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ABSTRACT

In quantitative photoacoustic tomography (QPAT), distributions of optical parameters inside the target are
reconstructed from photoacoustic images. In this work, we utilize the Monte Carlo (MC) method for light
transport in the image reconstruction of QPAT. Modeling light transport accurately with the MC requires
simulating a large number of photon packets, which can be computationally expensive. On the other hand, too
low number of photon packets results in a high level of stochastic noise, which can lead to significant errors
in reconstructed images. In this work, we use an adaptive approach, where the number of simulated photon
packets is adjusted during an iterative image reconstruction. It is based on a norm test where the expected
relative error of the minimization direction is controlled. The adaptive approach automatically determines the
number of simulated photon packets to provide sufficiently accurate light transport modeling without unnecessary
computational burden. The presented approach is studied with two-dimensional simulations.

Keywords: quantitative photoacoustic tomography, Monte Carlo method for light transport, stochastic opti-
mization

1. INTRODUCTION

In photoacoustic tomography (PAT), the aim is to reconstruct images of the initial pressure distribution gen-
erated by absorption of externally introduced light pulse. It can be used, for example, to image blood vessels,
microsvasculature of tumors and small animals.1,2 In quantitative photoacoustic tomography (QPAT), the aim
is to estimate concentrations of light absorbing molecules,3 which provides quantitative information of the target.

Image reconstruction problem of QPAT is an ill-posed inverse problem. An iterative solving of the related
minimization problem requires modeling light transport and solving a search direction of the minimization
algorithm on each iteration. A widely accepted model for light transport in a scattering medium is the radiative
transfer equation (RTE).4 While the RTE has been previously utilized in QPAT,5–9 approximating the solution of
the RTE numerically for example by a finite element method can be computationally challenging. Alternatively,
light transport in biological tissues can be simulated with the Monte Carlo (MC) method for light transport.
In MC, light transport is simulated by tracing a large number of photons or photon packets.10,11 It has been
widely utilized in the field of biomedical optics,12,13 and recently it has been utilized in QPAT.14–19

Due to its stochastic nature, the solution given by MC simulation is corrupted by a stochastic noise. The
effect of the stochastic noise can be made negligible in practice by simulating a very large number of photon
packets, but it can be computationally expensive. On the other hand, reducing the number of photon packets
reduces the computational cost. However, using a too low number of photon packets can result in a high level
of stochastic noise. This can lead to significant errors in the solution of the inverse problem.

In this work, we approach the QPAT inverse problem in the framework of Bayesian inverse problems.20,21

The image reconstruction problem is formulated as a minimization problem, that is solved utilizing a stochastic
Gauss-Newton (SGN) method. The number of photon packets during the iterative image reconstruction process
is determined by a norm test.15,16,22
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2. LIGHT TRANSPORT MODEL

In the forward problem of QPAT, the absorbed optical energy density H inside the target is solved when the
optical parameters and input light are given. Let us consider a domain Ω ⊂ Rd with a boundary ∂Ω in dimension
d = 2, 3 and let ŝ ∈ Sd−1 denote a unit vector in the direction of interest. In QPAT, light propagation can be
modelled using the RTE

ŝ · ∇φ(r, ŝ) + (µs(r) + µa(r))φ(r, ŝ) = µs(r)

∫
Sd−1

Θ(ŝ · ŝ′)φ(r, ŝ′)dŝ′, r ∈ Ω

φ(r, ŝ) =

{
φ0(r, ŝ), r ∈ ε, ŝ · n̂ < 0
0, r ∈ ∂Ω \ ε, ŝ · n̂ < 0

(1)

where r is the spatial position, µa(r) is the optical absorption coefficient, µs(r) is the optical scattering coefficient,
φ(r, ŝ) is the radiance, φ0(r, ŝ) is a boundary source defined at source locations ε ⊂ ∂Ω, n̂ is an outward unit
normal, and Θ(ŝ · ŝ′) is the scattering phase function.4,23,24 A widely used scattering phase function is the
Henyey-Greenstein phase function

Θ(ŝ · ŝ′) =

{
1
2π

1−g2
1+g2−2gŝ·ŝ′ , d = 2

1
4π

1−g2
(1+g2−2gŝ·ŝ′)3/2 , d = 3

, (2)

where g ∈ (−1, 1) is the scattering anisotropy parameter.25

The photon fluence Φ(r) is obtained from the radiance by

Φ(r) =

∫
Sd−1

φ(r, ŝ)dŝ. (3)

As light propagates within the medium, it is absorbed by light absorbing molecules (chromophores), creating
absorbed optical energy density H(r)

H(r) = µa(r)Φ(r). (4)

