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ABSTRACT
Similar to the role of Markov decision processes in reinforcement learning, Markov games (also called
stochastic games) lay down the foundation for the study of multi-agent reinforcement learning and
sequential agent interactions. We introduce approximate Markov perfect equilibrium as a solution to the
computational problem of finite-state stochastic games repeated in the infinite horizon and prove its
PPAD-completeness.This solution concept preserves the Markov perfect property and opens up the
possibility for the success of multi-agent reinforcement learning algorithms on static two-player games to be
extended to multi-agent dynamic games, expanding the reign of the PPAD-complete class.

Keywords:Markov game, multi-agent reinforcement learning, Markov perfect equilibrium,
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INTRODUCTION
Shapley [1] introduced stochastic games (SGs)
to study the dynamic non-cooperative multi-player
game, where each player simultaneously and inde-
pendently chooses an action at each round for a
reward. According to their current state and the cho-
sen actions, the next state is determined by a proba-
bility distribution specified a priori. Shapley’s work
includes the first proof of the existence of a station-
ary strategy profile under which no agent has an in-
centive todeviate, in two-player zero-sumSGs.Next,
the existence of equilibrium in stationary strategies
was extended to multi-player general-sum SGs by
Fink [2]. Such a solution concept (known asMarkov
perfect equilibrium (MPE) [3]) captures the dynam-
ics of multi-player games.

Because of its generality, the framework of SGs
has enlightened a sequence of studies [4] on a wide
range of real-world applications ranging from ad-
vertising and pricing [5], species interaction game
modeling in fisheries [6], traveling inspection [7]
and gaming AIs [8]. As a result, developing algo-
rithms to compute MPE in SGs has become one of
the key subjects in this extremely rich research do-
main, using approaches from applied mathematics,
economics, operations research, computer science
and artificial intelligence (see, e.g., [9]).

The concept of the SG underpins many AI and
machine learning studies. The optimal policy mak-
ing of Markov decision processes (MDPs) cap-
tures the central problem of a single agent interact-
ing with its environment, according to Sutton and
Barto [10]. In multi-agent reinforcement learning
(MARL) [11,12], SG extends to incorporate the dy-
namic nature in multi-agent strategic interactions,
to study optimal decision making and subsequently
equilibria in multi-player games [13,14].

For two-player zero-sum (discounted) SGs, the
game-theoretical equilibrium is closely related to the
optimization problem in MDPs as the opponent is
purely adversarial [15,16]. On the other hand, solv-
ing general-sum SGs has been possible only un-
der strong assumptions [2,17]. Zinkevich et al. [18]
demonstrated that, for the entire class of value iter-
ation methods, it is difficult to find stationary Nash
equilibrium (NE) policies in general-sum SGs. This
has led to few existingMARL algorithms to general-
sum SGs. Known approaches have either studied
special cases of SGs [19,20] or ignored the dynamic
nature to limit the study to the weaker notion of
Nash equilibrium [21].

Recently, Solan and Vieille [22] reconfirmed the
importance of the existence of a stationary strategy
profile as having several philosophical implications.
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First, it is conceptually straightforward. Second,
past play affects the players’ future behavior only
through the current state. Third, subsequently and
most importantly, equilibrium behavior does not
involve non-credible threats, a property that is stronger
than the equilibrium property, and viewed as highly
desirable [23].

Surprisingly, the complexity of finding an MPE
in an SG remains an open problem, although an SG
was proposed more than sixty years ago and despite
its importance. While fruitful studies have been
conducted on zero-sum SGs, we still know little
about the complexity of solving general-sum SGs. It
is clear that solving MPE in (infinite-horizon) SGs
is at least PPAD-hard, since solving a two-player
NE in one-shot SGs is already complete in this
computational class [24,25] defined by Papadim-
itriou [26]. This suggests that it is unlikely to have
polynomial-time algorithms in general-sum stochas-
tic games for two players. Yet, with complications
involved in the general-sum and dynamic settings,
the unresolved challenge has been: Can solving
MPE in general-sum SGs be anywhere complete in
computational complexity classes?

We answer the above question in the positive,
proving the computation of an approximate MPE
in SGs equivalent to that of a Nash equilibrium in
a single state setting, and subsequently showing its
PPAD-completeness. It opens up the possibility to
develop MARL algorithms to work for the general-
sum SGs in the same way as for an ordinary Nash
equilibrium computation.

Intuitions and a sketch of our main ideas
Computational studies on problem solving build un-
derstanding on various types of reduction. After all,
computations carried out on computers are eventu-
ally reduced to AND/OR/NOT gates on electronic
circuits.

To prove that a problem is PPAD-complete, we
need to prove that it is in the class, and that it can
be used as a base to solve any other problem in this
class (for its hardness).More formally, the reduction
needs to be carried out in polynomial (with respect
to the input size) time. Nash equilibrium compu-
tation of two-player normal-form games [27] is ar-
guably the most prominent PPAD-complete prob-
lem [24,25]. When one stochastic game has only
one state and the discount factor γ = 0, then find-
ing an MPE is equivalent to finding a Nash equilib-
rium in the corresponding normal-form game. The
PPAD-hardness of finding an MPE follows immedi-
ately. Our main result is to prove the PPAD mem-
bership property of computing an approximateMPE
(Lemma 2 below).

Firstly, we construct a function f on the strategy
profile space, such that each strategy profile is a fixed
point of f if and only if it is an MPE of the stochas-
tic game(Theorem2below).Furthermore,weprove
that the function f is continuous (λ-Lipschitz by
Lemma 3 below), so that fixed points are guaranteed
to exist by the Brouwer fixed point theorem.

Secondly, we prove that the function f has some
‘good’ approximation properties. Let |SG| be the
input size of a stochastic game. If we can find a
poly(|SG|)ε2-approximate fixed point π of f, i.e.
‖ f (π) − π‖∞ ≤ poly(|SG|)ε2, whereπ is a strat-
egy profile, then π is an ε-approximate MPE for the
stochastic game (combining Lemma 5 and Lemma
6 below). So our goal converts to finding an approx-
imate fixed point of a Lipschitz function.

Finally, our PPAD membership follows from
the theorem that computation of the approximate
Brouwer fixed point of a Lipschitz function is
PPAD-complete, as shown in the seminal paper by
Papadimitriou [26].

Related work
In practice, MARL methods are most often applied
to compute the MPE of an SG based on the inter-
actions between agents and the environment. Their
uses can be classified in two different settings: online
and offline. In the offline setting (also known as the
batch setting [21]), the learning algorithm controls
all players in a centralizedway, hoping that the learn-
ing dynamics can eventually lead to an MPE by us-
ing a limited number of interaction samples. In the
online setting, the learner controls only one of the
players to play with an arbitrary group of opponents
in the game, assuming unlimited access to the game
environment.The central focus is often on the regret:
thedifferencebetween the learner’s total rewarddur-
ing learning versus that of a benchmark measure in
hindsight.

