,e) € F(I'), we write (v, e) for the point v Ne € C, again using
the notation of the proof of Lemma [3.6] We say (v,e) is a special flag if (v, e) is a special point,
equivalently if g, > 0 or val(v) > 1 or Mark ™! (v) # (). Note that the isotropy group at &(v,e) (resp.
b;) has order lem(Mon(v, e)) (resp. lem(Mon(j))). For brevity we denote this by r(v,e) (resp. ;).

We adopt the following notation from [Liul3], corresponding to conditions and |5|in Definition

VD) = {v € V(I)|g, = 0, val(v) = 1, Mark ' (v)| = 0}

V(D) = {v e V(I)|gy = 0,val(v) = 1, [Mark ' (v)| = 1}
VQ(F) ={v e V(I)|gy, = 0, val(v) =2, Markfl(v)‘ =0}
VAI) = V(D) N (VD) uVEHT) U V(D).

We call vertices in V°(I') stable. A vertex v is stable if and only if C,, is 1-dimensional (rather than
a single point).

For v € VY(T') U VL), we always write E(I',v) = {e, = (v,v')}. For v € V2(I'), we always
write E(T,v) = {el = (v,v1),e2 = (v,v2)}.

Definition 3.8. Let I' € Graphsg,n(Symd]P”“,/B), and let ej,es € E(I'). We say e; and ey are
combinable, and write e1||eq, if there exists v € V(') with {e1,ea} = {el, €2} and the following

hold:

e g(e1) = q(e2),
o (MV(vy,e1) =1

Denote by P C ( (2 )) the set of pairs {{e1,ea} : e1]lea}.

Definition 3.9. Let (v,e) € F(I'). We say (v, e) is a steady flag if either of the following holds:

(1) v € V*(T), 0
(2) v e V() and {el,e2} ¢ P.

Definition 3.10. Let T' € Graphsg?n(Symd P", 3) and let eq]|es be a pair of combinable edges. We
may define a new decorated graph Comb(I', e1|le2) € Graphsgvn(Symd P", ) by combining e; and
e2. In other words, we delete the vertex v and the edges e; and ey, and add an edge ej2 = (v1,v2)
with g(e12) = q(e1) = q(e2), Mon(vy,e12) = Mon(vy,e1), and Mon(vg, e12) = Mon(vg, e2). (See
Figure[l]) It is easy to check that Comb(T', e1]|es) satisfies the two conditions of a decorated graph,
and that Mov(ej2) = Mov(e1) U Mov(ez), and Mon(e12) = Mon(e;) = Mon(ez). There is a natural
map ¢€1,62 : E(F) - E(Comb(rvel||e2)) with ¢€1,62 (61) = ¢61,€2 (62) = e12, and ¢61,€2 (6) = e for
e € E(I) ~{e1,e}.

’U”U

yIMOV ( SOV ( ;IMOV (

v,eg) and 7 v,e1) =1 V9, €2).
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Proposition 3.11. Let I' € Graphs, A(Syma P, B), and let ei|lea and €|y be two distinct pairs of
combinable edges of I'. Then ¢e, e, (61)||¢617e2(62) as edges of Comb(T', e1le2) and ¢y o (e1)||¢er ef (€2)
as edges of Comb(T', €]|ley). Also, combining pairs commutes, i.e.

Comb(Comb(T, e1]e2), €}]|€5) = Comb(Comb(T, €} ||e}), e1]le2),

and this isomorphism identifies the maps ¢e, e, © <Z>e/ ) and d)e/ ) © Dey e0-

Proof. There are two cases, pictured in the left side of Figure 2} either the pairs ej|les and €]||e}, share
an edge, or they do not. Suppose we are in the first case, i.e. the top line of Figure 2l By definition
of Py ey, the edges ¢e, e, (€]) and ¢e, ¢, (€5) meet at v' (precisely, at the corresponding vertex in
Comb(I', e1 ]| e2)), and satisfy the three conditions of Definition [B.8 Thus ¢e, e, (€]) [ P, e, (€h).
Similarly ¢e; ¢, (€1) || ¢er o (€2). To see that Comb(Comb(I', e1[ez2), €] le5) = Comb(Comb(I', € ||
e)), e1]le2), we note that both are obtained from the graph in Figure [2| by replacing the three edges
shown with a single edge e connecting v to v5. The decorations on this edge are:

® q(e) :==qle1) = qle2) = q(e),

e Mon(e) := Mon(e;) = Mon(ez) = Mon(e),

o (MV(vy,e) = 1" (vy,e1) =MV (v, e2) = MV(V', €}), and
° Z'mov(,ué7 6) _ Zmov(v27 6/2) _ Zmov(vl7 62) _ Zmov(,v? el);

where the equalities follow from e;|jez and es||es. The maps ¢, e, © Pt e, and @t 1 © Pe, e, DOLH
send all of eq, ex = €}, and €, to e.
The second case (the bottom line of [2)) is a special case of this argument, so we omit it. O

Corollary 3.12. Let T € Graphsgm(Symd P", B), and let £ be any subset of the set P(T') of pairs

of combinable edges in I'. Then there is a well-defined graph Comb(I',E) € Graphsgm(Symd P, 5)
obtained by combining all edge pairs in £, in any order, and a well-defined associated map ¢g :
E(') — E(Comb(I',£)). Furthermore, £ is determined by the graphs I' and Comb(I',£), and the

map ¢g.
Proof. The existence statement comes from repeatedly applying Proposition The uniqueness

statement amounts to the fact that if ej|les is a combinable pair of edges in T', then ¢g(e1) = pe(e2)
13
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FIGURE 3. A portion of a map in ¥—1(Ty), with = 1 and g(e) = 3

if and only if (e, e2) € €. This follows from factoring ¢¢ as a sequence of edge combination maps as
in Definition .10l O

Corollary may be restated as follows. Definition [3.10] determines a partial order < on
Graphsg,n(Sym P", 8), where I" < T if I can be obtained from I" by combining edges. Corollary
then states that for ' € Graphsgvn(Symd P", 5), there is a natural order-reversing bijection
between {I" : IV < T'} and {subsets of P(I')}, where the latter is partially ordered by inclusion.
In particular, associated to I' is a unique minimal decorated graph Comb(I',P(I")). Denote by
Graphsmm(Symd P", B) the set of <-minimal elements of Graphsgm(Symd P, B).

Theorem 3.13. Let Iy € Graphsgm(Symd P", B). The closure of $~1(T') is
J o

IeGraphs, ,,(Sym? PT,3)
To<I

where W is the map from Lemma 3.6

Lemma 3.14. Let Lo =v,e—S evs, where each of v1 and vy contains a single marked point,
by and by, and gy, = G, = 0. Let f : C — Sym?P" be in the closure of ¥~ (Ty), and let
p:C' — Cand f': C" — P be the associated maps. Write C; for a noncontracted irreducible
component of C', corresponding to n € Mov(e) C Mon(e), as described in Lemma[3.5 Denote by
Le = Ljmov (yy ) imov(vy,¢)) the line in P" connecting Pimov(y, ) and Ppmov(y, o). Then:

(1) C and G} are nodal chains of rational curves,

(2) f'lc; maps one irreducible component of Cy, to Le with degree By(e) = q(e) - n (on coarse

moduli spaces), and is fully ramified at the two special points of this component, and
(3) f’\c/ contracts all other irreducible components of C’ to one of the endpoints of L..

That is, the restriction to C’ of a point in W— (Fo) may be represented as in Figure (where despite
appearances we mean for the map to Le to have a single preimage point over each of Pimov(y, ¢) and

lmov(UQ’e)).

Proof of Lemma. Let f : C — P" be a family over S of stable maps whose generic fiber is in ¥~1(I'g),
and let s € S such that the fiber over s is the stable map f : C — Sym?P". After an étale base
change S — S, C’ is a union of connected components C;7 indexed by Mon(e), and the maps C;7 —=C
have degrees determined by Mon(e). Fix n € Mov(e).
Consider the Stein factorization of f’ relative to S:
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(The map sf contracts connected components of fibers of C; over P" x S.) On a generic fiber of
C’ over S, the divisors f/" (Pimov (v, ¢) and f ( oV () ATE each supported on a single point. By
the definition of sf, on the special fiber C’7’7, these divisors are each supported on a connected locus,
hence a single point — specifically, the points sf(p~ (bl)) and sf(p~!(b2)), respectively. As any
component of C’ maps surjectively to L., this implies that C’ is irreducible. This proves claims
and .

Since f’ is T-fixed, the above implies that a component of C; not contracted by f’ has exactly
two points that are nodes or are in p~1(by) or p=*(bs).

If C is not a chain, then since it is genus zero, some component D has only one special point. By
stability, there is a component of p~!(D) that is not contracted by f’. This contradicts the previous
paragraph. Thus C' is a chain, and it follows that each C’,’7 is a chain. This proves claim . O

Proof of Theorem [3.13, Tt is sufficient to consider the situation of Lemma To see this, note
that any I'g € Graphsgm(Symd P", 5) may be decomposed into subgraphs of the form in the Lemma,
together with single-vertex graphs, glued at marked points. There is a corresponding decomposition
of U=1(Tg) as a product (up to a finite morphism), and this decomposition extends to the closure
(see [AGVO0S]|, Section 5.2, or [Liul3], Section 9.2). Thus we may treat each factor of the product
separately.

