Supporting Information: Density Matrix Embedding Using Multiconfiguration Pair-Density Functional Theory

Abhishek Mitra,[†] Matthew R. Hermes,[†] and Laura Gagliardi^{*,‡,¶}

†Department of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, IL 60637, USA.

[‡]Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, IL 60637, USA.

¶Argonne National Laboratory 9700 S. Cass Avenue Lemont, IL 60439

E-mail: lgagliardi@uchicago.edu

Contents

S01	Impurity Cluster Analysis for M-center Defect in MgO Monolayer	S-3
S02	Slopes for the linear extrapolations	S- 5
S03	Total energies in hartree for supercells considered for OV in $Mg(100)$ surface for	
2 4	2,2 active space	S-6

S04	Total energies for supercells considered for OV in $Mg(100)$ surface for 2,8 active	
S	pace	S-7
S05	Total energies for supercells considered for OOV in $Mg(100)$ surface for 4,5 active	
S	pace	S-8
S06	$(2,8)$ active spaces explored within this work $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	S-8
S07	Sample script to run a DME-PDFT calculation	S-9

S01. Impurity Cluster Analysis for M-center Defect in MgO Monolayer

In this section, we delve deeper into the selection of impurity clusters in the DME-PDFT calculations for the M-center (OOV defect) on the (100) monolayer of MgO. We demonstrate that the OOV+Mg₆ impurity cluster is inadequate in capturing the overall system densities, not due to the number of orbitals but rather the shape of the selected impurity cluster. To address this issue, we increase the number of MLWFs on each atom by maintaining the atoms in the impurity cluster constant, resulting in the same number of MLWFs as in the OOV+Mg₆O₂ impurity cluster. In Figure S1, we compare the S₀ \rightarrow T₁ transition between the OOV+Mg₆ and OOV+Mg₆O₂ impurity clusters and a linear extrapolation. The gray circle represents a larger number of MLWFs, while the red circle refers to the default number of MLWFs.

Figure S1: Comparison of $S_0 \rightarrow T_1$ Transition for OOV+Mg₆ and OOV+Mg₆O₂ Impurity Clusters and Linear Extrapolation in MgO Monolayer M-center Defect Calculation. Methods utilized are pDME-tPBE (dark green diamonds) and pDME-tPBE0 (blue squares). The red circles represent the default number of MLWFs, while the gray circle indicates an expanded number of MLWFs. The y-axis has been zoomed in to highlight differences.

To better understand the results, we present the R-squared values obtained from linear extrapolation across all four impurity subspaces (labeled as R-squared-4 points) and the three largest impurity clusters (labeled as R-squared-3 points). Our results reveal that in the case of the $S_0 \rightarrow T_1$ excitation for the DME-PDFT methods, the inclusion of the smallest impurity cluster decreases the R-squared values from an almost perfect 1.00 to approximately 0.95. Remarkably, we observe significant reductions in the R-squared values for almost all the methods when the OOV+Mg₆ is added to the three largest impurity clusters. All of these results suggest that the smallest impurity cluster should not be included while extrapolating to the non-embedding limit.

Table S1: \mathbb{R}^2 values for the linear extrapolations of vertical excitation energies in the oxygen divacancy on the MgO(100) surface obtained using CAS-DMET, NEVPT2-DMET, pDME-tPBE and pDME-tPBE0.

Excitation	Methods	R^2 -4 pts	R^2 -3 pts
$S_0 \to T_1$	CAS-DMET	0.47	0.99
	NEVPT2-DMET	0.16	0.88
	DME-tPBE	0.94	1.00
	DME-tPBE0	0.95	1.00
$S_0 \to S_1$	CAS-DMET	0.99	1.00
	NEVPT2-DMET	0.04	1.00
	DME-tPBE	0.00	0.96
	DME-tPBE0	0.04	0.97

