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Abstract: Biomass-derived materials have traditionally been used to generate electrical energy
through the combustion of their organic components. However, within the past few years, certain
common biomass compounds, especially plant-based products such as cellulose and lignin, have
drawn attention in the energy field due to their wide availability, low cost, and chemical versatility.
In the case of cellulose, the combination of crystalline and amorphous domains, along with the
high surface area and abundance of hydroxyl groups, has allowed for its application in multiple
devices to harvest energy from the environment. However, to date, there are no reviews focusing
on the different approaches that have been developed to implement these sustainable materials in
the generation of renewable energies and the desirable material properties for these applications.
This manuscript reviews alternative ways that have been developed to exploit biomass compounds
in power generation, especially cellulose and lignin. Three different types of energy harvesting are
discussed: mechanical, osmotic, and thermal energy. In the case of mechanical energy, the application
of plant-derived materials in piezoelectric and triboelectric generators is described. In both cases,
approaches where the biomass material has an active role in power generation instead of acting as
a mechanical support are reported. For osmotic energy, the performance of inverse electrodialysis
systems and the use of plant-derived materials, including the chemical modifications carried out to
allow for their use for energy generation, was reviewed. Finally, for thermal energy generation, the
reported work on biopolymer-based devices that work using thermoelectricity has been summarised.
In each case, the latest advances in the field from the materials science perspective and the reported
performance were described. Hybrid approaches involving the combination of biomass materials
with other components have also been considered and compared with the performance obtained
using biopolymers alone. Current limitations and opportunities are, finally, discussed to offer an
overview of the current landscape and indicate future directions of the field.

Keywords: triboelectric; piezoelectric; cellulose; lignin; osmotic energy; thermoelectric

1. Introduction

Energy generation from biomass represents a promising alternative to the use of fossil
fuels and it will play a pivotal role in achieving the net-zero carbon target by 2050. Biomass
refers to the organic material that is obtained from living organisms. The most common
route for exploiting the energy contained in biomass is through the combustion of its
components. This type of energy is also commonly referred to as “bioenergy”. Bioenergy is
considered carbon neutral, since its use does not, in principle, lead to the accumulation of
net carbon in the atmosphere, since biomass is generated through the fixation of CO2 by
plants. Moreover, the natural decomposition of agricultural or forestry residues releases
CO2, even if they are not used for energy generation [1]. Consequently, this energy source
has the potential to reduce the use of underground fossil fuels. Although within the
past few years new models and policies have been developed to take into account the
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release of greenhouse gases as a consequence of the use of fossil fuels for the production
and refinement of biomass, the release of CO2 by the burning of biomass itself is often
disregarded [2]. The use of plant residues for the generation of energy still leads to a
significant release of CO2 to the atmosphere [3], which breaks with the assumption of
neutrality from biomass resources [1]. In addition, the increased use of biomass resources
for energy production through combustion will inevitably lead to a transformation of
natural ecosystems [4]. Thus, alternative routes for energy generation that make use of
biomass materials without the need for combustion and that can be reused for long periods
of time are needed.

The development of alternative sources of energy, such as solar panels and wind
energy, represents a promising alternative to mitigate CO2 production from fossil fuel
consumption, with a high-power yield. However, to allow for a truly renewable energy
source, devices must not only involve materials and systems that can harvest energy in an
efficient way, but also environmentally friendly materials that do not lead to significant
environmental damage during production. The fabrication of some of the components used
in renewable energy devices often involves the use of non-sustainable or toxic compounds.
An example of these compounds is silicon tetrachloride, which has been shown to have
a high environmental impact due to its toxicity [5]. On the contrary, a synthesis of plant-
derived biomaterials could theoretically be achieved through “carbon negative” methods,
which lead to a storage of CO2 from the atmosphere given the natural ability of plants
to fix carbon. Thus, the incorporation of biomass-derived materials in the fabrication
of these renewable energy devices shows a promising approach that could further save
environmental and power costs, while overcoming the limitations of biomass combustion.

One of the most common biomass-derived materials is cellulose [6], which is produced
at a scale of 1.5 × 1012 tonnes per year [7]. This material is by far the most studied biomass
compound in energy research given its low cost and chemical versatility, and its material
shows advantages compared with traditional materials, which enables its incorporation
in multiple applications. Cellulose gels show a high porosity and specific surface area,
which can enhance energy generation through surface phenomena such as triboelectricity.
Moreover, it is a flexible material, with a good ion conductivity when hydrated, which
improves the use in portable [8], wearable devices compared with traditional materials.
This material can be further modified chemically to enhance power generation through
chemical oxidation or click chemistry among others.

Cellulose is an oligosaccharide, formed by D-glucose units, covalently attached by
β(14)-bonds. This material is widely available, without the requirement for expensive
synthesis or the use of hazardous chemicals. In addition, it can be extracted using low-cost
and environmentally friendly methods, either from biomass [9–11] or by bacterial pro-
duction [12–14]. Unlike most petroleum-based products, cellulose represents a renewable
and biodegradable option, with a low environmental impact. Thus, in recent years, the
applications of this biopolymer have expanded, and the number of scientific papers and
patents being filed in this field have shown a high increase [15].

Within the cell walls of plants, cellulose is present in combination with hemicellulose
and lignin (Figure 1a) [16]. Natural lignocellulose is made of a mixture between crystalline
and amorphous cellulose fibrils embedded inside a matrix of lignin and hemicellulose. This
structure can limit the performance of cellulose in energy harvesting applications given
the low electrical conductivity of lignin [17], and it reduces the accessibility of chemical
compounds to cellulose fibres such as enzymes, which has an impact on the ability to process
cellulose [18]. However, through stripping, cellulose nanofibres can be extracted from natural
cellulose, with a diameter in the range of 3–20 nm and a length of 0.5–2 µm [19].

Cellulose is generally insoluble, with good mechanical properties, allowing for its use
as a reinforcement material either in the form of nanocomposites [20] or hybrid materials,
with the incorporation of other polymers [21]. In addition, it shows a high biocompat-
ibility, enabling its use in biomedical applications such as wearable sensors [22,23] or
implantable devices [24,25]. Natural cellulose can be found in the form of microfibres and
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presents crystalline domains due to the formation of strong hydrogen bonds between the
molecular chains [26]. However, these crystallites represent only a small portion of the
material. In its natural state, cellulose crystallites have a size between 25–36 Å in the case
of softwoods [27–30]. The crystalline structure of these natural cellulose nanocrystals, the
so-called cellulose I, is monoclinic sphenodic (Figure 1b) [31]. Upon swelling or regenera-
tion, this crystal structure can change to cellulose II, with a rearrangement of the hydrogen
bonds (Figure 1c) [32].
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Figure 1. (a) Schematic representation of the structure of natural cellulose prior to any chemical
treatment, in combination with the two other major components of plant biomass: hemicellulose and
lignin. Figure reused with permissions from [33], Copyright RSC (2020). (b) Chemical structure of the
two major crystalline forms of cellulose: Cellulose I and cellulose II. Figure reused with permissions
from [34], Copyright Elsevier Ltd. (2005, Amsterdam). (c) Chemical transition between cellulose
I to cellulose II upon the use of a strong base (NaOH). Figure reused with permissions from [35],
Copyright Elsevier Inc. (2010).