In this work, the MC method is used to approximate the solution of the RTE.10,11 We use the photon packet
method, where light transport is approximated by tracing paths of photon packets in a scattering medium while
continuously reducing the weights of the packets to simulate absorption.10

3. INVERSE PROBLEM

In the inverse problem of QPAT, optical parameters of the target are estimated from the absorbed energy density
H. In this work, we estimate the absorption coefficient µa, and assume that the scattering coefficient is known.
Let us consider an observation model

y = f(x) + e, (5)

where y = [H1, H2, ...,HM ] ∈ RM is the data, x = µa = [µa1 , µa2 , ..., µaN ] ∈ RN denotes the unknown optical
absorption coefficients, f : RN 7→ RM is the discretized forward model, e ∈ RM is the measurement noise, N is
the number of discretization elements in the parameter mesh and M is the number of data points. In this work,
we approach the inverse problem in the Bayesian framework.5,20 In the Bayesian approach, parameters x, y and
e are considered as random variables, and the solution to the inverse problem is the posterior distribution π(x|y).
Solving the full posterior distribution is often computationally too expensive in a tomographic imaging setting.
Thus, point estimates, such as maximum a posteriori (MAP) estimates, are computed. With Gaussian models
for the unknown parameters x and noise e, computing the MAP estimates can be formulated as a minimization
problem

x̂ = arg min
x

{
1

2
||Le(y − f(x)− ηe)||2 +

1

2
||Lx(x− ηx)||2

}
, (6)

where ηe and ηx are the means of the noise and the prior distribution of the optical parameters, respectively,
and LT

e Le = Γ−1e and LT
xLx = Γ−1x are the Cholesky factors of the inverse of the noise and the prior covariance

matrices Γe and Γx, respectively.
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3.1 Stochastic Gauss-Newton method

Minimization problem (6) can be solved using methods of numerical optimization, such as the Gauss-Newton
method.26 In the Gauss-Newton method, the forward model f(x) and its Jacobian need to be evaluated on each
iteration. However, with MC based forward model, only stochastic approximations of the forward model and its
Jacobian can be obtained.

In this work, the optimization problem (6) is approached in the framework of stochastic optimization. That
is, we consider that the forward model and its Jacobian given by the MC method are corrupted by a stochastic
noise. They can be expressed as

fP (x) = f(x) + εf (7)

JP (x) = J(x) + εJ , (8)

where fP (x) is the forward model evaluated with P photon packets at x and JP (x) is the corresponding Jacobian.
Further, f(x) and J(x) are the ’accurate’ forward model and its Jacobian, which refer to the (unavailable)
asymptotic limit of MC with infinite number of photon packets, and εf and εJ are stochastic noise in the forward
model and its Jacobian, respectively. These approximations are assumed to be unbiased, that is E[fP (x)] = f(x)
and E[JP (x)] = J(x) where E denotes the expected value.

We utilize a stochastic Gauss-Newton (SGN) method to solve the optimization problem (6). The SGN is
a stochastic counterpart of the regular Gauss-Newton method.26 In SGN method, estimates of x are updated
iteratively by

xi+1 = xi + αiGPi
(xi), (9)

where αi is the step length parameter and the minimization direction GPi
(xi) is solved from

(JT
Pi

(xi)Γ
−1
e JPi(xi) + Γ−1x )GPi

(xi) = JT
Pi

(xi)Γ
−1
e (y − fPi

(xi)− ηe)− Γ−1x (xi − ηx). (10)

where fPi(xi) is the forward model evaluated at xi with Pi photon packets and JPi(xi) is its Jacobian. The deriva-
tives of the forward model f(x) with respect to the absorption coefficient can be evaluated during computation
of the absorbed energy density in MC simulation, for details, see Refs.14,15

3.2 Adaptive Approach

The minimization direction GPi(xi) in the SGN method (9)-(10) is evaluated using stochastic approximations of
the forward model and its Jacobian. Consequently, the SGN direction is also corrupted by stochastic noise, and
the level of this noise depends on the number of simulated photon packets. Thus, the effect of the stochastic
noise in the SGN search direction can be controlled by adjusting the number of simulated photon packets.

In this work, we utilize an adaptive approach where the number of photon packets is adjusted during the
SGN algorithm.15 In the adaptive approach, the number of photon packets is determined by a norm test.15,16,22

In the norm test, the expected relative error of the minimization direction is controlled. The norm test can be
expressed as

V 2
GN(x) =

E
{
||GPi

(x)−G(x)||2
}

||G(x)||2
< γ2, (11)

where G(x) is the accurate SGN direction and γ is a threshold parameter, describing acceptable error in the
minimization direction. In practice, the expected value in the norm test can be evaluated using sample mean and
a set of L runs of the MC-based forward model and its Jacobian matrices with Pi photon packets. Furthermore,
since the accurate direction G(x) is not available, it can be approximated by using sample means. For details of
the methodology and the SGN algorithm, see Ref.15
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Figure 1. True absorption (left) and scattering (right) distribution presented in the simulation discretization.

