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Abstract

Movement analysis is complex due to many different factors: different forms of data, different
levels of precision, strongly influenced by context, for which diverse sets of tasks require different
visualizations and algorithmic approaches. There is a vast scope of previous work that researches, for
diverse tasks, several approaches to visualization designs and data processing methods. The scope
of tasks, potential visualization methods, and data processing that is yet to research is vast. To help
reach a higher precision when describing contributions of researchers, we define a framework that
characterizes information, from its recording into data to the way it is presented to the user and the
terms used to communicate about it for evaluations. Within this thesis, we explain how our original
research scope directed us from establishing the current state of the art for visualization methods
for movement analysis while accounting for context into a characterization of visualizations, data
processing methods, and communication approaches. This results in the framework that is the main
contribution of our thesis. This thesis also presents several studies that refine our understanding of the
impact of data complexity over diverse tasks, using precise terms. We also discuss how our system can
be used to set up and analyze studies based on vague terms. Furthermore, we discuss the strength and
weaknesses of existing designs for exploration tasks of contextually rich data movement, and potential
design approaches to investigate in future work. These discussions include the tasks for which the
designs could be most useful and how they fit within different characterizations of information and
data.
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Chapter 1

Introduction

1.1 Chapter Presentation

The main contribution of this thesis is a framework named the Systematic Framework for N-scales
Characterizations of Studies (SFNCS). It is a framework that formally characterizes visualization
methods in combination with evaluation methods by linking together five blocks – concepts that are
fundamental to visualization, its design and evaluation. These blocks are Data, Visual stimuli, Task,
Question and Response. We discuss in details the SFNCS and its blocks in chapter 4. Later in this
thesis we evaluate a novel visualization we designed, named the ATS-ATS Mask, using the SFNCS.
This section details neither the SFNCS, nor the ATS-ATS Mask, but briefly discuss subjects pivots
before contextualizing and presenting the steps that motivated the PhD subject from which resulted
this thesis. We then discuss the research questions we focused on, and list our contributions to
answer them. We then detail the thesis scope and limitations of our field of investigation. Finally we
conclude this chapter by summarizing its most important elements and discuss how what it introduces
is expanded in further chapters.

1.2 There, making a big detour, and back again: history of pivots

The work for the thesis began on October 2017 with the subject: "Uncertainty". The objective
with this approach was to adapt the subject of the thesis according to whatever would grab my
interest the strongest. On my first day being officially a PhD student, I was in Phoenix Arizona,
USA, at the IEEE VIS conference, as a spectator. The conference showed a variety of different
problems and approaches to tackle them, as well as potential research directions. We decided to
first investigate similarities and differences within different fields when dealing with uncertainty.
Contributions presented at the conference and our own research indicated that diverse fields require
to adapt to uncertainty, e.g. data retrieval from written documents and document classification
[88, 126], extraction of information prone to interpretation due to language [282], historical documents
with potentially contradicting sources [157], or predicting and communicating hurricane tracks
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[65]. Following the conference and after considering several potential thesis subjects relating to
uncertainty, our interest stopped on predictions and communications of hurricane tracks. Our choice
was strongly influenced by being informed by experts during an IEEE VIS conference workshop
that most prediction software were problematically long to compute. We considered that a novel
and potentially fruitful approach would be to use machine learning to generate relatively imprecise
predictions, for which visualizations displaying levels of uncertainty on results generated could help
experts evaluate the value of predictions. We thus read literature about uncertainty, machine learning
and representation of moving entities, be it natural phenomena or human driven. But an informal
discussion with colleagues informed us that a similar approach had been attempted previously, but that
machine learning methods proved too unreliable to be reasonably considered as tools for trajectory
predictions. That information was known by experts in the field but not published, as it is uncommon
to report on failures. Fortunately, reading the literature on uncertainty and analysis of trajectories
showed us a variety of other interesting subjects. The decision was thus made to pivot towards
focusing on a field that carries many different types of information, each carrying different types
of uncertainties, and dependent on context surrounding the information retrieval: the analysis of
space-time attributes related to movement.
As visualization designs were being developed, we faced an important road block: there was no
systematic approach for the evaluations of the designs we were working on. There were many studies
run to evaluate design contributions, but no overarching structure to compare different approaches
systematically. There were frameworks describing tasks, framework to describe visualizations,
structures to characterize data, and different approaches to assess answers, but a structure linking
those from start to finish had yet to be set up. The necessity and value to generate such a structure
seemed very important to us and hopefully for the scientific community. Identifying this gap led us
to focus our research on answering it. This thesis is thus motivated by an interest in visualization
methods related to space-time and movement-related visualizations, and conceptual frameworks to
allow their evaluations.

1.3 Context and Motivation

1.3.1 Characterization of visualization and studies

Representing information is a key step for enriching cognitive reasoning. Representation of infor-
mation influences how it is understood and what can be achieved with it. Research on information
visualization is developed on the objective to understand the influence of visualizations over cognitive
reasoning. Diverse visualization methods have been developed to represent information encoded as
data, e.g. bar charts, line charts, parallel coordinates, time series, Gantt charts. Examples of pertinent
usage of visualizations have been reported for a long time, e.g. John snow’s cholera map [236], the
commercial and political atlas of Playfair [204], or Minard’s flow map of Napoleon’s invasion of
Russia [176]. While some visualization methods are now widely used and recognized as valuable
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to help the cognitive process of data analysis, the detail of how visualizations support the cognitive
process is not fully understood. Additionally, insight, i.e. novel information found or reinforced
understanding of presented information, is a notion we do not fully know how to evaluate, nor how
to define without risk of different interpretation [186]. The history of visualization has long been
marked by the design of new visualization methods, the usefulness of which is proven by user studies
in which participants are asked to perform certain tasks. Jansen and Dragicevic define the interaction
as a designer who conceptualizes a visualization system for a reader, as illustrated in Fig. 1.1.

Fig. 1.1 A depiction of the actors, designer and reader (or user more broadly) and components of the
process of visualizing information. The components of the visualization originate from the reference
model of Card [51], with the reader interaction influencing the other components. The reader is using
the visualization to enrich their mental model. Depiction generated by Walny [253] and adapted from
Jansen and Dragicevic [124].

The information visualization field follows the objective of enriching cognition and using capa-
bilities of human perception. Years of evolution have resulted in the human eye developing strong
capabilities for multitasking, albeit with some limitations. Information visualization is a field that
aims at developing tools that use the eye abilities to aid in cognition [51, 76, 105]. How to best
use the human eye capabilities for information visualization remains an open question. Historically,
the philosophy that motivated designs has shifted, from data-centric to task-centric. Data-centric
philosophy aims to represent collected information in the most accurate way possible. Tufte [245]
advised to "above all else, show the data". Yet, the ability to display data accurately provides no
guarantee that a visualization method is fit for the user’s goals, and may even hinder their ability to
reach it [9]. Thus focusing on the usefulness of visualization, the paradigm shifted to task-centric
approach. Clearly communicating tasks for which visualization methods could be useful for is critical
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to ensure its value [202]. Numerous task taxonomies have then been generated [150, 41]. Since
tasks can be very specific, a common approach is to characterize tasks based on level of abstractions
[12, 33, 41, 211]. A consequence of the characterization of tasks is the consideration of its relations
to other elements that are important to information visualization. The WHAT-WHY-HOW model
of Brehmer and Munzner [41] illustrates that consideration by characterizing in the same structure
the objective of the task assisted by information visualization, the tools that are offered to users, and
the information present in the system. Our research is located in this space, where the characteri-
zation of the elements that make up the visualization of information reinforces the contextualized
understanding of its benefits. It is common for researchers (or designers) to evaluate the value of a
visualization system by setting up user studies in which participants are asked to perform certain tasks.
The processes to set up studies is formalized by numerous years of previous research that ensures
validity of the learned outcomes produced by the user studies, from preparation to result analysis
[228, 3, 52]. The user studies report allow considering the value of the evaluated visualizations for
some tasks in a precise manner, but do not contextualize the visualization system that is evaluated.
We argue that the lack of such structure results in difficulties to assess differences in studies. E.g. the
comparison of two similar visualizations designs evaluated in different studies, with different datasets,
with different tasks, can make it cumbersome to assess the value of each design for either another task
or another dataset. Our research lies in connecting characterizations of the elements that make up a
visualization system that is assessed to strengthen understanding of assessed visualizations in context
to non-discussed assessments by researchers who focus their discussion on the visualization systems
they assess.

1.3.2 Analysis of spatio-temporal information

Information visualization is related to geographical analysis for the analysis of spatio-temporal
information. This connection is ancient, with some examples being particularly famous, such as John
snow’s cholera map [236], illustrated in Fig. 1.2.
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Fig. 1.2 The London’s Soho map produced by John Snow [236] depicts the correlation between
cholera deaths and water pump usage.

Maps present rich information related to geographical information with the possibility to set
different levels of abstraction that allow to easily connect the displayed information to the mental
model the user is developing as they are using a visualization system. Time, a critical factor of
analysis of geospatial events, has been utilized as a variable of interest in the design of visualizations
historically as well, as exemplified with Minard’s [176] map of Napoleon’s campaign in Russia in
1812, illustrated in Fig. 1.3. The flow map communicates the following information:

• the geographical positions that Napoleon’s army took on its way to and from Moscow

• the dates associated with the position records

• the temperatures recorded at these points

• the size of the army at each point

This example is a strong example of how providing details of information over time allows under-
standing relations between information collected from attributes sharing different dimensions.
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Fig. 1.3 The campaign of Napoleon in Russia illustrated with a flow map, developed by Minard [176].
This visualization connects an ensemble of spatial and abstract representations of information with
annotations for contextualization.

Conceptualizations of time and space have changed over time, but now benefit from a shared
understanding amongst scientists [250]. Representations of time and space have also benefited of
technological evolution and technical capabilities offered by computer. Geographic information sys-
tems (GIS) evolved with significantly with the development of information visualization, reinforced
by availability of software [250, 201, 75, 251]. The analysis of data related to movement is important
for tasks that rely on understanding the movements of a variety of moving entities, e.g. aeroplanes,
boats, cars, pedestrians, wildlife [136, 17, 265, 222]. Understanding the effect of factors that influence
movements is a complicated task due to the necessity to consider up to 3 geographical dimensions
over time, as well as evolution of other time dependent attributes.
The complexity and the amount of data involved in the analysis of spatio-temporal information
requires the usage of multiple perspectives. Often, the insight to gain from such complex data is not
known by users, who then have to explore it. This process is called exploratory data analysis [246].
As the user aims to identify patterns, trends, correlations or anomalies within the data, it is necessary
for them to interact with the data to navigate it. Often, filtering data related to movement and event
data is a key part of the interaction to allow for the amount of data displayed to be manageable for
the user. One visualization method seemed particularly promising: the time mask, developed by
Andrienko et al. [20]. The time mask overlays time series where certain conditions, such as those
described in a query, are matched, a condition being a status of the data queried by a user. The time
mask is illustrated in Fig. 1.4. The overlay is thus indicated before any filtering of the data.
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Fig. 1.4 The time mask developed by Andrienko et al. [20]. This picture shows a system displaying
quantitative and qualitative attributes in a common design on top, and the same data with the overlay
of the time mask at the bottom. Their design is set as an overlay of the quantitative and qualitative
attributes with rectangles with a low opacity indicating the query entered; the red transparent rectangle
over the display of the ’ball distance of the defence goal of 002’ indicates a range selection, and the
text at the bottom indicates that the selection also includes ’BallStatus of 002 in [1]’ represented by
the bright opaque red rectangles at the top. The yellow, pale rectangles indicate the time frames for
which the data presented is within that combination of selections.

As the time mask presented a novel approach to characterize time-related queries over spatio-
temporal attributes, we identified the following gaps:

• The time mask is limited to queries related to attributes and time, but does not allow the
consideration of spatial queries.

• The time mask can be applied over different views, but without indication of the attributes it is
overlaid on, the cases for which it is estimated effective are less clear.
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• The time mask has only been assessed for qualitative studies. Precise identification of low-level
tasks for which using the time mask is likely to result in an erroneous interpretation of the data
is yet to be discovered.

1.4 Aims and research questions

The primary aim of this work is to provide a framework that connects characterizations of the elements
that make up a visualization system that is assessed with a study. The underlying goal is to generate
a new structure that would characterize each step of the process to easily highlight differences
within studies, and thus more easily build knowledge on top of previous research. To achieve this,
we developed a framework, namely the Systematic Framework for N-scales Characterizations
of Studies (SFNCS), which extends Card et al. ’s [51] and characterizes the questions asked of
participants, as well as the tools offered to them to answer.

The secondary objective of this work is to enrich the approach taken by the time mask to consider
the characterization of overlays over visualizations displaying information related to attributes, time
or space. The ATS-ATS Mask, which broadens the time mask to an offer wider design space for
enriching visualizations with overlays to indicate occurrences of data matching user-generated queries.
The ATS-ATS Mask is formally defined and detailed in section 5, as well as how its concept can adapt
to specific variations, e.g. in our studies described in section 6, the A-ATS Mask.

We later use the SFNCS as a tool in the studies we set up to evaluate a design derived from a
specific section of the ATS-ATS Mask, the A-ATS Mask. This study is set to evaluate the complexity
of low-level tasks that can be performed using the A-ATS Mask.

The SFNCS, derived from the framework of Card et al. [51], is itself populated by previous
contributions. The details of these contributions and how they fit together within the SFNCS are
detailed in section 4.2, but we need to introduce them briefly to ensure clarity of our research questions.
The characterization of tasks within the SFNCS is made using the framework of Andrienko et al. [12].
In this framework, an important notion introduced is the difference between elementary and synoptic
tasks. Elementary tasks address individual data elements, while synoptic tasks require that the data be
analysed as a set. Further details about that notion are provided in section 2.3.
Additionally, the evaluation of our novel design characterization, the ATS-ATS Mask, implies in-
vestigating several aspects about it: what are its strengths and weaknesses for tasks of interest,
understanding which aspects of it are impactful, and whether a concept that extends to several visual-
izations at once can and should be evaluated with several visualizations displayed at once.

Thus, our thesis has three aims: the generation of a framework to characterize studies from task to
answering process of participants, to set up designs to extend the time mask, and to assess their effect.
The evaluations of the designs we created represents a small and specific selection of the theoretical
range of the SFNCS, which we justify in section 6. Our research questions are thus defined for those
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three aims.

The first main research question our thesis aims to answer is:
Research question 1: How can the information visualization reference model be expanded to define
the evaluation process when generating a study to assess a novel contribution?

The second main research question of our thesis is:
Research question 2: How can the time mask be extended into a theoretical framework that enables
filtering according to time, attributes, and space?

The third main research question that our thesis, through the studies, aims to answer is:
Research question 3: How does the visualization of conditions over time-space-attributes affect
people’s capabilities in conducting synoptic comparative tasks within multivariate spatio-temporal
data analysis?

By considering the variations of time-space-attributes and performance in associated analysis
tasks, we generate the following more detailed research questions:

• Research question 3.1: How does the visualization of conditions over time-space-attributes
affect the ability to conduct synoptic comparative tasks within multivariate spatio-temporal
data analysis?

• Research question 3.2: How does the visualization of conditions over time-space-attributes
affect self-reported trust in conducting synoptic comparative tasks within multivariate spatio-
temporal data analysis?

• Research question 3.3: How does the scaling of the axis displaying time variations affect the
ability to conduct synoptic comparative tasks within multivariate temporal data analysis?

• Research question 3.4: How does the scaling of the axis displaying time variations affect
self-reported trust for conducting synoptic comparative tasks within multivariate temporal data
analysis?

• Research question 3.5: How does the display of additional unnecessary information affect
the ability to conduct synoptic comparative tasks within multivariate spatio-temporal data
analysis?

• Research question 3.6: How does the display of additional unnecessary information affect self-
reported trust for conducting synoptic comparative tasks within multivariate spatio-temporal
data analysis?
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1.5 Contributions

The contributions of our thesis are as follows:

• Primary contribution: the Systematic Framework for N-scales Characterizations of
Studies (SFNCS). The SFNCS, (pronounced "sphinx") is the main contribution from this thesis.
Derived from the Card [51] model, this framework draws upon existing contributions and links
them together to characterize the entire workflow, from the tasks asked of participants to the
answering method.

• Second contribution: we defined the ATS-ATS Mask, which extends the time mask to
incorporate characterizations of visualizations with overlays displaying conditions based
on attributes, time and space. The letters used to characterize the ATS-ATS Mask are
following the characterization of information as presented by Peuquet et al. [201] in their
framework, where information is considered to be of three types, A for Attributes (WHAT), T
for Time (WHEN), and S for Space (WHERE).

• Third contribution: we operationalized the SFNCS to set up studies to assess the effect of
the A-ATS Mask over synoptic comparative tasks. The A-ATS Mask is a variation of the
ATS-ATS Mask. These studies both demonstrate the usage of the SFNCS and generate insight
about the use of A-ATS masks for synoptic comparative tasks.

1.6 Thesis scope

The scope of this thesis is defined by the range of our contributions. The SFNCS is a framework that
is built with high-level elements, and developed with other frameworks that are themselves exhaustive
in the sense of encompassing essential concepts relevant to movement. Thus, evaluating the scope of
the SFNCS depends on the new elements we created for it, not the elements from existing frameworks
used to build it. We made two additions: the characterization of questions and the characterization of
the answer process.
The Question and Response blocks are defined in detail, with the justifications behind how they were
built, as well as their range, in section 4. We can not claim that the Response block is exhaustive in its
current version.
The Question block, as its elements are directly linked to the evaluation of tasks as defined by [18],
can claim the same level of exhaustivity. This statement has to be nuanced with potential difficulties to
adapt the phrasing accordingly. Furthermore, its exhaustivity is limited to information we characterize
in section 4.4.4 as measurements, i.e. it can incorporate questions for tasks related to judgements,
but does not integrate them in an exhaustive taxonomy. Due to the high level of abstraction of the
elements we discuss, we can not claim exhaustiveness when discussing details. Details about the
blocks are discussed in section 4, and limitations and future work are discussed in section 7.



1.7 Chapter summary 11

Our thesis also presents studies set up to evaluate a new design, the ATS-ATS Mask, defined in section
5. The three studies are set to both illustrate the functioning of the SFNCS, and learn about the
ATS-ATS Mask, but represent a small fraction out of a virtually infinite potential of combinations of
blocks composing the SFNCS. Furthermore, some elements have to be ruled out from the thesis scope
due to technical constraints and time:

• An important element that was not incorporated in our work is dynamics. In the scope of this
thesis, discussions are limited to static visualizations, due to time and technical constraints.

• Interactions are not within the scope of this thesis, albeit short discussions of future work in
section 7.

• Our work mainly discusses time as a linear set of records separated by common units such
as seconds, minutes and hours, and does discuss in depth the importance of its recurring
characteristics, e.g. cyclicity of days of the week.

1.7 Chapter summary

This chapter presented the origin of this thesis, its aims and the research questions it intends to answer.
We discussed and introduced our contributions which will be discussed in details in further sections
and assessed the scope of our contributions.
In this chapter, we mention a need for the framework we developed, the SFNCS, that rose as we were
working on extending a particularly interesting concept: the time mask from Andrienko et al. [20].
Following a literature review in chapter 2 which discusses the work that influenced our thinking, we
present our methodology in chapter 3 and present the SFNCS in chapter 4.
The extension of the time mask we developed, the ATS-ATS Mask, is then discussed in chapter 5.
We then present, in chapter 6, a series of studies evaluating the one implementation of the ATS-ATS
Mask, set up using the SFNCS. We conclude this thesis by considering potential future work and the
desired consequences of our contributions in chapter 7.



Chapter 2

Background and Related Work

2.1 Chapter Presentation

There is a large amount of work done towards expanding the set of existing designs to represent
data related to movement, be it trajectories or attributes that are related to it by time and space. The
work discussed in this section relates to the set of concepts to consider for evaluating visualizations
related to movement and space-time information, i.e. from conceptualization of a visualization, to
consideration of the task it would be fit for, to how to evaluate it. Our discussion is orientated to first
discuss the theory of a concept, before illustrating them with practical examples. The literature review
discussed in this chapter educates the structure of the main contribution of this thesis, the Systematic
Framework for N-scales Characterizations of Studies (SFNCS), discussed in chapter 4.
We thus discuss frameworks about space-time attributes, different frameworks and systems that exist
to characterize data related to movement, and present a representative sample of visualization methods.
The objective of this section is not to be exhaustive, but instead to present a sample large and diverse
enough to indicate the steps towards the choices for designs, framework structure and studies set up,
presented in the following chapters. This chapter also includes discussions related to uncertainty and
its influence over choices made by data visualization designers, and users’ interpretation, due to its
importance for characterizing elements of the SFNCS framework.

2.2 Concepts and theories for movement and space-time attributes

In this section, we discuss how the information related to movement can be organized and character-
ized into data that will be the building blocks from which visualizations can be developed.
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2.2.1 Considering spatio-temporal information

We use the same definition as Andrienko et al. [19] when discussing movement data. It consists of
position records, with an object identifier, a time of recording (possibly future in cases of predictive
software) and spatial coordinates. Real movement is continuous and records of movement are discrete
and thus inherently force dealing with incomplete information. We argue that if the quality of the data
is sufficient, i.e. has a level of precision that is high enough, for the task that the user is attempting to
perform, it is acceptable to discuss the recorded information as if it is the information of the movement
itself.
Furthermore, presenting information close to reality can be suboptimal to some tasks, and thus
considerations about desired level of realism are important in some contexts. One example is the
work of Hurter et al. [115] where airline trajectories are dynamically bundled or presented in detail
according to user’s needs. Within this thesis, when discussing moving entities, we refer to objects
moving over space with a single position at each time unit for which its position was recorded. The
moving entities discussed in this thesis are sized at ‘human scale’, e.g. natural phenomena, animal,
urban, naval and aerial mover. We do not discuss in this thesis movement at a very small scale, e.g.
molecular scale, nor very large scale, e.g. movement of celestial objects.

Before displaying data to the user, information has to be collected, transformed into data, cleaned,
and according to the needs transformed and displayed into visualizations. For an effective discussion
when considering previous publications for these steps, it is thus necessary to consider the origin of
data, its transformation and representation in a structure to allow for comparison of models provided
by researchers. Andrienko et al. [10] list the known methods of position recording:

• Time-based: positions records are regularly spaced time moments, e.g. every 5 minutes.

• Change-based: new records are generated only when the moving entity’s position changes.

• Location-based: new positions records are generated when a moving entity enters or leaves a
specific location, e.g. a region tracked by a sensor.

• Event-based: positions and times are recorded when certain events occur, in particular, when
moving entities perform activities of interest, e.g. pass in a football game.

• Various combinations of these basic approaches.
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Fig. 2.1 The basic components of the Triad framework from Peuquet et al. [201]. The WHAT-
WHERE-WHEN basic blocks represent high level concepts from which precise information can be
defined. WHAT relates to attributes, WHERE to space, and WHEN to time.

Formal characterization of information is necessary to discuss it. Peuquet [201] developed the
WHAT-WHERE-WHEN conceptual framework, illustrated in Fig. 2.1. This approach is the high-level
base for most conceptual models that discuss categorization of information related to movement.

Time, space and attributes need to be considered simulatenously for spatio-temporal data analysis.
Andrienko et al. [12] use the framework of Peuquet to set relations between times, locations and
objects, as illustrated in Fig. 2.2.

Fig. 2.2 The connections between the basic components of the Triad framework from Peuquet
et al. [201] as defined by Andrienko et al. [12]. Objects relate to WHAT, location to WHERE and
times to WHEN.

The model developed by Andrienko et al. [12] characterizes visualizations according to dimen-
sions, thematic attributes, trajectories, time and space. Their approach does not limit the diversity
of the designs that can be produced, used to describe a visualization, or convey the intent on how
to set up the visual organization of information to display. Using those, the model of Andrienko
et al. can be used to communicate the visual organization of information, as illustrated in Fig. 2.13.
Their framework is a systematic and comprehensive way to indicate the possible types of information
that can be extracted from analysis of data related to movement.

The model of Andrienko et al. [12] can then be used for applications with a lower level of
abstraction. Following the same characterization of information, Bogorny et al. [36] developed
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CONSTanT, a conceptual data model for semantic trajectories, considering the event-based approach
to movement analysis as a UML structure. It is an example of an application of a very low level of
abstraction for which each element can be additionally characterized with a higher level of abstraction
with ease. Still, the model of Bogorny et al. doesn’t discuss aggregations for the information stored
in their model, they instead leave the choice to the designers on their approach to that question. Doing
so simplifies their model.
Particularly, according to scaling and interpretation, information can be characterized differently:

• Spatial information can be characterized at a certain scale as qualitative information, part of the
WHAT component from Peuquet Triad. Information can also be grouped, clustered, changing
their status from quantitative to qualitative, e.g. speed records ranging from 0 and 10 kilometres
being labelled as slow.

• Time can be considered as a numerical value, if one is to measure the time passed from a certain
measurement, e.g. in programming, time is often measured as the number of milliseconds
passed since January 01, 1970. Time can also be characterized as a qualitative attribute,
according to its repetitive nature, e.g. day of the week, or due to social constructs (albeit built
upon physical measurements to justify them), e.g. hour of the day, month of the year.

• These relationships also can work in the opposite direction, e.g. change of resolution to more
detailed view can also result in qualitative information being transformed into quantitative, such
as details of an event changing from a day of the week to a specific minute.

The model of Bogorny is thus an example that assists practical implementation of computing systems,
but does not account for change of state depending on scale.

2.2.2 About time conceptualization

Conversely, Brehmer et al. [40] discuss how the variability of approaches to consider time can impact
its scale, through data transformation, resulting in the following potential scales:

• Chronological: approach to time that considers it each record within a global frame, the common
calendar based on year, month, day, minute, second, and lower levels of management according
to precision levels

• Relative: approach to time that considers events according to their difference to a certain time
selected according to relevance to the task. That approach does not require fitting a commonly
used attribute for time, i.e. 1 in a relative scale could mean any range of time frames, e.g. 1
could represent 34.52 seconds.

• Logarithmic: approach to time that is similar to the relative one, but distorts with a logarithmic
scale the chronology. The main point of this approach is to consider and display appropriately
data with a skewed distribution, particularly when the distribution is poorly balanced.
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• Sequential: approach to time that is solely based on the information that a recording occurs
prior or after another, without any indication as to time separating them.

• Sequential + Interim Duration: approach that is hybrid between chronological and relative,
particularly useful when details of chronological information want to be preserved for some
section of the records, but allows skips.

Brehmer et al. [40] illustrates the design space for timeline visualization in Fig. 2.3.

Fig. 2.3 The design space for timeline visualization, accounting for representation, scale and layout
defined by Brehmer et al. [40].

2.2.3 About space conceptualization

Space, like time, is also a form of information that can be interpreted in several ways. Space relates to
information that is recorded over a geographical area. Areas carry contextual information that can
be relevant for certain tasks, and thus allowing its consideration is important for a variety of tasks.
Contextual information of space can include multi-layered attributes, e.g. a geographical being part of
a street, which is part of a district, which is part of a town, which is part of a department, which is part
of the town. That information can thus be used as an approach to aggregate spatial information for
various representations, and similarly can be used to compare information over time, e.g. compare
evolution of an attribute over time according to location aggregated into an attribute.

Andrienko et al. [19] characterize spatial information with the following attributes:

• Spatial resolution: the minimal change of position that can be reported.

• Spatial precision: difference from the position recorded and the real world position that is
systematic, e.g. phone position reported by a router recording it.
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• Positioning accuracy: error in the measurement reported.

• Spatial coverage: range of potential positions and its uniformity.

These attributes are relevant for information about any entity, whether the entity is able to move
or not. According to the scale selected for time, what is considered a moving entity can vary, e.g.
some coasts lose part of their land over the water level over time, height of mountains vary over
years, glaciers move slowly due to gravity and change shape slowly due to long term changes in
climate. The positions recorded in measurements are captured according to the method used to define
the precise position recorded, such as latitude and longitude, ECEF also known as earth-centered
earth-fixed [281], the reference ellipsoid [106] and then displayed according to map projections [127].
The scope of our thesis is more focused on the analysis of data related to movement and space-time
attributes. Andrienko et al. [25] define episodic movement data as position measurements for which
the positions between records may not be reliably reconstructed due to the large time difference
between the measurements. In this thesis, while we acknowledge their importance in certain contexts,
we will not discuss those elements of formatting and communicating mapping of that information
further than the most common cases. Our discussions about context relating to spatial information is
thus independent on measurement approach as long as it is possible to separate an episodic movement
from the rest, and with a level of precision that is high enough to consider that the tasks of interest can
be performed with their sufficient level of accuracy.

