

UWS Academic Portal

Effect of supervision and athlete age and sex on exercise-based injury prevention programme effectiveness in sport

Valentin, Stephanie; Linton, Linda; Sculthorpe, Nicholas F.

Published in: Research in Sports Medicine

DOI: 10.1080/15438627.2023.2220059

E-pub ahead of print: 07/06/2023

Document Version Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):

Valentin, S., Linton, L., & Sculthorpe, N. F. (2023). Effect of supervision and athlete age and sex on exercisebased injury prevention programme effectiveness in sport: a meta-analysis of 44 studies. *Research in Sports Medicine*, [2220059]. https://doi.org/10.1080/15438627.2023.2220059

General rights

Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

RESEARCH IN PORTS MEDICINE An International Journal

Research in Sports Medicine

An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gspm20

Effect of supervision and athlete age and sex on exercise-based injury prevention programme effectiveness in sport: A meta-analysis of 44 studies

Stephanie Valentin, Linda Linton & Nicholas F. Sculthorpe

To cite this article: Stephanie Valentin, Linda Linton & Nicholas F. Sculthorpe (2023): Effect of supervision and athlete age and sex on exercise-based injury prevention programme effectiveness in sport: A meta-analysis of 44 studies, Research in Sports Medicine, DOI: 10.1080/15438627.2023.2220059

To link to this article: https://doi.org/10.1080/15438627.2023.2220059

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

6

Published online: 07 Jun 2023.

Submit your article to this journal

View related articles

View Crossmark data 🗹

Routledae Taylor & Francis Group

OPEN ACCESS Check for updates

Effect of supervision and athlete age and sex on exercise-based injury prevention programme effectiveness in sport: A meta-analysis of 44 studies

Stephanie Valentin (p^{a,b}, Linda Linton^c and Nicholas F. Sculthorpe (p^a)

^aSport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, UK; ^bSchool of Health and Social Care, Edinburgh Napier University, Edinburgh, UK; Edinburgh Sports Medicine Research Network & UK Collaborating Centre on Injury and Illness Prevention in Sport (UKCCIIS), Institute for Sport, PE and Health Sciences, FASIC Sport and Exercise Medicine Clinic, University of Edinburgh, Edinburgh, UK

ABSTRACT

We aimed to evaluate the influence of supervision, athlete age and sex and programme duration and adherence on exercise-based injury prevention programme effectiveness in sport. Databases were searched for randomized controlled trials evaluating exercisebased injury prevention programme effectiveness compared to "train-as-normal". A random effects meta-analysis for overall effect and pooled effects by sex and supervision and meta-regression for age, intervention duration and adherence were performed. Programmes were effective overall (risk ratio (RR) 0.71) and equally beneficial for female-only (0.73) and male-only (0.65) cohorts. Supervised programmes were effective (0.67), unlike unsupervised programmes (1.04). No significant association was identified between programme effectiveness and age or intervention duration. The inverse association between injury rate and adherence was significant (β =-0.014, *p* = 0.004). Supervised programmes reduce injury by 33%, but there is no evidence for the effectiveness of non-supervised programmes. Females and males benefit equally, and age (to early middle age) does not affect programme effectiveness.

ARTICLE HISTORY

Received 21 November 2022 Accepted 23 May 2023

KEYWORDS Sport injury prevention; supervision; sex; age

Introduction

In elite sports, injuries impair performance, reduce player availability and significantly increase costs (Hickey et al., 2014; Maffulli et al., 2010). Similarly, injuries in recreational sport pose a public health problem and economic burden [estimated to exceed \$20 million in medical costs annually in one American state (Ryan et al., 2019)] and may limit future engagement with exercise (Caine et al., 2014). Previous meta-analyses have found exercise-based injury prevention programmes (IPP) to be effective in reducing injury in sport (e.g. Crossley et al., 2020; Lauersen et al., 2014, 2018; Vatovec et al., 2020); however, the degree of effectiveness varied, suggesting the

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

CONTACT Stephanie Valentin Social Care, Edinburgh Napier.ac.uk School of Health and Social Care, Edinburgh Napier University, Edinburgh, UK

influence of contextual factors. The influence of some factors is known, e.g. IPP content; strength, proprioception and multi-component programmes have robust supporting evidence for reducing injury (Crossley et al., 2020; Lauersen et al., 2014, 2018), whereas stretching does not (Brunner et al., 2019; Lauersen et al., 2014). However, the influence of other factors such as athlete age and sex, or whether the IPP is supervised or not, are less well understood.

Coaches or sport scientists tend to lead IPPs in sports teams, thus IPPs are implemented in a structured manner that facilitates athlete engagement. An example of a wellestablished IPP is the FIFA11+, a dynamic warm-up originally designed to prevent injury in soccer (Silvers-Granelli et al., 2017) that has also been successfully applied to other team sports, e.g. basketball, lacrosse, American football and futsal (Longo et al., 2012; Lopes et al., 2020; Slauterbeck et al., 2019). With the application of IPPs to an increasing number of sports (evidenced by the increasing number of randomized controlled trials in the area), it is important to evaluate the effectiveness of IPPs across this more diverse sporting landscape. This is especially relevant where implementation is more challenging, e.g. unsupervised recreational runners (Linton et al., 2022). Lack of supervision may lead to exercises not being performed correctly or at the appropriate level of difficulty, which may cause inadequate tissue exposure to appropriate injury prevention exercises similar to reduced adherence to IPPs where a dose-dependent response has been identified (Lauersen et al., 2014; Steffen et al., 2013).

There has been surprisingly little attention paid to the possible effects of participant sex on the effectiveness of IPPs. A meta-analysis of meta-analyses showed that IPPs were effective in reducing ACL injury in females, but there was insufficient evidence for males (Webster & Hewett, 2018), suggesting sex is a potential confounder in ACL IPP effectiveness. It remains unclear, however, whether males and females benefit similarly from IPPs across a range of injuries and sports. Should a divergence be apparent in favour of males or females, then alternative and/or additional components to IPPs may be required. Similarly, the potential influence of age on IPP effectiveness has received little attention. Greater benefits of a neuromuscular programme on ACL injury in younger (mid-teens) versus late teens or early adult female athletes were reported (Myer et al., 2013); however, no previous analysis has been able to provide conclusions across a wider age range on any interaction between age and IPP effectiveness more generally. The potential effects of age on IPP effectiveness more generally. The potential effects of age on IPP effectiveness more generally. The potential effects of age on IPP effectiveness more generally. The potential effects of age on IPP effectiveness may become increasingly important with the encouragement to engage in sport/exercise throughout the lifespan.

Previous meta-analyses evaluating the effectiveness of IPPs have either focused on one sport and/or injury/IPP type (e.g. Crossley et al., 2020; Vatovec et al., 2020) or included a range of sports and injuries but were published almost a decade ago (Lauersen et al., 2014). With a substantial increase in the number of randomized controlled studies evaluating IPP effectiveness across an increasing number of sports in recent years, a refreshed evaluation is needed with additional subgroup and regression analyses to comprehensively explore athlete characteristics and other potential confounding factors. Therefore, the primary aims of this systematic review were to determine the overall effectiveness without restricting to any sport, injury or IPP type. The secondary aim was to evaluate the influence of adherence and intervention duration on IPP effectiveness. The findings may indicate the extent to which exercise-based IPPs could be more widely used

in practice (e.g. across different sports and for a more diverse range of athlete characteristics).

Materials and methods

Study selection

This review was conducted according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines (Moher et al., 2009). Search terms (see supplementary material) and inclusion/exclusion criteria were determined *a priori* and used to search PubMed, Web of Science (including Medline) and Sports Discuss from inception to 19 October 2022. Inclusion criteria were randomized controlled trials, written in English, reporting of musculoskeletal sports injuries, participants engaging in a named sport, exercise interventions compared to an "as normal" control group and participants of any age and sex. Exclusion criteria included non-randomized trials, review articles, protocols, editorials and conference abstracts, workplace interventions (e.g. physical education teachers), participants engaging in general physical activity (e.g. physical education), army recruits, inclusion of only injured participants from the outset, passive interventions (e.g. tape) and animal studies.

