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Abstract
Artificial intelligence and robotic solutions are seeing rapid development for use across multiple occupations and sectors,
including health and social care. As robots grow more prominent in our work and home environments, whether people would
favour them in receiving useful advice becomes a pressing question. In the context of human–robot interaction (HRI), little is
known about people’s advice-taking behaviour and trust in the advice of robots. To this aim, we conducted an experimental
study with older adults to measure their trust and compliance with robot-based advice in health-related situations. In our
experiment, older adults were instructed by a fictional human dispenser to ask a humanoid robot for advice on certain
vitamins and over-the-counter supplements supplied by the dispenser. In the first experimented condition, the robot would
give only information-type advice, i.e., neutral informative advice on the supplements given by the human. In the second
condition, the robot would give recommendation-type advice, i.e., advice in favour of more supplements than those suggested
initially by the human.Wemeasured the trust of the participants in the type of robot-based advice, anticipating that they would
be more trusting of information-type advice. Moreover, we measured the compliance with the advice, for participants who
received robot-based recommendations, and a closer proxy of the actual use of robot health advisers in home environments or
facilities in the foreseeable future. Our findings indicated that older adults continued to trust the robot regardless of the type
of advice received, highlighting a type of protective role of robot-based recommendations on their trust. We also found that
higher trust in the robot resulted in higher compliance with its advice. The results underpinned the likeliness of older adults
welcoming a robot at their homes or health facilities.

Keywords Robot adviser · Robot-based advice · Advice taking · Human–robot interaction · HRI · Trust · Compliance ·
Senior care

1 Introduction

Social robots are increasingly seen as a viable support
resource in the healthcare sector. These robots have been
studied in multiple contexts such as assisting people with
mobility and household tasks [1] or using them as compan-
ions [2]. Since the older population is growing faster than the
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younger population [3], social robots have been extensively
studied in their relationship with older adults to support the
shortage of caregivers. These studies have mostly focused on
dimensions (i.e., predictors) that most likely influence older
adults’ acceptance of social robots [4–6]. In the present study,
we focused on a specific type of acceptance, i.e., the accep-
tance of advice from social robots in the healthcare sector by
primarily investigating the perceived trust in a robot giving
advice. Advice-giving by robots may be an added value to
encourage and maintain healthier behaviours in individuals,
by helping them to proactively self-manage their health and
well-being, thus reducing the necessity to depend on health-
care professionals each time. By imparting unbiased, tailored
advice to assess the specific needs of individuals, they can
help peoplemake informed decisions about their health, even
when time constraints and/or socioeconomic status prevent
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them from visiting a health facility. This form of robot–hu-
man teaming may help relieve the burden on caregivers,
while still allowing professionals to access and understand
the health patterns of the individuals they care for through
robot mediation.

1.1 Theoretical Background

The degree to which people take advice from others is a
common research problem in cognitive sciences. People’s
inability to predict entirely the knowledge and the inten-
tions of an adviser promote feelings of uncertainty toward
the adviser and the advice received. This uncertainty seems
to, however, reducewhenpeople perceive high confidence [7]
and high trust [8, 9] in the adviser. From a multi-disciplinary
perspective, trust can be defined as “a psychological state
comprising the intention to accept vulnerability based upon
positive expectations of the intentions or behaviour of anoth-
er” ([10], p. 395). In the advice give-and-take synergy, trust
relies greatly, among others, on the perceived cognitive com-
petence of the adviser in providing valuable and customised
advice in a specific domain [11, 12]. Therefore, people are
more willing to accept advice from a person that they con-
sider competent [13, 14].

Moreover, compliancewith the advice taken i.e., the likeli-
ness to use the advice, also depends on the type of advice [15]
and the type of task, such as context or task difficulty [16].
For example, people react with differential preferences to
the “recommendation for/against” type of advice, i.e., advice
in favour or against something, and the “information” type
of advice, i.e., neutral advice providing information about
something but not suggestion in favour or opposition of it.
Information-type advice is often preferred [15]. In turn, peo-
ple would be likelier to weigh an expert’s opinion more
heavily if facedwith a difficult task thanwhen the task is sim-
ple and straightforward to them [16]. However, if the nature
of the challenging task is more critical, i.e., heavier conse-
quences of poor advice, more trust in the adviser is required
to rely on them.

1.2 Adviser—Advisee in Human–Machine
Interaction

When it comes to nonhuman advisers, there is still much to
learn about the level of trust and compliance humans place
in the advice they receive. Some studies have concluded that
people exert more reliance on AI-algorithm-based advisers
in analytical tasks given their perceived superiority in sta-
tistical deductions and ability to process greater information
in real-time compared to humans [17]. However, whether
humans will use a technology, in general or specifically to
receive advice, depends on certain factors, such as the char-
acteristics of the task conducted by the technology and its

fit, i.e., the appropriateness of that technology to solve or
assist with solving the task [18, 19]. Moreover, as for the
human–human relationship, the human-technology rapports
require considerable trust in advice-taking. In this regard,
people’s behavioural tendencies and receptivity to agent-
based advice remain less clear.

Trust in a machine is modulated by its perceived expertise
[20, 21] and its approximation of human characteristics or
anthropomorphism [22, 23]. Machines that embody human
features receive more trust [23] and people are likelier to
comply with their instructions [24] compared to mechani-
cal physiology. Humanlike appearance also strengthens the
dependence of people on agents [25] and trust resilience, or
the ability towithstand breaches of trust [26]. However, when
the other agent-related features beyond morphology, includ-
ing behaviour, do not resemble human likenesses, trust in
the machine is impaired due to inconsistency of expectations
[27]. In addition, trust in the advice given by a machine can
be impacted by the mismatch between the agent’s displayed
morphology and attributed abilities with its actual conduct in
a given task [24]. When an agent is perceived to have expert
abilities in executing a task or supporting humans in their
task goals, its advice is considered more credible, i.e., higher
trust [28, 29]. Overall, the surveyed works suggest that non-
human advisersmay not necessarily be forthwith ill-favoured
or distrusted, but trust in their advice is contingent on their
anthropomorphism and perceived expertise in a given con-
text.

1.3 …and in Human–Robot Interaction (HRI)

Following the above, research insights from Human–Robot
Interaction (HRI) further stress the importance of human
resemblance in shaping people’s behaviour towards robots.
Studies have found that the degree of anthropomorphism
alters the way people interact with robots and can lead to
more human-like behaviours than when interacting with a
machine [30, 31]. For example, Hertz andWiese found a lin-
ear change in advice-taking behaviour as anthropomorphism
increased from a computer display to a robot adviser and a
human adviser [32]. In their study, they investigated people’s
willingness to receive advice from nonhuman agents, com-
paring their choice of and compliance with a human, a robot,
and a computer agent in a social and analytical task. They
reported that participants would prefer the humanmore often
when they were given the option to choose the adviser before
knowing the task (“agent-first condition”). Instead, when
the task was known a priori (“task-first condition”), their
choices were calibrated based on how “fit” they perceived
the adviser to be for that task. For example, for a social task,
they preferred the human adviser more often, whereas, for an
analytical task, theywould opt for a nonhuman agent, leaning
more frequently towards the robot. Although, at first sight,
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it appears that human advisers remain favoured in social
domains, it has been demonstrated that people’s acceptance
and trust of robots in such domains is strengthened when
the robot has a humanoid morphology, as well as when it
exhibits appropriate social and psychological behaviour. For
example, robots with enhanced social involvement can trig-
ger higher reactance and compliance in persuasive attempts
[33]. Additionally, people exert higher acceptance, trust and
less physical proximity to a robot with appropriate commu-
nicative behaviour (verbal/non-verbal) [34].