S02. Slopes for the linear extrapolations

Excitation	Layers	Active Space	CASSCF	NEVPT2	tPBE	tPBE0
$S_0 \to T_1$	$Mg_{18}O_{18}$	(2,2)	0.01	0.09	-0.01	0.00
		(2,8)	0.01	0.04	-0.03	-0.02
	$Mg_{36}O_{36}$	(2,2)	0.02	0.07	-0.04	-0.02
		(2,8)	0.02	0.05	-0.03	-0.02
	$Mg_{54}O_{54}$	(2,2)	0.02	0.04	0.07	0.06
		(2,8)	0.01	0.03	0.05	0.04
$S_0 \to S_1$	$\mathrm{Mg}_{18}\mathrm{O}_{18}$	(2,2)	-0.01	-0.12	0.03	0.02
		(2,8)	-0.03	-0.06	0.00	-0.01
	$Mg_{36}O_{36}$	(2,2)	0.00	-0.05	-0.02	-0.01
		(2,8)	-0.01	-0.02	-0.02	-0.02
	$\mathrm{Mg}_{54}\mathrm{O}_{54}$	(2,2)	0.00	-0.03	-0.01	-0.01
		(2,8)	-0.01	-0.01	-0.01	-0.01

Table S2: Slopes for the linear extrapolations (in eV) of the oxygen vacancy on the MgO(100) surface obtained using CAS-DMET, NEVPT2-DMET, pDME-tPBE and pDME-tPBE0.

Table S3: Slopes for the linear extrapolations (in eV) of the oxygen divacancy on the MgO(100) surface obtained using CAS-DMET, NEVPT2-DMET, pDME-tPBE and pDME-tPBE0.

Excitation	Layers	Active Space	CASSCF	NEVPT2	tPBE	tPBE0
$S_0 \to T_1$	$Mg_{18}O_{18}$	(4,5)	0.02	0.14	0.13	0.10
$S_0 \to S_1$	$Mg_{18}O_{18}$	(4,5)	0.04	0.04	0.11	0.09

S03. Total energies in hartree for supercells considered for OV in Mg(100) surface for 2,2 active space

State	Layers	Impurity cluster	CASSCF	NEVPT2	tPBE	tPBE0
S_0	$Mg_{18}O_{18}$	$OV+Mg_4$	-1390.269452	-1390.471724	-1411.899236	-1406.491790
	-	$OV+Mg_4O_4$	-1390.269906	-1391.324931	-1411.897388	-1406.490517
		$OV+Mg_4O_8$	-1390.270106	-1392.436688	-1411.897809	-1406.490883
		Full	-1390.270468	-1394.225515	-1411.897576	-1406.490799
	$\mathrm{Mg}_{36}\mathrm{O}_{36}$	$OV+Mg_5$	-2795.546970	-2795.803836	-2840.579608	-2829.321449
		$OV+Mg_5O_8$	-2795.547167	-2797.491295	-2840.581271	-2829.322745
		$OV+Mg_5O_{12}$	-2795.547107	-2798.321520	-2840.581652	-2829.323015
	$\mathrm{Mg}_{54}\mathrm{O}_{54}$	$OV+Mg_5$	-4200.865578	-4201.095403	-4269.395603	-4252.263097
		$OV+Mg_5O_8$	-4200.865861	-4202.804838	-4269.396895	-4252.264137
		$OV+Mg_5O_{13}$	-4200.865908	-4203.854095	-4269.396952	-4252.264191
$\overline{S_1}$	$Mg_{18}O_{18}$	OV+Mg ₄	-1390.149330	-1390.355352	-1411.806407	-1406.392137
		$OV+Mg_4O_4$	-1390.150247	-1391.212699	-1411.804907	-1406.391242
		$OV+Mg_4O_8$	-1390.150670	-1392.326382	-1411.804311	-1406.390901
		Full	-1390.150927	-1394.116920	-1411.803899	-1406.390656
	$\mathrm{Mg}_{36}\mathrm{O}_{36}$	$OV+Mg_5$	-2795.412040	-2795.670497	-2840.486527	-2829.217905
		$OV+Mg_5O_8$	-2795.414675	-2797.365006	-2840.483571	-2829.216347
		$OV+Mg_5O_{12}$	-2795.415226	-2798.196389	-2840.484193	-2829.216951
	$\mathrm{Mg}_{54}\mathrm{O}_{54}$	$OV+Mg_4O_4$	-4200.732371	-4200.964133	-4269.302984	-4252.160331
		$OV+Mg_5O_8$	-4200.736696	-4202.680450	-4269.3173334	-4252.17217
		$OV+Mg_5O_{13}$	-4200.736863	-4203.730575	-4269.317213	-4252.172134

