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Abstract. It has long been known that a key ingredient for a sheaf representation
of a universal algebra A consists in a distributive lattice of commuting congruences

on A. The sheaf representations of universal algebras (over stably compact spaces)

that arise in this manner have been recently characterised by Gehrke and van Gool
(J. Pure Appl. Algebra, 2018), who identified the central role of the notion of softness.

In this paper, we extend the scope of this theory by replacing varieties of algebras

with Barr-exact categories, thus encompassing a number of “non-algebraic” examples.
Our approach is based on the notion of K-sheaf : intuitively, whereas sheaves are

defined on open subsets, K-sheaves are defined on compact ones. Throughout, we

consider sheaves on complete lattices rather than spaces; this allows us to obtain
point-free versions of sheaf representations whereby spaces are replaced with frames.

These results are used to construct sheaf representations for the dual of the cate-

gory of compact ordered spaces, and to recover Banaschewski and Vermeulen’s point-
free sheaf representation of commutative Gelfand rings (Quaest. Math., 2011).

1. Introduction

Sheaf representations of universal algebras have been investigated since the 1970s, see
e.g. [12, 13, 16, 30, 46], inspired by several results for rings and modules obtained in
the 1960s, see e.g. [14, 15, 26, 41]. In particular it was observed that, for a universal
algebra A, any distributive lattice of pairwise commuting congruences on A induces a
sheaf representation of A, i.e. a sheaf whose algebra of global sections is isomorphic
to A [46]. The sheaf representations over stably compact spaces [33] arising in this way
were characterised by Gehrke and van Gool [21], who recognised the key role of the notion
of softness—which originated with Godement’s treatment of homological algebra [24].
A sheaf over a space X is soft if, for all compact saturated1 subsets K ⊆ X, every
(continuous) local section over K can be extended to a (continuous) global section. In [21],
a bijection was established between isomorphism classes of soft sheaf representations of an
algebra A over a stably compact space X, and frame homomorphisms from the co-compact
dual frame of X to a frame of pairwise commuting congruences on A.

A sheaf representation of an algebra can be regarded as a generalisation of a represen-
tation in terms of continuous functions. For example, the Gelfand–Naimark theorem [22]
states that for every commutative unital C∗-algebra A there is an isomorphism

A ∼= C(MaxA,C)
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where C(MaxA,C) is the C∗-algebra of all continuous complex-valued functions on the
maximal spectrum MaxA of A. More precisely, it provides a characterisation of the image
of the embedding

A�
∏

m∈MaxA

A/m, a 7→ (a/m)m∈MaxA

where each A/m is an isomorphic copy of C. Sheaf representations extend these ideas to
a wider class of rings—and, more generally, universal algebras—by allowing the factors
in the direct product to vary “continuously”.

Thus, disregarding the topological constraint of continuity of global sections, sheaf
representations of universal algebras are akin to embeddings into direct products. From
this standpoint, the softness condition for sheaves is related to a basic concept of universal
algebra, namely that of subdirect representation. In fact, any sheaf representation F of a
universal algebra A on a space X induces an embedding

ν : A�
∏
x∈X

Fx

where Fx is the stalk of F at x. If F is soft then ν is a subdirect embedding, i.e. for all
y ∈ X the composition of ν with the product projection

∏
x∈X Fx � Fy is surjective.

In this article, we generalise Gehrke and van Gool’s characterisation of soft sheaf
representations by replacing varieties of finitary algebras—in which sheaves take values—
with any Barr-exact category. Barr-exact categories, introduced in [6], are a non-additive
generalisation of Abelian categories. Examples of Barr-exact categories include most
“algebraic-like” categories such as varieties of (possibly infinitary) algebras, any topos,
the category of compact Hausdorff spaces and its opposite category.

This allows us to construct soft sheaf representations of all objects in the category
CompOrdop opposite to the category of compact ordered spaces and continuous monotone
maps. This category can be regarded as an extension of the variety DLat of bounded
distributive lattices, in the sense that CompOrdop admits a full subcategory equivalent to
DLat (this follows from Priestley duality between bounded distributive lattices and totally
order-disconnected compact ordered spaces [42]). The category CompOrdop is Barr-exact
and even equivalent to a variety of algebras, but not a finitary one.

We hasten to point out that, while the intended application of our results concerns
Barr-exact categories, we develop the theory more generally for regular categories [6].
Examples of regular categories that are not Barr-exact include quasi-varieties of (possi-
bly infinitary) algebras and the category of Boolean (i.e., compact, Hausdorff and zero-
dimensional) spaces and continuous maps.

Barring some examples and applications, we always work with sheaves over complete
lattices. The usual notion of a sheaf on a space X is recovered by considering sheaves
over the frame of opens of X, but this approach accommodates also point-free sheaf rep-
resentations by taking sheaves on possibly non-spatial frames. For example, we illustrate
how Banaschewski and Vermeulen’s sheaf representation of commutative Gelfand rings
on compact regular frames [5] can be recovered as a special case of our results.

Our approach crucially relies on the notion of K-sheaf. In the spatial setting, a K-sheaf
can be thought of as a “sheaf defined on compact saturated subsets” (or equivalently, in
the case of T1 spaces, on compact subsets) instead of open ones. The concept of K-sheaf
essentially originates with Leray’s pioneering work on sheaves and sheaf cohomology [34]
(see also [17, Chapter IV, §7.B]) and has been fruitfully employed by Lurie in the theory
of ∞-categories, cf. [35, §7.3.4].
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Outline. In Section 2, we recall the basic definitions and properties pertaining to the
theory of regular and Barr-exact categories. K-sheaves over a complete lattice, with values
in a regular category, are introduced in Section 3. In Section 4 the notion of softness for K-
sheaves is defined and, for any object of a regular category, an isomorphism is established
between a category of soft K-sheaf representations and a category of monotone maps
preserving finite infima and arbitrary suprema (Theorem 4.7).

Section 5 contains some background material on domains and algebraic lattices that is
needed in Section 6 to show that, under appropriate assumptions, K-sheaves are equivalent
to ordinary sheaves (Theorem 6.21). This equivalence is then extended to (soft) sheaf
representations and leads to our main result, Theorem 6.31. Finally, in Section 7, these
results are applied to study soft sheaf representations of commutative Gelfand rings and
of objects in the dual of the category of compact ordered spaces.

Notation and terminology. A poset P is directed if each of its finite subsets has an
upper bound; equivalently, if it is non-empty and any two of its elements admit an upper
bound. A subset D ⊆ P is said to be directed if it satisfies the previous condition with
respect to the order induced by P . The order-dual notion is that of codirected subset.

We often identify a preordered set S with the (small) category whose set of objects
is S and such that, for all s, t ∈ S, there is exactly one morphism s → t if s ≤ t, and
there is no morphism otherwise. More generally, categories in which there is at most one
morphism between any two objects are identified with (possibly large) preorders.

Arrows � and � denote, respectively, monomorphisms and regular epimorphisms.
The terminal object in a category, if it exists, is denoted by 1.

Whenever C is a category, Cop denotes the opposite category obtained by reversing the
direction of arrows in C. This applies in particular when C is a poset, e.g. the complete
lattice Ω(X) of open subsets of a topological space X, ordered by set-theoretic inclusion.

We write Ω for the contravariant functor from the category of topological spaces and
continuous maps, to the category of frames and their homomorphisms, that sends a
continuous map f : X → Y to the frame homomorphism Ω(f) := f−1 : Ω(Y )→ Ω(X).

A C-valued presheaf on a poset P is a functor F : P op → C. If p, q ∈ P satisfy p ≤ q,
the image under F of the unique arrow q → p in P op is denoted by Fq,p : F (q)→ F (p).

2. Preliminaries on Regular Categories

We recall some basic definitions and facts concerning regular and Barr-exact categories.

2.1. Subobjects and quotients. Consider an arbitrary category C and an object A of C.
The collection of all monomorphisms in C with codomain A carries a natural preorder ≤
defined as follows. Given monomorphisms m : S � A and n : T � A, set

m ≤ n ⇐⇒ ∃ l. m = n ◦ l
T A

S

n

m
l

(Note that, if it exists, such an l is a monomorphism.) The symmetrization ∼ of the
preorder ≤ can be characterised explicitly as follows: m ∼ n if, and only if, there exists
an isomorphism l such that m = n ◦ l. A subobject of A is a ∼-equivalence class of
monomorphisms with codomain A, and the collection of all subobjects of A is denoted
by SubA. The preorder ≤ induces a partial order on SubA, which we denote again by
≤. As A may admit a proper class of subobjects, in general SubA is a large poset.

In the same fashion, we can define the (large) poset of quotients of an object A. To
this end, we introduce a preorder on the class of all regular epimorphisms with domain A.
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We use again the symbol ≤ for this preorder; it will be clear from the context to which
(pre)order we are referring. Given regular epimorphisms f : A� B and g : A� C, set

f ≤ g ⇐⇒ ∃h. f = h ◦ g
A C

B

g

f
h

(Note that, if it exists, such an h is an epimorphism, but need not be a regular epimor-
phism unless C admits (regular epi, mono) factorisations.) As before, the symmetriza-
tion ∼ of the preorder ≤ can be characterised explicitly by: f ∼ g if, and only if, there
exists an isomorphism h such that f = h ◦ g. A quotient of A is a ∼-equivalence class of
regular epimorphisms with domain A, and the collection of all quotients of A is denoted
by QuoA. The preorder ≤ induces a partial order on QuoA, that we shall denote again
by ≤. Equivalently, QuoA can be identified with the poset of regular subobjects of A in
the opposite category Cop.

We will often work with the category

RegEpiA

whose objects are regular epimorphisms in C with domain A. For any two regular epi-
morphisms f : A� B and g : A� C, an arrow f → g in RegEpiA is an arrow h : B → C
in C such that h ◦ f = g. In other words, RegEpiA is a full subcategory of the coslice
category A/C. Note that, since each object of RegEpiA is an epimorphism in C, the
category RegEpiA is a (large) preorder. The poset reflection of RegEpiA coincides with
the opposite of QuoA.

2.2. Regular categories.

Definition 2.1. A category C is regular if it satisfies the following conditions:

(i) C has finite limits.
(ii) C has (regular epi, mono) factorisations, i.e. every arrow f in C can be written as

f = m ◦ e where e is a regular epimorphism and m a monomorphism.
(iii) Regular epimorphisms in C are stable under pullbacks along any morphism.

Note that, because every regular epimorphism is a strong epimorphism, for every com-
mutative square

A B

C D

there exists a (unique) diagonal filler, i.e. an arrow B → C making the ensuing triangles
commute. Although we shall not need this fact, let us mention that in any regular category
the strong and regular epimorphisms coincide; see e.g. [6, Proposition 1.4, p. 129].

Some useful consequences of the axioms for a regular category are collected in the fol-
lowing lemma; these properties rely on the fact that the (regular epi, mono) factorisation
system in a regular category is orthogonal, proper and stable. Cf. e.g. [19] or [20, §1.5].

Lemma 2.2. The following statements hold in any regular category C:

(a) The composition of regular epimorphisms is again a regular epimorphism.
(b) If f ◦ g is a regular epimorphism, then so is f .
(c) Any pullback square consisting entirely of regular epimorphisms is also a pushout

square.
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Proof. For items (a) and (b), see [6, Propositions 1.10 and 1.11, p. 133]. Item (c) follows
from (the dual of) the main result of [43] (cf. also [20, §1.565] or [11, Remark 5.3]). �

Whenever A is an object of a regular category C, the preorder RegEpiA admits finite
infima. Just observe that an infimum of a finite set of regular epimorphisms

{fi : A� Bi | i ∈ I}
is given by the (regular epi, mono) factorisation of the induced morphism A→

∏
i∈I Bi.

RegEpiA has also a minimum, namely the identity of A; in fact, A � B is a min-
imum in RegEpiA if, and only if, it is an isomorphism. However, non-empty suprema
in RegEpiA may fail to exist. For the next lemma, recall that the pushout of a regular
epimorphism—if it exists—is again a regular epimorphism.

Lemma 2.3. Let C be a regular category, A an object of C, and f : A� B and g : A� C
regular epimorphisms. Then f and g admit a supremum in RegEpiA if, and only if, they
admit a pushout in C.

A B

C H

f

g η1

η2 p
(1)

In that case, the composite η1 ◦ f = η2 ◦ g is a supremum of f and g.

Proof. Suppose that the diagram in eq. (1) is a pushout. By item (a) in Lemma 2.2,
h := η1 ◦ f (= η2 ◦ g) is an element of RegEpiA that is above f and g, and the universal
property of the pushout readily implies that h is a supremum of f and g.

For the converse direction, assume f and g admit a supremum h : A� H in RegEpiA.
In particular, as h is above f and g, there exist morphisms η1 : B → H and η2 : C → H
such that η1 ◦ f = h = η2 ◦ g. Hence the following square commutes:

A B

C H

f

g η1

η2

Note that η1, η2 are regular epimorphisms by item (b) in Lemma 2.2. We claim that the
square above is a pushout. Consider morphisms σ1 : B → J and σ2 : C → J such that
σ1 ◦ f = σ2 ◦ g, and let (e,m) be the (regular epi, mono) factorisation of σ1 ◦ f = σ2 ◦ g.
Then there are diagonal fillers τ1 and τ2 as displayed below.

A B

K J

f

e τ1 σ1

m

A C

K J

g

e σ2τ2

m

Hence, e is above f and g in RegEpiA. Since h is a supremum of f and g, there exists
a morphism ξ : H → K satisfying e = ξ ◦ h. Because f and g are epimorphisms, we see
that the following diagram commutes.

A B

C H

K

f

g η1

τ1η2

τ2

ξ
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The composite morphism m◦ξ : H → J then satisfies (m◦ξ)◦η1 = σ1 and (m◦ξ)◦η2 = σ2.
As η1 (or, equivalently, η2) is an epimorphism, it follows that m ◦ ξ is the unique arrow
with this property. �

Remark 2.4. With regards to the previous lemma, a closely related fact was proved by
Burgess and Caicedo, cf. [10, Proposition 10].

The following is a consequence of Lemma 2.3 and the preceding discussion:

Corollary 2.5. Let C be a regular category admitting pushouts. For any object A of C,
its poset of quotients QuoA is a (possibly large) bounded lattice.

2.3. Barr-exact categories. Let C be a regular category and let A be an object of C. A
subobject 〈p1, p2〉 : R� A×A is called a relation on A, and it is an equivalence relation
provided it satisfies the following three properties:

Reflexivity. There exists an arrow d : A → R in C making the following diagram
commute:

A R

A×A

d

〈1A,1A〉 〈p1,p2〉

Symmetry. There exists an arrow s : R → R in C making the following diagram
commute:

R R

A×A

s

〈p2,p1〉 〈p1,p2〉

Transitivity. For any pullback diagram in C as on the left-hand side below, there
exists an arrow t : P → R such that the rightmost diagram commutes:

P R

R A

π2

π1

y
p1

p2

P R

A×A
〈p1◦π1,p2◦π2〉

t

〈p1,p2〉

Example 2.6. If C is a variety of algebras then an equivalence relation on an algebra A,
in the sense above, coincides with the usual notion of congruence.