Nevertheless, a valuable insight drawn from the above
studies is that the type of task and the perceived adviser-task
fit significantly influence people’s advice-taking behaviours
[32] and that a robot’s dialogue initiative is only acceptable
in some, but not all dialogue contents [34]. While robots
may be considered superior and their advice may be utilised
for complex statistical calculations, such as stock price pre-
dictions [35], their advice may be deemed inappropriate or
met with scepticism in situations where human judgement is
necessary, such as health-related contexts. For example, in an
exploratory study with hospitalised children with Type 1 dia-
betes, the authors scrutinised the acceptability of a humanoid
robot as an assistant in children’s disease management and
the advice or coaching delivered by the robot [36]. Their
findings revealed that the acceptability of taking advice from
a robot about blood glucose levels and patterns was consid-
erable (above 90%), but not as high when it came to more
critical aspects like calculating insulin doses.

However, the positive effect that persuasive social robots
could have in supporting a healthy lifestyle must not be over-
looked. For example, the advice given by a social robotic
agent in a game designed by Ghazali et al. [37] led to
making healthier versions of the beverage after each deci-
sion. Similarly, other authors showed that a social robot,
which used persuasive strategies of empathy, would stim-
ulate participants to drink significantly more water [38] or
that robots with an adaptive linguistic style could be effec-
tive persuaders to encourage and foster a healthy diet [39].
Moreover, socially-enhanced robot advisers were found to
help combat sedentary behaviours in office-basedworkplaces
using interactive exercise experiences [40] and produce pos-
itive attitudes and compliance during meal-eating activities
[41].

Trust in robot-based advice in health contexts is an impor-
tant and growing real-world problem. The above studies
emphasise the potential of social robots as such advisers.
They also suggest that persuasion is more effective when the
adviser is humanised, while also drawing importance on the
context in which they are applied. Our study is motivated
by the above conclusions, for example in our choice of robot
and the designed experimental conditions but differs from the
surveyed literature in several respects. First, their designed

experiments, evenwhen these are health-related, are less crit-
ical (e.g., physical activity, drinking water, game) than our
considered scenario of medication intake. The significant
preoccupation with health maintenance in all societies has
highlighted the importance of automation, thus, the impact
that robots could play in the real world and even critical
health activities should be studied in-depth. Second, many
of the aforementioned studies have been carried out across
the younger population (or a mix involving both younger
and older adults), but much less in the older population, who
may have substantially different expectations, beliefs about
robots and experiences with them. Third, they have mainly
investigated people’s advice-taking of robot-based advice
considering people’s compliance or utilisation of the advice,
using compliance as an indirect measure of trust toward the
robot (see [42] for a recent review). However, compliance
and trust remain two different, separated, constructs with
trust being the predictor of compliance [43, 44]. Lastly, some
of the studies explore how the attributes of a nonhuman
adviser like humanlike morphology or social engagement
impact advice-taking behaviours. Differently, our study con-
cerns less the causal relation between anthropomorphism and
advice-taking and instead it aims to understand how different
types of advice (i.e., information-type and recommendation-
type) provided by robotsmay influence people’s trust in them
where other conditions such as context-sensitivity can deter-
mine which advice is more acceptable for a population of
older adults. Our research highlights potential outcomes and
needs for further exploration of this topic, as well as the effi-
cacy of robot-based advice in health contexts, to ensure that
older adults are able to access reliable and trustworthy advice
as healthcare demands increase.

2 The Present Study

2.1 Primary Aims and Research Questions

We aimed to explore older adults’ trust and compliance
with robot-based advice on non-prescription medicines (i.e.,
supplements, and vitamins). We did not make a direct
comparison between human-based advice and robot-based
advice. Instead, we measured trust and compliance with
the type of advice given by the robot: information-type
advice based on the instructions of a human expert and
recommendation-type advice, where the robot’s recommen-
dation overreaches to the advice provided by the human. Our
intent was to explore whether older adults would react with
differential preferences to the two types of advice regard-
ing their health. To this aim, we formulated the following
research question:
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RQ.1: Does the type of robot-based advice (informa-
tion vs recommendation type) affect the trust of older
adults in the robot on supplements?

The body of literature surveyed in Sect. 1 suggested that
people’s trust mainly depends on anthropomorphism and
the perceived competence of the adviser. However, peo-
ple’s beliefs and preferences for robot’s anthropomorphism
are highly sensitive to the context, as context induces dif-
ferent expectations towards robots [45]. For example, in a
previous pilot study, we found that a robot’s anthropomor-
phism was less likely to affect the trust of older adults in
the robot to help them with supplement intake [46]. Specif-
ically, for this type of health-related scenario, older adults
would attribute more significance to the reliability of the
robot to perform the task, while the robot’s social agency
(e.g., social–psychological involvement) could not recover
their trustwhen the robot committed an error.Given thismoti-
vation and considering that we explored the same context in
this work, we focused mainly on the perceived competence
of the robot as another desirable attribute for advisers but
indirectly accounting for the effect of anthropomorphism,
when specifically choosing a humanoid like NAO over other
conversational machines. Our choice of adviser was also
motivated by claims that an AI’s recommendations are more
effective when the AI is humanised [47], given that we also
explored recommendation-type advice in our design.

Thus drawing onto the adviser’s competence as our
attribute, we intentionally aimed to influence how older
adults’ would perceive the competence and fit of the robot in
the specific health-related task by involving human influence.
We speculated that, in relatively sensitive tasks like advice
on non-prescription medicine, the trust of older adults in the
robot would be more resilient if the robot is labelled as an
expert by a human specialist, which may result in higher
compliance with its advice [28, 29]. Studies have shown that
source expertise and credibility positively impact people’s
attitudes and increase their behavioural compliance [48, 49]
(see [50] for a meta-analysis). Moreover, it has been shown
that people also perceive non-human agents as such sources
and that human–computer interaction is “unmediated and
directly social” ([51], p. 687). In particular, human–robot
interaction endows such characteristics that enable people
to perceive the interaction with robots same as that between
humans [52, 53]. In this sense, the social credibility of the
robot as a source is similar to the credibility attributed to
a human adviser, which, in turn, increases if the adviser is
perceived as an official representative or expert in a given
context [54].

To the best of our knowledge, this is the first attempt to
explore the trust of older adults in a robot health adviser. We
made the following hypothesis following literature insights

suggesting that information-type advice is often preferred
[15]:

H1: Older adults who only received robot-based
information-type advice on supplements would exert
positive differences in trust compared to the pre-
interaction baseline.

Moreover, we explored the strength of the following associ-
ations:

RQ. 2:Towhat degree is the older adults’ trust in robot-based
advice on supplements/vitamins associated with their will-
ingness to use a robot in health facilities (such as pharmacies)
in the future?
RQ. 3: To what degree is the older adults’ trust in robot-
based advice on supplements/vitamins associated with their
willingness to use a robot at home in the future?

Finally, we aimed to gain a deeper insight into the compli-
ance of older adults with the robot-recommended advice on
supplements/vitamins. We consider compliance as a poten-
tial behavioural consequence of trust in the robot; hence, if
they trust the robot’s advice, they will be more receptive to
its advice according to literature insights discussed earlier.
Our following research hypothesis considers only partici-
pants who received recommendation-type advice from the
robot and excludes thosewho only received information-type
advice.

H2: The trust of older adults in the robot is likely accompa-
nied by higher compliance with its advice, i.e., acceptance
of the advice and low levels of negative feelings towards the
advice received.