2. Materials and Methods

Natural cellulose can be found as a mixture of its amorphous and crystalline states.
To date, six forms of crystalline cellulose have been described, namely cellulose I, II, IIII,
IIIII, IVI, and IVII [36]. The crystallinity of cellulose and the high presence of hydroxyl
groups provides cellulose with a strong electron-donating ability and high number of
dipoles, which have been exploited for energy harvesting through tribo- and piezoelectric-
ity [19]. The most common form of natural cellulose is cellulose I. Cellulose II, also called
regenerated cellulose, is formed upon modification of the structure of cellulose I using
different solvents, including basic solutions containing NaOH [37]. In plants, cellulose
is predominantly found as cellulose Iβ, whilst cellulose Iα is obtained from less complex
organisms such as bacteria. Both crystalline cellulose structures present a parallel chain
arrangement but differ in their lattice systems. Cellulose Iα is a one-chain triclinic system,
while Iβ presents a two-chain monoclinic structure [36].

The highly hydroxylated composition of cellulose allows for its easy modification
and functionalisation. Surface modification reactions such as oxidation [38,39] or acetyla-
tion [40], and surface functionalisation using click chemistry [41], among others, have been
carried out in cellulose polymers to improve their chemical properties towards specific
applications. These modifications can be performed using green chemistry routes, while
preserving its sustainability and biodegradability. As such, there has been a great interest
in the incorporation of cellulose and its derivatives into multiple applications such as
structural materials [42–44], sensing [45–47], or smart textiles [48,49], among others. In
particular, its use in energy harvesting systems has attracted rising interest in the last
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few years, given the high versatility of cellulose, which can be easily functionalised and
chemically modified to tailor its properties. As such, it represents a renewable and low-cost
alternative to current materials employed in energy harvesting.

An alternative material derived from plant biomass is lignin. Lignin is an amorphous
macromolecule, which shows a different composition depending on the plant source [50].
In general terms, lignin is formed by three different phenylpropane monomers: p-coumaryl
alcohol, coniferyl alcohol, and sinapyl alcohol, with variable ratios. However, despite being
the second most widespread biopolymer in nature, the applications of lignin in power gen-
eration are limited. This fact can be attributed to its poor electrical performance and lower
processability compared to cellulose, given the insolubility in inert solvents and chemical
stability of lignin [51]. Consequently, the market size for lignin is considerably lower com-
pared to cellulose, being $730 million in 2014 [52], and it is expected to reach $1.6 billion
by 2025 [53]. In comparison, the market size for cellulose was 1.72 billion in 2014 and it is
expected to reach $7.4 billion by 2025 only within the Asia-Pacific region [54,55], showing
a higher volume and growth. However, lignin shows good mechanical resilience and
transparency, which could be exploited within biomedical applications such as electronic
skins [56] and structural [57] applications.

This review discusses the current landscape of biomass-derived materials, especially
cellulose and lignin, in renewable energy generation. Three major areas are discussed:
mechanical, osmotic, and thermal energy. Specifically, we focused on approaches where
these biomass materials can be used as an active component instead of a mechanical support.
In each case, the properties of the biomass materials that are exploited to generate electricity
from a fundamental chemical level and how they relate with the observed performance are
described. Hybrid materials where multiple chemicals and nanostructured compounds
have been combined are also described and their performance is detailed. The review of
these materials and their applications allowed for an objective comparison between the
performance of different energy sources that could be used to identify potential areas for
improvement and opportunities in this field.

3. Energy Generation from Mechanical Movement
3.1. Piezoelectric Generators

Mechanical energy is one of the most ubiquitously available forms of energy in the
environment. As such, it represents a large source of renewable power. The piezoelectric
effect was first described in quartz crystals by the Curie brothers in 1880. Since then,
multiple materials, such as barium titanate, tourmaline, and Rochelle, have been discovered
and tested [58]. Piezoelectric generators can produce a change in the electrical polarisation
of the active materials as a consequence of an induced mechanical stress. This phenomenon
is called the direct piezoelectric effect (Figure 2a). Piezoelectric materials can also deform
when they are subjected to an electrical field, defined as the reversed piezoelectric effect
(Figure 2b). The piezoelectric effect takes place within materials with no centre of symmetry
on their crystal structure. In these materials, a mechanical strain causes an asymmetric
shift on the ionic charges in the crystal structure, which generates a voltage. To generate
piezoelectricity, the active material must be enclosed between two separate electrodes and,
under the application of a mechanical input such as a vibration or pressure, the device
generates electricity due to the formation of a voltage difference between the electrodes,
allowing for a harvesting of mechanical energy (Figure 2c).
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generators exploit the direct piezoelectric effect, where a voltage is generated through the application
of a mechanical stress. (b) Representation of the reverse piezoelectric effect, where a mechanical
deformation is driven by an applied voltage. Figures adapted with permissions from [58], Elsevier
Ltd. (2021, Amsterdam). (c) Example of a piezoelectric nanogenerator, employing cellulose nanofibres
for the generation of electricity. Upon the use of a mechanical input, the device could power a group
of LEDs due to the generated voltage. Figure adapted from [59], Elsevier Ltd. (2016, Amsterdam).

Cellulose nanocrystals can produce piezoelectricity due to their particular structure,
presenting a noncentrosymmetry, with two different hydrogen bonding networks [60,61].
This effect was first reported in 1954 by Fukada [62], who observed the piezoelectric effects
on the annual rings of wood. Since then, multiple devices have been designed to exploit
this effect using cellulose-based materials. This material has been employed either as a
piezoelectric generator or in the form of a nanocomposite, with nanoparticles embedded.

