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The functions of a living cell rely on a complex network of biochemical reactions that allow it to respond
against various internal and external cues. The outcomes of these chemical reactions are often stochastic due
to intrinsic and extrinsic noise leading to population heterogeneity. The majority of calculations of stochasticity
in reaction networks have focused on small regulatory networks addressing the role of timescales, feedback
regulations, and network topology in propagation of noise. Here we computationally investigated chemical noise
in a network with democratic architecture where each node is regulated by all other nodes in the network.
We studied the effects of the qualitative and quantitative nature of mutual interactions on the propagation of
both intrinsic and extrinsic noise in the network. We show that an increased number of inhibitory signals lead to
ultrasensitive switching of average and that leads to sharp transition of intrinsic noise. The intrinsic noise exhibits
a biphasic power-law scaling with the average, and the scaling coefficients strongly correlate with the strength
of inhibitory signal. The noise strength critically depends on the strength of the interactions, where negative
interactions attenuate both intrinsic and extrinsic noise.
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I. INTRODUCTION

Robustness and reliability are key to living organisms
with respect to their responses to various internal and ex-
ternal cues and to their long-term survival. Stochasticity of
chemical reactions originating from intrinsic and extrinsic
sources hampers these two important aspects of living sys-
tems. Therefore a considerable number of efforts have been
made to understand the ways living systems regulate the
stochasticity which ultimately leads to population heterogene-
ity, an unavoidable natural phenomena of genetically identical
cells under homogeneous environmental conditions [1,2]. The
fluctuations of a finite number of macromolecular species in
the cellular compartment result in stochastic trajectories of
chemical reactions inside the cell. This finite number effect
of molecular abundance is intrinsic to a chemical reaction.
Owing to the intrinsic noise, the expression of a gene was
found to be noisy and was termed gene expression noise
[3–6]. However, variation in other factors, such as cell size,
volume, cell cycle phase, and concentration of key regulators,
acts as another source of noise and was collectively known
as extrinsic noise that influences all chemical reactions inside
a cell identically [4,6–10]. In the majority of the cases, the
chemical noise, a term commonly used to reference both types
of noise, leads to an inconsequential population heterogeneity
of various cellular properties, for example, events in a cell
cycle [11], variability in key signaling events [12,13], and
desynchrony in oscillatory response [14]. However, in some
cases the heterogeneity was found to be beneficial for the
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living organisms [15,16]. For example, under stress the gene
expression noise allows single-cell organisms to adapt to the
altered conditions efficiently, and ultimately it helps the organ-
isms to thrive in an unfavorable environment via phenotypic
diversity [17–19].

Statistical mechanical models of a single gene or a few
genes in a cascade have been successful in providing great
insight into the mechanisms of gene expression noise [20–27].
These models have highlighted the roles of disparity in the
average lifetime of proteins and mRNAs and translational
and transcriptional bursting in gene expression noise. Fur-
ther investigations were carried out to decipher the role of
feedback regulations in attenuating or amplifying biochemical
noise. Early studies revealed that negative feedback has the
potential to reduce the noise, whereas positive feedback am-
plifies noise [20,28–30], although later calculations exhibited
that positive feedback also has the potential to reduce noise
[31,32]. Horizons of these calculations were further extended
with the investigations of the role of network topology in noise
propagation [33–41]. In this context, we have recently shown
that parallel arrangements of interconnected positive feedback
loops efficiently reduce chemical noise as compared to serial
arrangements of positive feedback loops [42].

Although a plethora of literature is available on the prop-
agation of chemical noise in biochemical reaction networks,
investigation of stochasticity in a generalized network is,
however, lacking. Particularly it is worth noting that the
system-level response of a living cell relies on coordinated
expression of multiple genes interconnected with each other.
An interesting aspect of these gene regulatory networks is the
global architecture of the networks [43–45]. Recent literature
suggests that often these networks exhibit a resemblance
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FIG. 1. (a) Schematic diagram democratic network with five nodes (dN = 5). The numbered circles and the curved lines represent the
nodes and connectivity among the nodes, respectively. The different types of arrowheads represent types of interactions. Pointed arrowhead:
positive interaction; blunt head: negative interaction; and circular arrowhead: either positive or negative interaction. In this particular network,
all other nodes act positively on node 1, and interaction on all other nodes could be positive or negative depending on the value of m+

i �=1 and
m−

i �=1. (b) and (c) Systematic modification of the number of negative interaction on node 1.