With any arrow f : A→ B in C we can associate a relation on A, known as the kernel
pair of f . This is obtained by taking the pullback of f along itself:

R A

A B

p1

p2
y

f

f

The kernel pair ker f := 〈p1, p2〉 is a relation on A. Just recall that the pullback of f
along itself can equivalently be computed as the equaliser of the pair of parallel arrows
f ◦π1, f ◦π2 : A×A⇒ B, where π1, π2 : A×A⇒ A are the product projections. In fact,
ker f is always an equivalence relation on A.

The collection EquivA of all equivalence relations on A carries a natural partial order,
induced by the order of Sub (A×A). The following is an immediate consequence of [6,
Propositions 5.3 and 5.4, pp. 156–157].
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Lemma 2.7. Let C be a regular category and let A be an object of C. Then

ker : (QuoA)op → EquivA

is an order embedding between (large) posets.

The equivalence relations in the image of the map ker : (QuoA)op → EquivA are called
effective. In general, there may be equivalence relations on A that are not effective. This
leads us to the following notion, first introduced in [6].

Definition 2.8. A Barr-exact category is a regular category in which every equivalence
relation is effective.

Example 2.9. Any variety of (possibly infinitary) algebras, with morphisms all the
homomorphisms, is a Barr-exact category. The category of compact Hausdorff spaces and
continuous maps is Barr-exact and, more generally, so is any category that is monadic
over the category of sets. Any (elementary) topos is in particular a Barr-exact category.

Remark 2.10. In view of Lemma 2.7, a regular category is Barr-exact precisely when the
map ker : (QuoA)op → EquivA is an order isomorphism for all objects A.

Remark 2.11. Suppose that C is a regular category admitting coequalisers of equivalence
relations. Then, for every object A of C, there is a monotone map

coeq: EquivA→ (QuoA)op

sending an equivalence relation 〈p1, p2〉 : R� A×A to the coequaliser of p1 and p2. The
map coeq is left inverse to ker : (QuoA)op → EquivA. Hence, (QuoA)op is a retract of
EquivA in the category of (large) posets and monotone maps.

3. K-sheaves

As mentioned in the Introduction, K-sheaves can be regarded as “sheaves defined on
compact saturated subsets”. To make this intuition more precise, consider a sheaf of sets
on a topological space X. That is, a presheaf

F : Ω(X)op → Set

satisfying the patch property : for every set {Ui | i ∈ I} ⊆ Ω(X) of open subsets of X and
every tuple (si)i∈I ∈

∏
i∈I F (Ui), if for all i, j ∈ I we have FUi,Ui∩Uj (si) = FUj ,Ui∩Uj (sj),

then there exists a unique s ∈ F (
⋃
i∈I Ui) such that F⋃

i∈I Ui,Uj
(s) = sj for all j ∈ I.

Sheaves on X can be also described as étale spaces over X, i.e. local homeomorphisms

p : E → X.

In fact, any étale space induces a sheaf Ω(X)op → Set that sends U ∈ Ω(X) to the set of
local sections of p over U , i.e. the continuous maps s : U → E such that p ◦ s = idU . The
functorial action is given by restricting local sections to open subsets of their domains.
Conversely, a sheaf F induces an étale space p : EF → X where EF is obtained by “gluing
together” the stalks of F , and the map p contracts the stalk of F at a point x ∈ X to x.
These assignments yield an equivalence between the category of sheaves of sets over X
and the category of étale spaces over X. See e.g. [37, Corollary II.6.3].

If V is any variety of finitary algebras, we can consider the categories of internal
V-algebras in the toposes of Set-valued sheaves over X and of étale spaces over X, re-
spectively. This yields an equivalence between sheaves of V-algebras over X (that is,
presheaves Ω(X)op → V satisfying the patch property) and étale spaces of V-algebras
over X; cf. e.g. [37, §II.7].
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Now, let F : Ω(X)op → Set be a sheaf with corresponding étale space p : E → X. An
advantage of the latter formulation is that we can consider sections of p over arbitrary
subsets of X, not just the open ones. Thus, we can associate to any compact saturated
subset K ⊆ X the set G(K) of local sections of p over K. This induces a presheaf G over
the poset of compact saturated subsets of X ordered by inclusion. If X is nice enough
(e.g., it is locally compact), the sheaf F can be recovered from G via the isomorphism

F (U) ∼= lim
K⊆U

G(K)

where K ranges over the compact saturated sets contained in U . See e.g. [21, Lemma 3.4].
The notion of K-sheaf introduced in Definition 3.3 below captures precisely the properties
of the presheaf G, as will become clear in Section 6.

Throughout this section, we fix an arbitrary regular category C, an object A of C, and
a complete lattice P . The latter can be thought of as the lattice of closed subsets of a
compact Hausdorff space or, more generally, the lattice of compact saturated subsets of
a stably compact space (see Example 5.12 for a definition).

The following notion, along with the functor γ∗ defined in eq. (2) below, will play a
central role in the remainder of the paper.

Definition 3.1. The canonical representation of A is the functor

γ : RegEpiA→ C

sending a regular epimorphism A � B to its codomain (i.e., γ is the restriction of the
codomain functor A/C→ C).

Remark 3.2. The name “canonical representation” stems from the observation that, under
certain conditions, the poset reflection of RegEpiA can be thought of as the opposite of
the poset of compact saturated subsets of a space X, and γ(k) as the set of local sections
over k of a sheaf over X whose object of global sections is isomorphic to A.

The functor category [P op,RegEpiA] can be identified with the large preorder of mono-
tone maps P op → RegEpiA, with respect to the pointwise preorder. The canonical
representation of A induces a “direct image” functor γ∗ given by post-composing with γ:

γ∗ : [P op,RegEpiA]→ [P op,C]

H 7→ γ ◦H

RegEpiA C

P op

γ

H γ∗H
(2)

A morphism α : H ⇒ J in [P op,RegEpiA] is sent by γ∗ to the horizontal composition of
natural transformations idγα : γ∗H ⇒ γ∗J .

In this section we shall see that order-theoretic properties of the monotone map
H : P op → RegEpiA correspond to certain sheaf-like properties—made precise in the
following definition—of the associated presheaf γ∗H : P op → C.

Definition 3.3. A C-valued K-sheaf over P is a functor F : P op → C satisfying the
following properties:

(K1) F (⊥) is a subterminal object of C, i.e. the unique arrow F (⊥)→ 1 is monic.
(K2) For all p, q ∈ P , the following is a pullback square in C:

F (p ∨ q) F (p)

F (q) F (p ∧ q)

Fp∨q,p

Fp∨q,q
y

Fp,p∧q

Fq,p∧q
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(K3) F preserves directed colimits. I.e., for all codirected subsets D ⊆ P , the cocone
(Fp,

∧
D : F (p)→ F (

∧
D))p∈D is a colimit of the restriction of F to D.

We let ShK(P,C) denote the full subcategory of [P op,C] defined by the K-sheaves.

Remark 3.4. The definition of K-sheaf given above is a slight variant of the homonymous
notion introduced by Lurie [35, Definition 7.3.4.1]. In op. cit., C is an ∞-category and P
is the lattice of compact subsets of a locally compact Hausdorff space. Note that Lurie
requires F (⊥) to be a terminal object of C, whereas we relax this condition by replacing
“terminal” with “subterminal”. We do this so that Corollary 4.8 below (which generalises
the main result of [21] for varieties of finitary algebras) holds for all objects of C, including
those objects A such that the unique morphism A → 1 is not a regular epimorphism.
E.g., if C is the variety of semigroups and A is the empty semigroup, i.e. the initial object
of C, the unique morphism A→ 1 is not a regular epimorphism.

We shall also consider the following variant of condition (K2):

(K4) For all p, q ∈ P , the following is a pushout square in C:

F (p ∨ q) F (p)

F (q) F (p ∧ q)

Fp∨q,p

Fp∨q,q Fp,p∧q

Fq,p∧q
p

Proposition 3.5. Let H : P op → RegEpiA be a monotone map. The following state-
ments hold:

(a) H preserves the infimum of the empty set2 if and only if γ∗H satisfies (K1).
(b) H preserves binary infima if and only if, for all p, q ∈ P , the following mediating

morphism is monic:

γ∗H(p ∨ q)→ γ∗H(p)× γ∗H(q).

(c) H preserves binary suprema if and only if γ∗H satisfies (K4).
(d) H preserves directed suprema if and only if γ∗H satisfies (K3).

Proof. Consider an arbitrary finite set {pi | i ∈ I} ⊆ P . We claim that H(
∨
i∈I pi) is an

infimum of {H(pi) | i ∈ I} if, and only if, the induced mediating morphism

γ∗H

(∨
i∈I

pi

)
→
∏
i∈I

γ∗H(pi)

is monic. Items (a) and (b) then follow at once by letting {pi | i ∈ I} be the empty set and
any two-element set, respectively. Recall that an infimum t : A� B of {H(pi) | i ∈ I} is
obtained by taking the (regular epi, mono) factorisation of the arrow A→

∏
i∈I γ∗H(pi)

whose composition with the ith projection is H(pi). Thus, H(
∨
i∈I pi) is an infimum of

{H(pi) | i ∈ I} precisely when it is above t. Consider the following commutative square.

A B

γ∗H(
∨
i∈I pi)

∏
i∈I γ∗H(pi)

H(
∨
i∈I pi)

t

If the bottom horizontal arrow is monic, there is a diagonal filler B → γ∗H(
∨
i∈I pi),

showing that H(
∨
i∈I pi) is above t. Conversely, if H(

∨
i∈I pi) is above t there is h : B →

2That is, H sends the greatest element of P op (equivalently, the least element ⊥ of P ) to a maximum
in RegEpiA. Similarly for the following items.
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γ∗H(
∨
i∈I pi) making the upper triangle commute, and such an h is necessarily a regular

epimorphism. Using the fact that the outer square commutes and t is an epimorphism,
we see that the lower triangle must also commute. It follows that h is also monic, hence
an isomorphism, and so the bottom horizontal arrow is monic.

For item (c), note that H preserves binary suprema if and only if, for all p, q ∈ P ,
H(p ∧ q) is a supremum of H(p) and H(q). In turn, by Lemma 2.3, this is equivalent to
saying that the left-hand diagram below is a pushout in C.

A γ∗H(p)

γ∗H(q) γ∗H(p ∧ q)

H(p)

H(q) γ∗Hp,p∧q

γ∗Hq,p∧q
p

A

γ∗H(p ∨ q) γ∗H(p)

γ∗H(q)

H(p∨q)

H(p)

H(q)
γ∗Hp∨q,q

γ∗Hp∨q,p

Both H(p) and H(q) factor through the regular epimorphism

H(p ∨ q) : A� γ∗H(p ∨ q),

as depicted in the rightmost diagram above. Hence the leftmost diagram above is a
pushout precisely when γ∗H satisfies (K4).

For item (d), let D be a codirected subset of P . We must show that H(
∧
D) is a

supremum of {H(p) | p ∈ D} if, and only if, the cocone

(γ∗Hp,
∧
D : γ∗H(p)→ γ∗H(

∧
D))p∈D (3)

is a colimit of the restriction of γ∗H to D. Suppose the latter is a colimit cocone. Clearly,
H(
∧
D) is above H(p) for all p ∈ D, so assume that f : A� B is an element of RegEpiA

that is above H(p) for all p ∈ D. That is, for each p ∈ D there is gp : γ∗H(p) → B such
that gp ◦H(p) = f . Then (gp : γ∗H(p)→ B)p∈D is a compatible cocone over the diagram
given by the restriction of γ∗H to D. Just observe that, for all p, q ∈ D such that p ≤ q,

gp ◦ γ∗Hq,p ◦H(q) = gp ◦H(p) = f = gq ◦H(q)

and so gp ◦ γ∗Hq,p = gq because H(q) is an epimorphism. Hence there is a unique arrow
j : γ∗H(

∧
D)→ B satisfying j ◦γ∗Hp,

∧
D = gp for all p ∈ D. We then see that f is above

H(
∧
D) because, if p is an arbitrary element of D,

j ◦H(
∧
D) = j ◦ γ∗Hp,

∧
D ◦H(p) = gp ◦H(p) = f.

Therefore, H(
∧
D) is a supremum of {H(p) | p ∈ D}.

Conversely, suppose that H(
∧
D) is a supremum of {H(p) | p ∈ D} and consider a

compatible cocone (hp : γ∗H(p) → B)p∈D over the diagram given by the restriction of
γ∗H to D. Fix an arbitrary p ∈ D and take the (regular epi, mono) factorisation of
hp ◦H(p), as depicted in the following diagram.

A γ∗H(p)

C B

H(p)

f hp

m

(4)

This yields f ∈ RegEpiA. Note that, because D is codirected, f does not depend on the
choice of p. To see this, pick another q ∈ D. As D is codirected, there is r ∈ D that is
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below p and q. So,

hr ◦H(r) = hr ◦ γ∗Hp,r ◦H(p) = hp ◦H(p)

and, by a similar reasoning, hr ◦H(r) = hq ◦H(q). Thus, hp ◦H(p) = hq ◦H(q). Now,
observe that the square in eq. (4) admits a diagonal filler γ∗H(p) → C. Because p ∈ D
was chosen arbitrarily, it follows that f is above H(p) for all p ∈ D. Since H(

∧
D) is a

supremum of {H(p) | p ∈ D}, there is j : γ∗H(
∧
D)→ C such that j ◦H(

∧
D) = f . The

composite m ◦ j : γ∗H(
∧
D)→ B satisfies

m ◦ j ◦ γ∗Hp,
∧
D ◦H(p) = m ◦ j ◦H(

∧
D) = m ◦ f = hp ◦H(p)

and so m ◦ j ◦ γ∗Hp,
∧
D = h(p) because H(p) is an epimorphism. In other words, m ◦ j

is a morphism from the cocone in eq. (3) to the cocone (hp : γ∗H(p) → B)p∈D. Finally,
observe that m ◦ j is the unique such morphism, for if n : γ∗H(

∧
D) → B is another

morphism of cocones then, for all p ∈ D,

n ◦ γ∗Hp,
∧
D = hp = m ◦ j ◦ γ∗Hp,

∧
D

entails n = m ◦ j because γ∗Hp,
∧
D is an epimorphism (just note that γ∗Hp,

∧
D ◦H(p) =

H(
∧
D)). Therefore, the cocone in eq. (3) is a colimit of the restriction of γ∗H to D. �

Given relations

〈r1, r2〉 : R� A×A and 〈s1, s2〉 : S � A×A
on A, we can define their composition R ◦ S as follows. Consider the following equaliser
diagram:

U R× S A.u
r2◦πR

s1◦πS

Then the (regular epi, mono) factorisation of the morphism

〈r1 ◦ πR ◦ u, s2 ◦ πS ◦ u〉 : U → A×A
yields the composite relation U � R ◦ S � A×A. See e.g. [20, §1.56].