In the offline setting, two-player zero-sum (dis-
counted) SGs have been extensively studied. Since
the opponent is purely adversarial in zero-sum SGs,
the process of seeking the worst-case optimality for
each player can be thought of as solvingMDPs. As a
result, (approximate) dynamic programming meth-
ods [28,29] such as least-squares policy iteration
[30] and fitted value iteration [31] or neural fittedQ
iteration [32] can be adopted to solve SGs [33–36].
Under this setting, policy-based methods [37,38]
can also be applied. However, directly applying
existing MDP solvers on general-sum SGs is prob-
lematic. Since solving two-player NE in general-sum
normal-form games (i.e. one-shot SGs) is well
known to be PPAD-complete [24,25], the complex-
ity of MPE in general-sum SGs is expected to be at
least PPAD-hard. Although early attempts such as
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Nash-Q learning [39], correlated-Q learning [40],
friend-or-foe Q-learning [41] have been made to
solve general-sum SGs under strong assumptions,
Zinkevich et al. [18] demonstrated that none in
the entire class of value iteration methods can find
stationaryNE policies in general-sum SGs.The diffi-
culties on both the complexity side and the algorith-
mic side have led to few existing MARL algorithms
for general-sum SGs. Successful approaches either
assume knowing the complete information of the
SG such that solvingMPE can be turned into an op-
timization problem [42], or prove the convergence
of batch RLmethods to a weaker notion of NE [21].

In the online setting, agents aim tominimize their
regret by trial and error.One of themostwell-known
online algorithms is R-MAX [43], which studies
(average-reward) zero-sum SGs and provides a
polynomial (in game size and error parameter)
regret bound while competing against an arbitrary
opponent. Following the same regret definition,
UCSG [44] improved R-MAX and achieved a
sublinear regret, but still in the two-player zero-sum
SG setting. When it comes to MARL solutions,
Littman [13] proposed a practical solution named
Minimax-Q that replaces the max operator with the
minimax operator. Asymptotic convergence results
of Minimax-Q were developed in both tabular cases
[45] and value function approximations [46]. To
avoid the overly pessimism property by playing the
minimax value for general-sum SGs, WoLF [47]
was proposed to take variable steps to exploit an
opponent’s suboptimal policy for a higher reward
on a variety of stochastic games. AWESOME
[48] further generalized WoLF and achieved NE
convergence in multi-player general-sum repeated
games. However, outside the scope of zero-sum
SGs, the question [43] of whether a polynomial
time no-regret (near-optimal) MARL algorithm
exists for general-sum SGs remains open.

Some recent works studied the sample complex-
ity issue in RL andMARL algorithms, most of which
considered a finite horizon. Jin et al. [49] proved that
a variant ofQ-learningwith upper confidence bound
exploration can achieve a near-optimal sample effi-
ciency under episodicMDPsetting. Zhang et al. [50]
proposed a learning algorithm for episodic MDP
with a regret bound close to the information theo-
retic lower bound. Li et al. [51] proposed a prob-
ably approximately correct learning algorithm for
episodic RL with a sample complexity independent
of the planning horizon. For general-sum MARL,
Chen et al. [52] proved an exponential lower bound
on the sample complexity of approximateNash equi-
librium even in n-player normal-form games. In the
same direction, Song et al. [53] showed that corre-
lated equilibrium (CE) and coarse correlated equi-

librium (CCE) can be learned within a sample com-
plexity polynomial in themaximumsize of the action
set of a player, rather than the size of the joint ac-
tion space. Jin et al. [54] developed a decentralized
MARL algorithm with polynomial sample complex-
ity to learn CE and CCE.

DEFINITIONS AND THE MAIN THEOREM
Definition1 (Stochastic game). A stochastic game is
defined by a tuple of six elements 〈n, S, A, P , r, γ 〉.
� By nwe denote the number of agents.
� By S we denote the set of finite environmental
states. Let S = |S|.

� ByA
i we denote the action space of agent i. Note

that each agent i can choose different actions un-
der different states. Without loss of generality, we
assume that, for each agent i, the action space
A

i under each state is the same. Here A = A
1 ×

· · · × A
n is the set of agents’ joint action vector.

Let Ai = |Ai | and Amax =max i ∈ [n]Ai.
� By P : S × A → �(S) we denote the transition
probability, that is, at each time step, given the
agents’ joint action vector a ∈ A, then the transi-
tion probability from state s to state s′ in the next
time step is P(s′|s, a).

� By r = r 1 × · · · × r n : S × A → Rn
+ we de-

note the reward function, that is, when agents are
at state s and play the joint action vector a, then
agent iwill get reward ri(s, a). We assume that the
rewards are bounded by rmax .

� By γ ∈ [0, 1) we denote the discount factor that
specifies the degree to which the agent’s rewards
are discounted over time.

Each agent aims to find a behavioral strategywith
Markovian property, which is conditioned on the
current state of the game.

The pure strategy space of agent i is
∏

s∈S
A

i ,
which means that agent i needs to select an action
at each state. Note that the size of the pure strategy
space of each agent is |Ai |S , which is already expo-
nential in the number of states. More generally, we
define the mixed behavioral strategy as follows.

Definition 2 (Behavioral strategy). A behavioral
strategy of agent i isπ i : S → �(Ai ). For all s ∈ S,
π i(s) is a probability distribution onA

i .

In the rest of the paper, we focus on behavioral
strategy and refer to it simply as a strategy for con-
venience. A strategy profile π is the Cartesian prod-
uct of all agents’ strategies, i.e. π = π 1 × ··· × π n.
We denote the probability of agent i using action ai
at state s by π i(s, ai). The strategy profile of all the
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agents other than agent i is denoted by π−i. We use
π i, π−i to represent π , and ai, a−i to represent a.

Given π , the transition probability and the
reward function depend only on the current
state s ∈ S. Let ri, π(s) denote Ea∼π(s )[r i (s , a)]
and Pπ(s′|s) denote Ea∼π(s )[P (s ′|s , a)]. Fix
π−i; the transition probability and the reward
function depend only on the current state s ∈ S

and player i’s action ai. Let r i,π−i (s , a i ) denote
Ea−i∼π−i (s )[r i (s , (a i , a−i ))] and P π−i (s ′|s , a i )
denoteEa−i∼π−i (s )[P (s ′|s , (a i , a−i ))].

For any positive integer m, let �m := {x ∈
Rm

+| ∑m
i=1 xi = 1}. Define �S

Ai := �s∈S�Ai .
Then, for all s ∈ S, π i (s ) ∈ �Ai , π i ∈ �S

Ai and
π ∈ ∏n

i=1 �S
Ai .

Definition 3 (Value function). A value function for
agent i under strategy profile π , V π

i (s ) : S → R ,
gives the expected sum of its discounted rewards
when the starting state is s:

V π
i (s ) =

∞∑
t=0

γ t · E[r i,π(s t)|s0 = s ].

Here, s0, s1, . . . is theMarkov chain such that the tran-
sition matrix is Pπ , that is, Pr[sk+1 = s ′|sk = s ] =
P π(s ′|s ) for all k= 0, 1, . . . . Equivalently, the value
function can be defined recursively via the Bellman
policy equation

V π
i (s )

= E
a∼π(s )

[
r i (s , a) + γ

∑
s ′∈S

P (s ′|s , a)V π
i (s ′)

]
.

Definition4 (Markov perfect equilibrium).Abehav-
ioral strategy profile π is called a Markov perfect
equilibrium if, for all s ∈ S, all i ∈ [n] and all π̃ i ∈
�S

Ai ,

V π
i (s ) ≥ V π̃ i ,π−i

i (s ),

where V π̃ i ,π−i

i (s ) is the value function of i when its
strategy deviates to π̃ i while the strategy profile of
other agents is π−i.

TheMarkovperfect equilibrium is a solution con-
cept within SGs in which the players’ strategies de-
pend only on the current state but not on the game
history.