2.2 Exploratory (Secondary) Aims and Research
Questions

A secondary aim of the present research study concerned
the investigation of the perceived trust in robots for pre-
scription medicines, including those for severe illnesses. We
accounted that receiving recommendations from a robot only
for supplements/vitamins could be perceived as having low-
risk consequences in health contexts. Thus, we speculated
that if the consequences of robot-based advice are negligi-
ble, such as in the case of non-prescription medicines, the
trust of older adults in the robot might not change signifi-
cantly before and after interacting with the robot, regardless
of the type of advice given by the robot.

Maintaining the same experimental design, we have thus
introduced another dependent variable concerning older
people’s trust in robot advice on prescription medicines.
We decided to not simulate a scenario when prescription
medicines were suggested by the robots for ethical reasons.
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Thus, the results of our exploratory research ques-
tions should be read in light of participants experiencing
only the scenario of robot recommendations on supple-
ments/vitamins. Based on the anchoring effect [55], (i.e.,
where a decision is grounded on a more, or less related situa-
tion), we expected the close context of supplements/vitamins
to prime people’s response toward prescription medicine.
The anchoring effect is awell-establishedpsychological prin-
ciple that states that people tend to rely on initial or anchor
information as a reference point when making subsequent
judgments for scenarios of similar nature [55]. Moreover, to
the best of our knowledge, no empirical investigations on the
trust of older adults in robots for prescriptionmedicines were
reported in previous work.

On these premises, we formulated the following
exploratory research question: Does the related experience
of robot-based advice for supplements affect the trust of
older adults in receiving robot-based advice for prescription
medicines?

To this aim, we explored RQ.1 to RQ3 considering
medicines in lieu of supplements:

RQ.1’: Does the type of robot-based advice (informa-
tion vs recommendation type) affect the trust of older
adults in the robot on prescription medicines?
RQ.2’:Towhat degree is the older adults’ trust in robot-
based advice on prescription medicine associated with
their willingness to use a robot in health facilities (such
as pharmacies) in the future?
RQ.3’:Towhat degree is the older adults’ trust in robot-
based advice on prescription medicine associated with
their willingness to use a robot at home in the future?

3 Methodology

We conducted an interactive experiment between elder par-
ticipants and a humanoid robot, which either informed or rec-
ommended non-prescription medicines (here vitamins, and
over-the-counter supplements) to the older adult. We manip-
ulated the type of robot advice as information-type advice,
i.e., neutral without suggestions, and recommendation-type
advice, i.e., robot-initiated suggestions in favour of an addi-
tional supplement not suppliedby afictional humandispenser
at the start of the experiment (see Sect. 3.3.2).

3.1 Participants

The volunteers were recruited through purposive and snow-
ball sampling with the help of the Plymouth Community
Homes for a study on testing a robotic health supplement
adviser. The general aim of the study was announced as “the

intention to understand their opinion on robotic use for qual-
ity ageing of older adults” and more detailed information on
the experiment was provided when they agreed to participate
in the study.

Excluding participants under 60 years old and those with
severe cognitive impairments, we were able to recruit a total
ofN = 30 older adults for our study. The population involved
15 females and 15 males (range: 60–80 years; Meanage =
69.13; SDage = 7.80). Most participants held a university
degree (n = 18), 5 had completed A-levels, and 7 had a pri-
mary/secondary education. 12 participants reported having
had previous experience with robots, out of which 10 had
been involved in our previous pilot study [46]. We used this
measure to assign the participants evenly to the conditions
while considering balancing the samples on the sex distribu-
tion. The final samples consisted of n= 15 for each of the
designed experimental conditions (see Sect. 3.3).

3.2 Ethics Statement

Considering the sensitive nature of our pilot study, the ethi-
cal approval process enacted by the University of Plymouth
required the use of the Plymouth Ethics Online System
(PEOS). The experimental procedurewas approved under the
title ‘AGE IN Robot Home’ (project ID 3162) in November
2021 following the amendment of the documentation as per
the recommendations of the Research Ethics and Integrity
Committee. Ethical approval was granted for all the pilot
studies relevant to the project throughout its entire dura-
tion. In turn, written informed consent was collected from
all participants, including the publication rights of these case
details.

3.3 Study Design

The experimental procedure involved a one-to-one interac-
tion between an older adult participant and the NAO robot
in a laboratory setup. The lab called Robot Home at the
University of Plymouth is designed to resemble a real liv-
ing room/home. NAO is an Aldebaran (former Softbank
Robotics) anthropomorphic robot, extensively used for social
engagement such as in healthcare and education applications
[56, 57]. It is 22.6 inches tall, weighs 12.1 lb and has 25
degrees of freedom (DOF).

Our study design considered a health-related scenario,
given the findings that older adults consent to tasks being car-
ried out by robots only for specific contexts [58]. That said,
trust in robot-based advice in a critical scenario, for example
regarding health, might be substantially different from trust
toward the robot’s advice in a mild-severity interaction like
gaming and entertainment.
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3.3.1 Experimental Manipulation

The robot would give information-type advice (first condi-
tion) or recommendation-type advice (second condition) to
the participant. The participants were blind to either con-
dition. To allow for the difference in the robot-based type
of advice, we used a cover story prior to the experiment.
The participants were introduced to a human actor (different
from the experimenter) who pretended to be a dispenser, i.e.,
an assistant to a licensed Pharmacist for the dispensing of
pharmaceutical products to patients, but not a health profes-
sional in the UK health system. The intention to include a
fictional dispenser was further motivated by studies which
have shown that people are more likely to follow instruc-
tions given by an official representative in a scenario than
an unofficial one [54]. We investigated two conditions (see
Sect. 3.3.2 for details):

1. Information-type advice condition: the robot followed
exactly the instructions of the dispenser, neutrally inform-
ing the participants only about the supplements provided by
the human dispenser when they inquired about them, but not
giving its own recommendations.

2. Recommendation-type advice condition: the robot fol-
lowed the instructions of the dispenser, but at the end of
the interaction it suggested an additional supplement to
complement the health advice of the human, based on the
participants’ self-reported symptoms prior to the interaction.

3.3.2 Procedure

The participants were welcomed to the University by two
researchers and the actingdispenser.We recorded their demo-
graphic data and asked them to read and sign the ethics
consent form and a pre-interaction questionnaire. The par-
ticipants were informed that their interaction with the robot
would be video and voice-recorded at all stages for post-hoc
analyses while guaranteeing their anonymity and data confi-
dentiality.

First, our acting dispenser offered the participants a ‘Well-
beingQuestionnaire’ and asked them to think about how they
felt physically in the last seven days. The participants should
select the category or categories of symptoms in the ques-
tionnaire if they experienced at least one of the symptoms in
that category in the indicated period. For example, category 1
included symptoms like dry skin, blurry or decreased vision;
category 2 irritability, confusion, lethargy, or fatigue; cate-
gory 3 common cold or flu symptoms, etc. We also included
an eighth category “None of the above” in case participants
did not experience any symptoms or preferred not to answer.
The participants were requested to indicate up to three cat-
egories of symptoms that they may have been experiencing.
We assumed symptoms that are common among older adults

and can be tackled through beneficial nutrients like vitamins
and minerals, found in a healthy diet and/or supplements.
This information is publicly available in the NHS general
health advice on Vitamins and Minerals at https://www.nhs.
uk/conditions/vitamins-and-minerals/.