The power yield of the devices based on natural cellulose alone tends to be low compared
to commonly used organic materials in piezoelectric generators such as polylactic acid [63] or
poly(vinylidene difluoride) (PVDF) [64]. In the case of PVDF, a power output of 112.8 µW has
been reported by Song et al. [65], being similar to current ceramic-based harvesters. However,
the poor yield of cellulose in comparison is reflected by a low piezoelectric coefficient, which is
related to the strength of the piezoelectric effect on the material and indicates the polarisation
on the electrodes obtained upon subjecting the material to a mechanical stress. The use of
vertically aligned cellulose nanocrystals has been demonstrated to enhance this piezoelectricity
generation [66]. The increase in energy generation is a consequence of the large dipole
moment of cellulose within the cellulose chain direction [66]. Vertically aligned CNC films
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achieved a piezoelectric coefficient of 19.3 ± 2.9 pC/N, which is similar to the one observed
in PVDF, in the range of 20–30 pC/N [67]. This piezoelectric coefficient was 50 times higher
than the longitudinal piezoelectric coefficient observed in wood cellulose fibres, which has
been reported to be 0.4 pC/N [68]. However, the formation of vertically aligned cellulose
nanocrystals required the use of a DC voltage of 5 kV, reducing the scalability of the fabrication
process industrially.

The piezoelectric coefficient of cellulose can be further increased to up to 210 pm/V
when used in the form of ultrathin films of aligned nanocrystals [69]. This value is similar
to the one obtained by piezoelectric metal oxides and can be obtained by fabricating the
films using a uniform electric field onto a mica substrate. Despite the high piezoelectric
coefficient achievable by cellulose nanocrystals, especially by aligned nanocrystals, the
expensive fabrication and processing involved make it an impracticable technology within
a commercial setup. As such, alternative materials that require a lower degree of chemical
processing are desired to reduce the production costs and improve the eco-friendliness of
the devices.

Unmodified natural cellulose can be used as a power generator, taking advantage of
the naturally occurring nanocrystals in plant tissues. As an example, fresh fruits such as
pomelo can be used as the piezoelectric material, with a power yield of 12 µW cm−2 [70],
which could represent a promising approach for the generation of energy from biowastes.
However, the power conversion of this approach was relatively low when compared to the
current commercially available devices. In the case of natural wood, the high presence of
lignin and its low elastic compressibility lead to a poor piezoelectric output. To circumnavi-
gate these challenges, Sun et al. [71] tested natural wood that had been partially digested
using G. applanatum. These fungi could partially remove the lignin and hemicellulose
molecules, and altered the structure of cellulose, improving its compressibility (Figure 3a,b).
As a consequence, the electrical output of wood increased by 55 times compared to the
natural untreated version.

Some attempts have been made to improve the energy generation of cellulose by
mixing it with other polymers and organosilicon compounds. Ram et al. [72] developed
a piezoelectric generator based on 5 wt% cellulose nanocrystals embedded inside a ny-
lon 11 matrix and using glycerol as a plasticiser to increase the flexibility of the system,
which could be easily folded (Figure 3c,d). The final device showed a power output of
500 µW cm−3 when subjected to mechanical impacts. The power yield of polymer-mixed
devices could be further improved by the incorporation of polydimethylsiloxane (PDMS)
with cellulose nanofibrils. Zheng et al. [59] reported a piezoelectric generator using porous
cellulose nanofibrils and coated with PDMS, generating a power density of 6.3 mW/cm3

(Figure 3e). However, the synthesis of some piezoelectric polymers for the fabrication of
these mixed approaches requires the use of precursors from nonrenewable sources, espe-
cially in the case of petrochemical polymers [73], and it tends to be energy intensive [74].
Although some efforts have been made within the last few years to improve the sustainable
production of certain polymers, including PVDF [75] and nylon 11 [76,77], these approaches
are not being used industrially yet.

One of the most common approaches in the development of cellulose-based piezo-
electric generators is the use of nanocomposites, where one or more nanomaterials are
incorporated. Cellulose nanofibres are typically employed in this area, given their high
surface area and good mechanical compressibility (Figure 3f,g). This approach enables a fast
and low-cost way to increase the piezoelectric performance of cellulose-based compounds.
Materials such as multiwalled carbon nanotubes (CNTs) or BaTiO3 have successfully
been used in combination with cellulose to produce high-yield piezoelectric generators.
Alam et al. [78] developed a nanocomposite-based piezoelectric generator based on cellu-
lose microfibres and PDMS, incorporating MWCNTbs as the conductive filler (Figure 3h).
The final device showed a power density of 9.0 µW/cm3, enough to power up 22 LEDs
and an LCD screen. In addition, BaTiO3 has been incorporated, generating in the form
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of nanocomposites [79], reaching a power density as high as 8.41 µW/cm3, reported by
Choi et al. [79], using nanocellulose and 40 wt% BaTiO3 (Figure 3i,j).
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Figure 3. Imaging of different materials employed as piezoelectric generators. (a) Structural change in
natural cellulose and partially digested cellulose (b) obtained using fungi. The chemical and physical
changes due to the use of fungi increased the piezoelectric output. Figure adapted from [71] (c) Ny-
lon/cellulose nanofibres hybrid device that showed a good flexibility and (d) detailed microstructure
of the final device. Figures adapted with permissions from [72], Copyright, American Chemical So-
ciety (2019). (e) Microstructure of a PDMS/cellulose nanofibrils piezoelectric material, reused with
permissions from [59], Copyright Elsevier Ltd. (2016). (f) Detailed microstructure of cellulose aerogels
and (g) cellulose aerogel/BaTiO3. Reused with permissions from [80], Copyright Elsevier Ltd. (2018).
(h) Imaging of crystalline native cellulose. Figure adapted from [78]. (i) Surface structure of nanocellulose
and (j) nanocellulose after the incorporation of barium titanate nanoparticles to enhance the piezoelectric
effect. Figures reused with permissions from [79], Copyright Elsevier Ltd. (2019).

The power output of piezoelectric generators can be further increased by combination
with triboelectricity, enabling a conversion of mechanical energy into electricity. This con-
cept was applied by Shi et al. [80], who developed a cellulose/BaTiO3 aerogel, increasing
the power of the final device from 11.8 µW, when only piezoelectricity was harvested, to
up to 85 µW. Thus, the harvesting of mechanical energy through piezoelectricity repre-
sents a promising alternative for the powering of devices. However, current piezoelectric
generators are limited due to their relatively low power generation and the necessity
for a mechanical pressure. As such, new approaches have been developed to enhance
this generation of power. A summary of recent approaches in power generation using
biomass-derived materials is shown in Table 1.
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Table 1. Comparison of the performance of different biomass-derived piezoelectric generators in
the literature.