Thus, models that discuss relationships between time and space are more relevant to the scope
of our thesis. In their framework, Andrienko et al. [12] extend the Triad framework of Peuquet
et al. [201] defined by the WHAT-WHERE-WHEN components by considering relationships between
these elements, illustrated in Fig. 2.2. The WHAT-WHERE-WHEN blocks represent the highest level
of abstraction and allow discussing information related to movement and space-time attributes. As
discussed previously, information transformation can influence the approach to analyse data.
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Fig. 2.4 Movement as a composition of spatial events, presented by Andrienko et al. [15]. The
graph presents how movement is a set of records of "temporal positions" and "spatial positions" for a
"mover".

Andrienko et al. [15] discuss events, and the importance of models that can link types of objects
to superior concepts to ensure communication on lower levels of abstraction can be connected to high
level levels of abstractions, e.g. a building is an object, with a spatial position, that is unlikely to vary,
as opposed to an animal, which has a position that is likely to vary. They are both spatial objects. But
the animal, due to its ability to move, can be the source of an event, whereas a building can only be a
subject of an event. They then define movement as a composition of spatial events, as illustrated in
Fig. 2.4

Following that high level approach, further work has been included to discuss information related
to space, time and movement altogether into lower-level conceptual models.

Santana et al. [217] present a Travel History Conceptual Model, which is based on the connections
between the following blocks: place, trail, social interaction, traveller, travel history, stay and visit.
Their model is presented in a UML graph that allows to numerise expected relations and ownership
between elements, and to see what information is shared between these blocks. Santipantakis
et al. [218] present an ontology for the representation of semantic trajectories at varying levels of
spatio-temporal analysis, for which trajectories can be considered as a sequence of positions of moving
objects or aggregated from their raw data, to characterize the activity over the region used for the
aggregation. They wish to analyse the evolution of airspace according to time according to sector
configurations defined by flight information regions.
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Spatial regions can be transformed into categorical information that can then be displayed in structures
that fully disregard their geographical properties, such as lists, or partially, such as in treemaps
[19, 233, 234] or as categories for Gantt charts [95].

The work of Zeng et a. [277] is an example of an implementation of a visualization incorporating
hybrid aggregation approaches of space-time information. This kind of approach is indicative of the
value of considering connections between different levels of information aggregation to result in a
contextually rich representation of information.

All of these publications tend towards a similar understanding and conceptualization of time,
space and information attributes. But that understanding has to be nuanced, as there is no consensus
within the scientific community as to the appropriate level of abstraction with which to display time-
space-attribute information according to any particular task of interest. Furthermore, communications
between the level of abstractions should be organized, and there is a clear trend towards developing
models that allow multilevelled consideration. As future discussions will continue on how to connect
various levels of abstractions, we consider that the safest approach for our framework to remain valid,
useful and flexible over time is to set it with a high level of abstraction. If future work establishes
clear links between abstraction levels, an updated version of our framework will be possible, but the
main blocks presented here will be preserved. We further discuss this notion about the SFNCS in
section 4.2.

2.3 Conceptualization of tasks

There is a wide variety of tasks that are performed using visualizations methods. Illustrative examples
for trajectory analysis include: discover peaks of activity within transport network [270], find moving
entities’ connections, e.g. flocking, moving entities avoiding each other [169], discover attributes of
moving entities for a certain area, such as finding if a zone of a town is mainly visited by tourists or
working people [192], establish where the future position of a hurricane will be, and with how much
certainty [177], find causes of deviations from the optimal or expected path for moving entities, and
how likely a moving entity following a future similar trajectory will undergo the same deviations [21].

As part of the evaluation of a novel visualization design, it is common to set up studies where
participants are asked to perform certain tasks. There is no method to know with certainty the mental
steps taken to solve a task, but there are methods to help understand the mental steps taken to perform
tasks. For examples, researchers can store records of actions performed when participants interact with
a visualization system, can be ask questions to participants during studies with a qualitative approach,
or automate computations to reduce necessity to perform simple tasks which are hypothesized to be
necessary for the aimed complicated task. Alternatively, researchers can ask participants to perform a
series of tasks that are designed to push participants to gather basic insight necessary to perform more
complex tasks asked later [107].

For researchers to discuss the value of a visualization, it is necessary to consider what tasks it can
help perform, and to clearly communicate what these tasks entail.
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In this section, we briefly discuss how tasks are to be considered in the context of visualization
design and how to consider and characterize tasks.

2.3.1 The role of tasks for visualizations

Tasks are what defines the utility of a visualization. Numerous approaches exist to discuss the
relationships between tasks and other elements of visualizations. We present a small representative
sample to discuss broad considerations of purpose of task characterization and impact over other
elements.

Keim et al. [131] consider that the following three high-level tasks encompass all the potential
objectives that can be aimed for with data visualization:

• Visual Presentation: tasks that aim to communicate certain information derived from the data.
The information is known prior to the designing of the visualization and is not designed to
generate new insight but to expand the population that possess that knowledge, e.g. teaching
material [205].

• Visual Exploration: tasks for which the objective is to generate new insight from the data. The
nature of the insight searched for may not be known. These tasks are bound by the notion
that recorded information can lead to new discoveries. As the exact connections between
recorded and clear data to potential new insights are yet to be discovered, these tasks are most
often performed thanks to visualization systems that present a certain flexibility, to allow the
exploration of multiple hypotheses.

• Visual Analysis: tasks for which the hypotheses are well-defined and require verification, rather
than design to potentially surprise the user. Visualizations produced for such tasks aim to either
confirm or reject hypotheses previously defined.

This approach does not consider how tasks can connect each other, i.e. if a hypothesis is rejected,
others may arise as substitute, necessitating other verifications, but it can also indicate the need to
consider exploration of the information available to generate new insight which itself could later on
be responsible for new hypotheses to evaluate.

Brehmer [42] present a multi-level typology that connects together the task that a visualization
being designed for is supposed to support, how that support is reached, and what is the input and
output (if applicable) of the visualization. Their typology is illustrated in Fig. 2.5. The WHAT-
WHY-HOW mode encodes the purpose of visualization in a coherent structure. Visualization is a
tool that has a long history of aiding tasks that benefited from abstraction of information, e.g. Snow
on communicability of cholera [236]. This typology classifies WHY data is visualized, HOW the
visualization and interaction tools help to perform the task, and WHAT relates to the information used
to generate the visualization, or the produced derived information.



2.3 Conceptualization of tasks 21

Fig. 2.5 The multi-level typology developed by Brehmer [42]. It conveys WHY visualizations are
designed, in alignment with the Keim et al. [131] model. It also considers HOW the tool supports
the task performed, and WHAT the task inputs and outputs are. The tasks are cut into three levels of
abstraction, with consume (and produce) being high-level, search being mid-level, and query being
low-level.

We note that the typology characterizes WHY and HOW, but not WHAT besides input and output.
The sets of interactions, visualizations, and tasks that can successfully be performed depend on the
data available. We thus consider that characterization of WHAT would reinforce their approach. The
HOW does not characterize the visualization, simply setting encode as a broad element of HOW. The
elements manipulate and introduce can both be considered as interactions, since they require what
Card [51] defines as human interaction to modify a step of the data loop. Similarly, Schulz [226] uses
WHAT, WHY, HOW, as well as WHERE, WHEN, WHO as design space dimensions. Their design
space is used to provide visualizations recommendations based on these parameters. The tasks, limited
to Navigation, (Re-organization and Relation, are purposely selected at a high level of abstraction
that can be extended if needed, to ensure independence between consideration of task and concrete
technical realization. Their characterization of WHAT is divided into two categories, low-level data
characteristics, i.e. simple observations, and high-level data characteristics, i.e. tasks that are more
complex and rely on identification of complex data patterns, e.g. trends, clusters, correlation. Note
that their WHERE isn’t related to geospatial data, but rather to cardinality of a task, or scope of a
task, i.e. how many instances are to be considered together to perform a task. That distinction is also
found as Bertin’s levels of reading [33], Robertson’s point, local and global distinction [210], or Yi
et al. [274] individual, subgroup or group. Andrienko et al. [18] limit the distinction of Bertin to two
levels for the characterization to be tractable. The previous literature indicates that characterization
of tasks according to the information that is to be retrieved is common for visualization typologies.
While there are multiple variations, the approaches remain fundamentally similar.

The consideration of the role of task for visualization design and use is thus common, but
dependent on other factors that will create clear or vague borders as to what defines a task. As we
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discuss in the next section, the characterization of task considered by Andrienko et al. [18] presents
the advantage of evident distinction and thus reduces strongly the risk of different interpretation.

Another outcome from our literature review is the consideration of the potential of the approach
followed by Brehmer, which consists of considering characterizations of multiple elements that are
combined to form a visualization with the task to perform a task. This approach inspired the SFNCS
we present in chapter 4.

2.3.2 Considerations of task characterization

Tasks can be either very clearly defined and simple to perform, such as finding a value at a certain
time, or much more complex, vague and difficult to perform, such as establishing if one object has a
meaningful influence over another. Tasks can be characterized according to notions such as scope,
object, objective, clarity. The characterization of tasks depends on the logic selected by researchers
during the process.

Discussions about tasks are intimately related to notions of levels of abstractions. The more vague
the information related to the task (input or output), the higher the level of abstraction, and the greater
the need to involve humans’ abilities to assess information according to overall context that goes
beyond the presented data.

Often, tasks are loosely labelled as elementary or high-level. That separation is closer to a spectrum
than a strongly separated split [42]. But without clear separations between levels of abstraction of
tasks, interpretation is likely to influence how two researchers are going to characterize a task. This
results in numerous approaches to characterize tasks with distinctions prone to interpretation.

Roth [211] summarizes approaches to characterize tasks, using a diverse set of publications from
the domains of information cartography, human-computer interaction, information visualization and
visual analysis [260, 259, 280, 34, 166, 66, 23, 8, 273]. The process Roth follows to select elements
to characterize is motivated by the action model of Norman [185]. Roth uses Norman’s model as
a base to discuss characterizations of tasks, interactions and data, for visualization designs. Using
the previously cited literature, Roth [211] presents a concept map of tasks, which they label as
objective-based primitives. Roth presents these tasks as objectives that are formalized and can be
defined in a statement of what the user aims to achieve with the visualization The concept map is
illustrated in Fig. 2.6. The concept map segments tasks into three subsections based on relations.
Identify and compare occupy the first level and other tasks are either on second or third according to
specificity.
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Fig. 2.6 Objective-based primitives organized in a concept map by Roth [211]. The size of the text
indicates their relative frequencies.

The vocabulary selected by Roth is not practical as "interaction primitives" may first make one
ponder about what Card [51] would label as "human interaction", and thus we decide to use the
term task throughout the thesis for consistency. The concept map of Roth [211] confirms that the
specificity of a task results in a lesser usage in literature. We also argue that overly specific tasks
reduce generalization potential and increase risk of misinterpretation.
As we consider how we could characterize tasks for our own framework, the concept map of Roth
[211] presents a helpful set to consider.
Several taxonomies do not consider the distinction between objectives and operators (i.e. task and
interaction) [280, 66, 9, 273]. We argue that clear distinctions of taxonomies facilitates interpretation
of strengths and weaknesses of approaches discussed. Very detailed taxonomies make it possible to
generate strong claims about the results of the studies evaluating them, but offer less versatility when
it comes to somewhat similar tasks.
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Fig. 2.7 Objective-based taxonomies listed by [211]. Note that titles change, but overall these can be
labelled as tasks for which visualizations are set for enrichment of user’s mental model, i.e. insight
generation.

We also note that the taxonomies do not always account for the level of abstraction of the tasks
they list.

For example, Amar et al. [9] present ten low-level analysis tasks that largely capture people’s
activities while employing information visualization: Retrieve Value, Filter, Compute Derived Value,
Find Extremum, Sort, Determine Range, Characterize Distribution, Find Anomalies, Cluster, Correlate.
Note that the tasks in this list have different levels of abstractions, e.g. retrieve value and characterize
distribution. Still, even though the connections between these low-level analysis tasks to the high-
levels ones can not always be directly linked, such lists are valuable to consider basic functionalities
that are valuable to set a typology of high-level tasks.

It is not always obvious how to make a distinction between the levels of abstractions of tasks.
Low-level tasks are specific and precise, in opposition to high-level tasks which are broader. The low-
level tasks present little interest on their own, as they could be simply computed, but are considered
as necessary in order to complete high-level tasks. A notable difference between tasks with low levels
of abstraction and high levels of abstraction is the approach to evaluate participants performing them.
The first are often evaluated through quantitative studies and the latter through qualitative studies.
Evaluations of visualizations for low-level tasks do not guarantee the usefulness of these systems for
high-level tasks. Thus, novel visualization designs developed for high-level tasks are often evaluated
differently through qualitative studies. We discuss differences between quantitative and qualitative
studies in section 6.4.

As we have seen with the objective-based taxonomies listed by Roth [211], tasks with a low level
focus can be fairly diverse. It is common for tasks to be given at a lower level as a list [4].
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McEachren [164] lists low-level task description for the temporal domain: Existence of data ele-
ment, Temporal location, Time interval, Temporal pattern, Rate of change, Sequence, Synchronization.
This list of tasks splits questions that either need to assess the existence of a certain set of data points,
or conversely their values directly. Their approach thus considers the focus of the task, and whether a
value even exists. This results in a fairly high number of tasks even though the scope of possible foci
is relatively limited by only considering time and attributes. This notion relates to what Andrienko
et al. [18] define as references, the domain of the data, and characteristics, the data values collected
themselves.

Kerracher et al. [132] discuss models for tasks classifications, and provide guidance for selection
between competing classifications for use in the design and evaluation processes, but do not discuss
how information can be transferred from one model to another. Their approach is a step towards
ensuring the validity of tasks, and to potentially start considering how performance in low-level tasks
can contribute towards the success of the high-level ones. Their solutions to mitigate the threats
consist of assessing lower level threats together and evaluation of the output produced with the task
generated, e.g. ensure the existence of a wide literature to justify the validity of the task generated
as well as evaluation after the output is produced. Following that approach, Mazimpaka et al. [169]
classify a variety of trajectory mining methods and applications using the framework from Andrienko
et al. [12] and illustrate the tasks with practical examples selected from academic publications. This
work exemplifies the approach to generate a high-level structure that can be populated with relevant
matching low-level models.

As we consider a characterization of task that would fit our framework, we evaluate, helped by the
insight collected from analysing the previous low-level frameworks, high-level approaches to attain
a formal characterization of tasks. It is necessary to shift to a formal notation to set guidelines and
automate the design process [4].
Bertin [167] categorizes tasks with three levels of reading: elementary, intermediate, and overall. That
separation indicates whether a task requires considering only a single data element in a group, or all
the elements existing in the data set. Considering the task according to the data presents pros and
cons. It is valuable to consider tasks that can be performed according to the available information, and
these considerations ensure that if a task can’t be performed with the available data, it might be that
the data selection is wrong. But dependencies between data and tasks mean that to compare tasks, it
is necessary to consider data sets that are similar. However, due to how information has to be looked
at to find the piece of interest, the need to display a single point or several is not clear with Bertin’s
framework.

The task typology presented by Andrienko et al. [18], that we selected for our own framework,
discussed in section 4, reduces categories to elementary or synoptic. We selected their typology for its
comprehensiveness and the ability to clearly define the scope and output respective to each task.



2.3 Conceptualization of tasks 26

Fig. 2.8 The taxonomy of visualization tasks produced by Andrienko et al. [18] as modelled by Aigner
et al. [4]. The separation of tasks into these categories can be used to compare studies evaluating
designs.

Instead of considering tasks with three levels of abstraction like Bertin [167], this typology makes
the choice of dividing the range of visualization tasks into two broad categories with their own
subgroups: elementary tasks and synoptic tasks. The difference between the two types of tasks relates
to the number of data items necessary to consider in order to perform the task; elementary tasks
address individual data elements, be it singular or plural, while synoptic tasks involve a general view
and require groups of data items to be considered in their entirety. That notion does encompass
a certain subtlety when characterizing a task as either elementary or synoptic, as it requires the
researcher to establish whether a task requires the data set to be considered as a whole or whether
individual elements are enough for the task. Andrienko et al. [18] define elementary tasks as "tasks
that do not imply dealing with sets of references or characteristics as wholes but, rather, address their
elements". This means that elementary tasks deal with data without considering information that can
only be extracted by considering the whole data set together as one entity. Any task that does fit within
that definition is synoptic. Then, the tasks are divided according to their targets, i.e. the information
or insight that is gained in order to perform the task. Elementary tasks contain the sub-categories
lookup, comparison, and relation seeking. Both the lookup and comparison subgroup can be either
direct or inverse, implying that it can be either the search for a data value or for a space in time and
space that matches the data searched. Tasks about relation seeking are similar to comparison tasks,
but are not bound by a strong characterization of the nature of the comparison like it is for the other
sub-category comparison.

Furthermore, tasks can be either direct or inverse, with direct tasks being about the focus of the
task being the sole focus, and indirect tasks defined with the focus of the task being the outcome of
other parameters that characterize its potential existence. This distinction is the same as what we
noted with the list of tasks of McEachren [164], asking either the existence of data or its values. The
structure to characterize tasks is illustrated in Fig. 2.8. But to ensure sufficient clarity when discussing
these notions of tasks characterization, we present some illustrative examples:

• Elementary lookup:
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– Direct: What was the price of the Apple stock on February 15th?

– Indirect: On which day(s) did the highest discount occur on Mario Kart Deluxe?

• Elementary comparison:

– Direct: Is the price of the Samsung TV lower than the price of the Sony TV?

– Indirect: Did the speed of Kimi Räikkönen’s car reach 180 km/h before or after the first
lap?

• Elementary relation seeking:

– On which days was the audience of BBC1 higher than the audience of BBC2?

• Synoptic lookup:

– Direct: What is the trend of the world CO2 emissions during the year 2020?

– Indirect: Find spatial clusters of districts with a high proportion of unemployed citizens.

• Synoptic comparison:

– Direct: Compare the behaviour of the stock price of Amazon and the number of deaths
due to COVID during the year 2020.

– Indirect: How is an increasing trend of car accidents related to the period of summer
holiday?

• Synoptic relation seeking: Find two football players with similar activity in the game Arsenal-
PSG.

• Connectional task:

– Homogeneous behaviour: Is the behaviour of the first group of tourist influencing the
behaviour of the second one?

– Heterogeneous behaviour: Do the precipitation levels variations influence the behaviour
of wild geese?

Synoptic tasks require us to consider the whole data set and are divided according to whether
they are descriptive or connectional. Descriptive tasks are, like the name implies, about specifying
properties in the data available. This sub-category possess subgroups of its own, identical to the
elementary tasks, with lookup, comparison, which can be direct or inverse, and relation seeking.
Connectional tasks are about establishing connections between two or more sets of data (whether they
are displayed in the same graph is not relevant to the task characterization), to investigate relationships
between different phenomena. Those can be homogeneous or heterogeneous, i.e. whether the
phenomena are different occurrences of the same type of phenomenon or completely distinct in nature.
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The overview of low-level tasks we discussed allowed to identify a broad scope of concrete
activities that are relevant for visualization evaluation. Still, low-level typologies are limited for
formal characterization. We discussed in depth the task typology of Andrienko et al. [18] as it
contained the strengths of low-level tasks. In the next section, we will discuss the concepts behind
visualization and present a set of illustrative applications.

2.4 Visualizations for data analysis of movement and space-time at-
tributes

2.4.1 Conceptualization of visualization

A visualization is the representation of information in a format that allows to form a mental model.
This definition is ambiguous, as that definition can define multiple levels of abstraction, from scientific
visualization that aims to model an information as close as possible to its physical counterpart, as to
art that aims to evoke emotion rather than focus on objectivity [248]. In the scope of this thesis, we
focus on visualization as a tool to represent information with an intermediate level of abstraction, for
visualizations designed as tools that will help perform tasks.

In this section, we discuss the concepts that interconnect to produce visualizations that are then
used to perform tasks.

Fig. 2.9 The reference model of Card [51]. In this loop the Raw Data is transformed into Data Tables,
which are then mapped to Visual Structures, and transformed into Views presented to the user aiming
to perform a Task. Each of these steps can be influenced by Human Interaction.

The reference model developed by Card [51] is critical to our thesis. Card’s model, illustrated in
Fig. 2.9, connects the following elements:

• Data: The data that represents the information necessary to perform the task of interest. This
element contains two children:
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– Raw Data: data recorded but not adapted for the task performed.

– Data Tables: data in a format that is fit to perform the task.

• Visual Form: the visual elements displayed, translating information transcribed in the data and
presented in a manner that helps in their analysis. It is composed of two children:

– Visual Structures: spatial substrates, marks and graphical properties set an ensemble of
visual elements that are mapped on a display. The visual information is arranged in an
effort to ensure a clear and accurate representation of the data.

– Views: graphical parameters that transform the visual structure according to the physical
display used to draw the visualization.

• Human Interaction: modifications of the previous elements made consciously to facilitate
performing the task. It is composed of three children:

– Data Transformations: modifications of the data into a structure more relevant for per-
forming the task of interest.

– Visual Mappings: selection of the structure of the visual elements to display, i.e. how data
is changed to drawn elements.

– View Transformations: adaptations of the drawings for readability.

• Task: the function for which the visualization is produced.

This model is particularly important as it underlines the necessity to consider the final usage of a
visualization as a number of steps for which each decision influences the following one. Note that
the elements here do not indicate how each step is done, and elements are not linked together. This
approach does not facilitate comparisons between visualizations, but helps to consider how novel
visualization designs fit compared to previous work.

Fig. 2.10 The prefuse visualization framework developed by Heer et al. [101]. It presents a list of
composable actions to transform the data into a view the participant can use to perform their task of
interest. With UI Controls, the user can modify elements from the Data, Visual Form or View.
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Further research resulted in alternative approaches, such as the Prefuse framework of Heer
et al. [101], illustrated in Fig. 2.10, which presents a first approach to indicate how to populate the
elements of the reference model of Card [51]. Using their framework, they developed a user interface
for designing interactive visualizations. Their approach, enables the user to interact with every step
between data, visual form, and view, is fundamental to various interactive visualization systems
including commercial products such as Tableau [263]. Furthermore, commercial software such as
Tableau that are developed with a specific focus for flexibility and accessibility offer a variety of
approaches to transform data, visual forms and views.

These models show that by linking into one structure the elements ranging from data collected to
the visualization presented to the user, the clarity of visualization design is reinforced. These models
illustrate how it is possible to set software systems in which various combinations of the same data
can be done. Still, these models do not provide an answer as to which visualizations are best suited to
particular tasks. In the hypothetical scenario where a software system could produce all variations of
visualizations for a certain data set, the user wishing to perform their task of interest would struggle to
find which visualization is most fitting. Software designed to be flexible and user-friendly such as
Tableau suggests diverse common visualizations according to the data input, and leaves the user to
choose among them. This approach has two issues: in the limited number of visualizations presented,
there might not be the specific visualization that fits best the task, and the ability of the user to assess
which visualization is the fittest is not guaranteed. These facts imply the need to compare efficiency
of visualization methods according to tasks. We discuss our approach to formally define elements
composing our framework, the SFNCS, derived from the reference model of Card [51], in section 4.2.

Visual variables

Considering visualizations, there also exists a large corpus of literature discussing definitions of the
elements that constitute visualizations and characterize them. These are called visual variables. But
while naming the most basic elements that constitute a visualization with geometric vocabulary is
relatively simple, misunderstandings can occur due to different interpretations of the same word.
Thus, clear characterization of the visual variables is necessary to ensure clear written communication
of visualizations. From this need resulted the production of work presenting definitions for the
basic geometries that compose visualizations. Bertin [167] introduced the following visual variables:
position, size, shape, value, colour, orientation and texture. These variables constituted the foundation
of characterization of visual variables. They underwent amendments over time (e.g. colour got
split into attributes to characterize it: hue, saturation). Roth [212] lists visual variables applicable
to elements displayed with indications of accordance depending on data type Fig. 2.11. Its work
is itself derived from Bertin [33], MacEachren [164] and [165]. These indications are critical for
visualization designers who have to consider whether their contributions are effective to represent
data necessary to perform tasks of interest. Still, these indications are not to be considered as rules,
as some visualizations can be designed with the aim to present numerous attributes or large amount
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of data, resulting in the necessity to use a large scope of visual variables. Visualization designers
are not limited to the visual variables to conceive their designs, but also have to consider the layout
of visualizations they will display to users, according to the type of data they want to present, and
connections between elements presented. Our next section focuses on discussing these aspects to
characterize visualizations.

Fig. 2.11 The visual variables applicable to elements displayed with indications of accordance
depending on data type [212].
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Visualization characterization

Considering visualizations that present data relates to considering data and its relevance for tasks
visualizations are designed for [9]. Visualizations can be characterized by labelling data of the
basic visual variables to the three components of the Triad framework: WHAT/WHERE/WHEN
[201]. While using basic visual variables to characterize graphs generated is possible, we would not
recommend limiting characterization of visualizations solely on it, since the visual details are too
specific to allow for a clear characterization of the visualizations used to represent the data. Positions
and embeddings of visualizations within a layout are critical elements to characterize visualizations.
We thus consider that characterization of visualizations should be done, not solely with the basic
visual elements that compose them, but with their composition as well. The question thus comes
twofold: what data is presented in the visualization, and how. This question is particularly important
when considering spatio-temporal attributes, as elements displayed often share some dimensions, with
time being the most common one [23]. As time is often the dimension that connects diverse data
sources, a specific focus on its representation allows reinforcing understanding of potential approaches
to characterize visualizations.

Brehmer et al. [40] discusses the layout and representation of time. Their characterization allows
considering low level characteristics of the representation of time, when discussing the representation,
being linear, radial, in a grid, in a spiral, or arbitrary, as well as how it is set around the visualization,
when discussing its layout. They identify 4 layouts:

• Unified: approach to display time with a single timeline.

• Faceted: approach to partition time according to a categorical attribute, for which the objective
is to compare information over time over the time frame looked at.

• Segmented:approach to cut the time frame into several smaller ones, according to meaningful
choices to compare the information displayed at different time, e.g. information of a year
displayed over several months.

• Faceted + Segmented: approach that is a mix of the faceted and segmented, which is relevant to
consider evolution of different attributes together, e.g. investigation of the potential impact of
one attribute over another.

The conceptualization of time will thus influence the visualizations that can populate a layout and
how time is represented and interacted with.
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Fig. 2.12 Aigner et al. [4] structured and specified the characteristics of time and time-oriented data.
Their structure can be translated into other models.

In their book discussing the visualization of time-oriented data, Aigner et al. [4] list vari-
ous approaches to conceptually represent time, including the aforementioned model from Peuquet
et al. [201]. That list is illustrated in Fig. 2.12. The representation of time is dependent on how it is
fundamentally considered for the needs of the visualization being designed, i.e. which facet of time
matters, e.g. its linear characteristic or its repetitive nature. This list is valuable to consider restrictions
on viability of designs based on the type of data and existing connections within the set to use. Still,
this list is not useful to effectively describe organization of visualizations.
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We find this feature with the approach followed by Andrienko et al. [12] in their framework that
allows to easily link visual representation to conceptual representations of movement and attributes
with the usage of pictographs. Their approach originates from previous work of Bertin [33]. Their
approach allows using letters to indicate the type of information displayed in a graph, e.g. S for spatial
positions, O for objects, A for thematic attributes, ∆S for displacements. Following that approach,
each letter links to a visual representation, e.g. S to positions on the map, O to geometries on the
map, A to retinal properties. It is then possible to generate pictographs to indicate organization of the
graphs. We illustrate that approach with one of their tables indicating transitions from elements to
portray to visualization techniques descriptions to pictographs, in Fig. 2.13. Their approach does not
allow to directly indicate whether the data is detailed or aggregated, and thus this notion has to be
discussed separately. Note that Andrienko et al. [12] acknowledge the need to include information
about the spatio-temporal context in which the data records originate from. While their approach
does not allow to represent all the characteristics of data listed by [4] nor the visual attributes [212], it
still displays the ability to characterize a large range of visualizations, simplifying communication to
describe their organizations.
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Fig. 2.13 One of the tables of Andrienko et al. [12] illustrating the characterization of visual stimuli,
considering information to display in the first column, the type of visualization technique that can be
used in the second column, illustrated with a pictograph in the third column.
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2.4.2 Applications of visualizations for data analysis of movement and space-time
attributes

In this section, we focus our discussions on visualization designs that relate to our subject and illustrate
a wealth of different approaches.
The approaches to present movement and space-time attributes are diverse, but the concepts used to
produce the visualizations are for the majority transferable for different moving entities. We previously
discussed theoretical considerations about spatio-temporal analysis, and now aim to present practical
use cases. We want to illustrate the diversity of types of visualizations that exist, we therefore analyse
approaches with various contexts.