After, each individual participant was invited inside the
Robot Home to familiarise themselves with the lab. They
were greeted by the SoftbankRobotics’ humanoid robot Pep-
per, which described to the participant all the smart devices
(e.g., the Google Home assistant, a robot Hoover, an auto-
mated plant system) and other robots present in the lab. This
was done intentionally to relax the participants before the
experiment and increase their awareness of the (robotic) tech-
nology to ideally avoid any feelings of inadequacy or anxiety
when interactingwith the robot. Given the similarity between
the robot platforms of Pepper and NAO, the researcher gave
helpful tips to the participant on how to interact with the
robot, for example, to speak loudly and clearly, face the robot
during the experiment, to allow it some time to respond to
their questions or to repeat the questions if they believed the
robot did not listen the first time. After the introductive demo
with Pepper, the experimenter invited the participant to sit on
the sofa in front of the NAO robot, as in Fig. 1.

Information-type advice condition: If the participants were
assigned to the information-type advice condition, the dis-
penser would select two coloured boxes from a cabinet in the
lab and place them on the table between the robot and the
participant. Each coloured box represented a fictional over-
the-counter supplement. The dispenser told the participant
that they were recommending the health supplements based
on the categories of symptoms that they had selected in the
well-being questionnaire. In principle, each supplement was
purposed for a particular category of symptoms, for example,
vitamin A was recommended if participants selected symp-
toms of category 1, vitamin B Complex for symptoms in
category 2, and so on. If the participants had selected cate-
gory 8 “None of the above”, the dispenser would give two
default NHS-advised supplements for the general health of
older adults, e.g., vitamin B12 and a (calcium + vitamin
D) supplement. In turn, if participants had selected only one
category, the dispenser would recommend a second supple-
ment from category 8. The participantswere intentionally not
informed what the supplements were and for what purpose
they were recommended. The dispenser told the participant
that the robot was acting as a professional health adviser
on these supplements, and they should seek its guidance on
the use of the supplements, their benefits, the recommended
dose, and diet. They also strictly instructed the participant to
not swallow the supplements under no circumstance as they
were used for simulation only.

Recommendation-type advice condition: If participants
were enrolled in the recommendation-type advice condition,
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the dispenser would follow the exact same routine, supplying
only two coloured (supplement) boxes as in the first con-
dition, asking the participant to interact with the robot for
advice on the supplements. However, at the end of the inter-
action, i.e., when participants asked no more questions about
the two supplements, the robot would ask the participants to
retrieve another (third) supplement from the cabinet, indicat-
ing its colour. The robot informed the participant that it was
recommending this additional supplement to them, based on
the symptoms they had selected in the “Wellbeing Question-
naire”. The function of the robot-recommended supplements
was true to the selected symptoms from the participants them-
selves, as these were recorded in a database accessible by the
robot prior to the interaction. The robot offered to explain the
supplementmore in detail to the participant if theywished so.
All participants in this group requested information on the
robot-recommended supplement (manipulation check); nev-
ertheless, their compliance with the robot’s recommendation
was measured separately in the post-interaction question-
naire (see Sect. 5).

The experiment was started remotely by the experimenter
in a separate room. The robot-participant interaction was
not interfered with by any human presence (experimenter or
dispenser) and the robot handled the session autonomously.
The session was recorded using five GoPro 7 cameras and
Sony audio recorders distributed around the lab at favourable
angles. After the experiment, which was suitably interrupted
naturally by the participant themselves if they wished to
end the interaction, the participants were requested to fill
in a post-interaction questionnaire. Finally, the researcher
debriefed the participants on the overall experience and
offered them the choice of withdrawing their data if they
wished to do so.

4 Implementation of the Robot-Adviser

4.1 Robot Vision

To recognise the coloured boxes used in the experiment, the
NAO robot was trained using YOLOv5 [59] on over 3 k
labelled images and was further enhanced with colour recog-
nition competence on 800 + shades. The recognised index
identified and mapped uniquely onto one of the considered
supplements (7 in total). During the experiment, the partic-
ipant was instructed to show the fictional supplement box
to the robot at least once when asking a question about it
(Fig. 2). In turn, they were asked to show the supplement
box they were inquiring about out of the available two on the
table if they were switching between boxes. Once the robot
had recognised the box and, hence, the type of supplement, it
would remember this for the participant’s subsequent ques-
tions, until and unless the participant would change the box.

Fig. 1 Graphical representation of the Robot Home illustrating the
experimental setup of the interaction between an older adult partici-
pant and the humanoid robot NAO (up). Image of the real laboratory
(down)

The index of the recognised supplement was used along-
side the spoken utterances of the participants to retrieve
relevant information on the queried supplement using aMul-
timodal Conversational Agent (MCA), as explained in the
next section.

4.2 Robot dialogue: Multimodal Conversational
Agent (MCA)

As illustrated in Fig. 3, the robot invokes the Multimodal
Conversational Agent (MCA) to interpret and maintain a
conversation with the participants on the supplements. The
MCA received two types of inputs: verbal (textual) input
(transcripts of the spoken utterances produced by partici-
pants) and non-verbal input (the object recognition produced
by the robot), which it contextualised within the current state
of the conversation.

The MCA is characterised by a retrieval-based architec-
ture [60]. It aims to find the responses of the highest relevance
to the user inputs by exploring a certified knowledge base that
contains candidate responses and by exploiting the dialogue
context. Using only a certified and closed knowledge base
ensures that no erroneous information about the entities of
interest is generated, given that the answers are not extracted
from the web or from similar uncertified sources, but inside
of the intended domain. In turn, this prevents grammatical or
insignificant errors in the produced answers.

Components: The Multimodal Conversation Manager
(MCM) assumes the principal role in the MCA architecture
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Fig. 2 Demonstration of the real
experimental setup of the
humanoid robot NAO (left)
recognising the coloured fictional
supplement boxes (right), by
means of the interfaced YOLOv5
object recognition module

Fig. 3 The main components of the proposed autonomous robotic system coupled with the conversational agent and YOLO vision module

since it is responsible for orchestrating the information flow
within the agent. In detail, when the user inputs (both ver-
bal and non-verbal) are submitted to the agent, the MCM
performs a set of conversational tasks by invoking (Fig. 3):

1. the Natural Language Interpreter (NLI) to interpret and
understand the user verbal input to estimate the associ-
ated intent and extract any entity present in it;
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2. the Dialog State Tracker (DST) to update the conversa-
tion state with the information about the detected user
intent, the entities eventually mentioned by the user, the
entity eventually showed to the robot by the user, and the
information pertaining to their validation;

3. theDialogResponseManager (DRM) to choose themost
appropriate response based on the current conversation
state and expected sequences of dialog steps, and next
arrange the selected response in a natural language form
that the user can easily understand.

Dataset and Training: The dataset used in this study has
been elicited from our research team and domain experts,
using the public information from NHS guidelines on sup-
plements and vitamins. In the MCA model, this dataset is
included under the Supplements Model Repository, which is
handled by the Domain Knowledge Handler (DKH) illus-
trated in Fig. 3. This knowledge base has been formalised
and encoded into a domain Knowledge Graph (KG), stored
as RDF (Resource Description Framework, https://www.w3.
org/RDF/) triples, and queried through the SPARQL lan-
guage, recommended by the World Wide Web Consortium
on RDF data sources.

The natural language inputs produced during the
human–robot interaction are interpreted by the NLI com-
ponent to estimate the associated intent and extract any
entities eventually present (i.e., supplements, vitamins, or
other domain entities of interest). To this aim, theNLI compo-
nent has been designed to jointly perform both tasks, widely
referred to as intent classification and slot filling, through
a BERT-based [61] deep learning model architecture. This
model has been trained with a data set composed of a list
of textual inputs and questions, and the corresponding intent
assigned by a human to each of them. Further details on this
model can be found in [62].