Material VOC ISC Force Frequency Power Output Ref.
PVDF - - - - 112.8 µW [65]

Pomelo skin 15 V 130 µA 0.05 N 100 Hz 12 µW/cm−3 [70]

Wood incubated
with G. applanatum 0.87 V 13.3 nA 10 N - - [71]

Nylon 11/cellulose
nanocrystals 6.95 V - 23 N - 500 µW cm−3 [72]

PDMS-coated
cellulose nanofibrils 60.2 V 10.1 µA 0.05 MPa 10 Hz 6.3 mW/cm−3 [59]

Cellulose
microfibre/PDMS 30 V 500 nA - - 9.0 µW/cm−3 [78]

BaTiO3 -Wood
Cellulose fibres 2.86 V 262.35 nA 1 N 1 Hz 8.41 µW/cm−3 [79]

Cellulose/BaTiO3
aerogel 15.5 V 3.3 µA 80 kPa 3 Hz 11.8 µW [80]

PVDF-
HFP/cellulose
nanocrystals

12 V 1.9 µA cm−2 2.5 N 45 Hz 490 µW/cm−3 [81]

Nitrocellulose
nanofibril/
BaTiO3/MWCNT

22 V 220 nA cm−2 2 N cm−2 5 Hz 1.21 µW cm−2 [82]

Au nanoparti-
cle/cellulose/PDMS 6 V 700 nA 3 N - 8.34 mW m−2 [83]

Cellulose/SbSI
nanowires 24 mV - 90 dB 175 Hz 41.5 nW cm−3 [84]

3.2. Triboelectric Nanogenerators

The concept of triboelectric generators was first reported by Prof. Zhonglin Wang in
2012 [85]. These devices can transform mechanical energy into electricity, even in small
amounts of movement. The discovery of this form of energy opened up a new field in
renewable energy harvesting and within 12 months of their discovery, the power output of
the devices had been improved by 5 orders of magnitude [86].

Power generation through triboelectricity takes place by an electron exchange from an
electron-donating material to a charge-trapping layer. As such, this method can combine
the energy generated through contact electrification and electrostatic induction and is
dependent on the total surface area [87]. When two materials with different surface
potentials are put into contact, there is an electron movement that generates an electrical
output (Figure 4a) [88]. Common strategies for increasing the power output of triboelectric
generators focus on increasing the charges on the active materials or the surface contact
between the electrodes. Materials such as modified fluorinated ethylene propylene through
ionised gas injection [89] and plasma-treated PDMS [90] have been employed with high
output yields. However, these chemical treatments are energy intensive and their scalability
for industrial purposes is low.

The incorporation of cellulose as an active material in energy generation through piezo-
electricity or triboelectric nanogenerators represents a promising approach to sustainable
power generators. As detailed in the previous section, cellulose presents a piezoelectric be-
haviour due to its crystalline structure. In addition, among all the available biomass-derived
compounds, cellulose represents the most widespread material applied to triboelectric
generators. Cellulose materials are positively charged in triboelectric terms due to the high
amount of oxygen atoms within their molecular structure [91]. This chemical composition
allows for the loss of electrons without requiring a high energy. This property of pure cellu-
lose is reflected in a high frictional contact charge transfer, in the range of −130 µC m−2,
being higher than the average value for common polymers [19].
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The first cellulose-based triboelectric generator was reported by Yao et al. in 2016. The
cellulose was first oxidised with tetramethylpiperidine-1-oxy and paired with fluorinated
ethylene propylene as the negative triboelectric layer (Figure 4b,c) [92]. The differences
in the polarity between both the treated cellulose and the fluorinated ethylene propylene
allowed for its use without the need for any additional material. In addition, an energy
harvesting device combining the tribo- and piezoelectric capabilities of cellulose has been
reported, with a power output as high as 10.6 µW·cm−2 for the triboelectric generation
and 1.21 µW·cm−2 for the piezoelectric side [82]. This piezo- and triboelectric hybrid
system could also be used as a pressure sensor with a low detection limit of 0.2 N cm−2.
This device combined a wood-derived nitrocellulose by modification using nitric acid
and a piezoelectric nanocomposite containing BaTiO3/MWCNTbs with bacterial cellulose.
However, the power output of power generators can be further improved by focusing on
strategies to increase the triboelectric output.

The performance of triboelectric generators is directly proportional to the charge
density of the active surfaces and the surface area [93]. As such, one of the main approaches
in the development of these devices is the incorporation of different nanoparticles that can
enhance the surface area in a cellulose matrix, making a nanocomposite. Materials such
as ZnO have been used in the form of biocompatible triboelectric generators, showing a
power density of 42 mW m−2 (Figure 4d,e) [94]. In addition, BaTiO3 particles have been
incorporated into cellulose nanofibres to enhance the surface roughness and dielectric
permittivity of the triboelectric generators, increasing the power density by 2 orders of
magnitude, with a reported value of 4.8 W m−2 [95]. The performance of cellulosic materials
can be further increased through the functionalisation of the biopolymer chains with
electron-donating groups such as aminated siloxanes [96]. In the case of cellulose aerogels,
Zhang et al. [97] reported a method for the synthesis of this material that led to a surface area
of 221 m2 g−1 and a maximum power density of 127 mW m−2 when used as a triboelectric
generator using polytetrafluoroethylene (PTFE) as the back electrode (Figure 4f,g) [95].

Another biomass-derived material that has shown potential for its incorporation into
triboelectric generators is lignin. Despite its poor electrical conductivity, the electron-transfer
capabilities of lignin could be exploited by placing this material in contact with charge-
trapping films such as Kapton [98]. Given the high stiffness and insolubility of lignin, this
material had to be combined with starch, and led to a power density of 173.5 nW cm−2. This
value resulted in a lower value than the ones observed in cellulose, which explains the scarce
amount of approaches exploring lignin as an energy material within the literature.

Although the applications of biomass-derived materials, especially cellulose, are
well established within the literature, the overexploitation of this resource could enhance
deforestation rates [99]. Consequently, the market for alternative sources for cellulose
generation, such as bacterial cellulose, have experienced a high growth within the last few
years [100]. However, there is still great interest in the exploitation of whole plants for
energy harvesting, which could improve the sustainability of the devices.