to a democratic network where each gene is regulated by
other genes (or gene product) in the network [46]. Here
we investigated the variability due to both intrinsic and ex-
trinsic noise in democratic chemical reaction networks. Our
objective was to study the correlation between the variability
and the qualitative (inhibitory or activatory) and quantitative
(strength) nature of mutual interactions in the network. Using
numerical simulations, we estimated noise in a democratic
chemical reaction network in a systematic manner by varying
the number of inhibitory (negative) and activatory (positive)
interactions. In order to estimate the effect of intrinsic noise
we used Gillespie’s stochastic simulation algorithm (SSA)
[47], whereas to estimate the effect of extrinsic noise we simu-
lated the corresponding deterministic dynamical equations of
an ensemble of networks. We found that with the variation
of the number of negative interactions on a node, the average
abundance behaved like an ultrasensitive switch. Due to the
sharp switching of the average, the intrinsic chemical noise
exhibited a biphasic power-law scaling with the average. The
scaling exponents were strongly dependent on the average
strengths of the positive and negative interactions in the
network. Further the negative regulations acted as a noise
attenuator in the network. Calculations of networks with only
extrinsic noise revealed similar roles of negative regulators in
the democratic chemical reaction networks.

II. MODEL AND RESULTS

Our network model consists of nodes interconnected by
edges. These nodes could be proteins or genes or transcripts
or metabolites. The nodes are the representatives of any
macromolecular species present inside a living cell, whereas
the edges represent the nature of the interaction between the
two connected nodes. The interaction between the two nodes
could be either negative (inhibitory) or positive (activatory).
Every node in the network consists of a certain number of
incoming and outgoing edges represented by the arrowhead
types [Fig. 1(a)]. Incoming arrows indicate the influence of
other nodes on the recipient node, whereas the outgoing ar-
rows indicate the influence of the source node on the recipient
nodes in the network. In a democratic network, we assume that
the number of incoming and outgoing interactions are same
on every node in the network. This means that every node

receives inhibitory or activatory signals from all the rest of the
nodes in the network. Therefore, in a democratic network with
dN number of nodes, the total number of interactions (mtot) on
any node would be dN − 1. In addition to these interactions
from other nodes, every node has its own unregulated synthe-
sis and degradation. Assuming the mass action rate laws of
chemical reactions, the mean field dynamics of the nodes can
be represented by a set of coupled ordinary linear differential
equations:

dni

dt
= ki − γini +

dN∑

i �= j

ai, jnin j . (1)

In the above equation ni is the average abundance, in
numbers of molecules, of the node i. On the right-hand side of
the equation, the first and the second terms are the unregulated
synthesis and degradation of the ith node, respectively. ki and
γi are the associated rate constants with the synthesis and
degradation reactions, respectively. The last term represents
the mutual bimolecular interaction between node i and node
j. While the numerical value of ai, j represents the strength
of the interaction, its sign indicates the qualitative nature
of interaction. ai, j < 0 and ai, j > 0 represent inhibitory and
activatory interactions, respectively. By varying the number
of negative (m−

i ) and positive (m+
i ) interactions on every node,

one can generate a large number of different network models.
Note that the total number of interaction on every node is
fixed to mtot (= m−

i + m+
i ). It turns out that a democratic

network of dN nodes consists of dN (dN − 1) number of mutual
interactions.

For every node in the network, we chose a fixed value of the
basal synthesis rate constant (ki = 1.0) and the degradation
rate constant (γi = 0.01). However, the strength of the mutual
interaction (ai, j) was chosen to be different for every pair
of interacting nodes (i, j). In order to create variation in
the strength of interactions, we picked ai, j from log-normal
distributions with average values of a− (for negative inter-
actions) and a+ (for positive interactions) with a coefficient
of variation of 0.3 in both cases. It is important to note that
one can choose the values of the interaction parameters from
any distribution which can be realistically associated with
the reaction networks. However, the conclusions must not
be skewed by the choice of the distribution for ai, j . In this
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FIG. 2. Surface plot of the average abundance of node 1 (n1) as a function of the number of negative interactions on node 1 (m−
i=1) and

the number of positive interactions on the rest of the nodes (m+
i �=1), for different combinations of average strengths of negative and positive

interactions (a−, a+). (a) (0.001, 0.001), (b) (0.005, 0.001), (c) (0.001, 0.005), and (d) (0.005, 0.005).

context we have verified that the conclusions of our studies
remain the same with the use of Gaussian distribution for
ai, j (see Fig. 18). The sample size for the distribution of
was dN (dN − 1) as there were that many numbers of binary
interactions available in the network. The choice of a log-
normal distribution for interaction strengths resulted in an
asymmetric network in terms of the strength of the interac-
tions. We systematically varied a− and a+ to determine the
effects of strengths of interactions on the statistical properties
of the network.