First, we show

To)c |J o'

I'>Ty
Let (f : C — P") € U—1(T). By Lemma we conclude:

0)-
U(f:C — Sym?P") is a chain.
The degree ratios g(e) are equal for all edges e.
The partitions Mon(e) are equal for all edges e.
For any edge e = (v,v’), where v and Mark(1) are on the same connected component of
'\ {e}, we have i™°V (v, e) = i™°(v1, e12) and ™%V (v, €) = i™°V(vg, e12). (This follows from
the proof of Lemma

Thus any pair of adjacent edges in ¥(f : C' — Sym?P") is combinable. Combining them all yields
Lo, ie. To < U(f:C — Sym?P").

For the reverse inclusion, first suppose I' > I’y has a single pair of combinable edges, i.e.

€1 v €2
I'= Vie—eo—0U9.

Fix (f : C — Sym?P") € ¥~1(I'). We will construct a family f : C — Sym?P" over C whose
restriction to 0 € C is the map f: C' — Sym?P".

By Lemma and by representability of f : C' — Sym?P", the orbifold points and nodes of
C have order lem(Mon(e;)) = lem(Mon(ez)). Thus C' is isomorphic to V(zy) C [P?/tuem(Mon(er)))»
where P? has coordinates x, v, z, and lem(Mon(ey)) acts by multiplication by inverse roots of unity
on the first two coordinates. Define C so that C; = V (zy — tz?) for t € C. Precisely, C is an open

subset of [Bg[l:O:O},[0:1:0}P2/M1cm(Mon(el))] :
15



For 1 € Mon(ey) a part, there is an étale quotient map g : [P?/pu,] — [Pz/mcm(Mon(el))]. As above,
define (Cp); = V(zy — t2?) C [IPiQ/un].

We must now define a map [’ : C,’7 — P" for each n € Mon(ey). As P is a variety, it is enough to
define this on coarse moduli spaces. We choose isomorphisms of the fibers (C; )o and Co with C; and C
respectively, such that the maps j and p are identified. Then f’ defines a map f}, : (Ch)o = Ley = Le,.
(The case where Cj is contracted is trivial, so we assume it is not contracted.) By Lemma
after equivariantly identifying L., = P!, f(') is given (without loss of generality, on coarse moduli
spaces) by

[:0:2]—[0:1]

[0y 2] s [yfPalen) ; Balen)],

It remains to extend this to a map f’ : C7’7 — L, that is fixed with respect to the T-action, i.e. fully
ramified over the endpoints of L.,. We observe that the rational map

[x:y:z]— [yﬁ”(el) : zﬁ”(el)]

is regular after blowing up the point [1 : 0 : 0]. This defines a map f’ as desired. Doing this for all 5
shows that f: C — Sym?P" is in U—1(Ty).
If I" has more than one pair of combinable edges, we apply this argument repeatedly. ]

Corollary 3.15. (Mgm(Symd P, )T is a disjoint union of open and closed substacks W—1(T), for
I'e Graphsmm(Symd P, 3). We define Mr := ¥—1(T).

3.5. Explicit description of Mp. The rest of this section proves the following:

Theorem 3.16. For a stable vertex v or edge e = (vi,v2) of a minimal decorated graph T' =
(T',Mark, {g, }, VEval, ¢, Mon) € Graphsmm(Symd P", B), we define

MU = Mgmm(v)( SVEval(v)7 0)

me - Mlcm(Mon(e))/ H lu’Bn(e) wr Se )

v1|mov(e)|va

n€Mov(e)
where:
e Mon(v) is the list of multipartitions {Mon(i) };cnpanc—1(p) U {Mon(v, €) }ee p(r v)
. ﬂiclrﬁl(ll:ﬁ,o(zgfzi is the order lem(Mon(e)) orbifold Losev-Manin space with mov(e) marked

points by, ..., byoy(e) and labeling set {v1,va}, from Section

e Se is the group Csgat(€) X Shiov(e)s where Csiag(€) is the centralizer of any element of the
conjugacy class Stat(e) in [[;_, Sistat(e);|» and acts trivially on the Losev-Manin space,

o A generator of pug, (e) acts by translating the marked point by, by e2m/4(e) - and

e wr denotes the wreath product.

Then the substack My associated to T is isomorphic to a ( I1 €VEva1(v)(Mon(v, e))) -gerbe

(v, e) steady
over

(6) [T M. x HM /Aut :

veVS(T) ecE(l
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where 5VEva1(v) (Mon(v, e)) is the centralizer in Gyrva(v) of any element of the conjugacy class
Mon(v, e), modulo the subgroup generated by that element.

Proof of[3.16] Using Theorem Lemma [3.14} and the gluing morphisms for M, (X, 3) (see
[AGV08], Section 5.2), Mr is a [T  CvBvaiw)(Mon(v,e)) |-gerbe over

(v, e) steady

H mgv,m(v)( SVEval(v H MFe /AUt >

veV () c€cE(T

where T'e = vj6—% evs, and the decorations are inherited from I', with g,, = g, = 0. (Note
that the two vertices of I'. are labeled, i.e. Aut(I'.) = 1.)

(The gerbe structure appears because gluing morphisms are fibered over the rigidified inertia
stack 7 Sym? P, see [AGV0S] or [Liul3]. The group CVEval(v)(Mon(v, €)) is the isotropy group of
TSym?P" at the point of T Sym?P" corresponding to Mon(v, e).)

We need to show that, for all e = (v1,v2) € E(T'), we have

- ——lcm(Mon(e))

MFe = Mvﬂmov(e)\vg H KB, (e) WI Se

neMov (e)

Write Pe := Pjmov(y, e),imov(vg,e)) fOr the midpoint of L. For (f : C — P") € Mr,, consider the
preimage of P, under the associated map f’: C' — P". By Lemma (' is a union of connected
components C; for n € Mon(e), and if n € Mov(e) then the preimage of P, on Cj consists of 3;(e)
points on the single noncontracted component of C’,’7. These points are g, ()-translates of each
other, under the natural action that fixes the two special points.

After a principal (HneMov(e) 8, (e) WT Se>-cover Mr, — Mr,, we may fix a labeling of the

connected components Cy, and label a distinguished preimage of P. on Cj for n € Mov(e). (The
Se-cover removes all automorphisms of stable maps induced by automorphisms of the image curve
that commute with the monodromy at b,, and b,,.) Remembering the images of these distinguished
points under p yields a nodal chain of rational curves with mov(e) labeled marked points, none of
which coincides with b,, or b,,. The stability condition for M, {Mon(e),Mon(e)} (Le, B(e)) implies that

this is a Losev-Manin curve, with orbifold points of order lem(Mon(e)) at marked points and nodes.
——lem(Mon(e))
v1|m0v(e)|v27

by definition with respect to the action of [] nEMov(e) My (e) WI Se. This gives a map

This construction works in families, so it defines a map Mrp, — M which is equivariant

o - mre - Mlcm(Mon(e))/ H 15, (e WI‘S

v1|mov(e)|va
n€Mov(e)

——lcm(Mon(e))
v1|mov(e)|va
Losev-Manin curve whose points are indexed by the multiset Mov( ). Fix a curve ¢ =

We now construct an inverse to this map. Let (C,by,,b1,.. - bmov(e)s by,) € M be a
!

neMon(e)
with étale maps p, : C,’] — C of degree 1. This may be done uniquely up to isomorphism. Also,
uniquely up to isomorphism (of C’ commuting with p : ¢! — C'), for each n € Mov(e) C Mon(e) we
may choose a preimage point bg € C’,’7 of the corresponding marked point b, € C. Finally, there is a
unique map f’: ¢/ — P that sends:
e C; to a T-fixed point, for n ¢ Mov(e),
17



e () to L. with degree j3,(e), with b}, mapping to P, p~ 1 (by,) mapping to Pimov(y, ) and
p~1(by,) mapping to Pimov (4, ,¢), for n € Mov(e).

——lem(Mon(e))

Again, this works in families, and defines a map O : MU1|mov(e)|v2 — Mr,, which we claim is

invariant under the action of || () KBy (e) WT S.. Indeed, acting by e27/4(¢) on b, translates the

neMov
preimage b% by some power of ¢27/8n(€) and commutes with f’. Thus © descends to a map

| 35lem(Mon(e)) —
©: Mv1|mov(e)|v2/ H Kg,(e) W Se - MFea
n€Mov(e)
which is by construction an inverse to ®. O

Corollary 3.17. The (HneMov(e) 8, (e) WT Se)—action on MLCITrr(}(\)/{,O(I;ng;

curve, so we have a universal curve on M., and by gluing, a universal curve on the left side of (@
The isomorphism of naturally identifies this with the universal curve on Mr.

extends to the universal

Proof. The first statement is by definition of the action, and the second is immediate from the proof
of Theorem [3.16] O

Remark 3.18. Theorem shows in particular that M, is irreducible, so connected components
of (ﬂg,n(Symd P", )T are indexed by minimal decorated graphs with the additional data of a

connected component of ﬂg o, (v)(BSVEval(U), 0) for each v. (These connected components in turn

can computed using elementary group theory.)

Notation 3.19. For a special flag (v,e) € F(I'), we denote by @Z)vﬂe the v-class on M, at the point

labeled by v. If v € V5(I), we denote by YMv the 1)-class on M, at the marked point &(v,e). We
use the same notation for the 1-classes.

4. THE VIRTUAL NORMAL BUNDLE AND VIRTUAL FUNDAMENTAL CLASS OF ﬂr

In this section we compute the Euler class of the virtual normal bundle to Mr, and show that
the virtual fundamental class of Mr is equal to its fundamental class. Some of the arguments are
“classical,” and we will refer the reader to [Liul3| for these.