A common case for spatio-temporal analysis relates to flight records, for which many of the
visualizations produced for its analysis use methods transferable to other moving entities, but some
attributes specific to aeroplanes push for specific needs. For example, in the graph displayed in
Fig. 2.15, Andrienko et al. [14] show trajectories that can be chosen by flight planners with each
potential path represented by a line over a map with its width indicating the costs of flying over an
area. This approach could be used to display trajectories enriched with additional information for
other moving entities and/or context, e.g. the display of cars with the predicted likeliness of traffic
jams occurrences. The same publication also presents a clustering algorithm categorizing trajectories
with similar paths, with the trajectories coloured according to these categorizations, as illustrated in
Fig. 2.16. This approach could be used for other moving entities, such as vehicles entering towns.
But analysis of flights can require some specific information, e.g. altitude through representations
of trajectories within 3D visualizations, like Buschmann et al. [46] who generated visualizations
with trajectories enriched with icons and colour to indicate additional information, as illustrated in
Fig. 2.17. Their visualization projects the trajectories in the 3D space onto the 2D map to increase
readability of paths, which is arduous for trajectories displayed in 3D environments.

Geographical attributes can be characterized and then considered as any qualitative attribute, such
as the presentation of regions in a treemap by Slingsby et al. [233]. Hybrid approaches do exist, such
as Wood et al. [268] who presents OD maps, by tesselating spatial geometries while conserving part
of the geographical features. That approach can also be nuanced by considerations of importance of
regions due to additional factors, e.g. cities represent a relatively small geographical space within
which there is a high amount of activity.
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Fig. 2.15 Trajectories repre-
sented by lines with the width in-
dicating how important the price
of flying over an area is. The
colour encoding is used to differ-
entiate several moving entities.

Fig. 2.16 Lines representing ap-
proaches of flights arriving at
an airport. The similarity of ap-
proaches is colour encoded.

Fig. 2.17 Display in three dimen-
sions of a flight, with colour en-
coding, for a selected trajectory,
the acceleration. The lines and
halo going from the points in al-
titude down to the map help to
understand more precisely the
movement. While valuable for
a single trajectory, this method
can not scale.

Fig. 2.14 Different encodings of time and speed for straight and curved 2D+time trajectories presented
by Perin et al. [199]. Both constant speed and varying speed (two slow sections near the start and
end, high speed in the middle) are shown.
(a) Neither time nor speed are visually conveyed; (b) size (or stroke width) conveys speed; (c) colour
value conveys time elapsed; (d) colour value conveys speed and size conveys time elapsed; (e) segment
length (spacing between ticks) conveys time distribution, from which speed can be inferred (the closer
two ticks, the slower); and (f) colour value conveys speed on top of segment length. Results from
studying nine visual encodings suggest that (e) and (f) are the best choices for conveying both time
and speed, and that (d) is the next best.

A common method to visualize trajectories is to draw a line over a map, to gain insight on points
traversed in perspective to their locations. While effective for understanding spatial changes, that
method suffers several drawbacks, such as the inability to scale for analysing numerous trajectories, a
lack of precise information regarding time when points belonging to the trajectory were recorded, and
the lack of any additional information display that could be relevant, such as attributes of the moving
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entity, e.g. body temperature of a jogger, heart rate of a cyclist. Additionally, representation of data
related to movement is dependent on several factors, e.g. background, level of detail, abstractions,
aggregations.

Fig. 2.18 Focus-and-context exploration of bundled airline trajectories in a system introduced by
Hurter et al. [115].

Perin et al. [199] present and evaluate diverse designs for presenting time and speed over
trajectories, illustrated in Fig. 2.14. These designs could be reused to represent other quantitative
attributes than speed. Additionally, they discuss the elements of the design that characterize the
complexity of trajectories. We further discuss complexity of visualization displaying trajectories in
section 4.4.3. Enrichment of trajectory display with overlay of information, e.g. with icons, colours,
over lines can also scale up to 3D [46]. But that approach is limited when trying to analyse a large
amount of movement data over an area. Aggregation can be made in various ways, with diverse
levels of abstraction of the trajectories. Willems et al. [265] present an overlay of lines and coloured
areas to display a summary of movements while keeping the ability to identify outliers. Alternatively,
movement within areas can be summarized in a visualization that doesn’t display trajectories, but
instead information derived from movement, like method of transport [270], or amount of phone
calls shared by antennas to indicate density of population over time [13]. Potentially, systems can
incorporate different levels of aggregation that communicate through interactions or highlights to
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Fig. 2.20 Mosaic diagrams display evolution of an
attribute of interest over time. In this case, daily
amount of phone calls passing through stations.

Fig. 2.21 As long as the area delimitation is clear,
mosaic diagrams can also be used to display aggre-
gated attributes, such as here with regulations over
areas.

convey their connections [19]. Additionally, accuracy of the visualization can be discarded, to display
modified data, e.g. distorted trail bundling to display airport connection patterns [136]. The necessity
of access to the precise data defines the scope of visualization methods that can help for tasks to
complete.

Andrienko et al. [21] discuss visualizations in which they compare planned flight trajectories in
what they call an ’artificial space’, which is about presenting movement in a space where at least one
dimension isn’t spatial. This method is illustrated in Fig. 2.19, and is original as most visualizations
don’t display attributes derived from movement, e.g. angles, in relationships to other attributes of
interest.

Fig. 2.19 Andrienko et al. [21] present visualizations that are based on the concept of
an ’artificial space’. A: Planned flight trajectories are represented in an artificial space
with polar coordinates: movement direction (angle) vs. distance from the cruise phase
start (radius). B: A density map summarizes the whole trajectories. C: The density
map summarizes the segments that were substituted by shorter paths in the real flights.
The inset on the bottom right shows a filtering window around a density hot spot. D:
The trajectories crossing the hot spot in the artificial space are shown on a geographic
map with 5% opacity.
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Fig. 2.22 Vessel density of the Dutch coast with a kernel used to calculate the value for each point.
This method allows finding outliers that experts can understand thanks to their knowledge of normal
vessel behaviour. Note that within the study, the users were capable of finding outliers, but the
characterization of the cause was due to their experience with real-life cases.

The visualization that most interested us was the time mask, developed by Andrienko et al. [20]
and illustrated in Fig. 1.4, which they also used later for the analysis of football games [11]. The
time mask is a visual annotation that overlays sections of a time series where conditions, such as
those entered in a query, are matched. The overlay is thus indicated visually before filtering the data.
This approach allows sections of time sequences to be visualized, and can be applied whether the
data displayed is the original recording (’Raw Data’ in Card’s terms), or derived from the data (’Data
Tables’) like average positions of footballers over a field. Our interest in the time mask was motivated
by the prospect of considering extensions of that concept with additional variations. The time mask
was studied and proved valuable for high-level analysis of data originating from multiple sources,
including event records, position of moving objects, and time series of measurements.
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2.5 About studies: design validation and studies commonalities

The most important contribution of this thesis, the SFNCS, allows formalizing study setups for
visualizations. This section is first focused on discussing how researchers ensure the validity and
value of the design they propose. Then, we discuss the commonalities for the methods used in the
setup of studies.

2.5.1 Validation processes for designs to evaluate in studies

Ensuring the validity and usefulness of their work is critical for researchers. Many models have been
proposed in visualization and beyond to help achieve this, and discussing all of them is not within
the scope of this thesis. In this section, we discuss and explain how these type of models helped us
shape our approaches to ensure validity and how their strengths and weaknesses drove us to design
the SFNCS.

The Nested Model developed by Munzner [179], illustrated in Fig. 2.23, supports visualization
designs by considering four levels at which threats to validity may occur that each need consideration,
with some issues impacting several layers. The different layers for which validity has to be ensured can
be considered as related to elements that compose visualizations as defined by Card [51], i.e. motivated
by a task, powered by data connected to visual stimuli, that can be modified using interactions tools.

Fig. 2.23 The Nested Model of Munzner [179]. For each step of the design study, threats are to be
identified and countered to ensure validity of their approach.

Following a similar philosophy, Kerracher et al. [132] summarize methods to ensure tasks validity
and threats to different methods of research validation, e.g. interview domain experts, which are
common for the high-level tasks, with the risk being of skewed by the experiences. They thus
consider that limitation of threat evaluation are different according to conceptual approach: theoretical
constructs are limited by the dimensions used to encode them, while validating tasks by considering
occurrences in real world is limited. These considerations are valuable to convey the necessity to
ensure validities on different levels of abstractions.

For design studies, Seldmair et al. [228] developed the Design Study Methodology, illustrated
in Fig. 2.24, which describes the process of developing a visualization system in an applied context
into 9 stages: learn, winnow, cast, discover, design, implement, deploy, reflect and write. These are
illustrated in Fig. 2.24. The Design Study Methodology has then been used in many research projects
to both ensure and justify the validity of visual designs that are developed. While it is not possible to
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Fig. 2.24 The Design Study Methodology of Seldmair et al. [228]. For each step, pitfalls are to be
avoided to ensure novel visualization research is valid and valuable.

verify all potential pitfalls of the numerous aspects that entail a design study, indications of reflections
over some that were accounted for increase the strength of the claims.

Munzner [179] introduces the nested model, indicating a stream of four levels for validation, to
identify threats and validations against them to ensure validity of their research. While the nested
model was critical to help researchers make a claim on the validity of their work, it doesn’t allow
comparing them in their context. The problem thus remains, even if research is made and valid, is it
better than previous work? If so, can we assess by how much? Is it for a specific task or an ensemble?

Assessing the value of a claim in research papers is often addressed by setting up studies in which
participants perform tasks that are evaluated, so to ensure that claims made about theoretical concepts
apply against particular benchmarks. Pena-Araya et al. [195] conducted a study about identifying
correlation over space and time, using different representations of the same data. This work illustrates
analysis of tasks with different characterization of data. While asking participants to evaluate spatial
correlation with the data displayed, they split the data necessary to answer as either a single location,
a location in a region, or all locations displayed; time-wise, they split the data as either a single time, a
time interval, or all times. Our approach for studies we discuss later in Chapter 6 follows this method
to set groups defined by data characteristics.

2.5.2 Studies commonalities

We discussed in section 2.5.1 about tools researchers had access to ensure their studies would be valid
and valuable. In this section, we discuss existing common approaches for user studies shared amongst
researchers, as well as their advantages and inconveniences, such as limits and scope. These common
approaches allow us to later envision the usefulness of our contributions in relationship to the current
common usages.
Setting studies to evaluate the value of novel visualizations or algorithms is a common approach,
generally acknowledged as necessary [3]. The range of approaches to set studies is vast, and diverse
previous literature illustrates it. Researchers can rely upon previous literature and guidelines set to help
them assess what study structure fits their interest best. This section is a discussion to contextualize
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how we can later formalize the elements that compose study set up using the SFNCS we present later
in section 4.2.

There exist numerous approaches to conduct studies to evaluate visualizations developed by
researchers. Aigner et al. [3] list the following:

• Field observations: observations of a targeted person or group of targeted persons to gain insight
into behaviour, activities and processes. Observations can be structured or unstructured, with
usually the first one originating from positivistic research and the second one from interpretivist
paradigms, i.e. approaches that include the researcher’s subjective analysis [178].

• Interviews: interviews are discussions with a purpose, and can be structured, semi-structured,
or unstructured [84].

• Case studies: case studies are analyses of individual units (be it a person or a community) that
assess developmental factors in relation to environment, which can be useful in the preliminary
stages of an investigation to provide hypotheses [83].

• Laboratory observations: a laboratory observation is a record made during an experiment
for which the study subject was brought to a laboratory setting. One of the purposes of this
approach is to reduce the influence of factors researchers have not set themselves [230].

• Controlled experiments: a controlled experiment is a study in which all the parameters are held
constant except for one. Its analysis is relying on the comparison of a control group and one or
more experimental groups [232].

• Logging: logging is the process of collecting and storing data tracking a variety of events over
an extended time period. The purpose of this approach is to further allow for the analysis of
data [182], e.g. generation of visualizations using the data logged [196].

• Heuristic evaluation (e.g., usability inspection): heuristic evaluations rely on a small set of
evaluators to assess whether interfaces work accordingly to usability principles [183].

• Informal evaluation (expert reviews): informal evaluations done by experts are similar to
heuristic evaluations, but their value is reinforced by contextual knowledge expected from
recognized experts in the relevant field [244].

• Usability tests: usability tests are a systematic way to observe efficiency with a product under
controlled conditions [73]. The objective of usability tests is to assess whether a system is
effective, efficient, and favours positive attitudes [29].

• Laboratory questionnaires: a questionnaire is a set of questions with the purpose to gather
information from respondents. Questionnaires can contain close-ended or open-ended questions,
with analysis of gathered information varying accordingly [44].
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Fig. 2.25 Carpendale [52] displays the types of methodologies listed by McGrath [172] organized
to show relationships to precision, generalizability and realism. No approach can provide maximal
efficiency for precision, generalizability and realism at the same time. Researchers must consider nu-
merous parameters prior to selecting the study they intend to plan, e.g. research questions, availability
of source, participants, desired outputs. Note that despite different names, these methods broadly
encompass the same range as the ones listed by Aigner et al. [3], albeit with less detail.

• Visualization quality assessments: Visualization quality assessment deal with applying metrics
to support the assessment of data visualizations [112].

• Algorithmic performance analysis: approach that focuses on numerical differences between a
solution and provided responses from participants [120].

Categorizing studies within these groups is partially dependent on interpretation, but this list allows
envisioning a comprehensive range of tools researchers can consider as they prepare their studies.
Each approach presents advantages and inconveniences, and proper selection has to be made in
accordance to the specifics of what researchers wish to investigate.

Broadly, these methods can be characterized as either quantitative or qualitative. Quantitative
methods rely on analysis of measurable outcomes, and qualitative methods depends on analysis of
collected material [3]. Carpendale [52] illustrates the experimental process for quantitative studies in
Fig. 2.26, highlighting that independently of variations of approaches, quantitative methods rely on
control of independent variables to then gather numerical data related to dependent variables, upon
which statistics allow to derive viable claims on observed effects. Oppositely, qualitative methods
are more subject to variations according to researchers’ interpretation. While the certainty of claims
generated vary according to the type of method, each is valuable, and often mixed methods are
considered by researchers, to provide a nuanced analysis output. The decision for study method is also
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Fig. 2.26 Carpendale [52] illustrates the traditional experimental process for quantitative studies.
Researchers have to set what they wish to investigate, i.e. hypothesis development, and through
control or elimination of independent variables, can gather data related to dependant variables. The
recorded data can then be analysed using statistics to derive some results that allow to confirm or not
the hypothesis.

motivated by potential type of claims that can be made, their scope and certainty strength. Compared
to qualitative studies, quantitative studies are bound to a smaller scope, but control over independent
variables allow reinforcing the confidence behind the claims generated from results analysis.

A variety of evaluations methods have been used in previous literature [202, 102, 148]. Following
the standards set is now an obligation for evaluations to be considered valid from the scientific com-
munity. Planning experiments and communicating its results is difficult, despite existing guidelines
[81, 52], notably due to specific customization for different studies [3].

For both quantitative or qualitative studies set up, Forsell [85] lists six steps that researchers need
to take:

1. Preparation of a study design

2. Defining tasks and providing data

3. Participant recruitment and assignment to conditions

4. Conducting the study and collecting data

5. Analysis of results

6. Reporting the findings

Each of these steps require customization, implying that following generation of the studies, their
diversity will hinder ease to compare values of visualizations evaluated. This issue and the need to
repeat these steps have led to previous attempts to automatize the process of studies set up. While
automation of studies is not within our scope of interest, formalization of the steps to run studies
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Fig. 2.27 The evaluation process as set in EvalBench [3]. This approach where studies are considered
as sessions for which participants attempt to complete tasks will influence the SFNCS model we
introduce in chapter 4.

and the elements composing it is an important aspect of the framework we present in chapter 4,
the Systematic Framework for N-scales Characterizations of Studies (SFNCS). Tools existing to
automate studies include EvalBench [3], VisUnit [189] or GraphUnit [190]. The evaluation process of
EvalBench [3] is illustrated in Fig. 2.27. It shows that despite a large diversity of set-ups, studies can
be summarized as a set of sessions in which participants perform one or several tasks, with a study
being complete once all participants attempted to perform all the tasks they were set to do.

The wide diversity of questions and tools to provide responses have to be considered by researchers,
and formalizing these is no evident choice. The publications discussing studies automation are a first
step, but a more formal and complete approach is missing. Our work for the SFNCS is our answer for
this research gap.

Another important factor to consider for researchers as they prepare user studies are the risks
to validity. To ensure studies being valid, researchers must avoid confounding factors. Forsell [85]
defines confounding factors as threats to the reliability and validity of studies, reliability being the
consistency of studies components, e.g. measure, procedure or behaviour of the person moderating
the experiment, and validity being the study quality, i.e. whether the study answers research questions
it’s designed for. Forsell lists the following validities:

• Construct validity: is the study investigating the measure that will allow answering the research
questions?

• Internal validity: are there confounding factors that influence the results?

• External validity: are the results generalizable?

• Statistical validity: is the statistical test sound and justified?

Once a study is run and results are analysed, it is important to effectively report information about
the study. Forsell [85] lists the following details that should be communicated:
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• Stimuli (or material): the visual stimuli presented to subjects should be detailed, with specifica-
tions about visualizations used in these stimuli.

• Apparatus: the apparatus is the equipment used for the experimental setup, such as type of type
of computer, response apparatus, or any relevant detail, such as GPU used to generate stimuli.

• Participants: information about the participants should include factors of potential interest,
such as sex, age, level of experience, nationality, and whether they were compensated, and how.

• Experimental design: description of the experiment structure such as design used, vari-
ables,procedures for the assign orders, total number of trials per participant.

• Procedure: details of how the study was run such as instruction, training, tasks and time
allocated for it.

• Results: summary of results, with treatment of data and statistical tests used to generate insight.

Our analysis of the literature describing studies common approaches indicates a wealth of advises
for researchers to help them produce valid studies to evaluate their novel visualizations or algorithms.
The previous literature indicates the absence of frameworks that incorporate the rich diversity of ap-
proaches to discuss studies setups. With the SFNCS presented in chapter 4, we will provide a solution
to formally connect the elements that compose a study, by incorporating different characterizations.
Prior to presenting the SFNCS, it is necessary for us to discuss the consideration of uncertainty and
its influence over quantitative and qualitative studies.

2.6 The influence of uncertainty for analysis of movement and space-
time attributes

An important characteristic for the elements that composes the framework we present is whether they
are Measurement or Judgement. This distinction is further discussed in section 4.4.4, but is strongly
inspired by our review of literature discussing the subject of uncertainty. The terms Measurement
and Judgement relate to the notion of uncertainty that arises from attributes and characteristics that
rely upon interpretation. There are many definitions of uncertainty [70], most are similar to the one
presented by Zhang & Goodchild [278]: it is the differences between reality and the knowledge,
representation, or understanding of reality. But that definition underlines an issue with discussions
about uncertainty: many notions are encompassed into this one term. In this section, we discuss the
impact of different types of uncertainties for various tasks, how it can be communicated and its impact
over the conception of the SFNCS.
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2.6.1 Communication of uncertainty

Uncertainty, and by extension context, is an important subject that needs to be considered when
discussing analysis of data. It is intrinsically related to the structure of data. The transformation
of information (be it from a natural phenomenon or human-made entry) can always be subject to
error, to various degrees, e.g. the precision of measurements, calibration of instruments or human
mistake. Interpretation of data made by a human is strongly dependent on the task performed, and
the context associated with it. For example, precision only matters up to a certain point for which
enough confidence in the data and visualizations are generated to perform the task. Allocating a
large screen space to display a graph is often done to ensure readability, but reduces the numbers
of graphs that can be presented at once, thus visualizations should aim to allocate enough space for
understanding of the information displayed, but no more. What ’enough’ means is dependent on the
context. Jackson et al. [121] discuss how not displaying the entirety of a distribution could result in
the loss of nuanced information that is important to trust the decisions made looking at information,
but also realize that space to display visualizations is limited and should thus be used in a compact yet
clear manner as argued above. They thus developed the density strips method, which uses gradient
variations to convey variations of distributions. But the question goes deeper, as considerations of
impact of levels of precision, as evaluated by Greis et al. [92], or different considerations to include
contextual information, as investigated by McCurdy et al. [171], have various impacts, and remain
open questions for designers of data analysis systems. Furthermore, in some situations where the
information presented is either lacking precision for the task at hand, or when the visualizations
display predictions with a range of potential values, these have to be presented. The most efficient
design to consider how to display that uncertainty is yet to be answered. For example, visualizations
of predictions of hurricane movements, such as Cox et al. [65], displaying trajectories predicted
by their software, versus Mirzargar et al. [177] additionally displaying the estimated area when the
hurricane is likely to pass. Due to the shape generated from potential areas, displaying simply the
zone was often misunderstood into thinking that could be the area the hurricane would affect, instead
of its position. The previous design was technically relevant and understood by experts, but due to
context, it was vastly misunderstood by viewers without prior experience to this field. While not
all cases of context influencing the perception of a visualization are that radical, it is important to
consider how a visualization can be understood in relationship to prior knowledge about the data and
contextual expectations.

As part of the effort to display information effectively, several designs can be chosen for the
display of the uncertainty around storm (and other) paths. Jackson et al. [121] present a design based
on shaded monochrome strip whose darkness indicate density. The choice of purposely aggregating
the data to ease numerical comparison of attributes or continuous representations of estimations
then depends on the desire of the designer to engage trust in the person viewing the visualization.
Aggregated representation of the data allows for quicker judgement, but the loss of information can
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Fig. 2.28 Several methods used to display distribution. Jackson et al. [121] created the density
strip method, visible at the top. This method is efficient at conveying the gradual changes in the
distribution while taking little space, making it a potential valuable method for connected views within
a visualisation.

be problematic. Then designers have to consider uncertainty according to two opposite principles:
present all the information to induce trust, but modify it to simplify its understanding.

Deitrick et al. [69] developed a methodology which defines and discusses implicit and explicit
uncertainty in visualizations. They define explicit uncertainty visualizations as representations that
directly identify errors and unknowns through quantitative values, e.g. error bars, or qualitative values,
e.g. confidence reported with a Likert scale. These uncertainty values can only be interpreted in one
manner. They define implicit uncertainty, in opposition, as uncertainty that is context dependent and
is thus dependent on interpretation. Their approach to deal with implicit uncertainty is to transform
it into an outcome space: a range of combinations that are likely to happen according to the values
of two uncertain variables, i.e. the risk depending on two uncertain variables is represented with
coloured areas, each colour indicating the level of risk.
Deitrick et al. [70] further discuss it and the impact of uncertainty over decision-making, again
with the philosophy to derive quantitative representation of implicit uncertainty accordingly to the
context. As they focus on the impact of communication of implicit uncertainty over decision-making,
they present implicit uncertainty visualization in a descriptive model to reflect on how decision
makers contend with uncertainty. The resulting matrix displayed in Fig. 2.29 shows combinations
of aggregation of data and uncertainty, and how those can be displayed to help reflect upon the
decision-making process.

Still, this approach is strongly dependent on the ability to transform the implicit uncertainty
into a quantitative value. And as exemplified by McCurdy et al. [171], it is not always beneficial
to transform information to correct its display. Context thus needs to be adapted for information
management and communication, both accordingly to the expected end-user of the solution provided.
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Fig. 2.29 The matrix developed by Deitrick et al. [70] depicts the visualization solution space based
on the way uncertainty and decision outcomes are conceptualized.

2.6.2 Integrating the communication of uncertainty into systems to refine understand-
ing of movement and space-time attributes.

Uncertainty is dependent on context. The influence of context over uncertainty is notably discussed
by McCurdy et al. [171] when introducing their framework for externalizing expert knowledge about
discrepancies in data. In their prototype, they added to their visualizations the possibility to create
annotations, to enrich the data presented with contextual information that can not be captured simply
with quantitative data or broad categorization of the information. This approach differs from the ones
discussed in section 2.6.1 because the information necessary for the analysis to be carried out is no
longer computable. In their work, the necessity of the generation and display of contextual generation
originates from different policies between countries regarding their process to report new cases of Zika.
The data recorded and displayed using the same scaling over a geographical visualization resulted in
data discrepancies. While the experts McCurdy et al. were collaborating with were aware of policies
requiring them to adapt their mental model of the situation, communication and collaboration were
hindered by these data discrepancies.

As the data displayed was technically correct, it still was not presenting a representative depiction
of the reality of the situation. McCurdy et al. use the term ’implicit error to describe measurement
error that is inherent to a given dataset, assumed to be present and prevalent, but not explicitly defined
or accounted for in the dataset.’ The implicit error is defined by its:

• Type: whether the error is systematic or random
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Fig. 2.30 Prototypical instantiation of the framework designed by McCurdy et al. [170] for external-
izing implicit error. The system allows the inclusion of framework generated by experts when using
the prototype. The data is thus not modified to fix the recorded dissonances between countries, but
rather offers nuanced expert-based qualitative detail to explain them.

Fig. 2.31 The process model to externalize implicit error, as described by McCurdy et al. [170].The
purpose of this process is to enrich the computational model with prior knowledge an analyst possesses
but isn’t integrated to the data.

• Direction: indication of the estimated difference, e.g. negative or positive for quantitative values

• Magnitude: how important is the difference due to the implicit error

• Confidence: how much the person is confident in an implicit error existing

• Extent: how much of the information is impacted by the implicit error, e.g. how many regions
are afflicted with the implicit error

This work and informal discussions with the author over extension of the concept helped to refine
the development of the Measurement and Judgement information we define in section 4.4.4. Our
framework is defined with high-level concepts, but the elements that characterize implicit error could
potentially be reused for a lower level of abstraction.

An approach that could be considered for communication of uncertainty is fuzzy logic. Fuzzy
logic, a many-valued logic that considers truth value to potentially be any real number between 0 and
1 instead of only false or true. Zadeh [276] describes fuzzy logic as a logic that adds an in-between
between continuous and quantized information, the granulated information, also known as the fuzzy
logic gambit. Kosko et al. [144] discusses fuzzy logic and points out that most systems rely on rules



2.6 The influence of uncertainty for analysis of movement and space-time attributes 52

Fig. 2.32 Difference between a fuzzy set annon-fuzzyzy set, and an explanatory graph of a fuzzy set
with its complement [144].

set by an expert. That notion is illustrated in Fig. 2.32. A notable exception is unsupervised learning,
but then instead of creating rules, they end up being implicitly created through mimicry. Thus, while
fuzzy logic presents an approach to transform and increase the complexity of the concept of truth, we
argue that it is still dependent on humans to set its element or at the very least to judge it. It is thus a
valuable concept that might be incorporated into our approach in future work, but its focus is not on
communication, like us. Similarly, Scheepens et al. [221] presented a system that generated density
maps using a density model that allows users to modify the parameters. That approach is motivated by
the objective to allow experts to express their knowledge about the context inherent to the information
but not present in the data.

The work of Andrienko et al. [19] discusses the analysis of movement data for extracting and
exploring significant places. The notion of significant is here used to define places where the basis of
clustering movement according to different attributes results in the creation of a geographical point or
area, depending on the level of aggregation. The new places are then overlaid with graphs displaying
variations over time of attributes of interest. The notion of significant is here let up to evaluation
of the analyst. Uncertainty related to the importance of a location is thus dependent on movement
here, as opposed to context-based enriched data, such as Parent et al. [192] who overlay indications
of positions and names of specific locations likely to be of interest for the moving entity for which
records have been gathered, i.e. tourists.

There are thus many facets to uncertainty, relating to either information itself or communication
about it. While the focus of our work pivoted from the subject of uncertainty, these readings refined
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our approach to define the notions of Measurement and Judgement in section 4.4.4. The notion of
Measurement and Judgement acknowledges that interpretation is dependent on context and a clear
separation of these notions is necessary to reflect upon the decision-making process, including its
evaluations, when setting up studies designed to evaluate novel visualization designs.