Table S4: Total Energies for the (2,2) active space for the singlet states

Table S5: Total energies in hartree for the (2,2) active space for the triplet state

State	Layers	Impurity cluster	CASSCF	NEVPT2	tPBE	tPBE0
T_1	$\mathrm{Mg}_{18}\mathrm{O}_{18}$	$OV+Mg_4$	-1390.221524	-1390.401384	-1411.822598	-1406.422330
		$OV+Mg_4O_4$	-1390.221517	-1391.247959	-1411.822603	-1406.422331
		$OV+Mg_4O_8$	-1390.221517	-1392.358635	-1411.822615	-1406.422340
		Full	-1390.221517	-1394.144970	-1411.822590	-1406.422322
	$Mg_{36}O_{36}$	$OV+Mg_5$	-2795.485566	-2795.725160	-2840.499060	-2829.245686
		$OV+Mg_5O_8$	-2795.485580	-2797.406934	-2840.498969	-2829.245622
		$OV+Mg_5O_{12}$	-2795.485581	-2798.236664	-2840.498802	-2829.245507
	$\mathrm{Mg}_{54}\mathrm{O}_{54}$	$OV+Mg_5$	-4200.806255	-4201.019622	-4269.322394	-4252.193359
		$OV+Mg_5O_8$	-4200.806261	-4202.722919	-4269.322409	-4252.193372
		$OV+Mg_5O_{13}$	-4200.806261	-4203.771728	-4269.322478	-4252.193424

S04. Total energies for supercells considered for OV in Mg(100) surface for 2,8 active space

Excitation	Layers	Impurity cluster	CASSCF	NEVPT2	tPBE	tPBE0
S_0	$Mg_{18}O_{18}$	$OV+Mg_4$	-1390.296362	-1390.473931	-1411.905389	-1406.503132
		$OV+Mg_4O_4$	-1390.298224	-1391.323592	-1411.905107	-1406.503386
		$OV+Mg_4O_8$	-1390.298414	-1392.433991	-1411.905187	-1406.503493
		Full	-1390.298716	-1394.221833	-1411.904093	-1406.502748
	$\mathrm{Mg}_{36}\mathrm{O}_{36}$	$OV+Mg_5$	-2795.570239	-2795.804472	-2840.582919	-2829.329749
		$OV+Mg_5O_8$	-2795.571965	-2797.483251	-2840.585817	-2829.332354
		$OV+Mg_5O_{12}$	-2795.572152	-2798.312710	-2840.585732	-2829.332337
	$\mathrm{Mg}_{54}\mathrm{O}_{54}$	$OV+Mg_5$	-4200.888377	-4201.096917	-4269.397952	-4252.270558
		$OV+Mg_5O_8$	-4200.890456	-4202.797059	-4269.399523	-4252.272256
		$\mathrm{OV}+\mathrm{Mg}_{5}\mathrm{O}_{10}$	-4200.890667	-4203.845255	-4269.399972	-4252.272646
S_1	$\mathrm{Mg}_{18}\mathrm{O}_{18}$	$OV+Mg_4$	-1390.168531	-1390.350116	-1411.791260	-1406.385578
		$OV+Mg_4O_4$	-1390.170918	-1391.201030	-1411.789722	-1406.385021
		$OV+Mg_4O_8$	-1390.171459	-1392.312701	-1411.788938	-1406.384568
		Full	-1390.171727	-1394.101185	-1411.788734	-1406.384482
	$\mathrm{Mg}_{36}\mathrm{O}_{36}$	$OV+Mg_5$	-2795.426650	-2795.666127	-2840.478510	-2829.215545
		$OV+Mg_5O_8$	-2795.430332	-2797.350327	-2840.478165	-2829.216206
		$OV+Mg_5O_{12}$	-2795.430938	-2798.180824	-2840.478187	-2829.216375
	$\mathrm{Mg}_{54}\mathrm{O}_{54}$	$OV+Mg_5$	-4200.747368	-4200.960788	-4269.296510	-4252.159224
		$OV+Mg_5O_8$	-4200.751689	-4202.666000	-4269.308493	-4252.169292
		$OV+Mg_5O_{13}$	-4200.752053	-4203.715057	-4269.308107	-4252.169094