In this section we fix I' € Graphsmin(Symd P, B3). Let m: C — Mr and p : C' — C denote the

g7n
universal curve and universal étale cover, respectively:

o —L L p

By a standard argument (see [Liul3]), we have an exact sequence of T-equivariant sheaves on
Mg7n+1(Symd P", 5) giving the perfect obstruction theor

(7) 0 — Aut(C) — R7.(C, f*T Sym?P") — Def(C, f) —
— Def(C) — R'm,(C, f*T Sym?P") — Obs(C, f) — 0,
3We will always use the notation in @ for higher direct image sheaves, writing e.g. R'm.(C, f*T Sym¢ P7) instead of

Rim. f*T Sym? P". This is because we will restrict 7 to various substacks of C, and wish to avoid confusion.
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where Aut(C) (resp. Def(C)) is the sheaf on M,,,41(Sym?P") of infinitesimal automorphisms
(resp. deformations) of the marked source curve C. (See [Liul3] for rigorous definitions.) For
(f:C— Sym¢? P") € Mr, we also have a normalization exact sequence computing the fibers of the
middle terms:

®) 00— HC, fTSymP") —» P H(Cy, f*T Sym?P") — @ HO(&, f*T Sym P") —
v 3
— HY(C, f*T Sym?P") - @ H'(Cy, f*T Sym?P") — 0,

where v runs over the set of irreducible components of C, and & runs over nodes of C. The sequences
and each split as direct sums of two exact sequences: the T-fixed part and the T-moving
part. We use the notations Aut(C)f* and Aut(C)™®" (and similar) to denote the T-fixed subsheaf or
subspace and its T-invariant complement. By definition (see [GP99]), the Euler class of the virtual
normal bundle er(NyY) is

er(Def(C, £)™)  ep(Def(C)™)er (RO, (C, f*T Sym? P")™ov)

©) er(Obs(C, f)mov) - er(Aut(C)mo¥)ep (R, (C, f*T Sym¢ Pr)mov) € Hp(Mr),

and the virtual fundamental class [Mr]"'" of Mr is er(Obs(C, f)f¥). We compute the various terms
of and one by one. It is convenient to compute by pulling back to the canonical Aut(T")-cover

ﬂ;‘g of ﬂp, so that the correspondence between C' and I' is more concrete.

The sheaves Aut(C) and Def(C). In the toric case, from [Liul3] we have

(10) er(Aut(@)™") = [ er(TewenC)= ] wite.

veV1i(T) veV1i(T)

The same argument and answer apply here, using (Theorem and) the observation that
combining edges gives a natural identification of V1(I'). Briefly, moving automorphisms come
from noncontracted components with only one special point, and correspond to vector fields on such
a component that are nonvanishing at the nonspecial T-fixed point.

Similarly, in the toric case [Liul3| gives

ME ﬂe M. M.

(11) eref(@) = | [ (=& = ) | GG TACS
veV2(T) (v,e)eF(T)
(v, el) steady veVE(T)

This is again correct in our case. The factors in come from smoothing nodes. (Classically,
the deformation space of a node is the tensor product of the tangent spaces to the two branches.)
Therefore the observation we need is that the nodes that do not appear in have T-fixed
deformation space. We will use the following notation.

Definition 4.1. A node £ is called steadyﬁ if T:C1 ® T¢C2 has a nontrivial torus action, where C
and (5 are the branches of &.

Remark 4.2. Steady nodes are exactly those of the form &(v, e) for (v,e) a steady flag. By Theorem
if U(f : C — Sym?P") = T (i.e. it is minimal), then all nodes of C are steady nodes.

Furthermore, the set of steady nodes is canonically identified for any two points of ﬂrpig.

4This is similar, but not identical, to the definition of a breaking node from [OP10].
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The factors in are in correspondence with steady nodes.

The bundles Rr,(C, f*T Sym?P") and R'z,(C, f*T Sym?P"). We use the sequence . The
computation is similar to the original one by Kontsevich [Kon95] (and the orbifold computations of
Johnson [Johl4] and Liu [Liul3]), but requires some care due to the edge moduli spaces.

Note that normalization does not commute with base change, so cannot naively be applied to
commute Ri7,(C, f*T Sym?P"). However, normalization of steady nodes does commute with base

change on ﬂ?g, due to the canonical identification of nodes above. Thus we have the sequence
(12)  0— R, (C, f*T Sym?P") — @ROW*(CZ, f*T Sym?P") — @ROW*(f, f*T Sym?P") —
v £
— R'm,(C, f*T Sym? P") — @le*(cz, f*T Sym? P") — 0,

where v runs over closures of maximal subcurves of C containing only non-steady nodes, and ¢ runs
over steady nodes. Observe that either C, is contracted by f, or each fiber C, of C, contains only
noncontracted components.

By Section we have

R'm(Cy, [*T Sym? P") = R'm(Cy. pu(f))'TP") = R'(m 0 p)o (G, (f') TP").

(The second equality follows from the fact that p is étale, hence p, is exact.) After an étale base
change, we may distinguish the connected components of fibers of Clz — ﬂ?g. In other words, we

may write
C, = I_Iclzm’
n

where C’w7 has connected fibers. Then

(13) Rim,(Cy, (f))*TP") @R%o;) (Ch (f)TP").

If C, = C, is contracted, then (f')*TP" is trivial on C;, . Thus we have

Ri(1 0 p)o(Clps () TPT) = Ri(m 0 p)u(Chry Ocy,) & T, P
where as i(n) € {0,...,r} is the label of 7, i.e. Py, = f'(C,,). In particular,
(14) RO, (Cy, f*T Sym? P")™ = Rz, (Cy, f*T Sym? P")™ = 0.

The bundle R'm,(C,, f*T Sym?P")™°" is nontrivial, and is isomorphic to a Hurwitz-Hodge bundle
(see [Liuld], Section 7.5). However, note that ep(Rm,(Cy, f*T Sym?P")) is the inverse of the twisting
class from (5| . We will use this fact in Section [5|in our characterization of Esymd pr> and in Section
[6] to apply the orbifold quantum Riemann-Roch theorem.

Similarly for a steady node £(v, e), we have

RO (€(v, e), £*T Sym?d P")fix =
(15) Roﬂ-* (§(v, 6), f*T Symd ]P)r)mov = T(VEval(v),Mon(v,e))I Symd P" = @ Tp (n)]P)T-
n€Mon(v,e)

Suppose C, is not contracted. The components Clz,n are in bijection with Mon(e), where e is the

edge of I' corresponding to C,.) First, we argue that R (w0 p).(C, ,, (f')*TP") vanishes for all 7.

v,
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The normalization exact sequence for a fiber Cj, , reads:

0— H(C,,, (f)'TP") - @D H(C,,, (f')TF") = P H & (/) TP) —
vey 13
= HY(Cy,y. (f)'TP) = D H'(Cl,yy. (f) TET) = 0,
vev

where we also denote by v the set indexing irreducible components C,, of C,, (equivalently, irreducible
components C,,, of Cy ;). For each v € v, we have

(16) HYC,, (f)*TP") =0
by convexity of P". We claim that the map
G HEC,, (f) TP - P HO(&, () TP")

IAS% 13

is surjective, so that H'(Cj,,, (f')*TP") = 0. (The map takes the difference of the sections on
the two branches of a node.) If C’ has a component Cj, o,y Dot contracted by /', there is at
most one, by Lemma u On any other component C, ., we have (f')"TP" = Oc;, @ TP, ie.
H°(C},, Oc¢; @ TP") = TP". Fix an arbitrary section s € H°(C}, ,, (f)*TP"). Then “working
outward” from CJ, , shows that the map is surjective. The case where f’ contracts Cy,, is similar
and simpler.

Next, we compute R%(w 0 p).(C,, ., (f')*TP"). If C}, , is contracted, (f')*TP" is trivial and we have

0 ~

RO 0 p)u(Cl (f)TFY) = T © O

by properness of 7w o p. Suppose C’w7 is not contracted. Consider the Stein factorization of f'|c; .
relative to wo p: -
f/

sf/\;\

Coy

!/
Top /
rlg

If (f : C — Sym?P") is in the dense open substack ¥—(T") C Mrr‘ig7 then C, is irreducible, hence
S0 is C’ This, with the fact that C is not contracted, implies that sf is birational. By the
prOJectlon formula for coherent sheaves

(10 P)u(f')"TF = (o p)ust*(f")*TP"

= (7o p)astust™(f/) TP

— (TP (") TF .00, )
D)) TP

S

=(mop

After an étale base change on ./\/lp , the map f” trivializes Cl, . Thus R(7 5 p)«(Cl,, (f")*TP") is a
trivial vector bundle. Calculation of the T-weights of this vector bundle is identical to Kontsevich’s
calculation in Section 3.3.4 of [Kon95], which uses the Euler sequence on P". The weights are

A

(17) B.(e)

O[zmov (v1,e) — Oy,

B
—— Oimov (g, e
571( e) (v2:¢)
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where 0 < A, B < f,(e), A+ B = f,(e), and i € {0,...,r}. Note that this is zero exactly
when A = 0 and i = i™(vg,e), or B = 0 and i = ™V (vy,e). (These factors contribute to
er(R(mop)«(CL,,, (f")* TP")x).)) Putting together and ([L7), for v noncontracted, the Euler
class eq (R (o p)«(CL, (f")*TP")™) is equal to

(18)

A B
H H OéZ — O[Z H H (B(e)azmov (v1,e) ﬁ ( )Oélmov va,e) O[l> .
nEStat(e) i#£i(n) n€Mov(e) A+OB<:'£7,(6) n 1

(Aﬂ;)?g(o’imov ('U2 76))
(Bri)#(ovimov (Ul 76))

Summary. We collect the arguments of this section in the following two statements.

Proposition 4.3. For any minimal decorated graph T', Mr is smooth, and the virtual fundamental
class is equal to the fundamental class.