Definition 5 (ε-approximate MPE). Given ε >

0, a behavioral strategy profile π is called an ε-
approximate MPE if, for all s ∈ S, all i ∈ [n] and all
π̃ i ∈ �S

Ai ,

V π
i (s ) ≥ V π̃ i ,π−i

i (s ) − ε.

WeuseAPPROXIMATEMPE todenote the compu-
tational problem of finding an approximate Markov
perfect equilibrium in stochastic games, where the
inputs and outputs are as follows.The input instance
of problem APPROXIMATE MPE is a pair (SG, L),
where SG is a stochastic game and L is a positive in-
teger.Theoutput of problemAPPROXIMATEMPE is a
strategy profileπ ∈ ∏n

i=1 �S
Ai , also dependent only

at the current state but not on its history, such thatπ
is a 1/L-approximate MPE of SG. We use the nota-
tion |SG| to denote the input size of the stochastic
game SG.

Theorem 1 (Main theorem). APPROXIMATE MPE is
PPAD-complete.

We note that, when |S| = 1 and γ = 0, a stochas-
tic game degenerates to an n-player normal-form
game. At this time, any MPE of this stochastic game
is a Nash equilibrium for the corresponding normal-
form game. So we have the following hardness result
immediately.

Lemma1. APPROXIMATEMPE is PPAD-hard.

To derive Theorem 1, we focus on the proof of
PPADmembership of APPROXIMATEMPE in the rest
of the paper.

Lemma2. APPROXIMATEMPE is in PPAD.

ON THE EXISTENCE OF MPE
The original proof of the existence of MPE is from
[2] and based on Kakutani’s fixed point theorem.
Unfortunately, proofs that are based on Kakutani’s
fixed point theorem in general cannot be turned into
PPAD-membership results. We develop a proof that
uses Brouwer’s fixed point theorem, based on which
we also prove the PPAD membership of APPROXI-
MATEMPE.

Inspired by the continuous transformation de-
fined by Nash to prove the existence of the equi-
librium point [27], we define an updating function
f :

∏n
i=1 �S

Ai → ∏n
i=1 �S

Ai to adjust the strategy
profile of agents in a stochastic game to establish the
existence of MPE.

Let π ∈ ∏n
i=1 �S

Ai be the behavioral strategy
profile under discussion.

Let Qπ i ,π−i

i (s , a i ) denote the expected sum of
discounted rewards of agent i if agent i uses pure ac-
tion ai at state s at the first step, and then follows π i

after that, but every other agent jmaintains its strat-
egy π j. Formally,

Qπ i ,π−i

i (s , a i )

= r i,π
−i
(s , a i ) + γ

∑
s ′∈S

P π−i
(s ′|s , a i )V π i ,π−i

i (s ′).
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For each player i ∈ [n] with each action a i ∈ A
i at

each state s ∈ S, we define a policy update function
of π i(s, ai) as

f (π)i (s , a i )

=
π i (s , a i )+max

(
0, Qπ i ,π−i

i (s , a i )−V π i ,π−i

i (s )
)

1+∑
bi ∈Ai max

(
0, Qπ i ,π−i

i (s , bi )−V π i ,π−i

i (s )
) .

We consider the infinite norm distance
of two strategy profiles π 1 and π 2, de-
noted by ‖π 1 − π 2‖∞: ‖π1 − π2‖∞ =
maxi∈[n],s∈S,ai ∈Ai |π i

1(s , a
i ) − π i

2(s , a
i )|.

We first prove that the function f satisfies a conti-
nuity property, namely, is λ-Lipschitz for λ equal to
11nS2A2

maxrmax/(1 − γ )2.

Lemma 3. The function f is λ-Lipschitz, i.e. for every
π1, π2 ∈ ∏n

i=1 �S
Ai such that ‖π 1 − π 2‖∞ ≤ δ, we

have

‖ f (π1) − f (π2)‖∞ ≤ 11nS2A2
maxrmax

(1 − γ )2
δ.

Proof. At any s ∈ S, pick any player i ∈ [n]. For an
action a i ∈ A

i , let M1(ai) denote max
(0, Qπ i

1,π
−i
1

i (s , a i ) − V π i
1,π

−i
1

i (s )) and M2(a i ) =
max(0, Qπ i

2,π
−i
2

i (s , a i ) − V π i
2,π

−i
2

i (s )). From the
next claim (proof in the Appendix),

| f (π1)i (s , a i ) − f (π2)i (s , a i )|

=
∣∣∣∣π i

1(s , a
i ) + M1(a i )

1 + ∑
bi ∈Ai M1(bi )

− π i
2(s , a

i ) + M2(a i )
1 + ∑

bi ∈Ai M2(bi )

∣∣∣∣
≤ |π i

1(s , a
i ) − π i

2(s , a
i )| + |M1(a i ) − M2(a i )|

+
∣∣∣∣ ∑
bi ∈Ai

M1(bi ) −
∑
bi ∈Ai

M2(bi )
∣∣∣∣.

Claim 1. For any x, x′, y, y′, z, z′ ≥ 0 such that (x +
y)/(1 + z) ≤ 1 and (x′ + y′)/(1 + z′) ≤ 1, it holds
that

∣∣∣∣ x + y
1 + z

− x ′ + y ′

1 + z′

∣∣∣∣ ≤ |x − x ′| + |y − y ′|

+ |z − z′|.

Take δ = ‖π1 − π 2‖∞; then |π i
1(s , a

i ) −
π i
2(s , a

i )| ≤ δ for any s ∈ S, a i ∈ A
i .Next, for any

a i ∈ A
i , we estimate

|M1(a i ) − M2(a i )|
=

∣∣∣max
(
0, Qπ i

1,π
−i
1

i (s , a i ) − V π i
1,π

−i
1

i (s )
)

− max
(
0, Qπ i

2,π
−i
2

i (s , a i ) − V π i
2,π

−i
2

i (s )
)∣∣∣

≤
∣∣∣(Qπ i

1,π
−i
1

i (s , a i ) − V π i
1,π

−i
1

i (s )
)

−
(
Qπ i

2,π
−i
2

i (s , a i ) − V π i
2,π

−i
2

i (s )
)∣∣∣

≤
∣∣∣Qπ i

1,π
−i
1

i (s , a i ) − Qπ i
2,π

−i
2

i (s , a i )
∣∣∣

+
∣∣∣V π i

1,π
−i
1

i (s ) − V π i
2,π

−i
2

i (s )
∣∣∣ .

We should first derive an upper bound on
|r i,π−i

1 (s , bi ) − r i,π
−i
2 (s , bi )|.

Claim2. It holds that∣∣∣r i,π−i
1 (s , bi )−r i,π

−i
2 (s , bi )

∣∣∣≤(n−1)Amaxrmaxδ.

This follows from the following claim (proof in
the Appendix).

Claim3. It holds that

∑
b−1∈A−1

∣∣∣∣
n∏
j=2

π
j
1 (s , b

j ) −
n∏
j=2

π
j
2 (s , b

j )
∣∣∣∣

≤ (n − 1)Amaxδ.

Similarly, we have the following claim.

Claim4. It holds that∑
b−1∈A−1

|P π−i
1 (s ′|s , bi ) − P π−i

2 (s ′|s , bi )|

≤ (n − 1)Amaxδ.