Table S6: Total Energies in hartree for the (2,8) active space for the singlet states

Table S7: Total energies in hartree for the (2,8) active space for the triplet state

Excitation	Layers	Impurity cluster	CASSCF	NEVPT2	tPBE	tPBE0
T_1	$\mathrm{Mg}_{18}\mathrm{O}_{18}$	$OV+Mg_4$	-1390.225414	-1390.401149	-1411.819254	-1406.420794
		$OV+Mg_4O_4$	-1390.225793	-1391.247659	-1411.819004	-1406.420701
		$OV+Mg_4O_8$	-1390.225856	-1392.357473	-1411.818956	-1406.420681
		Full	-1390.225868	-1394.143431	-1411.818895	-1406.420639
	$Mg_{36}O_{36}$	$OV+Mg_5$	-2795.488157	-2795.722750	-2840.497129	-2829.244886
		$OV+Mg_5O_8$	-2795.488798	-2797.399607	-2840.497900	-2829.245625
		$OV+Mg_5O_{12}$	-2795.488880	-2798.228674	-2840.497423	-2829.245287
	$\mathrm{Mg}_{54}\mathrm{O}_{54}$	$OV+Mg_5$	-4200.808742	-4201.017915	-4269.320515	-4252.192572
		$OV+Mg_5O_8$	-4200.809185	-4202.715894	-4269.319910	-4252.192229
		$OV+Mg_5O_{13}$	-4200.809276	-4203.763572	-4269.319874	-4252.192224

S05. Total energies for supercells considered for OOV in Mg(100) surface for 4,5 active space

Excitation	Layers	Impurity cluster	CASSCF	NEVPT2	tPBE	tPBE0
S_0	$\mathrm{Mg}_{18}\mathrm{O}_{18}$	$OOV+Mg_6$	-1374.632877	-1374.936190	-1395.747900	-1390.469144
		$OOV+Mg_6O_2$	-1374.634140	-1375.456204	-1395.746892	-1390.468704
		$OOV+Mg_6O_6$	-1374.635109	-1376.931410	-1395.727138	-1390.454131
		$OOV+Mg_6O_{10}$	-1374.635334	-1377.683659	-1395.729493	-1390.455954
		Full	-1374.635636	-1378.416978	-1395.729166	-1390.455783
S_1	$\mathrm{Mg}_{18}\mathrm{O}_{18}$	$OOV+Mg_6$	-1374.585159	-1374.884328	-1395.690491	-1390.414158
		$OOV+Mg_6O_2$	-1374.586734	-1375.402901	-1395.686870	-1390.411836
		$OOV+Mg_6O_6$	-1374.588355	-1376.879000	-1395.669140	-1390.398944
		$OOV+Mg_6O_{10}$	-1374.588758	-1377.631189	-1395.671615	-1390.400901
		Full	-1374.589139	-1378.364610	-1395.671380	-1390.400820

Table S8: Total Energies in hartree for the (4,5) active space for the singlet states

Table S9: Total energies in hartree for the (4,5) active space for the triplet state

Excitation	Layers	Impurity cluster	CASSCF	NEVPT2	tPBE	tPBE0
T_1	$\mathrm{Mg}_{18}\mathrm{O}_{18}$	$OOV+Mg_6$	-1374.610634	-1374.902884	-1395.695936	-1390.424611
		$OOV+Mg_6O_2$	-1374.611709	-1375.416939	-1395.699129	-1390.427274
		$OOV+Mg_6O_6$	-1374.612957	-1376.895024	-1395.681317	-1390.414227
		$OOV+Mg_6O_{10}$	-1374.613339	-1377.646945	-1395.684373	-1390.416614
		Full	-1374.613756	-1378.379654	-1395.684032	-1390.416463