Proposition 4.4. The equivariant Euler class eT(NVMirF) of the virtual normal bundle to Mr is
M, Mo - -
[Tocvem) (¢ =0 ) [weerm) (& —¢3)
veV(T)

HUEV1 (1) wv ‘

A B
H H (ai(n) — ;) H <5(e>aim°"(v1,e) + maimov(m,e) - 04z‘>

ecE(T) neStat(e) neMov (e) n n
i#i(n) A+B=py(e)
0<i<r

(A7,L')7§(0’Z'mov ('U2 76))
(Bri)#(ovimov (Ul 76))

. (HUEVI(F)Ule(F)uW(F) e (T{vEval(e) Mon(v)) I Sym” ") )
iw.cyerm) er(TvEval(v) Mon(v,e)) I Sym? PT)

[T er(Br(Co, T Symé )=
veVS(T)

Proof of Proposition[{.3. Recall from Theorem that the virtual fundamental class of M is
obtained from the fixed part of the perfect obstruction theory on ./\/lgvn(Symd P", B). By , the
fixed part of @5 RO7, (&, f*T Sym?P") is zero. Thus by ,

R'm,(C, f*T Sym*P") = @D R'm.(Cy, T Sym* P").
But we showed, in and (6], that EBZle(CZ, f*T Sym?P") has no fixed part. Thus

R'7.(C, f*T Sym?P") has no fixed part. By Proposition 5.5 of [BF97], the Proposition follows.
(Smoothness already followed easily from Theorem [3.16]) O

Proof of Proposition[{.4 The first line is the contribution from Def(C)™°" and Aut(C)™°", from
and . The second line is the contribution of noncontracted components to R, (C, f*T Sym?PT),

from and (16). The third line is the contribution of steady nodes to Rm.(C, f*T Sym?P"), from
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(15). (The numerator corrects for the fact that F(T") overcounts the steady nodes.) The last line is
the contribution of contracted components to R (C, f*T Sym? PT)™oV by definition. O

Theorem 4.5. The results of this section, together with Corollary [3.15 and Theorem [3.16, provide
an algorithm to compute any Gromov- Witten invariant of Sym® P (for any d) in terms of Hurwitz-
Hodge integrals, i.e. twisted Gromov-Witten invariants of BG for G a product of symmetric groups.

Proof. Applying the virtual localization theorem a genus-g Gromov-Witten invariant of Sym® P"

is expressed as a sum
/ eT NVlr
I“eGmm Symd ]Plr MF

By Theorem Mr is a finite cover of a product of Losev-Manin spaces M, (Section and
spaces M, = mgv,M(v)(BSVEval(v)v 0) of admissible covers. The factors M, can be integrated
over using Lemma since the only cohomology classes in the integrands are 1) classes at the two
distinguished marked points (cf. in the proof of Theorem [5.5)). The remaining integrals are
over the factors M,. The integrand contains the factor

1
ve‘]/;g[(F) er(Rm(Cy, [*T Sym® Pr))ymev’

as well as 1) classes and classes pulled back along evaluation maps, and is thus a twisted Gromov-
Witten invariant of BSy gyai(v)- O

5. CHARACTERIZATION OF THE GIVENTAL CONE Lg ipr

In this section, we apply the results of Sections and {4 to give a criterion (Theorem [5.5)) that
exactly determines whether a given power series lies on the Givental cone Esymd pr- For the rest
of the paper, we work only in genus zero, so we refer to “decorated trees” rather than “decorated
graphs.”

Definition 5.1. Fix (y,0) € (I Sym?P")T. Let Y(u,0) C GraphsO’Q(SydeP”",B) be the set of

1-edge decorated trees <= vy o vy, with Jv, = v, = 0, marking set {b,y1,be}, with
Mark(n + 1) = v; and Mark(e) = vg, such that g = VEval(v;) and 0 = Mon(vy, e).

Notation 5.2. For k € T(u,0), we write (using the notation of Definition [3.5):

b q(’%> =4q 6), b iinov(’i) = Zmov(vhe)’

e Mov(k) := Mov(e), o 5°V(K) := iM% (vg, €),

e mov(k) := mov(e), e i/(k) := VEval(va),

e Stat(k) := Stat(e), e o/(k) := Mon(ve, €), and

o for 1 € Mov(x), By(k) = Byle) = ale) -, ® (k) = 101, €) = 7{v2,€) = Tt

B(H) = ZnEMov(n) 677(%)

We also define:
Olirll'wv(,i) — (Y;mov

iV (k) 2
€ H%(SpecC).
Q(K) T( p )

Remark 5.3. Note that w(k) is equal to the T-weight of the tangent space to the coarse moduli
space of the source curve C' at by,1; this is because ¢(k) is defined via coordinates on this coarse
moduli space (see Lemma [3.3]).

w(k) ==
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Definition 5.4. Let x € Y(u,0) and let a € Z~o We define the recursion coefficient

__1\mov(k)—a mov _
RC(k,a) = (G <011 (H)) <m0V(”) 1)
q(k)mov(®)  \ Mov (k) a—1

1
Bu(r)—B 7
Hyertorio 11 1<B<bn(x) (W%mw + Bt g () —ai)
(B.i)A(5 () 5 (1))

o
where ( hzlnov (<)

ov(k)

) is the number of ways of choosing Mov(k) as a subpartition of omov () With specified
parts.

The following theorem and its proof are in the same spirit as Theorem 41 of [CCIT15|, which in
turn is adapted from Theorem 2 of [Brol4].

Theorem 5.5. Let f be an element of H|[[x]] such that f|g——0 = —1z, where 1 denotes the
fundamental class of Sym?P" C ISym?P". Then f is a AL [[z]]-valued point of Loymipr if and

only if for each T-fixed point (u, o) € ISym?P", the following three conditions hold:
(I) The restriction f(,, ») along v(,q) : (1, 0) — ISym?P" is a power series in Q and x, such
that each coefficient of this power series is an element of H7, .(®)(z). Fach coefficient is
reqular in z except for possible poles at z =0, z = 0o, and

ze{w(k): ke YT(uo)}

(IT) The Laurent coefficients of £, ) at the poles (other than z = 0 and z = o) satisfy the
recursion relation:

(19)  Coef(fum (w2 = 3 QO RC(s,0) Coet(f(uy orinys (1 — )™ )2)
KET(M,O‘)
w(k)=w
mov(k)>a
fora >0, and
(III) The restriction f, along v, : I — ISym?P" is a AL [[z]]-valued point of L.

Remark 5.6. In AT is the equivariant Novikov ring associated to Sym?P", not p. In other
words, Anov[[ H HCR,T,IOC( )HQVQ:H

Remark 5.7. The major difference between T heorem and the corresponding theorems in [CCIT15)
and [Brol4] is that condition gives a recursive relation for all negative-exponent Laurent
coefficients at z = w(k), in terms of nonnegative-exponent ones. In [CCIT15] and [Brol4], only
stacks with isolated 1-dimensional T-orbits are considered. Thus in that case, the poles at z = w(k)
are simple, and a recursive relation is given for their residues.

Proof. Let f be a AL [[x]]-valued point of Ly i pr- By definition, we can write
o ~ Syme P, T
I I < N ¥
n=08=0 ¢ ! -z _77[) 0,n+1,5

n . 1 o )
1ot + 33 Levnen | [[evi @) =N [Moa(Sym” P, )™
nl

n=0 3=0



for t(z) € H*[[z]] with t|g=,—0 = 0. The restriction f, ;) is then
—0o—(1,.,1)% + L? t(2)

H,0)
1 — )
+ Z Z o) | (8Vnt1)s H ev; — N [Mony1(Sym?P", B)]V
n=0p=0 " —z=Y
Using the projection formula, we write
1 - .
L?Mva') evn+1 H eV ﬁ N [M07n+1(symd ]P’T7 lB)]Vlr
7 ¥n+41
* 1 AA T vir
= 1G] [ (o)t | (@ne)s H v} () U ————— N [Mo 1 (Sym 7, 9)]
Sym¢ P —z—=Ypn
‘ * g 1 A T vir
= |Culo)] ()] U (eviin)s | [T ev] t(¥) U ——=— 1 [Mons1(Sym? P", B)]
Sym¢ Pr j=1 —r = ¢n+1
‘ * g7 eV:l K, o AA T vir
=160 [, (v ( TLevs s 0 =D o g symt e, )
Sym¢? Pr j=1 —& = 1/1n+1
- * 4 ev;kl 1([(:“30-)])
~ Il [ vy () U St 2
¥ (syme B g E T —a =

2=/ on+1
The first equality uses the identification of fSymd pr OL(u,0) With the identity map Spec C — Spec C

Sym? P, T
— Cy(o)] <t<¢>,...,t<¢>, [(’“’”>

on coarse moduli spaces, and the factor |C),(c)| corrects for the isotropy at (i, o) € ISym?P.
(Recall that C, (o) denotes the centralizer of any element of ¢ in G,.) In summary,

(20) f(ma) = —(502(17“ 1%+ t( )(Z)
C 8 o o Sym¢ P, T
P33 Gl (t@)..t@), 70 ,
=0 =0 —2 =Y/ ont1,8

where t(,, 5)(2) = Lz‘u,o)t(z)' Now we calculate by virtual torus localization (see Theorem .