2.7 Chapter summary

In this chapter, we discussed diverse literature that helped define our thesis. We first reviewed litera-
ture which analysed how information was considered and organized. The literature addressed was
particularly focused on frameworks discussing connections between different components, and their
relations, e.g. the WHAT-WHERE-WHEN of Peuquet et al. [201]. The reference model of Card [51]
is particularly important as it presents how information goes through a connected ensemble of steps
from raw data to the user.
We then discussed papers which formally characterize tasks, and how these relate to previous charac-
terizations of information, identifying how these elements are built thanks to each others and how
links can be made explicit by using the same information characterization.
We then reviewed various examples of visualizations in the literature to present diverse approaches
to display the information characterized in graphs to help their analysis, and analysed literature
presenting processes to ensure their validity.
These diverse publications indicate a large amount of work which discuss information for visualization
analysis, how it can be displayed, and how we can ensure the validity of novel visualization designs.
Literature discussing standards to run studies, and attempts to automatize them, was analysed to draw
a global understanding of expectations that can be drawn regarding how studies are run, and how
these are produced in a valid manner. We also discussed how uncertainty impacted the development
of our framework, as it led us to define new important notions: Measurement and Judgement, defined
in section sec. 4.4.4.
Our literature review revealed the lack of formal characterization of elements that compose a study
in an interconnected framework. The following chapter 3 will present the methodology we fol-
lowed to produce our research, while chapter 4 will present the Systematic Framework for N-scales
Characterizations of Studies (SFNCS), our contribution to fill the gap mentioned previously.



Chapter 3

Methodology

3.1 Chapter Presentation

This chapter discusses the methodology used to answer our research questions introduced in chapter
1, and how it resulted in the production of the contributions of this thesis.
This chapter will present, for each research question, the approach that was selected to answer it along
with its justifications supported by the literature.

3.2 Addressing the first research question

The first research questions is: Research Question 1 (RQ1) How can the information visualization
reference model be expanded to define the evaluation process when generating a study to assess a
novel contribution?
This question is addressed in chapter 4 with the introduction of the Systematic Framework for N-scales
Characterizations of Studies (SFNCS). The SFNCS is a framework we developed. It is inspired by
the information visualization reference model of Card [51] and extended to allow characterization
of studies by linking and characterizing elements composing them. The SFNCS is a framework that
combines different aspects of characterization to describe visualization methods in combination with
evaluation methods.

Our first research question (RQ1) relates to the information visualization reference model of
Card [51], for which we first briefly discuss its context. Several models have been developed for
the process of designing and implementing interactive visualizations, such as the ones from Chi
et al. [60], Van Wijk et al. [248] and Jankun-Kelly et al. [123]. The first model that included the
computational stages for the visualization development was the conceptual visualization process
of Haber and McNabb [97]. Their model includes three steps: transforming raw data into derived
data, mapping derived data to an abstract visualization, and rendering it into an image to display.
Card’s model [51] adds user interactions to consideration in the information visualization reference
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Fig. 3.1 The process followed to develop some of the blocks that populate the SFNCS. With the
literature review, we identified common approaches for studies setups, and frameworks characterizing
tasks, data and visualizations. The information visualization reference model of Card [51] is the base
for some of the blocks of the SFNCS.

model. With interaction included, modification of other steps results in the model being cyclical. The
information visualization reference model allows compartmentalizing virtually any visualization.

To address RQ1, the first step is to assess what elements do the information visualization reference
model refer to, and which frameworks can characterize them. A global understanding of the scientific
field of visualization is necessary to understand potential approaches to answer RQ1. As discussed
previously in chapter 2, there exists a vast wealth of visualization methods developed by researchers
over the years, and while they can be compartmentalized using Card’s model, its elements are not
characterized with it, and it does not allow considering how visualizations are evaluated. Thus, RQ1
aims to provide an answer on how to address this gap. Prior to starting the thesis, reading Visualization
Analysis and Design of Munzner [180], proved to be a solid base for understanding visualization as
a scientific field. As mentioned previously, our research subject prior to pivoting was focused on
uncertainty. Communication about uncertainty led us to read about diverse subjects, including hurri-
canes tracks predictions, e.g. [65, 177]. Following discussions with colleagues and first superfluous
analysis of the field, we pivoted our interest towards analysis of movement. The initial search in the
literature on analysis of movement was based on the work of Andrienko et al. [19], which presented
a wealth of characterization of tasks, visualization methods, and characterization of information
with a focus on time-space attributes. Furthermore, it presented various sources discussing tasks,
visualization methods, and characterization of information, which provided a first base of entries for
us to analyse. Our process to select papers to analyse and possibly discuss in our literature review was
then the same as Beck’s et al. [31], to follow citations in both directions. The selection of entries at
this stage followed the scope of the research, which means that our aim was to identify approaches



3.2 Addressing the first research question 56

for characterizations of data, visualization methods, and common approaches to run studies. From
this first collection of entries, search continued in two paths: following references and searching
the primary scientific outlets of information visualization research. Exclusion of additional papers
was based on repetition of visual encodings or lack of novelty on approach to characterize tasks or
information displayed. In parallel, analysing papers with concrete examples of visualizations being
developed and evaluated allowed us to identify possible limitations of frameworks that characterize
data, visualization methods and study setups. The outlets examined were: the IEEE VIS conference,
including the papers published in the Transactions in Computer Graphics and Visualization journal;
the EuroVis conference, with articles published in the Computer Graphics Forum journal; IEEE
Pacific Visualization Symposium. Other outlets were included as we followed citations.

We organize and describe the literature we reviewed in chapter 2 by following a variation of
thematic analysis with a deductive approach [79]. Thematic analysis is a qualitative research method
used to study patterns of meaning, i.e. the identification of themes that are important for phenomena
described in the source text [68]. Thematic analysis is based on the usage of codes to categorize data
items, with codes being labels to text pieces, with the objective to identify themes. Thematic analysis
can be pursued with four potential approaches: inductive, deductive, semantic or latent. Inductive
thematic analysis is based on the usage of emerging codes to categorize data items, i.e. the researcher
determines the codes they will use for data categorization. Oppositely, deductive thematic analysis is
based on usage of predefined codes as the researcher identifies theme patterns from data. Semantic
approach limits itself to identify themes based only on what is explicitly stated in the data, while latent
thematic analysis focuses on underlying meaning and is dependent on researcher’s interpretation. The
codes used to conceptualize data, visualization methods and study setups were pre-defined, which is
justified since we were not aiming to redefine fundamental concepts. The coding of the thesis was
only done by its author.

The literature review was organized according to the themes that required to be analysed to
characterize the elements of the information visualization reference model, studies designs and impact
of uncertainty over them. The objective of the literature review was to identify frameworks that could
be used to populate the blocks of the SFNCS with shared elements to describe them. In parallel to
identification of frameworks that could be connected, the elements through which these frameworks
could be connected also had to be identified.
The Conceptual Framework and Taxonomy of Techniques for Analysing Movement [12] already
discussed elements that compose visualization methods using shared encoding of information, based
on previous literature that converged on the three fundamentals sets pertinent to movement: space,
time and objects, with attributes not involving time or space being called thematic attributes. Several
frameworks share this consideration of time, space and objects [12, 201, 4] but do not always clearly
state whether their approach considers attributes that are not related to objects, e.g. precipitation
levels, carbon dioxide in the atmosphere. The triad framework of Peuquet [201] is specifically defined
as an expansion that can consider information independently of belonging to an object or not, and thus
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is the approach we select to characterize information. Thus, consider characterization of information
as WHAT-WHERE-WHEN. WHAT being a broad characterization of attributes, the SFNCS allows
for more specific detail, such as WHAT_Qn when discussing quantitative attributes, and WHAT_Ql
when discussing qualitative attributes.

We then selected frameworks for the blocks of the SFNCS, with the criteria of structures that can
share links and be communicated using the WHAT-WHERE-WHEN triad of Peuquet [201]. The
process to develop blocks based on existing frameworks is illustrated in Fig. 3.1.

The development of the blocks that were not novel and developed as an addition to allow link to
study evaluation, the blocks Question and Response, is discussed in section 4.5 and 4.5. These blocks
were generated by investigating how studies were commonly run, and what were existing approaches to
characterize evaluation methods. The Question block was generated following an inductive approach
where we characterized elements of examples sentences using the WHAT-WHERE-WHEN model
first. We then considered a range of linguistic methods to connect these elements together to form
a coherent question that could be passed as a sentence understandable by participants in studies.
Additionally, using our literature analysis of studies, we listed methods to collect responses and used
it to populate the Response block. The list of answering methods we set up is derived from the options
provided by leading survey software system Qualtrics [208] and additional studies report for which
the response process was omitted by the Qualtrics system.

3.3 Addressing the second research question

The second research question is: Research Question 2 (RQ2): How can the time mask be extended
into a theoretical framework that enables filtering according to time, attributes, and space?
This question is addressed in chapter 5 with the introduction of the ATS-ATS Mask.
This question originates from reading work introducing the Time Mask [20]. The Time Mask is a
temporal filter designed for selection of multiple time intervals in which some query conditions are
fulfilled, based on their attributes, quantitative or qualitative, applicable to time-referenced objects, e.g.
trajectories and events. It is a useful tool for the detection of relationships between different moving
entities. Prior to being applied, the filter is displayed over the visualization, indicating time frames
matching the query and the attributes selections used for the query. The filter is then applied over all
the connected visualizations displaying information related to the moving entities of the visualization,
over attributes, space, or time (WHAT-WHERE-WHEN following Peuquet’s triad [201]). Andrienko
et al. [20] list the following requirements for the Time Mask:

• has to display value variations of time-dependent attributes, and these attributes can be used for
defining query conditions

• has to allow interactive creation and modification of queries

• has to display current query conditions
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• has to indicate time intervals where the conditions are met

Visualizations with queries overlaying space, time or attribute are not too rare [234, 4, 240, 142,
110], but work to characterize the queries is relatively recent. At the time of publication, the Time
Mask was a novelty, as it presented the attributes of the query of conditions over their dimensions,
and indicated time frames which matched the query. This approach with interactive filter displayed
prior to application reinforce understanding of selection during the data exploration process to detect
relationships between data sources.
We intended to extend this approach further. As the Time Mask allows applying queries about time and
quantitative or qualitative attributes over visualizations displaying attributes over time, with the output
filtering out elements of visualizations related to space-time, i.e. moving entities, we considered how
to incorporate richer querying, and potentially display over visualizations indicating space.

This led us to search how to combine characterization of queries for time, attribute and space.
The process to consider that combination was the following: analysis of literature, both concrete
visualizations and theoretical frameworks, and running a workshop with visualization experts.

The result is the ATS-ATS Mask, discussed in depth in chapter 5. The concept of the ATS-ATS
Mask is to indicate through overlays on time frames the data that matches one or more conditions.

During iterations of designs for the ATS-ATS Mask, we ran a workshop, discussed in section 5.3
and detailed in appendix B, with the following objectives:

• ensure that, prior to applying filters, there could be indication of elements that match the query
conditions

• identification of concrete approaches to indicate elements matching queries over time, space
and attribute

• verification if some designs were incompatible with ATS-ATS Mask and adapt if necessary (no
design produced proved impossible to characterize with the ATS-ATS Mask still)

Reflecting upon the outputs of the workshop, we identified that clear communication of elements
used to query and elements under its influence was important, and we thus considered how to display
them. For each use of the ATS-ATS Mask, its naming adapts to the type of information queried, and
the type of information displayed before the application of the overlay with the following encoding in
its name: condition-graphic.

3.4 Addressing the third research question

The third research question is Research Question 3 (RQ3): How does the visualization of conditions
over time-space-attributes affect people’s capabilities in conducting synoptic comparative tasks within
multivariate spatio-temporal data analysis?
This question was answered by tackling more detailed ones:
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• Research question 3.1: How does the visualization of conditions over time-space-attributes
affect the ability to conduct synoptic comparative tasks within multivariate spatio-temporal
data analysis?

• Research question 3.2: How does the visualization of conditions over time-space-attributes
affect self-reported trust in conducting synoptic comparative tasks within multivariate spatio-
temporal data analysis?

• Research question 3.3: How does the scaling of the axis displaying time variations affect the
ability to conduct synoptic comparative tasks within multivariate temporal data analysis?

• Research question 3.4: How does the scaling of the axis displaying time variations affect
self-reported trust for conducting synoptic comparative tasks within multivariate temporal data
analysis?

• Research question 3.5: How does the display of additional unnecessary information affect
the ability to conduct synoptic comparative tasks within multivariate spatio-temporal data
analysis?

• Research question 3.6: How does the display of additional unnecessary information affect self
reported trust for conducting synoptic comparative tasks within multivariate spatio-temporal
data analysis?

This question is addressed in chapter 6 with studies set to evaluate performances of synoptic
comparative tasks within multivariate spatio- temporal data analysis using a version of the ATS-ATS
Mask, specifically the A-ATS Mask.

Fig. 3.2 The ’research onion’ of Saunders et al. [220] presents a series of options for different steps
of research design that researchers can use to consider simultaneously several levels of abstraction.
We use it to describe the philosophy of our approach to answer our research questions.



3.4 Addressing the third research question 60

When introduced, the Time Mask was evaluated with qualitative studies to ensure usefulness
for detection of relationships between data related to movement analysis, specifically aviation and
maritime traffic [20]. We aimed to reinforce understanding of ability of task necessary to be performed
for these high-level tasks. We aimed to identify the nuances of this approach according to data
complexity.

Our approach to gather that knowledge followed two main steps: first was estimating what
parameters could be variants for the quantitative study to evaluate performances during synoptic
comparative tasks within multivariate spatio-temporal data analysis, and second was to run the
following studies themselves.

Throughout this section, we will use the research onion of Saunders et al. [220], illustrated
in Fig. 3.2, to categorize our method for our two main steps. We will first broadly introduce the
methodology for the two main steps, and then detail, for each layer of the research onion, how we
categorize our approach.

First step: assessing the variants for the evaluations of performances during synoptic compara-
tive tasks within multivariate spatio-temporal data analysis
Variations for multivariate spatio-temporal data are vast, and to some extent, a certain range of them
are bound to result in impossibility to be visually interpretable once presented in a visualization. Our
first step thus required was to assess bounds within potential variations of multivariate spatio-temporal
data, such that analysing performances wouldn’t be trivial. The literature review we performed
indicated a variation of designs and visual outputs, occasionally with comments when they proved
too challenging to be visually interpreted. We thus considered that we needed to evaluate what
were the parameters of the visual stimuli representing spatio-temporal data resulted in impossibility
to be interpreted. Our approach was hybrid, with parameters of data resulting in complex visual
representation of qualitative and quantitative data being justified by discussions found in literature,
and parameters resulting in complex visual stimuli for spatio-temporal data, specifically trajectories,
being evaluated with studies we developed.
We aimed to generate codes to characterize data, resulting in trajectories displayed being difficult to
interpret visually. Thus, we evaluated the influence of variations of several parameters with studies
asking participants to compare trajectories complexity with series of trajectories being drawn next
to each others. We discuss the process to evaluate parameters of spatio-temporal data resulting in
trajectories being difficult to interpret visually in section 4.4.3. We then used the resulting list of
trajectories extracted from IEEE VAST 2014 challenge data set and ordered according to generate
codes characterizing complexity.
The resulting parameters to characterize complexity of multivariate spatio-temporal data were then
used for the development of the studies design to evaluate performances during synoptic comparative
tasks within multivariate spatio-temporal data analysis.
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Second step: evaluating performances during synoptic comparative tasks within multivariate
spatio-temporal data analysis

We ran three studies: one to evaluate impact of scaling, one to impact display of distractors, and
then a study to evaluate impact of factors variations in detail. The three studies follow globally the
same protocol. We name these studies Scaling, Distractor and Measurement. The Scaling study is set
to answer the research questions (RQ) RQ 3.3 and RQ 4.4, the Distractor study is set to answer RQ
3.5 and RQ 3.6, and the Measurement study is set to answer RQ 3.1 and RQ 3.2. They are discussed
in detail in sections 6.6, 6.5 and 6.7.

For these studies, we generated quantitative and qualitative data with factors varying, resulting in
higher difficulty to interpret it visually. We discuss the process in further details in section 6.3. The
trajectories used for the studies are extracted from the IEEE VAST 2014 challenge data set and their
complexity of interpretation obtained thanks to the first step described previously.

The data, visualization designs, response tools, and questions asked for the studies are the same.
Parameters that vary for these three studies are dissimulation of visual stimuli unnecessary for tasks
in the Distractor study, variation of scaling of visual stimuli in the Scaling study, and more numerous
variations of data characteristics for the Measurement study. Participants were asked to evaluate
values derived from the spatio-temporal data using an implementation of the A-ATS Mask. These
values were based on either qualitative, quantitative, or spatial data. We evaluate performances of
participants based on differences between their answers and calculated baselines, with the difference
being either numerical or binary. Our process to analyse participants’ responses is discussed in details
in section 6.4.5.

We will now use the research onion to characterize the methodology of the two main steps we
previously discussed.
Our research philosophy as we set the studies was positivist for the most part, albeit we were partially
pragmatist for selection of some variants : for the first step of our process, we had to select ranges of
parameters to ask participants to compare. Once parameters for our studies were set, we intended to
rely on observations which were subject to interpretation to a minimum in the second step.
Our approach to theory development is hybrid, both deductive and inductive. We created codes to
categorize stimuli presented to participants according to data in the first step, following a study where
we collected user sentiment. Our interpretation of the results to generate new categories is inductive.
We then followed a deductive approach in our second step to analyse participants responses to our
studies.
Our methodological choice was multimethod quantitative. For the first step, analysis of results was
based on simple ordering of trajectories based on scores of perceived complexity. For the second
step, the numerical questions are analysed using the log absolute error as measured by Cleveland and
McGill [63] and subsequently employed by Heer and Bostock [100]: log2(|baseline−answer|+1/8).
The questions where outputs were binary, either correct or incorrect, were evaluated by generating
error rates, the number of incorrect answers per task multiplied by the total number of repetitions
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[195]. Additionally, we discuss the relationships between the factors of interest and self-reported
confidence in ability to perform the tasks. Significance of differences between self-reported confidence
is evaluated with first a singular Kruskal-Wallis test, followed by Dunn’s Multiple Comparisons [74].
The strategy we followed to answer our research questions was experimental research. To answer
RQ3, we set a series of experiments for which the justification of the tasks selected for participants to
complete originates from existing literature.

The time horizon to answer RQ3 was cross-sectional, with our series of experiments being run in
a moderately short amount of time. The details of the studies, i.e. visual stimuli, data variations and
tasks, are discussed in chapter 6.

3.5 Chapter Summary

This chapter presented the methodology used to design the main contributions of this thesis: the
SFNCS, the ATS-ATS Mask, and the studies run to evaluate an implementation of a selection of the
ATS-ATS Mask, specifically the A-ATS Mask.
It showed the steps we took to extend the Time Mask, resulting in the ATS-ATS Mask. We discussed
the process we followed to select the frameworks and characterizations that compose the blocks of
the ATS-ATS Mask. We also indicated the process we followed to define the ATS-ATS Mask, and
the studies we ran to evaluate performances while conducting synoptic comparative tasks within
multivariate spatio-temporal data analysis. Choices were justified with either referrals to literature or
description of the logical process we followed. The next chapters discuss in more details the SFNCS,
the ATS-ATS Mask, and the studies set to evaluate an implementation of the A-ATS Mask.



Chapter 4

The Systematic Framework for N-scales
Characterizations of Studies (SFNCS)

Fig. 4.1 The blocks of the Systematic Framework for N-scales Characterizations of Studies (SFNCS):
connecting Task, Question, Data, Visual Stimuli, and Response into one structure from which
characteristics transfer. The arrows indicate how selections within a certain category at its source
will directly impact the element at its end. The SFNCS is built by connecting tasks as defined by
Andrienko et al. [18], the framework for characterization of visual stimuli of Andrienko et al. [12],
and data characterization as defined by Peuquet et al. [201]. We developed the blocks Question and
Response to characterize the entire flow of studies set by researchers.

4.1 Chapter Presentation

The main contribution that results from this thesis is the Systematic Framework for N-scales
Characterizations of Studies (SFNCS) presented in this chapter.
The SFNCS is a framework, derived from Card’s reference model [51], that formally characterizes
visualization methods in combination with evaluation methods by linking together five blocks –
concepts that are fundamental to visualization, its design and evaluation. These blocks are Data,
Visual stimuli, Task, Question and Response.



4.2 Overview of the framework structure 64

In this chapter we first present a broad overview of the SFNCS, followed by its origin, with a taxonomy
for which its development allowed us to reflect on the high level concepts. Then we discuss the
concepts that were selected to allow discussing its elements, the process to select the blocks that
compose it, and the novel characterizations we created to populate the SFNCS. Afterwards, we briefly
discuss the benefits of the SFNCS for the scientific community, and its limitations through a systematic
analysis of studies corpus. Finally, we discuss examples of usage of the SFNCS for diverse fictive
studies set-up.

4.2 Overview of the framework structure

The SFNCS is a framework we have developed that links together five blocks – concepts that are
fundamental to visualization, its design and evaluation. The SFNCS was developed with the objective
of allowing the characterization of elements necessary for researchers to compose with as they set up
studies to evaluate visualizations. The five blocks are derived from the reference model of Card [51]
and are designed to be populated with other frameworks. This approach of embedding frameworks
within the SFNCS allows characterizing information in a coherent structure. The SFNCS is illustrated
in picture 4.1. It is composed of the following blocks:

• Data: The digital recordings of a real life-event, transcribed into either position records, quanti-
tative attributes and qualitative attributes, as well as times of their creations. Our categorization
of data is based on the model developed by Peuquet et al. [201], where they are defined as part
of one of the following group: WHAT,WHERE,WHEN. This high level categorization can be
expanded into subcategories, for further details when that separation is important.
Our thesis exemplifies the expansion into subcategories as we evaluate a novel design using
our framework, for which we need to add the following sub-categories to WHAT: WHAT_Qn,
the quantitative attributes, and WHAT_Ql, the qualitative attributes, which itself WHAT_Ql
encompasses lower categories: WHAT_Ql_Nom for nominal data and WHAT_Ql_Ord for
ordinal data.
Selections of data characterization are to be done by researchers accordingly to the contribu-
tions they wish to evaluate. For example, in chapter 6 we present studies we ran to evaluate a
visualization design of interest using the SFNCS. In these studies, the design are not specific
to the WHAT_Ql_Ord category and are thus not evaluated, but we underline the mention of
the WHAT_Ql_Ord category, as we deemed its differences with the WHAT_Ql_Nom category
strong enough to require a separation instead of keeping the aggregated category WHAT_Ql.

• Visual stimuli: characterization of the visualizations presented to the participant, using the
framework of Andrienko et al. [12]. The characterization of the visualization is defined by the
attributes displayed and how they are organized together, and can be described using pictographs
2.13. The pictographs are built using letters to indicate the type of information displayed, e.g. a
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T for time, O for object, A for a thematic attribute or S for space. We discuss their taxonomy in
detail in section 2.4.

• Task: The tasks that users perform in a real situation. We categorize the tasks using the
taxonomy produced by Andrienko et al. [18]. The same taxonomy is used as part of the
Question block categorization. The details of this structure are discussed in section 2.3 and
illustrated in Fig. 2.8.

• Question: The questions that are asked to participants are categorized with several parameters
that we describe and define in this section. The question block is a contribution we provide in
this thesis. The Question block is made up of sub-blocks that indicate how questions are asked,
how they relate to the task evaluated through them, and the information defining it. We further
discuss the Question block and its sub-blocks in sec. 4.5.

• Response: The methods available for participants of studies to respond to the question asked.
The tools offered to participants to respond to the questions asked by researchers are important
as they define the level of detail that can be collected from each response. It is mostly derived
from answers tools provided by Qualtrics, an experience management software [208], and
additional methods we found in literature. We present the Response block in more details later
in section 4.5.

In the following sections, we will first discuss the origin of the SFNCS and then discuss further details
about the elements that compose it.

4.3 Origin of the framework

During our literature review at the beginning of our thesis, the choice of the data set(s) we would
work with was not definitive. To summarize, the potential sources were: pedestrian movement, ship
moment, aircraft movement and/or traffic movement. We thus sought and read diverse scientific
contributions to understand the current problematics that existed with these moving entities and the
approaches whether existing or researched to tackle them. During our readings, we started to notice
some similarities of visualizations depending on moving entities. To assess whether the pattern was
recurrent or random, we decided to investigate whether there were relationships between types of
moving entities, tasks that were performed when analysing data related to them, the type of visualiza-
tions and algorithms produced to help tackle them. Additionally, we wished to investigate whether
display of contextual data visually encoded was more common for a certain type of moving entity
or a certain type of task. Finally, we were inspired by Kitchenham et al. [135] and our approach
was motivated by the goal to ’assess the frequency or rate of a project development factor such as
the adoption of a technology, or the frequency or rate of project success or failure’ with a rigorous
method that would allow us to focus future design concepts with the most successful approaches.
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To evaluate the existence of patterns, we decided to categorize contributions and to populate a taxon-
omy to allow for comparisons of their attributes. We read previous literature that were organized using
the Bertifier technique [197], which allowed to conveniently reorder entries, and also incorporated
methods to order entries according to visual similarity to render patterns easier to discern.
Many elements from this section are discussed in the poster we published at EuroVis 2019 [6]. The
poster is available in the appendix A. We discuss them in more detail here, as this process was an
important step towards the development of the SFNCS.
We decided to develop the taxonomy by linking the high-level of abstraction WHAT-WHY-HOW
typology [41] discussed in section 2.5.1 to identify the data, tasks and idioms being employed.

Analysis of visualization is influenced by knowledge the user possesses about the elements being
part of it [171]. Thus, our motivation to develop the attributes composing the elements of WHAT was
based on documents mentioning their importance during the analysis of trajectories. Prior to setting
the taxonomy, we were unaware whether to search for patterns amongst literature reports according
to either tasks, visual stimuli, data operations, type of moving entities, or any combination between
them. The model of Brehmer thus offered a certain flexibility to compose a diverse range of elements
of importance when discussing visualizations in scientific publications. We were inspired by the
list of visualization methods of Andrienko et al. [19] to connect for every single paper the task to
visualization methods used. In their review of methods and applications for trajectory data mining,
Mazimpaka et al. [169] included a finite categorization that named both visualization methods and
algorithms. Their taxonomy interested us as it listed unique names for each visualization method and
algorithm, which would frame our search for patterns.
Additionally, as mentioned more in depth in section 2.6.1, our interest to investigate the impact of
context over the analysis of movement and space-time attributes drove us to add a category to the
taxonomy which was a binary quality to capture the presence or absence of contextual information.

Our categories are set up as a lower-level of abstraction approach to populate the WHAT-WHY-
HOW typology. The categories populating the HOW group are taken directly from the taxonomy
developed by Mazimpaka et al. [169] with minor additions, as we encountered examples in the
literature that were not well captured by the phrasing of these categories.

The WHY block

The tasks listed in the taxonomy fit into the WHY category from the typology of Brehmer et al. [41].
Mazimpaka et al. [169] define high-level tasks as "application problems" and tasks with a lower
level of abstraction "main task". We followed the requirements of Brehmer et al. [41] and for each
task what is the expected input and output. Our model was derived from the semantic trajectory
model of Bogorny et al. [36], but made simpler for clarity. We list the resulting tasks selected for our
taxonomy:
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Fig. 4.2 Our WHAT-WHY-HOW taxonomy of trajectories visualization research illustrated using the
Bertifier technique [197]. The documents are ordered through Bertifier’s visual similarity algorithm
that makes patterns easier to discern. Find the data here: https://bit.ly/2vyoSoQ. The blue column
indicates a document discussed as a populating example discussed in section 4.3.

• T1 - Characterisation of locations:
Input: trajectories
Output: attributes for locations
This task aims to label locations by using data such as environment or trajectory data
For example: Willems et al. [265] encode details of speed variations of individual vessels
within a small kernel to highlight anchoring zones where multiple vessels stop.

• T2 - Outlier understanding: Input: trajectories - Output: attributes to trajectories - This task
aims to find trajectories within a set that can either be errors within the data or cases too
extraordinary to be considered relevant within the analysis. Mazimpaka et al. [169] consider
this task as a data mining method, however, there are enough visualisation methods designed
directly to explain outliers to warrant an explicit task under our task taxonomy, e.g. Hurter
et al. [115] use visualisations to detect outliers within flights records or Laxhammar [149] who
uses a model to detect anomalies for sea surveillance.

