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Abstract: Road traffic accidents are a significant public health issue, accounting for almost 1.3 million
deaths worldwide annually, with millions more experiencing non-fatal injuries. A variety of subjective
and objective factors contribute to the occurrence of traffic accidents, making it difficult to predict
and prevent them on new road sections. Artificial neural networks (ANN) have demonstrated their
effectiveness in predicting traffic accidents using limited data sets. This study presents two ANN
models to predict traffic accidents on common roads in the Republic of Serbia and the Republic of
Srpska (Bosnia and Herzegovina) using objective factors that can be easily determined, such as road
length, terrain type, road width, average daily traffic volume, and speed limit. The models predict the
number of traffic accidents, as well as the severity of their consequences, including fatalities, injuries
and property damage. The developed optimal neural network models showed good generalization
capabilities for the collected data foresee, and could be used to accurately predict the observed
outputs, based on the input parameters. The highest values of r2 for developed models ANN1 and
ANN2 were 0.986, 0.988, and 0.977, and 0.990, 0.969, and 0.990, accordingly, for training, testing and
validation cycles. Identifying the most influential factors can assist in improving road safety and
reducing the number of accidents. Overall, this research highlights the potential of ANN in predicting
traffic accidents and supporting decision-making in transportation planning.

Keywords: traffic safety; traffic accident; prediction; modelling; artificial neural networks

1. Introduction

Road traffic accidents represent one of the leading causes of death worldwide. Ac-
cording to the World Health Organization (WHO) [1], almost 1.3 million people die in road
traffic accidents, while almost 50 million suffer non-fatal injuries. The leading cause of
death of children and young people between 5 and 29 years is road traffic crashes. The
serious problem is that 93% of fatalities come from the low-income and middle-income
countries in development. Except for human suffering, road traffic accidents significantly
influence the economy, costing countries up to 3% of their Gross Domestic Product (GDP).

The occurrence of traffic accidents can be related to a variety of factors. Some of these
factors are subjective: driver knowledge, training level, experience, the influence of alcohol,
drugs, etc., while others are objective, such as: road volume (annual average daily traffic
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volume—AADT), road geometry (curvature, slopes, lane width, shoulder width), type of
road (freeway or two-lane road), road conditions (pavement quality and potential damage
of pavement surface), weather conditions (wind, ice, snow, rain, etc.), cars maintenance,
speed limits, frequency of police controls, etc. An increase in a number of road vehicles
leads to heavier traffic volume on almost all roads, which increases the chances of collision
between vehicles. On the other hand, the same traffic volume on the freeway and the
two-lane roads has a different possibility of collision.

This variety of factors makes complicated efforts to predict the number of traffic
accidents for new roads or reconstruction of existing roads. In order to predict the number
of traffic accidents in the near future on the existing or the newly planned/built road
section, it is necessary to know what factors will mostly influence the occurrence of a road
traffic accident. Objective factors that cannot be easily changed in the future are recognized
as: the type of road, road geometry and AADT (which will likely to be increased in the
future). Other factors can be changed (pavement can be repaired, weather conditions are
subject to daily change, car maintenance can be improved by frequent checks, speed limits
can also be adapted, etc.).

The classical machine learning models such as: artificial neural network (ANN),
random forest regression (RFR), support vector machine (SVM), extreme learning machine
(ELM), K-nearest neighbors (KNN) and decision tree (DT) are extensively used in modelling
in various branches of science. The SVM is a widely used discriminant technique based
on the statistical learning theory, well recognized for its strong generalization ability. The
optimal network is obtained by exploring the balance between the complexity of the model
and the training error [2,3]. The ELM designs a single-layer feedforward network by
randomly generating the input weights and biases of the hidden layers [4].

The vast variety of state-of-the-art machine learning techniques is suitable for se-
quence data like ensemble learning models, such as: XGBoost [5] and LightGBM [6] and
CatBoost. XGBoost model exerts its advantages, especially for high prediction accuracy and
interpretability. LightGBM model enables large amounts of data and GPU training. The
LightGBM models are proven to be more accurate and faster than XGBoost. Furthermore,
data fusion enables stronger forecasting accuracy, according to the integration of gradient
boosting-based categorical attributes supported by the CatBoost algorithm [7]. Applying
artificial neural networks has proved its feasible feature in recent years by predicting and
presenting desired results although limited data sets. Obtained results illustrate that the
variables such as highway width, head-on collision, type of vehicle at fault, ignoring lateral
clearance, following distance, inability to control the vehicle, violating the permissible
velocity, and deviation to the left by drivers are the most influential aspects that can raise
traffic accidents in urban roads.

This paper provides two ANN models for the assessment of traffic accidents on the
state roads of the Republic of Serbia and the Republic of Srpska (Bosnia and Herzegovina)
using objective factors that can be easily determined.

Literature Review

Predicting traffic accidents and understanding the factors that influence traffic safety
has been the focus of numerous studies in various regions. These studies have employed
different tools and methodologies to investigate the relationship between specific factors
and the occurrence of accidents [8]. In the Highway Safety Manual, Chapter 10 explicitly
addresses the prediction model for rural two-lane, two-way roads, emphasizing the impact
of traffic volume (AADT) through safety performance functions (SPF) and project geometry
and traffic management characteristics through crash modification factor (CMF) [9].