For our study aims, three main types of intents have been
foreseen:

• "dialog command" intents (such as greetings, thanks,
repeat_request) model user commands for the robot to
manage the current dialog state, whose response is pre-
defined and unrelated to domain knowledge. To illustrate,
the verbal input "please repeat" can be used to ask the
robot to repeat the last answer/question generated. In con-
trast, the user input "forget it" allows aborting the current
information request, and so on;

• "information request" intents (such as descrip-
tion_request, functions_request) model user questions
addressed to the robot on at least one of the domain
entities, for example, "What do you know about retinol?",
whose proper answers are extracted from the results of
specific queries over the knowledge base;

• "information completion" intents model user answers to
questions posed by the robot for asking missing infor-
mation required to satisfy a previous user request. For
instance, in response to an incomplete question formulated
by the user, such as "what are its benefits?" without show-
ing the target or if object recognition fails, the robot will
respond by asking the user the missing entity of interest,
such as, for instance, "which supplement are you referring
to?". The subsequent user input containing the missing
information can be explicit, for instance, the entity "red
box", or implicit, for example, "this one," and simultane-
ously show the robot the supplement of interest. Both these
user verbal inputs are classified as "information comple-
tion" intents.

Each textual sample has been annotated with a unique intent
label. In contrast, each of its tokens is tagged according to
the IOB (Inside Outside Beginning) format depending on its
membership to an entity of interest, included in the ontolog-
ical model or not. In detail, each token is tagged with “B”
when it is the beginning of a known entity, with “I” if it is
inside a known entity, orwith “O” if it is outside of any known
entities. “B” and “I” tags are followed by a suffix represent-
ing the class/type of entity identified. A textual sample from
the NLI dataset is reported in Table 1.

Once the user’s verbal input has been interpreted, the
MCM updates the dialogue state with the information about
(1) the detected intent of the user (e.g., name of the supple-
ment, benefits, dose, or diet), (2) the entities mentioned by
the user if present (e.g., supplement, vitamin), and (3) the
nonverbal input that is submitted eventually (i.e., the entity
showed to the robot by the user). Next, the MCM invokes the
DRM to firstly determine the proper dialogue response based
on the status of the conversation and the expected dialogue
flow, and, next, to arrange the selected response in a natural
language form that the user can easily understand. To this
aim, first, the DRM selects the most appropriate procedure
(typically known as action) to be executed to fulfil a user’s
request. The possible actions are stored in theDialog Actions
Repository, which maintains their label names and the asso-
ciated codes for the execution. A total of 10 actions have been
implemented, with one action built for each defined intent.
The DRM determines the most appropriate action through
a supervised action selection model relying on an exist-
ing transformer-based architecture namedTED(Transformer
Embedding Dialogue) [63] to encode multi-turn dialogues
and select the most appropriate action to perform based on
the current dialogue flow.

Ourmodel was trainedwith a data set composed of 20 dia-
log flows (typically known as story), annotated with action
labels for each of their turns. The possible dialog flows
are stored in the Dialog Stories Repository. For instance,
in the following, a dialog flow is reported consisting of a
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Table 1 A textual sample from
the Natural Language Interpreter
(NLI) dataset, annotated with its
intent label
(description_request), tokenised
and tagged using IOB formatting

Text Intent Tokens Tag

What is the orange supplement for? description_request What O

is O

the O

orange B-Supplement

supplement I-Supplement

for O

? O

single intent-action exchange between the user and the sys-
tem, which describes the case when the user submits an
input text classified as a dose_request intent, i.e. “Can you
tell me the dose of retinol?”, the most appropriate action
action_what_dose_request, i.e., a query for the Supplements
Model Repository sent through DKH, should be generated to
arrange the correct answer:

Can you tell me the dose of retinol? ← the user text input

story_dose_request_001 ← the name of the dialog
story

dose_request ← the intent starting the
dialog story

action_what_dose_request ← the desired action

When the most appropriate action has been selected, the
DRM executes it to generate the associated dialog response.
A dialog action may require or not the generation of a nat-
ural language response. When response-generating actions
do not involve intents mentioned by the user in the conversa-
tion, e.g., greeting, error, thanksgiving messages, predefined
message templates are used, which are stored in the Natural
Language Response Templates Repository. These templates
are composed of a list of different messages sharing the same
information content. For example, to inform the user that the
input received has not been understood, a natural language
response is generated by randomly extracting one message
from the list of predefinedmessages associatedwith the infor-
mation content Lack of understanding, of which an excerpt
is reported in Table 2:

In the case of response-generating actions that involve
entities mentioned by the user (participant), the successful
retrieval of these entities from the dialog state is a precon-
dition to generating a proper response. This kind of actions
is associated with a SPARQL (SPARQL Protocol and RDF
Query Language) query template, which uses the entities
retrieved from the dialog state for querying the Supplements
Model Repository via DKM, and the result of this query is

Table 2 An excerpt of the predefined template to manage information
content “Lack of understanding”

Information content Message templates

I don’t think I understand, can you
rephrase it?

I don’t understand, rephrase it

Lack of understanding What? Repeat please

Can you repeat please

…

used to build the final response of the action. These query
templates are stored in the Query Template Repository.

5 Measures

Wecollected the data from the pre- and post-interaction ques-
tionnaires. The self-reported measures were used for our
post-hoc quantitative analysis.

5.1 Perceived Trust

Wemeasured the general perceived trust of the participants in
the pre-interaction questionnaire using two items as a base-
line in a 7-point Likert agreement scale, where 1 indicated
strong disagreement and 7 indicated strong agreement:

1. Primary aim: I would TRUST a robot if it gaveme advice
about health supplements/vitamins—trust for supple-
ments/vitamins

2. Secondary aim: I would TRUST a robot if it gave me
advice onmy overall medication plan (includingmedica-
tion for severe illness)—trust forprescriptionmedicine

These items were queried again in the post-interaction
questionnaire to measure the participants’ perceived trust
immediately after interacting with the robot. The perceived
trustmeasurewas used to address the research questionRQ.1
and research hypothesis H.1 as our primary aim, and the
anchoring effect on trust for our secondary aim (RQ. 1’).
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Thus, item 2 (trust for prescriptionmedicines) was onlymea-
sured indirectly, given our initial assumption that differences
in the participants’ perceived trust for supplements before
and after the experiment could potentially generalise to dif-
ferences in the perceived trust for medicines.

5.2 Intention to Use Robots

The intention to use robots was measured as the willingness
of older adults to use the robot in prospect in health facilities
and/or at home. To this aim, we designed two items ex-Novo
in the post-interaction questionnaire. The participants were
asked to indicate their level of agreement on a 7-point Likert
agreement scale:

1. How likely are you to use a robot in your home in the
next 12 months if it was available free of economic cost?

2. How likely are you to use a robot in health facilities (such
as pharmacies) in the next 12 months if it was available?

This measure was used to assess the associations between
the level of trust in the robot with the proxy variable of
actual use of robots at home or in facilities, which addresses
the research questions RQ.2 and RQ. 3, and the related
exploratory research questions.

5.3 Compliance

Participants’ compliance with the robot-recommended
supplement was measured for participants in the
recommendation-type advice condition and was deter-
mined from the post-interaction questionnaire using the two
following items:

1. I would have taken the suggested supplement/vitamin if
these were true

2. I felt uncomfortable, robots should NOT give any advice
regarding supplements/vitamins

To assess the level of agreement between trust specifically
in the recommendation-type advice and compliance with this
advice (i.e., actual acceptance of the advice; negative feelings
after the advice), we included the following item regarding
trust:

3. I felt I could TRUST its advice

The above items were measured using a 7-point Likert
scale. This measure was used to address hypothesis H.2.
We considered compliance as a potential behavioural con-
sequence of trust in the robot.