A classical result of universal algebra states that, for any two congruences ϑ1, ϑ2 on
an algebra, the composite ϑ1 ◦ ϑ2 is a congruence if, and only if, ϑ1 and ϑ2 commute
(i.e. ϑ1 ◦ ϑ2 = ϑ2 ◦ ϑ1). In our setting, congruences correspond to effective equivalence
relations. If the composition of two effective equivalence relations ker f and ker g is an
effective equivalence relation, ker f and ker g commute (i.e. ker f ◦ ker g = ker g ◦ ker f).
Conversely, if ker f and ker g commute, their composition ker f ◦ ker g is an equivalence
relation; however, ker f ◦ker g need not be effective. This leads us to the following notion:

Definition 3.6. Let f, g ∈ RegEpiA. We say that f and g ker-commute if the relations
ker f and ker g commute and their composition is an effective equivalence relation.

Remark 3.7. If C is Barr-exact, two regular epimorphisms f, g ∈ RegEpiA ker-commute
precisely when the relations ker f and ker g commute. In fact, Barr-exact categories
coincide with the regular categories in which the composition of any pair of commuting
effective equivalence relations is an effective equivalence relation [10, Theorem 17].

To state the next lemma, we recall the following terminology from [8] (cf. also [11]).
In any regular category, a commutative diagram of regular epimorphisms

B C

D E

f

g h

i
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is a regular pushout if the unique mediating morphism from B to the pullback of h along
i is a regular epimorphism. (This nomenclature is justified by virtue of the fact that any
regular pushout in a regular category is a pushout [8, p. 118].) For a proof of the next
result, cf. [10, Lemma 9 and Propositions 10 and 12].

Lemma 3.8. The following statements are equivalent for all f, g ∈ RegEpiA:

(1) f and g ker-commute.
(2) f and g admit a supremum h in RegEpiA and ker f ◦ ker g = kerh.
(3) The pushout in C of f along g exists and is a regular pushout.

Remark 3.9. With regards to the previous result, a related fact was proved by Fay in [18],
motivated by an earlier unpublished version of [10] whose main results were announced
in [9].

Lemma 3.10. Let H : P op → RegEpiA be a monotone map. The following statements
are equivalent:

(1) H preserves binary infima and binary suprema, and its image consists of pairwise
ker-commuting elements.

(2) γ∗H : P op → C satisfies (K2).

Proof. Assume that 1 holds and consider the following commutative diagram, where χ is
the unique mediating morphism induced by the universal property of the pullback (recall
that every arrow in the image of γ∗H is a regular epimorphism).

γ∗H(p ∨ q)

P γ∗H(p)

γ∗H(q) γ∗H(p ∧ q)

γ∗Hp∨q,p

γ∗Hp∨q,q

χ

p1

p2

y
γ∗Hp,p∧q

γ∗Hq,p∧q

(5)

The composite

γ∗H(p ∨ q) P γ∗H(p)× γ∗H(q)
χ 〈p1,p2〉

coincides with the pairing of γ∗Hp∨q,p and γ∗Hp∨q,q. As H preserves binary infima, the
latter pairing is a monomorphism by item (b) in Proposition 3.5, and so χ is monic. On
the other hand, because H preserves binary suprema, the outer diagram in eq. (5) is a
pushout by item (c) in Proposition 3.5. Thus, the diagram obtained by precomposing
with the (regular) epimorphism H(p ∨ q) : A� γ∗H(p ∨ q) is also a pushout:

A γ∗H(p)

γ∗H(q) γ∗H(p ∧ q)

H(p)

H(q) γ∗Hp,p∧q

γ∗Hq,p∧q
p

The unique arrow A → P induced by the universal property of the pullback coincides
with χ ◦ H(p ∨ q) and is a regular epimorphism by Lemma 3.8, since H(p) and H(q)
ker-commute. It follows from item (b) in Lemma 2.2 that χ is a regular epimorphism,
hence an isomorphism. Thus the outer diagram in eq. (5) is a pullback, i.e. γ∗H satisfies
(K2).
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Conversely, suppose that 2 holds and fix arbitrary elements p, q ∈ P . As γ∗H satisfies
(K2), the following is a pullback square.

γ∗H(p ∨ q) γ∗H(p)

γ∗H(q) γ∗H(p ∧ q)

γ∗Hp∨q,p

γ∗Hp∨q,q
y

γ∗Hp,p∧q

γ∗Hq,p∧q

(6)

The pairing of γ∗Hp∨q,p and γ∗Hp∨q,q is then an equaliser of the arrows

γ∗H(p)× γ∗H(q) γ∗H(p) γ∗H(p ∧ q)
γ∗Hp,p∧q

and

γ∗H(p)× γ∗H(q) γ∗H(q) γ∗H(p ∧ q),
γ∗Hq,p∧q

where the first morphisms in the two compositions are the appropriate product projec-
tions. In particular, the mediating morphism

γ∗H(p ∨ q)→ γ∗H(p)× γ∗H(q)

given by the pairing of γ∗Hp∨q,p and γ∗Hp∨q,q is monic. It follows from item (b) in
Proposition 3.5 that H preserves binary infima. Moreover, the square in eq. (6) is a
pushout by item (c) in Lemma 2.2, and so an application of item (c) in Proposition 3.5
shows that H preserves binary suprema. Finally, in order to prove that H(p) and H(q)
ker-commute, consider the following commutative diagram.

A

γ∗H(p ∨ q) γ∗H(p)

γ∗H(q) γ∗H(p ∧ q)

H(p)

H(q)

H(p∨q)

γ∗Hp∨q,p

γ∗Hp∨q,q
y

γ∗Hp,p∧q

γ∗Hq,p∧q

The inner square is a pushout, and the morphism H(p ∨ q) : A � γ∗H(p ∨ q) is an
epimorphism (in fact, a regular epimorphism). Therefore, the outer square is a pushout.
Since the inner square is a pullback and the morphism H(p ∨ q) : A � γ∗H(p ∨ q) is a
regular epimorphism, we see that the outer square is a regular pushout. Therefore, H(p)
and H(q) ker-commute by Lemma 3.8. �

We thus obtain a characterisation of those monotone maps H : P op → RegEpiA such
that the presheaf γ∗H : P op → C is a K-sheaf.

Theorem 3.11. Consider a monotone map H : P op → RegEpiA. The following state-
ments are equivalent:

(1) H preserves finite infima and non-empty suprema, and its image consists of pair-
wise ker-commuting elements.

(2) γ∗H : P op → C is a K-sheaf.

Proof. In view of items (a) and (d) in Proposition 3.5, combined with Lemma 3.10, γ∗H
satisfies (K1)–(K3) if, and only if, H preserves finite infima and non-empty suprema and
its image consists of pairwise ker-commuting elements. Just observe that H preserves
non-empty suprema precisely when it preserves binary and directed suprema. �
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Corollary 3.12. Consider a monotone map H : P op → RegEpiA. The following state-
ments are equivalent:

(1) H preserves finite infima and arbitrary suprema, and its image consists of pairwise
ker-commuting elements.

(2) γ∗H : P op → C is a K-sheaf and H(>) is an isomorphism.

Proof. This is an immediate consequence of Theorem 3.11. Just observe that H preserves
the supremum of the empty set if, and only if,

H(>) : A→ γ∗H(>)

is a minimum in RegEpiA, i.e. an isomorphism in C. �

4. Soft K-sheaf Representations

As in the previous section, we fix an arbitrary regular category C, an object A of C,
and a complete lattice P .

To start with, we introduce the concept of softness for presheaves. We note that,
by item (b) in Lemma 2.2, all arrows in the image of the canonical representation
γ : RegEpiA→ C are regular epimorphisms. Therefore, this property is inherited by
all presheaves of the form γ∗H with H ∈ [P op,RegEpiA]. The following observation is
straightforward:

Lemma 4.1. The following statements are equivalent for any presheaf F ∈ [P op,C]:

(1) F>,p : F (>)→ F (p) is a regular epimorphism for all p ∈ P .
(2) Fq,p : F (q)→ F (p) is a regular epimorphism for all p, q ∈ P with p ≤ q.

Proof. Clearly, 2 implies 1. Conversely, suppose 1 holds and let p, q ∈ P satisfy p ≤ q. By
functoriality of F we have Fq,p ◦ F>,q = F>,p, which is a regular epimorphism. It follows
from item (b) in Lemma 2.2 that Fq,p is a regular epimorphism. �

Definition 4.2. A presheaf P op → C is said to be soft if it satisfies either of the equivalent
conditions in Lemma 4.1.

Remark 4.3. By item (c) in Lemma 2.2, any soft K-sheaf satisfies (K4).

Next, we look at those K-sheaves P op → C which allow us to recover A, up to isomor-
phism, as the object of global sections.

Definition 4.4. A K-sheaf representation of A over P is a pair (F,ϕ) where F : P op → C
is a K-sheaf and ϕ : A→ F (>) is an isomorphism in C. If F is soft, we call (F,ϕ) a soft
K-sheaf representation of A over P .

Denote by

ShAK(P,C)

the category of K-sheaf representations of A over P . The objects of ShAK(P,C) are K-
sheaf representations (F,ϕ) of A over P , and a morphism (F,ϕ) → (G,ψ) is a natural

transformation α : F ⇒ G satisfying α> ◦ ϕ = ψ. The full subcategory of ShAK(P,C)
defined by the soft K-sheaf representations is denoted by

s-ShAK(P,C).

Lemma 4.5. The following statements hold:

(a) For any two objects (F,ϕ), (G,ψ) ∈ ShAK(P,C), if (F,ϕ) is a soft K-sheaf repre-

sentation, there is at most one morphism (F,ϕ)→ (G,ψ) in ShAK(P,C).

(b) s-ShAK(P,C) is a (large) preorder.
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Proof. For item (a), consider any two arrows α, β : (F,ϕ) ⇒ (G,ψ) in ShAK(P,C) such
that F is soft. We claim that αp = βp for all p ∈ P , and so α = β. For every p ∈ P , we
have

αp ◦ F>,p ◦ ϕ = G>,p ◦ α> ◦ ϕ Naturality of α

= G>,p ◦ ψ
= G>,p ◦ β> ◦ ϕ
= βp ◦ F>,p ◦ ϕ. Naturality of β

As ϕ is an isomorphism we get αp ◦ F>,p = βp ◦ F>,p. Since F is soft, F>,p is an
epimorphism. Hence, αp = βp.

Item (b) is an immediate consequence of item (a). �

Proposition 4.6. Let (F,ϕ) ∈ s-ShAK(P,C) and define the monotone map

HF : P op → RegEpiA, p 7→ (A
ϕ−→ F (>)

F>,p−−−→ F (p)).

The following statements hold:

(a) γ∗HF = F .
(b) HF preserves finite infima and arbitrary suprema, and its image consists of pair-

wise ker-commuting elements.

Proof. For item (a), note that an arrow p→ q in P is sent by γ∗HF to the unique arrow
h : F (q)→ F (p) in C such that the following diagram commutes.

A

F (q) F (p)

HF (q) HF (p)

h

It follows that h = Fq,p because

Fq,p ◦HF (q) = Fq,p ◦ F>,p ◦ ϕ = F>,p ◦ ϕ = HF (p),

and so γ∗HF = F .
Item (b) is an immediate consequence of item (a) combined with Corollary 3.12. Just

observe that HF (>) = ϕ is an isomorphism. �

The following is our main result concerning soft K-sheaf representations of objects of
regular categories. Recall that P denotes an arbitrary complete lattice, and A an object
of a regular category C.

Theorem 4.7. Let M be the (large) sub-preorder of [P op,RegEpiA] consisting of those
maps that preserve finite infima and arbitrary suprema, and whose images consist of
pairwise ker-commuting elements. The functor γ∗ : [P op,RegEpiA]→ [P op,C] in eq. (2)
induces an isomorphism

M ∼= s-ShAK(P,C).

Proof. Define the functor

Ξ: M→ s-ShAK(P,C), H 7→ (γ∗H,H(>)).

An arrow α : H ⇒ J in M is sent to γ∗α. By Corollary 3.12, the presheaf γ∗H is a
(soft) K-sheaf and H(>) is an isomorphism in C. Thus, (γ∗H,H(>)) is a soft K-sheaf
representation of A. If α : H ⇒ J is an arrow in M then α> ◦H(>) = J(>) in C, and so
(γ∗α)> ◦H(>) = J(>). Therefore, the functor Ξ is well-defined.
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In view of item (b) in Lemma 4.5, Ξ is a functor between (large) preorders, i.e. a mono-
tone map. We claim that Ξ is an isomorphism of categories, i.e. an order isomorphism.
To show that Ξ is an order embedding, we must prove that there is an arrow H ⇒ J in M
whenever there is an arrow δ : (γ∗H,H(>)) → (γ∗J, J(>)) in s-ShAK(P,C). For all p ∈ P
we have a commutative diagram as displayed below.

A

γ∗H(>) γ∗J(>)

γ∗H(p) γ∗J(p)

H(>) J(>)

(γ∗δ)>

γ∗H>,p γ∗J>,p

(γ∗δ)p

Just observe that the triangle commutes because δ is a morphism of soft K-sheaf repre-
sentations, and the rectangle commutes by naturality of γ∗δ. The composites

γ∗H>,p ◦H(>) and γ∗J>,p ◦ J(>)

coincide with H(p) and J(p), respectively. This shows that H(p) is below J(p) for all
p ∈ P , so there is an arrow H ⇒ J in M.

Next, we show that Ξ is surjective, hence an order isomorphism. Fix an arbitrary
(F,ϕ) ∈ s-ShAK(P,C) and consider the monotone map HF : P op → RegEpiA defined in
Proposition 4.6. Then HF ∈ M by item (b) in Proposition 4.6, so we can consider its image
Ξ(HF ) = (γ∗HF , HF (>)). In view of item (a) in Proposition 4.6 we have γ∗HF = F .
Moreover HF (>) = ϕ, showing that Ξ(HF ) = (F,ϕ). �

The isomorphism of categories M ∼= s-ShAK(P,C) in Theorem 4.7 can be equivalently
understood as an order isomorphism between (large) preorders, which in turn induces an
order isomorphism between the corresponding poset reflections. We state this observation
in the following corollary in the special case of Barr-exact categories, where quotients
can be replaced with equivalence relations. Let us write Js-ShAK(P,C)K for the poset

reflection of s-ShAK(P,C); the objects of Js-ShAK(P,C)K are isomorphism classes of soft
K-sheaf representations of A over P .