• T3 - Characterisation of moving objects: Input: trajectories - Output: attributes of movers - The
aim of this task is to gain additional information about the mover, e.g. characteristic features,
categorisation, or places frequently visited. For example, Parent et al. [192] present how from
the stops of a trajectory and the information about elements in the area indicate that the mover
is likely a tourist.

https://bit.ly/2vyoSoQ
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• T4 - Discovery and characterisation of the connectivity between locations: Input: trajectories
and locations - Output: relationships between locations - The aim of this task is to discover and
characterise the existence of a connection between locations. For example, Wood et al. [268]
present an encoding of Origin-Destination (OD) maps and use it to illustrate links in between
US counties, using data of migration or commuting between each.

• T5 - Discovery of movers’ relationships: Input: trajectories - Output: relationships between
movers - This task establishes whether two movers share some connection based on regular
trajectories parameters such as a mover following another. Mazimpaka et al. [169] named this
task “Discovery of social relationship”. It was changed in an effort not to be domain-specific.
One example is Li et al. [153] who introduce data mining functions used to discover animal
movement patterns.

• T6 - Detection and recognition of events: Input: trajectories - Output: event - Originally this task
aimed to detect social events only, but we renamed it, following the scope from the framework
of Andrienko et al. [12]. They have stated that “any pair” of a point and a location “in a
trajectory can be treated as a spatial event” but not “any such event is significant with respect to
the goals of analysis”. Relevant events are extracted in combination to relevant context, such as
“meetings of two or more movers” or “Attaining particular values of movement attributes, e.g.
cars exceeding speed limits”.

• T7 - Trajectory-based recommendation: Input: trajectories and locations - Output: recommen-
dations of trajectories - This task aims to suggest a potential route or sets of places based on
a model of the user goal. Data operations can be computed to help, by using semantic data
about the mover and the environment, where it is assumed that movers with similar movement
records are likely to share other semantic attributes such as preferences. One example is Qian
et al. [207] who present an algorithm to suggest trajectories for multi-aircraft planning.

• T8 - Trajectory-based prediction:Input: trajectories and locations - Output: predictions of
trajectories - The prediction task is defined by the interest of the user to know a possible future
position for a mover, its destination, or the route it will take. One example of this task is Cox
et al. [65] who display a set of potential path predictions for hurricanes.

The HOW block

The HOW section of our taxonomy contains visualization methods. Here we are concerned with
HOW the trajectories are encoded - this is the Visual Structures phase of Card’s model. Our examples
are derived from the work of Andrienko et al. [19] and types of operations performed on the data to
produce additional content, inspired from the review of Mazimpaka et al. [169] In this taxonomy
we name the visualizations after the ones listed by Andrienko et al. [19]. That approach can not be
exhaustive, as it limits the number of visualizations to a finite number. We use the method names
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proposed by Mazimpaka et al. [169], to which we added the category ‘Aggregation’ which is used
in a number of papers but wasn’t included in their work due to their different focus. Do note that
we evaluated the visualizations within the paper that were representing movement, i.e. if a paper is
composed of graphs representing results of a user study, those would not be used to populate the
taxonomy. We complemented the baseline taxonomy with the ‘Attribute Abstraction’ to distinguish
techniques where all the dimensions used are attributes related to the movement, but none are spatial.
The visualizations methods listed originate from the taxonomy of Andrienko et al. [12], with the
distinct separation of the operation of O1 ‘Aggregation’. The resulting list of visualizations is:

• Vm1 - Summary attribute values associated with locations: representation of movement ag-
gregated over a point or a region, and then maps the calculated sum of times with movement
occurring over it to a colour scheme. E.g. the work of [223] shown in Fig. 2.22.

• Vm2 - Spatial aspect of trajectories: representation of trajectories drawn by displaying points of
the recorded positions of a moving entity and then connecting them with lines. This approach is
often done over a display of the geographical context of the movement, e.g. a map representation
of the area.

• Vm3 - Flow map: this visualization is a representation that does not represent an accurate
depiction of movement, but that aggregates different movement records into fewer lines that
represent the set. The more aggregated the movement is, the larger the width of the line
representing the movement. This approach trades off spatial precision for readability of
movement of numerous moving entities. The lines generated may split, at their origin or
destination, into more detailed views, e.g. several lines can merge together from flights
originating from different airports in the USA, before merging across the Atlantic and then
splitting again to provide detail about destinations in European airports.

• Vm4 - Transition matrix: representation of movement in a matrix where each column and line
represent an area. Detailed information of the trajectories is lost, but trends between regions
can be easier to spot with this approach.

• Vm5 - Temporal display: display of an aggregated attribute related to movement over time, e.g.
speed over time.

• Vm6 - Time graph: similar to the temporal display, but detail for each object is kept in the
visualization.

• Vm7 - Attribute abstraction: representation of two non-spatial attributes, with the x and y axis
used to indicate the characteristics of movers.

• Vm8 - Space-time cube: representation of movement similar to Vm2, but within a 3D space
with one axis used to indicate time. The resulting drawn trajectories thus both move in a 2D
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space to indicate movement over geographical scales, e.g. latitude and longitude, but the lines
drawn continuously move up the view as time passes.

• Vm9 - Spatial positions of objects: indications of positions in which entities have been spotted.
Unlike Vm2, there are no lines used to indicate how movement could have happened between
the recorded positions.

• Vm10 - Chart map: representation of the space over which the movement is recorded with
additional visualizations positioned over certain points to communicate aggregated data at these
locations.

The list of operators is the following:

• O1 - Aggregation: Aggregating data involves taking a set of trajectories and reducing them to
one that represents some overall way to indicate what matters for all of them. It is a method to
retain global information while accepting the loss of detail

• O2 - Clustering: Clustering operations labels groups of trajectories together based on their
similarities, but no additional trajectory is created to represent them.

• O3 - Classification: Classification is an operation that adds semantic data to the trajectories,
which can later on be used within the visualization of the trajectories directly or ensemble
statistics.

• O4 - Pattern mining: Computed operations done to find how to qualify the type of movement
for the trajectory, such as going to work, going back home, etc.

• O5 - Outlier detection: Computed operations to detect trajectories that are very likely to be
errors, such as cases where the mover moves too far in a very short time frame.

• O6 - Prediction: Computed operation to estimate, based on known previous positions, and
possibly environmental factors that influence the mover.

The WHAT block

Our reflection on how to define the elements of the WHAT block were originally motivated by the
consideration that context influences data analysis [170, 171]. Regarding analysis of movement and
space-time attributes, the example described by Bonham et al. [37] indicates that some trajectories
of vessels appear counterintuitive unless the person looking at the data is aware of specific rules or
motivations due to the context, e.g. loop nearby a dock available for a long time in order to land
when the varying price of the cargo is at high as possible. Another context is discussed by Andrienko
et al. [21] who discuss flight variability and draw attention to the importance of context such as
weather, or exceptional events such as strikes called by airport workers. Brehmer et al. [41] advocate
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for a "bring your own WHAT" approach. We thus developed our own blocks for WHAT, with the
objective to convey differences between moving entities according to their unique context.

The motivation that shaped the development of the blocks was the result of our reasoning whether
a factor could result in different ranges of behaviours to expect, and whether the freedom of a moving
entity was likely to influence parameters of a visualization, e.g. scale. These motivations originate
from noticing occurrences of these factors requiring specific explanations from researchers reporting
novel visualization designs, or indicating limits of visualization designs due specifically to context
related to the moving entity, e.g. docking ships following trajectories that seem irrational unless
context about intention of conductor and freedom of movement is considered [37].

The resulting list is:

• Mover’s decision capabilities(MDC): The mover’s decision capabilities is a category that
indicates whether the mover is the one deciding for the trajectory they follow. The mover’s
decision capability is useful to assess whether a trajectory is an error, if the mover possessed
the ability to take another trajectory, or the existence of potential interactions between several
movers.

– MDC1 - Natural movers: this category describes objects where the movement will not
undergo modifications due to the will or action of a sentient being, e.g. storms or glaciers.

– MDC2 - Independent movers: Independent movers are responsible for deciding their own
movement, e.g. a pedestrian or a car being driven by an occupant.

– MDC3 - Dependent movers: Dependent movers are not making the decisions for the
movement they are undergoing, e.g. a plane following direction given by an agent outside.

• Levels of constraints(C): This section presents categories that define how constrained a mover
is, i.e. how many rules the mover has to abide to. This notion is a continuum rather than a
series of precisely defined ordered categories, and this notion can also change depending on the
context, e.g. a car is semi-constrained, limited normally by legal constraints, but has access to a
range of velocities and several directions. It can however be forced into a deviation in various
ways: when being towed, or when under instruction by an external person, making it entirely
constrained exceptionally. This notion also depends to a certain degree of the precision of
movement available to the moving entity, e.g. in normal situations planes are limited to a certain
path but for safety are allocated a certain range of movement, due to both safety concerns and
difficulty to very precisely keep a specific desired trajectory in problematic context, e.g. high
winds.

– C1 - Zero constraints: whereby the mover is able to go in any direction within its physical
capability so to reach its destination.

– C2 - Semi constrained: whereby the mover has sets of possibilities for trajectories, but is
not free to take all of them.
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– C3 - Entirely constrained: whereby movers are unable to move in ways other than those
predefined, e.g. trains are forced to move on rail-roads, and are unable to deviate from the
planned routes.

• Contextual data (CTXT): This category is used to label documents with visualizations that add
contextual data different to movement, e.g. display of metadata of points of interest that can
help to understand the reason behind the time a mover stops at a specific location.

The populating process

The taxonomy we produced is the combinations of the blocks we just detailed that we then populated
with numerous publications. We first made a selection of papers and then assessed how to characterize
them using the blocks of the taxonomy we defined.
The taxonomy was first populated following a convenience sampling [77] approach. The convenience
sample was useful to indicate issues with the categories of the taxonomy, but was neither systematic
nor reproducible, thus we restarted populating the taxonomy, following this approach:

• (1) Search on Scopus for all conference papers and journals articles that discuss “trajec-
tor(y/ies)”,“visuali(s/z)ation” and exclude keywords that were representative of notions that fell
out of our scope, e.g. "trajectories of eye movement".

• (2) Remove posters, short papers and VAST challenges to ensure contributions at a full paper
level. Full papers provide a representation of the quality of the state of the art, rather than
methods used out of habit or specifically contextual reasons, e.g. news reports often display
cones cones to represent predictions of hurricanes positions even though it is commonly
misunderstood [177].

• (3) Remove the papers outside our scope and use the remaining ones to populate the taxonomy.

This resulted in 54 documents populating the taxonomy [5, 21, 22, 46, 59, 58, 96, 113, 116, 146,
159, 194, 198, 214, 215, 229, 241, 269, 275, 2, 16, 47, 45, 55, 61, 94, 108, 118, 117, 129, 140, 145, 67,
155, 156, 158, 160, 162, 163, 231, 1, 193, 223, 242, 243, 249, 252, 254, 255, 257, 256, 261, 270, 237].

For clarity, here’s an example : Liu et al. [160] discuss route suggestions for taxi trips and reasons
as to why they follow them or take other paths. The paper presents visualisation techniques to display
attributes and statistics associated with different routes to analyse their diversity and help choose the
best route. Taxis are instructed on the beginning and end of a trip, but decide of the route to take,
and thus fit the category ‘Independent movers (MDC2)’. They are following a set of rules but have a
range of options to perform their movement, thus fitting in the category ‘Semi-constrained (C2)’. The
tasks the paper discusses fit the ‘Characterisation of location (T1)’ category when using techniques
to display hot spots in a city, and additionally fit the category ‘Trajectory-based recommendation
(T7)’ when using their system to help the user choose the best route possible. The paper presents
several methods to support those tasks. Some visualisations include heat maps to indicate hot spots,
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achieved using aggregated data, thus fitting categories ‘Aggregation (O1)’ and ‘Summary attribute
values associated with locations (Vm1)’. Other visualisations present routes that were taken, fitting
the category ‘Spatial aspect of trajectories (Vm2)’, present activity over roads over a timeline, fitting
the category ‘Temporal display (Vm5)’, or views including both. Finally, the document does not
display contextual data. Do note that our taxonomy aggregates elements of documents classified, i.e.
separate visualisations, operations, movers, tasks.

Output

The development of the taxonomy and the organization of the contributions allowed us to make a
number of observations:

• Tasks ‘Characterisation of locations (T1)’ and ‘Characterisation of mov-ing objects (T3)’ are
mainly discussed while using the visualisation method ‘Spatial aspect of trajectories (Vm2)’

• Most moving entities discussed in contributions are ‘Independent movers (MDC2)’

• Contributions discussing ‘Context (CTXT)’ are in documents discussing (T1), indicating the
usefulness of displaying contextual data for providing richer semantic context.

But these observations have to be considered carefully, as the over-representation of ‘(MDC2)’ could
indicate a lack of diversity in our population, making the emergence of strong links less likely.
Furthermore, all cases of ‘Entirely constrained (C3)’ are linked to ‘Dependent movers (MDC3)’,
potentially indicating combinations of these WHAT elements that are not separable, and thus flaws
in this structure. In retrospect and in light of the data, the taxonomy produced suffered from several
issues:

• The categories used to build the taxonomy were set up at a mid-level of abstraction. While
there is nothing fundamentally wrong with this approach, fitting some contributions into them
was not easy due to this choice.

• This classification aggregated different visualizations within one contribution (scientific pa-
per/article) into one entry. That choice was made for readability of the taxonomy, but valuable
patterns might have been lost due to this approach, and either specific entries for each visualiza-
tion of the contribution or a classification that indicates several visualizations displayed in one
dashboard.

• The characterization of the WHAT category showed that most likely some categories were not
completely independent. Ability to take decisions is particularly intriguing, as discussions with
experts in different fields or papers underlined the importance of that aspect. But in practice,
discussions of that aspect were important to understand the data more clearly, but also were put
forward by researchers as these cases indicate two issues; these events could show limitations
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of their designs, but that assessment is hard to make as it is not clear yet for the researchers how
much that contextual information is to be considered as exceptional or systematic.

• Context is an important aspect of data analysis, but as we aggregate the visualization methods
together for each contribution, the details of where its additional display was deemed most
important is lost. Future work to extend the framework to account for context would be required
to specify these details.

During the IEEE EuroVis 2019 conference, we discussed with several researchers about the
concepts presented in our taxonomy, and about the potential approaches to modify or improve the
blocks used to built it. Discussions with fellow researchers were beneficial to identify the strengths and
weaknesses of our approach. While informal conversations during conferences can only be accounted
as anecdotal evidence, these conversations with fellow researchers brought fresh and diverse ideas.
Particularly, discussions with fellow researchers were valuable concerning connections between the
blocks of Card [51].

An interesting suggestion was that all the elements of a theoretical framework would be much
simpler to understand, connect and compare if they shared as many elements as possible, i.e. the
characterization of information should be based on universal notions between blocks wherever
possible.
The taxonomy was thus an important step in our effort to understand the visualization field for analysis
of trajectories and space-time attributes. But more importantly, reflections over the taxonomy’s
strengths and weaknesses and discussions about it indicated the needs for a structure that would allow
the comparisons of diverse contributions.
In the next section, we discuss why and how data that compose the blocks of the SFNCS can be
characterized.

4.4 Data characterization

An important aspect of the SFNCS is the formal characterization of data and its categorization. Data
characterization is the enrichment of data with new information that defines it. Data categorization
is the process of grouping data with common characteristics or features that are likely to influence
visual design (HOW) and be important to task performance (WHY). This distinction is important as
data characterization is necessary to build our framework, and data categorization is used to evaluate
visualization contributions. We discuss data categorization for our studies in section 6.4.

The SFNCS is the result of both the development of our taxonomy described in section 4.3 and the
following reflections afterwards, which pointed us to the model of Card et al. [51], which we discuss
in section 2.4.1. The model of Card is a mapping of data to visual form to perform visualization tasks.
This approach has been successfully used in frameworks [101] within the academic environment,
but also for commercial products such as Tableau [263]. Still, we argue that further enriching this
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approach with a new framework that would incorporate a formal characterization of the elements
composing it would prove valuable. In this section, after presenting our reasoning for that use, we
describe the elements which will be used to characterize our framework.

4.4.1 Motivation to characterize data

Characterizing data according to the information it originates from is not a novel contribution, and
there are several approaches to do so, as discussed in section 2.2.

Discussion of characterization is important as attributes characterized can then be used as study
parameters, and if an order is possible, categorization of the data, potentially resulting in groups.
In this section, we present our reasoning for researchers to characterize information as they present
studies and report their protocols. We also discuss its expected strengths and the limits that may
hinder its adoption.

The reference model of Card [51] links Data (Raw Data and Data Tables) to Visual Form (Visual
Structures and Views) to perform a Task, with these elements potentially modified through Human
Interaction. An important notion that is not discussed when presenting this model is who is the person
responsible for the series of choices made to select and modify the data, select and specify details
of the visualizations, as well as the interactions executed to perform the task. Is it a single person,
e.g. a researcher exploring a data set of interest, or is it the product of the work of several people,
e.g. a data analyst prepared the data set, for which a designer developed a software that will present
visualizations, from which a field expert can perform the task they are interested in? This interrogation
is important because a vast part of research contributions is produced for the second case, for which
we need to assess the value of the visualizations contributions and their impact on efficiency, accuracy,
confidence, for different tasks. Furthermore, contributions should be comparable to ensure a nuanced
understanding of their strengths and weaknesses.
To allow for interdependent comparisons between combinations of elements of the reference model,
researchers should use the same characterizations of information amongst the blocks wherever possi-
ble. Our framework is thus built upon a consistent usage of data characterization. We selected the
geo-temporal framework WHAT-WHERE-WHEN proposed by Peuquet et al. [201] to build it. With
their framework, we can consider data according to its qualities, its geographical attributes, or its
temporal attributes. How their model fits into our framework is detailed in section 4.2. In this section,
we discuss the motivation behind our approach of characterizing and categorizing data, the versatility
of the WHAT-WHERE-WHEN framework, and how its elements can be used to categorize data, using
different levels of granularity, similarly to [195, 90, 224], at different levels of abstractions.

By characterizing data complexity, our objective is to facilitate the comparison of different studies
run with different data sets, and to enable the comparison of visualizations efficiency for similar data
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sets. The assumption behind that approach is that the more complex the data is, the more complex the
resulting visualization will be.

This assumption is true as long as the higher complexity of the data results in more visual
complexity for the participants of the studies performing the tasks asked of them. But this statement
has to be nuanced with the influence of data operations such as aggregation and clustering methods that
imply simpler visual stimuli but loss of detailed information. We thus consider that the assumption
holds true if the data discussed is the one directly presented to the user, not before it undergoes
transformations. Furthermore, for the assumption to hold true, the researchers must select the right
measurement which correlates to perceived difficulty for participants to perform tasks. Within this
thesis, choices have been made to select characteristics as measurement units for complexity, discussed
in sections 4.4.2 and 4.4.3.
An important point to consider is that our characterization is here based on attributes that can be
measured, e.g. ‘average sinuosity of a trajectory between 1.25 and 1.5’. It is necessary for the
construction of our framework to only consider characterizations that are based on measurable
elements to avoid different interpretations of meanings. If researchers try to characterize terms that
require human judgement, e.g. ‘while the value is high’, differences of opinion on what ‘high’ means
can arise. This distinction between type of information is discussed in section 4.4.4.

When setting up parameters of the studies they intend to run, several choices are made by the
researcher considering the data selected:

• The researcher has to consider which characteristics define the complexity present in the data,
and how these characteristics can be presented in a manner that is indicative and usable.

• The researcher have to select whether they intend to present the data directly, or through an
aggregate of some kind.

• Once the abstract space of data complexity is established, researchers have to consider selection
and level of detail for its changes. It is important because researchers aim to understand what
range selection of that complexity space is relevant for practical usage, i.e. there is no point in
evaluating performances when complexity is too low or absurdly high.

In the following subsections, we will discuss the choices we have made regarding the data
characterization process and the selections of ranges we made.

4.4.2 WHAT: quantitative and qualitative attributes

The WHAT element of Peuquet’s framework relates to qualities and quantities that are independent of
space. When discussing WHAT elements, we discuss diverse attributes in a wide variety of contexts,
be it a constant or a variable. Attributes can be considered constant or variable depending on context,
e.g. height of a mountain is considered a constant in most cases, but over very long time frames is
variable. The WHAT element from Peuquet’s framework should thus be considered according to
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the context it is analysed in. We referred to diverse attributes when discussing WHAT. Those are
qualitative (sometimes called categorical or nominal) be it binary or polynomial, ordinal (where the
values are discrete, but order matters), quantitative (aka continuous or real-valued). Card [51] claims
that the most important distinctions are those of level of measurement: whether data are nominal,
ordinal or quantitative. This distinction is critical for data evaluation (WHY), data representation
(HOW) and the subtle relationships between the two that we seek to describe and explore. We thus
invite fellow researchers to adapt their categorizations of attributes according to whether they are
qualitative, quantitative or spatial, as WHAT_Ql, WHAT_Qn and WHERE, with the possibility to
enrich the categorization accordingly to more specific details, e.g. WHAT_Ql_Nom, WHAT_Ql_Ord,
with Nominal and Ordinal being sub-categories of Qualitative data. We do not consider that the
specifications of sub-categories should be communicated if the claims researchers wish to make are
valid for all the sub-categories. We considered a distinctive group for binary data as it commonly
discussed within this thesis, but decided against as the implications of dealing with binary or ordinal
data are minor, with the only distinction being the number of elements characterizing an attribute
being 2 or more than 2. Communication and analysis of nominal data is relatively similar to binary
data, oppositely to ordinal or quantitative data. In this section, we discuss the characterization of
nominal qualitative WHAT_Ql and quantitative WHAT_Qn data, as it was the focus for the studies we
planned to later set up.

An important aspect of our work was to consider a manner to characterize the complexity of data
used to generate the visualization displayed to participants of studies. We are not experts in regard to
various mathematical formulations that could be used to define complexity, e.g. Kolmogorov-Chaitin
Complexity, Stochastic Complexity, Statistical Complexity or Structural Complexity [78]. Our lack of
expertise on these approaches meant attempting to use them in a new visualization context presented
risks for the validity of our claims. As we are aware that potential future work might present new
usage of such methods in a visualization context, we wish to state again our invitation to make data
open source to make it possible to generate new metadata out of previous studies. We intend to later
publish the work resulting from this thesis, and will then make our data and our code to analyse it
open source.
Thus, our search for parameters to define the complexity characteristics was limited to contributions
in the visualization research domain. We searched for these characteristics solely in publications
related to the visualization field that discussed elements that influenced perceived complexity once
the information is displayed.

WHAT_Qn: Quantitative attributes

In this section, we discuss potential approaches to characterize quantitative attributes varying over
time.
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Many parameters are potentially influential concerning the perceived complexity of a quantitative
attribute, but literature rarely discusses it. Rather, we found during our literature review papers
discussing complexities of lines in two dimensions representing trajectories, which present some
similarities to quantitative attributes. The contribution that fit closest to our aim to characterize the
perceived complexity of quantitative attributes in two dimensions was the graphical perception study
run by Perin et al. [198] in which they define the following parameters to characterize a trajectory
complexity:

• The tasks participants are asked to perform (WHY?)

• The 2D path of the moving entity, including its curvature, direction, length, range of angles
(abrupt changes of direction), and crossings (trajectories going over positions previously visited)

• The time function (ranges of speeds and time distributions).

• The background, with its colour and texture (e.g., a map) (CONTEXT)

Their characterisation of a trajectory complexity inspired us for our approach to characterize quan-
titative data, but we deviated from it for a series of reason which we present before discussing our
approach to characterize quantitative attributes. While we agree that tasks are likely important on
perceived visualization complexity, we argue that tasks should be separated from characterization
of the data and visualizations as data sets and visualizations can be produced for various tasks, or
one task can require several data sets or visualizations, implying that a framework assessing their
relations need to consider variations separately. Task will thus be part of the SFNCS, but separated
from characterization of the attributes. Time is not an attribute unique to the moving entities that can
be assessed by researchers, which drives us to consider it is an attribute that influences perceived
complexity of the quantitative attributes but it is not an appropriate characteristic. The background
is an element that can influence perceived complexity of a line, either helping by providing context
or hindering by reducing readability, but it is an attribute that is exterior to the information the
quantitative attribute represents in itself, and thus is not a relevant characteristic. The remaining
element that can be used to categorize the quantitative attribute is thus the 2D line (path is only a
relevant term for a trajectory), which itself is defined by several elements. The approach selected
by Perin et al. [198] was to draw straight and curved lines, with using B-splines with six control
points to produce a smooth curve with randomly assigned y values within a certain range and a fixed
x increment between the points. The output from their trajectory generation is thus very similar to a
line describing the evolution of a quantitative attribute over time. Due to the characteristics of the
quantitative attribute, some expectations can be made about the 2D line since we do not consider
set-valued analysis [26], and thus expect a unique value produced for each quantitative data point, i.e.
no crossing will be present in the data.

Priority was set for characteristics that seemed to be most important and would have the higher
influence as it varies. While other factors can be influential, our reflection was built on two consider-
ations that justify prioritization over attempting to directly bundle together all potential contenders
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to relevant characterizations. First is that assumptions require real-life verification to be confirmed,
and while motivated by experience and readings of previous literature, some choices have to be made
based on researchers’ expectations. Second, realistic constraints have to be considered when setting
up evaluation structures: if too many characteristics are set as variables, evaluating becomes particu-
larly complicated, while studies that have a limited number of characteristics are doable and allow
the presence or absence of particular effects to be established across meaningful and differentiable
conditions. It is our expectation that the knowledge generated from studies in which researchers use
characterizations they deem fit for particular purposes, will allow characterizations of the attributes of
the framework to be refined over time, as the impacts of particular attributes on particular tasks are
understood. Originally, the motivation to consider the notion of noise corresponded to the observation
that lines that were varying a lot ’(range of angles, abrupt changes of directions)’ were more difficult to
be assessed. We thus aimed for a calculation method that could be used to characterize and categorize
quantitative data.

We investigated for metrics that would effectively capture this loose notion of spatial complexity.
Metrics that were considered as potentially suitable included range of angles, straightness and sinuosity.
Li et al. [154] list a series of features to characterize movement, which can be used for quantitative
data. The list is composed of speed, acceleration, turning angle, and straightness. The straightness
appeared as a valid measurement to characterize quantitative data. It is defined as:

Straightness = distance(pi−1, pi)+distance(pi, pi+1/distance(pi−1, pi+1) (4.1)

This was our first approach, as using the mean of that value could describe an overall amount of
changes, instead of a range of changes. But at the time of implementing the calculation in our code,
we noticed a potential issue: the definition does not clearly consider whether the differences in
indexes should be made based on indexes alone or account for distances variations. We ran tests with
straightness calculated based on index or distances and noticed different values, which was expected
and tolerable, but also noticed that certain selections of index or distance differences resulted in
different straightness values of lines. Such cases were rare and occurred when the points pi−1 and
pi+1 were relatively far from each others. While we can expect researchers to select such differences
adaptively to the context of the studies they wish to run, this indicated that straightness would produce
different categorizations according to researchers’ set up, which would hinder transferability of
knowledge generated between future studies using our approach. The choice was thus made to use
sinuosity, which is not going to vary according to researchers’ input for calculation. Sinuosity is a
commonly used calculation to describe rivers [227] and is calculated as such:

Sinuosity =
n−1

∑
i=0

distance(pi, pi+1)/distance(p0, pn) (4.2)

We first hesitated to use sinuosity as the method to characterize quantitative attributes complexity,
due to its origin being made for a specific geographical task and not intended as a common calculation
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to use for quantitative attributes. But the same considerations that lead us to disregard straightness
made us reconsider that decision. Sinuosity is scale independent and appeared as a valid candidate to
characterize complexity of quantitative data. That statement has to be nuanced with three points:

• First, sinuosity is a measurement that is scale independent but for which the interpretation
varies according to context, e.g. if looking at two lines that are different entities but share the
same sinuosity, e.g. one for a river and one for a train line, over the same area,a user would
likely consider for the same value to be more or less important due to context, as train lines
tend to be less sinuous than many rivers. The same could be said of two quantitative attributes
with different contexts. Interpretation of the sinuosity in accordance to its context is thus still
present.

• Second, sinuosity is only valid for as a measurement in a Euclidean space.

• Third, sinuosity is to be considered as a valid metric for characterization of quantitative attributes
only within a set with diverse variances. This point is motivated by the observation of extreme
cases, such a line with a very high sinuosity but a very low variance will be most likely still
easier to read than a line with a very low sinuosity but a high variance. This observation has
to be nuanced as it is dependent on context and has to be considered as an ensemble of sets
of quantitative attributes, not one quantitative attribute on its own. The observation we made
about the extreme case is problematic if the two cases are considered using the same axes to
scale them. Within the context of a study, it is commonly expected that these don’t vary unless
indicated and accounted for by researchers.