The major subject of the paper [10] was to determine which parameter has the greatest
influence on the occurrence of traffic accidents. Several studies have examined the influ-
ence of specific factors on traffic accidents on two-lane rural roads. Vogt and Bared [11]
researched Minnesota and Washington to analyze the geometric characteristics leading
to accidents. Fitzpatrick et al. [12] focused on the difference in traffic crashes between
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two-lane and four-lane highways in Texas. Geedipally et al. [13] identified that head-on
crashes were affected by AADT, percentage of trucks, and shoulder width. Cardoso [14]
developed an accident prediction model for curves and tangents on two-lane roads in
Portugal. This research defined an accident prediction model for curves and tangents,
as well as for roads with paved and unpaved shoulders. Two-lane rural roads were the
main subject of Harwood et al. [15] research. In his research, a prediction algorithm was
developed. Mayora et al. [16] analyzed almost 3500 km of two-lane rural roads in Spain
(region of Valencia and West Castile) in a five-year period.

The article by Cafiso et al. [17] analyzed about 170 km of two-lane rural roads in
Italy over a period of 5 years; in this paper variables such as: curvature (radius, length),
tangent length, cross-section elements (lane width and shoulder width and type). Research
on traffic accidents in Ghana was presented in Ackaah and Salifu [18] paper. The model
for prediction developed in this research was GLM (Generalized Linear Model) with a
Negative Binomial error structure. In India, Dinu and Veeraragavan [19] developed a
model for accident prediction with random parameters. Variables for the model were:
traffic volume (veh/h), length (km), percent of buses, trucks, cars, and two-wheelers, as
well as shoulder width and curvature (horizontal and vertical). Turner et al. [20] developed
accident prediction models for two-lane rural roads in New Zealand. A total of 6800 km of
state roads was analyzed. The developed model created a relationship between a number
of accidents and traffic volume, road geometry, cross-section, road surfacing, roadside
hazards, and driveway density. For different types of accidents was developed different
linear models. A combination of three different statistical methods was developed in a
paper written by Deublein et al. [21]. Models used were: (1) gamma-updating of the
occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate
Poisson-lognormal regression analysis, and (3) Bayesian inference algorithms. Influence
parameters were: traffic volume, percentage of trucks and buses, speed, curvature and the
number of lanes. Other machine learning methods are attempted for traffic systems to aid
in transportation planning, including LSTM/RNN often used for sequence modeling and
prediction [22,23], CNN used for image and video processing tasks [24,25], and broader
machine learning for traffic accident analysis [26].

Research in Malaysia conducted by Hosseinpour et al. [27] analyzed 448 segments
of state roads over five years. Input variables was: horizontal curvature, terrain type,
heavy-vehicle percent, and access points Traditional crash prediction models, such as gen-
eralized linear regression model, are unable to take into account multilevel data design [28].
Artificial Neural Network (ANN) approach was given in Çodur and Tortum [28] paper.
Bayesian Network with Rough Sets for traffic accident analysis was the subject of research
in Xiaoxia et al. [29] paper. In their paper, Olmuş and Erbaş [30] analyzed traffic accidents
by using Log-Linear Models. Bayesian Neural Network was the subject of research in
Marković et al. [31] paper. Milenković et al. [32] analyzed the impact of road and traffic
characteristics on the occurrence of traffic accidents with fatalities on state roads in Serbia.
A regression analysis was used for data analysis, which was the first attempt at this type
of analysis in Serbia. Tubić et al. [33] made a calculation of traffic accident costs for major
roads in the Republic of Serbia, with the costs per kilometer. Some of the influencing factors
on the occurrence of traffic accidents were presented in the paper by Marković et al. [34].

Overall, the influence of different factors on traffic safety and the occurrence of traffic
accidents has been widely studied, with many researchers focusing on the impact of traffic
volume, project geometry, traffic management characteristics, and other related factors.
These studies have resulted in the development of various accident prediction models and
methods for analyzing and predicting traffic accidents. These studies, each employing
specific tools and methodologies, have contributed to our understanding of the factors
influencing traffic accidents. However, there is a need to investigate the prediction of
accidents in the Republic of Serbia and the Republic of Srpska (Bosnia and Herzegovina)
using objective factors. By utilizing Artificial Neural Network models, this study aims to
predict traffic accidents accurately and determine their severity based on factors such as
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road length, terrain type, road width, average daily traffic volume, and speed limit. The
findings from this research will provide insights for improving road safety and supporting
decision-making in transportation planning.

As to our knowledge, this paper is the first to implement artificial neural networks to
predict traffic accidents in the Republic of Serbia and the Republic of Srpska (Bosnia and
Herzegovina) using objective factors: road length, terrain type, road width, average daily
traffic volume, and speed limit.

2. Methodology

For this research, detailed analysis of parameters influencing the occurrence of traffic
accidents was done. AADT data was collected from automatic traffic counters in the
Republic of Serbia [35] and the Republic of Srpska (Bosnia and Herzegovina) [36]. Total
of 191 road sections in the Republic of Serbia and 180 road sections were selected in the
Republic of Srpska. Table 1 shows the number of road sections at each road type.