Corollary 4.8. Assume C is Barr-exact. Let N be the (large) sub-poset of [P op,EquivA]
consisting of those maps that preserve finite infima and arbitrary suprema, and whose im-
ages consist of pairwise commuting equivalence relations. There is an order isomorphism

N ∼= Js-ShAK(P,C)K.

Proof. It follows at once from Theorem 4.7 that there is an order isomorphism

JMK ∼= Js-ShAK(P,C)K

between the poset reflections of M and s-ShAK(P,C), respectively. So, it suffices to show
that JMK ∼= N. The poset reflection JRegEpiAK of RegEpiA coincides with the opposite
of QuoA. If C is Barr-exact, the map ker : (QuoA)op → EquivA is an order isomorphism
(see Remark 2.10), and so JRegEpiAK is isomorphic to EquivA. Thus, the poset reflection
of [P op,RegEpiA] is isomorphic to [P op,EquivA]. This isomorphism restricts to an
isomorphism between JMK and N because, under the isomorphism between JRegEpiAK and
EquivA, the (isomorphism classes of) ker-commuting elements of RegEpiA correspond
to commuting elements of EquivA. �
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Remark 4.9. If we required that F (⊥) be a terminal object in the definition of K-sheaf,
then Corollary 4.8 (as well as Theorem 4.7) would no longer be true. Just observe that,
if C = Set and A = ∅, then both EquivA and [P op,Equiv(A)] are one-element posets,
and thus so is N. By Corollary 4.8, there is exactly one (isomorphism class of) soft K-
sheaf representation of A over P , given by the constant functor F : P op → Set defined by
F (p) = ∅ for all p ∈ P . But F (⊥) = ∅ is a proper subterminal object in Set.

Remark 4.10. Suppose that the category C is well-powered, i.e. SubA is a set—as op-
posed to a proper class—for all objects A of C. Then EquivA is a small poset, and the
isomorphism in Corollary 4.8 is an isomorphism between small posets. This is the case,
for example, when C is Set or a variety of (possibly infinitary) algebras.

5. Domains and Continuous Lattices

In this brief interlude, we shall recall some basic material concerning domains and
continuous lattices that will be needed in Section 6. For a more thorough treatment, the
reader can consult e.g. [23].

Let P be a poset. The way-below relation on P , denoted by�, is defined as follows: for
all x, y ∈ P , x� y precisely when, for all directed subsets D ⊆ P admitting a supremum∨
D in P , if y ≤

∨
D there is d ∈ D such that x ≤ d.

Remark 5.1. If P is a complete lattice and x, y ∈ P , then x � y if and only if, for all
subsets Y ⊆ P , whenever y ≤

∨
Y there is a finite subset X ⊆ Y such that x ≤

∨
X.

Example 5.2. Recall that a topological space is locally compact if each of its points
admits a compact neighbourhood. Let X be a locally compact space and consider its
frame of opens Ω(X). For all U, V ∈ Ω(X), U � V if and only if there is a compact
subset C ⊆ X such that U ⊆ C ⊆ V .

Definition 5.3. For any poset P , we shall say that:

• P is a directed complete partially ordered set (dcpo, for short) if every directed subset
D ⊆ P has a supremum in P ;

• P is continuous if, for all x ∈ P , the set

↓↓x := {y ∈ P | y � x}
is directed and x =

∨
↓↓x.

A dcpo that is continuous is called a domain. A continuous lattice is a domain that is
complete as a lattice.

Remark 5.4. Whenever the poset P has a least element ⊥, we have ⊥ � x for all x ∈ P .
Moreover, for all x, y, z ∈ P such that the supremum x ∨ y exists in P , x� z and y � z
entail x ∨ y � z, see e.g. [23, Proposition I-1.2(iii)]. It follows that, whenever P has all
finite suprema, the set ↓↓x is directed for all x ∈ P .

Example 5.5. For a locally compact space X, its frame of opens Ω(X) is a continuous
lattice. See e.g. [23, p. 56].

Definition 5.6. Let U be an upwards closed subset of a dcpo P . We say that U is
Scott-open if, for all directed subsets D ⊆ P ,

∨
D ∈ U entails D ∩ U 6= ∅.

Recall that a filter on a poset P is an upwards closed subset of P that is codirected
(in particular, non-empty). Write

Filt(P )

for the poset of filters on P , partially ordered by inclusion. Filt(P ) is a dcpo, and is a
complete lattice whenever P has binary suprema and a top element. A filter on a dcpo
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that is Scott-open as an upwards closed subset is called a Scott-open filter. The set of all
Scott-open filters on a dcpo P is denoted by

σFilt(P )

and regarded as a sub-poset of Filt(P ). The poset σFilt(P ) is often referred to as the
Lawson dual of P ; it is always a dcpo, with directed suprema given by set-theoretic unions,
and is a domain whenever P is a domain (see e.g. [23, Theorem II-1.17]). Further, if P
admits finite infima, σFilt(P ) has finite infima given by set-theoretic intersections.

We now recall some basic properties of Scott-open filters on a domain. To this end,
for any element x of a poset P , set ↑x := {y ∈ P | x ≤ y}.

Lemma 5.7. Let L be a domain. The following statements hold:

(a) For all x, y ∈ L, y � x precisely when there is k ∈ σFilt(L) such that x ∈ k ⊆ ↑ y.
(b) For all x ∈ L and all k ∈ σFilt(L), if x ∈ k there is y � x such that y ∈ k.
(c) For all k, l ∈ σFilt(L), l� k precisely when there is x ∈ k such that l ⊆ ↑x.
(d) For all x ∈ L and all k ∈ σFilt(L), if x ∈ k there is l� k such that x ∈ l.
(e) For all x ∈ L, the set {k ∈ σFilt(L) | x ∈ k} is codirected.

Proof. The left-to-right implication in item (a) follows from [23, Proposition I-3.3(i)],
while the converse is a consequence of the definition of Scott-open filter. For items (b)
and (c), see e.g. Proposition II-1.10(i) and Theorem II-1.17(ii), respectively, in [23].

For item (d), let x ∈ L and k ∈ σFilt(L) satisfy x ∈ k. By item (b), there is y � x
such that y ∈ k. Thus, in view of item (a), there exists l ∈ σFilt(L) such that x ∈ l ⊆ ↑ y.
Since y ∈ k and l ⊆ ↑ y, by item (c) we get l� k.

Finally, let us prove item (e). Let S be a finite subset of {k ∈ σFilt(L) | x ∈ k}. For
each l ∈ S, pick yl ∈ l such that yl � x (existence is guaranteed by item (b)). Since
L is a domain, the set ↓↓x is directed and thus there is y ∈ ↓↓x such that yl ≤ y for all
l ∈ S. By item (a), there is k ∈ σFilt(L) such that x ∈ k ⊆ ↑ y. For every l ∈ S we have
k ⊆ ↑ y ⊆ ↑ yl ⊆ l. Therefore, k is a lower bound of S. �

Remark 5.8. Items (d) and (e) in Lemma 5.7 can be strengthened to the effect that, for
every element x of a domain L, the set U(x) := {k ∈ σFilt(L) | x ∈ k} is a Scott-open
filter on σFilt(L). In fact, the Scott-open filters on σFilt(L) are precisely those of the
form U(x), for x ∈ L, and the map U(−) : L→ σFilt(σFilt(L)) is an order isomorphism.
These observations are at the base of the Lawson Duality Theorem of Domains [23,
Theorem IV-2.14]. For a proof of the properties mentioned above, cf. [23, §IV-2].

Given a subset S of a poset L, set ↓↓S :=
⋃
{↓↓x | x ∈ S}.

Lemma 5.9. Let L be a domain. For all directed subsets D ⊆ L, ↓↓D = ↓↓
∨
D.

Proof. The inclusion ↓↓D ⊆ ↓↓
∨
D is immediate because x� y ≤ z implies x� z. For the

converse inclusion just recall that, in a continuous poset, x�
∨
D implies the existence

of d ∈ D such that x� d, see e.g. [23, Theorem I-1.9]. �

We record for future reference the following fact, which is known as Wilker’s condition
when L = Ω(X) for a locally compact space X (cf. [31] or [21, Lemma 2.3]).

Lemma 5.10. Let L be a continuous lattice. For all x, y ∈ L and l ∈ σFilt(L) such that
x ∨ y ∈ l, there are k, k′ ∈ σFilt(L) such that x ∈ k, y ∈ k′ and k ∧ k′ ⊆ l.

Proof. Let J := ↓↓x ∪ ↓↓ y. Since ↓↓x ⊆ J and L is continuous, we get

x =
∨
↓↓x ≤

∨
J.
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Similarly, y ≤
∨
J and thus x∨ y ≤

∨
J . As l is upwards closed,

∨
J ∈ l. Now, because l

is a Scott-open filter, there exists a finite subset I ⊆ J such that
∨
I ∈ l; since ↓↓x and ↓↓ y

are closed under finite suprema by Remark 5.4, there are x′ ∈ ↓↓x and y′ ∈ ↓↓ y such that

x′ ∨ y′ =
∨
I ∈ l.

In view of item (a) in Lemma 5.7, there are k, k′ ∈ σFilt(L) such that

x ∈ k ⊆ ↑x′ and y ∈ k′ ⊆ ↑ y′.
The Scott-open filters k, k′ then satisfy the desired property. Just observe that, if z ∈ L
belongs to both k and k′, then x′ ≤ z and y′ ≤ z entail x′ ∨ y′ ≤ z. As x′ ∨ y′ ∈ l and the
latter is upwards closed, we get z ∈ l. �

Given a topological space X, let K(X) denote the poset of compact saturated subsets
of X, ordered by inclusion (recall that a set is saturated if it is an intersection of opens).
The Hofmann–Mislove theorem states that, for any sober space X (i.e., one in which
every irreducible closed subset is the closure of a unique point), the monotone map

Φ: K(X)op → σFilt(Ω(X)), Φ(K) := {U ∈ Ω(X) | K ⊆ U}
is an order isomorphism. Its inverse sends a Scott-open filter of open sets to its intersec-
tion. See e.g. [23, Theorem II-1.20].

Even when P is a continuous lattice, σFilt(P ) need not be complete (equivalently, a
continuous lattice) because it may fail to admit binary suprema. Thus, we shall now focus
on a class of continuous lattices whose posets of Scott-open filters are complete.

Definition 5.11. The way-below relation � in a continuous lattice L with top element
> is said to be multiplicative provided that > � > and, for all x, y, z ∈ L, x � y and
x� z entail x� y ∧ z.

A continuous lattice whose way-below relation is multiplicative is called a stably contin-
uous lattice. If L is a stably continuous lattice then so is σFilt(L), see e.g. [28, §VII.2.12].
In this case, the supremum of Scott-open filters U, V is given by ↑ {u∧ v | u ∈ U, v ∈ V }.
Example 5.12. For a T0 space X, its frame of opens Ω(X) is a stably continuous
lattice if and only if X is stably compact, i.e. T0, compact, locally compact, coherent3 and
sober. See e.g. [23, Proposition VI-7.3]. Stably compact spaces generalise both compact
Hausdorff spaces and spectral spaces, and are tightly related to compact ordered spaces,
cf. Section 7.1.

6. K-sheaves and Ω-sheaves

Throughout this section, we fix an arbitrary domain L. There are order embeddings

Lop Filt(L) σFilt(L),λ κ

where λ sends x ∈ L to the principal filter ↑x, and κ is the inclusion of Scott-open filters
on L into filters on L. Let F be the union of the images of λ and κ. We regard F as a
sub-poset of Filt(L) and, with a slight abuse of notation, write again λ : Lop � F and
κ : σFilt(L) � F for the obvious co-restrictions. The latter order embeddings will be
regarded as functors between small (posetal) categories.

In the first part of this section we only assume that C is a bicomplete (i.e., complete
and cocomplete) category. The functors λ, κ induce “restriction” functors

[F ,C] [Lop,C]λ∗ and [F ,C] [σFilt(L),C]κ∗

3A topological space is coherent if the intersection of any two compact saturated subsets is compact.
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given by precomposing with λ and κ, respectively. As Lop and σFilt(L) are small cate-
gories and C is bicomplete, any functor G in [Lop,C] admits a left Kan extension LanλG
along λ, and any functor F in [σFilt(L),C] admits a right Kan extension Ranκ F along κ.
These Kan extensions are computed pointwise and determine two adjunctions as displayed
below (see e.g. [36, §X.3]):

[F ,C] [Lop,C]

[F ,C] [σFilt(L),C].

λ∗

>
Lanλ

κ∗
>

Ranκ

Let η, ε be the unit and counit, respectively, of the adjunction Lanλ a λ∗, and η̃, ε̃ the
unit and counit, respectively, of the adjunction κ∗ a Ranκ.

As λ and κ are order embeddings (hence, fully faithful), these adjunctions fix all ob-
jects of [Lop,C] and [σFilt(L),C], respectively. This is the content of the next lemma,
which holds more generally for Kan extensions along fully faithful functors, cf. [32, Propo-
sition 4.23].

Lemma 6.1. The following statements hold:

(a) The unit η of the adjunction Lanλ a λ∗ is a natural isomorphism, i.e. for all
G ∈ [Lop,C], ηG : G ∼= λ∗ LanλG.

(b) The counit ε̃ of the adjunction κ∗ a Ranκ is a natural isomorphism, i.e. for all
F ∈ [σFilt(L),C], ε̃F : κ∗Ranκ F ∼= F .

Remark 6.2. Recall that, given any adjunction, the right adjoint is fully faithful precisely
when the counit is a natural isomorphism. A dual statement holds for left adjoint functors
and units. Therefore, Lemma 6.1 amounts to saying that the functors Ranκ and Lanλ
are fully faithful.

Composing the two adjunctions above, we obtain the following pair of adjoint functors:

[σFilt(L),C] [Lop,C].
λ∗ Ranκ
>

κ∗ Lanλ

(7)

In Proposition 6.9 below we shall characterise the objects that are fixed by the unit and
counit of this adjunction, thus obtaining an equivalence between the full subcategories
defined by the fixed objects. By further restricting this equivalence, in Theorem 6.21 we
will relate the notion of K-sheaf to the usual notion of sheaf.