The initial search was conducted by one assessor (SV) who transferred the list of studies to Zotero (v 6.0.15) and merged duplicate entries. Titles and abstracts were reviewed independently by a primary and secondary assessor (SV, LL), after which the list of eligible studies for full review was agreed. The same two assessors independently reviewed the full texts of the remaining studies and agreed to the final list of included studies. An arbitrator (NS) was available where needed. Hand searching of the reference lists of included studies and of previously published systematic reviews and meta-analyses from the initial search were conducted to identify any further eligible studies. Corresponding authors were contacted if primary outcome data were not available. When authors did not respond or the data were no longer accessible, those studies were excluded.

Data extraction

Data extraction from eligible studies was performed by the primary assessor (SV) and entries checked by the second assessor (LL). An arbitrator (NS) was available where needed. The primary outcomes were total number of injuries and total exposure hours (training and match or specific sports engagement as given in each study) for the intervention and control groups. Where data for injury number or exposure hours were not available but injury rate was given, injury number or exposure hours were calculated and rounded to the nearest whole number.

The secondary outcomes were number of participants, age, sex, type of sport, type of intervention, duration of intervention (weeks), whether the intervention was supervised or not (supervised was defined as in-person and led by a coach, researcher or similar, and unsupervised was defined as no in-person supervision and the athlete was given an exercise programme to perform independently), intervention adherence (the percentage

of sessions the IPP was participated with from the total number of expected sessions to be engaged with) and injury type. A weighted mean age was calculated per study across intervention and control groups where group mean age data were available.

Risk of Bias

Studies were assessed for Risk of Bias (RoB) using Version 2 of the Cochrane risk-of-bias tool for randomized trials (RoB 2) (Higgins et al., 2022). This tool scores RoB for studies as "high", "some concern" or "low" for each of five categories: randomization process, deviations from intended intervention, missing outcome data, measurement of the outcome and Selection of the reported result, after which it assigns an overall categorization of RoB based on the highest RoB classification from the sub-categories. Screening for RoB was performed independently by two assessors (SV and LL) and outcomes were discussed and agreed.

Statisticalanalysis

Review Manager version 5.4.1. (The Cochrane Collaboration, 2020) was used to perform the meta-analysis. Rate ratio (RR) was determined and a random-effects model on pooled data used to identify between-group (intervention *versus* control) differences with all studies included. Rate ratios less than 1 indicated a reduction in injury risk in favour of the IPP. The random effects model was repeated on pooled data of studies grouped by sex (male only, female only and studies including male and female participants) and by supervision (yes, no). Cochran's Q and l^2 were obtained to identify heterogeneity. Funnel plot asymmetry was assessed in R using the arcsine test (Rücker et al., 2008) and by visual inspection of the funnel plot. A random effects meta-regression was performed using Jamovi version 2.3.18 (The Jamovi Project, 2022) for mean age, intervention duration and intervention adherence on IPP effectiveness. Throughout, alpha was set to 0.05. Forest plots were generated using Review Manager 5, and RoB plots were created using the Cochrane risk-of-bias tool for randomized trials (RoB 2).

Results

The study selection process is shown in Figure 1. From the initial 8303 studies, 44 studies were included in the final set, totalling 40,409 participants (intervention n = 20,671; control n = 19738). Almost half of the studies evaluated soccer alone (n = 21). Most studies (n = 32) included a multi-component programme. Further study details are given in Table 1.

Overall exercise intervention effect

Pooled analysis from 44 studies showed a significant beneficial effect of IPP on injury reduction (risk ratio 0.71 [95% confidence interval 0.64, 0.78], p < 0.001); see Figure 2. The study heterogeneity was significant (Q = 214.41, df = 43, p < 0.001, $l^2 = 80\%$).

Figure 1. Flow diagram of study selection process.

Stratified by sex

Eight studies included female participants only, 18 studies included male participants only and 18 studies included both sexes. Pooled study effects of female-only were 0.73 [0.56, 0.95], p = 0.020 (heterogeneity: Q = 42.46, df = 7, p < 0.001, $l^2 = 84\%$), male only were 0.65 [0.54, 0.78], p < 0.001 (heterogeneity: Q = 108.16, df = 17, p < 0.001, $l^2 = 84\%$) and both sexes were 0.74 [0.65, 0.85], p < 0.001 (heterogeneity: Q = 62.87, df = 17, p < 0.001, $l^2 = 73\%$). There was no

				Intervention				Injurie	es	Exposure	e (hrs)
		Age (year	IS;			Mean					
		mean oi				adherenc	e Injury				
Study Parti	cipants (n) Se:	(median)) Sport	Description	Duration Sup	(%)	outcome	Int	Con	Int	Con
Fujisaki et al. Int 7.	2 M	Mean 16.	.0 Soccer	Strength	16 Yes	98	Groin injury	4	18	16000	14516
(2022) CC	on 57 M	7C W		0 ·	weeks	Q		S	,	00111	
AI Allar el al. IIIL 3 (2021) Cr	1/1 2/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	INIEGIN 20.	(stadaay-ipon) Jacobers)		o res months	Do Do	Any upper limh iniurv	R	77	cccno	/0070
Hilska et al. (2021)Int 6	81 M &	F Mean 12.	.3 Soccer	Cardiovascular,	20 Yes	63	Lower limb	310	346	70454	62909
ŭ	on 737			plyometrics, landing, strength, core	weeks		injury				
Nuhu et al. (2021)Int 3	12 M	Mean 19.	.8 Soccer	*FIFA 11+	7 Yes	77	Any injury	168	252	65333	63389
Ŭ	on 318				months						
Åkerlund et al. Int 3.	01 M &	F Mean 13.	.5 Floorball	Proprioception, landing,	26 Yes	84	Any injury	197	152	16280	8128
(2020) Cr	on 170			strength, core	weeks						
Gouttebarge et al.Int 2-	66 M &	F Mean 28.	.5 Volleyball	Cardiovascular, core, strength, proprioception	8 Yes	73	Any injury	316	430	28654	25479
(2020) Ct	on 283				months						
Hasebe et al. Int 1.	56 M	Mean 16.	.5 Soccer	Nordic Hamstring Exercise	27 Yes	88	Hamstring	4	m	45374	28910
(2020) Ct	on 103				weeks		injury				
Lopes et al. (2020)Int 3	1 M	Mean 26.	.5 Futsal	*FIFA 11+	20 Yes	89	Any injury	24	34	3768	3081
ŭ	on 30				weeks						
Pas et al. (2020) Int 2.	86 M &	F Mean 41.	.5 Tennis	Cardiovascular, strength, proprioception	12 No	Not	Any injury	263	286	10366	11710
ŭ	on 293				weeks	available					
Taddei et al. Int 5	7 M&	F Mean 40.	.9 Running	Strength and	8 weeks Yes &	89	Any injury	8	20	5304	6747
(2020) C(on 61				No						
Zarei et al. (2020) Int 4-	43 M	Mean 12.	.2 Soccer	**FIFA 11+ Kids	9 Yes	Not	Any injury	30	60	31934	32113
ŭ	on 519				months	available					
Halvarsson and Int 3.	0 M &	F Mean 24.	.2 Orienteering	Proprioception, plyometric, strength	14 No	55	Lower limb	28	36	2969	3219
von Rosen Cc	on 32				weeks		injury				
(2019)	0 11		=					Ş		1000	0.001
Sakata et al.	09 M &	r Mean IU.	.3 Basedall	static stretches, dynamic stretching,	IZ Yes	NOT	shoulder and	71	40	7886	14839
(2019) Cc	on 110			proprioception	months	available	elbow				
							injury				
Slauterbeck et al. Int 1	825 M &	F Not state	ed American football (M), soccer,	*FIFA 11+	12 Yes	45	Lower limb	196	172	116079	113420
(2019) Cr	on 1786		basketball, lacrosse (M & F)		weeks		injury				
van de Hoef et al.Int 2.	29 M	Mean 23.	.1 Soccer	Plyometric	39 Yes	Not	Hamstring	31	26	27679	18705
(2019) Cc	n 171 nc				weeks	available	injury				
Achenbach et al. Int 1.	68 M &	F Mean 15.	.0 Handball	Proprioception, plyometric, landing, strength, core	Not Yes	Not	Any injury	50	32	26278	17929
(2018) Cc	on 111				stated	available					
										<u>C</u>	ntinued)

Table 1. Summary of studies.