4. SIMULATIONS

The adaptive SGN approach was studied with two-dimensional numerical simulations in a rectangular domain
of size 15 mm × 10 mm. The absorption and scattering coefficients that were used to simulate the absorbed
optical energy density used as the data y are presented in Fig. 1. Further, anisotropy parameter g = 0.8 was
used. The data was simulated using four planar illuminations with a uniform density on each side of the domain.
The absorbed optical energy density was simulated using the MC method as described in Sec. 2 in a piecewise
constant triangular discretization composed of 46142 elements and 23350 nodes. The simulated absorbed optical
energy density was then interpolated to a reconstruction discretization to avoid making an inverse crime. After
the interpolation, Gaussian random noise with zero mean and standard deviation corresponding to 1% of the
maximum value of the noiseless signal was added to the data.

In the inverse problem, absorption coefficient µa was estimated from the simulated absorbed optical energy
density. The scattering coefficient and anisotropy parameter were assumed to be known. The estimates were
computed by minimizing Eq. (6). Two different approaches were studied: an adaptive stochastic Gauss-Newton
approach (A-SGN), where the number of photon packets was determined by the norm test approach Eq. (11),
and a simple stochastic Gauss-Newton approach (S-SGN), where the number of photon packets was fixed.

In the A-SGN approach, the initial number of photon packets was 100. The norm test was evaluated on every
iteration with L = 10 samples and with a threshold parameter γ = 0.8. The S-SGN estimates were computed
using 103, 106 and 107 photon packets, which are referred to as S-SGN1, S-SGN2 and S-SGN3, respectively.
The S-SGN1 approach corresponds to a case where the number of photon packets is too low to provide accurate
reconstructions, while the S-SGN3 corresponds to a case where the number of photon packets is unnecessarily
large. The S-SGN2 approach corresponds to a feasible compromise. Estimates were computed in multiple
piecewise constant reconstruction discretizations Mi. The number of elements and nodes in the discretizations
Mi are presented in Table 1.

In this work, the prior model of the minimization problem (6) was based on a Gaussian prior with the
Ornstein-Uhlenbeck covariance27 defined as

Γx = σ2Ξ, (12)

Table 1. Number of elements Ne and nodes Nn in the reconstruction discretizations Mi.

Ne Nn Ne Nn Ne Nn

M1 192 117 M7 2760 1457 M13 8480 4374

M2 374 216 M8 3468 1820 M14 9690 4988

M3 690 384 M9 4332 2262 M15 11102 5704

M4 1102 600 M10 5292 2752 M16 12416 6370

M5 1564 840 M11 6120 3174 M17 13872 7107

M6 2080 1107 M12 7252 3750 M18 15552 7957
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where σ is the standard deviation of the prior and Ξ is defined by its elements as

Ξ(i, j) = exp(−||ri − rj ||/τ), (13)

where ri and rj denote the coordinates of discretization points i and j, respectively, and τ is the characteristic
length scale parameter. In the simulations, the optical absorption coefficient was assumed to be within an
interval [min(µsim

a ),max(µsim
a )], where µsim

a is the simulated (true) absorption distribution. The mean of the
prior distribution ηx was chosen to be the mean of that interval, and the standard deviation was chosen such
that σ = 1/6(max(µsim

a )−min(µsim
a )). Furthermore, characteristic length scale of τ = 2.5 mm was used. In the

additive noise model, the simulated noise level was used.

In the SGN algorithm, a constant step size parameter αi = 1 was used in all simulations. In all approaches,
the initial value x1 was chosen to be the mean of the prior distribution. The algorithms were assumed to be
converged when the relative difference between the last and the previous three estimates was less than 10%.

The results were compared visually and by computing the relative error of the estimates. The relative error
was computed by

E = 100% · ||x̂− x
sim||

||xsim||
, (14)

where x̂ is the MAP estimate and xsim is the simulated (true) absorption coefficient interpolated to the recon-
struction mesh. Thus, xsim can be considered to be the most accurate representation of the true distribution in
that discretization.