Table 1. Number of road sections selected for analysis in Serbia and Republic of Srpska.

Mark State Road Type Section Total

Road 1 Republic of Srpska Two lane-state road
(1st class)

118 road
sections

Road 2 Republic of Srpska Two lane- state roads
(2nd class),

62 road
sections 180 sections

Road 3 Serbia Two lane 113 road
sections

Road 4 Serbia High way 78 road
sections 191 sections

The collected data were marked as follows:

1. Section Length (km)-SL,
2. Annual average daily traffic volume -AADT (veh/day),
3. Terrain type-TT (type 1-level, type 2-rolling, type 3-mountainous),
4. Curvature (curve 1-minimal, curve 2-severe, curve 3-serpentine),
5. Lane width (5–6 m, >6 m),
6. Speed limit-SPL (100–130 km/h, 130 km/h for freeways).

Figures 1–3 illustrate the roads networks of the Republic of Srpska and the Republic
of Serbia, respectively.

The number of traffic accidents-TA was extracted from the Road Traffic Safety Agency
data (Republic of Serbia), for each section using GPS location and characteristics of each
accident [37] For the Republic of Srpska, data on traffic accidents was acquired from official
reports [38].
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2.1. Statistical Analysis
2.1.1. ANN Modeling

A multi-layer perceptron (MLP) structural models, consisting of three layers (input,
hidden, and output) were implemented for modelling the artificial neural network models
(ANN) for prognostication the number of traffic accidents, based on the road conditions. In
the first ANN model (ANN1), the length of the road section, road section type (level—1,
rolling—2 and mountainous—3), curvatures in the road (no significant bends—1, severe—2,
serpentines—3), road width (>6 m, 5–6 m and <5 m) and AADT were used for prediction
of the number of traffic accidents in state roads (1st class), and state roads (2nd class), in the
Republic of Srpska and two-way roads in the Republic of Serbia. The ANN2 model was
used for the prediction of the number of traffic accidents, and also the consequences of traffic
accidents including the number of: fatalities—F, disabling injury—DI, evident injury—EI,
and property damage only -PDO in the highways of the Republic of Serbia, according to
the length of the road section, road section type (plain—1, hill—2 and mountain—3), speed
limit (130 km/h, 100–130 km/h and <100 km/h) and AADT. The length of the road section,
road section type, curves in the road, road width and speed limit were used as categorical
variables. The number of crashes, and also F, DI, EI and PDO were employed as numerical
variables for the ANN1 and ANN2 modelling.

Considering the literature references, the ANN models were widely accepted as com-
prehensively suitable for the solution of nonlinear problems [39–41]. Prior to the ANN
model building, input and output variables were standardized to augment the exactness
of ANN model’s results. Throughout the iterative process, input data were consistently
submitted to the ANN network [42,43]. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-
gorithm was employed as an iterative tool for solving unconstrained nonlinear optimization
in the course of ANN model building.

Figure 4 shows the flowchart of the research conducted with the aim of determining
the most appropriate ANN model in terms of predictive ability, but also in terms of the
error rate of each model. The present study is characterized by the comparative evaluation
of different artificial neural networks (ANN), with the aim of predicting the number of
traffic accidents, as well as the severity of their consequences, including fatalities, injuries
and property damage through using objective factors that can be easily determined, such
as road length, terrain type, road width, average daily traffic volume, and speed limit.
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The collected data for ANN modelling was randomly partitioned into training, cross-
validation, and testing data (with shares of 70%, 15%, and 15% of collected data, respec-
tively). A series of 100,000 different MLP configurations were studied, through the training
cycle, by changing the number of neurons in hidden layer (between 5 and 10) applying
random preliminary values of weights and biases for the ANN model, and testing different
activation functions for hidden and the output layer (such as hyperbolic tangent, logistic
sigmoidal, exponential or identity). Using identity function the activation level from the
input is passed on directly as the output of the neurons. Logistic uses the logistic sigmoid
S-shaped function, with output in the range 0 to +1. The hyperbolic tangent function (tanh)
is a symmetric S-shaped (sigmoid) function, whose output lies in the range −1 to +1. It
often performs better than the logistic sigmoid function due to its symmetry. Exponential
uses the negative exponential activation function.

The optimization setup included the minimization of the square error. It is assumed
that the successful training was reached when learning and cross-validation curves ap-
proached zero.

The coefficients involved with the hidden layer (weights and biases) were split up in
matrices W1 and B1. Moreover, coefficients connected to the output layer were combined
with matrices W2 and B2. It is feasible to describe the neural network models by utilizing
matrix record (Y is the matrix of the output variables (the number of traffic accidents for
ANN1, and the number of traffic accidents, EI, DI, F and PDO for ANN2), f 1 and f 2 are
transfer functions in the hidden and output layers, accordingly, and X is the matrix of input
variables) the length of the road section, road section type, curves in the road, road width
and AADT for ANN1 and the length of the road section, road section type, speed limit and
AADT for ANN2 [44,45]:

Y = f1(W2 · f2(W1 · X + B1) + B2) (1)

Weight coefficients in the ANN models (elements of matrices W1 and W2 and vectors
B1 and B2) were defined thought determination of the ANN models [34,35]. The widely-
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applied BFGS algorithm, was utilized to consolidate the convergence in resolving the
solution of non-linear problem [46].