						Intervention					Injuri	es	Exposure	e (hrs)
										1				
			Age (years;						Mean.					
-			mean or	ţ				.0	anerence	Kunfui		,	-	ų
Study	Participants (n) Sex	median)	Sport		Description	Duration	Sup	(%)	outcome	III	Con	Int	Con
Attwood et al.	Int 682	Σ	Mean 25.5	Rugby	Proprio	ception, strength, landing/cutting	42	Yes	Not	Any injury	122	133	0066	9660
(2018)	Con 673				tech	nique, plyometric	weeks		available					
Bonato et al.	Int 86	ш	Mean 20	Basketball	Cardiov	ascular, dynamic stretching, strength,	Not	Yes	78	Any injury	32	79	19277	16844
(2018)	Con 74				plyo	metric, landing technique, agility	stated							
Rössler et al.	Int 2066	M & F	Mean 10.8	Soccer	Proprio	ception, balance, plyometric,	Not	Yes	Not	Any injury	139	235	140716	152033
(2018)	Con 1829				strei	ngthening, core, falling technique	stated		available					
Hislop et al.	Int 1325	Σ	Mean 16.0	Rugby	Proprio	ception, strength, plyometric, landing/	14	Yes	69	Any injury	291	262	37346	32375
(2017)	Con 1127				cutti	ng technique	weeks							
Finch et al. (201	6)Int 679	Σ	Not stated	Australian footbal	ll Proprio	ception, plyometric, landing exercises	26	Yes	Not	Any injury	335	438	12790	15537
	Con 885						weeks		available					
Zouita et al.	Int 26	Σ	Not stated	Soccer	Strengt	P 4	12	Yes	Not	Any injury	4	13	5700	5590
(2016)	Con 26						weeks		available					
Hammes et al.	Int 146	Σ	Mean 44.3	Soccer	*FIFA 1	+	6	Yes	98	Any injury	51	37	4172	2937
(2015)	Con 119						months							
H. Silvers-Grane	lli Int 675	Σ	Mean 20.6	Soccer	*FIFA 1	+	2	Yes	Not	Any injury	284	665	35226	44212
et al. (2015)	Con 850						months		available					
van der Horst	Int 292	Σ	Mean 24.6	Soccer	Nordic	Hamstring Exercise	13	Yes	91	Hamstring	11	25	44000	31250
et al. (2015)	Con 287						weeks			injury				
Owoeye et al.	Int 212	Σ	Mean 17.7	Soccer	*FIFA 1	1+ warm-up	9	Yes	60	Any injury	36	94	51017	61045
(2014)	Con 204						months							
Aerts et al. (201.	3)Int 90	M & F	Mean 24.7	Basketball	Plyome	tric, landing technique	m	Yes	86	Any injury	18	28	5010	5227
	Con 93						months							
van Beijsterveld	t Int 223	Σ	Mean 24.8	Soccer	***FIFA	. 11	6	Yes	73	Any injury	207	220	21563	22680
et al. (2012)	Con 233						months							
Bredeweg et al.	Int 171	Μ&F	Mean 38.1	Running	Plyome	tric	4 weeks	No	Not	Any injury	26	32	839	1067
(2012)	Con 191								available					
Longo et al.	Int 80	Σ	Mean 14.1	Basketball	*FIFA 1	+	6	Yes	100	Any injury	14	17	23640	12648
(2012)	Con 41						months							
Walden et al.	Int 2479	ш	Mean 14.1	Soccer	Strengt	h, core, plyometric, proprioception, landing	7	Yes	Not	Knee injury	49	47	149214	129084
(2012)	Con 2085				tech	nique	months		available					
LaBella et al.	Int 737	ш	Mean 16.2	Soccer, basketball	l Strengt	h, plyometric, proprioception, agility	Not	Yes	Not	Lower limb	50	96	28023	22925
(2011)	Con 755				exer	cises, landing technique	stated		available	injury				
Eils et al. (2010)	Int 81	M & F	Mean 24.1	Basketball	Proprio	ception	Not	Yes	Not	Ankle injury	7	21	4565	4876
	Con 91						stated		available					
													(Col	ntinued)

Table 1. (Continued).

				Intervention				Injun	es	Exposure	e (hrs)
		Age (years;				Mean					
		mean or				adherenc	e Injury				
Participants (n	ר) Sex	median)	Sport	Description	Duration Su	(%) di	outcome	Int	Con	Int	Con
Int 380	M&F	Not stated	Soccer	Dynamic stretching, strength, agility, core jumping	20 Yes	& Not	Any injury	50	79	24051	23597
Con 364				proprioception, landing technique	weeks N	√o availabl€	0				
Int 583	ш	Mean 19.9	Soccer	Running, Static stretching, strengthening,	12 Yes	72	Knee injury	40	58	26538	41948
Con 852				plyometric, agility	weeks						
. Int 256	ш	Mean 23.8	Soccer	Running technique, proprioception, plyometrics,	6 Yes	73	Lower limb	87	102	32327	25019
Con 201				static stretching, strengthening, landing	months		injury				
				technique							
. Int 1055	ш	Mean 15.4	Soccer	Strength, plyometric, proprioception, dynamic	8 Yes	11	Any injury	161	215	49899	45428
Con 837				stretching, agility, landing technique	months						
Int 1073	ш	Mean 15.4	Soccer	*FIFA 11+ and balance mat	8 Yes	52	Any injury	242	241	66423	65725
Con 947					months						
Int 494	M & F	Median 16.0	Basketball	Proprioception	18 Yes	& Not fully	Any injury	130	141	39369	34955
Con 426					weeks N	√o availabl€					
Int 373	M&F	Mean 16.5	Soccer and basketball	Proprioception	Not Yes	Not	Ankle injury	23	39	20250	20828
6) Con 392					stated	available					
005)Int 958	M&F	Mean 16.3	Handball	Strength, proprioception, plyometric, landing	8 Yes	Not	Any injury	103	195	93812	87483
Con 879				technique	months	available	01				
al. Int 392	M&F	Mean 24.3	Volleyball	Proprioception	9 Yes	Not	Any injury	132	102	62477	42960
Con 340					months	available	0				
al. Int 62	ш	Mean 20.5	Soccer	Proprioception	7 No	63	Any injury	28	31	5895	8094
Con 78					months						
1 Int 159	Σ	Not stated	Running	Stretching	16 No	Not	Any injury	26	23	4727	4694
() Con 167					weeks	available	<i>a</i> ,				

*.FIFA 11+: Dynamic stretching, proprioception, strength, plyometric, planting/cutting/agility exercises. ¹.FIFA 11+ Kids: Proprioception and coordination, strength, landing and falling techniques.

* FIFA: Core, proprioception, strength, plyometric, landing technique. ⁵ FIFA 11+S: Upper limb neuromuscular control, core stability, eccentric rotator strength and agility. ¹ Adherence is defined as the percentage of sessions from the total number of possible sessions where the intervention was delivered. Where these data were not available or could be calculated, these were reported as "Not Available".