S06. (2,8) active spaces explored within this work

Figure S2: 2,8 active orbitals for single layer $\rm Mg_{18}O_{18}$ unit cell

Figure S3: 2,8 active orbitals for double layer $Mg_{36}O_{36}$ unit cell

Figure S4: 2,8 active orbitals for triple layer $Mg_{54}O_{54}$ unit cell

S07. Sample script to run a DME-PDFT calculation

This script carries out a pDME-PDFT calculation on the O9Mg5 impurity cluster located on the $Mg_{54}O_{54}$ surface. It begins by defining the unit cell with the help of the mcu library and importing various required libraries and modules, including the custom-built pdmet module developed by the authors. Next, the script builds the GDF, performs the RHF calculation, generates the MLWFs using PyWannier90, and finally executes the pDME-PDFT calculation through the pdmet module.

import os, sys, re, mcu
import numpy as np
from pyscf.pbc import gto, scf, cc, df
import pywannier90
from pdmet import dmet

from pdmet.tools import tchkfile

```
, , , _____, , , ,
',' Definte unit cell ','
, , , , ______, , , ,
a, atoms = mcu.CELL().cif2pyscf('/path/OVC_MgO.cif')
atoms.append(['X:O', [6.16056842, 6.16056842, 11.113246159135699]])
for i, atm in enumerate (atoms):
   if atm[0] = Mg' and np.linalg.norm(atm[1] - atoms[-1][1]) < 2.5:
       atoms [i][0] = "Mg*"
cell = gto.Cell()
cell.atom = atoms
cell.basis = \{ 'Mg': 'gth-dzvp', 'O': 'gth-dzvp', 
'Mg*': 'gth-tzvp', 'X-O': 'gth-tzvp'}
cell.pseudo = 'gth-pbe'
cell.a = a
cell.spin = 2
cell.verbose = 5
cell.build()
, , , _____, , , ,
',' Build GDF ','
, , , _____, , , ,
kmesh = [1, 1, 1]
kpts = cell.make_kpts(kmesh)
if not os.path.exists('gdf.h5'):
```

```
gdf = df.GDF(cell, kpts)
gdf._cderi_to_save = 'gdf.h5'
gdf.build()
```

· · · · <u>______</u> · · · ·

''' Run RHF '''

· , · ,<u>______</u> , · , ·

```
khf = scf.KROHF(cell, kpts).density_fit()
```

 $khf.with_df._cderi = 'gdf.h5'$

khf.chkfile = 'chkfile'

 $khf.init_guess = 'chkfile'$

khf.exxdiv = None

khf.run()

tchkfile.save_kmf(khf, 'chk_HF')

/// Contruct MLWFs ///
/// Contruct MLWFs ///
///
kmf = tchkfile.load_kmf(cell, khf, kmesh, 'chk_HF')
num_wann = cell.nao
keywords = \
///
///
dis_froz_max = 0.0
begin projections
random
O:s,p,d
Mg:s,p,d

```
end projections
num_iter = 1000
, , ,
w90 = pywannier90.W90(kmf, cell, kmesh, num_wann, other_keywords=keywords)
w90.kernel()
w90.plot_wf(outfile='./WFs/MLWF')
tchkfile.save_w90(w90, 'chk_w90')
ham = w90.get_hamiltonian_kpts()
e, v = np. lin alg. eigh (ham)
, , , _____, , , ,
',' Run DMET ','
, , , _____, , , ,
pdmet = dmet.pDMET(cell, kmf, w90, solver = 'SA-CASPDFT')
pdmet.impCluster = [108, 72, 84, 88, 98, 23, 24, 39, 40, 27, 31, 33, 36, 86]
pdmet._impOrbs_threshold = 1.6
pdmet.kmf_chkfile = '../rohf/chk_HF'
pdmet.w90_chkfile = '../rohf/chk_w90'
pdmet.twoS = 0
pdmet.cas = (2,2)
pdmet.molist = [190, 191]
pdmet.e_shift = 0.5
pdmet.state_average_ = [0.5, 0.5]
pdmet.nevpt2_roots = [0, 1, 2, 3]
pdmet.nevpt2\_nroots = 4
```

```
pdmet.initialize()
```

```
pdmet.one_shot()
print("Occupancy:", pdmet.qcsolver.mc.mo_occ)
pdmet.plot('nat', path='./nat')
```