Our goal was to investigate the effect of negative and posi-
tive interactions on the steady-state variability of the chemical
species in democratic networks. For this purpose, we studied
networks with a different number of negative and positive
interactions. Due to the democratic nature of the network all
nodes are equivalent, therefore one can choose any node in
the network to study statistical properties such as mean, noise
(coefficient of variation), and noise strength (Fano factor) of
the network. Here we chose node 1 as a candidate for our
investigations. In order to determine the effect of negative
interaction on noise, we systematically increased the number
of negative interaction on node 1 (m−

i=1), and in each case we
quantified steady-state statistical properties of node 1 and as
well as all other nodes in the network. This allowed us to
determine the dependence of statistical properties of node 1
on the nature of incoming interactions on it. In Figs. 1(b)
and 1(c) we represent the scheme of systematic variation of
m−

i=1 on node 1. In performing these calculations we kept the
number of negative (m−

i �=1) and positive (m+
i �=1) interactions of

all other nodes (i �= 1) fixed. In order to determine the effect
of the nature of interactions of the rest of the nodes (i �= 1) on
the statistical properties of node 1, we repeated the mentioned
set of calculations with systematic variation of m+

i �=1.

A. Intrinsic noise

Intrinsic noise originates from the fluctuations of the finite
number of molecular species present inside a living cell, and
it leads to stochastic trajectories of chemical reactions [1].
In order to investigate the intrinsic noise, we simulated the
chemical reactions corresponding to the model equations (1).
Owing to the linearity of the dynamical equations, the cor-
responding chemical reactions follow mass action rate laws.
There are dN number of synthesis, dN number of degradation,
and dN (dN − 1) number of interaction reactions in the net-
work. Therefore, the total number of chemical reactions in the
network becomes dN (dN + 1). We used Gillespie’s SSA [47]
to simulate the chemical reactions associated with the network
model. We ran simulations for a sufficiently long time to
ensure that the trajectories reached their steady states. Further,
in order to obtain accurate statistics, we ran simulations for
5000 trajectories for ensemble average. We kept the values of
ai, j fixed in the every run of the simulations. Generally with
increased network size (dN ) and with higher values of rate
constants, the simulation run time increases steeply in SSA.
Therefore to cut down the simulation time, we imposed a cut-
off abundance of 100 000 molecules/node. According to the
cutoff rule, the simulation stops when the abundance of any
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node reached the cutoff value. Use of 100 000 molecules/node
as cutoff was not completely unreasonable as the noise associ-
ated with this would be very small based on the 1/

√
ni rule of

molecular fluctuations. In the following we report results for
networks with dN = 30. However, we have also verified that
our conclusions are consistent for network with dN = 20 and
dN = 10.

In Fig. 2(a) we present the variation of the average abun-
dance of node 1 (n1) with the increasing number of negative
interactions on it (m−

i=1) and increasing number of positive
interactions on all other nodes (m+

i �=1) in the network keeping
the average strengths of negative and positive interactions the
same. Expectedly, for a given value of m+

i �=1 the average abun-
dance of node 1 decreased with m−

i=1. We obtained similar
qualitative behavior of n1 when we repeated calculations with
a systemic increase of m+

i �=1 in the network [surface plot in Fig.
2(a)]. It is interesting to note that n1 changed barely with the
increase of m+

i �=1. However, for large m+
i �=1 (>15), the system

became divergent, and due to the cutoff rule the surface plot
do not have data points for node 1 in those cases. Therefore
our simulations indicate that the qualitative or quantitative
nature of n1 is regulated by the signs of a1, j not by ai �=1, j

(at least in the chosen parameter set). We point out here
that, for the sake of ease in implementation, we increased the
number of negative interactions on node 1 in a specific order.
In particular, we always increased the number of negative
interaction starting from node 2. Similarly, we also followed
a specific order to increase the number of positive interactions
on all other nodes. However we have confirmed that the results
are independent of the specific nodes chosen to implement a
negative or positive effect on node 1.

In order to determine how the average depends on the
strength of the negative or positive interactions, we performed
calculations with different average strengths of interactions.
In Figs. 2(b)–2(d) we present the effect of five times increased
strengths of negative [Fig. 2(b)], positive [Fig. 2(c)], and both
[Fig. 2(d)] of the interactions. With an increased value of a−
alone, the average abundance of node 1 decreased across the
various numbers of both types of interactions. In addition, a
smaller number of negative interactions (m−

i=1) were sufficient
to “shut down” node 1. On the other hand, with an increased
value of a+ alone, n1 increased significantly and more number
of negative interactions were needed to stop the production of
node 1. In addition the divergence of abundance happened in
a much smaller value of m+

i �=1. Finally when both the strengths
were increased by the same factor, only a marginal change
occurred in n1.