2.1.2. Global Sensitivity Analysis

Yoon’s interpretation method was used to determine the relative influence of the length
of the road section, road section type (plain—1, hill—2 and mountain—3), curvatures in
the road (minimal—1, severe—2, serpentines—3), road width (>6 m, 5–6 m and <5 m) and
AADT on the number of traffic accidents for ANN 1 model. Furthermore, the influence
of the length of the road section, road section type (plain—1, hill—2 and mountain—3),
speed limit (130 km/h, 100–130 km/h and <100 km/h) and AADT on the number of traffic
accidents, and also traffic accident consequences including EI, DI, F and PDO was also
studied for the ANN2 model. This calculation was performed according to the weight
coefficients of the erected ANN models [47–49].

The computation of ANN models was performed applying StatSoft Statistica, ver. 10.0,
Palo Alto, CA, USA. The following equation was used to estimate the direct influence of the
input parameters on the output variables, according to the weighting coefficients within
the ANN models [50,51]:

RIij(%) =

n
∑

k=0
(wik · wkj)

m
∑

i=0

∣∣∣∣ n
∑

k=0
(wik · wkj)

∣∣∣∣ · 100% (2)

where w—presents the weights of the ANN models, i—input variable, j—output variable,
k—hidden neuron, n—number of hidden neurons, m—number of inputs.

2.1.3. The Accuracy of the Model

The statistical validation of the developed non-linear models was explored using
standard computational tests, including: the coefficient of determination (r2), reduced
chi-square (χ2), mean bias error (MBE), root mean square error (RMSE), mean percentage
error (MPE), according to the following equations [52]:

x2 =

N
∑

i=1
(xpre,i − xexp,i)

2

N − n
(3)

RMSE =

[
1
N

·
N

∑
i=1

(
xpre,i − xexp,i

)2
]1/2

(4)

MBE =
1
N

·
N

∑
i=1

(xpre,i − xexp,i) (5)

MPE =
100
N

·
N

∑
i=1

(∣∣xpre,i − xexp,i
∣∣

xexp,i

)
(6)

where xexp,i were collected values and xpre,i were the model anticipated values, N and n are
the number of observations and constants, accordingly.

3. Results and Discussion

The complete collected data for the Republic of Srpska and the Republic of Serbia used
for ANN models’ calculations are shown in Tables S1 and S2. The average section length,
the annual average daily traffic and the average number of traffic accidents values for road
1—Republic of Srpska state road 1st class, road 2—Republic of Srpska state road 2nd class,
and road 3—Serbia two-lane road are presented in Table 2.
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Table 2. The average data for roads 1–3.

SL (m) AADT (veh/day) TA

Mean 8184.53 5013.53 14.24
SD 10,582.75 4436.44 18.51
Min 0.20 109 0
Max 49,492 25,581 144
Var 1.1 × 108 2.0 × 107 342.70

In Table 3 are given the average values for high ways in the Republic of Serbia for the
average number of traffic accidents, section length, evident injury, disabling injury, fatality,
property damage and the number of traffic accidents.

Table 3. The average data for roads 4.

AADT SL (km) EI DI F PDO TA

Mean 18,547.60 10.51 1.96 0.91 0.38 7.67 10.92
SD 11,078.48 6.79 2.02 1.03 1.31 7.00 9.11
Max 66,985 29.50 7 4 11 41 50
Min 5574 1.50 0 0 0 0 0
Var 1.2 × 108 46.16 4.09 1.07 1.72 48.95 83.01

3.1. Cluster Analysis

Figure 5 depicts the results of a cluster analysis performed on the observed samples.
The analysis employed the complete linkage algorithm and the City block (Manhattan)
distances to assess the proximity of the samples. The City block distances, displayed on the
abscissa axis, are a measure of the average difference between the dimensions of the tested
samples [53,54]. The linkage distance, also shown on the abscissa axis, between the main
clusters was substantial, approximately 60,000. The dendrogram generated by the cluster
analysis revealed the presence of seven main clusters, as seen in Figure 5. The cluster
analysis was performed according to the Table S2, which shows the data regarding AADT,
section length, terrain type, speed limit, evident injury, disabling injury, fatality, property
damage and traffic accident. The cluster analysis was applied to show the similarities in
observed parameters between samples. Cluster 1 comprised of sites 1, 72, 57, 58, 59, 71, 60,
62, 61, and 70, Cluster 2 included sites 2, 55, 12, 14, 13, 53, 56, 3, 6, 52, 54, 4, 51, 73, 7, 8, 67,
69, 5, 9, 50, and 68, and Cluster 3 consisted of sites 10, 65, 11, 27, 64, 45, 47, 46, 75, 76, 28,
74, 66, and 49. Cluster 4 included 15, 16, 17, 37, 38, 39, 18, 40, 34, 35, 19, and 22. Cluster 5
included 26, 77, 44, 41, 48, 42, and 43. Cluster 6 included 20, 25, 32, 33, 36, 21, 78, and 24,
Cluster 7 included 23, 31, 30, 29, and 63.
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3.2. Color Correlation Analysis

The color correlation analysis was used to examine the connections between observed
samples (Figure 6). A color correlation diagram was created to show the significance of
the correlation coefficients between the different variables and the responses. Positive
correlations are represented by blue color and negative correlations are represented by red
color, while the size of the circles indicates the strength of the correlation [55].