WHAT_Ql: Qualitative attributes

The same approach drove our selection for the qualitative characterization. Several characteristics
could be considered as potentially valid for our framework. As stated previously, we focus on
characterizations that are likely to have a strong influence over perceived complexity, considering that
future work can refine these elements of the framework. Qualitative attributes are defined by a limited
number of potential values present in the data. As we can only hypothesize the influence of data being
nominal or ordinal over perceived complexity of qualitative data, we aimed to use a method that could
be valid for both subtypes of qualitative data.

The number of measurements that seemed relevant to us to characterize qualitative data was
limited. Overall, our expectations of data complexity resulting in perceived complexity were based
on the assumption that numerous changes of status in a small time frame were difficult to consider
in detail. This loosely defined notion drove us to consider calculations based on frequencies of
changes of status of the qualitative data. We first considered how to measure the distributions of the
variations as potential complexity measurements. But due to complex variations being only possible
with a relatively high number of variations, we concluded that these were consequences of qualitative
complexity rather than cause. If you consider over a set number of qualitative data points that the
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changes are responsible for perceived complexity, two types of situation can occur: changes can be
relatively equally distributed or concentrated in a section of those points. It can be argued that the first
case is more complex as overall likeliness to consider a potential change is relatively high overall, but
oppositely with the concentration of changes in a small section, one large section will be relatively less
complex and one small section will be very complex. This implies that these two approaches are but
different distributions of the complexity, meaning that the complexity is not the frequency of changes,
but the number of changes over the number of points itself. We thus selected the number of status
changes over the number of points as the characterization of the qualitative attributes, commonly
called frequency.
In section 6.4 we discuss the characterization of the data used for our studies according to frequency.

4.4.3 WHERE: Trajectory complexity

In this section we discuss how we selected the characterization of trajectories. The process to select
a method to characterize trajectories took place simultaneously as we worked on characterizing the
quantitative and qualitative attributes. We thus invite the reader to consider both sections as part of
the same effort to characterize perceived complexity while accounting for context.
Looking at spatial information, potential elements influencing complexity are to consider from both
the environment and the moving entities themselves. Due to technical constraints and time, evalu-
ating all the elements that could potentially be interesting as characterizations of trajectories was
not feasible. We thus aimed to describe characterizations that were likely to be most influential.
Following this decision, within the scope of our thesis we only consider contributions in which the
background that conveys geographical contextual information, i.e. the map, is not changing and only
representations of moving entities are evolving. We suppose that the influence of the background
over trajectory complexity is rather due to the geographical constraints it contains than the method
to archive contextual geographical data. Furthermore, our decision is justified by the consideration
that movement is influenced by constraints of real-life, but according to how data is processed that
importance might not be accounted for, which reinforces our confidence that while trajectories are
dependent on real-life constraints, the data worked with might not be under their influence. Still,
future work is required to formally support this supposition. This decision reduces the number of
dimensions to consider the characterization of the trajectory.
To understand the selection we made for data characterization, we discuss the elements that also
seemed valid and were disregarded following further reflection. Part of our reflection originates from
considerations of how the parameters could be evaluated to justify the selection validity.
Taking the list of factors listed by Perin et al. [199], we considered several combinations to define the
levels of granularity for the categorisation of the spatial data. Following a reasoning similar to the one
for the selection of characterization of the WHAT elements, our first approach was to consider the
2D path as the only controlled variable to characterize the trajectories. Straightness, as defined by
Li et al. [154], seemed a valid trajectory characterization measure, as it fits the assumption, shared
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by Perin et al. [199] that a curved line was more complex than a straight one. It thus seemed like it
could be used as the qualifier of complexity for our study. But further reflections drove us to nuance
this approach. Our first approach was to consider straightness as a measurement to characterize the
trajectories. As stated in section 4.4.2, our selections for characterizations were based on assumptions
over the elements that will likely be the most influential to the task. This means that some other
characteristics then have to be either ignored, constant or randomly varied as long as it is diverse
enough. We thus discuss other parameters and justify our choices on whether incorporating them
in the characterization, keeping them constant, or ensuring they are distributed evenly. Particularly,
we discuss the influence of direction and length. Our reflections about length drove us to set up an
exploratory study to evaluate perceived complexity that pivoted our approach. Elements that we do
not discuss in detail are assumed to be randomly varied.

Direction is an element that differentiates a line representing a quantitative attribute from a trajec-
tory. The display of the quantitative attribute is dependent on the order selected to display it, most
commonly in Western cultures with time evolving from left to right, resulting in a single direction to
display evolution of time no matter the quantitative attribute. Trajectories are influenced by parameters
of visualization methods selected, e.g. scaling or rotation of maps, but they are not limited to a single
direction. Direction should thus be considered as a potential valuable characterization of the trajectory.
Direction can be considered with several levels of detail, i.e. a series of turns or a series of angles
changes according to the order of the points in which the moving entity movement was recorded. We
did not suppose that directions were likely a strong influence over perceived complexity of trajectories
that would differ from sinuosity, but wanted to assess whether spatial directions influenced tasks
requiring the temporal aspect of trajectories to be considered, e.g. is the same trajectory going
from left to right is as complex if going from right to left. We thus decided not to use direction to
characterize trajectories, but in our studies flipped the stimuli for some answers to establish whether
direction could later on be a valid characterization of trajectories. More details about direction are
discussed in section 6.7.

Another important element to consider was length. We were aware that it was considered a
potentially important factor for the characterization of the complexity of the trajectory, as mentioned
by Perin et al. [198], but how important was that impact was not immediately clear to us. We
considered that the perception of length influencing trajectory complexity had to be nuanced. We
wished to understand whether length was influential when differences were relatively minor. To do so,
we set up a study to refine our understanding of perceived complexity of trajectories.
At the time of setting up this study, we had already decided to use the IEEE VAST 2014 challenge
data for future studies, as the trajectories generated for this set were recognized as realistic but did
not present a risk of confounding effect due to participants’ personal contextual knowledge that can
occur with real-life trajectories data set. We thus used the IEEE VAST 2014 challenge data, which
contains trajectories of a series of cars moving in a fictitious city. The trajectories are constrained
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Fig. 4.3 An example of the stimuli presented to participants asking them to compare the complexity
between two trajectories. This design, which consists in indicating the beginning of the trajectory
with an arrow, and its end with a square, was first explained to participants. The design was later
slightly updated, as described in section 6.2, but we used the same trajectories.
No criteria of complexity were communicated to the participants, since our objective was to use their
answer as a base to consider characteristics of the trajectories that were influential over perceived
complexity.

by a block-based road network and vary in terms of sinuosity and length. This provided a realistic
sample of trajectories, that had been derived for and used in spatio-temporal visualization, with a
diversity of shapes, directions and lengths. We asked participants to indicate, when presented with
a series of couples of trajectories juxtaposed, which was more complex. Participants could say
which of the two trajectories seemed more complex, or indicate if they did not notice a difference
in complexity. An example of a question asking to compare the complexity of two trajectories is
displayed in Fig. 4.3. A convenience sample of 63 participants answered our survey, each generating
30 comparisons, from 14 different trajectories selected to generate a set with diverse sinuosities
and lengths, resulting in 91 different combinations of comparisons, for which each was compared
the number of answer. An example of stimuli is illustrated in Fig. 4.3. The participants were not
expected to have particular skills or competencies in data visualization. The results are available
here: https://tinyurl.com/trajscomparisonresults and displayed in Fig. 4.4. This allowed us to order
the trajectories based on perceived complexity. Using this new baseline allowed to consider differ-
ences between factors and combinations of factors. At the time of running this study we were still
considering straightness as a measurement for perceived complexity, before pivoting, as detailed
in section 4.4.2 to sinuosity. When analysing the results of the study, we noticed that ordering the
trajectories according to the participants’ perception of complexity varied from the one made based
on the computed trajectory straightness metric. To understand the meaning of the output on the
ordering of trajectories according to complexity, we initiated informal discussions with participants
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Fig. 4.4 The results of our trajectory complexity comparison study. For each of the 14 trajectories
compared, a dot represents them. The dots are horizontally organized according to the number of times
they were deemed more complex than their peer (combinations of comparisons were balanced), as
illustrated in Fig. 4.3. The dot plot at the top vertically orders the trajectories according to the number
of turns of the trajectories and the bottom one orders them vertically according to their length. The
results of the study and informal discussions with participants informed us that length of the trajectory
were used as comparison method if shapes did not convey a strong enough complexity difference.
These results informed us how to categorize trajectory complexity. Here, the dots representing them
are coloured according to that categorization. The details of the data categorization are presented in
Fig. 6.4.
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after the study and asked them whether they followed a certain logic that they could describe to make
their choices. The output was clear: participants, without receiving any instructions, often relied on
counting turns and looked a length of the trajectories. Some mentioned that they first considered
complexity comparison without using any specific methods, considering whether they could rely on a
measurement as complexities differences were not intuitive anymore, while others started immediately
by using a method and sticking with it for the duration of the study. Additionally, when asking partici-
pants about lengths of trajectories, participants responded that they either disregarded it or use it as an
alternative if shapes didn’t convey a strong difference between trajectories, in which case they would
set the longer trajectory as the more complex one. Following these discussions and accounting for the
characteristics of the trajectories, we consider that the most important characteristic of complexities
for the trajectories presented are the number of turns, followed by length of trajectories.
We should note that due to the IEEE VAST 2014 challenge data set being a representation of cars
inside a city, with sharp turns and mostly rectangular buildings between the roads, it is possible that
the common approach is an artefact of the clarity of the number of turns, compared to potentially less
constrained trajectories, e.g. birds flying. Our claim of universality for our method to characterize
trajectories is thus nuanced. Still, we consider that the method of characterization we selected is valid
when displaying positions of moving entities constrained inside a grid-like environment, but note that
future studies set up to compare trajectories complexities evaluating more parameters and more types
of moving entities would be a valuable contribution.

In section 6.4 we discuss the characterization of the data used for our studies based on the number
of turns and lengths of the trajectories.

4.4.4 Measurement and Judgement

As we aimed for the SFNCS to allow the characterization of studies with high or low levels of
abstraction, also often quantitative or qualitative studies, with the first ones being potentially influenced
by contextual uncertainties and participants’ interpretations, we deemed it necessary to characterize
the differences between information presented as objective or subjective.

We consider that objectivity and subjectivity are not notions separated by a unique separator,
but instead consider that subjectivity is the result of different steps in the process of interpreting
and communicating information. To communicate information clearly and efficiently, indications
of human judgement in the process of information generation is important for various reasons, such
as trust in the information retrieved or reproducibility of data analysis processes. The transfer from
information as a fact from how the world around us exists to data can be done in various manners.
Measurements can be produced using tools, for which the measurements are independent of each
other, e.g. thermometers, rulers, or assessed as information that is context dependent. That difference
is important as the uncertainty, and by extension the trust that can be associated with information,
will vary according to that process of transferring information. That difference has to be nuanced, as
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communication about the generated information is important, e.g. a measurement by a thermometer
that gives a value of 23.12 degrees Celsius is an objective statement to declare that the measurement
made was 23.12 degrees Celsius, but reality may differ due to precision and accuracy. Language is
often shortened for comfort of communication, with the notion of how much information retrieved can
be shortened being selected according to the necessary need, i.e. if it is ‘good enough’. That notion
is subjective and context dependent, albeit originating from an objective measurement. Subjectivity
thus brings its own type of uncertainty, but as stated by Meyer et al. [173], its presence is not to be
considered as a lack of rigour. For complex problems that are usually tackled by experts in a specific
field, it is common to present information within a context deemed appropriate or respecting the
regular conventions they are accustomed to. Furthermore, sentences and questions are complicated
structures that can incorporate various levels of subjectivity into a single phrase [93]. Any part of
a sentence that would deviate from the most possible objective statement would by definition be
subjective, e.g. the choice to communicate a measurement with a lower level of precision than the
record for clarity changes an information from objective to subjective. As communication over
information is thus likely to alter the status of its objectivity, establishing what absolute objectivity is
can become surprisingly complicated. If we keep our example of a machine measuring temperature at
a certain point in time, many information points are likely not to be communicated due to expectation
of lack of usefulness, e.g. how many digits of precision can the machine produce, what is it accuracy
levels, how these were calculated and tested, what year was the machine created. These issues can
add up as we consider more dimensions to that information. Spatial or temporal attributes carry
their own information that are likely to be changed from objective to subjective, e.g. the level of
precision of for spatial records or time records are subject to the same issue. Expectations due to
context imply that absolute objectivity is hard to define and categorizing information as objective is in
itself a subjective process, as the evaluation of what ’all the information present that can be reported’
is a human judgement in itself.

Thus, when we discuss the notions of objectivity and subjectivity, we want to underline that we
are using such terms in a manner that implies reasonable assumptions due to the context. To ensure
clarity when discussing these notions as we characterize the elements of SFNCS, we thus characterize
these as Measurement and Judgement.

The separation between the two categories depends on whether the information from the question
can only be defined with terms that require human judgement, e.g. the term "hot" is only true if a
human considers that categorisation to be true within the context. This concept, while easy to qualify
when scientists think of one single element of the study they plan, can become confusing when some
conventions are widely used and thus expectations blur the judgement of scientists while they set up
their studies.

The main difference when discussing our definition of Measurement and the common definition
of measurement is the necessity for the measured information to be quantitative, e.g. width with a
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ruler, while our definition of Measurement also includes the recovery of qualitative information as
long as it is not subject to interpretation, e.g. in a football match, the number assigned to a player to
identify them does not change and is not to be interpreted in various ways, unless mistakes are made
during the recovery of that information.

Following upon our previous example of a machine making a measurement: absolute objectivity
is hard to achieve, as there is much information to convey for a statement about a measurement to be
entirely objective, if that is even achievable. We thus consider that Measurement is a characterization
of information which did not imply subjective judgement from the person gathering or communicating
the information, while some information can be disregarded if we consider it presents no interest
according to the context (e.g. rulers haven’t changed for years and thus not communicating year of
production of the ruler used for a measurement is acceptable for a Measurement).

We thus define the two terms as thus:

• Measurement: the characterization of information that is independent on human contextual
enrichment.

• Judgement: the characterization of information that is dependent on a human enriching the
information, due to their contextual knowledge.

Note that we use a capital letter when using our definition of Measurement and Judgement.

Our motivation behind the settings for our definitions originates principally from the importance
of various interpretations of data according to whether it is a human that potentially was influenced by
context when making an estimation of information versus an information that would result in a similar
value if performed in different contexts, i.e. a measurement. As stated previously, we are aware that
the interpretation of different measurements is still possible, particularly when measurement methods
differ [170, 171]. But the differences between the interpretations are dependent on the users including
contextual information (or lack thereof) in their analysis.

The consequences of the separation of that notion spread through several elements of the SFNCS.
Information that can be characterized as a measurement can be used to generate baselines for assessing
performance in studies. That approach is common in quantitative studies [195, 199, 108]. Many
studies evaluating visualizations ignore the evaluations of judgements. But a critical notion to consider
is that in cases where a baseline can be computed, visualization may not be a necessity. If a baseline
can be generated, the value of the visualization is then limited to verification of the information
presented, potentially reinforcing trust in the computed output. We argue that visualizations are more
relevant for tasks that are based on judgements. While the quantitative evaluations of visualizations
allow for strong claims about ability to perform low-level tasks, the assumption is often made that
the low-level tasks are intermediary steps necessary to perform high-level tasks, albeit the steps and
reasoning occurring to perform high-level tasks are unknown.
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We argue that the incorporation of characterization as either Measurement or Judgement in future
studies will allow for a less opaque separation between qualitative and quantitative studies and nuance
the validity of claims over utility of visualization evaluated for tasks with various degrees of levels
of abstractions. Our framework is thus designed to incorporate the characterization of questions
and answers that are generated during studies for the evaluation of various tasks, for which the final
objective can be for the participants to find either a Measurement, e.g. maximum value among others,
or make a Judgement, e.g. estimate whether the implications of an event justify actions, such as policy
changes.

4.5 The novel blocks

In this section, we introduce two novel frameworks to populate the SFNCS: the Question and Response
blocks. According to Bertin [33], types of tasks are distinguished based on the type of information
sought. Following that philosophy, we considered that our framework required a specific focus on the
way the researchers ask the question in order to evaluate participants’ abilities to perform the tasks of
interest.

The Question block

Fig. 4.5 The sub-blocks of the Question block. A Question is made up of a Form, 0, 1 or several (N)
Identifications, and 0, 1, or several (N) Conditions.
The Form is defined by its Outlook, its Subjectivity, its Type and its Focus. Respectively, this depends
on whether: the task is elementary or synoptic; the information requested is a measurement or a
judgement; the task involves lookup, comparison, relations, or connections; and the information
requested is quantitative, qualitative, or spatial.

When considering the evaluation of a contribution for a task, the questions are characterized to
allow comparison between studies. Note that while we propose a systematic approach to characterize
questions that supports transparency and reproducibility, we recommend (and indeed provide the
flexibility for) adapting sentences so that they make sense for the purpose of the study that researchers
wish to run, rather than using our own specific terms if others fit better. The categories we describe
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are meant as indicators for type of information first, and sentence structure only if it does not hinder
sentence comprehension.

Fig. 4.6 The sub-blocks to characterize the Question block, where every information piece is either a
measurement or a judgement. They are used for identification as part of the question that can relate
to 0 to n conditions. A question can contain several identifications, e.g. comparing the number of
passengers of two trains. If there is no condition, it implicitly means over the whole time displayed.
The condition can be separated from the element of identifications, e.g. comparing the numbers of
passengers in a train from 14:30 to 16:30, or have their own related conditions, e.g. comparing the
number of passengers in train A from 10:15 to 10:45 to the number of passengers in train B from
18:45 to 19:15.

The categories of the questions are illustrated in Fig. 4.5, and examples of these categories being
Measurement or Judgement are illustrated in Fig. 4.6. Question are split in three blocks:

• Question form: The type of questions depends on the task the researcher wishes the participant
to partake in. It is defined by four criteria that define the task:

– Task outlook: Whether the task is elementary or synoptic. This separation is defined by
Andrienko et al. [18] as elementary tasks dealing with "elements of data, i.e. individual
references and characteristics", and synoptic tasks dealing with "sets of references and the
corresponding configurations of characteristics, both being considered as unified wholes."

– Task subjectivity: Whether the answer asked of the participant resulting from performing
the task is a measurement or a judgement. The notion of measurement and judgement is
discussed at length in section 4.4.4. The separation is clearly obtained when the researcher
considers if they wish to ask for something where a baseline that’s computable exists,
e.g. comparison of two numerical values is a Measurement, while assessing whether an
attribute is influenced by another is a Judgement.

– Task type: the categorization of the task that must be performed to answer the question.
Our reference for these are the taxonomy of visualization tasks developed by Andrienko
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et al. [18], also used and illustrated by Aigner et al. [4]. It does not have to be the exact
same as the Task block of the SFNCS, as it can be considered more valid for researchers to
perform a global task by performing several intermediate ones. The list of tasks, discussed
in detail in section 2.3, and illustrated in Fig. 2.8, is the following:

* Lookup: tasks about searching for data values and searching for specific points in
space and time.

* Comparison: tasks about assessing the direction and size of a difference between
several elements.

* Relation seeking: tasks about search of occurrences between data elements with
specific characteristics.

* Connectional tasks: in the case of synoptic tasks, connectional tasks are about
establishing connections between at least two sets with at least two variables

– Task focus: the task focus is defined by the information type that the study participant
should find, be it WHAT-WHERE-WHEN, or a sub-category e.g. WHAT_Qn.

• Identification: the Identification sub-block describes the data type(s) used to query the ele-
ment(s) that need to be identified in order to answer the question, e.g. asking about maximum
speed of a football player: the question needs to establish who/what the question is about, in this
case a football player identified with their name, a qualitative attribute (WHAT_Ql). Similarly
to the Condition sub-block, it is defined by some operants and can be either a Measurement or
a Judgement.
Some questions don’t require identification (e.g. questions about global weather for an area
don’t require identification). The result from that identification can be a single element, e.g. if
we need to identify a moving entity based on its identifier, then this question identification is
WHAT_Ql resulting in a single selection, or if we select all moving entities within a certain
range of latitudes, the question identification is WHERE resulting in several selections. Thus
the type of query for the identification can be WHAT,WHERE, WHEN and resulting in 0,1 or
several elements selected.
Note that the number of identifications to generate a question can range from 0 to any integer,
and due to N being commonly used as a mathematical annotation to indicate an integer, the
same letter is used to indicate the range of potential identifications in a question, i.e. N-scale of
the Systematic Framework for N-scales Characterizations of Studies (SFNCS).
An example of a question which requires at least two identifications is for comparisons between
two different moving entities, e.g: asking about which player ran for the longest between
Ronaldo and Messi during a game requires two identifications, both based on the name, a
WHAT_Ql attribute.
Note that the type of information for Identification does not have to be the same as the Focus of
the Form, e.g. for a question asking about the position of a football player based on their name,
the Form Focus is WHERE and the Identification is WHAT_Ql.
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• Condition: a condition is a filter over the data, defined by some operands. It can be either
a Measurement or a Judgement, following the same logic as Identification and Task. E.g.
’precipitation levels greater than 1 inch’ is a condition from a Measurement; ’going fast’ is a
condition from a Judgement.

The Response block

There are various ways to deliver answers according to the questions set, and these answer methods
are options managed by the researcher. The Response block is dependent on how the questions
are structured, and should be set up according to the approach the researcher thinks is the most
interesting. As they define the combination of questions and answer tools for their studies, researchers
should aim for a balance between allowing participants to express themselves and communicate their
understanding or misunderstanding of the task, while adapting to their study structure, i.e. whether it
follows a quantitative or qualitative approach. That selection is thus made by the researcher according
to context specific to their study, but does not have to be unique for a combination of Task, Question,
Data and Visual stimuli. At of the time of writing this paper, a complete characterization of answer
methods is, to the best of our knowledge, yet to be generated.
As we set to develop a structure to characterize answer methods, we considered two approaches:
search for answer methods from our literature review and specific searches, or find lists already
established, albeit incomplete.
The issue with limiting the list to existing published literature were the lack of generalization and
difficulty to consider whether the approach is specific and rarely used. This issue could be mitigated
with the development of a taxonomy of answering methods from the literature, but technical constraints
and time meant this option was not available. In parallel, using a list already created and used in a
commercial software implied that the answering methods listed were sought after and thus relevant
for the set-ups of studies, but such structures set with a focus on ease of implementation can separate
answering methods that are conceptually similar. We thus decided to settle on a hybrid approach to
list answering methods, albeit we acknowledge the development of a future taxonomy could prove
valuable to redefine it.
The list of answering methods we set up is derived from the options provided by leading survey
software system Qualtrics [35]. Some of the options offered by Qualtrics are too similar to consider
them as separate entries for answering methods, and are thus aggregated in our list. Some of these
methods were encountered in literature we reviewed and are thus listed.

Additionally, during our literature review discussing spatio-temporal attributes analysis, some
answering methods were encountered in literature [258, 114, 54, 20, 11, 57] but not Qualtrics. We
thus added these Response methods to our list if they were significantly different from the others.
As we introduce the elements composing the list of answer methods, we discuss their strengths and
weaknesses, considering their value as methods to gather data from participants in our context. The
distinct answering methods are the following:
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• Multiple choice: several options for a question for which the user can enter one or many
entries. That approach is valuable for a fast answer, but that approach can force the participant
to select a value by default rather than an actual match between the participant’s opinion and
the option. This answering method can include answer of various focuses, e.g. nominal, ordinal
or quantitative, measurement or judgement, but is limited by the number of answers set by the
researcher.

• Text entry: set a field for the participant to enter a detailed answer. This approach is valuable
to get rich information from participants, but is strongly dependent on their ability to express
themselves. This can be a long process that participants wish to avoid. Similarly to the Multiple
choice option, the data generated can be of different focuses.
Furthermore, once the answer is generated, if it relates to a judgement, the difficulties arising
from interpretation is increased, as it is dependent on both the ability of the participant to clearly
enunciate their thoughts, and of the interpretation from the researchers analysing the data. The
analysis of text can also be problematic due to the difficulty to interpret a large amount of it, be
it time to read a large amount of text or difficulties to summarize the information communicated
in it.

• Matrix table: several questions and answers arrange in a common structure. The answers have
to share the same sets of potential answers for the participant to select. The participant has to
select at least one answer per question. It is similar to the ’Multiple choice’ option, but the need
to set the same range of potential answers for all the questions can make the organization of the
study more complicated.

• Slider: a bar that the participant can drag to a position to indicate an ordered value, i.e. ordinal
or numerical, that represents the answer. It is set by the researcher to have limits over the
precision with which the participants can answer.

• Form field: similar to a ’Text entry’ but constraints can be entered to ensure the participant is
communicating information in the format desired by the researcher. Forms can limit the size of
the answers, force a specific format, e.g. email address or phone number. Restrictions imply
that forms have to consider the potential answers participants will detail to enter.

• Rank order: set of entries that are to be ordered according to answer the question, e.g. order
according to size, monetary value, sentimental importance.

• Pick, group and rank: Similar approach to ’Rank order’, but the participant can enter a
justification behind their choice into text boxes.

• Heat map: records of one or several clicks entered by participants over a 2D stimulus, com-
monly an image. That approach can be interesting for tasks in which a precise input is necessary
to answer, e.g. if the participant is asked to communicate about a geographical point, selecting
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it with the mouse is an easy approach to indicate the position. The input made with the mouse
is bound to lack a certain level of precision, but alternatives such as textual or numerical inputs
are likely to suffer from the same issue in a stronger degree. The participants can also provide
textual feedback on the positions they selected. The heatmap is a composite showing the density
of all responses collected from such questions.

• Hot spot: similarly to a heat map, this is a set of pre-made selections of parts of an image for
which the participant can provide information about.

• Highlight: option to select pieces of texts from a larger corpus and indicate additional in-
formation about those selections, e.g. evaluations of their meaning, such as approvals or
rejections.

• Airbrush: approach similar to the heat map and the hot spot, with dynamic identification of
areas on a picture without requiring boundaries, with the possibility to spread magnitude. This
approach is not listed by Qualtrics, but has been used to record vague or fuzzy areas of interests
from participants [258, 114]. While an interesting approach, it’s been discussed that difficulties
to set up and analyse results for this approach may have limited its adoption within academia
and in practice [54].

• Discussion: observations made by participants as they perform the task asked of them. This
Response method requires the researcher to record what participants say during the study.
Commonly, researchers filter and report discussions participants made according to what they
estimate insightful in the context of their study. This approach is more common for qualitative
studies in which synoptic tasks are evaluated [20, 11, 57].

Note that this list is limited to methods to answer through interactions with elements displayed
in 2D (including buttons). Interactions unique to 3D models (e.g. as listed by Bach et al. for a
space-time cube [27]) are out of the scope of this thesis. While not incorporating them in our list of
methods, we wish to suggest that by offering interactions specific to 3D environments, the methods
to answer previously listed are likely to still fit, albeit with some adaptations in forms of input from
participants. We discuss interaction further in our section 7.3.3.

4.6 The benefits and limitations of the SFNCS

Formalization of the studies is an additional step for researchers to perform before they realize studies
and requires for them to communicate about it. We are conscious that this can represent concrete
additional resources to be allocated for the study. This section focuses the discussion on the benefits
that the SFNCS can bring to the scientific community, but also discusses the current limitations of the
SFNCS.
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4.6.1 The benefits of the SFNCS

The benefits for the scientific community if the usage of the SFNCS is adopted are the following:

• Clearer preparation of study: Numerous parameters have to be considered while setting up
studies about information visualization. Scientists that would engage with the SFNCS and
characterize their study prior to running it would benefit from a reinforced understanding of the
numerous factors they have to consider, and their connections.

• Improved understanding of the information visualization field: The field of information visu-
alizations is very active, with new research published regularly. The SFNCS, used to present
existing studies, would help researchers to better understand the state of the field, e.g. visualiza-
tion methods often used, tasks being evaluated, and approaches commonly followed for the
studies.

• Identification of gaps: The SFNCS could be used to identify areas where further research is
needed, e.g. one could find that some methods to collect responses are evaluated for a certain
combination of visualization methods and types of data.

• Benchmarking: As the SFNCS can be used to characterize studies that share numerous pa-
rameters, it would simplify the comparison of studies formally characterized. A stronger
understanding of the comparative strengths and weaknesses of different visualizations will
reinforce the validity of directions selected for future research.