Table 1. (Continued).

significant subgroup difference (p = 0.490). A forest plot by sex subgroupings is shown in Figure 3a.

Stratified by supervision

Three studies (Emery & Meeuwisse, 2010; Emery et al., 2007; Taddei et al., 2020) were removed for this analysis as it contained both a supervised and unsupervised component, leaving 41 studies. In 36 studies, the IPP was supervised, and in the remaining five studies, the IPP was unsupervised. Supervised IPPs were effective at reducing injury (0.67 [0.60, 0.75], p < 0.001) (heterogeneity: Q = 187.71, df = 35, p < 0.001, $l^2 = 81\%$), whereas unsupervised IPPS were not (1.04 [0.90, 1.19], p = 0.580) (heterogeneity: Q = 1.23, df = 4, p = 0.87, $l^2 = 0\%$). A significant between sub-group difference was present (p < 0.001). Of the five unsupervised studies, two were in running (Bredeweg et al., 2012; van Mechelen et al., 1993), one in orienteering (Halvarsson & von Rosen, 2019), one in tennis (Pas et al., 2020) and one in soccer (Soderman et al., 2000). A forest plot by supervision subgrouping is shown in Figure 3b.

Regression by age, intervention duration and adherence

The mean age for the intervention and control groups was available for 38 out of the 44 included studies (intervention group mean age range 10.2–43.1 years; control group mean age range 10.3–45.2 years). There was no significant association between age and IPP effect: $\beta = 0.009[-0.004, 0.022]$, p = 0.187 (heterogeneity: Q = 172.4, df = 37, p < 0.001, $l^2 = 80\%$).

Intervention duration data were available from 38 studies. Mean intervention duration was 25.3 (±11.5) weeks (range 4–52 weeks). There was no significant association between intervention duration and IPP effect: $\beta = 0.001[-0.008, 0.011]$, p = 0.766 (heterogeneity: Q = 179.3, df = 37, p < 0.001, $l^2 = 81\%$).

Adherence data were available for 24 studies. Mean adherence was 76.4% (±14.9) (range 45–100%). There was a significant association between adherence and IPP effect: β =-0.014 [-0.023, -0.004], *p* = 0.004 (heterogeneity: Q = 82.7, *df* = 23, *p* < 0.001, *l*² = 79%). Adherence explained 33% of variance in the true effects.

Publication Bias and RoB

No significant publication bias was identified from the statistical analysis (regression intercept = 0.005, p = 0.172), however funnel plot visual inspection suggested that some publication bias may be present. Overall RoB was classified as "high", "some concern" and "low" in 29.5% (n = 13), 65.9% (n = 29) and 4.5% (n = 2) of the 44 studies, respectively (see supplementary files for RoB figure).

Discussion

This meta-analysis of randomized controlled studies on the effect of exercise-based IPPs revealed that (1) IPPs are effective overall in reducing the occurrence of injuries in sport, (2) supervised IPPs are more effective than unsupervised IPPs and more specifically,

unsupervised IPPs appear to offer no direct benefit *per se* in injury risk reduction, (3) there is an inverse association between IPP adherence and injury rate, (4) neither duration of IPP or age are related to IPP effectiveness and (5) IPPs are equally of benefit to male, female and mixed cohorts.

Overall IPP effectiveness

Pooled data from the studies included in this meta-analysis demonstrated that IPPs reduce injury risk in sport by 29%. Others, through meta-analyses, have evidenced a similarly protective benefit; Crossley et al. (2020) reported a reduced injury risk of 27% in female soccer players from across primarily multicomponent programmes. Lauersen et al. (2014) identified a 35% and 47% reduction in acute and overuse injuries, respectively, from across a range of IPP types, which is higher than the findings presented here, however, that meta-analysis also included studies with non-sport populations, e.g. military personnel, which may explain some differences. The current analysis extends the findings of previous meta-analyses through the inclusion of a much greater number of studies and a more diverse range of sports. Although this has increased the heterogeneity of pooled data, the search and inclusion criteria match very closely to a previous meta-analysis (with the exception of restrictions to sport populations only) including 23 studies by Lauersen et al. (2014), and the larger number of studies simply reflects the growing body of research in the field.

Supervision, adherence and intervention duration

There was no evidence from this meta-analysis for the effectiveness of non-supervised IPPs in reducing injury risk, although these findings are based on a relatively small number of studies with a diverse set of interventions; two studies included a multi-component IPP (Halvarsson & von Rosen, 2019; Pas et al., 2020), one included a plyometric only IPP (Bredeweg et al., 2012), one included a proprioception only IPP (Soderman et al., 2000) and one included a stretching only IPP (van Mechelen et al., 1993). No studies in the supervised group included a stretching-only IPP. Despite the current evidence on the ineffectiveness of stretching only IPPs (Brunner et al., 2019; Lauersen et al., 2014), the study by van Mechelen et al. (1993) was retained as stretching was considered an active intervention and the study met the inclusion criteria that were set *a-priori*.

The lack of effectiveness of unsupervised IPPs is in contrast to Vatovec et al. (2020), where non-supervised and supervised IPPs for hamstring injuries were found to be equally effective, although only three studies were included in the non-supervised category and data on one injury type were represented. Moreover, that analysis included data from two studies which were not possible to include in this meta-analysis; one could not be included as data were no longer accessible (Askling et al., 2013), and another was included for the main analysis and sex subgroup analysis but not the supervision subgroup analysis as it included both a supervised and unsupervised component (Emery et al., 2007).

The five unsupervised studies in this meta-analysis included a range of sports: two on running (Bredeweg et al., 2012; van Mechelen et al., 1993), one on orienteering

	Risk Ratio
Study	Random, 95% Cl
Fujisaka et al., 2022	
Al Attar et al., 2021	
Hilska et al., 2021	-
Nuhu et al., 2021	
Taddei et al., 2020	
Zarei et al., 2020	
Akerlund et al., 2020	
Gouttebarge et al., 2020	+
Hasebe et al., 2020	
Lopes et al., 2020	
Pas et al., 2020	+
van der Hoef et al., 2019	
Halvarsson et al., 2019	
Sakata et al., 2019	
Slauterbeck et al., 2019	+
Achenbach et al. 2018	
Attwood et al. 2018	
Bonato et al. 2018	
Rossier et al 2018	
Histon et al. 2017	+
Zouita et al 2016	
Finch et al 2016	-
van der Horst et al. 2015	
Hammes et al. 2015	2.2 <u> </u>
Silvers-Granelli et al. 2015	
Owneye et al 2014	
Aerts et al. 2013	
van Beijsterveldt et al. 2012	+
Walden et al 2012	
Bredeweg et al. 2012	
Longo et al 2012	
Longo et al., 2012	
Elected 2010	
Emary & Maauwieca 2010	
Cilchrict et al. 2009	
Pacanon et al. 2000	
Coligard at al. 2009	
Stoffon et al. 2008	+
Emory at al. 2007	
McGuino & Koopo 2006	
Olcon at al. 2005	
Verbagen et al. 2003	
Soderman et al. 2004	
van Mechelen et al. 1993	
van meenelen et al., 1995	
Total	•
	0.05 0.2 1 5 20
	Favours Intervention Favours Control

Figure 2. Forest plot of all included studies.

(Halvarsson & von Rosen, 2019), one on tennis (Pas et al., 2020) and one on soccer (Soderman et al., 2000). The difference in sport types included in the supervised and unsupervised groups should be acknowledged due to the relatively greater proportion of running and smaller proportion of soccer in the unsupervised group. It is perhaps not surprising that running featured more commonly in the unsupervised group due to running generally being an individual sport and often not coach-led at recreational level. Previously, the effects of an internet-based source (thus unsupervised) which included advice on training volume, biomechanics and equipment also showed no beneficial effect in reducing injury in runners (Cloosterman et al., 2022; Fokkema et al.,

Figure 3. Forest plot of summary analysis by (a) sex and by (b) supervision.