As mentioned, power generation through triboelectricity is dependent on the surface
area of the employed electrodes [87]. As such, to achieve a good performance, the materials
have to be processed through lithography [101] or electrospinning [102]. These methods
increase the production costs, limiting their commercialisation. Some plant organs, such as
leaves and petals, present a large surface area due to their structure, with a hierarchical
porosity and high roughness. In the case of leaves, the presence of cuticle and stoma cells
can increase the surface area by up to 170 m2 g−1 for tobacco plants [103]. This surface area
value is similar to and even larger than other engineered materials already incorporated
as triboelectric generators such as cellulose hydrogels [97,104,105]. As such, plant leaves
have been employed as templates for the fabrication of high surface area electrodes for
the generation of triboelectricity using PDMS [106]. PDMS elastomer can be used as a
negative friction layer in triboelectric generators and it can be patterned using laser ablation
to enhance the surface area. Using this method, Lee et al. [107] developed a triboelectric
nanogenerator able to produce 7.69 W m−2. Moreover, by using micropatterned PDMS with
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incorporated silver nanowires and in contact with human skin, Sun et al. [106] reported a
power conversion of 56 V and 3.1 µA (Figure 4h,i). This method could lead to a performance
almost 60 times higher than similar devices fabricated using laser ablation [108], saving
costs and reducing complexity in the manufacturing.
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Figure 4. (a) Schematic representation of the general structure of triboelectric generators to generate
energy from movement. Reused with permissions from [109], Elsevier Ltd. (2017). (b) AFM imaging
of cellulose nanofibres and the height profile, indicating the average height of the fibres. (c) Schematic
(top) and real (bottom) representation of the flexible triboelectric generator using cellulose nanofibres
and fluorinated ethylene propylene. Figures reused with permissions from [92], Copyright Elsevier
Ltd. (2016). (d) Morphology of pristine bacterial cellulose and (e) bacterial cellulose with incorporated
ZnO nanoparticles. Adapted from [94]. (f) X-ray nanocomputerised tomography of cellulose aerogels
evidencing the fibre network. (g) Scanning electron microscopy of cellulose aerogel. Images reused
with permissions from [97], Copyright Wiley (2020). (h) Morphology of PDMS casted using a plant
leaf to increase the surface area and (i) AFM profiling of the final device evidencing the increase in
surface area. Reused with permissions from [106], Copyright Elsevier Ltd. (2016).

Unmodified plant leaves have a low electron affinity, which can also be exploited to
generate a current when it is placed into contact with materials with higher electron affini-
ties such as poly-methyl methacrylate (PMMA). Jie et al. [110] compared the performance
of different leaves from multiple tree species and obtained a maximum output power
of 45 mW m−2 in the case of Hosta leaves. This power output resulted in higher yields
than in some of the nanocomposite-based approaches reported. The energy yield of these
plants could be greatly improved by the modification of leaf powder with poly-L-lysine
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(PLL) [111]. By applying this method, a maximum of 17.9 mW was obtained, which was
enough to power a group of 868 LEDs. Thus, the use of whole plants in energy generation
has been proven to be a promising alternative for the development of triboelectric genera-
tors with a high yield. However, the performance of this approach still cannot meet the
high power output of cellulose nanofibres and commercially available devices. A summary
of the reported values for cellulose-based triboelectric generators is provided in Table 2.

Table 2. Comparison of the performance of different biomass-derived triboelectric generators in
the literature.

Material VOC ISC Force Frequency Power
Generation Ref.

Nanopatterned PDMS 414.63 V 40.03 µA - - 7.69 W m−2 [107]

Nitrocellulose nanofibril/ BaTiO3/MWCNT 37 V 1.23 µA cm−2 2 N cm−2 5 Hz 10.6 µW cm−2 [82]

Regenerated cellulose 300 V 2.6 mA - 5 Hz 307 W m−2 [91]

Cellulose nanofibrils 10–30 V 10–90 µA - 10–60 Hz - [92]

Bacterial cellulose/ZnO nanoparticles 57.6 V 5.78 µA 2 N 5 Hz 42 mW m−2 [94]

Bacterial cellulose/BaTiO3 particles 181 V 21 µA 42 N 2 Hz 4.8 W m−2 [95]

Aminosilane-functionalised cellulose
nanofibril 195 V 13.4 µA - - - [96]

Cellulose II aerogel 65 V 1.86 µA 40 N 4 Hz 127 mW m−2 [97]

Lignin/starch 1.04 V cm−2 3.96 nA cm−2 - 0.5 Hz - [98]

Micropatterned PDMS 56 V 3.1 µA - - - [106]

Hosta leaf 230 V 9.5 µA - 2 Hz 45 mW m−2 [110]

Dry leaf modified with Poly-L-Lysine 1000 V 60 µA - 5 Hz - [111]

Black phosphorous encapsulated with
hydrophobic cellulose oleoyl ester

nanoparticles
250–880 0.48–1.1 µA 5 N 4 Hz 0.52 mW cm−2 [112]

Lignin/PDMS 308 V 61.6 µA 10 N 30 Hz 5.93 W m−2 [113]

4. Osmotic Energy Harvesting with Cellulose

Whilst the generation of electricity through mechanical energy has been shown to
be an efficient way to harvest electrical energy, especially for the powering of wearable
devices through human motion, this approach cannot meet the current energetic needs that
would enable a reduction in non-renewable energy sources. Thus, alternative renewable
forms of energy are required. In recent years, osmotic energy has been developed as an
alternative form of power generation. This type of energy is collected from the differences
in concentration between two electrolyte solutions. Given the high abundancy of naturally
occurring mixtures of fresh and salt water on Earth, especially at the estuaries, it has been
estimated that, potentially, up to 2 trillion watts from the environment could be harvested
using this technology [114].

The most common method used to generate electrical power through salinity changes
is reverse electrodialysis. The first demonstration of this type of energy was reported by Pat-
tle in 1955, using a stack of 94 polyethylene and polystyrene membranes, which generated
an external power of 15 mW [115]. Since then, the power output of reverse electrodialysis
has greatly improved, with up to 67 W m−2 achieved by a single membrane by employing
nanoporous and atomically thin carbon-based membranes [116]. Typical electrodialysis
systems employ a stack of alternating cation and anion-selective membranes (Figure 5a).
As such, the performance of the devices is directly proportional to the properties of the
ion-exchange membranes [117]. A highly concentrated salt solution is then used in contact
with these ion membranes, separated from a low-concentrated water solution in contact
with the membranes as well. The differences in potential between the low-concentrated
solutions due to the diffusion of cations and anions, which is driven by the electrochemical
gradient with the salt-concentrated solution, generate a voltage [118]. A first pilot plant ex-
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ploiting this technology has already been implemented in the Netherlands by the REDStack
company, being able to generate several watts per square metre of membrane [119].