Remark 6.3. We provide explicit descriptions of the adjoint functors in eq. (7). These
are easy consequences of the formulas for pointwise Kan extensions, cf. [36, §X.5]. For all
G : Lop → C and k ∈ σFilt(L),

(κ∗ LanλG)(k)

is the directed colimit in C of the restriction of G to k (regarded as a subset of L). If
k, l ∈ σFilt(L) are such that k ⊆ l, the corresponding arrow

(κ∗ LanλG)(k)→ (κ∗ LanλG)(l)

is the mediating morphism induced by the universal (colimit) property of (κ∗ LanλG)(k).
On the other hand, for all F : σFilt(L)→ C and x ∈ L,

(λ∗Ranκ F )(x)
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is the codirected limit in C of the restriction of F to {k ∈ σFilt(L) | x ∈ k}. Note that
the latter set is codirected by item (e) in Lemma 5.7. Given x, y ∈ L with x ≤ y, the
corresponding morphism

(λ∗Ranκ F )(y)→ (λ∗Ranκ F )(x)

is the one induced by the universal (limit) property of (λ∗Ranκ F )(x).

Remark 6.4. Assume that X is a sober space. By the Hofmann–Mislove theorem, we have
an isomorphism σFilt(Ω(X)) ∼= K(X)op. Hence, for any sheaf of sets G : Ω(X)op → Set
over X, κ∗ LanλG can be identified with a presheaf K(X)op → Set. For any point x ∈ X,
the up-set ↑x of x in the specialization order of X is a compact saturated subset of X.
In view of Remark 6.3, the value of κ∗ LanλG at ↑x is

(κ∗ LanλG)(↑x) ∼= colim
↑ x⊆U∈Ω(X)

G(U) ∼= colim
x∈U∈Ω(X)

G(U),

which is precisely the stalk of G at x. A similar remark applies when Set is replaced with
any variety of algebras.

Lemma 6.5. Consider a functor F : L→ C. The following statements are equivalent:

(1) F preserves directed colimits.
(2) For all x ∈ L, the cocone (Fy,x : F (y) → F (x))y∈↓↓ x is a (directed) colimit of the

restriction of F to ↓↓x.

Proof. Because L is continuous, for all x ∈ L the set ↓↓x is directed and x =
∨
↓↓x. Hence,

2 is an immediate consequence of 1.
Conversely, suppose that 2 holds and fix an arbitrary directed set D ⊆ L. We must

show that the cocone

(Fy,
∨
D : F (y)→ F

(∨
D
)
)y∈D

is a colimit of the restriction of F to D. Let (ϕy : F (y)→ A)y∈D be a compatible cocone
over the restriction of F to D. For each z ∈ ↓↓D, let ψz : F (z)→ A denote the composite
ϕyz ◦ Fz,yz , where yz is any element of D such that z � yz: since D is directed and the
cocone (ϕy : F (y) → A)y∈D is compatible, ψz does not depend on the choice of yz. It is
not difficult to see that (ψz : F (z) → A)z∈↓↓D is a compatible cocone over the restriction
of F to ↓↓D. As ↓↓D = ↓↓

∨
D by Lemma 5.9, it follows from 2 that there is a unique arrow

η : F (
∨
D)→ A such that ψz = η ◦ Fz,∨D for all z ∈ ↓↓D.

We claim that η is the unique arrow such that ϕy = η ◦ Fy,∨D for all y ∈ D, thus
showing that (Fy,

∨
D : F (y) → F (

∨
D))y∈D is a colimit cocone. To this end, fix an

arbitrary y ∈ D. Applying 2 again, we have that the cocone (Fz,y : F (z)→ F (y))z∈↓↓ y is
a colimit of the restriction of F to ↓↓ y. Using the universal property of the latter colimit,
we see that ϕy must coincide with the composite

F (y) F (
∨
D) A.

Fy,
∨
D η

Just observe that, for all z ∈ ↓↓ y,

ϕy ◦ Fz,y = ϕyz ◦ Fz,yz = ψz = η ◦ Fz,∨D.

Clearly, η is unique with respect to this property. �

It is useful to record the dual version of the previous lemma:

Lemma 6.6. Consider a functor F : Lop → C. The following statements are equivalent:

(1) F preserves codirected limits.
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(2) For all x ∈ L, the cone (Fx,y : F (x) → F (y))y∈↓↓ x is a (codirected) limit of the
restriction of F to ↓↓x.

Proof. This follows by applying Lemma 6.5 to the functor F op : L→ Cop. �

Now, denote by

ω- lim[Lop,C]

the full subcategory of [Lop,C] defined by the functors preserving codirected limits, and by

ω- colim[σFilt(L),C]

the full subcategory of [σFilt(L),C] defined by the functors preserving directed colimits.

Lemma 6.7. The following statements hold:

(a) For all G ∈ [Lop,C], the functor κ∗ LanλG belongs to ω- colim[σFilt(L),C].
(b) For all F ∈ [σFilt(L),C], the functor λ∗Ranκ F belongs to ω- lim[Lop,C].

Proof. For item (a), fix an arbitrary k ∈ σFilt(L). In view of Lemma 6.5, it suffices
to prove that the cocone (Gl,k : (κ∗ LanλG)(l) → (κ∗ LanλG)(k))l∈↓↓ k is a colimit of the
restriction of κ∗ LanλG to ↓↓ k. Note that, since σFilt(L) is continuous, we have k =

⋃
↓↓ k.

Therefore, using Remark 6.3 twice, we have

(κ∗ LanλG)(k) ∼= colim
x∈k

G(x) ∼= colim
l�k, x∈l

G(x) ∼= colim
l�k

colim
x∈l

G(x) ∼= colim
l�k

(κ∗ LanλG)(l).

This slick proof does not show that the cocone above is a colimit cocone, although this
could be deduced by checking how the colimit cocones are modified under the chain of
isomorphisms. We now give a detailed proof that follows precisely this intuition.

To start with, observe that κ∗ is left adjoint and so it preserves colimits. Thus, it is
enough to show that the cocone

(Gl,k : LanλG(l)→ LanλG(k))l∈↓↓ k (8)

is a colimit of the restriction of LanλG to ↓↓ k. Let (ϕl : LanλG(l) → A)l∈↓↓ k be a com-
patible cocone over the restriction of LanλG to ↓↓ k. Because k =

⋃
↓↓ k, for all x ∈ k there

is l ∈ σFilt(L) such that l� k and x ∈ l. Hence, for each x ∈ k, we obtain an arrow

ϕx : LanλG(↑x)→ A

by composing ϕl : LanλG(l) → A with G↑ x,l : LanλG(↑x) → LanλG(l). Note that the
definition of ϕx does not depend on the choice of l because ↓↓ k is directed, and the family
{ϕx : LanλG(↑x)→ A | x ∈ k} forms a compatible cocone over the restriction of LanλG
to k. The colimit of the latter diagram is LanλG(k), so there is a unique mediating
morphism µ : LanλG(k) → A such that ϕx = µ ◦ G↑ x,k for all x ∈ k. We claim that
ϕl = µ ◦ Gl,k for all l � k. Fix an arbitrary Scott-open filter l ∈ ↓↓ k. By item (c) in
Lemma 5.7, there is x ∈ k such that l ⊆ ↑x and thus Gl,k factors through G↑ x,k. We get

µ ◦Gl,k = µ ◦G↑ x,k ◦Gl,↑ x = ϕx ◦Gl,↑ x,

which in turn coincides with ϕl by construction. Further, it is not difficult to see that µ
is the unique morphism satisfying ϕl = µ◦Gl,k for all l� k. Hence, the cocone in eq. (8)
is a colimit of the restriction of LanλG to ↓↓ k.

Now, for item (b), fix an arbitrary x ∈ L. In view of Lemma 6.6, it suffices to prove
that the cone (Fx,y : (λ∗Ranκ F )(x) → (λ∗Ranκ F )(y))y∈↓↓ x is a limit of the restriction
of λ∗Ranκ F to ↓↓x. By item (b) in Lemma 5.7, we have

{l ∈ σFilt(L) | x ∈ l} = {l ∈ σFilt(L) | ∃y ∈ L such that y � x and y ∈ l}.
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Using Remark 6.3 twice, we get

(λ∗Ranκ F )(x) ∼= lim
x∈l

F (l) = lim
y�x

lim
y∈l

F (l) = lim
y�x

(λ∗Ranκ F )(y),

where l ∈ σFilt(L). Reasoning along the same lines as before, it is possible to give a
direct proof that the cone above is a limit cone; we leave the details to the reader. �

As a consequence of Lemma 6.7, every object of [Lop,C] that is fixed by the unit of
the adjunction in eq. (7) belongs to ω- lim[Lop,C], and every object of [σFilt(L),C] that
is fixed by the counit belongs to ω- colim[σFilt(L),C]. The next lemma will imply that
the converse implications hold as well.

Recall that η̃ is the unit of the adjunction κ∗ a Ranκ and ε is the counit of Lanλ a λ∗.
Intuitively, for all functors F : F → C, η̃F is an isomorphism precisely when, if we first re-
strict F along κ∗ and then extend along Ranκ, we recover F up to a natural isomorphism.
A similar remark applies to the case where εF is an isomorphism.

Lemma 6.8. The following conditions are equivalent for all functors F ∈ [F ,C]:

(1) κ∗F ∈ ω- colim[σFilt(L),C] and η̃F is an isomorphism.
(2) λ∗F ∈ ω- lim[Lop,C] and εF is an isomorphism.

Proof. Let us prove that 1 implies 2. Fix an arbitrary functor F : F → C such that κ∗F
preserves directed colimits and η̃F is an isomorphism. By item (b) in Lemma 6.7 applied
to κ∗F , we have that λ∗Ranκ κ

∗F preserves codirected limits. In view of the isomorphism
λ∗(η̃F ) : λ∗F ∼= λ∗Ranκ κ

∗F , we get λ∗F ∈ ω- lim[Lop,C].
Next, we show that εF is an isomorphism. That is, for all ϕ ∈ F ,

(εF )ϕ : (Lanλ λ
∗F )(ϕ)→ F (ϕ)

is an isomorphism. By the formula for pointwise left Kan extensions (cf. [36, §X.5]), (εF )ϕ
can be identified with the unique mediating morphism

colim
↑ x⊆ϕ

F (↑x)→ F (ϕ)

for x ∈ L. If ϕ belongs to the image of λ (i.e., ϕ is a principal filter) then this mediating
morphism is clearly an isomorphism. Hence it remains to prove that, for all k ∈ σFilt(L),
the following arrow is an isomorphism:

colim
x∈k

F (↑x)→ F (k).

Let {ψx : F (↑x) → A | x ∈ k} be a compatible cocone in C over the restriction of F to
{↑x | x ∈ k}. By item (c) in Lemma 5.7, whenever two Scott-open filters k and k′ satisfy
k′ � k, there is x ∈ k such that k′ ⊆ ↑x. Hence, for every k′ ∈ ↓↓ k we obtain a morphism

ϕk′ : F (k′)→ A

by composing Fk′,↑ x : F (k′) → F (↑x) with ψx : F (↑x) → A. Note that the definition
of ϕk′ does not depend on the choice of x because k is codirected, and {ϕk′ : F (k′) →
A | k′ � k} is a compatible cocone over the restriction of κ∗F to ↓↓ k (recall that, for all
l ∈ σFilt(L), κ∗F (l) = F (l)). As κ∗F preserves directed colimits, we have

κ∗F (k) ∼= colim
k′�k

κ∗F (k′).

More precisely, the cocone (Fk′,k : κ∗F (k′)→ κ∗F (k))k′∈↓↓ k is a colimit of the restriction
of κ∗F to ↓↓ k. Thus, there is a unique mediating morphism µ : F (k) → A satisfying
ϕk′ = µ ◦ Fk′,k for all k′ � k. It remains to show that µ satisfies ψx = µ ◦ F↑ x,k for all
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x ∈ k and is unique with this property. Fix an arbitrary x ∈ k. By item (d) in Lemma 5.7
there is k′ � k such that x ∈ k′. It follows that F↑ x,k = Fk′,k ◦ F↑ x,k′ and so

µ ◦ F↑ x,k = µ ◦ Fk′,k ◦ F↑ x,k′ = ϕk′ ◦ F↑ x,k′ ,

which coincides with ψx. To deduce that µ is unique with this property, it is enough to
note that any ν satisfying ψx = ν ◦ F↑ x,k for all x ∈ k must satisfy ϕk′ = ν ◦ Fk′,k for
all k′ � k. Just observe that, as mentioned above, k′ � k entails the existence of x ∈ k
such that k′ ⊆ ↑x. Thus,

ν ◦ Fk′,k = ν ◦ F↑ x,k ◦ Fk′,↑ x = ψx ◦ Fk′,↑ x = ϕk′ .

To show that 2 implies 1, suppose that F : F → C is such that λ∗F preserves codirected
limits and εF is an isomorphism. Item (a) in Lemma 6.7 applied to λ∗F shows that
κ∗ Lanλ λ

∗F preserves directed colimits. Because κ∗ Lanλ λ
∗F is naturally isomorphic to

κ∗F via κ∗(εF ), we see that κ∗F ∈ ω- colim[σFilt(L),C].
It remains to prove that η̃F is an isomorphism. That is, for all ϕ ∈ F ,

(η̃F )ϕ : F (ϕ)→ (Ranκ κ
∗F )(ϕ)

is an isomorphism. In view of the formula for pointwise right Kan extensions, (η̃F )ϕ can
be identified with the unique mediating morphism

F (ϕ)→ lim
ϕ⊆k

F (k)

for k which ranges over σFilt(L). If ϕ belongs to the image of κ (i.e., ϕ is a Scott-open
filter) then this mediating morphism is clearly an isomorphism. Hence it suffices to prove
that, for all x ∈ L, the following arrow is an isomorphism:

F (↑x)→ lim
x∈k

F (k).