2019). In contrast, Taddei et al. (2020) showed a significantly lower rate of injury in runners following a foot core strengthening IPP, which included a supervised and unsupervised component. It is not clear whether the positive findings in the Taddei et al. (2020) study were due to the uniqueness of IPP or whether it was due to it containing a supervised component. That study was excluded from the supervision subgroup analysis due to it including both a supervised and unsupervised component. Nonetheless, in-person supervision of IPPs is difficult to implement for sports which are generally engaged with independently (i.e. without a coach or similar), therefore further work should determine what type of IPP is best for runners, orienteers and other "solo" sports, and how potential limiting effects of non-supervision can be overcome.

Poor compliance/adherence is one plausible explanation for the lack of significant effect of unsupervised programmes since true engagement with interventions (or correct execution of those exercises) is usually based on athlete reporting and thus may not be a true reflection of the actual executed IPP. This is particularly relevant as

we showed a significant inverse relationship between adherence and injury, but no relationship between intervention duration and injury. This would suggest that interventions included in this meta-analysis were generally of sufficient length and longer interventions were as effective as those which were shorter, however non/reducedcompliance reduced their effectiveness. This is similar to other work where increased compliance with FIFA 11+ in soccer reduced injury rates (Silvers-Granelli et al., 2018; Soligard et al., 2010). Unfortunately, of the five unsupervised studies in this metaanalysis, comparisons between high and low compliance were either not performed (Bredeweg et al., 2012; van Mechelen et al., 1993) or were divergent in outcome; Soderman et al. (2000) and Pas et al. (2020) did not find a difference in injury outcomes between high and low compliance rates of their IPPs, yet Halvarsson and von Rosen (2019) reported injury rates in those with lower compliance to be similar to the control group, suggesting poor compliance reduced IPP effectiveness. Compliance in those studies was self-reported, making it challenging to tease out the differential influence of supervision versus true adherence. Future studies evaluating nonsupervised IPPs should consider the use of tracking technology in mobile delivery format to monitor adherence more accurately. A further caveat is that reporting of compliance in studies is highly varied, and the lack of standardization regarding what constitutes "good" versus "poor" compliance hinders a more meaningful comparison (Van Reijen et al., 2016).

Sex

The present review demonstrated that exercise-based IPPs significantly and equally reduce injury risk for males, females and mixed cohorts. Due to female athletes being at higher risk of musculoskeletal injuries in general and of the knee in particular (Swenson et al., 2013), it has been suggested that females are in greater need of IPPs (Sommerfield et al., 2020). Despite this increased risk, the results from this review suggest that females benefit equally from exercise-based IPPs, hence specific and targeted programmes by sex do not appear warranted. Similarly, it is unlikely that sex is a confounder in future experimental studies investigating IPP effectiveness, however high heterogeneity across the studies in this review should be noted.

Age

Most exercise-based IPPs included in this meta-analysis evaluated athletes who were adolescents or young adults, and only few studies assessed the effectiveness of such programmes in adults in their 30s or 40s and none beyond. A previous meta-analysis of 14 studies on the effect of age on ACL injury in female athletes identified greater benefits of a neuromuscular programme in younger (i.e. mid-teens) compared to slightly older (late teens or early adult) female athletes (Myer et al., 2013). When that meta-analysis repeated the analysis by dichotomizing into two age groups (\leq 18 years or >18 years), similarly a difference was found where IPPs were significantly beneficial for the \leq 18 years group but not for the >18 years group. It is not quite clear what the full age range was of the included studies in that analysis, but the oldest mean age for any one study was 24 years. In contrast, the meta-regression presented here demonstrated that increasing age does

not reduce the benefit of IPPs, up to early middle age. It must be noted that the majority of studies in this analysis included participants with a mean age of less than 30, and only four studies included participants with a mean age of 35–45. The differences between this meta-analysis and the study by Myer et al. (2013) must be considered, however, i.e. the type of analysis (meta-regression versus age group comparison), the number of studies included for age analysis (37 versus 14), sex (males and females versus females only), injury type (all injuries versus ACL injuries) and the upper age limit (40s versus 20s). Therefore, further work with a particular focus on the inclusion of athletes older than 30 is needed, particularly given public health messages regarding exercise for older adults (UK government, 2019).

Risk of Bias

In almost all cases, RoB in studies was either categorized as "some" or "high concern". Frequent causes of higher RoB were the lack of detailed explanation for missing data or lack of detailed information on the randomization process. Blinding of the study participants and coaches was generally not performed, and this is commonly difficult to incorporate in exercise intervention studies. In addition, blinding of the researchers or those collecting and/or analysing injury data was not always evident or reported.

Other areas that were not always clear or consistently reported were injury status of the study participants prior to recruitment and what was considered "injury free". Therefore, the proportion of participants carrying an injury could have varied which may well have influenced outcomes, as those injured may well be at increased risk of re-injury. Typically, due to a whole-team recruitment into a study, it is understandable that consistent criteria as to what constituted being injury free were difficult to achieve. Similarly, the definition of adherence was disparate across studies, and variance across studies may be a limitation. For example, adherence is determined at coach-delivery level, but studies typically did not further define *player* adherence, i.e. the number of sessions each player attended where the intervention was also delivered.

Limitations

This meta-analysis has some limitations that should be highlighted. The number of unsupervised studies was fairly small (n = 5). Nonetheless, this work highlights the need for future studies to assess the influence of supervision on IPP effectiveness and in particular for non-coach led sports where supervision is difficult to implement. Future work that considers alternative/improved ways of delivering and adapting supervision for non-coach led sports is also warranted. Heterogeneity was high across studies, and to allow for this, a random effects model was adopted. Sub-group analysis, e.g. for supervision and sex, was used for parts of the analysis presented; however, heterogeneity within sub-groups continued to be high. Further subgrouping was considered, e.g. by sport; however, this would yield too few studies for many categories to draw meaningful conclusions. In addition, mean age data were not available for all 44 studies, and this reduced the pool of studies for that particular analysis to 38. Although this may still be an acceptable number for meta-regression analysis, the vast majority of studies were skewed towards younger ages, and further studies incorporating adults aged 30+ are required to

make more robust recommendations. Despite this, the findings from this analysis that age did not affect programme effectiveness showed promise and should be explored going forward.

Conclusion

Pooled information from all included studies showed that exercise-based IPPs have a protective benefit and lower the occurrence of injuries in sport. Encouragingly, this benefit was present irrespective of athlete sex or age, although studies beyond athletes of early middle age were not available. Studies that included supervised IPPs were found to be effective, whereas unsupervised IPPs were not. Whether this is down to poor true engagement with unsupervised IPPs, incorrect execution of exercises or due to the physical demands of sports which might be difficult to implement a supervised IPP for (such as recreational runners), is unclear and requires further evaluation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

ORCID

Stephanie Valentin () http://orcid.org/0000-0002-8568-3458 Nicholas F. Sculthorpe () http://orcid.org/0000-0001-8235-8580