It appears from Fig. 2 that the average of node 1 (n1) was
reduced abruptly from high to low beyond a critical number of
m−

i=1. Thus the qualitative variation of n1 with m−
i=1 behaved

like an ultrasensitive switch of protein activity in biochemical
networks [48]. It is worth noting that ultrasensitivity in bio-
chemical systems is often due to the intrinsic nonlinearity of
the underlying chemical reactions. However, here we report
a weak ultrasensitivity due to the democratic architecture of
the network that does not possess nonlinear rates of chemical
reactions. The importance of ultrasensitivity in biochemical
reaction networks is enormous due to its relevance in gener-
ating nonlinear responses such as bistability and oscillations
[49]. Therefore we next investigated further the conditions

0 9 19 29

0.001
0.0025
0.005
0.01

0 9 19 29

m−
i=1

101

102

103

104

105

n
1

0 9 19 29
101

102

103

104

105

n
1

5X
2.5X
1X

a− = 0.001

(c)

(a)

(b)

a+ = 0.001

FIG. 3. (a) Dependence of the ultrasensitivity of node 1 on the
the scaling factors that systematically modifies that average abun-
dance of all the nodes in the network. The values of a+ and a− were
0.001 and 0.001, respectively. (b) Dependence of the ultrasensitivity
on the average strength of positive interactions keeping the a− fixed.
(c) Dependence of the ultrasensitivity on the a− keeping the a+ fixed.

of ultrasensitive switching of node 1. In order to address the
question that the switchlike behavior of node 1 was not due
to the very few molecules in high m−

i=1, we systematically
scaled up the abundance of the nodes by 2.5× and 5.0×. In
order to scale up the abundance we multiplied and divided the
zero- and second-order rate constants, respectively, by the ap-
propriate scaling factor. The ultrasensitive switching of node
1 remained intact even with higher population abundance
indicating that the ultrasensitivity is the intrinsic property of
the democratic network [Fig. 3(a)]. Simulations from different
average strengths of positive and negative interactions indicate
that the stiffness of the switch depends on the average strength
of the positive interactions. On the other hand, the strength
of the negative interaction seems to control the transition
threshold of m−

i=1 [Figs. 3(b) and 3(c)].
Having established the average behavior of the democratic

network, we next looked at the effect of negative interactions
on the noise in node 1. Here we quantified the coefficient of
variation (CV = σi/

√
ni; σi = standard deviation) as a mea-

sure of noise at steady state. At equal strengths of negative
and positive interactions, the noise exhibited a switchlike
behavior as a function of m−

i=1 [Fig. 4(a)]. Specifically, CV
remained very low for a smaller number of m−

i=1 (high n1),
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FIG. 4. Surface plot for the coefficient of variation of node 1 (CV1) as function of m−
i=1 and m+

i �=1. The average strength of negative and
positive interaction was (a) (0.001, 0.001), (b) (0.005, 0.001), (c) (0.001, 0.005), and (d) (0.005, 0.005).

FIG. 5. Surface plot of the average abundance and CV of node 1 for the networks with 10 (top row) and 20 (bottom row) nodes as a
function of m−

i=1 and m+
i �=1. The values of a− and a+ were 0.001 and 0.001, respectively
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FIG. 6. Variation of CV (a) and normalized average (b) of node 1
as a function normalized m−

i=1 (m−
i=1/(dN − 1)) for the indicated sizes

of networks with m+
i �=1 = 0. The average was normalized by dividing

n1 by the maximum average value in each case. The values of a− and
a+ were the same as in Fig. 5.

and it nearly saturated with a high value for a larger number
of m−

i=1 (low n1). Although this feature of noise was repeated
for an increasing number of positive interactions on the other
nodes (m+

i �=1), however, in the high-noise regime (large m−
i=1),

the noise seemed to increase steadily with the increase of
m+

i �=1. Therefore, altogether direct negative interactions lead
to nonmonotonous increase of noise and indirect positive in-
teractions results in marginal increase of noise. To determine
how these qualitative natures of noise depend on the strength
of interactions, we repeated these calculations with different
average strengths of both interactions (a− and a+). With an
increased value of a− alone, expectedly the switching from
low to high noise happened at a much lower value m−

i=1
[Fig. 4(b)]. However, in this case the variability increased
noticeably as compared to smaller a− [Fig. 4(a)]. This was
due to the fact that higher a− resulted in a lower average
amplifying the finite number effect. Further the effect of m+

i �=1

on CV in larger values of m−
i=1 was very prominent. With an

increased value of a+ only, the transition from low to high
noise happened at a much larger value of m−

i=1 [Fig. 4(c)].
Although the qualitative nature remained the same in the case
where both interaction strengths were increased by the same
factor [Fig. 4(d)], across various values of m−

i=1 and m+
i �=1 the

noise increased noticeably as compared to the case with lower
values of the strengths [Fig. 4(a)]. This was probably due to
the faster propagation of noise in the network.