5.4 Other Measures

Participants were additionally asked to indicate their level
of agreement with the following item in the post-interaction
questionnaire: I found it easy to interact with the robot. We
included this measure to preliminary verify if the experimen-
tal conditions (information-type advice, recommendation-
type advice) influenced the participants’ perceived easiness
of interactingwith the robot, considering that this could result
in potential differences in trust in the robot between groups,
which must be accounted for in the post-hoc analysis of the
results.

6 Data Analysis

The examination of the Shapiro–Wilk test and the descriptive
statistic revealed that our data was not normally distributed.

For our repeated measures design, we applied Lin-
ear Mixed-Effects Regression Modelling (LMER) which
includes random effects that can account for individual varia-
tion, and fixed effects, which explain variance across individ-
uals. LMER is a more robust analytical approach compared
to traditional linear modelling [64, 65] and is robust to vio-
lation of assumptions [66]. Moreover, we corroborated our
results using non-parametric permutation mixed-ANOVAs
[67]. This test does not rely on assumptions about the dis-
tribution of the data and performs better than traditional
ANOVAs with small sample sizes [68].

We preliminary found that correlations between socio-
demographics (age, gender, education) and the dependent
variable (perceived trust) were weak and not significant.
Consequently, we did not include these as covariates in the
model to preserve statistical power. Moreover, our other
measure of perceived easiness of interacting with the robot
revealed that its effect on trust did not depend on the experi-
mental group, i.e., participants of both groups perceived the
robot as equally easy to interact with. Before our analysis, we
verified that the experimental groups showed no differences
in the overall level of trust in robots prior to the interaction,
using non-parametric permutation ANOVAs.

All analyses were carried out within the R environment
(4.2.1, 2020-06-23; R Core Team, 2020). The package lme4
[69] was used for the LMER, the package permuco [68]
for the permutation test, and the package emmeans [69]
for pairwise comparisons. Correlations were explored using
Spearman’s Rank correlation coefficient (RQ. 2 and RQ. 3).
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7 Results

7.1 Primary Results

Trust in the Robot-Based Adive for Supple-
ments/Vitamins (RQ1 And H1)

For theMixed-EffectModels, time and groupwere treated
as fixed effects, while factor ID as random effects (i.e., ran-
dom intercept of subject). The analyses concerned nested
model comparisons against the null model (i.e., intercept-
only model) based on chi-square difference tests (i) and the
results of the regression model (ii).

First, we tested whether adding the fixed effect of time
to the null model would significantly improve the model fit.
The results of this analysis showedanon-significant improve-
ment (χ2(1) = 0.1307, p = 0.72). The null model was then
compared to a model that included the fixed effect of group.
Neither was this model a better fit to the data than the null
model (χ2(1) = 0.2661, p = 0.61). Next, the null model was
compared to a model that included both main effects (time
+ group, χ2(2) = 0.3968, p = 0.82) and to a model addi-
tionally including the interaction term (time*group, χ2(1) =
1.1187, p = 0.77). Both models did not improve the model
fit significantly.

Our research hypothesis H1 concerned the interaction
effect between group and time on trust in robots for supple-
ments. We expect that only participants in the information-
based condition would trust the robot’s advice for sup-
plements more after interacting with the robot, compared
to not interacting with the robot (baseline). Therefore, in
this hypothesis we did not expect differences in time for
the participants in the second group (recommendation-type
advice) compared to the participants enrolled in the first
group (information-type advice). That is, trust in the robot
for supplements after the interaction would not change for
participants in the recommendation-type condition.

Our results of the mixed design, including fixed and ran-
dom effects, confirmed the following pattern: no difference
between groups (β = −0.47, CI [−1.56 to 0.63], p= 0.396),
between times (β = −0.60, CI [−2.39 to 1.19], p = 0.505),
and no interaction (β = 0.47, CI [−0.67 to 1.60], p= 0.413).
We examined participants’ ratings of the dependent variable
of trust across Time 1 (pre-interaction) and Time 2 (post-
interaction) and between groups (i.e., main effects) but not
including the interaction term. Also in this model, the main
effects of group (β = −0.23, CI [−1.17 to 0.70], p = 0.619)
and time (β = 0.10, CI [−0.46 to 0.66], p= 0.723) remained
non-significant. Data visualisation of these results in Fig. 4
confirmed that participants in the first condition (i.e., partici-
pants that interacted with a robot which strictly followed the
human prescription of the supplements) did not differ in their
level of trust in robots for supplements compared to partici-
pants in the second condition (i.e., participants that interacted

Fig. 4 Boxplot distributions of the interaction between group and time
on trust in the robot for supplements. Each box represents data between
the 25th and 75th percentiles. The boxplot shows the median (black
horizontal lines inside each box), and limits of the interquartile range
(lower and upper hinges of the boxes, respectively). The dots inside the
boxes represent the mean values of each distribution

with a robot that made self-recommendations to comple-
ment the human’s advice with additional supplements). Our
power analysis revealed that the power for the effects consid-
ered was limited, with estimates falling below the commonly
accepted 0.80 threshold. Nevertheless, the graphical inspec-
tion in Fig. 4 showed no tendency toward any meaningful
difference between conditions, which might suggest that one
should replicate the same null effects even at larger sample
sizes.

Given that differences between times within groups did
not emerge, our hypothesis H1 is partially supported: trust in
the robot’s advice for supplements remained somewhat high
even when the robot recommended more supplements to the
participants than the human dispenser supplied. However, no
positive differences in trust (i.e., higher levels of trust) were
observed when the robot simply informed participants about
the supplements, in contrast to our hypothesis.

Compliance (H2)
We aimed to explore the compliance with the robot-

recommended advice on supplements of the participants
enrolled in the second group. Therefore, the following
descriptive data concerns 15 participants only.

As illustrated in Fig. 5, the average level of agreement
toward trust for the advice received (“I felt that I could
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Fig. 5 Descriptive mean differences concerning participants’ attitudes
and feelings toward the robot of the group within the recommendation-
type advice condition. Error bars represent 95% confidence intervals

TRUST its advice”) and the actual acceptance of the advice
(“I would have taken the suggested supplement/vitamin if
thesewere true”) could be interpreted asmoderated,meaning
beyond the central point of the scale. In contrast, participants
indicated, on average, low levels of negative feelings as repre-
sented by the bar plot negative feelings after the advice (“I felt
uncomfortable, robots should NOT give any advice regard-
ing supplements/vitamins”), although with higher variation
in response compared to the other measures. Although we
did not measure a direct relationship between trust and com-
pliance due to the relatively small sample size (n = 15), our
results indicate that compliance with the robot-based advice
follows a similar agreement pattern with their trust in the
robot. More specifically, the recipience of the advice follows
a positive trend with higher trust, with associated low levels
of negative feelings about the advice. These results confirm
our hypothesis H2: that trust is accompanied by higher lev-
els of compliance with the advice, even when this advice
arises from the robot’s self-recommendations. This is in line
with other findings that people would comply more with the
instructions of machines, which receive more of their trust
[24].

7.2 Secondary Results

Trust in the Robot-Based Advice For Prescription
Medicines (RQ1’)

This model included trust in robots for prescription
medicines as the dependent variable. We applied the same
data analysis procedure used for the trust in robots for non-
prescription medicine.