References

- Achenbach, L., Krutsch, V., Weber, J., Nerlich, M., Luig, P., Loose, O., Angele, P., & Krutsch, W. (2018). Neuromuscular exercises prevent severe knee injury in adolescent team handball players. *Knee Surgery, Sports Traumatology, Arthroscopy*, 26(7), 1901–1908. https://doi.org/10.1007/s00167-017-4758-5
- Aerts, I., Cumps, E., Verhagen, E., Mathieu, N., Van Schuerbeeck, S., & Meeusen, R. (2013). A 3-month jump-landing training program: A feasibility study using the RE-AIM framework. *Journal of Athletic Training*, 48(3), 296–305. https://doi.org/10.4085/1062-6050-48.3.18
- Åkerlund, I., Waldén, M., Sonesson, S., & Hägglund, M. (2020). Forty-five per cent lower acute injury incidence but no effect on overuse injury prevalence in youth floorball players (aged 12–17 years) who used an injury prevention exercise programme: Two-armed parallel-group cluster randomised controlled trial. *British Journal of Sports Medicine*, 54(17), 1028–1035. https://doi.org/10. 1136/bjsports-2019-101295
- Al Attar, W. S. A., Faude, O., Bizzini, M., Alarifi, S., Alzahrani, H., Almalki, R. S., Banjar, R. G., & Sanders, R. H. (2021). The FIFA 11+ shoulder injury prevention program was effective in reducing upper extremity injuries among soccer goalkeepers: A randomized controlled trial. *The American Journal of Sports Medicine*, 49(9), 2293–2300. https://doi.org/10.1177/03635465211021828
- Askling, C. M., Tengvar, M., & Thorstensson, A. (2013). Acute hamstring injuries in Swedish elite football: A prospective randomised controlled clinical trial comparing two rehabilitation

protocols. British Journal of Sports Medicine, 47(15), 953–959. https://doi.org/10.1136/bjsports-2013-092165

- Attwood, M. J., Roberts, S. P., Trewartha, G., England, M. E., & Stokes, K. A. (2018). Efficacy of a movement control injury prevention programme in adult men's community rugby union: A cluster randomised controlled trial. *British Journal of Sports Medicine*, 52(6), 368–374. https:// doi.org/10.1136/bjsports-2017-098005
- Bonato, M., Benis, R., & La Torre, A. (2018). Neuromuscular training reduces lower limb injuries in elite female basketball players. A cluster randomized controlled trial. *Scandinavian Journal of Medicine & Science in Sports*, 28(4), 1451–1460. https://doi.org/10.1111/sms.13034
- Bredeweg, S. W., Zijlstra, S., Bessem, B., & Buist, I. (2012). The effectiveness of a preconditioning programme on preventing running-related injuries in novice runners: A randomised controlled trial. *British Journal of Sports Medicine*, 46(12), 865–870. https://doi.org/10.1136/bjsports-2012-091397
- Brunner, R., Friesenbichler, B., Casartelli, N. C., Bizzini, M., Maffiuletti, N. A., & Niedermann, K. (2019). Effectiveness of multicomponent lower extremity injury prevention programmes in team-sport athletes: An umbrella review. *British Journal of Sports Medicine*, 53(5), 282–288. https://doi.org/10. 1136/bjsports-2017-098944
- Caine, D., Purcell, L., & Maffulli, N. (2014). The child and adolescent athlete: A review of three potentially serious injuries. *BMC Sports Science, Medicine and Rehabilitation*, 6(1), 22. https://doi.org/10.1186/2052-1847-6-22
- Cloosterman, E. V., Krastman, P., IJzerman, J., Koes, B. W., Verhaar, J. A. N., Bierma-Zeinstra, S. M. A., van Middelkoop, M., Verhaar, J. A. N., Bierma-Zeinstra, S. M. A., & van Middelkoop, M. (2022). Educational online prevention programme (the SPRINT study) has no effect on the number of running-related injuries in recreational runners: A randomised-controlled trial. *British Journal of Sports Medicine*, *56*(12), 676–682. Epub ahead of print http://doi.org/10.1136/bjsports-2021-104539
- The Cochrane Collaboration. (2020). Review Manager (RevMan).
- Crossley, K. M., Patterson, B. E., Culvenor, A. G., Bruder, A. M., Mosler, A. B., & Mentiplay, B. F. (2020). Making football safer for women: A systematic review and meta-analysis of injury prevention programmes in 11 773 female football (soccer) players. *British Journal of Sports Medicine*, 54(18), 1089–1098. https://doi.org/10.1136/bjsports-2019-101587
- Eils, E., Schroter, R., Schroder, M., Gerss, J., & Rosenbaum, D. (2010). Multistation proprioceptive exercise program prevents ankle injuries in basketball. *Medicine & Science in Sports and Exercise*, 42(11), 2098–2105. https://doi.org/10.1249/MSS.0b013e3181e03667
- Emery, C. A., & Meeuwisse, W. H. (2010). The effectiveness of a neuromuscular prevention strategy to reduce injuries in youth soccer: A cluster-randomised controlled trial. *British Journal of Sports Medicine*, 44(8), 555–562. https://doi.org/10.1136/bjsm.2010.074377
- Emery, C. A., Rose, M. S., McAllister, J. R., & Meeuwisse, W. H. (2007). A prevention strategy to reduce the incidence of injury in high school basketball: A cluster randomized controlled trial. *Clinical Journal of Sport Medicine*, 17(1), 17–24. https://doi.org/10.1097/JSM.0b013e31802e9c05
- Finch, C. F., Twomey, D. M., Fortington, L. V., Doyle, T. L. A., Elliott, B. C., Akram, M., & Lloyd, D. G. (2016). Preventing Australian football injuries with a targeted neuromuscular control exercise programme: Comparative injury rates from a training intervention delivered in a clustered randomised controlled trial. *Injury Prevention: Journal of the International Society for Child and Adolescent Injury Prevention*, 22(2), 123–128. https://doi.org/10.1136/injuryprev-2015-041667
- Fokkema, T., de Vos, R.-J., van Ochten, J. M., Verhaar, J. A. N., Davis, I. S., Bindels, P. J. E., Bierma-Zeinstra, S. M. A., & van Middelkoop, M. (2019). Online multifactorial prevention programme has no effect on the number of running-related injuries: A randomised controlled trial. *British Journal* of Sports Medicine, 53(23), 1479–1485. https://doi.org/10.1136/bjsports-2018-099744
- Fujisaki, K., Akasaka, K., Otsudo, T., Hattori, H., Hasebe, Y., & Hall, T. Effects of a groin pain prevention program in male high school soccer players: A cluster-randomized controlled trial. (2022). *International Journal of Sports Physical Therapy*, 17(5), 841–850. https://doi.org/10.26603/001c. 36631