To bound |V π i
1,π

−i
1

i (s ) − V π i
2,π

−i
2

i (s )| for every
s ∈ S, we denote by V π

i the column vector
(V π

i (s ))s∈S, and by ri, π the column vector
(r i,π(s ))s∈S and by Pπ the matrix P π(s , s ′)s ,s ′∈S.
By the Bellman policy equation (Definition 3), we
have

V π
i = r i,π + γ P πV π

i ,

which means that
V π
i = (I − γ P π)−1r i,π .

We prove in Lemma 7 below that

|(I − γ P π1 )−1(s ′|s ) − (I − γ P π2 )−1(s ′|s )|

≤ nS Amaxδ

(1 − γ )2

for all s , s ′ ∈ S.
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Now we are ready to give an upper bound on
|V π i

1,π
−i
1

i (s ) − V π i
2,π

−i
2

i (s )| for any s ∈ S. We have

∣∣∣V π i
1,π

−i
1

i (s ) − V π i
2,π

−i
2

i (s )
∣∣∣

=
∣∣∣∣∑
s ′∈S

r i,π1 (s ′)(I − γ P π1 )−1(s ′|s )

−
∑
s ′∈S

r i,π2 (s ′)(I − γ P π2 )−1(s ′|s )
∣∣∣∣

≤
∑
s ′∈S

r i,π1 (s ′)|(I − γ P π1 )−1(s ′|s )

− (I − γ P π2 )−1(s ′|s )|
+

∑
s ′∈S

(I−γ P π2 )−1(s ′|s )

× ∣∣r i,π1 (s ′)−r i,π2 (s ′)
∣∣

≤
∑
s ′∈S

(
rmax

nS Amaxδ

(1 − γ )2
+ 1

1 − γ
n Amaxrmaxδ

)

= Sn Amaxrmax

1 − γ

(
S

1 − γ
+ 1

)
δ

≤ 2nS2Amaxrmax

(1 − γ )2
δ,

where the forth line follows from |(I − γ P π2 )−1

(s ′|s )| ≤ 1/(1 − γ ), in Lemma 7 below.
Similarly, we establish a bound for

|Qπ i
1,π

−i
1

i (s , bi ) − Qπ i
2,π

−i
2

i (s , bi )|:
∣∣∣Qπ i

1,π
−i
1

i (s , bi ) − Qπ i
2,π

−i
2

i (s , bi )
∣∣∣

=
∣∣∣∣∣r i,π−i

1 (s , bi ) + γ
∑
s ′∈S

P π−i
1 (s ′|s , bi )V π i

1,π
−i
1

i (s ′)

−r i,π
−i
2 (s , bi ) − γ

∑
s ′∈S

P π−i
2 (s ′|s , bi )V π i

2,π
−i
2

i (s ′)
∣∣∣∣

≤ |r i,π−i
1 (s , bi ) − r i,π

−i
2 (s , bi )|

+ γ
∑
s ′∈S

∣∣∣P π−i
1 (s ′|s , bi )V π i

1,π
−i
1

i (s ′)

− P π−i
2 (s ′|s , bi )V π i

2,π
−i
2

i (s ′)
∣∣∣

≤ n Amaxrmaxδ

+ γ
∑
s ′∈S

(
P π−i

1 (s ′|s , bi )
∣∣∣V π i

1,π
−i
1

i (s ′)

− V π i
2,π

−i
2

i (s ′)
∣∣∣+V π i

2,π
−i
2

i (s ′)
∣∣∣ P π−i

1 (s ′|s , bi )

− P π−i
2 (s ′|s , bi )

∣∣∣)

≤ n Amaxrmaxδ

+ γ

(
2nS2Amaxrmax

(1 − γ )2
δ + S

rmax

1 − γ
n Amaxδ

)

= n Amaxrmaxδ

(
1 + 2γ S2

(1 − γ )2
+ γ S

1 − γ

)

≤ 3S2n Amaxrmaxδ

(1 − γ )2
.

For any bi ∈ A
i , we have

|M1(bi ) − M2(bi )|
≤

∣∣∣Qπ i
1,π

−i
1

i (s , bi ) − Qπ i
2,π

−i
2

i (s , bi )
∣∣∣

+
∣∣∣V π i

1,π
−i
1

i (s ) − V π i
2,π

−i
2

i (s )
∣∣∣

≤ 5S2n Amaxrmaxδ

(1 − γ )2
.

Thus, for any s ∈ S and any a i ∈ A
i , we obtain

| f (π1)i (s , a i ) − f (π2)i (s , a i )|
≤ |π i

1(s , a
i ) − π i

2(s , a
i )|

+|M1(a i ) − M2(a i )|
+

∑
bi ∈Ai

|M1(bi ) − M2(bi )|

≤ δ + 5S2n Amaxrmaxδ

(1 − γ )2
+ Amax

5S2n Amaxrmaxδ

(1 − γ )2

≤ 11nS2A2
maxrmax

(1 − γ )2
δ.

This completes the proof of Lemma 3. �

Now we can establish the existence of MPE by
the Brouwer fixed point theorem.

Theorem 2. For any stochastic game 〈n, S, A,

P , r, γ 〉, a strategy profile π is an MPE if and only
if it is a fixed point of the function f, i.e. f(π) = π .
Furthermore, the function f has at least one fixed point.

Proof. We first show that the function f has at least
onefixedpoint. Brouwer’s fixedpoint theoremstates
that, for any continuous function mapping a com-
pact convex set to itself, there is a fixed point. Note
that f is a function mapping a compact convex set to
itself. Also, f is continuous by Lemma 3. Therefore,
the function f has at least one fixed point.

We then prove that a strategy profileπ is anMPE
if and only if it is a fixed point of f.

⇒: For the necessity, suppose that π is an
MPE; then, by Definition 4, we have, for each
player i ∈ [n], each state s ∈ S and each policy
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π̃ i ∈ �S
Ai , V π i ,π−i

i (s ) ≥ V π̃ i ,π−i

i (s ). By Lemma 4
to be proven next, we have, for any action a i ∈ A

i ,
V π i ,π−i

i (s ) ≥ Qπ i ,π−i

i (s , a i ), which implies that
max(0, Qπ i ,π−i

i (s , a i ) − V π i ,π−i

i (s )) = 0. Then,
for each player i ∈ [n], each state s ∈ S and each
action a i ∈ A

i , (f(π))i(s, ai) = π i(s, ai). It follows
that π is a fixed point of f.

⇐: For the proof of the sufficiency part, let π be
a fixed point of f. Then, for each player i ∈ [n], each
state s ∈ S and each action a i ∈ A

i ,

π i (s , a i )

= ( f (π))i (s , a i )

=
π i (s , a i )+max

(
0, Qπ i ,π−i

i (s , a i )−V π i ,π−i

i (s )
)

1+∑
bi ∈Ai max

(
0, Qπ i ,π−i

i (s , bi )−V π i ,π−i

i (s )
) .

We first provide the following claim given the
condition that π is a fixed point.
Claim 5. For any a i ∈ A

i , Qπ i ,π−i

i (s , a i ) −
V π i ,π−i

i (s ) ≤ 0.

Proof of Claim 5. Suppose for contradiction
that there exists i ∈ [n] and d i ∈ A

i such that
Qπ i ,π−i

i (s , d i ) > V π i ,π−i

i (s ). The above fixed
point equation implies that π i(s, di)> 0.