Let {ψk : A → F (k) | x ∈ k} be a compatible cone in C over the restriction of F to
{k ∈ σFilt(L) | x ∈ k}. Fix an arbitrary y � x. By item (a) in Lemma 5.7, there is a
Scott-open filter k such that x ∈ k ⊆ ↑ y. Hence we can define an arrow

ϕy : A→ F (↑ y)

as the composition of ψk : A→ F (k) and the restriction map Fk,↑ y : F (k)→ F (↑ y). Note
that the definition of ϕy does not depend on the choice of k because ↓↓x is directed, and
the family {ϕy : A → F (↑ y) | y � x} forms a compatible cone over the restriction of F
to {↑ y | y ∈ ↓↓x}. As λ∗F preserves codirected limits, we have λ∗F (x) ∼= limy�x λ

∗F (y)
and so F (↑x) ∼= limy�x F (↑ y). Thus the compatible cone above induces a unique arrow
µ : A → F (↑x) such that ϕy = F↑ x,↑ y ◦ µ for all y � x. It remains to prove that µ
satisfies ψk = F↑ x,k ◦ µ for all Scott-open filters k containing x and is unique with this
property. Fix an arbitrary k ∈ σFilt(L) such that x ∈ k. By item (b) in Lemma 5.7 there
is y � x such that y ∈ k. In particular, ↑x ⊆ ↑ y ⊆ k and therefore

F↑ x,k ◦ µ = F↑ y,k ◦ F↑ x,↑ y ◦ µ = F↑ y,k ◦ ϕy,

which coincides with ψk. To see that µ is unique with this property, it suffices to note
that any ν satisfying ψk = F↑ x,k ◦ ν for all k ∈ σFilt(L) such that x ∈ k must satisfy
ϕy = F↑ x,↑ y ◦ ν for all y � x. Just recall that, as pointed out above, whenever y � x
there is k ∈ σFilt(L) satisfying ↑x ⊆ k ⊆ ↑ y. Hence,

F↑ x,↑ y ◦ ν = Fk,↑ y ◦ F↑ x,k ◦ ν = Fk,↑ y ◦ ψk = ϕy. �

Recall that L is an arbitrary domain and C is a bicomplete category. The next propo-
sition provides a description of the objects that are fixed by the adjunction in eq. (7).
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Proposition 6.9. The adjoint pair of functors

[σFilt(L),C] [Lop,C]
λ∗ Ranκ
>

κ∗ Lanλ

restricts to an equivalence ω- colim[σFilt(L),C] ' ω- lim[Lop,C].

Proof. Denote by F1 the full subcategory of [F ,C] defined by those functors F such that
λ∗F ∈ ω- lim[Lop,C] and εF is an isomorphism. We claim that the adjunction

Lanλ a λ∗ : [F ,C]→ [Lop,C]

restricts to an equivalence between F1 and ω- lim[Lop,C].
By definition of F1, λ∗ restricts to a functor F1 → ω- lim[Lop,C]. To see that Lanλ

restricts to a functor ω- lim[Lop,C]→ F1, consider an arbitrary G ∈ ω- lim[Lop,C]. Then
ηG : G ∼= λ∗ LanλG by item (a) in Lemma 6.1, and so we see that λ∗ LanλG belongs
to ω- lim[Lop,C]. Furthermore, using again the fact that η is a natural isomorphism, it
follows from the triangle identities for adjunctions that εLanλ is a natural isomorphism.
In particular, εLanλG is an isomorphism. Hence, LanλG ∈ F1.

This shows that the adjunction Lanλ a λ∗ restricts to an adjunction between F1 and
ω- lim[Lop,C]. In turn, the latter adjunction is an equivalence because all objects of F1

are fixed by definition, and all objects of ω- lim[Lop,C] are fixed by item (a) in Lemma 6.1.
Now, let F2 be the full subcategory of [F ,C] defined by those functors F such that

κ∗F ∈ ω- colim[σFilt(L),C] and η̃F is an isomorphism. By similar reasoning to the
one above, the adjunction κ∗ a Ranκ : [σFilt(L),C] → [F ,C] restricts to an equivalence
between ω- colim[σFilt(L),C] and F2.

Finally, the statement follows by noting that F1 = F2 by Lemma 6.8. �

Suppose for a moment that C is a bicomplete regular category and the domain L is a
stably continuous lattice. Then σFilt(L) is also a stably continuous lattice; in particular,
a complete lattice. So, we can consider the category ShK(σFilt(L)op,C) of C-valued K-
sheaves over σFilt(L)op. This is a full subcategory of [σFilt(L),C] and we have a composite
functor

ShK(σFilt(L)op,C) [σFilt(L),C] [Lop,C].
λ∗◦Ranκ

In order to characterise the image of this functor, we introduce the notion of Ω-sheaf.
Intuitively, whereas K-sheaves on a (stably compact) space X are defined on the lattice
K(X) of compact saturated subsets of X, Ω-sheaves are defined on the frame Ω(X) of
opens of X—hence the nomenclature. The relation between Ω-sheaves and ordinary
sheaves is explained in Proposition 6.14 and Remark 6.15.

Definition 6.10. Let D be a category and let P be a complete lattice. A D-valued
Ω-sheaf on P is a functor F : P op → D that satisfies the following properties:

(Ω1) F (⊥) is a subterminal object of D, i.e. the unique arrow F (⊥)→ 1 is monic.
(Ω2) For all x, y ∈ P , the following is a pullback square in D:

F (x ∨ y) F (x)

F (y) F (x ∧ y)

Fx∨y,x

Fx∨y,y
y

Fx,x∧y

Fy,x∧y

(Ω3) F preserves codirected limits. I.e., for all directed subsets D ⊆ P , the cone
(F∨

D,p : F (
∨
D)→ F (p))p∈D is a limit of the restriction of F to D.

We denote by ShΩ(P,D) the full subcategory of [P op,D] defined by the Ω-sheaves.
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Remark 6.11. Note that conditions (Ω1) and (Ω2) coincide, respectively, with condi-
tions (K1) and (K2) in the definition of K-sheaf. By contrast, (Ω3) is dual to (K3).

Remark 6.12. By Lemma 6.6, if P is a continuous lattice and F : P op → C is a func-
tor, then condition (Ω3) can be equivalently stated as follows: For all x ∈ P , the cone
(Fx,y : F (x)→ F (y))y∈↓↓ x is a (codirected) limit of the restriction of F to ↓↓x.

Lemma 6.13. Suppose that D is a category and P is a complete lattice. The following
statements are equivalent for all functors F : P op → D:

(1) F satisfies (Ω2) and (Ω3).
(2) For every non-empty subset S ⊆ P that is closed under binary meets, the cone

(F∨
S,y : F (

∨
S)→ F (y))y∈S is a limit of the restriction of F to S.

Proof. Suppose 1 holds and let S ⊆ P be a non-empty subset closed under binary meets.
The set T ⊆ P obtained by closing S under binary joins is directed and so, by (Ω3), the
cone (F∨

T ,y : F (
∨
T )→ F (y))y∈T is a limit of the restriction of F to T . It follows from

(Ω2) that the cone (F∨
S,y : F (

∨
S) → F (y))y∈S is a limit of the restriction of F to S.

Just observe that
∨
S =

∨
T and condition (Ω2) allows to extend any compatible cone

over the restriction of F to S to a unique compatible cone over the restriction of F to T .
Conversely, assume that 2 holds. Then (Ω2) follows by setting S := {x, y, x∧y}. With

regards to (Ω3), let D ⊆ P be a directed subset and let E be the closure of D under
binary meets. As D is non-empty, so is E. Also, since D is a cofinal subset of E, we
have

∨
D =

∨
E. By item 2, the cone (F∨

D,y : F (
∨
D) → F (y))y∈E is a limit of the

restriction of F to E. Moreover, a straightforward argument that uses the fact that D is
a directed cofinal subset of E shows that (F∨

D,y : F (
∨
D) → F (y))y∈D is a limit of the

restriction of F to D. �

Recall that a sheaf of sets on a topological space X can be characterised as a presheaf
F : Ω(X)op → Set such that, for every set of opens S ⊆ Ω(X) that is closed under binary
intersections, the cone

(F⋃
S,U : F

(⋃
S
)
→ F (U))U∈S

is a limit of the restriction of F to S. For S = ∅, this amounts to saying that F (∅) is
a terminal object of Set, i.e. a one-element set, which is a strengthening of (Ω1). More
generally, for any frame M , a sheaf of sets over M is a presheaf F : Mop → Set such that,
for every set S ⊆M closed under binary meets, the cone

(F∨
S,a : F

(∨
S
)
→ F (a))a∈S

is a limit of the restriction of F to S.
The previous description of sheaves as “limit-preserving presheaves” remains valid

when the category of sets is replaced with any variety of (finitary) algebras, and has been
exploited to propose a notion of sheaf with values in an arbitrary category D—simply by
replacing Set with D—see e.g. [25]. Adopting this notion of D-valued sheaf on a frame,
we have the following immediate consequence of Lemma 6.13:

Proposition 6.14. Let D be a category and let M be a frame. The following statements
are equivalent for all presheaves F : Mop → D:

(1) F is a D-valued sheaf.
(2) F is a D-valued Ω-sheaf such that F (∅) is a terminal object of D.

Thus the notion of Ω-sheaf of sets over a frame (and, in particular, over a topological
space) coincides with the classical notion of sheaf of sets, with the only exception that we
allow the empty presheaf. This is the content of the following remark:
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Remark 6.15. Let M be a frame. When D = Set, the only proper subterminal object is
the empty set. Thus, any Ω-sheaf F : Mop → Set that is not a sheaf satisfies F (⊥) = ∅.
But for every a ∈M there is a restriction function Fa,⊥ : F (a)→ F (⊥) = ∅, which implies
that F (a) = ∅. Thus, a presheaf of sets Mop → Set is an Ω-sheaf if, and only if, it is
either a sheaf or the initial presheaf (i.e., the constant presheaf of value ∅).

A similar reasoning applies when D is any variety of algebras whose signature contains
no constant symbols, e.g. the variety of semigroups. On the other hand, if D is a variety of
algebras whose signature contains at least one constant symbol, then it admits no proper
subterminal objects (just observe that any algebra in D has at least one element). In this
case, the notions of sheaf and Ω-sheaf coincide for any presheaf Mop → D.

We will now proceed to compare the notions of K-sheaf and Ω-sheaf. To this end,
we shall suppose from now on that C is a bicomplete regular category and L is a stably
continuous lattice.

Definition 6.16. We consider the following full subcategories AK and AΩ of [F ,C]:

• AK consists of those F such that κ∗F is a K-sheaf and η̃F is an isomorphism.
• AΩ consists of those F such that λ∗F is an Ω-sheaf and εF is an isomorphism.

The next lemma follows by reasoning as in the proof of Proposition 6.9:

Lemma 6.17. The following statements hold:

(a) The adjunction κ∗ a Ranκ restricts to an equivalence ShK(σFilt(L)op,C) ' AK.
(b) The adjunction Lanλ a λ∗ restricts to an equivalence ShΩ(L,C) ' AΩ.

Lemma 6.18. AK is a (full) subcategory of AΩ.

Proof. Fix an arbitrary functor F : F → C that belongs to AK. We must prove that λ∗F
is an Ω-sheaf and εF is an isomorphism. Since η̃F : F → Ranκ κ

∗F is an isomorphism,
the formula for pointwise right Kan extensions implies that, for all x ∈ L,

λ∗F (x) ∼= lim
x∈k

κ∗F (k)

where k ∈ σFilt(L). Just observe that x ∈ k if and only if ↑x ⊆ k in F .
Condition (Ω1) in Definition 6.10 is trivially satisfied, since the unique (Scott-open)

filter containing the bottom element of L is the improper one, which is the bottom element
of σFilt(L)op. Hence λ∗F (⊥) ∼= κ∗F (L), which is subterminal because κ∗F satisfies (K1).
For (Ω2), for all x, y ∈ L we have

λ∗F (x)×λ∗F (x∧y) λ
∗F (y) ∼= lim

x∈k
κ∗F (k)×limκ∗F (k∨k′) lim

y∈k′
κ∗F (k′)

∼= lim
x∈k, y∈k′

(κ∗F (k)×κ∗F (k∨k′) κ
∗F (k′))

∼= lim
x∈k, y∈k′

κ∗F (k ∧ k′) κ∗F satisfies (K2)

∼= lim
x∨y∈l

κ∗F (l) Lemma 5.10 and coinitiality4

∼= λ∗F (x ∨ y)

where in the first step we used the fact that {l | x ∧ y ∈ l} = {k ∨ k′ | x ∈ k, y ∈ k′} and
so

lim
x∧y∈l

κ∗F (l) ∼= lim
x∈k, y∈k′

κ∗F (k ∨ k′).

Finally, since κ∗F preserves directed colimits (by definition of K-sheaf) and η̃F is an
isomorphism, Lemma 6.8 entails that λ∗F satisfies (Ω3) and εF is an isomorphism. �

4By coinitiality we understand the order-theoretic dual to the notion of cofinality.
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We record the following immediate consequence of Lemmas 6.17 and 6.18. Recall that
L denotes an arbitrary stably continuous lattice, and C a bicomplete regular category.

Proposition 6.19. There is a fully faithful functor

ShK(σFilt(L)op,C)→ ShΩ(L,C) (9)

given by the following composition:

ShK(σFilt(L)op,C) ' AK ↪→ AΩ ' ShΩ(L,C).

Next, we shall see that the fully faithful functor in the previous proposition is an
equivalence of categories whenever directed colimits in C commute with finite limits.

Remark 6.20. Directed colimits commute with finite limits in Set (more generally, in
any Grothendieck topos), as well as in algebraic categories (i.e., categories of models of
Lawvere theories, or equivalently varieties of finitary algebras); see e.g. [7, Corollary 3.4.3].

Furthermore, suppose D is a Barr-exact category with a regular generator that admits
all small copowers. Then, by a result of Vitale [45], directed colimits in D exist and com-
mute with finite limits if, and only if, D is equivalent to the localization (i.e., a reflective
subcategory such that the reflector preserves finite limits) of an algebraic category.

The following theorem provides an equivalence between K-sheaves and Ω-sheaves, and
is akin to a result of Lurie for sheaves on locally compact Hausdorff spaces with values
in ∞-categories [35, Corollary 7.3.4.10]. The two results are incomparable: we work with
ordinary categories but consider, more generally, sheaves on stably continuous lattices.

Theorem 6.21. If directed colimits in C commute with finite limits, there is an equiva-
lence of categories ShK(σFilt(L)op,C) ' ShΩ(L,C).

Proof. Consider the fully faithful functor ShK(σFilt(L)op,C) → ShΩ(L,C) in eq. (9). In
view of the definition of the latter, it suffices to show that AΩ is a (full) subcategory
of AK, for then AK = AΩ. To this end, fix an arbitrary functor F : F → C in AΩ. We
must show that κ∗F is a K-sheaf and η̃F is an isomorphism. Since the component of the
counit εF : Lanλ λ

∗F → F is an isomorphism, for all k ∈ σFilt(L) we have

κ∗F (k) ∼= colim
x∈k

λ∗F (x)

by the formula for pointwise left Kan extensions. Note that the colimit above is directed
because k is codirected and λ∗F is contravariant.