According to correlation analysis, positive relations between section length, evident
injury, and also between section length and property damage only and section length and
the number of traffic accidents were observed (correlation coefficients reached r = 0.398,
statistically significant at p ≤ 0.001; r = 0.393, p ≤ 0.001 and r = 0.411, p ≤ 0.001, respectively).
Positive correlation between the number of evident injuries and fatalities, property damage
only and the number of traffic accidents were noticed (r = 0.309, p ≤ 0.01; r = 0.563, p ≤ 0.001
and r = 0.728, p ≤ 0.001, accordingly). Furthermore, a positive correlation between the
number of traffic accidents and disabling injury, fatality and property damage only were
established (r = 0.427, p ≤ 0.01; r = 0.393, p ≤ 0.001 and r = 0.955, p ≤ 0.001, respectively).
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According to Sun and Yang [56], the expansion in the rate of highway mileage and
the number of motor vehicle drivers would increase the traffic accidents death rate. Fur-
thermore, in China, Sun et al. [57] found a significant correlation between car ownership,
traffic accident fatality, traffic asset, urban residents, and property losses only of traffic
accidents; especially, car ownership and urban population are positively correlated with
direct property losses [58].

3.3. Principal Component Analysis

The Principal Component Analysis (PCA) was used to explore the relationships
between different samples. The results of the PCA analysis are depicted in Figure 7. The
proximity of spots in the PCA graphic indicates similarity in patterns [59]. The direction of
the vectors in the factor space reveals the trends of the observed variables, while the length
of the vectors represents the strength of the correlation between the fitting value and the
variable [60]. By examining Figure 7, one can efficiently determine the correlation between
the content of various compounds and the obtained compound content, as the angles
between corresponding variables reflect the degree of correlation, with smaller angles
corresponding to stronger correlations. The first three PCs demonstrated 74.38% of the total
variance in the recorded data. The first PC explained 44.52%, the second 15.62% and the
third 14.24% of the total variance between the collected data. The projection of the variables
in the factor plane indicated that SL (9.3% based on correlation), EI (20.5%), DI (7.6%), PDO
(24.9%) and TA (30.4%) contributed most negatively to the first principal component PC1.
F (11.3%) and DI (16.2%) contributed positively to the second principal component PC2,
while AADT (66.8%), and contributed negatively to PC2. The third principal component
was most positively influenced by: F, AADT and DI (32.0%; 13.5%; and 8.6%, accordingly),
while SL contributed negatively to PC3 coordinate (44.1%).



Algorithms 2023, 16, 257 12 of 21

Algorithms 2023, 16, x FOR PEER REVIEW 12 of 21 
 

tion of the variables in the factor plane indicated that SL (9.3% based on correlation), EI 
(20.5%), DI (7.6%), PDO (24.9%) and TA (30.4%) contributed most negatively to the first 
principal component PC1. F (11.3%) and DI (16.2%) contributed positively to the second 
principal component PC2, while AADT (66.8%), and contributed negatively to PC2. The 
third principal component was most positively influenced by: F, AADT and DI (32.0%; 
13.5%; and 8.6%, accordingly), while SL contributed negatively to PC3 coordinate 
(44.1%). 

 
Figure 7. The PCA biplot diagram, depicting the relationships among AADT, SL, EI, DI, F, PDO, 
MS, and TA: (a) PC 1 and PC 2, (b) PC 1 and PC 3 

3.4. ANN Models 
In research by Kouziokas [61], several ANN models were developed to forecast road 

accidents. A few parameters were considered to optimize the anticipation of road acci-
dents by building the optimal predicting model (considering the number of neurons in 

Figure 7. The PCA biplot diagram, depicting the relationships among AADT, SL, EI, DI, F, PDO, MS,
and TA: (a) PC 1 and PC 2, (b) PC 1 and PC 3.

3.4. ANN Models

In research by Kouziokas [61], several ANN models were developed to forecast road
accidents. A few parameters were considered to optimize the anticipation of road accidents
by building the optimal predicting model (considering the number of neurons in the hidden
layers and the nature of the transfer functions). The relative performance indicators of the
deep neural network (DNN), gene expression programming (GEP), and regular negative
binomial model (RENB) models suggest that the DNN model delivered the best accuracy
compared to GEP and RENB models and arised in the lowest root mean squared error,
Singh et al. [62].

According to these references, the ANN model simulation was developed in this
study. The structure and outcomes of an artificial neural network heavily rely on the
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initial assumptions of matrix parameters such as biases and weight coefficients. These
parameters are crucial in building and fitting the ANN to experimental data. Furthermore,
the performance of the ANN model can also be affected by the number of neurons in the
hidden layer. To mitigate this problem, each topology was subjected to 100,000 runs to avoid
any random correlation caused by initial assumptions and random weight initialization. By
following this approach, the ANN model achieved the highest r2 value during the training
cycle when using nine hidden neurons (Figure 8a).
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The ANN1 model was trained for 100 epochs, and the training results, i.e., train
accuracy and error (loss), are presented in Figure 5b. The training accuracy increased with
the number of training cycles increment until the 40–50th epoch, when it reached almost
constant value. More than 50 epochs for training would possibly cause high overfitting, and
60 epochs would be enough to achieve high model accuracy without any risk of overfitting
(Figure 8b) Similar results were obtained for ANN2 model.