We ran simulations of different sizes of democratic net-
works to determine the universality of the qualitative nature
of noise with m−

i=1. In Fig. 5 we report the simulation re-
sults from networks with 10 and 20 nodes. In Fig. 6(a) we
compare CV1 versus m−

i=1 of three different networks sizes
(dN = 10, 20, 30) where in each case the number of positive
interactions on all other nodes was fixed to 0 (m+

i �=1 = 0).
The comparison shows that the sharp change of noise from
a low to high value is indeed universal across the different
network sizes. We also notice a systematic shift of the curves
towards lower m−

i=1 with increasing network size. In Fig. 6(b)
we compared their respective normalized averages to note the
rapid drop of the corresponding averages with m−

i=1.
The scaling behavior of noise with the average has been an

important measure in the stochastic calculations of coupled
chemical reaction systems. To address this aspect, in Fig.
7(a) we plot CV1 with n1 for different values of m+

i �=1. Here
the dependence of noise on the average is quite different
from CV ∝ 1/

√
n scaling, and in fact the dependence can

be best fit by two independent power-law scalings (piecewise
power-law, CV ∝ nα) with two different scaling exponents
α1 and α2. We fitted the linear region (in the log-log plot)
of the individual lines and report the average and standard
deviation of the scaling exponents. In the low to intermediate
abundance regime the scaling exponent had the value of α1 =
−0.2 ± 0.02, whereas in the intermediate to high abundance
regime it was α2 = −0.9 ± 0.03. The accuracy of the fits was
measured by calculating R2 values of the individual fits. The
average values of R2 were 0.908 ± 0.05 and 0.996 ± 0.002
for α1 and α2, respectively. Next we determined the scaling of
node 15, a candidate node whose average was not modified
directly by the systematic modification of the number of

(a) (b)

FIG. 7. Dependence of CV of node 1 (a) and node 15 (b) as a function of their respective averages. Different lines represent different values
of m+

i �=1: from red (m+
i �=1 = 0) to blue (m+

i �=1 = 16) the value of m+
i �=1 increases by 1. The scaling exponents from power-law fitting (CVi ∝ nα

i )
of the data segment are indicated inside the plots. The values of a− and a+ were the same as in Fig. 5.
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FIG. 8. Variation of biphasic behavior of noise in node 1 (left)
and monophasic behavior of noise in node 15 (right) with the
indicated values of scaling factors. The other parameters were a+ =
0.001, a− = 0.001, and m+

i �=1 = 0.

negative regulations on node 1. We found that [Fig. 7(b)]
this node exhibited the well-known scaling of CV ∝ 1/

√
n

across the different values of m+
i �=1. Therefore it is fair to

conclude that a node whose average was modified directly
by negative regulations obeys the biphasic scaling of noise,
whereas a node whose average was modified indirectly by
negative regulations follows the usual scaling of noise.

From Fig. 7 it is clear that the range of the average
abundance for node 1 was significantly larger than the range
of abundance of all other nodes in the network. This poses an
obvious question whether the disparity of the scaling behavior
of the nodes was due to their different regime of abundance.
The ranges of node 1 and other nodes were different due to the
fact that the variation of m−

i=1 caused a direct effect on node
1, whereas it resulted in an indirect effect on all other nodes
in the network. In order to increase the range of abundance,
we ran simulations with different scaling factors that scaled
up the abundance of all nodes systematically. In Fig. 8 we
plotted the CV against n for node 1 and node 15 with different
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FIG. 10. Variation of scaling exponents α1 and α2 with the a− for
indicated values of a+.

scaling factors for the networks having m+
i �=1 = 0. The shifting

of the entire scaling curves to the higher abundance regime
indicates the universal nature of the scaling laws of node 1
and the rest of the nodes in the democratic network. Further
the universality of scaling laws was independent of m+

i �=1 as
similar shifts of scaling behavior were noticed for other values
of m+

i �=1 (Fig. 9).
In order to determine the dependence of the scaling expo-

nents on the average strengths of negative and positive inter-
actions, we estimated these exponents by running simulations
for a range of values of a− and a+. With the increased strength
of negative interaction, we found a systematic increase of
both exponents irrespective of the values of a+ (Fig. 10). It
indicates that the effect of negative interaction on the noise is
stronger for its higher strength. On the other hand, with the
increased strength of positive interaction, the values of both
exponents decreased irrespective of the value of the strength
of negative interaction. Therefore, in general in a democratic
network, negative interaction strongly regulates the noise as
compared to the positive interactions.

FIG. 9. Plots similar to those in Fig. 8 with different values of m+
i �=1. Different lines represent different values of m+

i �=1: from red (m+
i �=1 = 0)

to blue (m+
i �=1 = 8) the value of m+

i �=1 increases by 1.
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FIG. 11. Variation of noise strength (Fano factor, FF1 = σ 2
1 /n1) for node 1 as function of n1. Different lines represent different values of

m+
i �=1: from red (m+

i �=1 = 0) to blue (m+
i �=1 = 18) the value of m+

i �=1 increases by 1. In all three panels the value of a+ was kept fixed to 0.001.