Let A
i
+ = {a i ∈ A

i : π i (s , a i ) > 0}; then
d i ∈ A

i
+. Note that, by the recursive definition of

V π i ,π−i

i (s ), we have

V π i ,π−i

i (s ) = E
ai ∼π i (s )

[
r i,π

−i
(s , a i )

+ γ
∑
s ′∈S

P π−i
(s ′|s , a i )V π i ,π−i

i (s ′)
]

=
∑
ai ∈Ai

π i (s , a i )Qπ i ,π−i

i (s , a i )

=
∑
ai ∈A

i+

π i (s , a i )Qπ i ,π−i

i (s , a i ).

Since
∑

ai ∈A
i+
π i (s , a i ) = 1, there must

exist some c i ∈ A
i
+ such that Qπ i ,π−i

i (s , c i )
< V π i ,π−i

i (s ), because otherwise we have Qπ i ,π−i

i

(s , a i ) ≥ V π i ,π−i

i (s ) for all a i ∈ A
i
+, which, com-

bined with Qπ i ,π−i

i (s , d i ) > V π i ,π−i

i (s ), implies
that

∑
ai ∈A

i+
π i (s , a i )Qπ i ,π−i

i (s , a i ) > V π i ,π−i

i
(s ), a contradiction to the above equation. With
some further calculation, we can have the equation

( f (π))i (s , c i )

=
π i (s , c i )+max

(
0, Qπ i ,π−i

i (s , c i )−V π i ,π−i

i (s )
)

1+∑
bi ∈Ai max

(
0, Qπ i ,π−i

i (s , bi )−V π i ,π−i

i (s )
)

= π i (s , c i )

1+∑
bi ∈Ai max

(
0, Qπ i ,π−i

i (s , bi )−V π i ,π−i

i (s )
)

≤ π i (s , c i )

1+Qπ i ,π−i

i (s , d i )−V π i ,π−i

i (s )

< π i (s , c i ).

The above strict inequality follows because 1 +
Qπ i ,π−i

i (s , d i ) − V π i ,π−i

i (s ) > 1 aswell asπ i(s, ci)
> 0.

This contradicts with the assumption that π is a
fixed point of f. Therefore, it holds for any a i ∈ A

i

that Qπ i ,π−i

i (s , a i ) ≤ V π i ,π−i

i (s ). �

Combining Claim 5 and Lemma 4 (to be proven
next), we find that, for any π̃ i ∈ �S

Ai and any
s ∈ S, V π i ,π−i

i (s ) ≥ V π̃ i ,π−i

i (s ). Thus, π is an
MPE by definition. This completes the proof of
Theorem 2. �

Lemma 4. For any player i ∈ [n], given π−i, for any
π i ∈ �S

Ai , the following two statements are equivalent:

1. for all s ∈ S and all a i ∈ A
i , V π i ,π−i

i (s ) ≥
Qπ i ,π−i

i (s , a i );
2. for all s ∈ S and all π̃ i ∈ �S

Ai , V π i ,π−i

i (s ) ≥
V π̃ i ,π−i

i (s ).

Proof. Let V denote the space of value functions
S → R, and define the l∞ norm for any v ∈ V as
‖v‖∞ = maxs∈S |v(s )|.

Pick any player i∈ [n] and keepπ−i fixed.Define
theBellmanoperator	i : V → V such that, for any
v ∈ V and any s ∈ S,

	i (v)(s ) := max
ai∈Ai

[
r i,π

−i
(s , a i )

+ γ
∑
s ′∈S

P π−i
(s ′|s , a i )v(s ′)

]
.

Note that, for all π̃ i ∈ �S
Ai , 	i (V π̃ i ,π−i

i )(s )
= maxai ∈Ai Q π̃ i ,π−i

i (s , a i ), since Q π̃ i ,π−i

i (s , a i ) =
r i,π−i (s , a i ) + γ

∑
s ′∈S

P π−i (s ′|s , a i )V π̃ i ,π−i

i (s ′).
We first prove the equivalence between state-

ments 1 and 2, based on Claim 6 below, which will
be proved next for completeness.

2⇒1: From statement 2, for all s ∈ S, V π i ,π−i

i

(s)= maxπ̃ i∈�S
Ai
V π̃ i ,π−i

i (s )= vi∗(s), which is the
fixed point of 	i by Claim 6 below. That is,
for all s ∈ S, V π i ,π−i

i (s ) = 	i (V π i ,π−i

i )(s ) =
maxai∈Ai Qπ i ,π−i

i (s , a i ), by definition of the
Bellman operator	i. Statement 1 holds.
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1⇒2: If statement 1 holds, we have, for all
s ∈ S, V π i ,π−i

i (s ) ≥ maxai∈Ai Qπ i ,π−i

i (s , a i ).
Since V π i ,π−i

i (s ) ≤ maxai∈Ai Qπ i ,π−i

i (s , a i )
by Claim 6 below, we get V π i ,π−i

i (s ) =
maxai∈Ai Qπ i ,π−i

i (s , a i ). 	i (V π i ,π−i

i )(s ) =
maxai∈Ai Qπ i ,π−i

i (s , a i ) = V π i ,π−i

i (s ), implying
that V π i ,π−i

i is a fixed point of 	i. By Claim 6, the
unique fixed point of	i isvi∗ = V π i ,π−i

i .Therefore,
for all s ∈ S, V π i ,π−i

i (s ) = maxπ̃ i∈�S
Ai
V π̃ i ,π−i

i (s ):
statement 2 holds.

Claim6.We have the following important properties.
� It holds that	i is a γ -contraction mapping with re-
spect to the l∞ norm, and has a unique fixed point.

� For any π̃ i ∈ �S
Ai and any s ∈ S,

	i (V π̃ i ,π−i

i )(s ) ≥ V π̃ i ,π−i

i (s ).
� Let vi∗ ∈ V denote the fixed point of 	i; then vi∗

is the optimal value function, i.e. for any s ∈ S,
vi∗(s ) = maxπ̃ i ∈�S

Ai
V π̃ i ,π−i

i (s ).

Proof of Claim 6. Define

Qv
i (s , a

i ) = r i,π
−i
(s , a i )

+ γ
∑
s ′∈S

P π−i
(s ′|s , a i )v(s ′).

We have 	i (v)(s ) = maxai∈Ai Qv
i (s , a

i ) for all
v ∈ V and s ∈ S.

We first prove that 	i is a γ -contraction map-
ping with respect to the l∞ norm. For all v1, v2 ∈
V, let δ = ‖v1 − v2‖∞ = maxs∈S |v1(s ) − v2(s )|.
We show that ‖	i(v1)− 	i(v2)‖∞ ≤ γ δ.

For all s ∈ S and all a i ∈ A
i , observe that

Qv1
i (s , a

i ) − Qv2
i (s , a

i )

= γ
∑
s ′∈S

P π−i
(s ′|s , a i )(v1(s ′) − v2(s ′)),

so |Qv1
i (s , a

i ) − Qv2
i (s , a

i )| ≤ γ
∑

s ′∈S
P π−i

(s ′|s , a i )δ = γ δ.
Without loss of generality, one can suppose

that 	i(v1)(s) ≥ 	i(v2)(s). Taking arbitrary a i1 ∈
argmaxai∈Ai Qv1

i (s , a
i ), we have

	i (v2)(s ) = max
ai ∈Ai

Qv2
i (s , a

i )

≥ Qv2
i

(
s , a i1

)
≥ Qv1

i
(
s , a i1

) − γ δ

= 	i (v1)(s ) − γ δ;

thus, |	i(v1)(s) − 	i(v2)(s)| ≤ γ δ. By symme-
try, the claim holds for the case in which 	i(v1)(s)

≤ 	i(v2)(s). Therefore, it holds that ‖	i(v1) −
	i(v2)‖∞ ≤ γ δ. Thus, 	i is a γ -contraction map-
ping.