Namely, we may write

- (o)) \ T
@) 1G] (8D o, 127 - ) Contr(,, (D).
0,n+1.8 FGGraphsg:gl_,'_l(SydePr,B)

min

We can partition Graphsg’,; +1(Symd P, 3) into three subsets:

(i) T such that (VEval(Mark(n + 1)), Mon(n + 1)) # (i, 0),
(ii) T such that (VEval(Mark(n + 1)), Mon(n + 1)) = (u, o) and Mark(n + 1) € VL(T'), and
(iii) T such that (VEval(Mark(n 4 1)), Mon(n + 1)) = (u,0) and Mark(n + 1) € V5(T).
In some literature, e.g. |[CFK14], decorated trees of type are called recursion type and those of
type are called initial type. (We will see below, however, that in our setup both types are used
recursively.) Let vy := Mark(n + 1).
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For a tree T' of type the restriction ev}, | ([(1,0)]) vanishes, hence Contr, ,(I') = 0. For
this reason, we may simplify our notation, and write Contr(I') := Contr(, ,)(I'), where y =
VEval(Mark(n + 1)) and o = Mon(n + 1).

If I is a tree of type then by Theorem and Corollary 41 is pulled back from
./\/l0 l\ﬁ(vl)(BG/“ 0), where G, is the isotropy group of p. Since this stack parametrizes maps that
factor through the fixed point u, the action of T is trivial, hence

H’;,loc(MO 1\/[—0{1(,01) (BG,uv 0)) > H” (MO,I\/I—OI;(vl)(BG/“ O)) ® H;:,loc(.)'
In particular, ¥, ; is nilpotent. It follows that Contr(I') is a polynomial in 271, hence has a pole
only at z = 0.
Finally, let " be a tree of type By , we have

)

Hev 5y Tanl()

—Z = wn—l—l

(22) Contr(T) = |C)y(0)| /

[MF}/ eT NVlr

where ¢r is the inclusion Mp — ﬂo,nH(Symd P, B). Note that ev,4+1 our factors through (u, o),
hence (fevy, 1 [(p1,0)] is the weight er (T, )1 Sym?PT).

Then I' has a decorated subtree x € Y (u, o), obtained by removing all edges except for e := e,
(and necessary vertices), and all marked points except b,+1. Let I' N\ k denote the tree obtained
by pruning k. That is, I' \ k € Graphsj ,IIH(Symd P, 8 — B(k)) is defined by V(I' \ k) = V(') ~
{v1}, E(I' ~ k) = E(I') \ e, and decorations Mark, VEval, ¢, and Mon are unchanged, except
Mark(n + 1) := v, where vy is the common vertex of x and I' \\ k. Observe that an automorphism
of T fixes b,+1, and therefore fixes e, so we have Aut(I') = Aut(I" \ k). Thus by Theorem up
to a €VEva1(v2)(Mon(v2, e))-gerbe, we may write

Mrpr =2 M, x Mr\n.

We factor the T-equivariant map M — Spec C through the second projection, i.e. we integrate
over M,:

C Ci (o T, IS IP’T
Contr(T") = |Culo)] | TEL,;) )(J ('L{))‘ B / er( (m, )Nvim H eV 71f
[MF\KZ] e ( —Z = wn+1

The factor ‘CM/(,{)(J’(/@))‘ /r(k) is the order of Cypyal(u,)(Mon(vs, €)). From Proposition we
may write

eT(T(u,a)I Symd ]P’T) _ i eT(T(u’(m),a( ))I Sym ]P)T)
GT(NI\—{H) w (NVII‘ )(_ MU2 Me)

T'\k e )

where

I1 €Stat (k) Hi;ﬁi( )(Oéi(n) — ;) A B
W= Ty Sy P 11 11 (B () 0 B )“"““"“”%”a")
TS (o) DY neMov(k)  A+B=py(x) K K
0<i<r
(A,0)7#(0,i™° (v,e))
(B,i)#(0,i™V (v1,¢))

Bn(K) — B .
— H H (n()aimov(vhe) —+ 7aimov(vz7e) — Oy - HTJOC(SpeC (C)
neMov (k) 1<B<p, (k) B () Bn(k)
0<i<r

(B.i)#(By (r),imY (v2,€))
26



Note that the cancellation in the last step removes the factors where B = 0, and that 1/W is the
product appearing in RC(k, a).

To avoid confusion, we write wz 41 (resp. @E}j) for the v-class at the (n+41)st marked point on M
(resp. Mr,), recalling that on I' \ k we defined Mark(n + 1) = vo. We also have Ll’:ﬁﬂ = Exe
The T-weight on @xc is —w(k) (see Notation , so we have

il

Gt =9 —w(k) € Hp(Mr) = H*(Mr) ® Hj(SpecC),

where E;e denotes the nonequivariant 1)-class. Similarly Jge = @Es + w(r). Then since ¢} ev} (1))
is pulled back from Mr,

|CM(U)‘ ’C“/(K)(U,(K;))’ 6T(T(,u’(.%),a’(.l-c))lSyInd PT)

Contr(T") = ~(5) W

y it (I ev; 69)) [ | |
mieor e i (Ul — vt — w(e) (2 — Gy + w(w)

We compute the last integral using the fact that w(k) is invertible, and Lemma which says we
may integrate on Mg 1o instead of M.. We use

—I'\k —I'\k —ne

T(I{)(—@Z)};_’\_’f - wvz) = _wn—s—l - Evg = ¢n+1 - wvz

—w(kK).

It is well-known (see e.g. [Koc01], Lemma 1.5.1) that

23) [ peem = (P9,

Mo,k m

By Lemma this identity holds on m0|k|oo also. Thus:

1 1
/Me (=0T = —w(k)) (=2 — Gy, + w(k))

_ 1 = ()™ N I ki
-~ ISel Tentovs) () / <mzzo (=Pnyt — wm))mlﬂ) <mzzo (=24 w<f”v>>””“>

Moy Imov (k) vy

(24)
mov(k)—1
— 1 Z ( mi )
[Sel Tnemoviw) BnlK) | S (= = w(k))™+ (=2 + w(k))ma+!

B 1 (—Z o @g;’f)mov(ﬁ)fl
|Sel Tlpenov(x) Bn() (i 25 — w(k))movis) (—z + w(x))movix)

The last equality in comes from expanding



via the binomial theorem. Altogether we have
) |Cr ) (0" (5))] €1 (Tt (w).0 ) T Sym” P”)
|S | HnGMov (k) /877( ) w- (_Z + w(’i))mov(’i)

| / s (H 1evjt@)> (cz— B mov(-1
My’ ‘

er(N{E) (=3 — w(k))mov()

(25) Contr(T") =

I'\k

For fixed Sy, and ng, from , the coefficient of Q%0 z™ in f(,1,0) only has contributions from
I'e Graphsom(Symd P", B) for B+ n < By + no. This is because t(z) € (Q, x), so if H[[z]] is graded
by giving @ and = degree 1, then the (n, ) term in has degree at least n + . In particular,
Usn<gorno Graphsovn(Symd P", B) is a finite set. Thus and realize the contribution to
such a coefficient from trees of type as a finite sum of rational functions with poles at the weights
k. Together with the analysis above for types |(i)| and this proves that f, ) satisfies condition
(I)| of the Theorem.

We consider the Laurent coefficient Coef(Contr(T'), (w—2)~%). By (2F)), Coef(Contr(T), (w—=2)"%)
is zero if w # w(k), or if mov(k) < a. Otherwise,
Coef(Contr(I'), (w — z)™%)
1
w(k
(mOV(H) _ CL)' (d(w(/‘i) o Z)Inov(fc)—a( ( )

_ (—1)m0"(“)_a ’CH(O')| }Cu/(n)(al(ﬁ))} (mog(_nl)fl) / (th (H? 16V}ft(@)) 6T<T(M( ),07 (K ))ISymdPT) )
Mrx]’

dmov(n)—a

_ o ymov(e) contrm)

z2—w(kK)

W |Se| HneMOV(H) 577(’{') (NIYl\rn) ( QIZ)E_T_’; (,{>)m0v(/i)fa+1

Now, summing over all T" of type |(i1)| with associated subtree k yields
(26)

(=)™ ()] | iy (0" ()| (") <t< y (1 (5), o' ()] >

P ’t ? J—
W |Se| HneMov(n) B (k) V) (¥) (—wg:j _ w(ﬁ))mov(n)—a-‘rl

Sym?P", T

O’n"’_lng_ﬁ(‘%)

On the other hand, the coefficient Coef (f(,/(x),o7(x)), (W(K) — z)mov(k)—a) jg
Sym? P, T
K Nes /| — — "(k),0' (K
(27> Z | W (k) ’ t(w),_“,t(w) 71_\[,5/1( ) ( ))]
mov(k)—a+1
5>0 (=t — w(k)) 0n+1,8
n>0
We compute | SeanEC';C():T()l) 5 explicitly:
o)l =15/ [In
neo
‘Se‘ = ‘CStat(H)’ ‘SMOV(H)‘ = ‘SStat(n)‘ }SMOV(H)‘ H n
neStat(k)
|C ( )| ‘S ‘HHGMOV n 77 o 1 <0’ilinov(/{)>
|S |H77€Mov(n 577 ‘SStat(H ‘ ‘SMOV (k) ‘HWGMOV /87]( ) q(m)mov(n) MOV(H)
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With and (27), this proves [(II)] Note that the contribution from all graphs of type [(ii)] (and
the term t(, ,)(2)) is

B(k
®) Tl =t Y

KET (p,0)
a<mov(k)

) )Coef(f(u )0t () (W(K) — z)meviR)=e),

The proof of condition is identical to that of condition (C3) in [CCIT15], and we reproduce
the argument here for convenience.

Consider a decorated tree I' of type We write v := Mark(n + 1) € V¥(T). The marked
points of M, correspond to (1) elements of Mark™!(v), and (2) edges e € E(T',v). To e is associated
a maximal subtree T, containing v, with E(T',v) = e. We decorate T so that Mark™!(v) = b, and
the rest of the decorations inherited from I". We will then write Contr(I") in terms of Contr(T'.) for
e € E(T,v), and integrals over the vertex moduli space M,,.