The acquired optimal neural network models showed good generalization capabilities
for the collected data foresee, and could be used to accurately predict the observed outputs,
based on the input parameters. The number of neurons for ANN1 model was: 9 (network
MLP 13-9-1) to obtain the highest values of r2 (the r2 values for prediction of output vari-
ables were 0.986, 0.988 and 0.977, for training, testing and validation cycles, respectively).
On the other hand, the number of neurons for ANN2 model was: 8 (network MLP 6-8-5) to
obtain the highest values of r2 (the r2 values for prediction of output variables were 0.990,
0.969, and 0.990, for training, testing and validation cycles, respectively).

Table 4 presents the elements of matrix W1 and vector B1 (presented in the bias row).
Table 5 presents the elements of matrix W2 and vector B2 (bias) for the hidden layer used
for calculation within the ANN1 model. In contrast, Table 6 presents the elements of matrix
W1 and vector B1 (presented in the bias row). Table 7 presents the elements of matrix
W2 and vector B2 (bias) for the hidden layer, used for calculation within ANN1 acquired
using Equation (1).

Table 4. The weight coefficients and biases W1 and B1 for ANN1.

Neurons

Parameter 1 2 3 4 5 6 7 8 9

Length 0.274 2.072 −0.249 −0.103 −8.458 0.064 −2.904 0.852 2.426
AADT 0.159 1.330 0.723 2.080 1.626 0.811 −6.403 1.489 1.611
Road 1 0.080 1.097 0.834 0.524 2.091 0.086 −2.348 1.025 0.835
Road 2 0.073 −2.166 −0.155 −0.025 −1.491 −0.156 5.360 −0.037 −0.561
Road 3 −0.819 −1.005 −0.972 −0.916 −0.517 0.177 −1.274 −1.692 −1.515
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Table 4. Cont.

Neurons

Parameter 1 2 3 4 5 6 7 8 9

Terrain Type (1) 0.154 −0.569 0.238 −0.499 −1.722 0.012 0.839 −0.121 −0.756
Terrain Type (2) −0.601 −0.146 −0.545 0.557 0.823 0.347 0.564 0.632 0.691
Terrain Type (3) −0.095 −1.388 0.104 −0.503 1.061 −0.224 0.319 −1.139 −1.167

Curvature (1) 0.102 −0.472 −0.683 −0.882 1.176 −0.340 −0.619 −0.533 −0.480
Curvatures (2) 0.584 1.083 0.681 0.763 0.834 0.478 2.202 0.527 0.059
Curvatures (3) 0.065 0.496 0.255 0.256 0.247 0.001 0.095 0.610 0.717
Width (5–6 m) −0.279 −0.362 −0.331 −0.305 0.040 −0.032 0.563 −0.725 −0.721
Width (>6 m) −0.292 −1.700 0.083 −0.135 0.087 0.179 1.160 0.048 −0.513

Bias −0.594 −2.064 −0.220 −0.352 0.013 0.139 1.730 −0.636 −1.151

Table 5. The weight coefficients and biases W2 and B2 for ANN1.

Neurons
Bias

Output 1 2 3 4 5 6 7 8 9

TA 0.291 0.869 0.406 0.843 −2.006 0.219 −1.170 −0.031 0.297 −2.428

Table 6. The weight coefficients and biases W1 and B1 for ANN2.

Neurons

Parameter 1 2 3 4 5 6 7 8

AADT −0.029 0.442 0.801 0.865 0.048 0.471 0.064 −0.046
SL 2.161 1.255 2.952 2.485 1.875 1.673 1.297 0.285

TT(1) 0.522 0.425 0.727 0.207 0.741 0.230 0.668 0.269
TT(2) −0.576 −0.489 −1.047 −0.248 −0.509 −0.242 −0.545 −0.241

SPL (100–130 km/h) 0.140 −0.411 −0.732 −0.185 −0.187 −0.140 −0.337 −0.170
SPL (130 km/h) −0.088 0.449 0.361 −0.031 0.470 0.017 0.318 0.079

Bias −0.043 0.004 −0.312 −0.031 0.191 −0.031 0.090 −0.033

Table 7. The weight coefficients and biases W2 and B2 for ANN2.