By the Banach fixed point theorem, we know
that 	i : V → V has a unique fixed point vi∗ ∈
V. Moreover, for any v ∈ V, the point sequence v,
	i(v),	i(	i(v)), . . . converges tovi∗, i.e. for all s ∈
S, limk→ ∞(	i)(k)(v)(s)= vi∗(s), where (	i)(k) =
	i ◦ (	i)(k− 1) is defined recursively with (	i)(1) =
	i.

Next, for all π̃ i ∈ �S
Ai and all s ∈ S,

	i (V π̃ i ,π−i

i )(s ) ≥ V π̃ i ,π−i

i (s ), since

V π̃ i ,π−i

i (s ) =
∑
ai∈Ai

π̃ i (s , a i )Q π̃ i ,π−i

i (s , a i )

≤ max
ai∈Ai

Q π̃ i ,π−i

i (s , a i )

= 	i (V π̃ i ,π−i

i )(s )

by definition.
Finally we prove that, for any s ∈ S, vi∗(s ) =

maxπ̃ i ∈�S
Ai
V π̃ i ,π−i

i (s ). For any π i ∈ �S
Ai , define

theoperator
 i
π i : V → V, such that, for anyv ∈ V

and any s ∈ S,


 i
π i (v)(s ) :=

∑
ai∈Ai

π i (s , a i )Qv
i (s , a

i ).

Note that, for any π i ∈ �S
Ai , 
 i

π i is also
a γ -contraction mapping. This is because, for
any v1, v2 ∈ V such that ‖v1 − v2‖∞ = δ, we
have shown that, for any s ∈ S and any a i ∈ A

i ,
|Qv1

i (s , a
i ) − Qv2

i (s , a
i )| ≤ γ δ, so∣∣
 i

π i (v1)(s ) − 
 i
π i (v2)(s )

∣∣
≤

∑
ai∈Ai

π i (s , a i )
∣∣Qv1

i (s , a
i ) − Qv2

i (s , a
i )

∣∣
≤ γ δ,

and then ‖
 i
π i (v1) − 
 i

π i (v2)‖∞ ≤ γ δ.
For any π i ∈ �S

Ai , we can observe that
V π i ,π−i

i = 
 i
π i (V π i ,π−i

i ) by definition. By the
Banach fixed point theorem, we know that 
 i

π i has
a unique fixed point in V, so V π i ,π−i

i is exactly the
unique fixed point of
 i

π i .
Now we arbitrarily take a policy π i

∗ ∈ �S
Ai such

that, for all s ∈ S, {a i ∈ A
i : π i

∗(s , a
i ) > 0} ⊆

argmaxai∈Ai Qvi∗
i (s , a i ). It can be seen that, for

anys ∈ S,


 i
π i∗
(vi∗)(s ) = max

ai∈Ai
Qvi∗

i (s , a i )

= 	i (vi∗)(s )

= vi∗(s ).
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It follows that 
 i
π i∗
(vi∗) = vi∗, so vki∗ is a fixed

point of 
 i
π i∗
. Since the unique fixed point of 
 i

π i∗
is

V π i
∗,π

−i

i , we have V π i
∗,π

−i

i = vi∗. Thus, for any s ∈
S, maxπ̃ i ∈�S

Ai
V π̃ i ,π−i

i (s ) ≥ V π i
∗,π

−i

i (s ) = vi∗(s ).
To show that, for any s ∈ S, vi∗(s ) ≥

maxπ̃ i ∈�S
Ai
V π̃ i ,π−i

i (s ), we observe that, given
v1, v2 ∈ V, if for all s ∈ S, v1(s ) ≤ v2(s ),
then, for any s ∈ S and any a i ∈ A

i ,
Qv1

i (s , a
i ) ≤ Qv2

i (s , a
i ). Therefore, 	i (v1)(s ) =

maxai∈Ai Qv1
i (s , a

i ) ≤ maxai ∈Ai Qv2
i (s , a

i ) =
	i (v2)(s ). As we have, for all π̃ i ∈ �S

Ai

and all s ∈ S, 	i (V π̃ i ,π−i

i )(s ) ≥ V π̃ i ,π−i

i (s ),
we have, for any k ∈ N and any s ∈ S,
(	i )(k+1)(V π̃ i ,π−i

i )(s ) ≥ (	i )(k)(V π̃ i ,π−i

i )(s )
by induction. It follows that V π̃ i ,π−i

i (s ) ≤
(	i )(k+1)(V π̃ i ,π−i

i )(s ). Let k → ∞; then we
get V π̃ i ,π−i

i (s ) ≤ limk→∞(	i )(k)(V π̃ i ,π−i

i )(s ) =
vi∗(s ).Thus, vi∗(s ) ≥ maxπ̃ i ∈�S

Ai
V π̃ i ,π−i

i (s ).
The claim that, for all s ∈ S, vi∗(s ) =

maxπ̃ i ∈�S
Ai
V π̃ i ,π−i

i (s ) follows.

THE APPROXIMATION GUARANTEE
Theorem 2 states that π is a fixed point of f if and
only if π is an MPE for the stochastic game. Now
we prove that f has some good approximation prop-
erties: if we find an ε-approximate fixed point π of
f then it is also a poly(|SG|)√ε-approximate MPE
for the stochastic game (combining the following
Lemma 5 and Lemma 6). This implies the PPAD-
membership of APPROXIMATEMPE.

Lemma 5. Let ε > 0 and π be a strategy profile. If
‖f(π) − π‖∞ ≤ ε then, for each player i ∈ [n] and
each state s ∈ S, we have

max
ai∈Ai

(
Qπ i ,π−i

i (s , a i ) − V π i ,π−i

i (s )
)

≤ Amax

(
rmax

√
ε′ +

√
ε′

1 − γ
+ ε′

)
,

where

ε′ = ε

(
1 + Amaxrmax

1 − γ

)
.

Proof. Pick any player i ∈ [n] and any state
s ∈ S. For simplicity, for any a i ∈ A

i , de-
fine Q(a i ) = Qπ i ,π−i

i (s , a i ) and M(a i ) =
max(0, Q(a i ) − V π i ,π−i

i (s )).

First we give an upper bound onM(ai). For any
a i ∈ A

i , it can be easily seen that

M(a i ) ≤ Q(a i ) = Qπ i ,π−i

i (s , a i ) ≤ rmax

1 − γ
.

By the condition‖f(π)−π‖∞ ≤ ε , for any a i ∈
A

i , we have

π i (s , a i ) − π i (s , a i ) + M(a i )
1 + ∑

bi ∈Ai M(bi )
≤ ε

⇒ π i (s , a i )
∑
bi ∈Ai

M(bi ) − M(a i )

≤
(
1 +

∑
bi ∈Ai

M(bi )
)

ε

⇒ π i (s , a i )
∑
bi ∈Ai

M(bi )

≤ M(a i ) +
(
1 + Amaxrmax

1 − γ

)
ε.