We apply again. After an étale base change Mr — M, we may label the subtrees I,

(Write M for the degree of this base change.) We then write Mrp = M, x HeeE(F’U) Mr,. Now we
again apply Proposition [£.4] to see that

1
er(NY™)

T on(v,e IS d]P)T
= e (Rm.(Co, T Sym?P7)) ] r(v, e)er (MM/V(I )1 Sym“P")
cchit) (<0 =, Jer(NEF)

T, ISymePr) . . . .
Observe that <20 Moptr)) msym ) is the insertion at b in Contr(I'e)| _x4,. Thus
( e viwv 6) Z’_”pe

Contr(I") = AZ I G Contr(r)l o |U[ [ @)

2
My ecE(Tv) ‘ i€Mark ™! (v)

d pr
U BT(T(MJ)IE}IHI P ) U

—z = wn+1

er! (R (Cy, f*T Sym?P")).

This is almost a twisted Gromov-Witten invariant of VEval(v), but not quite, since there are
restrictions on the monodromies at the marked points. Summing over I'. for a single e, with
everything else fixed, gives the insertion 7, non(v,e)) (%), where the initial term comes from replacing
I'e with a marked point. Thus summing over all o, and over all T" of type |(iii), gives

0o 1 [( )] VEval(v),T tw
> > <m<w>, ), “’> Lno) € Hitoc(I11),
: ¢n+1

m=2 o 0,m+1,0

where 1(, ;) is the fundamental class of (u,0) € I, and T,(2) = 3o entuipart(u) T (o) (2) L (uo)-
Adding in the contributions from type graphs, summing over o yields:

[( )] VEval(v), T tw
- Ko
£y _Zf(ua)lm —Luz+7u(2) + szl < "77'#(‘/’) > L)

m=2 o ¢n+1 0,m+1,0

where 1,, is the untwisted fundamental class on Ip. This shows that f, is a AL [[z]]-valued point of
Etw
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The converse also requires no modification from [CCITI5|. Suppose f satisfies the conditions of
the theorem. By conditions and [(II), we may uniquely write

fM = —1MZ + Z T(#J)l(#,o) + O(Z_l),
o€MultiPart(p)

where 7, ,(2) is the expression in (28), for some t(, ,(2) € ¢},(HT)[[x]]. We claim that the set
{t(u,0)(2)} for all fixed points (u,0) determines f. By the localization isomorphism, if suffices to
show that it determines f,, ,) for all (1,0). We induct on the degree 3 + k, where k is the exponent
of x. The base case f = k = 0 is taken care of by the assumption f|g—;—9 = —12z. Assume the
coefficients of f,, ,) up to degree 3+ k are determined by {t(, ,)}. Consider the coefficients of degree
B+ k + 1. Some of these appear in t(z), but these are given. Some of them appear in 7, ,)(z), but
these are determined since they are of the form: Q") multiplied by a factor determined by the
inductive hypothesis. The sum of all of these terms is in Hpp 71, (1) [[Q, z]][[2]]-

Finally, some of them appear in O(z~!). However, condition and show that these are
determined by terms of —1z + 7, ,)(2) of degree at most 8 + k + 1. Since all such terms are
determined by t(, ,) and induction, the degree 8 + k + 1 coefficients of f, ;) are determined. Thus
in fact f is determined by {t(, ,)(2)}

Again by the localization isomorphism, the set {t(, ,)(z)} corresponds uniquely to an element
t(2) € HT[[z]] that restricts to each t, ,)(z). This in turn corresponds uniquely to a AL [[z]]-valued

nov

point fow of L,. By the uniqueness argument above we have f = fgw. O

Remark 5.8. No modifications are required to replace AL  [[z]] in the statement of Theorem
with a finitely generated graded AT -algebra.

nov

6. THE I-FUNCTION AND MIRROR THEOREM

In this section we introduce a function ISymd pr(@,t, %, —2), and show that it satisfies the conditions
of Theorem [5.5] conditional upon two combinatorial identities that we checked extensively by
computer, but were unable to prove. (See Section ) That is, we prove that these identities
imply Igapr (@, ¢, %, —2) is a AL [, x]]/(x)2-valued point of Lgymapr, Where t = {to,...,t -} and
X = {Tr }repart(d) are formal variables.

The (first order) I-function Igyma pr(@,t,X, 2) is defined by its restrictions to the T-fixed points

Lo+ (1,0) — I Sym? P" as follows:

r

HuoIsymapr (@5 1, %, 2) = (200,1,..) Lo + Tr(0) o) Z exp Z ti | B+ Z pi(ay —a;)/z Q°
5>0 =0 =0

(29) Y f[H I . )

(Ln)neos \J=01m€0; H’yll ITi-o (aj —a;t gz
Ly>0
> Ln=8
where 1, is the fundamental class of (i, o) € Iu. We will use the notations
I(N:O) (Q’ t,x, Z) = L?#,J)ISymd Pr (Q? t, x, Z)

and

1,(Q,t,x,2) := @ I1,0)(Q,%,%, 2).

oeMultiPart(u)
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Remark 6.1. As in Remark we have Ig  apr(Q,t,%,2) & H*(I Sym?P", Q)[[Q, t,x]]((z71)) due
to the presence of arbitrarily high powers of z. The “topological nilpotence” condition we alluded
to is simply to say that for a fixed monomial in the variables ¢; and x,, the powers of z in that
monomial’s coefficient are bounded above.

Remark 6.2. Isym ymd Cr- If
we introduce variables x; ., where 0 < j < r and 7 is a partition of p;, and set HOSer Tjm; = Tunj,

then we may repeatedly switch orders of summation and products to write

apr may be decomposed into pieces that we might naturally regard as Iq

(30) I/L(Qv ta X7 Z) = IH(Qa t7 07 Z) + H Ij,,u]' (Q7 t7 X7 Z)7
7=0

where

B ex Tt i — o) /2
La@Qtx,2)= > xmlman P (izo B+ nley — i)/2))

B
mePart(d) nem 5>0 [lico [T (0 — i + %z)
Here 1; is the pullback of 1, along the natural isomorphism IBG, — H’]TZO IB Suj~

We now prove:

Theorem 6.3. Assuming Identities and hold, I ap-(Q,t,x,—2) is a AT I, x]]/ (x?)-
valued point of Esymd pr-

Remark 6.4. This result is weaker than that in the original preprint, where AL  [[t,x]] appeared
without the quotient by the ideal (x)2, and the dependence on Identities and was omitted.
We do not know if it is possible to find an explicit formula for a (nontrivial) AL [[t, x]]-valued point
Of Esymd Pr-

Proof. We must prove that the criteria in Theorem are satisfied. The form of implies that
iy — iy
q b
where i; = i(n) for some n € o, and ¢ € %Z. This is exactly the set of values arising as w(k) for
k € T(u, o). This proves
To prove we fix p € ZPart(d,r + 1), 0 € MultiPart(n), 8 > 0, L = (Ly)yeo as in (29),
a € Zy, distinct elements i1,i2 € {0,...,r} such that u;, # 0, and ¢ € Q such that ¢ € %Z for

the coefficient of Q%z,t? is a rational function in z with poles at z = 0, z = oo, and z =

oy — Qg
some 1 € 0;,. Let w = %.

First, assume that o is not the trivial multipartition of p. The term of I, ,)(Q,t,x, —2)
corresponding to L is TU,L(z)mW((,)ngﬁ, where:

T

(31) Tor(2) =[] I] Heyin(2)

Jj=0neo;
and
exp (3i_oti (B+ n(aj — aw)/(=2)))
H§:1 [Tio (aj Qi %Z)
Let o1, = {n € 04, : L, > qn}, and recall Notation Given a nonempty submultiset M C oy,
there is a unique kpr € Y(p,0) such that w(ky) = w and Mov(k) = M, and we may define

L'(knr) = (L' (Kar)g)neot (mar) DY letting L' (kar)y = Ly — qn for n € M. Note that such 7 are parts of
31

(32) Hp jn(2) =



o, (kn), and that we have ang (kat) L'(kam)y = B — B(km). Therefore, to prove it is sufficient
to show that

(83)  Coef(Trr(e), (w=2)"") = 3, RC(kar, a) Coet(Tyriuy),prian) (2); (w = 2) M1,
MgO'L
|M|>a

since adding up over all L and f yields ([19).

Note that Hp, jn(z) has a pole at w if and only if j =iy and n € o, and in this case Hp, j,(2)
has a simple pole at w, coming from the factor (v,i) = (¢gn,42) in the denominator. Thus T, ()
has a pole at w of order exactly |o|. Define

Hyorin(z) = (w—=2)Hp, jn(2) j=inneor
S Hy, jn(2) else.

If a > |og|, then both sides of are zero, so assume a < |o|. By the product rule, the left side
of is equal to

34 ! diot lorlp — énfﬂ;)(w)
Y ol —a <d<w_z)%—a<w—z> mz)) - Y 1o

Fow (k(jmdo<j<r, n€o; j=0neco; (J TI
2jmkGm=lorl-a

Similarly, the right side of is equal to

r ﬁ(k(j;n)) ( )

(35) > RC(ku,a) - 11 W '

i O T = P )
>a
YinkGgm=lorl-a

We may switch the order of summation in , using the natural bijection between the parts of
o and o} (k). Note that this bijection identifies the parts of M C oy, with parts of o}, (rr). For
n ¢ M we have L'(kar), = Ly, so the result is:

i (kGm) = (KGm)
H, 2" (w) H, "7 (w)
(36) ) ) RC(HM,Q)< [] 23"'> [1 nkfm—‘z;?

