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Abstract. Space division multiplexing (SDM) is promising to enhance capacity limits of optical networks.
Among implementation options, few-mode fibres (FMFs) offer high efficiency gains in terms of integratability
and throughput per volume. However, to achieve low insertion loss and low crosstalk, the beam launching
should match the fiber modes precisely. We propose an all-optical data-driven technique based on multiplane
light conversion (MPLC) and neural networks (NNs). By using a phase-only spatial light modulator (SLM),
spatially separated input beams are transformed independently to coaxial output modes. Compared to conven-
tional offline calculation of SLM phase masks, we employ an intelligent two-stage approach that considers
knowledge of the experimental environment significantly reducing misalignment. First, a single-layer NN called
Model-NN learns the beam propagation through the setup and provides a digital twin of the apparatus. Second,
another single-layer NN called Actor-NN controls the model. As a result, SLM phase masks are predicted and
employed in the experiment to shape an input beam to a target output. We show results on a single-passage
configuration with intensity-only shaping. We achieve a correlation between experiment and network predic-
tion of 0.65. Using programmable optical elements, our method allows the implementation of aberration correc-
tion and distortion compensation techniques, which enables secure high-capacity long-reach FMF-based
communication systems by adaptive mode multiplexing devices.
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1 Introduction

Emerging innovations like tactile Internet [1] and mobile
healthcare [2] necessitate high-capacity, low latency and
secure communication networks [3]. In the past decades,
single-mode fiber (SMF)-based communications primarily
provided the required backbone networks driving such high
performance technologies. In order to overcome capacity
exhaustion in SMFs called the nonlinear Shannon limit
[4], multiplexing in the spatial domain of FMFs, e.g. imple-
mented by digital signal processing [5], is considered an
essential complement to conventional multiplexing tech-
niques [6]. SDM [7, 8] enables to gainfully exploit spatially
parallel optical paths in FMFs the design of which can be
optimised for such transmission [9]. The interplay between

FMF and SDM allows for data rates beyond 1 Pbits�1 in
one single waveguide [10].

When launching data to FMF, those spatial modes that
overlap with the incident input beam are excited [11]. A
straightforward and low-loss multiplexer is provided by a
photonic lantern [12]. By adiabatic tapering, a launching
waveguide can be physically coupled to the FMF. However,
photonic lanterns barely provide selectivity and no adapt-
ability of the launching conditions after fabrication and
crosstalk compensation has to be carried out on the recei-
ver-side inflating the digital processing overhead.

In contrast, mode multiplexers based on MPLC [13]
provide programmability. This method allows to map sev-
eral input spots to the modes of the FMF. In a free-space
configuration, multiple reflections between a mirror and a
phase-modulating element, e.g. an SLM, carry out the
desired transformation. Depending on the phase pattern
displayed on the SLM, the transformation can be further
adapted for instance to implement predistortion techniques
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to tailor light fields making crosstalk compensation on the
receiver-side obsolete [14, 15], or to enhance information
security [16, 17].

In recent papers on MPLC [10, 14, 18, 19], the SLM
phase masks are calculated offline using the wavefront
matching algorithm (WMA) [18, 20]. However, such
pre-processing is critical in terms of errors including pixel-
precise alignment or incident angle tolerances [21]. Alterna-
tively, machine learning algorithms provide a suitable
framework for the spatial mapping of light fields. For exam-
ple, in NN-based image reconstruction intensity images
captured at multimode fiber output are allocated to the
corresponding input field [22–24]. In turn, with machine
learning it is also possible to generate SLM phase masks
performing the desired light shaping task. This enables
among others real-time wavefront shaping through complex
media [25], nonlinear spatiotemporal light control [26], or
diffractive optical NN, which are based on similar spatial
transformations like those with the MPLC considered [27].

In this work, we present a method to advance the
mode shaping procedure by a smart data-driven online-
calibration, where the entire MPLC apparatus is considered
as black box. By training an NN, we create a digital twin of
the setup called Model-NN. With the Model-NN, we gain
knowledge about the experimental environment. After-
wards, we train another NN called Actor-NN that controls
the model. This idea is inspired by the work published in
Ref. [28]. Within our method, we adapt the Actor-Model
approach to enhance the MPLC performance for SDM
applications. In the following section, we will introduce
the MPLC technique in general. Afterwards, we explain
the procedure of mimicking the experimental setup as a
digital twin. Finally, we present an implementation to
shape intensity images of the EMNIST handwritten letters
dataset [29].

2 Smart calibration for multiplane light
conversion

A general scheme of an MPLC device is shown in Figure 1.
An array of incoherent input spots is entering the MPLC
apparatus. Input spots with Gaussian profile Ein illuminate
the SLM at the first reflection passage performing phase-
only modulation

Eout ¼ E in � ei/SLM ð1Þ
applying the spatial phase-term /SLM. Using multiple of
those free-beam passages, both amplitude and phase pro-
files are modulated. As a result, the MPLC output should
match the desired output modes, which can be calculated
by solving the MAXWELL equations.