When comparing the null model against the model that
included thefixed effect time,we found a significant improve-
ment in the model fit (χ2(1) = 5.9264, p = 0.015). Instead,
the model that included the fixed effect of group was not a
better fit to the data than the null model (χ2(1) = 0.0675, p

Fig. 6 Boxplot distributions of the interaction between group and time
on trust in the robot for medicines. Each box represents data between
the 25th and 75th percentiles. The boxplot shows: the median (black
horizontal lines inside each box), limits of the interquartile range (lower
and upper hinges of the boxes, respectively). The dots inside the boxes
represent the mean values of each distribution

= 0.80). A significant improvement to the null model was
found when comparing the model that included both main
effects (time + group, χ2(2) = 5.9939, p = 0.049) but not
in the model that included the interaction term (time*group,
χ2(2) = 6.4853, p = 0.090). Consistently with the nested
model comparisons, the model that included the interaction
between the fixed effect time and group, accounting for the
random effects, showed no difference between groups (β =
−0.33, CI [−1.55 to 0.88], p= 0.585), between times (β = −
1.33, CI−3.20 to 0.53], p= 0.157), and no interaction effect
(β = 0.40, CI [−0.78 to 1.58], p = 0.499). However, the
model including only the main effects showed a significant
effect of time on trust in robot for medicines (β = −0.73,
CI [−1.32 to −0.15], p = 0.015) but the fixed effect group
remained not significant (β = −0.13, CI [−1.20 to 0.93], p
= 0.803), R2

marginal = 0.049; R2
conditional = 0.560.1

These results were corroborated by non−parametric per-
mutation mixed-ANOVAs, using 6000 Monte Carlo itera-
tions, confirming thus the accuracy of our results. That is,
the main effect of time on trust in robots for medicines

1 Marginal R2 represents the variance explained by the fixed effects;
Conditional R2 represents the variance explained by both the fixed and
the random effects.
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(F(6.33394))was significantwhen considering both the para-
metric p-value (0.018) and the resampled p-value (0.015) in
the model that did not include the interaction term. Neverthe-
less, the interaction plot in Fig. 6 showed that the interaction
effect might in fact have occurred.

It is possible that the decreased degrees of freedom due
to the additional interaction term might have negatively
impacted the statistical power to detect the interaction con-
sidering the small sample size. In fact, the power analysis
showed that estimates fell below the 0.80 threshold also in
this model. Therefore, given the exploratory nature of our
pilot study, we proceeded with further analyses looking at
specific contrasts: levels ofgroupwithin each level of time.To
this aim, we performed contrasts for the estimated marginal
means (EMMs) extracted from the model that included the
interaction term, using Dunnett-style comparisons (Fig. 7).

Results of this post-hoc test showed that participant in
the first group (information-type advice) were less likely
to trust the robot for medication prescription after inter-
acting with the robot (M = 3.53, SE = 0.429, 95% CI
[2.67–4.40]), in comparison to the baseline (M = 4.47, SE
= 0.429, 95% CI [3.60–5.33]), (β = 0.933, SE = 0.416;
t(28) = 2.244, p = 0.033). However, no significant dif-
ference in trust was found for participants of the second
group (recommendation-type advice) after interacting with
the robot (β = 0.533, SE = 0.416; t(28) = 1.282, p =
0.210). These results highlighted a type of protective role of
robot-based recommendations on the trust of older adults in
robots for prescription medicines.More simply, when partic-
ipants experienced robot-based advice for supplements, we
found that this experience negatively influenced their trust for
medicinewhen the robot simply informed themabout supple-
ments (i.e., information-type). As shown in Fig. 6, the trust of
older adults in robot-based advice formedicineswasmedium
with values around the central point of the scale before the
interaction with the robot. After receiving information-type
advice on supplements, their trust in receiving the same type
of advice on medicines was lower, with values below the
central point of the scale. This might indicate that trust-
ing a robot with information-type advice on supplements is
not sufficient to invoke trust in the robot for more sensitive
tasks such as prescription medicines for more severe health
conditions. However, when the robot recommended further
supplements (i.e., recommendation-type), the level of trust
in the robot did not change compared to the baseline (pre-
interaction with the robot). We speculate that older adults
might have a better overall perception of a proactive robot
(i.e., one that gives recommendations), compared to a reac-
tive one (i.e., which strictly follows instructions) in giving
useful advice in health-related contexts, which resulted in
somewhat resilience in their trust.

7.3 Associations (Primary and Secondary Results)

Intention to use Robots (RQ2, RQ3 and RQ2’, RQ3’)
Our research questions also concerned the strength of the

association between—trust toward robots for supplements
and the closer proxy of actual behaviour, i.e., intention to use
robots at home and intention to use robots in facilities (e.g.,
pharmacies) in the future. As shown in Fig. 8, Spearman’s
Rank correlation coefficients revealed the strongest associa-
tion between the trust in robots for medicines and intention
to use robots in facilities, while the lowest association was
found between trust in robots for supplements and intention
to use robots at home. All correlations were significant, at
p ≤.001 except for Trust (Supplements)—Home use (p =
0.008) and for Trust (Medicines)—Home use (p = 0.001).

The results indicate two main outcomes:

1. Given a certain level of trust in the robot-based advice for
supplements, its association with the intention of older
adults to use robots in a human-controlled environment,
such as a health facility is higher (0.64) than that of
welcoming robots in their own homes (0.45). Similarly,
the correlation between trust in robot-based advice for
medicines and intention to use robots in facilities (0.73)
was stronger than its correlation with the intention to use
robots at home (0.56). The strength of these associations
can be interpreted as: low < 0.6; moderate ≥ 0.6; strong
≥ 0.8.

2. When older adults trust the robot in a more sensitive task,
such as medication for severe illness compared to milder
health supplements, their intention to use a robot in their
homes is higher. Instead, trusting a robot in a task with
rather negligible consequences of robot-based advice,
such as in the case of supplements, does not strongly
indicate that older adults intend to use robots at home
(lowest association, Fig. 8).

These results should be read with caution since we have
simply explored bivariate correlations. However, they may
provide useful insights for future studies when planning the
estimation of the causal relationship between the variables.

8 Discussion

The aim of the present study was to investigate whether older
adults would trust a humanoid robot giving them advice
on over-the-counter supplements and vitamins. From lit-
erature insights, we identified two desirable attributes of
advisers: anthropomorphism and perceived competence (or
task fit). Here, we intended not to investigate the effect of
either attribute on people’s advice-taking behaviour. Instead,
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Fig. 7 Plot A shows the
estimated marginal means
(EMMs) comparisons in two
groups, as a function of time. The
degree to which arrows overlap
reflects the significance of the
comparison of the two estimates;
the bars represent the confidence
interval of the EMMs. Plot B
shows a visual representation of
thep-values in the pairwise
comparisons test. Note. Since we
used a balanced design and the
model did not include covariates,
marginal means based on the
statistical model are equal to the
descriptive means

we aimed to explore the preference for the type of robot-
based advice in health-related contexts (information-type vs.
recommendation type), assuming that the sensitivity of the
context would play a role in which advice was accepted
and trusted more. However, we accounted for the anthropo-
morphism and competence of the adviser to strengthen the
adviser-advisee synergy, thuswe used a humanoid robot as an
adviser (i.e., anthropomorphism) and labelled it as a “trusted