(k(j,m)o<i<rnes; MSoL o<j<r @) neM (i2.m)*
S kiioy=loL]—a M|>a né€o;
3om " (dm) ngM

77 (km)
- ¥ S (- a<%> (‘M|—1>< 11 W)
M a—1 [N

(k(jm)o<j<rmes; MSoL 0<j<r  Em

M|>a neo;
Zjnk(Jn) lor|— a‘ = 77€]VJ[

ﬁ(kuyn)). (w)

. H Ly—qnyiz,n
neM Kyt a-IT  o<isr (qznya“ + Loy — a@-)
1<v<gn
(v,))#(gnsi2)

Consider a single summand S(k(;,,)) of the leftmost sum in (36). Fix a subset
UCorn{(,n): k(im > 0},
and consider the contribution S((k;)); U) to S(k(; ) from all M such that

Mn{(5,n): k(j,n) >0} =U.
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By definition, we have S(k; ) = ZUQULO{(j,n):k(]m)>O} S((k¢jm); U). Explicitly,

o\ (1M -1 Hy 0 ()
S((ka):U) = D (_1)IM|Q<MI)( a—1 >< | )
0<5<r

UCM oy, <j< (G.m)
[M|>a e,
ngM
(k(jm))
(37) . <H Ly—qn, izm(w) )
vt Kt a-T1 osisr (e + Fhaw — ai)
(7:0)#(qn,iz)
< H Hr, gnyia.n (W) )
EMNU k(ﬂ 7] q- H 0<i<r (%ail + %ab — ai)
1<y<gn
(1) #(gnyiz)

From (32)), a simple direct computation using the two identities

i — iy — i — Gy —
(38) Ln+Mi1“_7wZ+uz’2w_7wl:(Ln—qn)+(ui1 —6177)Zl_iwur(/iz‘ﬁ(m)12_710Z

and

+4q
(39) aiQ—ai—%w:ail—ai—vnn
shows that

(40) H gLn—qmizm(w) _ H ﬁLn,iw(w)
, N
neM~U kgmp!-q-T1 osisr (%ail + iy — Oéi) neEM~U Fgir !
<y<an
(v, 1) #(qn,i2)

(Specifically, is used to show that the product of exponential factors appearing on both sides of
are identical, and is used to show that for each 7, the corresponding products of factors
(0 —a — %z) on each side of are identical. The factor % matches with —2=2)

(v,4) = (qn, i2), on the right side of ([40).)
By , the product expressions in are independent of M, i.e. we may rewrite :

r (k(j,n)) 7 (k(jm))
H; " (w) Hy, i (W)
(41) S((kgim); U) = ( 11 "M;> (H ’ qn<72;7nv . _a.)
qn t

erd where

Qi

0<j<r k(m)' neu k (4, 77 - q - H 0<i<r an (075 + law
neo; 1<y<gn
nguU (7,8)#(gnyiz2)
—afoi\ (M| -1
(UCMCO’L M a—1
[M|>a

The last sum in is equal to

S () =S

m=0

(]

" (=a\ [ lowl - 1U] o] —a—|U|
« \m ) \loL| —a—m lor| —a ’

S
@ I



where we have used the Chu-Vandermonde identity (as well as the usual conventions for binomial
coefficients with negative first argument). Thus S((k(;);U) = 0 for U # 0, i.e.

i (KGim)
HL J"U (w)
. J— 7‘]7,'7
S(hm) = S(kgan)i0) = [ —5—
0<j<r (d:m)-
neo;
This is precisely to say that and agree, proving |(IT)| in the case when o is nontrivial.
Lastly, we treat the case where o is the trivial multipartition of u, so I(, 5 has a factor z + z,.
We must therefore also prove the analog of for 275 1,(%). Very little modification is required. In

fact, our argument never mentioned the exact form of Hpg;,(2) for n € o7, — using this, it is easy
to see that any multiple g(2)T, 1(2) satisfies (33). This completes the proof of

Finally, we prove using Tseng’s orbifold quantum Riemann-Roch (OQRR) operator. It is
sufficient to prove the statement for the specializations 1,(Q,0,x, —z), since (1) @ may be rescaled
to absorb e'¥, and (2) the string equation shows that LY is invariant under multiplication by
e~ 2j=o titjlaj—ai)/z

The OQRR operator is expressed in terms of the tangent bundle F' = T}, Sym?P" over p =
(fo, - .-, pr). Note that F' splits into subbundles F};, where 0 <4,j < and i # j; here F}; consists
of tangent vectors along which the p; points at the coordinate point P; € P" move along the
coordinate line L; ;. Note that (fo,...,t.) € (C*)"*! acts on Fj; by multiplication by ¢;/t;. The
isotropy group G, acts on Fj;, and may prevent it from decomposing further.

For each multipartition ¢ = (0o, ...,0.) of u, let Fj;, denote the pullback of Fj; along o —
Iy — ,uﬂ In [Tsel0], one must describe, for each g € Q, the eigenbundle F ] io of Fjio on which
a representative o = (ag,...,q,) € G, = Sy X --- x S, of o acts with elgenvalue q|Gul. By
definition of F};, o acts by a permutation matrix associated to the cycle type of a;; the eigenvalues

are therefore |—|77€0'j{1’ e2mi/n . e2min=1)/n}  Equivalently,

(42) Chk(F(qlcm(JJ))) {#{77 € 054 S IZ} k=0

I 0 k>0,

Define a collection of formal variables s = (s,(cj ’i)) for 0 <4i,j <r,i%# j,and k > 0. These define
a family of multiplicative characteristic classes

H exp ZS(J7 ch(F ,

0<i<r k>0
i#J
with the specialization
(43) S _ ) —loglay — i) k=0
’ (~DF(k = Dlaj —ai) ™ k=1

giving the equivariant Euler class cs(F) = er(F) (see [CRI10], Lemma 4.1.2). Under this specializa-
tion, st (x) := D k>0 5% R k' satisfies exp(sU?) (z)) = (o — a; +x) 7.

5In fact Fj ;.o splits further, with a subbundle for each distinct integer appearing in ¢;. We will not need this splitting
directly, but it is related to the choice of variables in the proof of Claim @ below.
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Let B, denote the mth Bernoulli polynomial; recall that B,,(0) is the m-th Bernoulli number.
The OQRR operator for F' = P~ Po<i<r Fj,i is

i#]
- TR 1 DO S DD 9D S LU Y TR
o€MultiPart(u) j= OO<7zé<rqe(@ﬁ[O ,1) k>0 m>0
i#]

JZ E m—1
- D | ¥Ry B,

oeMultiPart () 0<i,j<rmne€o; {=0 m>1
i#]

R DI 2/77) :

o€MultiPart(u) 0<i,j<rn€o; m>1
i#]

where the second equality is by and the third equality is from the following identity, easily
proved via generating functions of Bernoulli polynomials:

S Bult/n) = ?7:2“’)

0<0<n—1
Let
(G:0) _ Gi)  Bm(0)2" 4
(44) Gm(x,z)_n;osnml - n!zm ’
so that

A= @ exp Z Z GUD(0, z/n)

oeMultiPart(p) 0<%,j<rmne€o;
i#]
By deﬁnition of the Bernoulli polynomials, the coefficient of s,(gj A in GUD (z, z) is the degree k
part of 7. For a € C, the equation
e:c+az ev

= 1+6m

e(lZ — 1 eaz —

implies the functional equation GV (z + az, az) — GU (z, az) = sU (). Applying this repeatedly
shows that (after the specialization (43])) we have I,(Q,0,x,—z) = A (Il‘jmw(Q, X,s,—z)), where

Bpb )
Iﬁntw(Q’X,s, —z) = Z (250(1,... Vlo + Tr) 1o H H ZBQ n sexp [ - Z GYUD(—Bz/n, z/n)

o€MultiPart(u) j=0mn€o; >0 OS;ST
i#j
Let v(j) = (0,...,0,1,0,...,0) € ZPart(1,r + 1), where the 1 is in the j-th position, and let p(j)
be the unique element of MultiPart(v(j)). Note the relationship:

(45) IEmW(Q,x,s, —z) = Z (zém( o le + g H H nIuntW (Q,s,—z/n).

o€MultiPart(u) j=0 nGO'J

It is now sufficient to prove:
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Claim 6.5. Assuming Identities [7.1) and I (Q, x,8,—2) is a Anoy[[X, s]]/(x)?-valued point of
the (untwisted) Lagrangian cone L,,.