Clearly, κ∗F satisfies condition (K1) in Definition 3.3. Just observe that the bottom
element of σFilt(L)op is the improper filter L, and so every arrow in the colimit cocone

{λ∗F (x)→ κ∗F (L) | x ∈ L}
factors through λ∗F (⊥) → κ∗F (L). Hence κ∗F (L) ∼= λ∗F (⊥), which is subterminal
because λ∗F satisfies (Ω1). For (K2), using the fact that directed colimits in C commute
with finite limits, for all k, l ∈ σFilt(L) we have

κ∗F (k)×κ∗F (k∨l) κ
∗F (l) ∼= colim

x∈k
λ∗F (x)×colimλ∗F (x∧y) colim

y∈l
F (y)

∼= colim
x∈k, y∈l

(λ∗F (x)×λ∗F (x∧y) λ
∗F (y))

∼= colim
x∈k, y∈l

λ∗F (x ∨ y) λ∗F satisfies (Ω2)

∼= colim
z∈k∧l

λ∗F (z)

∼= κ∗F (k ∧ l)
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where in the first step we used the fact that the supremum of the Scott-open filters k and
l is ↑ {x ∧ y | x ∈ k, y ∈ l} and thus, by coinitiality,

colim
z∈k∨l

λ∗F (z) ∼= colim
x∈k, y∈l

λ∗F (x ∧ y).

Similarly, the penultimate step holds because k∧ l = {x∨y | x ∈ k, y ∈ l}. Moreover, be-
cause λ∗F preserves codirected limits (by definition of Ω-sheaf) and εF is an isomorphism,
Lemma 6.8 shows that κ∗F satisfies (K3) and η̃F is an isomorphism. �

The equivalence of categories in the previous theorem induces an equivalence of sheaf
representations in the following sense.

Definition 6.22. For every object A of a category D, an Ω-sheaf representation of A over
a complete lattice P is a pair (F,ϕ) where F : P op → D is an Ω-sheaf and ϕ : A→ F (>)
an isomorphism in D.

We denote by ShAΩ(P,D) the category of Ω-sheaf representations of A over P ; a mor-
phism (F,ϕ) → (G,ψ) in this category is a natural transformation α : F ⇒ G such that
α> ◦ ϕ = ψ.

Theorem 6.23. If directed colimits in C commute with finite limits, then for any A ∈ C
there is an equivalence of categories ShAK(σFilt(L)op,C) ' ShAΩ(L,C).

Proof. Fix an arbitrary object A of C and an Ω-sheaf representation (F,ϕ) of A over L.
The top element of σFilt(L)op is the filter {>}, where > is the top element of L (note
that {>} is Scott-open because > � > in a stably continuous lattice). We have

λ∗ Lanλ F (>) = Lanλ F ({>}) = κ∗ Lanλ F ({>})
and so, by item (a) in Lemma 6.1, we obtain an isomorphism (ηF )> from F (>) to
κ∗ Lanλ F ({>}). The composite arrow

ϕ∗ : A F (>) κ∗ Lanλ F ({>})ϕ (ηF )>

is then an isomorphism and the pair (κ∗ Lanλ F,ϕ
∗) is a K-sheaf representation of A over

σFilt(L)op. Further, if α : (F,ϕ)→ (G,ψ) is a morphism in ShAΩ(P,C) then

κ∗ Lanλ(α) : (κ∗ Lanλ F,ϕ
∗)→ (κ∗ LanλG,ψ

∗)

is a morphism in ShAK(σFilt(L)op,C). Just observe that the square in the following dia-
gram commutes by naturality of η,

F (>) κ∗ Lanλ F ({>})

A

G(>) κ∗ LanλG({>})

(ηF )>

α> (κ∗ Lanλ(α)){>}

ϕ

ψ (ηG)>

and so (κ∗ Lanλ(α)){>} ◦ ϕ∗ = ψ∗.
This yields a functor

ShAΩ(L,C)→ ShAK(σFilt(L)op,C). (10)

We claim that the latter is an equivalence of categories. It follows from (the proof of)
Theorem 6.21 that κ∗ Lanλ : ShΩ(L,C) → ShK(σFilt(L)op,C) is an equivalence. Hence
the functor in eq. (10) is faithful. To see that it is full, fix an arbitrary morphism

β : (κ∗ Lanλ F,ϕ
∗)→ (κ∗ LanλG,ψ

∗)
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in ShAK(σFilt(L)op,C). Since κ∗ Lanλ is full, there is α : F ⇒ G such that κ∗ Lanλ(α) = β.
Note that

(ηG)> ◦ α> ◦ ϕ = (κ∗ Lanλ(α)){>} ◦ (ηF )> ◦ ϕ Naturality of η

= β{>} ◦ ϕ∗

= ψ∗

= (ηG)> ◦ ψ
and so α> ◦ ϕ = ψ because (ηG)> is an isomorphism. It follows that α is a morphism of
Ω-sheaf representations and thus the functor in eq. (10) is full. Finally, fix an arbitrary

object (G,ψ) ∈ ShAK(σFilt(L)op,C). Because κ∗ Lanλ is essentially surjective, there exist
an Ω-sheaf F ∈ ShΩ(L,C) and a natural isomorphism δ : κ∗ Lanλ F ⇒ G. Let

ϕ := (δ{>} ◦ (ηF )>)−1 ◦ ψ : A→ F (>).

Then (F,ϕ) is an object of ShAΩ(L,C) whose image under the functor in eq. (10) is isomor-
phic to (G,ψ). We conclude that the latter functor is an equivalence of categories. �

The classical notion of soft sheaf can be extended to arbitrary Ω-sheaves:

Definition 6.24. Let P be a complete lattice and let D be a category admitting directed
colimits. An Ω-sheaf F : P op → D is soft if, for all Scott-open filters k ∈ σFilt(P ), the
canonical colimit arrow

F (>)→ colim
x∈k

F (x)

is a regular epimorphism.
An Ω-sheaf representation (F,ϕ) is said to be soft if F is a soft Ω-sheaf. The full

subcategory of ShAΩ(P,D) defined by the soft Ω-sheaf representations is denoted by

s-ShAΩ(P,D).

Remark 6.25. In the case where P = Ω(X) for a sober space X, and D is Set—or, more
generally, any variety of finitary algebras—the Hofmann–Mislove theorem implies that the
notion of softness introduced in Definition 6.24 coincides with the ordinary one (always
with the caveat outlined in Remark 6.15). Cf. e.g. [21, Remark 3.3].

Remark 6.26. Let D be Set or, more generally, any variety of algebras. Fix an object
A ∈ D and assume that F : Ω(X)op → D is a soft Ω-sheaf representation of A over a sober
space X. Reasoning as in Remark 6.4, we see that for all x ∈ X the canonical arrow

A→ colim
x∈U

F (U)

whose codomain is the stalk of F at x is a regular epimorphism. This exhibits each stalk
of F as a quotient of A.

Lemma 6.27. Suppose that directed colimits in C commute with finite limits. The fol-
lowing statements are equivalent for all functors F : Lop → C:

(1) F is a soft Ω-sheaf.
(2) κ∗ Lanλ F is a soft K-sheaf.

Proof. Fix an arbitrary functor F : Lop → C. In view of Theorem 6.23, F is an Ω-sheaf
over L precisely when κ∗ Lanλ F is a K-sheaf over σFilt(L)op. Thus, it suffices to show
that F is soft (as an Ω-sheaf) if, and only if, κ∗ Lanλ F is soft (as a K-sheaf).

Recall that the top element of σFilt(L)op is {>}, where > is the top element of L.
Hence, κ∗ Lanλ F is soft precisely when, for all k ∈ σFilt(L), the arrow

κ∗ Lanλ F {>},k : (κ∗ Lanλ F )({>})→ (κ∗ Lanλ F )(k)



BARR-EXACT CATEGORIES AND SOFT SHEAF REPRESENTATIONS 31

is a regular epimorphism. Moreover, recall from Remark 6.3 that, for all l ∈ σFilt(L),
(κ∗ Lanλ F )(l) ∼= colimx∈l F (x). Under this isomorphism, κ∗ Lanλ F {>},k can be identi-
fied with the canonical colimit arrow

F (>)→ colim
x∈k

F (x).

Therefore, κ∗ Lanλ F is soft if, and only if, so is F . �

Remark 6.28. Even if direct colimits in C fail to commute with finite limits, by Proposi-
tion 6.19 there is a full and faithful functor ShK(σFilt(L)op,C) ↪→ ShΩ(L,C). The second
part of the proof of Lemma 6.27, combined with Proposition 6.9, then shows that this
functor sends soft K-sheaves to soft Ω-sheaves.

Combining the previous observations, we obtain an equivalence between soft K-sheaf
representations and soft Ω-sheaf representations:

Proposition 6.29. If directed colimits in C commute with finite limits, then for any
A ∈ C there is an equivalence of categories s-ShAK(σFilt(L)op,C) ' s-ShAΩ(L,C).

Proof. By (the proof of) Theorem 6.23, combined with Lemma 6.27. �

Remark 6.30. Under the assumptions of Proposition 6.29, the category s-ShAΩ(L,C) of
soft Ω-sheaf representations of A over L is a (large) preorder. This follows from Proposi-

tion 6.29, recalling that s-ShAK(σFilt(L)op,C) is a preorder by item (b) in Lemma 4.5.

We can finally state our main result, which characterises soft Ω-sheaf representations for
a broad class of regular categories. Recall that L denotes an arbitrary stably continuous
lattice, and C a bicomplete regular category.

Theorem 6.31. Suppose that directed colimits in C commute with finite limits, and let
A ∈ C. Let M be the (large) sub-preorder of [σFilt(L),RegEpiA] consisting of those maps
that preserve finite infima and arbitrary suprema, and whose images consist of pairwise
ker-commuting elements. There is an equivalence of categories

M ' s-ShAΩ(L,C).

Proof. By Theorem 4.7 and Proposition 6.29. �

In the same vein of Corollary 4.8, we state a consequence of Theorem 6.31 obtained by
taking the poset reflections of the categories involved, assuming that C is Barr-exact.
Recall that Js-ShAΩ(L,C)K denotes the poset reflection of s-ShAΩ(L,C); the objects of

Js-ShAΩ(L,C)K are isomorphism classes of soft Ω-sheaf representations of A over L.

Corollary 6.32. Suppose that C is Barr-exact and directed colimits in C commute with
finite limits, and let A ∈ C. Let N be the (large) sub-poset of [σFilt(L),EquivA] consisting
of those maps that preserve finite infima and arbitrary suprema, and whose images consist
of pairwise commuting equivalence relations. There is an order isomorphism

N ∼= Js-ShAΩ(L,C)K.

Proof. Note that two (large) posets that are equivalent as categories must be order iso-

morphic. Thus, by Theorem 6.31, there is an order isomorphism JMK ∼= Js-ShAΩ(L,C)K. In
turn, as pointed out in the proof of Corollary 4.8, JMK ∼= N. �

Theorem 6.31 and Corollary 6.32 are generalisations of [21, Theorem 3.10] from the
framework of varieties of finitary algebras to that of regular and Barr-exact categories,
respectively. We end this section with some remarks concerning the previous results.
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Remark 6.33. As with Corollary 4.8, if C is a well-powered category then all posets in
the statement of Corollary 6.32 are small (cf. Remark 4.10).

Remark 6.34. Even when directed colimits in C do not commute with finite limits, and
so Theorem 6.31 does not apply, by Proposition 6.19 there is a full and faithful functor

ShK(σFilt(L)op,C) ↪→ ShΩ(L,C).

The latter induces, for every object A of C, a full and faithful functor

s-ShAK(σFilt(L)op,C) ↪→ s-ShAΩ(L,C).

Cf. Remark 6.28. Hence, in view of Theorem 4.7, there is an order embedding

M ↪→ s-ShAΩ(L,C).

In particular, every map σFilt(L) → RegEpiA that preserves finite infima and arbi-
trary suprema, and whose image consists of pairwise ker-commuting elements, induces a
soft Ω-sheaf representation of A over L. In a similar fashion, if C is Barr-exact and there
exists a map σFilt(L)→ EquivA that preserves finite infima and arbitrary suprema, and
whose image consists of pairwise commuting equivalence relations, then A admits a soft
Ω-sheaf representation over L.

Remark 6.35. Throughout this paper we have adopted an “external” perspective, whereby
an object of a regular category C is studied via (pre)sheaves Lop → C. However it is well
known that, in many situations, the appropriate notion of sheaf of C-objects is given
by an “internal C-object” in the category of sheaves of sets. Whereas the internal and
external perspectives coincide when C is the category of models of a finitary algebraic
theory (i.e., C is a variety of finitary algebras), they may differ for arbitrary first-order
theories—consider e.g. the elementary theory of fields.5 We do not know if, in general,
our results can be adapted to the internal perspective—whenever the latter is available.

7. Examples

7.1. The dual of compact ordered spaces. A compact ordered space is a compact
space X equipped with a partial order that is closed in the product topology of X ×X.
Compact ordered spaces were first introduced by Nachbin in his monograph [39].

Let CompOrd denote the category of compact ordered spaces and continuous monotone
maps between them. For any object X of CompOrd we write X∗ for the same object, but
this time regarded as an object of the opposite category CompOrdop. In this subsection,
we shall investigate soft sheaf representations of objects of CompOrdop.

Recall that regular monomorphisms in CompOrd can be identified, up to isomorphism,
with the closed subsets with the induced order [27, Theorem 2.6]. Moreover, it follows
from the main result of [1] that CompOrdop is a Barr-exact category (see also [2] for a
direct proof). Thus, for any compact ordered space X, there is an order isomorphism
between (EquivX∗)

op and the coframe of closed subsets of X. Equivalently,

EquivX∗ ∼= Ω(X).

For the next lemma recall that, by Corollary 2.5 and Remark 2.10, for any object A
of a Barr-exact category admitting pushouts, the poset EquivA is a (bounded) lattice.
Further, given ϑ ∈ EquivA, we write

A� A/ϑ

5This is due to the fact that the global section functor does not preserve the validity of all first-order
sentences, but only of Cartesian theories, cf. e.g. [28, §V.1.12].
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for its coequaliser—provided it exists. If ϑ1 ≤ ϑ2 in EquivA, the universal property of the
coequaliser entails the existence of a unique regular epimorphism A/ϑ1 � A/ϑ2 through
which A� A/ϑ2 factors.

Lemma 7.1. Let A be an object of a finitely cocomplete Barr-exact category, and let
ϑ1, ϑ2 ∈ EquivA. Then ϑ1 and ϑ2 commute if, and only if, the following diagram (whose
arrows are the canonical ones) is a pullback.

A/(ϑ1 ∧ ϑ2) A/ϑ1

A/ϑ2 A/(ϑ1 ∨ ϑ2)

(11)

Proof. The square on the left-hand side below is a pushout by Lemma 2.3, where f and g
are the coequalisers of ϑ1 and ϑ2, respectively, and η1, η2 are the canonical arrows induced
by the universal property of f and g, respectively.

A A/ϑ1

A/ϑ2 A/(ϑ1 ∨ ϑ2)

f

g η1

η2
p

A

P A/ϑ1

A/ϑ2 A/(ϑ1 ∨ ϑ2)

f

g

q

y
η1

η2

Let P be the pullback of η1 along η2, and let q : A→ P denote the unique arrow making
the right-hand diagram above commute. By Lemma 3.8, ϑ1 and ϑ2 commute precisely
when q is a regular epimorphism.