Set ε′ = (1 + Amax rmax /(1 − γ ))ε; then we have
the crucial inequality

π i (s , a i )
∑
bi ∈Ai

M(bi ) ≤ M(a i ) + ε′. (1)

Let A
i
− denote {a i ∈ A

i : M(a i ) = 0} or,
equivalently, {a i ∈ A

i : Q(a i ) − V π i ,π−i

i (a i ) ≤
0}. Let t = ∑

ai ∈A
i−
π i (s , a i ).

Case 1: t ≥ √
ε′/rmax .By inequality (1)we have∑

ai∈A
i−

π i (s , a i )
∑
bi ∈Ai

M(bi )

≤
∑
ai∈A

i−

(M(a i ) + ε′)

⇒ t
∑
bi∈Ai

M(bi ) ≤
∑
ai∈A

i−

ε′

⇒
∑
bi ∈Ai

M(bi )

≤ Amaxε
′/t = Amaxrmax

√
ε′.

Case 2: t <
√

ε′/rmax .By inequality (1)wehave

π i (s , a i )
∑
bi ∈Ai

M(bi ) ≤ M(a i ) + ε′

for all a i ∈ A
i

⇒
∑
ai∈Ai

(π i (s , a i ))2
∑
bi ∈Ai

M(bi )

≤
∑
ai∈Ai

π i (s , a i )M(a i ) + ε′
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⇒
∑
ai∈Ai

(π i (s , a i ))2
∑
bi ∈Ai

M(bi )

≤
∑

ai∈Ai \A
i−

π i (s , a i )M(a i ) + ε′. (2)

As V π i ,π−i

i (s ) = ∑
ai∈Ai π i (s , a i )Q(a i ) and, for

all a i ∈ A
i \ A

i
−, M(a i ) = Q(a i ) − V π i ,π−i

i (s ),

0 =
∑
ai∈Ai

π i (s , a i )(Q(a i ) − V π i ,π−i

i (s ))

=
∑

ai∈Ai \A
i−

π i (s , a i )M(a i )

+
∑
ai ∈A

i−

π i (s , a i )(Q(a i ) − V π i ,π−i

i (s )).

Therefore,∑
ai∈Ai \A

i−

π i (s , a i )M(a i )

=
∑
ai∈A

i−

π i (s , a i )(V π i ,π−i

i (s ) − Q(a i ))

≤ rmax

1 − γ
t

<

√
ε′

1 − γ
.

Moreover, observe that
∑

ai ∈Ai (π i (s , a i ))2 ≥
1/Amax. Substituting these into inequality (2), we
get

1
Amax

∑
bi ∈Ai

M(bi ) ≤
√

ε′

1 − γ
+ ε′.

It follows that
∑

bi ∈Ai M(bi ) ≤ Amax(
√

ε′/
(1 − γ ) + ε′).

In conclusion, combining the two cases, we
get∑
bi ∈Ai

M(bi ) ≤ Amax

(
rmax

√
ε′ +

√
ε′

1 − γ
+ ε′

)
.

Thus, for each a i ∈ A
i , we have

Qπ i ,π−i

i (s , a i ) − V π i ,π−i

i (s ) ≤ M(a i )

≤
∑
bi ∈Ai

M(bi )

≤ Amax

(
rmax

√
ε′ +

√
ε′

1 − γ
+ ε′

)
,

which completes the proof. �

Lemma 6. Let ε > 0 and π be a strategy profile.
If, for each player i ∈ [n] and each state s ∈ S,
maxai ∈Ai Qπ i ,π−i

i (s , a i ) − V π i ,π−i

i (s ) ≤ ε then π

is an ε/(1− γ )-approximate MPE.

Proof. Recall the mapping 	i : V → V, de-
fined as the Bellman operator, from the proof
of Lemma 4. Let vi∗ ∈ V be the unique
fixed point of 	i and recall that, for all s ∈ S,
vi∗(s ) = maxπ̃ i∈�S

Ai
V π̃ i ,π−i

i (s ).
Pick any player i ∈ [n]; by assumption, for each

state s ∈ S, we have maxai∈Ai Qπ i ,π−i

i (s , a i ) −
V π i ,π−i

i (s ) ≤ ε. On the other hand,
V π i ,π−i

i (s ) ≤ maxai∈Ai Qπ i ,π−i

i (s , a i ), so we
have |V π i ,π−i

i (s ) − maxai∈Ai Qπ i ,π−i

i (s , a i )| ≤ ε,
i.e. ‖V π i ,π−i

i − 	i (V π i ,π−i

i )‖∞ ≤ ε.
Since	i is a γ -contraction mapping,

‖vi∗ − 	i (V π i ,π−i

i )‖∞

= ‖	i (vi∗) − 	i (V π i ,π−i

i )‖∞

≤ γ ‖vi∗ − V π i ,π−i

i ‖∞.

In addition, by the triangle inequality we have

‖vi∗ − 	i (V π i ,π−i

i )‖∞

+‖V π i ,π−i

i − 	i (V π i ,π−i

i )‖∞

≥ ‖vi∗ − V π i ,π−i

i ‖∞,

so it follows that

‖V π i ,π−i

i − 	i (V π i ,π−i

i )‖∞

≥ (1 − γ )‖vi∗ − V π i ,π−i

i ‖∞.

Thus, we have

‖vi∗ − V π i ,π−i

i ‖∞ ≤ 1
1 − γ

‖V π i ,π−i

i

−	i (V π i ,π−i

i )‖∞

≤ ε

1 − γ
.

It follows that, for any s ∈ S and any π̃ i ∈ �S
Ai ,

V π̃ i ,π−i

i (s ) − V π i ,π−i

i (s )

≤ vi∗(s ) − V π i ,π−i

i (s )

≤ ‖vi∗ − V π i ,π−i

i ‖∞

≤ ε

1 − γ
.
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By definition, it follows that π is an ε/(1 − γ )-
approximate MPE. �

To conclude, Lemma 2 is proven by combining
Lemma 5 and Lemma 6, which completes the proof
of Lemma 1.

CONCLUSION
Solving an MPE in general-sum SGs has long ex-
pected to be at least PPAD-hard. In this paper, we
prove that computing an MPE in a finite-state in-
finite horizon discounted SG is PPAD-complete.
Our completeness result also immediately implies
the PPAD-completeness of computing an MPE in
action-free SGs and single-controller SGs. We hope
that our results can encourageMARL researchers to
study solving an MPE in general-sum SGs, propos-
ing a sample-efficient MARL solution, which leads
to more prosperous algorithmic developments than
those currently on zero-sum SGs.

APPENDIX
Proof of Claim 1
We have

|(x + y)(1 + z′) − (x ′ + y ′)(1 + z)|
≤ |(x + y)(1 + z′) − (x ′ + y ′)(1 + z′)|

+|(x ′ + y ′)(1 + z′) − (x ′ + y ′)(1 + z)|
= (1 + z′)|(x + y) − (x ′ + y ′)|
+(x ′ + y ′)|z′ − z|
≤ (1 + z′)(|x − x ′ + y − y ′| + |z − z′|)
≤ (1 + z′)(|x − x ′| + |y − y ′| + |z − z′|)

≤ (1 + z)(1 + z′)(|x − x ′| + |y − y ′| + |z − z′|).

The first and third inequalities follow by the triangle
inequality, the second inequality holds because x′ +
y′ ≤ 1+ z′ and the last inequality follows because 1
+ z≥ 1. It immediately follows that∣∣∣∣ x + y

1 + z
− x ′ + y ′

1 + z′

∣∣∣∣
= |(x + y)(1 + z′) − (x ′ + y ′)(1 + z)|

(1 + z)(1 + z′)

≤ |x − x ′| + |y − y ′| + |z − z′|.