4.6.2 The limitations of the SFNCS

To fully understand the range of studies for which we can use the SFNCS, we evaluated a series
of studies and assessed whether it was possible to characterize them using the SFNCS. Assessing
the limitations of the SFNCS is motivated by the need to identify cases for which we would not
recommend using the SFNCS, identify potential modifications that could be made to the SFNCS, or
the blocks that compose it. We intended to evaluate whether the SFNCS could be used to characterize
a broad range of studies, and thus selected a bounded representative set. Several inclusion criteria
can be selected for the selection of the studies, e.g. by authors, by conference, by data set discussed
within. Our selection process was to select studies based on impact on community. We followed
the same process as for the evaluation of VisUnit [191]. VisUnit is a model that characterizes in
detail visualization user studies with a strong focus on parameters of the study process itself, e.g.
whether the stimuli are interactive, tasks are evaluated between or within participants, or inclusion
of task training. As discussed previously, the SFNCS characterizes a broad range of parameters of
visualization that are evaluated with user studies, and thus our focus differs. Still, their selection
process is valid to consider the limitations of the SFNCS.
The selection is based on studies citation count, published in InfoVis. The first selection of studies
were all publications of InfoVis between 1995 and 2015 [238]. The studies sample was then refined
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by selecting only the papers that include the keywords evaluation, experiment, or user study. Further
publications were excluded if they were not representative of the field, e.g. studies that depend on
unique hardware or on physical artefact production. The papers were then filtered according to a
threshold of minimum 8 citations per year. This resulted in a list of 33 papers [89, 219, 104, 174, 147,
100, 103, 143, 62, 49, 39, 138, 210, 98, 125, 271, 283, 262, 128, 216, 266, 151, 203, 247, 267, 239,
235, 284, 50, 139, 141, 213, 99].
The produced list of studies was then analysed as we verified if they could be characterized using the
blocks of the SFNCS: Task, Question, Data, Visual Stimuli, Response. The process resulted in the
table 4.1 that indicates for our selection of papers if they could be characterized using the blocks of
the SFNCS. Prior to discuss the learned outcomes, we shall introduce and justify the choices we made
during the process.

Choices of characterization
We compiled the characterization of user studies based on the information discussed in papers that
were presenting them. Throughout the process, we made a series of choices we detail to clarify the
result:

• The characterization of the studies ignored other elements discussed in papers, e.g. literature
review.

• The elements discussed in the studies evaluated were aggregated. Thus, if a study was displaying
several features and the SFNCS could not characterize one of them, then that block was labelled
as not characterizable by the SFNCS for the study.

• Clarity is selected over ambiguity. For example, several papers do not clearly claim how the
participants were asked to proceed with the task asked of them, or what were the tools provided
to them to generate their response. In some cases, the reader can suppose what these may be,
but we decided to consider these as information not communicated.

• Some limitations of the Visual stimuli block meant we had to delimitate potential characteri-
zations ourselves. The model of Andrienko et al. [12] to characterize visualizations does not
account for certain parameters, such as scaling or rotation of visual attributes, nor the level of
abstraction of the visual elements displayed. By level of abstraction, we specifically mean the
difference between the elements displayed on a screen to indicate information about an object
and its physical representation, e.g. a dot on a map to indicate a location has a higher level
of abstraction than a 3d model of an organ. Visualizations that display physical elements as
accurately as possible are commonly labelled as scientific visualization, and we decided not to
use Andrienko’s model to characterize them. Our decision is motivated by the fact that while
one could argue that scientific visualization is a set of three dimensions displayed an attribute
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Study paper Task Question Data Visual stimuli Response
Ghoniem et al. [89]
Laidlaw et al. [147]
Heer et al. [100]
Heer et al. [103]
Kosara et al. [143]
Borkin et al. [39]
Kobsa et al. [138]
Robertson et al. [210]
Sanyal et al. [219]
Haroz et al. [98]
Javed et al. [125]
Henry et al. [271]
Ziemkiewicz et al. [283]
Wen et al. [262]
Jianu et al. [128]
Saket et al. [216]
Willet et al. [266]
Lee et al. [151]
Plaisant et al. [203]
Van Ham et al. [247]
Wong et al. [267]
Steinberger et al. [239]
Smith et al. [235]
Heer et al. [104]
Ziemkiewicz et al. [284]
Clarkson et al. [62]
Cao et al. [50]
Koh et al. [139]
Kong et al. [141]
Cao et al. [49]
Micallef et al. [174]
Rufiange et al. [213]
Harrison et al. [99]

Table 4.1 The evaluation of a representative sample of user studies using the SFNCS. For each block
of the SFNCS, papers are evaluated with the following colour code: dark gray if the SFNCS can be
used to characterize the visualization discussed in the paper, and white if it is not possible. Light gray
indicates that the information was not communicated in the paper reporting the user study.

each, it represents a strong difference with the other visualizations we characterize, and would
result in a loss of specificity that would render the model ineffective.

• Following the same reasoning, we also discarded characterization of images (e.g. PNG files)
from the Visual stimuli block.
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Learned outcomes
We review the information collected in the resulting table 4.1 by first discussing direct observations,
and later discuss the conclusions we draw over the limitations of the SFNCS, and potential modifica-
tions that could reinforce its value.
First observations
The Data block is always fit for characterization information, albeit we noted one paper that never
indicated information about data used to generate the stimuli presented to participants [98]. We con-
clude that the broadness of the characterization of data implies participants can easily communicate
this information. Still, we suppose that characterization of difficulty of data that will result in more
complex visual stimuli, like we did in sections 4.4.2 and 4.4.3 are eventually going to be necessary
characterization of data to reach its full usefulness.
We note that the Task block is always fit to characterize studies, with a single exception, the study
of Koh et al. [139], which was focused on visual output rather than extraction of information. We
conclude that the SFNCS is fit to characterize studies where tasks relate solely to insight generation.
The information necessary to characterize the Question and Response blocks is often not communi-
cated in the studies we analysed, but the vast majority that were discussed could be characterized with
the SFNCS. It is possible that the communication of that information was deemed unnecessary or
secondary to the researchers who presented these studies. We can not know with certainty the authors’
reasoning behind this decision, but consider some plausible explanations and discuss them briefly.
For each of the potential explanations we considered, we discuss them and present our own reasoning
that justifies presenting tools used to communicate and collect responses in studies report:

• Discussion of precise approach to communicate with and collect responses from participants is
not a standard: this is likely an overall flaw within the current scientific discourse. It is possible
that the additional effort is unattractive for researchers, but we are hopeful that the SFNCS
presents an easy method to do so.

• Discussion of precise approach to communicate with and collect responses from participants is
not considered as a necessity: it is possible that this information is not viewed as a critical threat
to study validity, and thus that information is ignored, or it is considered enough to only suggest
it. We argue that this communication would result in a stronger understanding of visualizations
evaluated, and reveal gaps in literature concerning communication and response collection
according to visualizations evaluated.

• Publications limit space available: this issue is related to the consideration of priority of what is
to be communicated about studies. We are hopeful that the SFNCS presents an approach that is
compact enough to present valuable information about studies.

A single study was not fit to be characterized with the Response block, the study of Koh et al. [139],
for which participants were simply asked to stop interacting with the software tested.
Additionally, for the study of Koh et al. [139], the fit is not possible for the Question block since the
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task can’t be defined using the Task block.
By far, the Visual stimuli block is the one where more studies could not be characterized with the
SFNCS. Only 13 out of 33 visualizations could be characterized by the Visual stimuli block of the
SFNCS. Since the model of Andrienko was first developed as a tool to characterize visualizations
related to spatio-temporal attributes, some visualization techniques not being fit was somehow
expected, but the number of studies that did not fit the SFNCS Visual stimuli block were a surprise.
Numerous studies made usage of node-link diagrams which can not be characterized with the model
of Andrienko et al. [12]. Additionally, the analysis of visualization techniques indicated a limitation
with the current model to characterize Visual stimuli: the hierarchisation of visual elements is only
possible for a finite number of levels. For example, if a chart is displayed over another one, the
SFNCS Visual stimuli block can characterize it, but if studies make use of potentially infinite levels of
hierarchies (e.g. tree structures) then it is not possible to indicate it.
Reflections about limitations of the SFNCS

We identify two causes for the identified limitations of the SFNCS: the blocks that compose it, and its
own structure. Let’s discuss them:
Limitations due to the blocks composing the SFNCS: The analysis of the blocks indicated that
as of now, the SFNCS is limited by the Visual stimuli block. The main limitation originates from
the Visual stimuli block, that does not include methods to characterize node-link diagrams and tree
structures, despite being used quite often. Still, while being set for characterization of spatio-temporal
attributes, we used the model to characterize studies that were unrelated to it. In fact, none of the
studies listed in table 4.1 discussed spatio-temporal attributes, reinforcing the claim that the model
is not limited to it. We thus consider that to reach its full potential, the Visual stimuli block could
benefit additions to allow for broader characterizations. As mentioned previously, the Visual stimuli
block currently does not include characterization of levels of hierarchies. Additionally, the Visual
stimuli block does not accommodate the characterization of text. We consider the limitations of the
Visual stimuli block as potential relevant future work, rather than requiring the selection of a different
model to populate the Visual stimuli block.
The Visual stimuli block also lacks detail concerning visualizations structure, such as scaling, rotations
or animations. This level of detail is difficult to enter without losing the high level of abstraction that is
designed to simplify comparison of studies with visualizations displaying the same type of information
over the same dimension. We thus consider that these inclusions would be likely detrimental to the
SFNCS unless done in an additive approach rather than removal of high level of information, e.g.
hierarchy of characterization based on abstraction. The Task block is not fit to characterize studies
that are not driven by insight generation, e.g. the study of [139] where the output was to make the
visualization aesthetically pleasing for participants. While sentiment is an important notion, often
collected during studies, e.g. confidence in response provided, the design of the SFNCS was focused
on evaluation of studies set with a task for participants to perform. We suppose that inclusion of
sentiment and potential removal of the Task block would involve major modifications to the SFNCS
that would distort its purpose.
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Limitations due to the structure of the SFNCS: Additional limitations that we identify from the
SFNCS relate to its overall structure, rather than the frameworks used to populate it. The framework
we developed is focused on the characterization of visualizations, the data used to generate the
visualizations, the tasks they are evaluated with, and questions and responses set to run studies that
evaluate the relations. The current structure of the framework does not take into account interactions
that participants may have with the patient in order to perform the task. The large range of interactions
that can be included for studies imply that the characterization would be difficult. We suppose that
a novel block would have to be added to the SFNCS. Furthermore, the SFNCS does not take into
account variations between different visualization designs for a single study, it only aggregates them.
If the order of visualizations or the dynamics between interactions and visualizations is important to
the study setup, then the SFNCS currently does not allow communicating that information. Finally, in
its current state, the SFNCS only characterizes question and response as part of the study protocol. A
more detailed characterization of the study setup would likely reinforce the value of the SFNCS if it
can be connected, maybe with a new block.
Limitation assessment outcome
As we developed the SFNCS and considered its limits, we already identified some potential alterations
that would enhance its value. Still, assessing for a series of representative studies whether the SFNCS
could be used to characterize them refined understanding of its limitations. The SFNCS is designed as
a tool to characterize studies set to evaluate studies developed to assess the value of visualizations
to perform a task. The representative sample of studies we analysed indicated that the Task block
presented a very high flexibility, as long as the task related to insight generation. The Question and
Response block also presented a high flexibility, but our analysis was hindered by a lack of clear
communication in the papers we analysed. If researchers consider communication of task instructions
or response collection process to be trivial, it is possible for them to dismiss potentially important
aspects of the studies when analysing their results. The data block could always be used to characterize
data whenever it was discussed, although we are aware that the full potential is missed while the
SFNCS doesn’t include some standards to categorize the data according to some attributes that relate
to difficulty to interpret it. Finally, the Visual stimuli block proved to be limited by not including
certain visualizations, particularly tree structures and node link diagrams. These modifications could
be addressed in future work relatively easily. We also discussed the limitations of the structure of the
SFNCS itself, i.e. characterization of interaction and characterization of study process, such as the
work done by Okoe [189] would likely prove more difficult as either the selection or the conception
of frameworks that would be compatible with the SFNCS would be a complex task.

4.7 Examples of usage with the SFNCS

In this section, we illustrate how the SFNCS can be used to characterize studies. We select two
papers discussing different tasks and different visual stimuli to show diversity amongst the examples.
Note that we don’t discuss every detail of the studies, but rather mention elements which allow
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characterizing the studies.
Our selection is not made to be exhaustive as the SFNCS incorporates many different notions and
finding examples of all variations would be too considerable. Instead, we wish to illustrate different
examples to discuss the richness offered by the scope of the characterizations incorporated in the
blocks of the SFNCS. The first example we selected is a contribution from Pugh et al. [206] assessing
the impact of a visualization method, the cone of uncertainty, for prediction of future trajectory
position. The second example we selected is a contribution from Chen et al. [57] where they present
an analytical workflow for movement-related event contextualization for pattern detection of spatio-
temporal distribution of patterns.
We do not discuss all the details about the selected literature, but rather focus our discussion on how
the SFNCS can be used to characterize different studies.

For each example, we introduce its context quickly and then discuss how we can characterize
it using the blocks of the SFNCS. Note that we only characterize Data and don’t categorize data
complexity, as it is not communicated in these studies.

Example 1: Effect of Visualization Training on Uncertain Spatial Trajectory Predictions

Pugh et al. [206] presented the result of two experiments in which they assess the differences
between participants answers and actual trajectories paths using a cone of uncertainty. Their first

experiments consist in comparing difference of performance between the participants of the control
group and those who are presented with the uncertainty cone as a visual helper. The process is

illustrated in Fig. 4.2a. Their second experiment consists in predicting the future position of curved
series of points while being helped with the uncertainty cone with various distributions of points. An

example of the stimuli is illustrated in Fig. 4.2b.

(a) Structure for the first study of Pugh et al. [206] with participants predicting next
position of a trajectory according to prior points. According to their group, they are
asked to perform the task with or without the visual help of the uncertainty cone.

(b) An example of stimuli for the second
study of Pugh et al. [206] in which they
ask participants to perform the same task,
with the help of the uncertainty cone, but
with a higher variety of curvatures and
changes of speeds.

The data presented to participants is solely spatial, we thus consider that in this case, the Data block is
solely populated by WHERE data. Participants are asked about a question where a baseline exists,

and there is no subjectivity to consider if participants are correct or not, we can thus characterize the
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Task they are asked to perform as a Measurement. The task asked of participants requires them to
consider the mean directions and speeds of moving entities according to displayed points, indicating
the participants required to analyse the data presented to them a whole, meaning the Task asked of

them was synoptic. Furthermore, participants are asked to identify a specific point, meaning the Task
asked is a Lookup with a WHERE focus. It is not indicated in the paper whether Pugh et al. asked
participants in order to perform the Task. We thus consider that if they were, it would follow the same
characterization as the Task. Participants are asked to click to indicate their answer, thus indicating
the Response block is to be characterized as a Heat map. We illustrate the resulting set of blocks in

Fig. 4.7. We illustrate the characterization of the Visual Stimuli block for graphs presented to

Fig. 4.7 The characterization of the blocks Task, Question and Response in the SFNCS for the study
of Pugh et al. [206].

participants using pictographs, following the method of Andrienko et al. [12] in figures 4.3a and 4.3b.

(a) The control group of the first experi-
ment of Pugh et al. only sees a series of
points. As the information presented is a
trajectory, we consider the background to
be spatial.

(b) The test group of the first experiment,
and all the participants of the second ex-
periment, of Pugh et al. , were presented
cones of uncertainty. The cone of uncer-
tainty displays a clear connection between
the records of positions, and thus it is la-
belled as a trajectory.

Example 2: Contextualized Analysis of Movement Events

Chen et al. [57] presented an analytical workflow including event contextualization for pattern
detection and exploration of spatio-temporal distribution of patterns. To evaluate the efficiency of
their workflow, they collaborated with domain experts and verified whether they understood the data
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displayed to them and whether the observed patterns. The workflow consists of extracting events as
segments of trajectories preceding and following events and display additional attributes in the time
frames of these events characterizing or describing external circumstances.
This visualization allows participants to interact with the software, and thus several variations of
composite graphs can be produced. We analyse the composite graph presented in the contribution of
Chen et al. for the characterization of the Data and Visual Stimuli block. Chen et al. present several
variations of their composite graphs that participants can modify through interaction. The database
discussed is composed of movement of trucks in Greece combined with attributes of the moving
objects, e.g. fuel level, attributes of their movement, e.g. speed, and parameters of the environment,
e.g. temperature. They extract from the movements events they label, e.g. harsh brakes. While their
approach considers events as a quality occurring over a single moment, we still argue that that type of
information is still to be considered qualitative, albeit with a very short duration. The Data block of
this contribution is thus WHAT_Qn, WHAT_Ql and WHERE.
We notice that all their variations of composite graphs are composed of a limited number of variations
of the same graphs. We thus list all the different graphs presented concurrently in their contribution
and use them to characterize the Visual stimuli block. The composite graph used as a reference is
illustrated in Fig. 4.8 and the resulting pictograph is illustrated in Fig. 4.9.

Fig. 4.8 The example of composite graph presented by Chen et al. [57]. This composite graph includes:
(a) Event Context Comparison View, (b) and (f) Spatial View, (c) Attribute Parallel Coordinates View,
(d) Space Time Cube, (e) K-Means Clustering Control Panel.

The analytical workflow developed by Chen et al. [57] was used to perform two different tasks:
context pattern discovery, and exploration of the spatial and temporal distribution of events. The
two tasks are motivated by an overall objective to analyse the context around records of harsh brake
events.
What constitutes a pattern is to be decided by the domain experts, indicating that the Task is a
Judgement. This task requires considering the whole of the data presented together to judge relevancy
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Fig. 4.9 The pictographs illustrating the Visual stimuli block displayed to participants in the studies
ran by Chen et al. [57].

of observations, meaning the task is synoptic. Additionally, this first task consists only in finding
occurrences of such patterns to observe y their positions. We thus consider this task to be a lookup.
Participants were not directly asked questions, but rather domain experts already had tasks they aimed
to perform. We thus characterize the Question block the same as the Task block. The resulting
characterization of the blocks Task, Question and Response are illustrated in Fig. 4.10.
Once the patterns were found, the following task was to analyse the distribution of spatio-temporal
attributes of the events. The composite graphs Chen et al. used to illustrate exploration of the clusters
contextualized for this task are composed of the same previous graphs but with different sections.
Participants search to understand the relationships between all the data types listed previously,
indicating that the Task type is Relation seeking, and that the focus of the Task is WHAT_Qn,
WHAT_Ql and WHERE. Similarly to the previous task, once more the Task outlook is Synoptic and
the Task subjectivity is Judgement. We illustrate the Task, Question and Response blocks in Fig. 4.11.

Fig. 4.10 The Task, Question, and Response blocks using the SFNCS for the ’Context Pattern’
Discovery task of the Chen et al. [57] study.
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Fig. 4.11 The Task, Question, and Response blocks using the SFNCS for the ’Exploration of the
Spatial and Temporal Distribution’ task of the Chen et al. [57] study.

4.8 Chapter summary

In this chapter, we discussed our main contribution, the Systematic Framework for N-Scales Charac-
terizations of Studies (SFNCS).
Following a quick presentation of the SFNCS, this chapter begun with the presentation of a taxonomy,
for which we developed some novel categorizations. We later pivoted from this approach, but this
work helped us to consider how to later build our framework, the SFNCS.
This chapter continues as we discuss data characterization. This discussion was important as it allowed
to claim that the Card model could be considered with the same elements to characterize different
aspects of visual analysis: Task, Data, Visual stimuli. We then define complexity measurements for
the data, which is an important step for later considerations of study setup and communication of
results: as we make claims of ranges of complexities from the data, we initiate a conversation about
comparison of visualization analysis studies using different data sets. We also present the notions of
Measurement and Judgement, which is a necessary step to separate cases where human subjective
judgement is used to collect or communicate information.
We then presented two elements neither present nor derived from the Card model, the Question and
Response blocks. These new blocks are set to characterize questions asked to participants during
studies, and what tools are provided for them to answer, and thus perform the task asked of them.
The benefits and limitations of the SFNCS were discussed and highlighted the potential value if it
were adopter by the scientific community, but also the need for the community to detail some aspects
of their study reports further. We also discussed potential approaches to improve the SFNCS.
Finally, we illustrated in detail how the SFNCS could be used to characterize studies. We detailed this
process with the objective to ease adoption of the SFNCS by other researchers.
The two following chapters discuss a novel approach to characterize visualization methods, the
ATS-ATS Mask, and technology related to displaying it and controlling data for studies set up. In
chapter 6 we then discuss how the SFNCS is used to analyse results of studies set to analyse the
ATS-ATS Mask.



Chapter 5

The ATS-ATS Mask

Fig. 5.1 The concept of the ATS-ATS Mask is to indicate through overlays on time frames the data
that matches one or more conditions. Conditions may be described through queries.
For each use of the ATS-ATS Mask, its naming is adapted to the type of information queried, and the
type of information displayed before the application of the overlay: condition-graphic
In this example, the query is about an attribute matching a certain condition, meaning the first section
of this Mask name is A. Additionally, the Mask is overlaying a visual form displaying information
about attributes, time and spatial information, meaning the second section of this Mask name is ATS.
This is thus an example of an A-ATS Mask.
In this design, the beginning of the trajectory is indicated with a coloured circle, and its end with a
triangle, oriented and with one edge coloured to indicate the overall direction of the trajectory.
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5.1 Chapter Presentation

The time mask, developed and used by Andrienko et al. [20, 11], deals with the temporal concept of
querying and filtering spatio-temporal data based on attributes. A time mask filter allows an analyst
to see when certain conditions are fulfilled and what else happened during those times. It can be
considered a visual annotation that supports comparison of times when conditions are met, and those
when they are not. Andrienko et al. [20, 11] proved that this approach can be useful for joint analysis
of several time-referenced datasets to investigate relationships between them. As they mention, the
novelty of their approach is that previous work used to do queries based on time, either with a linear
view of time, or a cyclic one. Their approach adds a temporal filtering based on query conditions
according to spatio-temporal attributes. Such selections, and the resulting time frames, are displayed
before the filtering is applied, over one or more time series displaying attributes. An example in which
a time mask is applied to time graphs showing variation in quantitative and qualitative attributes is
shown in Fig. 1.4.
With the Andrienko having proved the values of this approach, we aimed to further study it, either by
generating new designs using that concept, or extending the concept further. As discussed in section
4, no matter the approach, our resulting contribution would require formalization for its subsequent
evaluation. First, a formalization of the time mask would contribute to justify the direction of our
efforts to extend it. The formalization of the time mask using the framework of Andrienko et al. [12]
lead us to the concept of the ATS-ATS Mask, discussed in this chapter. In this chapter we discuss how
we extended the concept of the time mask, resulting in the ATS-ATS Mask and how that concept can
generate a variety of designs.

5.2 Extending the time mask

Similarly to how the time mask of Andrienko et al. [20] extends the range of queries, we initiate a
step further by considering the possibility to make queries based on geography. Queries based on
geography can then be defined either for a location itself, e.g. a frame of latitudes and longitudes,
or location of an identified object, moving or not. Note that the status of an object as a moving
one is a relative statement, e.g. the position of a car is likely to move at some stage, whereas the
position of a supermarket is unlikely to move relative to the coordinate system in which it is positioned.
Characterizing entities as moving or motionless is dependent on the scale of the data being recorded,
e.g. depending on spatial scale selected to analyse data, all objects on Earth are moving. Similarly,
according to the time scale considered, the nature of an object can vary, e.g. a mountain is immobile
in most modern navigation systems, but over a long time does move.

While there are a variety of potential visual mappings that can support an overlay that indicates
conditions being met, the time mask as defined by Andrienko et al. [20] is only considered as an
overlay upon time series displaying quantitative or qualitative attributes, aligned and sharing the same
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time axis. We consider that since the concept of the time mask can be defined with various data
types for the input, and result in different visualizations, specifying these in a more precise manner is
important in ensuring validity when evaluating any of these variations.
Thus, we build on the time mask by defining the ATS-ATS Mask, which encompasses the potential
variations. As with the Peuquet et al. [201] framework, information is considered to be of three types,
A for Attributes (WHAT), T for Time (WHEN), and S for Space (WHERE). The first section of the
name is used to indicate the type of information queried with the mask and the second section is used
to indicate the information displayed in the visualizations onto which the condition is visually mapped.
Following our approach, we can characterize the time mask presented by Andrienko et al. [20] as a
A-AT Mask.
The approach we introduce is not sufficient to precisely detail a unique visualization, but indicates the
purpose of the type of mask: what it’s displaying, and what overlays are applied over it. Additionally,
it is important to consider that if several visualizations are connected, i.e. the information is shared
between them (e.g. two views showing information at the same time), we consider these composite
graphs as one mask overlay.

Fig. 5.2 The A-ATS design used in our studies, characterized using the framework of Andrienko
et al. [12]. The letters encode the following information: spatial positions (S), temporal positions
(T), trajectories (Tr), attributes (A), for detailed representation of the data (not aggregated). This
design presents detailed information (not aggregated). For clarity, we coloured in red the information
overlaid by the A-ATS Mask.

This approach does not indicate for a set of visualization how the layouts of information is set
up, but indicates the intention of the selections made by the designer. We still recommend other
approaches to characterize the visualization more specifically, such as pictographs as presented by
Andrienko et al. [12] to facilitate comparison between visualization methods evaluated in different
studies.

The selection of the scale of abstraction that is most appropriate to describe and compare visu-
alizations is an open question, which has been a point of important reflection when discussing how
could we describe our extension of the time mask concept into the ATS-ATS Mask. Such selection
has to be done by researchers as they consider the level of specificity unique to their contribution, and
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it seems probable that as the number of research contributions increase, alternative theoretical models
arise. We fully support the modifications of the blocks of the SFNCS, including the Visual stimuli
one, as long as new contributions discuss how their new approaches fit in regards to previous ones.
To efficiently discuss the ATS-ATS Mask and evaluations of its variations, it is necessary to consider
the porous definitions of qualitative, quantitative, and spatial attributes. Spatial attributes are first
dependent on the recording method used to collect them. If a spatial record is made by saving its
longitude and latitude, it is effectively a combination of two quantitative attributes, while if the record
is reduced to the region in which it is produced, e.g. a town, it is effectively a quality with implicit
spatial and contextual knowledge embedded. Note that a place does not have to be real to allow for
spatial data to be composed of quantitative attributes combinations or contextually rich qualitative
data, e.g. a town in a video game [161]. What this implies is that while spatial data can be displayed
with visualization designed to display quantitative or qualitative attributes, they are most of the time
unique to spatial data.
These considerations are important as they influence our choices considering how the ATS-ATS Mask
can be used and how it overlays elements displayed in the composite graphs.

We present a list of considerations that explain the logic behind the ATS-ATS Mask we developed:

• The spatial attributes can be considered as specific combinations of quantitative or qualitative
attributes, we consider that its contextual uniqueness requires it to be considered as a specific
distinct element, i.e. the S of the ATS-ATS Mask.

We discussed visualizations that presented spatial data with different representations in section
2.4.2 and considered spatial information with a specific focus, including when presented in
visualizations designed for qualitative or qualitative attributes [20, 19, 14, 57].

• The ATS-ATS Mask is to consider data as it is presented in priority to the source data, e.g.
if quantitative data is transformed (e.g. aggregation) into qualitative data it should then be
considered that qualitative data is presented.

That is because the ATS-ATS Mask is based on characterization of data queried and presented in
the visualization is applied over. It is necessary to make that choice since the Mask presenting
the query is dependent on the result of transformation prior to it being applied.

• The ATS-ATS Mask is a concept that does not modify the scaling of the display of the composite
graph it overlays, but is expected to be applied with values fitting the composite graph, i.e. the
ATS-ATS Mask is expected to generate overlays with comparable orders of magnitude over
time, space, and values of attributes.

This choice follows the philosophy that a Mask is meant to enrich a visualization, not modify it.
Furthermore, the ATS-ATS Mask is not expected to imply changes over the composite graph in
order to force the display of the overlay, e.g. the ATS-ATS Mask is not expected to extend the
size of a map to display an area that would fit the condition entered.
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• Similarly to the time mask, the ATS-ATS Mask is a concept that can result in diverse approaches
to display overlays indicating its conditions being met. We reiterate our previous statement
that we recommend the use of pictographs to indicate how researchers display the overlay they
evaluate, but we do not claim that specifying ATS-ATS Masks combinations and pictographs
is bound to be sufficient to compare contributions. Elements such as scaling or levels of
aggregation have to be considered by researchers to ensure comparisons between contributions
to be valid.