Now, if q is a regular epimorphism then it is an infimum of f and g in RegEpiA; so,
up to an isomorphism, it coincides with the coequaliser A � A/(ϑ1 ∧ ϑ2). Thus, (11)
is a pullback square. Conversely, suppose (11) is a pullback. Then q is a coequaliser of
ϑ1 ∧ ϑ2, hence a regular epimorphism. �

In [21, Lemma 5.4], Gehrke and van Gool characterised the pairs of commuting con-
gruences on a bounded distributive lattice A in terms of the corresponding closed subsets
of the dual Priestley space of A [42]. The next result extends their characterisation from
Priestley spaces to compact ordered spaces.

Proposition 7.2. Let X be a compact ordered space. Let ϑ1, ϑ2 ∈ EquivX∗ and let
C1, C2 be the corresponding closed subsets of X. The following statements are equivalent:

(1) The equivalence relations ϑ1 and ϑ2 commute.
(2) For any x1 ∈ C1, x2 ∈ C2, if {i, j} = {1, 2} and xi ≤ xj, there exists z ∈ C1 ∩C2

such that xi ≤ z ≤ xj.

Proof. The category CompOrdop is cocomplete and Barr-exact (cf. [2]), thus Lemma 7.1
entails that ϑ1 and ϑ2 commute if and only if the following is a pushout in CompOrd.

C1 ∩ C2 C1

C2 C1 ∪ C2

In turn, this is equivalent to the condition in item 2. Cf. e.g. [2, Remark 6]. �
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If X is a compact ordered space, we can consider the collection of all open subsets of
X that are downwards closed in the partial order of X. The latter forms a topology on
the underlying set of X, and we shall denote by X↓ the ensuing topological space. In
fact, X↓ is a stably compact space (cf. Example 5.12) and every stably compact space
arises in this manner, cf. e.g. [33, Proposition 2.10]. Similarly for the space X↑ obtained
by considering the topology consisting of the open subsets of X that are upwards closed.
The space X↑ is called the co-compact dual of X↓ and there is a frame isomorphism
Ω(X↓) ∼= K(X↑)op sending an open subset of X↓ to its complement, cf. e.g. [29, §2.2].

The following is a direct generalisation of [21, Definition 5.5], from the setting of
Priestley spaces to that of compact ordered spaces.

Definition 7.3. Let X,Y be compact ordered spaces. An interpolating decomposition of
X over Y is a continuous function q : X → Y ↓ such that, for all x1, x2 ∈ X, if x1 ≤ x2

then there is z ∈ X such that x1 ≤ z ≤ x2, q(x1) ≤ q(z) and q(x2) ≤ q(z).6

If X,Y are compact ordered spaces and q : X → Y ↓ is a continuous map, denote by

ψq : Ω(Y ↓)→ EquivX∗

the composition of the frame homomorphism Ω(q) : Ω(Y ↓) → Ω(X) with the order iso-
morphism Ω(X) ∼= EquivX∗. It is useful to consider the map ϕq order-dual to ψq. Since
Ω(Y ↓)op ∼= K(Y ↑), we can assume that this order-dual map has type

ϕq : K(Y ↑)→ (EquivX∗)
op.

Note that any compact ordered space is Hausdorff, hence the poset K(X) of compact
saturated subsets of X coincides with the coframe of its closed subsets. Thus, ϕq can be
equivalently described as the composite of the inverse image map q−1 : K(Y ↑) → K(X)
with the order isomorphism K(X) ∼= (EquivX∗)

op.

Proposition 7.4. Let X,Y be compact ordered spaces and let q : X → Y ↓ be a continuous
function. The following statements are equivalent:

(1) The function q is an interpolating decomposition of X over Y .
(2) Any two equivalence relations in the image of ψq : Ω(Y ↓)→ EquivX∗ commute.

Proof. We prove, equivalently, that 1 holds if and only if any two elements in the image
of ϕq (the map order-dual to ψq) commute.

Assume 1 holds and let K1,K2 ∈ K(Y ↑). To show that ϕq(K1) and ϕq(K2) commute,
it suffices to prove that the closed sets Ci := q−1(Ki), for i ∈ {1, 2}, satisfy the property in
item 2 of Proposition 7.2. Fix arbitrary elements x1 ∈ C1 and x2 ∈ C2 such that x1 ≤ x2

(if x2 ≤ x1 the proof is the same, mutatis mutandis). Because q is an interpolating
decomposition, there is z ∈ X such that x1 ≤ z ≤ x2, q(x1) ≤ q(z) and q(x2) ≤ q(z).
It remains to show that z ∈ C1 ∩ C2. As K1 and K2 are compact saturated subsets
of Y ↑, they are upwards closed in the order of Y (cf. e.g. [29, §2.2]). Since q(xi) ∈ Ki for
i ∈ {1, 2}, we get q(z) ∈ K1 ∩K2 and so z ∈ C1 ∩ C2.

Conversely, suppose any two elements in the image of ϕq commute and let x1, x2 ∈ X
satisfy x1 ≤ x2. Write yi := q(xi) and Ci := q−1(↑ yi) for i ∈ {1, 2}. Clearly, xi ∈ Ci
for i ∈ {1, 2}. Moreover, by definition of ϕq, Ci is the closed subset of X corresponding
to the equivalence relation ϕq(↑ yi) on X∗. Since ϕq(↑ y1) and ϕq(↑ y2) commute, by
Proposition 7.2 there is z ∈ C1∩C2 such that x1 ≤ z ≤ x2. Note that, for each i ∈ {1, 2},
z ∈ Ci implies that q(xi) ≤ q(z). �

6The inequalities q(x1) ≤ q(z) and q(x2) ≤ q(z) refer to the partial order of Y .
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Let X,Y be compact ordered spaces and let (F,ϕ) be a soft K-sheaf representation
of X∗ over the coframe K(Y ↑). Under the order isomorphism in Corollary 4.8, the iso-
morphism class of (F,ϕ) corresponds to a frame homomorphism K(Y ↑)op → EquivX∗.
Identifying EquivX∗ with Ω(X), and K(Y ↑)op with Ω(Y ↓), we shall denote this frame
homomorphism by ψ(F,ϕ) : Ω(Y ↓) → Ω(X). Note that Y ↓ and X are sober spaces, so
there is a unique continuous function

q(F,ϕ) : X → Y ↓

such that Ω(q(F,ϕ)) = ψ(F,ϕ). The following theorem extends Gehrke and van Gool’s
result [21, Theorem 5.7] from distributive lattices to the dual of compact ordered spaces.

Theorem 7.5. Let X,Y be compact ordered spaces. The assignment

(F,ϕ) 7→ q(F,ϕ)

yields a bijection between isomorphism classes of soft K-sheaf representations of X∗ over
K(Y ↑) and interpolating decompositions of X over Y .

Proof. This follows from Corollary 4.8 and Proposition 7.4. �

Observe that, for every compact ordered space X, there is a fully faithful functor

s-ShX∗K (K(Y ↑),CompOrdop) ↪→ s-ShX∗Ω (Ω(Y ↑),CompOrdop)

from soft K-sheaf representations of X∗ over K(Y ↑) to soft sheaf representations of X∗
over Y ↑, and this is an equivalence provided that directed colimits commute with finite
limits in CompOrdop (cf. Proposition 6.19 and Theorem 6.21). We do not know if the
category CompOrdop satisfies the latter property and conjecture that it does not.

Nevertheless, replacing K-sheaves over K(Y ↑) with ordinary sheaves over Y ↑ in Theo-
rem 7.5, we obtain an injective assignment from interpolating decompositions of X over
Y into isomorphism classes of soft sheaf representations of X∗ over Y ↑ (cf. Remark 6.34).
This allows us to construct soft sheaf representations for all objects of CompOrdop:

Proposition 7.6. Let X be a compact ordered space. Then X∗ admits a soft sheaf rep-
resentation over the stably compact space X↑ induced by the interpolating decomposition
X → X↓ given by the identity function.

Of course, the category CompOrdop can be replaced with any equivalent category D
(e.g., following [1], with an appropriate variety of infinitary algebras; cf. also [27]), thus
obtaining soft sheaf representations of objects of D.

7.2. Commutative Gelfand rings. In this subsection, we shall assume that the reader
is familiar with basic notions of point-free topology, see e.g. [40].

Let CRing be the category of commutative rings with unit and ring homomorphisms
preserving the unit, and fix an arbitrary A ∈ CRing. Denote by XA the Zariski spectrum
of A (that is, XA is the set of prime ideals of A equipped with the Zariski or hull-kernel
topology). A classical result by Grothendieck [26] states that A is isomorphic to the ring
of global sections of a sheaf F : Ω(XA)op → CRing whose stalks are local rings. In fact,
the stalk of F at p ∈ XA is isomorphic to the localization Ap of A at p. Note that
this is not a soft sheaf representation because the stalks of F are not quotients of A (cf.
Remark 6.26). In more detail, for all p ∈ XA, the set

kp := {U ∈ Ω(XA) | p ∈ U}
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is a filter on Ω(XA) and is Scott-open because XA is locally compact. Thus, the canonical
colimit arrow F (XA) → colimU∈kp F (U) into the stalk of F at p can be identified with
the localization map

A→ Ap.

The latter is an epimorphism but, in general, fails to be surjective (i.e., a regular epimor-
phism in the category CRing).

Remark 7.7. On the other hand, the Pierce representation of a commutative ring A is a
soft sheaf representation. In fact, it is induced by the monotone map

IdE(A)→ IdA,

where E(A) is the Boolean ring of idempotent elements of A, that sends an ideal J of
E(A) to the ideal of A generated by J . See e.g. [28, §V.2]. In this case, IdE(A) can
be identified with the frame of opens of the Boolean (i.e., compact, Hausdorff and zero-
dimensional) space corresponding to E(A) under Stone duality for Boolean algebras [44].
More generally, if V is a variety of finitary algebras whose signature contains a constant
symbol, every sheaf of V-algebras over a Boolean space is soft, cf. [41, Lemma 3.3].

However, Grothendieck’s sheaf representation induces a soft sheaf representation for a
smaller class of commutative rings as we shall now explain. For any A ∈ CRing, the frame
RIdA of radical ideals7 of A (ordered by inclusion) is compact and coherent, i.e. the subset
of RIdA consisting of the compact elements forms a join-dense sublattice. Assuming
the Prime Ideal Theorem, it can be proved that RIdA is a spatial frame isomorphic to
Ω(XA). This observation was exploited by Banaschewski [4] to give a point-free version of
Grothendieck’s sheaf representation of A, replacing the spatial frame Ω(XA) with RIdA.

Now, recall that a (commutative) Gelfand ring is a (commutative) ring with unit
satisfying the following condition:

∀x, y. (x+ y = 1 =⇒ ∃a, b. (1 + xa)(1 + yb) = 1).

Again assuming the Prime Ideal Theorem, commutative Gelfand rings are exactly the
commutative rings with unit in which every prime ideal is contained in a unique maximal
ideal. Even in the absence of the Prime Ideal Theorem, we have that a commutative ring
A with unit is a commutative Gelfand ring precisely when the frame RIdA is normal [4,
Proposition 1] (recall that a frame L is normal if, for all g, h ∈ L such that g ∨ h = >,
there are u, v ∈ L such that u∨g = v∨h = > and u∧v = ⊥). In that case, RIdA retracts
onto its compact regular subframe JRIdA consisting of the Jacobson radical ideals, i.e.
those ideals J such that, for every a ∈ A, if 1 + ra is invertible modulo J for all r ∈ A,
then a ∈ J . See [4, Lemma 1 and p. 27]. Since JRIdA is a compact regular frame, in
view of the following remark there is an isomorphism σFilt(JRIdA) ∼= JRIdA.

Remark 7.8. If L is a compact regular frame, then σFilt(L) ∼= L. An explicit isomorphism
is given by

L→ σFilt(L), x 7→ {y ∈ L | x ∨ y = 1},
whose inverse sends k ∈ σFilt(L) to

∨
{x ∈ L | ∃y ∈ k. x ∧ y = 0}. In the particular

case of spatial compact regular frames (recall that, assuming the Axiom of Choice, every
compact regular frame is spatial, see e.g. [28, Proposition III.1.10]), this reduces to the
observation that a compact Hausdorff topology coincides with its patch topology.

7An ideal is radical if it is the intersection of all prime ideals in which it is contained.



BARR-EXACT CATEGORIES AND SOFT SHEAF REPRESENTATIONS 37

The category CRing is a well-powered, bicomplete Barr-exact category in which directed
colimits commute with finite limits. Hence, by Corollary 6.32 and Remark 6.33, there is
an order isomorphism of small posets

N ∼= Js-ShAΩ(JRIdA,CRing)K

where N consists of the maps JRIdA → IdA preserving finite infima and arbitrary
suprema (just observe that any two congruences on A commute). Because CRing has
no proper subterminal objects, it follows from Remark 6.15 that CRing-valued (soft) Ω-
sheaves coincide with ordinary (soft) sheaves. Therefore the inclusion

JRIdA ↪→ IdA,

which preserves finite infima and arbitrary suprema because so does RIdA ↪→ IdA,
induces a soft sheaf representation of the commutative Gelfand ring A over the compact
regular frame JRIdA. This sheaf representation was first obtained by Banaschewski and
Vermeulen [5], improving on results of Mulvey [38] and Banaschewski [3, 4].

If the Prime Ideal Theorem is assumed, for any commutative Gelfand ring A the frame
JRIdA can be identified with Ω(MaxA), where MaxA is the subspace of XA consisting
of the maximal ideals of A (i.e., the closed points of XA). The space MaxA is compact
and Hausdorff, and in view of the previous paragraph A is isomorphic to the ring of global
sections of a soft sheaf F : Ω(MaxA)op → CRing (this sheaf representation can also be
derived as a special case of [21, Corollary 3.11], see p. 2178 in op. cit.).

Note that, in contrast with the case of arbitrary commutative rings, for Gelfand rings
we get a soft sheaf representation. In fact, the stalk of F at a maximal ideal m ∈ MaxA
is isomorphic to the quotient ring A/Om, where the ideal Om is defined by

Om := {a ∈ A | ∃b ∈ A \m such that ab = 0}.

See e.g. [28, Lemma V.3.8]. The unique maximal ideal of A containing Om is m, hence
A/Om is a local ring (equivalently, note that A/Om

∼= Am). The canonical colimit arrow
F (MaxA) → colimx∈U F (U) can then be identified with the quotient map A → A/Om,
which is a regular epimorphism. This shows that every local section over a point of MaxA
can be extended to a global section. A similar argument shows that every local section
defined on a closed subset of MaxA can be extended to a global section, i.e. F is soft.
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