Neurons
Bias

Outputs 1 2 3 4 5 6 7 8

LTP −0.246 −0.750 2.059 1.273 −0.928 0.343 −1.130 −0.886 0.367
DI 0.174 0.344 0.253 0.427 −0.709 −0.330 −0.131 0.585 −0.104
F −0.596 0.112 0.584 0.951 −0.487 0.074 −0.216 0.118 −0.223

PDO −0.485 −0.037 1.085 1.076 −0.767 0.218 −0.551 −0.192 −0.049
TA −0.430 −0.103 1.224 1.133 −0.882 0.189 −0.611 −0.232 0.021

3.5. The Accuracy of the Model

To numerically verify the displayed models accuracy coefficient of determination (r2),
reduced chi-square (χ2), mean bias error (MBE), root mean square error (RMSE), and mean
percentage error (MPE) were calculated, Tables 8 and 9 In addition, the models feature fit
were examined, and the residual analysis results are presented in Tables 10 and 11. The
results show that the ANN models had a minor lack of fit tests, which implies that the
models satisfactorily predicted the values of the analyzed parameters.

Table 8. The “goodness of fit” tests for the developed ANN1 model.

Cycle Output χ2 RMSE MBE MPE r2

train TA 7.484 2.720 0.121 28.269 0.986
test TA 2.849 1.660 0.240 22.522 0.988

valid TA 0.922 0.944 0.153 18.041 0.977
ANN1 TA 8.953 2.975 0.242 42.476 0.987
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Table 9. The residual analysis for the developed ANN1 model.

Cycle Outputs Skew Kurt Mean StDev Var

train TA 0.947 7.076 0.121 2.725 7.427
test TA 1.064 2.891 0.258 1.714 2.937

valid TA 0.134 1.517 0.164 0.973 0.947
ANN1 TA 0.977 9.151 0.144 2.299 5.283

Table 10. The “goodness of fit” tests for the developed ANN2 model.

Cycle Outputs χ2 RMSE MBE MPE r2

train EI 0.153 0.383 0.067 7.158 0.990
DI 0.040 0.200 0.025 4.016 0.998
F 0.110 0.332 0.042 3.324 1.000

PDO 0.819 0.906 −0.107 18.294 0.980
TA 1.825 1.343 0.016 17.860 0.983

test EI 0.063 0.235 −0.069 4.587 0.976
DI 0.027 0.166 −0.045 3.654 0.994
F 0.005 0.067 −0.008 1.813 0.985

PDO 0.754 0.861 −0.434 23.553 0.936
TA 1.093 1.046 −0.579 20.517 0.954

valid EI 0.155 0.368 0.068 7.608 0.986
DI 0.057 0.235 0.056 5.469 0.998
F 0.008 0.087 −0.003 3.671 0.994

PDO 4.518 1.987 0.721 15.575 0.988
TA 6.265 2.315 0.838 15.009 0.986

ANN2 EI 0.125 0.354 0.039 6.723 0.987
DI 0.041 0.201 0.017 4.240 0.998
F 0.067 0.260 0.022 3.085 0.999

PDO 1.485 1.203 −0.004 18.815 0.984
TA 2.460 1.545 0.063 17.820 0.985

Table 11. The residual analysis for the developed ANN2 model.

Cycle Outputs Skew Kurt Mean StDev Var

train EI 0.954 0.431 0.067 0.381 0.145
DI 1.186 1.273 0.025 0.200 0.040
F 5.889 37.494 0.042 0.333 0.111

PDO −0.161 0.657 −0.107 0.910 0.828
TA 0.334 0.550 0.016 1.358 1.843

test EI −0.265 0.668 −0.069 0.232 0.054
DI 0.807 −1.075 −0.045 0.165 0.027
F 1.433 2.234 −0.008 0.069 0.005

PDO −0.475 −0.703 −0.434 0.768 0.590
TA −0.695 −0.175 −0.579 0.900 0.810

valid EI −0.208 0.013 0.068 0.374 0.140
DI 0.347 −1.252 0.056 0.236 0.056
F 0.583 −1.325 −0.003 0.090 0.008

PDO 0.721 0.992 0.721 1.912 3.658
TA 0.382 1.396 0.838 2.228 4.965

ANN2 EI 0.756 0.644 0.039 0.354 0.126
DI 0.941 0.338 0.017 0.202 0.041
F 7.276 59.253 0.022 0.261 0.068

PDO 1.198 4.305 −0.004 1.210 1.465
TA 0.804 2.374 0.063 1.554 2.414
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The residual analysis of the developed model was additionally conducted. Skewness
evaluates the variation of the distribution from normal symmetry. A skewness other than
zero indicates the asymmetrical distribution, even though typical distributions are ideally
symmetrical. The “peakedness” of distribution is assessed by kurtosis. When the kurtosis
is greater than zero, the distribution is flatter or more peaked than predicted; the kurtosis
of the normal distribution is zero. A high r2 suggests that the variation was evaluated
and that the data fit adequately to the suggested model Beattie and Esmonde-White [63],
Rupp et al. [64], Šovljanski et al. [65], Najafi et al. [60].

The coefficient of determination (0.987), the mean relative percent error (42.476), the
root mean square error (2.975) and the reduced chi-square (8.953) were the evaluated values
of developed ANN. According to these results, it was confirmed that obtained ANN model
was statistically significant and in agreement with experimental results, Table 8.

The mean and the standard deviation of residuals have also been analyzed. The mean
of residuals for the ANN1 model was equal to 0.144, and the standard deviation was 2.299.
The skewness parameter showed minimal deviations from a normal distribution, 0.977,
while the kurtoisis parameter showed almost neglecting the difference in “peakedness”
compared to a normal distribution, 9.151, Table 9.