Although theWMA provides a numerically correct solu-
tion to calculate the SLM phase masks, it is prone to errors
that can barely be considered during offline calculation [21].
Among others, there are delicate misalignment in pixel-
precise positioning of the phase patterns, incident angle
tolerance and mismatching propagation distances between
SLM and mirror that cause crucial performance drops. To
compensate for such errors, we propose an intelligent online

calibration procedure that considers the entire MPLC
device as black box. The anticipated NN structure is shown
in Figure 2.

In a first step, the MPLC is set up with two passages
transfering two input beams. To gain knowledge about
the black box, a single-layer NN is trained. SLM phase
masks /SLM are used as NN input and the output is the cor-
responding intensity image I with

I ¼ c�0
2

� hE2
outi ð2Þ

is measured by a camera. c denotes the speed of light and
�0 the permittivity of the media.

We use a single-layer perceptron as NN architecture for
both, Actor- and Model-NN. The input pixels representing
SLM phase masks are thereby connected straightforwardly
to the pixels of the output intensity image and vice-versa,
resulting in 2.304.000 trainable parameters. The NN and
its internal structure is shown in Figure 3. For proper train-
ing, 2k uniformly distributed random phase masks and cor-
responding intensity images are used. For both NNs, we use
1600 samples for training, and 400 for test, respectively. As
loss function, we use standard mean-squared error (MSE)
with

MSE ¼ 1
N � 1

XN
i¼1

ðxi � yiÞ2; ð3Þ

where xi denotes the ground truth and yi the prediction for
N samples. Compared to the MSE we use as loss function,

Figure 1. Optical MPLC setup considered in our work. Two
spatially seperated Gaussian input spots are incident to the
SLM. After two reflection passages between SLM and mirror
(M), the output beams are imaged by a 4f-telescope onto a
camera where intensity images are recorded. Both the FMFs
facet and the camera are at a distance d � 1.5 cm from the SLM.
A smart calibration based on artificial intelligence (AI) is
implemented to generate proper SLM phase masks in order to
shape desired output modes.
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the performance of the NN is indicated by the correlation
C with

C ¼
PN
i¼1

ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðxi � �xÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
ðyi � �yÞ2

s : ð4Þ

With the single-layer perceptron layout, training converges
within several minutes on consumer hardware for both
NNs.

After training the NN, a digital twin of the MPLC setup
is created called Model-NN. Consequently, the Model-NN
includes all misalignments and tolerances of the setup. In
a second step, the Model-NN is kept static and another sin-
gle-layer NN called Actor-NN is trained controlling the
model. The ultimate predictions provide phase masks that
are required for the desired light shaping task. This intelli-
gent approach allows us to consider experimental tolerances
already in the calibration procedure, which advances the
MPLC setup.

2.1 Model-NN mimicking the MPLC setup

The first step of the Actor-Model approach comprises train-
ing the Model-NN to create the digital twin. For this task,
representative training data is necessary. For our experi-
ments, we consider the setup shown in Figure 1. Two
incoherent Gaussian input spots of 640 nmwavelength enter
the MPLC. Mirror and SLM are separated with dM � 3 cm
distance. After two reflection passages, the output is imaged
to a camera (d � 1.5 cm) by a 4f-telescope capturing
an intensity image. On the SLM, two-dimensional 256 �
256 pixel, 8 bit phase masks are displayed. In our investiga-
tions, SLM pixels allocated to the second reflection passage,
i.e. the passage closer to the camera, are active. The SLM
pixels allocated to the first passage are set passive. To reduce

Figure 2. Structure of the envisioned NN architecture. (a) Training of a single-layer Model-NN. Training data consists of 2k
uniformly distributed random SLM phase masks and the corresponding intensity images measured at the MPLC output. This
generates a digital twin of the MPLC setup. (b) Another single-layer called Actor-NN is trained on 2k intensity images according to
the EMNIST data set. The Actor-NN is used to predict phase masks, which are the input for the Model-NN. When training the Actor-
NN, the Model-NN is fixed. (c) The predicted phase mask of the trained Actor-NN is applied to the SLM and the intensity is
measured. We achieve a correlation of C = 0.65 compared to the Model-NNs predicted intensity.