Proof of Claim 2
We have

|r i,π−i
1 (s , bi ) − r i,π

−i
2 (s , bi )|

=
∣∣∣∣ ∑
b−i ∈A−i

r i (s , bi , b−i )π−i
1 (s , b−i )

−
∑

b−i ∈A−i

r i (s , bi , b−i )π−i
2 (s , b−i )

∣∣∣∣
=

∣∣∣∣ ∑
b−i ∈A−i

r i (s , bi , b−i )(π−i
1 (s , b−i )

−π−i
2 (s , b−i ))

∣∣∣∣
=

∣∣∣∣ ∑
b−i ∈A−i

r i (s , bi , b−i )

×
( ∏

j �=i

π
j
1 (s , b

j ) −
∏
j �=i

π−i
2 (s , b j )

)∣∣∣∣
≤

∑
b−i ∈A−i

r i (s , bi , b−i )
∣∣∣∣ ∏
j �=i

π
j
1 (s , b

j )

−
∏
j �=i

π
j
2 (s , b

j )
∣∣∣∣

≤ rmax

∑
b−i ∈A−i

∣∣∣∣∏
j �=i

π
j
1 (s , b

j ) −
∏
j �=i

π
j
2 (s , b

j )
∣∣∣∣

≤ (n − 1)Amaxrmaxδ,

where the last inequality follows from the next claim.

Proof of Claim 3
We have

∑
b−1∈A−1

∣∣∣∣
n∏
j=2

π
j
1 (s , b

j ) −
n∏
j=2

π
j
2 (s , b

j )
∣∣∣∣

=
∑

b−1∈A−1

∣∣∣∣
n∑

k=2

( k−1∏
l=2

π l
1(s , b

l )
)

×(π k
1 (s , b

k) − π k
2 (s , b

k))
n∏

l=k+1

π l
2(s , b

l )
∣∣∣∣

≤
n∑

k=2

∑
b−1∈A−1

( k−1∏
l=2

π l
1(s , b

l )
)

×|π k
1 (s , b

k) − π k
2 (s , b

k)|
n∏

l=k+1

π l
2(s , b

l )

=
n∑

k=2

∑
bk∈Ak

|π k
1 (s , b

k) − π k
2 (s , b

k)|

≤ (n − 1)Amaxδ.

Page 11 of 14

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/10/1/nw

ac256/6840228 by U
niversity C

ollege London user on 07 June 2023



Natl Sci Rev, 2023, Vol. 10, nwac256

Proof of Claim 4
We have∑
b−1∈A−1

|P π−i
1 (s ′|s , bi ) − P π−i

2 (s ′|s , bi )|

≤ (n − 1)Amaxδ|P π−i
1 (s ′|s , bi ) − P π−i

2 (s ′|s , bi )|

=
∣∣∣∣ ∑
b−i ∈A−i

P (s ′|s , bi , b−i )π−i
1 (s , b−i )

−
∑

b−i ∈A−i

P (s ′|s , bi , b−i )π−i
2 (s , b−i )

∣∣∣∣
=

∣∣∣∣ ∑
b−i ∈A−i

P (s ′|s , bi , b−i )(π−i
1 (s , b−i )

−π−i
2 (s , b−i ))

∣∣∣∣
≤

∑
b−i ∈A−i

P (s ′|s , bi , b−i )
∣∣∣∣ ∏
j �=i

π
j
1 (s , b

j )

−
∏
j �=i

π
j
2 (s , b

j )
∣∣∣∣

≤
∑

b−i ∈A−i

∣∣∣∣∏
j �=i

π
j
1 (s , b

j ) −
∏
j �=i

π
j
2 (s , b

j )
∣∣∣∣

≤ (n − 1)Amaxδ.

Lemma 7 and its proof
Lemma 7. For every π1, π2 ∈ ∏n

i=1 �S
Ai such that

‖π 1 − π 2‖∞ ≤ δ, we have

|(I − γ P π1 )−1(s ′|s ) − (I − γ P π2 )−1(s ′|s )|

≤ nS Amaxδ

(1 − γ )2

for any s , s ′ ∈ S.

Proof.Wefirst give an upper bound on |P π1 (s ′|s ) −
P π2 (s ′|s )| for any s , s ′ ∈ S:

|P π1 (s ′|s ) − P π2 (s ′|s )|

=
∣∣∣∣∑
a∈A

P (s ′|s , a)
∏
i∈[n]

π i
1(s , a

i )

−
∑
a∈A

P (s ′|s , a)
∏
i∈[n]

π i
2(s , a

i )
∣∣∣∣

≤
∑
a∈A

P (s ′|s , a)
∣∣∣∣ ∏
i∈[n]

π i
1(s , a

i ) −
∏
i∈[n]

π i
2(s , a

i )
∣∣∣∣

≤ n Amaxδ.

Now we view Pπ as an S× Smatrix. For any two
S × S matrices M1, M2, we use ‖M1 − M2‖max to
denotemax i, j|M1(i, j)−M2(i, j)|, i.e. themax norm.
Then we have ‖P π1 − P π2‖max ≤ n Amaxδ.

Let Q1 = (I − γ P π1 )−1 and Q2 =
(I − γ P π2 )−1. (Note that the inverse of (I −
γ Pπ) must exist because γ < 1.)

By definition, we have Q1 = I + γ P π1Q1 and
Q2 = I + γ P π2Q2.Then

‖Q1 − Q2‖max

= γ ‖P π1Q1 − P π2Q2‖max

= γ max
i, j

∣∣∣∣ ∑
k

P π1 (i, k)Q1(k, j )

−
∑
k

P π2 (i, k)Q2(k, j )
∣∣∣∣

≤ γ max
i, j

∑
k

∣∣∣∣P π1 (i, k)Q1(k, j )

−P π2 (i, k)Q2(k, j )
∣∣∣∣

≤ γ max
i, j

(∑
k

P π1 (i, k)|Q1(k, j ) − Q2(k, j )|

+
∑
k

|Q2(k, j )||P π1 (i, k) − P π2 (i, k)|
)

≤ γ max
i, j

(
max
k

|Q1(k, j ) − Q2(k, j )|

+
∑
k

n Amaxδ

1 − γ

)

= γ

(
‖Q1 − Q2‖max + nS Amaxδ

1 − γ

)
,

where the sixth line follows the following facts:

1.
∑

k P
π1 (i, k) = 1;

2. |Q1(k, j) − Q2(k, j)| ≤ max k|Q1(k, j) − Q2(k,
j)|;

3. |P π1 (i, k) − P π2 (i, k)| ≤ n Amaxδ;
4. |Q2(k, j )| ≤ ‖Q2‖1 ≤ 1/(1 − γ ‖P π2‖1) ≤

1/(1 − γ ).

Note thatQ2 = I + γ P π2Q2. Since the1-norm
is submultiplicative, we have

‖Q2‖1 ≤ 1 + γ ‖P π2Q2‖1
≤ 1 + γ ‖P π2‖1‖Q2‖1
≤ 1 + γ ‖Q2‖1,
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which leads to the fourth fact. So we have

|Q1 − Q2|max ≤ nS Amaxδ

(1 − γ )2
.

This completes the proof.
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