The coefficients of determination for EI, DI, F, PDO, and TA were between 0.987 and
0.999, the mean relative percent errors (between 3.085 and 18.815), the root mean square
errors (between 0.201 and 1.545) and the reduced chi-square (between 0.041 and 2.460)
were the evaluated values of developed ANN. According to these results, it was confirmed
that obtained ANN model was statistically significant and in agreement with experimental
results, Table 10.

The mean of residuals for the ANN2 model for EI, DI, F, PDO, and TA parameters
were between −0.004 ÷ 0.063, while the standard deviations were between 0.202 and
1.554. The skewness parameters for these variables showed minimal deviations from a
normal distribution, between 0.756 and 7.276, while the kurtosis parameters showed
almost neglecting the difference in “peakedness” compared to a normal distribution,
between 0.338 ÷ 59.253, Table 11.

3.6. Global Sensitivity Analysis—Yoon’s Interpretation Method

In this section, the influence of input variables, on the relative importance of the
number of traffic accidents for ANN1, and the number of evident injuries, disabling injury,
fatality, property damage only and traffic accidents for ANN2 were studied. According
to Figure 9, section length was the most influential parameter on the number of traffic
accidents with an approximately relative importance of 40.19%, Figure 6a. On the other
hand, section length was the most influential parameter positively affecting the number
of evident injuries (50.00%), disabling injury (39.87%), fatality (47.50%), property damage
only (48.88%), and the number of traffic accidents (48.79%), Figure 9b–f. One potential
avenue of inquiry in the study of traffic accidents is the influence of objective factors, such
as stress, fatigue, sleepiness, and health issues, on driver behavior. Longer road sections
may exacerbate these factors, leading to increased accident rates. Indeed, research has
shown that the impact of these factors is amplified on lengthier roadways. For instance, a
study by Chen et al. [66] found a significant association between road length and driver
fatigue, indicating that longer roads may pose greater risks to driver safety.

According to sensitivity analysis, performed by Chakraborty et al. [46], the approaching
speed of the motorized vehicle has the most significant influence on fatal pedestrian crashes.
‘Logarithm of average daily traffic’ volume is found to be the second most sensitive variable.

Artificial neural networks proved to be useful in numerous real-world implementa-
tions, particularly where results and data are not same all the time and are altered by the
occurrence of irregular changes [67].
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4. Conclusions

In conclusion, the correlation analysis conducted in this study revealed several positive
correlations between various factors related to traffic accidents on common roads in the
Republic of Serbia and the Republic of Srpska (Bosnia and Herzegovina). The findings
indicate that section length has a significant positive correlation with the number of traffic
accidents, evident injury, and property damage. These results suggest that addressing
section length and its impact on traffic accidents could be a key factor in reducing the
number of accidents and their severity on roads. Further research is needed to explore other
potential factors that contribute to these correlations and to develop effective interventions
to prevent and mitigate the negative consequences of traffic accidents.

The results show that the developed ANN models had a minor lack of fit tests, which
implies that the models satisfactorily predicted the values of the analyzed parameters.
The first ANN model can be used for predicting the number of traffic accidents, while the
second one can be also used in predicting traffic accident outcomes.

The Global Sensitivity Analysis recognized average daily traffic volume and section
length as the most influential parameter affecting the number of traffic accidents and
their fatal and mild consequences. Finally, the results suggest that the understanding of
influential factors can help improve road safety and reduce the number of accidents. Future
research in the field of transport safety promoting artificial intelligence could focus on
developing and testing newer deep learning models that are capable of better handling
complex and diverse data types. The algorithm is currently limited to the Republic of
Serbia and the Republic of Srpska, but it needs to be validated in urban settings in other
countries to appeal to its generality.
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Future studies could explore the parameters like road safety authorities, local author-
ities, vicinities of hospitals, etc, that could affect the safety of traffic in this region. The
development of more advanced and efficient algorithms for processing large datasets could
be a major area of focus in future research on data science and big data analytics approach
in traffic. Future research on traffic accidents could explore the use of advanced modeling
techniques to better understand and predict the impacts of different parameters.

Possible future directions for research that emerge from this article include the follow-
ing: The complexity of urban roads and highways topologies and operation mechanisms
should be further investigated to leverage the performance of traffic accident predictors.
The adaptability of ANN models for large-scale networks should be investigated in future
research. More effective representations of the traffic network, as well as more efficient train-
ing strategies, should be applied to acquire a more suitable accuracy of the ANN models.
This would increase the chance of the ANN models being used in real-time applications.
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33. Milenković, M.; Glavić, D.; Kocić, A.; Petković, M. Impact of road and traffic characteristics on the traffic accidents. J. Road Traffic

Eng. 2017, 63, 5–12.
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Solid Waste by Artificial Neural Networks in Croatia and the European Union. Sustainability 2022, 14, 10133. [CrossRef]

52. Yoon, Y.; Swales, G.; Margavio, T.M. Comparison of Discriminant Analysis versus Artificial Neural Networks. J. Oper. Res. Soc.
2017, 44, 51–60. [CrossRef]
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Analysis in Surface Water. Water 2022, 14, 4089. [CrossRef]
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