- Gilchrist, J., Mandelbaum, B. R., Melancon, H., Ryan, G. W., Silvers, H. J., Griffin, L. Y., Watanabe, D. S., Dick, R. W., & Dvorak, J. (2008). A randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female collegiate soccer players. *The American Journal of Sports Medicine*, 36(8), 1476–1483. https://doi.org/10.1177/0363546508318188
- Gouttebarge, V., Barboza, S. D., Zwerver, J., & Verhagen, E. (2020). Preventing injuries among recreational adult volleyball players: Results of a prospective randomised controlled trial. *Journal of Sports Sciences*, 38(6), 612–618. https://doi.org/10.1080/02640414.2020.1721255
- Halvarsson, B., & von Rosen, P. (2019). Could a specific exercise programme prevent injury in elite orienteerers? A randomised controlled trial. *Physical Therapy in Sport*, *40*, 177–183. https://doi. org/10.1016/j.ptsp.2019.09.010
- Hammes, D., Aus der Fünten, K., Kaiser, S., Frisen, E., Bizzini, M., & Meyer, T. (2015). Injury prevention in male veteran football players – a randomised controlled trial using "FIFA 11+". *Journal of Sports Sciences*, 33(9), 873–881. https://doi.org/10.1080/02640414.2014.975736
- Hasebe, Y., Akasaka, K., Otsudo, T., Tachibana, Y., Hall, T., & Yamamoto, M. (2020). Effects of Nordic hamstring exercise on hamstring injuries in high school soccer players: A randomized controlled trial. *International Journal of Sports Medicine*, 41(3), 154–160. https://doi.org/10.1055/a-1034-7854
- Hickey, J., Shield, A. J., Williams, M. D., & Opar, D. A. (2014). The financial cost of hamstring strain injuries in the Australian Football League. *British Journal of Sports Medicine*, 48(8), 729–730. https://doi.org/10.1136/bjsports-2013-092884
- Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (editors). (2022). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Available from www.training.cochrane.org/handbook.
- Hilska, M., Leppänen, M., Vasankari, T., Aaltonen, S., Kannus, P., Parkkari, J., Steffen, K., Kujala, U. M., Konttinen, N., Räisänen, A. M., & Pasanen, K. (2021). Neuromuscular training warm-up prevents acute noncontact lower extremity injuries in children's soccer: A cluster randomized controlled trial. Orthopaedic Journal of Sports Medicine, 9(4), 232596712110057. https://doi.org/10.1177/ 23259671211005769
- Hislop, M. D., Stokes, K. A., Williams, S., McKay, C. D., England, M. E., Kemp, S. P. T., & Trewartha, G. (2017). Reducing musculoskeletal injury and concussion risk in schoolboy rugby players with a pre-activity movement control exercise programme: A cluster randomised controlled trial. *British Journal of Sports Medicine*, *51*(15), 1140–1146. https://doi.org/10.1136/bjsports-2016-097434
- The jamovi project. (2022). *jamovi (Version 2.3) [Computer Software]*. Retrieved from https://www. jamovi.org
- LaBella, C. R., Huxford, M. R., Grissom, J., Kim, K.-Y., Peng, J., & Christoffel, K. K. (2011). Effect of neuromuscular warm-up on injuries in female soccer and basketball athletes in urban public high schools: Cluster randomized controlled trial. *Archives of Pediatrics & Adolescent Medicine*, 165(11), 1033–1040. https://doi.org/10.1001/archpediatrics.2011.168
- Lauersen, J. B., Andersen, T. E., & Andersen, L. B. (2018). Strength training as superior, dose-dependent and safe prevention of acute and overuse sports injuries: A systematic review, qualitative analysis and meta-analysis. *British Journal of Sports Medicine*, 52(24), 1557–1563. https://doi.org/10.1136/bjsports-2018-099078
- Lauersen, J. B., Bertelsen, D. M., & Andersen, L. B. (2014). The effectiveness of exercise interventions to prevent sports injuries: A systematic review and meta-analysis of randomised controlled trials. *British Journal of Sports Medicine*, 48(11), 871–877. https://doi.org/10.1136/bjsports-2013-092538
- Linton, L., Barr, M., & Valentin, S. (2022). Prehabilitation for recreational runners: Motivators, influencers, and barriers to injury prevention strategies for running-related injury. *Journal of Sport Rehabilitation*, 31(5), 544–553. https://doi.org/10.1123/jsr.2021-0364
- Longo, U. G., Loppini, M., Berton, A., Marinozzi, A., Maffulli, N., & Denaro, V. (2012). The FIFA 11+ program is effective in preventing injuries in elite male basketball players: A cluster randomized controlled trial. *The American Journal of Sports Medicine*, 40(5), 996–1005. https://doi.org/10.1177/ 0363546512438761
- Lopes, M., Simões, D., Costa, R., Oliveira, J., & Ribeiro, F. Effects of the FIFA 11+ on injury prevention in amateur futsal players. (2020a). Scandinavian Journal of Medicine & Science in Sports, 30(8), 1434–1441. SPORTDiscus with Full Text. https://doi.org/10.1111/sms.13677/

- Maffulli, N., Longo, U. G., Gougoulias, N., Loppini, M., & Denaro, V. (2010). Long-term health outcomes of youth sports injuries. *British Journal of Sports Medicine*, 44(1), 21–25. https://doi.org/10. 1136/bjsm.2009.069526
- McGuine, T. A., & Keene, J. S. (2006). The effect of a balance training program on the risk of ankle sprains in high school athletes. *The American Journal of Sports Medicine*, 34(7), 1103–1111. https:// doi.org/10.1177/0363546505284191
- Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & for the PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *BMJ*, *339*(jul21 1), b2535. https://doi.org/10.1136/bmj.b2535
- Myer, G. D., Sugimoto, D., Thomas, S., & Hewett, T. E. (2013). The influence of age on the effectiveness of neuromuscular training to reduce anterior cruciate ligament injury in female athletes. *The American Journal of Sports Medicine*, 41(1), 203–215. https://doi.org/10.1177/0363546512460637
- Nuhu, A., Jelsma, J., Dunleavy, K., Burgess, T., & Hoover, D. (2021). Effect of the FIFA 11+ soccer specific warm up programme on the incidence of injuries: A cluster-randomised controlled trial. *PLos One*, 16(5), e0251839. https://doi.org/10.1371/journal.pone.0251839
- Olsen, O.-E., Myklebust, G., Engebretsen, L., Holme, I., & Bahr, R. (2005). Exercises to prevent lower limb injuries in youth sports: Cluster randomised controlled trial. *BMJ (Clinical Research Ed)*, 330 (7489), 449. https://doi.org/10.1136/bmj.38330.632801.8F
- Owoeye, O. B. A., Akinbo, S. R. A., Tella, B. A., & Olawale, O. A. (2014). Efficacy of the FIFA 11+ Warm-Up programme in male youth football: A cluster randomised controlled trial. *Journal of Sports Science and Medicine*, 13(2), 321–328.
- Pasanen, K., Parkkani, J., Pasanen, M., Hiilloskorpi, H., Mäkinen, T., Järvinen, M., & Kannus, P. (2008). Neuromuscular training and the risk of leg injuries in female floorball players: Cluster randomised controlled study. *British Journal of Sports Medicine*, 42(10), 502–505. https://doi.org/10.1136/bmj.a295
- Pas, H. I. M. F. L., Pluim, B. M., Kilic, O., Verhagen, E., Gouttebarge, V., Holman, R., Moen, M. H., Kerkhoffs, G. M., & Tol, J. L. (2020). Effectiveness of an e-health tennis-specific injury prevention programme: Randomised controlled trial in adult recreational tennis players. *British Journal of Sports Medicine*, 54(17), 1036–1041. https://doi.org/10.1136/bjsports-2019-101142
- Rössler, R., Junge, A., Bizzini, M., Verhagen, E., Chomiak, J., Aus der Fünten, K., Meyer, T., Dvorak, J., Lichtenstein, E., Beaudouin, F., & Faude, O. (2018). A multinational cluster randomised controlled trial to assess the efficacy of '11+ Kids': A warm-up programme to prevent injuries in children's football. *Sports Medicine*, 48(6), 1493–1504. https://doi.org/10.1007/s40279-017-0834-8
- Rücker, G., Schwarzer, G., & Carpenter, J. (2008). Arcsine test for publication bias in meta-analyses with binary outcomes. *Statistics in Medicine*, *27*(5), 746–763. https://doi.org/10.1002/sim.2971
- Ryan, J. L., Pracht, E. E., & Orban, B. L. (2019). Inpatient and emergency department costs from sports injuries among youth aged 5–18 years. *BMJ Open Sport & Exercise Medicine*, 5(1), e000491. https:// doi.org/10.1136/bmjsem-2018-000491
- Sakata, J., Nakamura, E., Suzuki, T., Suzukawa, M., Akeda, M., Yamazaki, T., Ellenbecker, T. S., & Hirose, N. (2019). Throwing injuries in youth baseball players: Can a prevention program help? A randomized controlled trial. *The American Journal of Sports Medicine*, 47(11), 2709–2716. https:// doi.org/10.1177/0363546519861378
- Silvers-Granelli, H. J., Bizzini, M., Arundale, A., Mandelbaum, B. R., & Snyder Mackler, L. (2017). Does the FIFA 11+ injury prevention program reduce the incidence of ACL injury in male soccer players? *Clinical Orthopaedics & Related Research*, 475(10), 2447–2455. https://doi.org/10.1007/s11999-017-5342-5
- Silvers-Granelli, H. J., Bizzini, M., Arundale, A., Mandelbaum, B. R., & Snyder Mackler, L. (2018). Higher compliance to a neuromuscular injury prevention program improves overall injury rate in male football players. *Knee Surgery, Sports Traumatology, Arthroscopy*, 26(7), 1975–1983. https://doi. org/10.1007/s00167-018-4895-5
- Silvers-Granelli, H., Mandelbaum, B., Adeniji, O., Insler, S., Bizzini, M., Pohlig, R., Junge, A., Snyder Mackler, L., & Dvorak, J. (2015). Efficacy of the FIFA 11+ Injury prevention program in the collegiate male soccer player. *The American Journal of Sports Medicine*, 43(11), 2628–2637. https://doi.org/10.1177/0363546515602009