Figure 3. Structure of the NN, images are consisting of 8bit
images with values from 0 to 1. The resolution is 32 � 32 and
150 � 150 for phase masks and intensity images, respectively.
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training effort, groups of 8 � 8 bit neighboring SLM pixels
are assigned to one macropixel. Thus, the training data for
the Model-NN consists of 32 � 32 pixel phase masks and
the corresponding 150 � 150 pixel intensity images, as
shown in Figure 3 and Figure 2a. The phase values have
to be set within the interval 0; p2

� �
to avoid neighboring fields

having conjugate phase [28]. In Figure 4, the training proce-
dure on experimental data is shown. As a result, the Model-
NN can predict the MPLC behavior with C = 0.94 calcu-
lated on average between prediction and ground truth for
training data and C = 0.82 for test data, respectively. The
investigations shown are performed on a single input beam
in a first step. This way it can be shown, that NNs can learn
the MPLC behaviour in general.

When considering a second beam at the input, another
independent network part has to be created for instance by
training another Model-NN. For multi-beam configura-
tions, it is crucial that all output beams have a common
overlap region which defines the area where output modes
are generated. This constraint can introduce special require-
ments to the SLM phase masks, especially for many input
beams, which will be discussed in Section 3. In Figure 5,
intensity heatmaps of a dual-input beam configuration are
shown. The heatmaps are calculated from 1k synthetic
data, when simulating the MPLC with free-beam propaga-
tion using angular spectrum [30]. The images in Figure 5a
and Figure 5b result from summing up the intensity images
after displaying 1k different random SLM phase masks. In
Figure 5c, the overlap between both spots, i.e. heatmaps

is shown. This defines the region where output modes can
be generated in a later dual-beam MPLC.

2.2 Actor-NN controlling the model

In the previous step, the Model-NN is trained mimicking
the experimental setup. Now we will use another NN, i.e.
Actor-NN to control the model. In this step, the trained
Model-NN is frozen, as shown in Figure 2b. As training
the Model was performed on all-experimental data, it con-
tains knowledge on the system. This is used in the offline
training of the Actor-NN to predict the required phase
masks to perform the desired beam shaping task. The
Actor-NN architecture is again the single-layer perceptron
shown in Figure 3. The input of the Actor-NN can be any
desired intensity distribution. We use 150 � 150 pixel,
8 bit intensity samples of the EMNIST data base [29]. In
Figure 6 (left column), three samples are shown. The corre-
sponding phase mask prediction of the Actor-NN (see Fig. 6
middle left column) is forwarded to the frozen Model-NN
which predicts the MPLC output beam intensity. In the
middle right column of Figure 6, three predictions from
the Model-NN are shown. MSE again defines the loss func-
tion optimizing the Actor-NN to control the Model-NN
which represents the experimental setup.

After training of the entire Actor-Model structure (see
Fig. 2b), the Actor-NN is frozen and is used to generate
phase masks for the experiment, as shown in Figure 2c.
The phase masks provided by the Actor-NN are displayed
on the SLM to run the MPLC. In Figure 6 (right column),
three camera images capturing the MPLC output are
shown. The images are taken after the setup was calibrated
with the approach introduced. We achieve a correlation
between the ground truth and the Model-NNs prediction
of C � 0.7. For the measured intensity we achieve a corre-
lation of C � 0.65 compared to the Model-NNs prediction
and C � 0.6 to the ground truth.

3 Discussion

Our results show that the smart Actor-Model approach
enables targeted shaping of light beams that are input to
an MPLC device. With this calibration method, we treat
the optical setup as a black box. Thus, we do not necessi-
tate pixel-precise alignment in the experiment to match off-
line calculation, such as the WMA. In turn, we train a
digital twin of the MPLC setup called Model-NN that con-
siders knowledge of the experimental environment reducing
misalignment. Therefore, proper training data of the setup
needs to be created. Training data of the Model-NN com-
prises SLM phase masks at the input and corresponding
intensity camera images at the output. For the actor, train-
ing is done by using EMNIST data set as the ground truth.
The prediction of the Actor-NN during training is directly
connected to the input phase mask of the fixed Model-
NN, predicting the systems output intensity. The Actor-
NN is trained by comparing the predicted intensity with
the ground truth images. The Actor-NNs performance is
limited by the performance of the Model-NN. Additionally
the Actor can only provide phase masks, to shape a certain

Figure 4. Training progress of both Model-NN and Actor-NN.
Experimental data (i.e. SLM phase masks and intensity camera
images) is used for the Model-NN, while EMNIST data base is
used for the Actor-NN. We used 2k data each, where 1600
samples are used for training and 400 for test, respectively. Both
NNs comprise of a single-layer structure with sigmoid activation
function. MSE is used as loss function with adam optimizer,
wheres fidelity is used as performance indicator. Convergence is
observed in all scenarios that are training (solid) and test data
(dashed) for Model-NN (red) and Actor-NN (blue), respectively.
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area on the camera, which is mainly the center. By reducing
the ground truth intensity to this area, the performance is
increased significantly to C � 0.7, where C � 0.82 is the
maximal achievable correlation from the Model-NNs perfor-
mance for unknown data.