Recent discoveries in the field of ion-exchange membranes have allowed for the devel-
opment of high-performance reverse osmotic systems. However, the further improvement
in reverse electrodialysis technologies relies on the discovery of affordable and sustainable
materials that can be employed for energy generation. One of the main limitations of this
technology, that hinders its full incorporation at an industrial scale, has been the relatively
low power efficiency compared to other renewable energy sources. This power efficiency is
directly related to the selectivity [114], the charge density, and the conductivity [120] of the
ionic-exchange membranes. To improve the power conversion of current osmotic systems,
nanoporous materials, such as MXenes [121], boron nitride [122], or graphene [123], have
been employed. The porosity and permeation paths of these nanomaterials are located at
the sub-nanometre range, allowing for a good selectivity on the cations [124]. However, the
diffusion speed of water molecules and ions within such confined compartments is reduced,
compromising the performance of the system [119]. In addition, the manufacturing costs of
these materials is high, reducing the possibility of scale up.

The incorporation of cellulose-based materials has been proven to be a promising alter-
native for the fabrication of porous membranes for osmotic energy generation. Specifically,
the use of cellulose nanofibrils has demonstrated a high yield performance compared to
traditional systems due to its high porosity [125] and the presence of highly polar hydroxyl
groups at the surface of cellulose. These properties provide cellulose with a high ion
conductivity, which can be further enhanced through chemical functionalisation, such as
oxidation [126]. Consequently, cellulose has been employed as a sustainable alternative for
ion-exchange membranes in fuel cell applications, among others [127].

Cellulose can be used either in its pure form, after chemical modification [128], or in
the form of hybrid materials, with the incorporation of other nanostructured compounds.
In the case of hybrid materials, the combination of graphene oxide nanoplatelets and
cellulose nanofibrils in the form of assembled layers has been shown to improve the
performance of current osmotic energy systems by enlarging the nanochannels while
showing a large space charge [124]. These properties can decrease the transfer energy
of cations and maintain a good selectivity. Wu et al. [124] implemented this principle
for the elaboration of a RED system that could generate up to 4.19 mW m−2 using a
graphene oxide nanocomposite, generating a layered structure (Figure 5b). However,
although in recent years, the feasible synthesis of graphene oxide using environmentally
friendly methods has been reported [129–131], the main approach used commercially due
to cost-effectiveness is based on modified Hummers methods [132–134]. These methods
involve an exfoliation step, where strong oxidants and concentrated sulphuric acid are
used. Thus, to achieve a true renewable and environmentally free generation of electricity
using this technology, green materials are needed. Cellulose can also be used as a modifier
for standard ion-exchange membranes, increasing the charge density of the films [135].
In this case, cellulose acetate was used as a modifier of the standard PVC-based cation
membrane. The incorporation of this cellulose modification could reduce the electrical
resistance of the films, from 6.77 up to 3.10 Ω cm2 whilst increasing the charge density by
3 mEq g−1. However, the efficiency of this modification has not been tested yet within a
practical device.

The use of cellulose-based nanoporous materials alone has been explored by Wu et al. [136],
who reported an efficiency of 0.23 W m−2. To achieve this efficiency, the cellulose nanofibrils
had to be functionalised to acquire the negative and positive charges needed for the separa-
tion of cations and anions, respectively (Figure 5c,d). In the case of positively charged films,
the membranes were modified with quaternary amine groups using etherification. On the
contrary, to charge the membranes negatively, carboxyl groups were introduced through 2,2,6,6-
tetramethylpiperidine-1-oxyl (TEMPO) oxidation. This approach led to an output power density
of 0.23 W m−2, showing promise for an industrially scalable and low-cost device.
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One alternative to replace the nanoporous materials is to take advantage of the nat-
urally occurring porosity in wood and cellulose nanofibres. Wu et al. [117] employed
a similar strategy to negatively and positively charge wood sheets using TEMPO and
etherification, respectively (Figure 5e,f). However, in this case, the power output of the
system was considerably lower than the one reported using cellulose nanofibrils alone,
with 5.14 mW m−2 [117].
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Figure 5. (a) Schematic representation of the reverse dialysis process, employing a stack of ion-
exchange membranes and a water source that generates a concentration gradient. Reused with
permissions from [136], Copyright Elsevier Ltd. (2020). (b) Morphology of Graphene oxide/cellulose
nanofibres used within a reverse dialysis system. (c) Schematic representation of the final device,
employed for energy generation. Figures reused with permissions from [124], Copyright Royal Society
of Chemistry (2020). (d) Cross-sectional imaging of negatively charged cellulose obtained by oxidation.
(e) Cross-sectional imaging of a positively charged bacterial cellulose obtained by quaternisation.
Figures reused with permissions from [136], Copyright Elsevier Ltd. (2020). (f) Scanning electron
microscopy imaging of the porous surface in negatively charged wood. (g) Cross-sectional analysis
of the negatively charged wood incorporating an epoxy resin. Figures reused with permissions
from [117], Copyright Wiley (2019).

Despite the low power output achieved in the case of lignin-based devices, which
could be a consequence of the presence of less ionically conductive materials within wood
such as lignin and hemicellulose, the price of each ion-exchange membrane was in the
range of $10, which is considerably lower than the commercially available ones (about
$350). However, the performance was significantly lower than the one obtained by the
cellulose-based approaches. The reported values for lignin- and cellulose-based osmotic
energy generators are shown on Table 3.

Table 3. Table summary of reported results using osmotic energy generators.

Material Power Output
Charge
Density

(Cation Film)

Charge
Density

(Anion Film)

Ionic
Conductivity
(Cation Film)

Ionic
Conductivity
(Anion Film)

Ref.

Polyethylene/polystyrene 15 mW - - - - [115]

Polycyclic aromatic hydrocarbon 67 W m−2 - - - - [116]

Nanocellulose 0.23 W m−2 3.13 mC m−2 −2.66 mC m−2 0.42 mS cm−1 1.0 mS cm−1 [136]

Cellulose nanofibrils/graphene oxide 4.19 W m−2 - - - - [124]

Ionised wood 5.14 mW m−2 2.25 mC m−2 −3.09 mC m−2 0.4 mS cm−1 0.2 mS cm−1 [117]

Cellulose oxide/graphene oxide 0.53 W m–2 - −3.00 mC m–2 - 0.8 mS cm–1 [137]
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5. Thermoelectric Energy Harvesting with Cellulose

Thermoelectricity can make use of temperature gradients to generate an electric
voltage. This technology is based on the Seebeck effect and has been proven to be a useful
tool in the development of self-powered electronics, which can work with the residual heat
from the human body [138,139]. In addition, thermoelectricity can be employed to recover
energy from waste heat sources such as internal combustion engines [140] or electrical
ovens [141], among others.