- Slauterbeck, J. R., Choquette, R., Tourville, T. W., Krug, M., Mandelbaum, B. R., Vacek, P., & Beynnon, B. D. (2019). Implementation of the FIFA 11+ injury prevention program by high school athletic teams did not reduce lower extremity injuries: a cluster randomized controlled trial. *The American Journal of Sports Medicine*, 47(12), 2844–2852. https://doi.org/10.1177/ 0363546519873270
- Soderman, K., Werner, S., Pietila, T., Engstrom, B., & Alfredson, H. (2000). Balance board training: Prevention of traumatic injuries of the lower extremities in female soccer players? A prospective randomized intervention study. *Knee Surgery, Sports Traumatology, Arthroscopy, 8*(6), 356–363. https://doi.org/10.1007/s001670000147
- Soligard, T., Myklebust, G., Steffen, K., Holme, I., Silvers, H., Bizzini, M., Junge, A., Dvorak, J., Bahr, R., & Andersen, T. E. (2008). Comprehensive warm-up programme to prevent injuries in young female footballers: Cluster randomised controlled trial. *BMJ*, 337, a2469. https://doi.org/10.1136/bmj. a2469
- Soligard, T., Nilstad, A., Steffen, K., Myklebust, G., Holme, I., Dvorak, J., Bahr, R., & Andersen, T. E. (2010). Compliance with a comprehensive warm-up programme to prevent injuries in youth football. *British Journal of Sports Medicine*, 44(11), 787–793. https://doi.org/10.1136/bjsm.2009. 070672
- Sommerfield, L. M., Harrison, C. B., Whatman, C. S., & Maulder, P. S. (2020). Injury prevention programs in youth: A narrative review targeting females. *Strength & Conditioning Journal*, 42(4), 36–49. https://doi.org/10.1519/SSC.000000000000499
- Steffen, K., Emery, C. A., Romiti, M., Kang, J., Bizzini, M., Dvorak, J., Finch, C. F., & Meeuwisse, W. H. (2013). High adherence to a neuromuscular injury prevention programme (FIFA 11+) improves functional balance and reduces injury risk in Canadian youth female football players: A cluster randomised trial. *British Journal of Sports Medicine*, 47(12), 794–802. https://doi.org/10.1136/ bjsports-2012-091886
- Steffen, K., Myklebust, G., Olsen, O. E., Holme, I., & Bahr, R. (2008). Preventing injuries in female youth football—A cluster-randomized controlled trial. *Scandinavian Journal of Medicine & Science in Sports*, 18(5), 605–614. https://doi.org/10.1111/j.1600-0838.2007.00703.x
- Swenson, D. M., Collins, C. L., Best, T. M., Flanigan, D. C., Fields, S. K., & Comstock, R. D. (2013). Epidemiology of Knee Injuries among U.S. High School Athletes, 2005/2006–2010/2011. *Medicine & Science in Sports and Exercise*, 45(3), 462–469. https://doi.org/10.1249/MSS.0b013e318277acca
- Taddei, U. T., Matias, A. B., Duarte, M., & Sacco, I. C. N. (2020). Foot core training to prevent running-related injuries: A survival analysis of a single-blind, randomized controlled trial. *The American Journal of Sports Medicine*, 48(14), 3610–3619. https://doi.org/10.1177/0363546520969205
- UK Chief Medical Officers' Physical Activity Guidelines. (2019). UK Chief Medical Officers' Physical Activity Guidelines. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/832868/uk-chief-medical-officers-physical-activity-guidelines.pdf
- van Beijsterveldt, A. M. C., van de Port, I. G. L., Krist, M. R., Schmikli, S. L., Stubbe, J. H., Frederiks, J. E., & Backx, F. J. G. (2012). Effectiveness of an injury prevention programme for adult male amateur soccer players: A cluster-randomised controlled trial. *British Journal of Sports Medicine*, 46(16), 1114–1118. https://doi.org/10.1136/bjsports-2012-091277
- van de Hoef, P. A., Brink, M. S., Huisstede, B. M. A., van Smeden, M., de Vries, N., Goedhart, E. A., Gouttebarge, V., & Backx, F. J. G. (2019). Does a bounding exercise program prevent hamstring injuries in adult male soccer players? a cluster-RCT. *Scandinavian Journal of Medicine & Science in Sports*, 29(4), 515–523. https://doi.org/10.1111/sms.13353
- van der Horst, N., Smits, D.-W., Petersen, J., Goedhart, E. A., & Backx, F. J. G. (2015). The preventive effect of the Nordic hamstring exercise on hamstring injuries in amateur soccer players: A randomized controlled trial. *The American Journal of Sports Medicine*, 43(6), 1316–1323. https://doi.org/10.1177/0363546515574057
- van Mechelen, W., Hlobil, H., Kemper, H. C., Voorn, W. J., & de Jongh, H. R. (1993). Prevention of running injuries by warm-up, cool-down, and stretching exercises. *The American Journal of Sports Medicine*, 21(5), 711–719. https://doi.org/10.1177/036354659302100513

- Van Reijen, M., Vriend, I., Zuidema, V., van Mechelen, W., & Verhagen, E. A. (2016). Increasing compliance with neuromuscular training to prevent ankle sprain in sport: Does the 'Strengthen your ankle' mobile App make a difference? A randomised controlled trial. *British Journal of Sports Medicine*, 50(19), 1200–1205. https://doi.org/10.1136/bjsports-2015-095290
- Vatovec, R., Kozinc, Ž., & Šarabon, N. (2020). Exercise interventions to prevent hamstring injuries in athletes: A systematic review and meta-analysis. *European Journal of Sport Science*, 20(7), 992–1004. https://doi.org/10.1080/17461391.2019.1689300
- Verhagen, E., van der Beek, A., Twisk, J., Bouter, L., Bahr, R., & van Mechelen, W. (2004). The effect of a proprioceptive balance board training program for the prevention of ankle sprains: A prospective controlled trial. *The American Journal of Sports Medicine*, *32*(6), 1385–1393. https://doi.org/10.1177/0363546503262177
- Walden, M., Atroshi, I., Magnusson, H., Wagner, P., & Hagglund, M. (2012). Prevention of acute knee injuries in adolescent female football players: Cluster randomised controlled trial. *BMJ*, 344: e3042. https://doi.org/10.1136/bmj.e3042
- Webster, K. E., & Hewett, T. E. (2018). Meta-analysis of meta-analyses of anterior cruciate ligament injury reduction training programs. *Journal of Orthopaedic Research*, 36(10), 2696–2708. https:// doi.org/10.1002/jor.24043
- Zarei, M., Abbasi, H., Namazi, P., Asgari, M., Rommers, N., & Rössler, R. (2020). The 11+ Kids warm-up programme to prevent injuries in young Iranian male high-level football (soccer) players: A cluster-randomised controlled trial. *Journal of Science & Medicine in Sport*, 23(5), 469–474. https://doi.org/10.1016/j.jsams.2019.12.001
- Zouita, S., Zouita, A. B. M., Kebsi, W., Dupont, G., Abderrahman, A. B., Salah, F. Z. B., & Zouhal, H. (2016). Strength training reduces injury rate in elite young soccer players during one season. *The Journal of Strength & Conditioning Research*, *30*(5), 1295–1307. https://doi.org/10.1519/JSC. 000000000000920