In the context of small gene regulatory network, the role
of negative regulation in attenuating noise has been explored
before with a conclusion that it dampens the intrinsic noise,
whereas positive regulations were found to amplify the noise.
However, later investigations showed that positive regulations
can also reduce noise, particularly in the context of feedback
regulated systems [32]. To address this issue in the context
of democratic architecture, we explored the effect of negative
regulations on the noise strength. In Fig. 11(a) we plotted
noise strength (also known as the Fano factor, FF1 = σ 2

1 /n1)
of node 1, as a function of n1 for a different number of m+

i �=1.
Noise strength passed through maxima with average irrespec-
tive of the number of m+

i �=1, indicating that the intermediate
number of negative interactions (i.e., intermediate average)
on node 1 resulted in maximum noise strength. Further the
peak noise strength increased with an increased value of m+

i �=1.
Although the network exhibited similar qualitative behavior
of FF1 for different values of a−, the overall noise strength
decreased with increased a− [Figs. 11(b) and 11(c)]. For a
complete understanding of the effect of a− as well as m−

i=1 on
the noise strength, in Fig. 12(a) we plotted the maximum value
of noise strength (maxFF1) as a function of a− in the network
with m+

i �=1 = 0 (or m−
i �=1 = 29). These plots indicate that the

maximum noise strength decreases with increasing strength of
negative interaction irrespective of the strength of the positive
interaction. The reduction of noise strength with a− sug-
gests the noise attenuation capacity of negative regulations.
However, with the increasing strength of positive interaction,
the maximum noise strength increases consistently, indicating

that the positive interaction leads to amplification of noise
strength. The plot [Fig. 12(b)] of the number of negative
interactions on node 1 corresponding to the maximum noise
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FIG. 12. (a) Dependence of maximum noise strength (maxFF1)
(obtained from Fig. 11) with a− for m+

i �=1 = 0. (b) Variation of
maxm−

i=1, the number of negative interactions on node 1 corresponding
to the maximum noise strength, with a−. Different lines represent
different values of a+.
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FIG. 13. Ultrasensitivity (left) and biphasic scaling (right) of node 1 in networks with removed interactions. The percentage reduction of
mutual interactions on all other nodes is indicated inside the plot. Top row: m+

i �=1 = 0 and bottom row: m+
i �=1 = 4. In all cases the values of a+

and a− were 0.001 and 0.001, respectively.

strength (maxm−
i=1) with a− further bolstered the conclusion

that negative interaction reduces the strength of the intrinsic
noise. Moreover, the anticorrelation between maxm−

i=1 and a−
reveals that the noise can be minimized either by a large
number of weak negative interactions or by small number of
strong negative regulations.

Our entire set of calculations were based on the fully con-
nected democratic network, where every node interacts with
the every other node in the network. However, in practice the
networks are often sparse in nature generating functional be-
havior relevant to cellular physiology (reviewed in Ref. [50]).
Therefore in order to investigate the properties of similar
networks with lesser connectivities, we reduced the number
of mutual interactions by randomly knocking out a certain
number of interactions keeping the interaction between node
1 and all other nodes intact (a1, j �= 0 and ai,1 �= 0). These
reduced networks exhibited similar qualitative behavior of
the average and the intrinsic noise as was the case of fully
connected networks (Fig. 13). Therefore partially connected
networks also behave in the same way as the fully connected
democratic networks.

B. Extrinsic noise

In addition to intrinsic noise, chemical reactions inside
living cells are also subjected to various sources of extrinsic

noise. We next investigated the extrinsic noise in democratic
networks with a varying number of negative and positive
interactions [4,6–9,51]. In order to simulate extrinsic noise,
we created an ensemble of 5000 networks where each network
has a different strength of mutual interactions (ai, j) for a
given pair of nodes. For a given average strength of negative
or positive interaction, we sampled the individual interaction
strength values (ai, j) from log-normal distribution with CV of
0.3 [12,42,52]. Then we solved the deterministic differential
equations (1) of 5000 replica of networks and estimated
the steady-state statistical properties of the variables in the
network. Therefore the values of ai, j were different in every
run.