The energy conversion of thermoelectric materials is indicated by the Seebeck coeffi-
cient, which is defined as the ratio between the electromotive force and the temperature
difference. However, the performance of thermoelectric materials is commonly described
in terms of the “Figure of merit”, which includes the contributions from the electrical con-
ductivity of the device, the thermal conductivity, and the Seebeck coefficient (Equation (1)),
and it is related to the energy conversion efficiency of the device.

zT =
σS2T

k
(1)

where σ represents the electrical conductivity, S is the Seebeck coefficient, k is the ther-
mal conductivity, and T is the temperature. From this equation, it can be deduced that
materials with a high electrical conductivity and Seebeck coefficient, and low thermal
conductivity, are desired. However, since these variables are strongly correlated, a single
improvement in one of these is usually compensated for by the rest of the parameters,
making it difficult to enhance the value of zT [142]. One of the most common elements
found in thermoelectric devices is tellurium. The most widely employed materials in
conventional devices are telluride-based semiconductor materials such as Bi2Te3 and PdTe.
Recently, Bi2Te3 thin films were used to develop flexible thermoelectric devices, achieving
a power density of 2.1 mW cm−2 and a power factor as high as ~200 µW m−1 K−2 [143].
These materials present a zT of about 1 and are commonly used commercially given their
good thermoelectric properties. As such, it can be incorporated inside bacterial cellulose
nanofibres, showing a high Seebeck coefficient, in the range of 135 µV K−1, and a power
conversion of 25.5 µW m−1 K−2 [144]. In addition, cellulose nanofibre/Bi2Te3 nanocom-
posites have been applied to wearable devices, increasing the performance by doping the
Bi2Te3 with selenium and antimony [145]. However, Te is a relatively scarce element, which
has propelled research into Te-free devices [146]. In addition, the synthesis of current ther-
moelectric materials, especially Bi2Te3, is carried out by a hydrothermal reaction [147–149],
where the precursors need to be subjected to high temperatures and pressure, and requires
toxic-reducing agents such as NaBH4 and N2H4. Thus, the development of alternative ma-
terials with thermoelectric properties that can be synthetised using green and eco-friendly
processes represents a crucial aspect in the research of thermoelectric materials.

Plant-derived biomass materials such as cellulose or lignin do not show any thermo-
electric properties under standard conditions. However, cellulose chains can be oxidised to
improve ionic conductivity and ions can be infiltrated [150]. This approach can generate a
voltage due to the movement of ions inside the cellulose fibres when they are subjected to a
temperature gradient. Li et al. [150] demonstrated this concept using natural cellulose that
had been treated to remove hemicellulose and lignin, making cellulose II membranes. This
cellulose was oxidised using 2,2,6,6-tetramethylpiperidine-1-oxyl to increase the negative
charge density of the fibres, and Na+ ions were infiltrated using NaOH. This device showed
a thermal gradient ratio of 24 mV K–1 and a power factor of 1150 µW m−1 K–2. However,
the most common approach in the development of cellulose-based thermoelectric materials
is their use as a matrix for the fabrication of nanocomposites.

One of the most common materials to provide thermoelectricity to cellulose-based
nanocomposites are CNTs. This material has been reported to have a high Seebeck coefficient,
which is dependent on its structure. Up to 160 µV K−1 at room temperature have been
measured for single-walled CNTs and 80 µV K−1 in the case of multiwalled CNTs [151]. Thus,
it shows promise for the development of highly efficient and flexible devices. CNTs can be
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incorporated into cellulose aerogels, either in the form of single- or multiwalled CNTs. As
expected, both the Seebeck coefficient and power factor resulted in higher yields in the case of
the single-walled CNTs, with 1.1 µW m−1 K−2 and 47.2 µV K−1, respectively (Figure 6a) [152].
The fabrication process of cellulose-based thermoelectric generators was further simplified by
Abol-Fotouh et al. [153], who used a solution containing 0–12 wt% of single-walled CNTs in
direct contact with cellulose-making bacteria (K. xylinus), leading to a higher power factor
compared to the previous approach, with 20 µW m−1 K−2, and a similar Seebeck coefficient
(30 µV K−1). However, the morphology obtained through this approach did not show any
CNT bundle which led to a difference in the performance (Figure 6b,c). The properties of these
nanocomposites can also be tailored by using heteroatom-doped CNTs [154]. Such doping
can lead to negative Seebeck coefficients in the range of −20 µV K−1 when nitrogen was used
as a dopant and positive coefficients (~25 µV K−1) when boron was used. Additional plant
biomass-derived materials such as lignin can also be used in this field. Culebras et al. [155]
developed CNT yarns doped with lignin produced from lignocellulosic waste. The use of
lignin increased the Seebeck coefficient from ~50 µV K−1 up to 98.9 µV K−1 and the power
factor from ~20µW m−1 K−2 up to 132.2µW m−1 K−2. Flexible thermoelectric generators have
additionally been designed by using natural cellulose, extracted from flax, and combining it
with graphene and Bi2Te3. The final material presented a layered structure that maximised the
contact area (Figure 6d). However, the power factor of this material was relatively low when
compared to the cellulose–graphene and cellulose–Bi2Te3 nanocomposites alone, showing a
power factor of 6.4 × 10−2 µW m K−2 and a Seebeck coefficient in the range of 20–30 µV K−1

at 52 ◦C [156].
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Figure 6. (a) Scanning electron microscopy image of a thermoelectric device containing cellulose
nanofibres and multi-walled CNTs. The presence of CNT clusters is highlighted. Reused with
permissions from [152], Copyright Elsevier Ltd. (2018). Imaging of pristine bacteria cellulose (b) and
bacteria cellulose after the incorporation of single-walled carbon nanotubes (c) Figures adapted
from [153]. (d) Layered structure of a Bi2Te3/graphene/lignin hybrid material, where the lignin has
been obtained from lignocellulosic waste. Figure adapted from [155].

Thus, the use of biopolymer-based materials represents an emerging material in the
field of thermoelectric generators. The performance of the different reported thermoelectric
materials based on biomass-derived materials is detailed on Table 4.
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Table 4. Summary of different materials and the thermoelectric performance reported in the literature.

Materials Power Factor
(µW m−1 K−2)

Seebeck
Coefficient
(µV K−1)

Figure of
Merit Ref.