expert” by a human (i.e., competence). For the latter, we used
a cover story of a fictional human dispenser who gave the
participants a wellbeing questionnaire to complete before the
experiment, based on which the dispenser recommended two
health supplements. The participants were blind to the choice
of supplements and were asked to consult the robot about
their use. Our intention to include a fictional dispenser was
motivated by studies suggesting that people aremore likely to
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Fig. 8 Spearman’s Rank correlation matrix. The size of the circles indi-
cates the strength of the association between the variables; coefficients
are also included inside the circles (refer to the text for the correspond-
ingp-values)

follow instructions given by an official representative than an
unofficial one [54]. We hypothesised that participants would
prefer to receive only information-type advice from the robot
on the supplements, trusting the robot more when it sim-
ply described the supplements given by the dispenser and
answer questions on them.Weexpected this pattern to change
when the robot gave recommendation-type advice, i.e., it gave
advice in favour of an additional supplement not provided
by the dispenser, based on the participants’ indicated health
conditions on the wellbeing questionnaire. Specifically, we
expected higher trust in the robot for the participants that
received information-type advice compared to the baseline
(before interacting with the robot) and no changes in trust
for participants that received recommendation-type advice.
This hypothesis followed theoretical literature insights that
information-type advice is often preferred [15] and given
the sensitive nature of the experimented task. To under-
stand people’s response to recommendation-type advice,
we also measured their post-decision compliance with the
advice considering it as a potential behavioural consequence
of their trust in the robot. We expected that higher trust
would be accompanied by higher levels of compliance. Our
exploratory study represents a first attempt to understand the
perception, trust and intention to use robot advisers (a) in an
older adult population and a (b) in a close-to real-life health
context with more critical implications.

The scope of our study was not to directly control
for human-based advice. Instead, we compared a proac-
tive versus a reactive robot behaviour mediated indirectly
by the human factor, i.e., the information-type advice con-
dition implied a condition in which the robot explicitly
followed instructions from a human dispenser, whereas
the recommendation-type advice mismatched that of the

human. Our experimental findings showed that the robot-
based advice was equally trusted by older adults whether
the robot simply informed them about the supplements or
recommended additional supplements. The preliminary non-
parametric permutation ANOVAs revealed that the groups
showed no differences in the overall level of trust in robots
prior to the interaction. Moreover, we also verified that the
differences in the trust variable between the two experimen-
tal groups were not indirectly affected by the participants’
perceived easiness of interacting with the robot, i.e., partic-
ipants of both groups perceived the robot as equally easy to
interact with. Hence, our hypothesis H1 was only partially
supported. Our analysis revealed that the trust of older adults
in the robot before the interactionwasmoderate and remained
such even after they received advice from the robot on health
supplements. While we cannot affirm with certainty that
older adultsmanifest a generally positive attitude in receiving
robot-based advice, it appears that theymight not necessarily
ill-favour it. In particular, when measuring their compliance
with the recommendation-type advice, we found low levels
of negative feelings after the advice, although with higher
variation in response compared to the actual acceptance of
the advice measure. The latter produced results beyond the
central point of the scale, indicating that older adults may be
willing to take and use the advice of the robot, even when it
arises from the robot’s self-recommendations. These results
suggest that higher trust is accompanied by higher levels of
compliance, as per our hypothesis 2. We exclude that any
cognitive anchoring bias (overreliance on initial information
offered) might have occurred, given that participants were
not given a choice of adviser to run the experiment with [71],
i.e., compliance arose from the experimented conditions. We
used a realistic laboratory experiment, having participants
interact with a real robot adviser. This is important given that
authentic human–robot interactions can lead to differences in
perceptions of the robot adviser’s characteristics, for exam-
ple, emotional trust or expertise [35].

Here we considered a scenario involving health-related
advice using supplements and vitamins. While certainly, this
is a relatively sensitive task, the investigation of other tasks of
higher complexity and sensitive characteristics would reveal
useful and solid conclusions. Task difficulty influences the
utilisation of advice and perceived expertise (both self and
that of the adviser) [16, 72]. To this aim, we sought to investi-
gatewhether therewouldbe anyconsequential behaviours for
older adults in the context of a similar butmore complex task,
such as robot-based advice onmedication including those for
severe illnesses. Although we did not experiment with this
task directly given ethical reasons, we expected the close
context of supplements/vitamins to prime people’s response
toward prescription medicine given an anchoring effect [55].
In the lack of empirical investigations, our studymay provide
some predictions in this context. The pattern of our results
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suggested that indeed task difficulty might influence trust in
the advice received (and/or in the adviser’s characteristics)
and so does the type of advice, consistent with previous liter-
ature. For example, after receiving information-type advice
on supplements, participants’ trust in the robot-based advice
for medicines dropped. In contrast, the trust of participants
who received recommendation-type advice on supplements
was not negatively affected compared to the pre-interaction
baseline, remaining beyond the central point of the scale.
We speculate that receiving further recommendations from
the robot might have led to a better perception of the robot
adviser’s expertise, which resulted in trust resilience or some
type of protective role of trust. It is worth noting, however,
that our insights were drawn from the inference that individ-
uals may rely on their experience with the robot’s suggestion
of vitamins to evaluate their trust in its ability to prescribe
medicine. It is possible that this information may not be the
sole determining factor in their trust, which requires further
careful investigations. Moreover, our results confirm litera-
ture insights that task difficulty and type require significantly
different adviser characteristics to fit that task. Hence, robot-
based advisers should be studied extensively and empirically
in several meaningful contexts before making conclusive
assumptions about their use. Nonhuman advisers in other
applications, such as domestic, social, health, or military
must be informed based on contextual factors that influence
compliance with them [73].

Another finding of our study was that older adults are
generally willing to use robots in the future at home or in
health facilities. With trust being positively associated with
the intention to use robots, these findings strengthen our pre-
viousmeasures of trust in robot-based advice.Moreover, they
provide insights for future studies to study the causal relation-
ship between the two variables. Our results indicated once
more that the type of task is important even in people’s inten-
tion to use robots. For example, trusting robot-based advice
for supplements is of lesser reason to use robots domestically,
compared to trusting a robot for more sensitive tasks like
medicines, which increases people’s intention to use one at
home. However, older adults would yet slightly prefer to use
robot advisers in a more controlled environment like health
facilities. The results should be read with caution since we
only explored bivariate correlations. Our findings offer valu-
able insights into the relationship between trust in older adults
and the use of robots for health-related advice. However, to
further validate these results, it is necessary to conduct addi-
tional research with larger sample sizes and higher statistical
power.

In conclusion, our exploratory study showed that the older
population is willing to receive health advice from robots
when these have low-risk consequences, while more stud-
ies are needed to clarify what would happen when high-risk
consequences are involved. Our findings are promising and

motivate conducting larger studies to understand in which
way high-risk advice should be communicated by the robot
to increase the trust and compliance of older adults. More-
over, future studies could explore the differences between the
type of advice (i.e., information-based vs recommendation-
based) and type of adviser (robot vs human) in health-related
contexts within older adults. This would give a better under-
standing of the role of robots in the trust toward health-related
advice. For example, in future work, we aim to inves-
tigate other experimental conditions, such as comparing
against multiple robot advisers of different characteristics,
like degree of anthropomorphism, personality traits, level of
confidence, level of expertise and competence. In turn, the
results of this study should be evaluated more broadly in a
non-vulnerable population (i.e., adults) and experiment with
real-world conditions for high-sensitivity contexts. Finally,
in our study we presumed that labelling the robot as expert
by an official human representative (i.e., dispenser) would
impact its perceived competence and credibility. Thus, it is
not clear how our participants would respond to robot-based
advice if the robot was not labelled as expert by humans. In
this sense, future work should fill this gap by investigating
the role of the robot title in robot-based advice.
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