5. RESULTS

The true absorption distributions interpolated to the reconstruction meshes and the estimates computed with
A-SGN and S-SGN approaches in five different reconstruction meshes are presented in Fig. 2. In the mesh with
the smallest number of elements, all the estimates look visually similar. However, when the number of elements
increase, the effect of the stochastic noise in the S-SGN1 estimates, where the number of photon packets was
low, become clearly visible. All other estimates are visually identical in all of the meshes.

The relative errors of estimates and total number of simulated photon packets with different approaches
in different discretizations are presented in Fig. 3. As it can be seen, the relative errors of the S-SGN1 are
significantly higher compared to the other approaches, and there is significant variance in the errors due to
the stochastic noise. Moreover, the relative error of the S-SGN1 estimates increase as the number of elements
increase. This is caused by photon packet statistics: as the number of mesh elements increase, probability that
a photon packet goes through a specific mesh element decreases. Thus, less photon packets contribute to the
photon propagation and absorption in that element, resulting in more stochastic noise.

The S-SGN3 and A-SGN approach provide estimates with almost identical level of relative error. The S-SGN2

approach provides similar level of relative error with a very low number of mesh elements, but the errors increase
as the number of mesh element increase.

In general, the total number of simulated photon packets in the A-SGN approach is in the same scale compared
to the S-SGN2 approach. However, as the number of mesh elements increase, the A-SGN approach automatically
adjusts the number of photon packets, which increases the number of photon packets in the meshes with high
number of elements. More importantly, while the A-SGN and S-SGN3 approaches provide almost identical results,
the A-SGN approach requires significantly less photon packets than the S-SGN3 approach in all discretizations.

6. DISCUSSION AND CONCLUSIONS

In this work, the inverse problem of QPAT was studied. Light transport was modeled using the MC method,
and the inverse problem was solved in the Bayesian framework utilizing a stochastic Gauss-Newton method.
An adaptive approach, where the number of simulated photon packets was adjusted during the iterative image
reconstruction, was utilized. The adaptive approach was based on a norm test, where the expected relative error
of the minimization direction was controlled.
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Figure 2. Simulated absorption distribution interpolated to the reconstruction meshes (first row), estimates computed
with S-SGN1 approach (second row), S-SGN2 approach (third row), S-SGN3 approach (fourth row) and A-SGN approach
(fifth row). Results are shown in a reconstruction meshes with 192 elements (first column), 690 elements (second column),
1564 elements (third column), 5292 elements (fourth column) and 15552 elements (fifth column).

Figure 3. Relative errors of the final estimates E (%) (left) and total number of simulated photon packets Pb (right) with
different number of mesh elements Ne with S-SGN1 approach (blue, dotted), S-SGN2 approach (blue, dashed), S-SGN3

approach (blue, solid) and A-SGN approach (red, solid).
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As seen in the simulations, using a too low number of photon packets during the image reconstruction
resulted in inaccurate reconstructions. On the other hand, choosing a very large number of photon packets
resulted in excessive computational cost without any significant improvement in the estimates. Further, with
fixed number of photon packets, the relative error of the estimates increased as the number of elements in the
reconstruction meshes increased. The adaptive approach studied in this work provided accurate reconstructions
in every discretization due to automatically adjusting the number of photon packets. Further, the adaptive
approach required significantly fewer photon packets to converge compared to an approach with very large
number of photon packets while providing the same accuracy for the absorption estimates.

While the adaptive approach determines the number of photon packets automatically, it requires choosing
multiple parameters: the threshold parameter, number of samples used in the test and how often the test
is evaluated. In the simulations of this work, the same threshold parameter was observed to provide sufficient
accuracy in all discretizations. However, other factors, such as optical parameters inside the target or illumination
patterns, may have an effect on the choice of the threshold parameter. Additionally, while the adaptive approach
can provide computational savings due to decreasing the number of simulated photon packets, evaluating the
norm test introduces additional computations due to solving multiple Gauss-Newton directions on each iterations.

In this work, only the absorption coefficient was estimated while the scattering coefficient was assumed to
be known. In practice, this is not a realistic assumption. The similar approach could be utilized in solving
both the absorption and scattering coefficient simultaneously, although this can be more challenging due to the
ill-posedness of the scattering estimation problem. Evaluating the Jacobian matrix of the MC based forward
model with respect to the scattering coefficient requires, for example, perturbation Monte Carlo method.14

In conclusion, the MC method for light transport can be utilized in QPAT to obtain accurate absorption re-
constructions. However, the stochastic nature of the MC introduces additional challenge of choosing the number
of photon packets during the image reconstruction. The adaptive approach studied in this work adjusts the num-
ber of photon packets to provide sufficiently accurate simulations. Consequently, it can provide computational
savings compared to fixing the number of photon packets unnecessarily large.
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