If we prove Claim it will imply that 1,,(Q,0,x, —z) is a AL

nov

Lagrangian cone of BG), for s as in — which is precisely Etw

[[x]]-valued point of the s-twisted

Proof of claim [6-3 We prove a slightly stronger statement, replacing the variables @, () in I

with new variables z, in the obvious way. Define deg(sg ’i)) =k + 1. We will prove that Il‘jntw is on
L,, by induction on the degree. For the base case, [JK02, Proposition 3.4] shows that the J-function
J(Q,x,—z) € L, is given by

(46) J(Q,x,—z) = —zexp(Q/(—%)) [ 1+ Z ZB—OL7 mod(x)?.

oeMultiPart(u)

That is, ILth(Q,X,O, —z) =J(dQ,x,—z2) € L,,.
For the inductive step, suppose that Il‘jntw lies on £, up to degree M in the variables sUD . We

Iuntw

will show that Il‘jnt‘” lies on £,, up to degree M + 1. It is sufficient to show that all derivatives Z (X

Sk
lie in the tangent space Tjﬁntwﬁu up to degree M [CCIT09, p.393]. Let —z + t, be the part of
I}jmw (Q,x,s,—z) with nonnegative z-exponents, and for o € MultiPart(u), define

1
(47) Ta(tu) = Zﬁ<17107tuv""t“>gm+2'
n>1

Then by [CCIT09, Prop. B.4], Tjuw Ly, is freely generated as a Anov[[x; s, 2]]/(x)?-module by the
derivatives 0y J (7, —2)|r—7(t,) With respect to the variables @) and x,. From , we have:

Tt
01, )T (7 =2 r=rit,) = exp(rho V(4 /(=2)) [ 14+ D )y,
o€MultiPart(u)

aa'J(T’ _Z)|T:T(tu) = eXp(T(l ..... 2 (tu)/(_z))la for o 7& (17 SRR 1)

1 d[untw
We must therefore show that P o= cre T i s (10 7oy 18 in the Apoy[[x; s, 2]]/(x)2-module generated
by:
7(t
(48) 1+ Y T_( W, and 1, foro#(1,...,1),

oceMultiPart(p)
for any 0 < i, jo < r with ig # jo and any ko > 0. For convenience, define
untw untw
(40,J0) 1 oI, 'y /z
49 —z): = — d —z): = .
B O O Y ¥ e = L (O Y ey

By and the product rule, we have

(50)
8Iuntw oI lll’ltW(Q 2/771)
m . m (ju) \*° S M runtw .
o (i0,jo) Z (260’(1 : 1 + 2ol U Z 9 (i0,50) H ZIy(j) (Qa S, 2/77)
Sko oeMultiPart () 0<ji<r ko 0<j<r
meoj neo;
Fm#m)
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Observe that Identity [7.1] in Section [7] implies

(L ’1) Z ,u]Tp

0<5<r
where v(j) and p(j) are as in (45]). Thus implies:

(51)

10,J 77 i,
L= 3 Cheanletadle) D0 LGN T -2/

oeMultiPart(u) Oﬁél <r 0S€j§7"
neoj, neo;

Gm#G1,m)

f(ZOJO) (—z/n)
= Z (25g7(17_..,1)10+x010) H .gl/(])(_z/n) Z !

z —Z
oeMultiPart(u) 0<j<r n€T, 9utjo)( Guio) (=2/m)
neo;

(In the second equality, we have used the fact that Fo (ZO JO) o (

from the definition of I;"*".)

By the mirror theorem for Sym! P" = P" (specifically, the proof on [CCIT15, p.31]), we have

Iu(rzt)w € L,(j. Thus i[;‘gl]t)w € TIBFBNEHI, by the tangent space property of £, ;) [Giv04, Thm. 1]. In

particular, quntW(Q, s, —z/n) is divisible by exp(—n7m"U)(t, (j))/#), where by “divisible”, we mean

—z/n) =0 if jo # j1, which is immediate

that the ratio Contams only nonnegative powers of z; in other words, g,,(] (—z/n) contalns only

(40,J0)
v(j1),ko

only nonnegative powers of z. That is, the first line of (51)) implies f (i0,J 0)( z) is of the form:

ntw

nonnegative powers of z. Similarly, because I;7" € L, ( ) we have that f (—z/m) contains

1
1 - (power series in z) + Z Toso . (power series in z) 4+ O(x)?.

oeMultiPart(u)

In order to show f ZO’JO)( z) is in the Anov[[x,s, 2]]/(x)*module generated by (4§), it remains to

show that for all o € MultiPart(,u) with o # (1,...,1), the coefficient of 27! - 1, in is equal to
—79(t,,) times the coefficient of 2 - 1 in . In other words, we must show:

f(lodok (0) f(loﬂo) (0)
2o | II 9@ | X ”]07(()0) =7t | I 2@ | > W'
0<j<r n€Tjy 9 (o) 0<j<r 1<a1<pj, 9v(jo)
neo; 1<a<p;
After cancellation, this is precisely the statement of Identity O
Claim completes the proof of [(I1I)| and hence of Theorem O

From (29), we compute that (assuming r > 0) we have

r
ISydeP’T(Qvt7Xa Z) =1- Z+Ztle+ Z 1’0104’0(’2_1)7
=0 o€MultiPart(u)

where [H;] is as in Section By definition of Jg  ap- (from Section , Theorem implies:
Corollary 6.6. Assuming Identities[7.1] and [7.2, we have

IsymdPT(Q,t,X, z) = szmdPT(Q,G,Z) mod(x)?,
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where 6 = Z;:O tiH; + ZUEMuItiPart(,u) Tolo.

7. APPENDIX: CONJECTURAL COMBINATORIAL IDENTITIES

The Mirror Theorem is conditional upon the following two conjectural combinatorial identities.
Let t,, denote the part of Il‘jntw with nonnegative powers of z, and let 77(t,) be as in . We
conjecture the following:

Identity 7.1. For all p > 1, we have

ng
1+ Z knk)_2+zkzo ng ..
1,...,1 _ ) ( k>0 1+ k (3,9) 2
7 )(tu) = Z H Z 150 ne! (K™ Q 2okzo H Z 5k ' +O(x%).
0<j<r  noma,..20 k20 TR k20 \ O5isr
i#]

Identity 7.2. Let p > 1, and let o be a partition of pu that is not equal to (1,...,1). Then

(ty) =20 [ 9017 + O(x)?,

0<j<r

where g,(—z) is as in ([49). (Recall that v(j) € ZPart(1,r + 1) is the composition with 1 in the jth
entry, and p(j) is the unique multipartition of v(j).)

Both identities are entirely combinatorial in nature, as 7(t~1(t,), 77(t,), and 9u(;)(0) are
entirely explicit. Specifically, one uses the formulas [Koc01, Lemma 1.5.1] and [JK02, Prop. 3.4],
both of which we have already used extensively in this paper, to evaluate the integrals appearing in
7D (t,) and 79 (t,) in terms of multinomial coefficients. The resulting expressions for 711 (t,)
and 77(t,) are iterated sums over partitions.

We expect that both identities can be proved via cleverly switching the order of summation,
and applying basic multinomial coefficient identities or generating function techniques. (In the
introduction we speculated that tools from integrable systems might also yield a less-hands-on
proof.) However, due to the complicatedness of the generating functions involved, we were not able
to complete either proof. We instead conclude with some relevant observations and experimental
verifications of both identities to small order.

Notes about Identity

(1) The variables z, are entirely absent from Identity as follows. The invariants appearing
in 7(1--1(t,) are of the form

(L b bl

For o # (1,...,1), the class 1, always appears with an z, factor in t,. As we are working
modulo (x)?, the only contributions are from invariants with at most one nontrivial class
1,. By [JKO02, Prop. 3.4], invariants with exactly one nontrivial class 1, vanish. Thus we
may replace t,, in Identity with t®, where tg denotes the coefficient of 1 in t,,.

(2) The difficulty in proving Identity is not due to the presence of Bernoulli numbers in
the definition of IL‘“tW; in fact the Bernoulli numbers appear to play no role whatsoever, as
Identity is a special case of the following more general formula. Let

Ky

B .
52 T | ] Do B

0<j<r | >0 k>0
0<e<k+1
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Then experimentally we appear to have

(53)
=243 k>0 Mk )
B n ((k+Degpp)™
R EED SUTED S (B 310 I
0<j<r  ng,ni,..>0 E>0 k>0 ke

where —z + t¢ denotes the part of f with nonnegative powers of z. Using Note , Identity
is the special case where

B—¢41(0 S(j,i)
6' k—04+ 1)1k

(Indeed, the absence of ¢ for £ < k in shows that the Bernoulli numbers B, (0) for
m > 0 are entirely irrelevant.) Note that we require ¢ < k + 1 in ) because, in the

expression G U ( Bz/n,z/n) from (| . the power of (3 is always at most one more than
the power of z.
(3) Writing

) =1-(yo+y1z+122°+ ),

and evaluating the integrals

(1,1,t),. ..,t2>0n+2,

gives the expression
oo
1 /n—1
> Y ()
n=1¢eZPart(n—1,n) <

We may compute each y; explicitly. For example, if we set every cj ¢ to zero except for one,
say ci ¢, and we have u; = 0 for all but one j, then we have:

Yn = (—=1)"u;! Z (ci(fj%)N QU Z (kN —-n+ 1) (XCren /\Z)N

! — !
N>n/k NEN =n +1)! reZPart(kN—n-+1,1;) : [

(4) Some straightforward combinatorial identities can be used to expand T(l""’l)(t“) as a
polynomial in p, whose coefficients are sums over partitions. Experimentally, the coefficient
of u™ “miraculously” cancels to give zero whenever m > 1. (Indeed, proving this “linearity”
would suffice for the purpose of Theorem we do not need the explicit formula.)

(5) Figure [ Veriﬁes Identity [7.1] for ¢ = (1,0,...) and p = (3,0,...), to second order in

Zl<z<r "0 for k< 2 (and to zeroth order in si, for k > 2).

Notes about Identity

(6) The same argument as in Note (1)) shows that 77(t,) € z, - C[[Q, {s(] N+ O(x?). As in
Note , it is straightforward to expand 77(t,) as an explicit sum over partitions.
(7) Unlike in Note ([2)), the Bernoulli numbers do appear to play a nontrivial role in Identity
(8) Figure || verifies Identity [7.2| for o = {4}, o0 = {4,1}, and o = {3, 2}, to the same orders in
sy, as above. Observe in particular that Identity |7.2| predicts that 77(t,,) is identical for these
three choices of 0. (By o = {4, 1}, we really mean p = (5,0...,) and o0 = ({4,1},{},...).)
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[AB84]
[ACV03]
[AGV08]
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[BCFKvS00]
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FIGURE 4. Experimental verification of Identity 7.1
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FIGURE 5. Experimental verification of Identity 7.2
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