To determine the regulation of extrinsic noise by the quali-
tative nature of interactions, we performed analyses analogous
to those we have done in the case of intrinsic noise. In Fig. 14
we plotted the variation of average [Fig. 14(a)] and CV [Fig.
14(b)] of node 1 with the number of negative interactions on
node 1 and the number of positive interactions on all other
nodes in the network. Similar to the intrinsic noise case, the
average abundance of node 1 sharply decreased to a very
small value beyond a certain number of negative interactions
on node 1. Similar qualitative dependence of n1 with m−

i=1
occurred with increasing values of m+

i �=1. Analogous to the
intrinsic noise case, the average was also dependent on the
values of a− and a+ (not shown). The surface plot of CV1 with
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FIG. 14. Surface plot of n1 (a) and CV1 (b) as function of m−
i=1 and m+

i �=1 in the network having dN = 30 with extrinsic noise. (c) Variation
of distribution of abundance of node 1 with m−

i=1 for the network with m+
i �=1 = 0. In the inset the dependence of CV on m−

i=1 is shown for the
same network. The other parameters were a− = 0.001 and a+ = 0.001. The dots indicate the average abundance.

m−
i=1 and m+

i �=1 indicated that the behavior of noise was starkly
different from that of the case in the intrinsic noise. Here
with m−

i=1, the noise passed through a maximum indicating
that the variability was maximum with intermediate number
of incoming negative interactions on node 1. From Fig. 14(a)
and Fig. 14(b), it appeared that the maximum in noise and the
sharp change in average happened around the same value of
m−

i=1. In order to determine the reason for the maximum in the
noise, in Fig. 14(c) we plotted the variation of distributions
of node 1 as function of m−

i=1 for the network with m+
i �=1 = 0.

We found that the width of the distributions was quite narrow
in the extreme ends of the m−

i=1, whereas the width of these
distributions was quite high in the intermediate m−

i=1. It is also
apparent from the plot that the average exhibited somewhat
ultrasensitive dependence with m−

i=1. Owing to this ultrasen-
sitive nature, around the critical point where abundance drops
from high to low value, the system became more sensitive to
extrinsic noise resulting in increased noise in the intermediate
values of m−

i=1.
As pointed out before, the dependence of CV on the

average is an important aspect of chemical noise in biochem-
ical reaction networks. Therefore in order to determine the
dependence of extrinsic noise on the average, in Fig. 15(a) we
plotted CV of node 1 as a function of its average. The opposite
of the intrinsic noise, here noise passed through maxima with
the average. This dependence CV1 with n1 is consistent with

the variation of CV1 with m+
i �=1 [Fig. 14(b)]. As opposed

to the intrinsic noise where CV always decreased with the
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FIG. 15. Variation of noise (a) and noise strength (b) of node
1 as function of average (n1). Different lines represent different
values of m+

i �=1: from red (m+
i �=1 = 0) to blue (m+

i �=1 = 11) the value
of m+

i �=1 increases by 1. The other parameters were a− = 0.001 and
a+ = 0.001.

042407-10



QUALITATIVE AND QUANTITATIVE NATURE OF MUTUAL … PHYSICAL REVIEW E 101, 042407 (2020)

FIG. 16. Surface plot of the average abundance and CV of node 1 for the networks with 10 (top row) and 20 (bottom row) nodes as a
function of number of m−

i=1 and m+
i �=1 under extrinsic noise. The other parameters were the same as in Fig. 14.

average, here in the case of extrinsic noise, it increases with
the average in the low to intermediate regime of average
abundance. The consequence of this type of variation is that,
with only extrinsic noise, the network can have low noise
even with very low molecular abundance. This is in contrast
to the intrinsic noise where the system will be noisy in the
limit of low population abundance. As we did in the case
of intrinsic noise, here also we verified that the results were
consistent for networks with different sizes. In Fig. 16 we
report the variation of average and noise on the m−

i=1 and m+
i �=1

for networks with 10 and 20 nodes.
As in the case of intrinsic noise, we determined the de-

pendence of the average strength of negative and positive
interactions on variability. In this context, in Fig. 17(a) we
plotted the dependence of maximum CV (the peak of the
line in Fig. 15) of node 1 with the average strength of
the negative interactions (a−) for networks with m+

i �=1 = 0.
The maximum noise decreases with the average strength of
negative interaction indicating that negative regulation was
responsible for attenuating the effect of extrinsic variability.
Further the anticorrelation between the number of negative
interaction on node 1 corresponding to the maximum noise
(maxm−

i=1) and average strength of negative interaction points
out the compensatory effect of negative interaction in attenu-
ating noise [Fig. 17(b)]. These plots also exhibited that the in-
creased positive interactions lead to amplification of extrinsic
noise in the democratic network. In the entire calculations we
have chosen log-normal distribution of strengths of interaction
(ai, j). However, we have verified that the general properties

of the networks do not depend on the specific choice of the
log-normal distribution of ai, j . In Fig. 18 we show that the
qualitative dependence of average and noise remained similar
with the Gaussian distribution of ai, j for both the intrinsic and
extrinsic noise.
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FIG. 17. (a) Dependence of maximum noise (maxCV1) with a−
for m+