Ag-doped Bi2Te3 200 - 1.2 [143]

Cellulose ionic conductor 1150 24 - [150]

Bi2Te3/bacterial cellulose 25.5 135 - [144]

CNF/Bi0·5Sb1·5Te3 - 154 - [145]

CNF/Bi2Se0·3Te2.7 - −130 - [145]

CNT/bacteria cellulose 20 30 2 × 10−3 [153]

Boron-doped CNTs/ethyl cellulose - ~25 ~8 × 10−6 [154]

Nitrogen-doped CNTs/ethyl
cellulose - ~−20 ~3 × 10−5 [154]

Lignin-doped carbon nanotube yarns 132.2 100 - [155]

Graphene nanoplatelets/ethyl
cellulose 0.254 15–20 - [157]

6. Current Limitations and Opportunities

As observed, despite the high performance of cellulose nanofibres within most of
the energy generation applications, they need to be extracted from natural sources. As
such, one of the main limitations of biomass-derived materials is the need for processing
prior to their use. This is a consequence of the presence of undesired materials on the
natural sources such as lignin and hemicellulose and, in some cases, the higher surface area
obtained when using cellulose nanofibres. Thus, within all the reported approaches, the
utilisation of pure cellulose outperforms unmodified lignocellulose. An opportunity in this
field would be the development of simpler and more sustainable chemical routes to purify
cellulose from its natural source and chemically modify it with desired functional groups.
In addition, the genetic modification of existing plant resources to produce varieties that
produce less lignin/hemicellulose could represent an alternative to increase the power
output whilst further reducing the fabrication costs.

Despite all the current efforts to use biomass-derived materials as substituents for
traditional compounds in power generation, their performance is still considerably lower
than some of the recently reported devices. This fact is more prominent within thermoelec-
tric systems, given the low number of reported approaches employing cellulose or lignin.
Consequently, the use of hybrid approaches involving cellulose and different nanomate-
rials still shows the highest performance compared to cellulose alone. As such, another
potential opportunity in the improvement in energy generation using biomass-derived
materials would be the synthesis of more sustainable fillings that could be used to improve
the performance of cellulose. This includes the development of chemical routes to effi-
ciently transform biomass materials into high-performance nanomaterials such as carbon
nanotubes and graphene.

Future developments in the field of power generation using biomass-derived materials
will focus on the development of high throughput cellulose sources that require minimal
processing to achieve a good performance. An example of a potential source is bacterial
cellulose which, as observed, presents good physical–chemical properties given the high
presence of nanofibrils that enhance the surface area of materials. However, this method
for cellulose generation is slow and requires a high energy to maintain bacterial colonies.

In addition to the chemical modification of cellulose biopolymers, the advantage of
using vertically aligned nanocrystals has been described. This material can be used to
achieve a high piezoelectric coefficient, leading to an enhanced power generation. Further
developments in the manufacturing of thin nanocrystalline cellulose films could be incor-
porated into miniaturised and wearable sensors that will make use of the power generation
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for battery-less health monitoring. In this context, cellulose films could be used both as a
power source for low-power electronics and as sensing materials. The piezoelectric and
triboelectric properties of cellulose could be exploited to determine hand movement or
muscle contractions, among other applications, while thermoelectric generators could be
used as temperature sensors. Moreover, the mechanical versatility of cellulose thermo-
electrics could be used in the harvesting of waste heat directly from the generating source.
This could enable the recovery of power from small electronic parts, such as electric wires,
directly, boosting the efficiency.

Finally, the unprecedented development in materials science and engineering in the
last few years will eventually allow for the design of more efficient energy harvesting
devices, which would take full advantage of the properties of biomass-derived compounds.

7. Conclusions and Remarks

In summary, this review describes the latest developments in the use of biomass-
derived polymers, such as cellulose or lignin, to be applied to the generation of renewable
energies. These materials have not only been chosen due to their low cost and sustainability,
but also due to their good performance when employed in energy generation.

In the case of cellulose, the complex chemical structure, comprising both amorphous
and crystalline domains, allows for the tailoring of its chemical properties to enhance
the power yield. Its chemical structure can also be modified to improve its conductivity
or charge density. In particular, the crystalline domains in cellulose can generate piezo-
electricity due to its noncentrosymmetry, which has been exploited to develop energy
harvesting devices. However, so far, the highest yield in these devices based on biomass
materials has been reported in the case of nanocomposite materials. Despite the enhanced
output achieved by nanocomposite-based piezoelectric generators, there is great interest in
the use of biomass materials from low-cost sources to improve the possibility of scale up
and manufacturability within a commercial setup. This form of power generation, using
cellulose only, is higher when aligned cellulose nanocrystals are employed. However, an
electrical output can also be obtained from natural cellulose obtained from certain plant
structures, such as pomelo fruit or wood, greatly reducing the time and energy required for
the fabrication of power generators.

The development of triboelectric generators has expanded the possibilities for the
utilisation of biomass materials in energy harvesting. Cellulose presents a relatively high
charge density due to the presence of hydroxyl groups within its surface. In addition,
this material shows a high surface area when used in the form of nanofibres. As such,
in general terms, the reported power generation rates in the case of triboelectric-based
devices employing cellulose tend to be higher than piezoelectric generators. However,
the versatility of cellulose molecules has allowed for the design of hybrid devices able to
harvest energy employing piezoelectricity and triboelectricity sources.

Another potential field where the use of biomass-derived materials could be incor-
porated is osmotic energy generation. This method represents a more optimal route to
obtain energy from the environment, since the mixture between water sources containing
different salinities occurs naturally at estuaries. The possibility of chemically modifying
cellulose plays a pivotal role in this technology, since positively and negatively charged
membranes can be synthetised through quaternisation and oxidation, respectively. Both nat-
ural lignocellulose and cellulose nanofibres have been incorporated in this field. However,
the highest yield was achieved by using graphene oxide-based nanocomposites. Among
the studied methods in this manuscript, osmotic energy represents the most promising
approach to replace traditional carbon-based energy generators, given the high-power
output, and the possibility of scaling up the size of the generators.

Contrary to the approaches previously mentioned, the use of biomass materials in
thermoelectricity has not been extensively studied and the number of described approaches
in the literature is scarce. The use of pure cellulose as an active material by the oxidation
of cellulose nanofibres and infiltration of ions has been demonstrated, with a high-power
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factor and Seebeck coefficient. However, the most popular approach involves the incor-
poration of carbon nanotubes to form complex nanocomposites. Thus, there is a need for
the development of simple and low-cost high-yield thermoelectric generators based on
biomass materials exclusively.
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