In our investigations, we use simple single-layer percep-
trons for a dual-passage configuration. Due to the exponen-
tial parameter increase in fully-connected layers when
increasing the number of input / output pixels, more sophis-
ticated NN architectures are required, e.g. DenseNet or

MTNet [31, 32]. With our approach, offline training of both,
the Model- as well as the Actor-NN is possible. This reduces
the on-setup time for training data acquisition. In principle,
other online training techniques like reinforcement learning
[33, 34] can be employed to control the system. However,
such approaches require increased on-setup time suffering
from instabilities such as mechanical drifts or fluctuations.
This is particularly critical if interferometric training data,
e.g. digital holography [35], must be acquired for complex
mode multiplex. We use MSE as loss function during the
training of the NNs. However, a custom loss function of
multiple weighted measures, e.g. SSIM or Kullback-Leibler
divergence, may improve our results significantly, as this
allows to trade-off between spatially and probability dis-
tributed features.

For performing mode generation with the system
shown, the mode profiles must be used as ground truth.
This requires complex training data. So far, however, inten-
sity-only images have been used for both model and actor.
For mode generation, the system must therefore be
extended by an interferometer. The NN architecture should
be complemented by complex-valued NNs [36], or by
another NN path carrying phase information [28]. After cal-
ibration, modes can be launched by directing the output
beam to an actual FMF. The FMF input facet is placed
to the position defined by the camera sensor in Figure 1,
or to an image of it.

The results shown in this work are produced in single-
beam and single-passage configuration. However, to shape
coaxial output modes in a multi-beam configuration, all
output beams must overlap in a certain region, as shown
in Figure 5 for two beams. For all-random phase masks,
the overlap area is rather small. In order to increase overlap,
or to allow overlapping of multiple beams, targeted shifting
can be applied by for instance displaying phase tilts on the
SLM. Such patterns are included in Fourier domain phase
masks [37, 38], where a pixel-shift induces a tilt in the phase
pattern.

In multi-beam configurations, multiple independent net-
work structures, such as multi-Model-NNs have to be
trained that mimick the propagation properties of indepen-
dent optical tributaries. In such arrangements, the Model-
NN approach shown in this work can straightforwardly
be adopted. The NN architecture in a multi-beam arrange-
ment should comprise independent sub-NNs for each beam
in both Actor-NN and Model-NN. Since in each passage all
beams share the same phase mask, the Actor-NN outputs
must be combined, training on a common phase mask. In
the solution shown here, we predict a phase mask for one
passage that is used as Actor-NN output, i.e. Model-NN
input. However, for multi-passage configurations, all SLM
pixels referring to different passages can be treated as one
accumulated phase mask.

Adding tributaries and thus increasing the number of
input beams requires increasing the number of reflection
passages. According to a fair estimate with WMA, N pas-
sages are required for N input spots [18]. Upscaling the
MPLC necessitates also higher resolution of the Actor-
Model-NN architectures, including SLM phase masks and
camera images serving as input / output of the Model-

Figure 5. Example of dual-input beam configuration. Simula-
tion data is shown. (a) and (b) show heatmaps of 1k images
using 1k different random SLM phase masks. (c) overlap
between (a) and (b).

Figure 6. Results from the Actor-Model approach. All samples
shown are images from the EMNIST data set. Left column:
Ground truth images used as Actor-NN input. Middle left: phase
mask predictions resulting from the Actor-NN. Middle right:
predictions from the Model-NN after the Actor-NN was trained.
The correlation between Model-NN prediction and ground truth
is C � 0.7. Right: experimental results. Using the trained Actor-
NN, SLM phase masks are generated that are employed for
driving the MPLC. The images shown are camera recordings
capturing the MPLC output. Note, that a single-beam and
single-passage configuration is considered. The correlation
between experiment and Model-NN prediction is C � 0.65.
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NN. Here, we used 32 � 32 pixel phase masks and
150 � 150 pixel camera images. In our investigations, we
used 8 � 8 macropixels on the SLM. In total, a
256 � 256 pixel SLM window is used. These dimensions
result from a consideration of how much a phase change
on the SLM induces a meaningful change on the camera
image when generating training data for the Model-NN. If
higher resolution SLM windows, i.e. smaller macropixels,
are used the resolution on the camera should be scaled
accordingly to capture valuable information.

4 Conclusions

We have demonstrated an intelligent approach to calibrate
an MPLC device using experimental data. Although we
treat the entire light shaping system as black box, delicate
knowledge about the experimental behavior is gained by
using machine learning algorithms with C � 0.82. Here,
we have shown that the Actor-Model approach is feasible
for online calibration of an all-optical mode multiplexer
based on MPLC. In contrast to an offline calculation of
SLM phase masks, our approach does not suffer from mis-
matches between algorithm and experiment reducing the
alignment effort dramatically. This is particularly beneficial
for the employment of low-complex SDM networks or the
transmission of fragile quantum states.
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