i �=1 = 0. (b) Variation of maxm−
i=1, the number of negative

interaction on node 1 corresponding to the maximum noise, with a−.
Different lines represent different values of a+.
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FIG. 18. Plot of n1 vs m−
i=1 (a and c) and CV1 vs n1 (b and d). Top row: intrinsic noise; bottom row: extrinsic noise. The values of ai, j were

chosen from Gaussian distributions with a− = 0.001 and a+ = 0.001 and CV = 0.3 in both cases. Different lines represent different values of
m+

i �=1: from red (m+
i �=1 = 0) to blue (m+

i �=1 = 15) the value of m+
i �=1 increases by 1.

III. CONCLUSION

The fluctuations of molecular abundance of a finite number
of macromolecular species and variation of different extrinsic
factors both contribute to observed cellular heterogeneity in
single-cell and multicellular organisms [1,2]. Statistical me-
chanical models of gene expression noise have proven to be
successful in providing quantitative explanation of observed
variability in protein abundance [53]. Further models have ex-
plored the roles of feedback regulations in noise propagation
either in standalone genes or in networks of genes [20,22,53].
System-level models of cellular physiology, such as the cell
cycle, have determined the crucial aspects of positive feed-
back loops and average lifetime of molecular species in atten-
uating chemical noise [32,54]. However, how chemical noise
is regulated in a generalized chemical reaction network has
not been investigated thus far, to the best of our knowledge.
Particularly in the context of organisms’ response to external
cues, one must acknowledge that a well-coordinated effort of
a host of interconnected genes leads to a suitable response
[45,46]. In view of this, we investigated the propagation of
intrinsic and extrinsic noise in a democratic chemical network
where every node in the network is connected to the rest of
the nodes by either positive or negative interactions. Our main
objective here was to determine the role of the qualitative and

quantitative nature of interactions in dictating the variability
of the chemical species in the network.

Using the mass action rate law of chemical reactions,
we modeled a democratic chemical network consisting of
30 interconnecting nodes. We studied intrinsic noise using
Gillespie’s SSA. We found that the noise, estimated by the
coefficient of variation, rapidly switched from low to high
with the increase of number in negative interactions on the
node of interest. Importantly, this qualitative behavior of noise
was mostly independent of the qualitative nature of interac-
tions acting on the other nodes in the network. We attributed
the switching of noise to the weak ultrasensitive switching of
the average. Ultrasensitivity is a typical property of nonlinear
reaction networks. However, our calculations exhibited that a
democratic network with linear kinetics can also behave in an
ultrasensitive manner. Our analyses demonstrated a biphasic
power-law scaling (with two distinct scaling exponents) of
noise with average. The values of these two exponents were
critically dependent on the strength of the interactions. Unlike
the noise, noise strength, however, passed through a maxima
with the average. Simulation results showed that the noise
strength decreased with the strength of the negative inter-
actions, whereas the strength of positive interaction had the
opposite effect. Therefore it is fair to conclude that negative
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interactions attenuate the effect of intrinsic noise and positive
interactions amplify the noise.

In order to investigate the extrinsic noise, we executed
deterministic simulations of an ensemble of networks where
the strengths of mutual interactions of interconnected nodes
were chosen from log-normal distributions. In the extrinsic
noise, the dependence of noise with the average was found to
be different compared to the intrinsic noise case. Here with the
average the noise passed through a maximum indicating that
variability was highest in the intermediate number of negative
interactions. The consequence of this type of variation is that,
with only extrinsic noise, the network can have low noise even
with very low molecular abundance. This is in contrast to the
intrinsic noise where the system will be noisy in the limit of
low population abundance. Therefore the effect of negative
interactions regulating noise can be quite different depending
on the sources of noise (intrinsic or extrinsic). Finally the
reduction of maximum noise with the average strength of neg-
ative interactions indicates that negative regulations dampen
the extrinsic noise.

We have used mass action rate laws of chemical reactions
to model the democratic networks. However, often nonlinear
rate laws such as Hill function and Michaelis-Menten kinetics

are routinely used in both protein interaction and gene regu-
latory networks to benchmark the mathematical models with
the experimental observations. Our use of mass action rate
laws allowed us to estimate intrinsic chemical noise accurately
using Gillespie’s SSA. Further it ruled out the possibility of
nonlinear phenomena such as multistability and oscillations
in the networks. Mass-action-based modeling of protein inter-
action networks has gained popularity as it accurately predicts
the effects of intrinsic chemical noise in the reaction networks
[32,54–59]. In the future it will be worthwhile to investigate
the propagation of noise in networks with nonlinear rate laws
using approximate simulation methods such as the chemical
Langevin equation.
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