Fig. 5.3 Several ATS-ATS Masks can be overlaid over composite graphs. This pictograph exemplifies
how several Masks can be applied over composite graphs, with each hue indicating a different A-ATS
Mask. This example displays four different visualizations, with two bearing only one overlay and two
bearing two overlays. This fictitious example could for example represent analysis of trajectories over
different geographical areas over a shared time frame.

5.3 Assessing the range of potential designs: set up of a workshop and
reflections

As discussed in section 2.4, there are a variety of potential graphs representing movement and
attributes related to space-time attributes. As part of our process to select the visualization designs
that would suit our needs best, we categorized the visualizations of time-oriented data listed by Aigner
et al. [4]. This process was useful to grasp the scope of potential visualizations that could be selected,
but was not sufficient to claim with confidence a single design selection.
One factor that influenced our selection of designs over which to apply the ATS-ATS Mask was
our consideration of future evaluation processes. The novelty of the ATS-ATS Mask implied a
lack of knowledge regarding its effectiveness for performing tasks with a low level of abstraction.
Acknowledging this implied that we should first focus on evaluating the understanding of the ATS-ATS
Mask concept and ability to perform low-level tasks. We discuss the studies we ran further in section 6,
but this decision impacted the designs selected for studies, i.e. the studies that would be run to evaluate
the design would be quantitative, and thus require a fairly high number of participants. Considering
a high number of participants for our studies implied that we could not afford to select designs
that would only be understood by experts. Additionally, this choice was justified by our interest in
evaluating the impact of the Masks over a common visualization, rather than the visualizations on
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their own. Setting up a complex design as a base on top of which to overlay the ATS-ATS Mask
meant increasing the risk of confounding effect of results indicating a certain level of understanding or
ability to perform for the base design rather than the combination of the base design and the ATS-ATS
Mask.

This led us to search how to combine characterization of queries for time, attribute and space. To
reinforce our understanding of the range of potential visualization designs that could bear a mask,
and, if so, how, we considered that the creativity of visualizations experts would prove valuable.
To assess the types of visualizations that would be most commonly used to display the information we
would use for the studies, we ran a workshop with a group of visualization experts, with various levels
of expertise, ranging from PhD students to professor. Workshops have been successfully used in many
previous contributions to either generate or evaluate visualization designs [133, 91, 170, 234].
The objectives of the workshop were the following:

• identification of a wealth of potential designs to display spatio-temporal attributes and masks
that can be applied over them

• ensuring that, prior to applying filters, there could be indication of elements that match the
query conditions

• verification that during the design process we would identify some designs combinations that
would be incompatible with variations of the ATS-ATS Mask

During the workshop, the 5 participants were first presented with the concept of the time mask as
defined by Andrienko et al. [20] and their query system. They were then asked, for a series of types
of information, to produce drawings of as many types of plausible designs to display the information
as possible. As the workshop progressed, the variations of design grew more diverse and rich in terms
of the number of elements displayed as well as the tasks that could potentially be performed using the
visualizations.
At the time we ran the workshop, the number of moving elements and attributed to display to partici-
pants of our future studies was not set yet. We had planned already not to consider interactions in our
studies. Thus, for our workshop we decided to aim for a number of elements that was high enough to
consider design methods to account for it without requiring aggregation of data, or without requiring
interaction. Participants were asked to generate visualization designs to display information following
these specifications:

• 3 moving entities that vary their position over 30 points of time.
In a space that contains areas with different static characteristics:

– 2 categorical variables

– 1 numeric variable
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• Each object having two constant attributes:

– 1 categorical attribute

– 1 numeric attribute

• And Each object having two varying attributes

– 1 categorical attribute

– 2 numeric attributes

To do so, they were provided with paper and colouring pencils, or marker pens and a whiteboard.
This setup made it difficult to capture interactions, but as this was not our focus and still enabled
participants to convey design ideas quickly and effectively. The participants were not specifically
instructed use Masks in their drafts. Once each participant generated multiple design approaches, they
were asked to increase the number of elements to display, either keeping the same design principles
they used to draw their drafts, or modifying them accordingly.

As a wide variety of designs were generated, trends appeared:

• All the participants, when asked to generate visualization designs for trajectories, started by
making drawings of those over the map background.

• The usage of colour was used to either:

– Indicate different moving entities (when we increased the complexity of the information
to be represented)

– Indicate areas of interest

– Indicate time frames, sections of trajectories, or regions that would match a query

• All participants, when asked to display the evolution of some attributes over time, drew at least
one visualization with time as the x axis.

• Designs grew in complexity as we increased the number of elements to draw (moving entities,
number of attributes) but discussions during the workshop indicated that aggregation would not
be considered by most until a significantly higher number of elements to draw would have to be
considered.

Most of the variations in the design happened when we asked the participants to display several
moving entities or several attributes in their drawings. Especially, aggregation of the data was only
considered for either several moving entities or several time dependent attributes. These supported
our decision to display precise levels of information (as opposite to aggregated) if we were to evaluate
a single moving entity or a relatively small number of attributes. The drafts produced during the
workshop are available in the appendix B. An example of a draft design to encode mask over space is
illustrated in Fig. 5.4
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Fig. 5.4 A draft produced during the workshop, exemplifying different encodings of masks over time,
space and attributes. Drafts such as this one were discussed during the workshop and further analysed
to identify trends, such as colour to indicate liaisons between different visualizations based on their
data.

The ATS-ATS design is thus inspired by the time mask of Andrienko et al. [20] and our
interpretations of the data collected during the workshop to develop a design that would have a
base of visualization methods commonly used to display the information of interest and support
overlays to display masks for queries being met.

5.4 Chapter summary

In this chapter, we introduced the ATS-ATS Mask, a method to indicate time frames which match
conditions. This method is an extension of the time mask developed by Andrienko et al. [20].
The initials A, T and S stand for Attribute, Time and Space, following a set of characterizations of
information defined by Peuquet [201]. The three first letters of the ATS-ATS Mask indicate the type of
information being queried, and the three last letters indicate the information displayed by the graphs
over which the Mask is displayed.
In this chapter we first explained motivation to extend the time mask and then presented our reasoning
resulting in the ATS-ATS Mask. We wanted to consider scope of the ATS-ATS Mask. Since it is
a method to overlay visualizations with an indication of when conditions are met, we first had to
consider over which visualization methods can the ATS-ATS Mask be displayed. We discussed how
we assessed the range of visual mappings which allow displaying spatio-temporal attributes through a
workshop ran with visualization experts.
In the next chapter, we discuss technology to display spatio-temporal attributes and overlay Masks
over it, and the selection or generation of data to allow evaluation of the A-ATS Mask.



Chapter 6

Studies to evaluate the A-ATS Mask

6.1 Chapter Presentation

In chapter 4 we presented the SFNCS used to characterize studies, and in chapter 5 we presented the
ATS-ATS Mask. This chapter discusses the studies we have set up to assess the ability to perform
synoptic comparative tasks in the context of multivariate spatio-temporal data analysis. In section
2.4, we discussed qualitative studies that indicated the value of visualization systems for spatio-
temporal data analysis, and identified a gap in the literature regarding the understanding of the impact
of complexity over the ability to efficiently perform synoptic comparative tasks. Our studies are
motivated by the goal to address, at least partially, this gap. The studies discussed in this chapter
follow a quantitative approach that asks participants to perform synoptic comparative tasks, for which
there are baselines against which responses are compared. In this chapter, we first discuss the reasons
why we prioritized studies designed to analyse the strengths and weaknesses of the A-ATS Mask.
After presenting our choice of data selection, we detail the studies we ran, present the points that
motivated them and their structures, and discuss the conclusions we drew after analysing the results.
To simplify discussion, we named the three studies we ran based on elements that are important to
them. In the following sections we will thus discuss the Distractor, Scaling, and Measurement studies.
There were two objectives of the Measurement study: to set up a study to evaluate the strengths
and weaknesses of the A-ATS Mask, and to illustrate using the SFNCS to characterize studies. The
studies termed Distractor and Scaling were set up as we identified research questions that arose during
reflective discussions over the set-up of the Measurement study, predominantly to ensure that our
A-ATS stimuli were ecologically valid.
In section 6.8 we show some breadth of the SFNCS by outlining a complimentary A-ATS study
that highlights the benefit of the consideration of information being a Measurement or a Judgement,
particularly the Form Subjectivity. This Judgement study was not prioritized and thus not run, but is
differentiated as its questions involve terms and interpretation that are judgement-based. We briefly
discuss how we would attempt to structure the study and our expectations, if it were to be run later.
Through this section, we will discuss how the SFNCS can be used for diverse studies.
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To ease communication throughout this chapter, we indicate in maroon letters terms which refer
to studies parameters, e.g. FOCUS indicating the focus of the Question participants are asked to
perform. Prior to discussing the studies themselves, we justify the implementation we selected out of
the range of potential designs out of the range offered by the ATS-ATS Mask.

6.2 Prioritizing the A-ATS Mask

The richness of the ATS-ATS Mask means many sets of evaluations should be developed in future
work to fully understand its impact for diverse tasks. We did not have the resources to evaluate all the
variations possible, and thus a selection had to be made. We had to decide what would be the most
important combination for a first set of studies we would run. As stated in section 5.2, the ATS-ATS
Mask is the result of two additions compared to the time mask: addition of the possibility to make
queries based on spatial information, and consideration of information displayed by the visualizations
the Mask is being overlaid on top of. These two considerations were the motivators towards the
selection we made later among the various combinations that can be generated with the ATS-ATS
Mask. Our final decision considering our selection of visualization designs, tasks, and evaluation
methods is therefore an aggregate of our interests and estimations that would yield the most indicative
contribution, as well as an artefact from the necessity to prove that the SFNCS and the designs we
selected are efficient in a situation with a simple set up before future research could expand upon
those claims.
As we discuss in section 2.4, the biggest inspiration for our ATS-ATS mask is the time mask of
Andrienko et al. [20] which was only displaying the time mask over visualizations depicting space-
time attributes, be it quantitative or qualitative, at a precise level, i.e. the data was not aggregated.
Using the characterization we defined, the time mask is a A-AT Mask.
Various combinations could prove valuable to assess strengths and weaknesses of the ATS-ATS Mask
while increasing the scientific literature corpus. We considered spatial information a priority as it
highlights the addition our contribution brought to the time mask. We thus considered that we needed
to evaluate tasks that required a focus on quantitative attributes, qualitative attributes, like in a A-AT
Mask, but also a focus on spatial information, resulting in our choice to select a design for a A-ATS
Mask.
As we considered how to design and implement the A-ATS Mask, we aimed for solutions that could
support a variety of tasks. The characterization of tasks by Andrienko et al. [12] indicated us a certain
range of parameters necessary so that tasks could be performed, e.g. synoptic comparative tasks
required to indicate the chronology of time records. While many implementations can be achieved for
a A-ATS Mask, as that of Andrienko et al. [20] indicated that it was understood and effective for
experts for a specific use-case. We infer that a design similar to theirs would likely be understood by
participants for future studies, albeit modifications would be necessary to extend the range of tasks
that could be supported with our design implementation.
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The design we selected for our studies is illustrated and categorized in Fig. 5.2 using the framework
of Andrienko et al. [12]. Our design presents similarities and differences compared to the one of
Andrienko et al. [20]. An example of the same approach with two masks is illustrated in Fig. 5.3.
Similarities with our design include:

• The visualizations depicting the evolution of quantitative and qualitative attributes are aligned,
and information is recorded and depicted at the same time.

• The design highlights time frames that match the conditions with visual annotations: rectangles
that cover the substrate are orthogonal to the temporal axes with low opacity so as not to obscure
other marks and their visual encoding.

• Quantitative information is displayed with a time series visualization that connects each recorded
point.

• Qualitative information is displayed with coloured blocks to indicate its value for each record.
The visualizations set up for the studies only display binary attributes, but colouring could be
used to indicate various categorical values, if those were limited to a finite number, for which
each they would be easily discernible.

But while our inspiration for the ATS-ATS Mask originated from the time mask, we aimed to
assess different designs based on that same concept. The differences in our designs are either due to
an interest in variations in the design, or adaptations for the studies. The differences include:

• Unlike the implementation of the time mask of Andrienko et al. [20], within our A-ATS Mask,
we do not repeat the data from which the time mask is derived. The time mask highlights with
coloured horizontal bars the conditions in the visualizations that display the queried attributes.
The dependencies between data present in the visualization before the application of the A-ATS
Mask and the information it depicts are illustrated in Fig. 6.1.

• Our dashboard includes a visualization displaying a geographical area, over which a trajectory
is drawn. Since we aimed to indicate chronological order of the spatial records, our designs
needed to indicate that information. We considered several approaches, e.g. text and/or numbers
to indicate starts and ends of trajectories, arrows indicating direction at the starts and ends
of trajectories, series of arrows over the entire trajectories, icons. We decided to indicate the
beginning of the trajectory with a coloured circle with no fill, and its end with a coloured
triangle, with a section of it coloured, to indicate the global direction from its beginning to
its end. This approach was selected as it establishes movement order trajectories that end
close to the position at which they begin. The colours of the circles and triangles are unique
to each trajectory, to ensure future work could include multiple moving entities and allow to
differentiate trajectories including in cases of overlap.
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• We extend the encoding of the A-ATS Mask to the trajectory that matches the query entered. We
decided to communicate this information by colouring the trajectory using the same colour used
to indicate the condition is met, with the mask over the visualizations for the qualitative and
quantitative attributes. Colour has associative properties, and we can assume that the semantic
association is made given the visual association [33].

Fig. 6.1 This table indicates combinations of focus and mask type. For our studies, we set our mask
dependencies differently to how they were set in the work of Andrienko et al. [20, 11]. Unlike them,
we set a variety of masks, reduced to binary attributes, that are defined by values not presented in the
original dashboard of visualizations. The combinations that we use in our studies are coloured in blue.
This graph indicates thus that if the focus and the Mask are displaying the same type of information,
they are displaying different attributes, e.g. if focus is WHAT_Qn and Mask is WHAT_Qn, the
quantitative attribute shown could for example be the engine temperature while the Mask represents a
condition on an unrelated attribute, such as the suspension force being above some level.

The design choices made for our implementation of the A-ATS Mask are related to our aim
to evaluate them. An important choice we made when we set up our studies was to display the
movement and space-time attributes of a single moving entity, a single quantitative attribute and a
single qualitative attribute. This decision originates from:

• Most quantitative studies present a single visualization that enables participants to perform
one evaluated task. Qualitative studies often require multiple visualizations for participants
to perform the task asked of them. As we aimed for an implementation of the A-ATS Mask
that could be used for quantitative and qualitative studies, our design is displaying a dashboard
of visualizations, including some which are not necessary to perform the tasks asked of them.
This approach is fairly unorthodox, which justifies the necessity to first evaluate a small number
of elements to display to the participants of our studies.

• As in their follow-up work with the time mask, Andrienko et al. [11] develop additional
visualizations to analyse movement during football games and display either several moving
entities at the same time or calculate the means of several moving entities and display the
resulting one. A particularly interesting approach they took was to measure for each player his
position in the team space (an artificial space) and then aggregate those for the whole team,
resulting in an average of one position for each time recorded. As that method proved useful
for analysts [11] it reinforced our confidence in the validity of our approach.
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The design we set up can easily support additional attributes to be displayed. We actually made
prototypes that supported the display of more moving entities and more quantitative and qualitative
attributes. We intend for future work to increase the number of attributes and moving entities displayed
in future evaluations. We discuss the potential future work in section 7.3.

6.3 From theoretical framework to data to evaluation

We introduced the SFNCS that allows to characterize studies and the ATS-ATS Mask. We aim to
evaluate the A-ATS Mask using the SFNCS. Evaluating the A-ATS Mask introduced in section 5
originates from an interest into expanding the time mask, used to help data analysis of time-space
attributes for moving entities in diverse contexts, e.g. football matches, air-traffic-control and shipping
movement [20, 11].
Before evaluating the A-ATS Mask, we discuss the process through which we selected a data set
which fits our requirements. The requirements were the following:

• Access to the data: we required a data set which we could have access to and with which
communication of our work was possible.

• A level of detail sufficient to perform the tasks we wished to assess: as the A-ATS Mask is built
to expand from the time mask, we prioritized the evaluation of the A-ATS Mask with a similar
level of detail as discussed in the paper which introduced the time mask. Tasks are discussed in
detail in section 6.4.1. The implication of this requirement is that we disregarded potential data
sets containing only aggregated data.

• Ensuring privacy of moving entities: sharing of data is important to allow scrutiny from other
researchers and transparent communication of results, but doing so implies ensuring that
anonymity of the people recorded as moving entities is preserved. If researchers aim to use
geographical movement, they can either use methods to anonymize trajectories [111, 181] or
use fictitious data.

• In the case where a fictitious one was chosen, to be realist enough to avoid its misinterpretation.

Data selection

We considered several potential data sources with their own associated context and how their potential
tasks of interest could fit our research interest:

• Ship movement using the Automatic Identification System (AIS) in the vicinity of harbours,
where risks increase while moving entities compete for landing ports access at specific times
depending on cargo price changing dynamically [37]. Assessing causes of occurrences of ships
navigating too closely is a complex problem that is likely to require visualizations to analyse
time-space attributes. We contacted several groups (Office for National Statistics, Maritime &
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Coastguard Agency, Peel Ports Group) who initially indicated interest for collaborations but
then pulled away from the project. Assessing causes of occurrences of ships being dangerously
close is a synoptic task, for which experts knowledge is necessary to assess whether observations
are significant. With access to neither experts nor data, we thus disregarded this context.

• Aircraft movement for planning assistance, for which optimisations could reduce the fuel
consumption, up to 16.7% according to Qian et al. [207]. Colleagues had previously worked
and published with a data set that they even shared with us. But due to policy changes from the
group that generated and owned the data, our authorisation to work and publish with that data
set was removed.

• Traffic movement for analysis of cities clutter was also considered. The analysis of that
data is important to consider limitations of roads in various situations, such as traffic jams or
evacuations [24]. Detailed real data records of cars positions around cities are not simple to
get access to unless partnerships with other groups are set, due to privacy concerns. Detailed
real-life records were thus not sought after.

• The IEEE VAST 2014 Challenge data [64, 264, 82, 48] set was our final choice for the data
set used for our studies. It is a set of trajectories set in a fictitious town, called Kronos, in which
movement of certain cars with unique identifiers is recorded. The fictitious town is represented
with a drawing of the map, over which can be overlaid trajectories of moving entities. The
IEEE VAST 2014 Challenge data set is composed of realistic trajectories, with a detailed level
of precision. This set requires no anonymization, as the data is fictitious. Additionally, its
fictitious nature meant there could not be a confounding effect due to pre-existing knowledge
of the displayed area. The IEEE VAST 2014 Challenge data set thus met our needs, since it
was composed of realistic trajectories in a fictitious area.

The selection of the IEEE VAST 2014 Challenge data set meant we possessed a set that met our
requirement for the TS part of the A-ATS Mask we wished to evaluate. The following step is thus to
consider what attributes should be used for our studies.

Data enrichment

Thus, we generated quantitative and qualitative data to complement the trajectories, doing so through
several iterations and with controlled constraints. As discussed in section 4.4.2, a diverse set of values
for the quantitative and qualitative attributes was necessary to avoid confounding factors.

For our studies, we required quantitative data that seemed realistic and rich, e.g. presented
diversity for means, ranges, different levels of straightness. To do so, we selected the Perlin noise, as
it’s been used for decades to generate data with realistic noise characteristics [200]. Specific values
selected to characterize the data we generated are discussed in section 6.4.2.
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We used a Processing sketch that draws upon the Perlin library [86] to rapidly generate sequences of
bounded quantitative values with diverse characteristics in terms of mean, variance and autocorrelation.
We show a screenshot of the software we developed and used to verify distributions of characteristics
of attributes generated in Fig. 6.2. The sequences of quantitative values are represented with lines,
similarly to how they would be displayed in a time series visualization. Their characteristics are
shown by the overlain grid, with cells representing different combinations. Complexity increases
from left to right, mean (arithmetic mean for the quantitative data, proportion ‘on’ for the binary
data) from bottom to top. Red cells indicate that a sequence of quantities has been generated with the
combination of complexity and mean represented by the grid position. Blue cells show that a binary
sequence of the appropriate complexity and mean has been generated.
Having generated many such sequences, a subset was selected as representative of the range of
characteristics through structured sampling. Others were categorized into binary sequences, and
again a selection were chosen through structured sampling as representative of the range of possible
variations.

Fig. 6.2 A screenshot from our software that generates quantitative and qualitative values using Perlin
noise to control noise variations. The lines drawn are matching the category highlighted when the
mouse cursor is over them. The x-axis represents the complexity measured, and the y-axis represents
the range of potential means in that group. The squares are red if the algorithm has only generated
quantitative values for that set of criteria, blue if only qualitative values have been generated for that
set of criteria, and purple for both.

The generated attributes were then assigned to trajectories. We considered that each record of
position should be accompanied by a series of quantitative and qualitative attributes that would reflect
potentially interesting measurements done in real-life analysis of car traffic, i.e. information specific
to the car. Information external to the car, e.g. temperature, precipitations, were considered but
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disregarded due to concern over potential interpretation from participants that external attributes could
influence the internal ones. Thus, for each record of position, a car is assigned a value of the following
attributes:

• Quantitative attributes:

– Engine temperature

– Fuel consumption

– Suspension force

– Electricity consumption

• Qualitative attributes:

– Gps on

– Heating on

– Wiper on

– Radio on

Our first approach was trying to generate values with ranges that reflected real-life measurements. This
approach was potentially interesting as we wished to make the study as realistic as possible, but since
we aimed for claims to be generalizable, we decided not to follow it, as the different attributes could
have different ranges, with different minimum or maximum values that might affect task performance.
As we evaluate the A-ATS Mask, we want to make it possible to consider the impact of the A-ATS
Mask over different composite graphs displaying either WHAT_Qn, WHAT_Ql. We thus ensure the
validity of the comparisons by standardizing ranges for all quantitative values ranging from 0 to 100
and set all the time frames of the composite graph ranging from 0 to 100.

6.4 Studies Commonalities

The specific motivations for each study are detailed in their appropriate sections, but can be all
summarized by our research questions, previously introduced in section 1.4, and discussed in detail
in sections 6.5, 6.6 and 6.7. These research questions are similar as they all aim to investigate how
some factors influence the ability to correctly conduct synoptic comparative tasks within multivariate
spatio-temporal data analysis, and their impact over trust while performing said tasks.
We set the three studies for different purposes: the Measurement study is set to help us understand
a rich combination of factors, based on their categorization; the Distractor study is set to help us
understand if the presence of graphs not necessary to perform tasks evaluated, named distractors,
affect the ability to perform the tasks evaluated; the Scaling study is set to help us understand the
impact of visual space allocated for the display of graphs.
Due to their common origin, these studies share many similarities. We thus first start this chapter
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by discussing in this section these common traits over the studies structures, the tasks asked of
participants and the questions generated to ask them to perform the tasks, as well as similarities on
data displayed and visual stimuli.

6.4.1 Tasks, questions, and study structure,

The studies share a common structure, where each visualization presented to the participants is
explained, followed by a series of elementary questions to ensure their understanding. The questions
set to ensure participants’ understanding of the visualizations are elementary identification tasks.
Following the introduction questions, participants are asked to answer questions about data displayed
to them in a composite A-ATS graphic for a series of stimuli. The resulting studies workflows are
illustrated in Fig. 6.14,Fig. 6.27, and Fig. 6.38.

Tasks and Questions

An important element for the design of our studies was to make claims about various types of tasks
using the same composite graph. We thus set the studies with QUESTIONS with various FOCI .
The structure to characterize the questions is defined in section 4.2. The questions of the different
studies have thus been set to share the same structures but with different FOCI . For each FOCUS ,
various characteristics of the information displayed to the participants could potentially be evaluated
and have participants tasked with retrieving such characteristics. The selection of the information
participants are asked to retrieve is flexible and dependent on researchers’ interests, but should still be
justified. Our studies and our selection of information characteristic are strongly influenced by the
work discussing the time mask [20, 11], but also by previous literature that shows the information that
we ask participants to retrieve to be useful.

The characteristics we ask participants to retrieve for each focus ( FOCUS ) are the following:

• WHAT_Qn: For questions with a FOCUS on the quantitative attribute, the information
evaluated by the participants are the quantities associated with the moving object as they vary
over time.
It is important to evaluate participants’ ability to retrieve this type of information, as it is
necessary to establish relationships between different attributes. For our studies, participants
were asked to consider proportions of time and variations of the quantitative attribute, according
to the condition encoded by the A-ATS Mask.

• WHAT_Ql: For questions with a FOCUS on the qualitative attribute, the information evaluated
by the participants are the time frames within which the status of the attribute is positive or
negative. Assessing participants’ understanding of the information when displayed qualitative
attributes is important, as such attributes are likely to be important for performing high-level
tasks such as understanding relationships between attributes. In our studies, the qualitative
attributes are binary, as we decided to follow the same approach as Andrienko et al. [20, 11]
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discussing the time mask. For our studies, participants are asked to consider means and
variations of the time frames in which the attribute is positive, according to the condition
encoded by the A-ATS Mask.

• WHERE: For questions with a FOCUS on the spatial attribute, the information evaluated by
the participants is the distances between the points composing the trajectory and a point of
interest (POI).

Note that we do not ask participants to evaluate distances between trajectories and points
directly, as this would be faulty. Trajectories are defined by a series of points that are the
elements we ask participants to consider. Furthermore, POIs are important for inferring human
movement and activities [87] and thus ensuring which tasks participants can perform using
them is relevant. We specifically selected tasks to relate to a trajectory and a POI rather than
an area of interest. A POI with a set longitude and latitude meant a reduced risk of different
interpretations, e.g. distance to a park, represented by an area, could be interpreted as distance
to the closest point of the park to the trajectory, the park centre, or an arbitrary corner of the
park. The questions ask participants to consider means and variations of the distances between
the trajectory, i.e. the points that compose it, and the point of interest, according to the condition
encoded by the A-ATS Mask.

Our interest was set on evaluating synoptic comparative TASKS that varied according to FOCUS .
Synoptic comparative tasks are important to understand relations between different quantitative [99],
qualitative [71] or spatial [87] attributes that vary over time. The distinction in the selection of
different data sets opens up questions about human ability to generate a mental model efficient for
their comparison. Andrienko et al. [11] details the overall goal of understanding general patterns
of moving entities and dynamics of changes in relations to events and context, with the following
sub-goals:

• Enabling selection of groups with particular characteristics

• Deriving general patterns of moving entities

• Enabling comparison of general patterns corresponding to different groups of situations

These tasks are a base we drew from to ensure the questions we set in our studies are ecologically
valid. Specifically, the third sub-goal relies on the understanding of qualitative, quantitative and
spatial attributes average values and evolutions. The studies we developed target to enrich the
understanding of abilities to perform synoptic comparative tasks with a FOCUS on WHAT_Ql,
WHAT_Qn, WHERE.

We aimed to evaluate participants’ performance and assess their confidence in their performance.
The records of trust are not meant to possibly invalidate the performances of the participants, but
rather to nuance direct applicability for designers that would later wish to implement the design for
their own work. If a visualization is effective, but participants are not confident in the validity of their
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estimations, it could mean that additional efforts have to be made towards a clear communication of
the design.
To assess participants’ accuracy, we first planned to ask them whether they agreed with statements
about the data displayed to them. For each stimulus, participants would be asked, for the FOCUS at-
tribute, whether the value was on average higher while the condition was met, and whether the value
was on average more stable while the condition was met. This answering method is a case of Multiple
choice within our Response block. As further reflections and discussions occurred, we considered
that this approach was suboptimal, as this would only indicate ability from participants to consider
whether the difference between the means of the attributes during times in which the condition was
met and the means of the attributes during times in which the condition was not met was greater
than zero. By asking participants to numerically assess this type of difference, the generated answers
provide more nuanced and precise information about participants’ ability to perform the tasks asked
of them.

The high number of parameters variations meant that manual generation of stimuli would prove
problematically time-consuming. We thus developed a software to generate stimuli and group them
with their respective questions and baselines for the experiments we defined. The generation of the
questions asked to participants was also automatized with this software.

The sentences asking to calculate the differences between means seemed fairly verbose, and the
questions asking about calculations of variations were, despite our best efforts, impossible to generate
as we could not find a reasonable manner to ask participants to provide a number that could describe
the differences of variations.
We thus redesigned the questions structure for the studies. The first modification was to reconsider the
change of the questions about variations. Due to the lack of commonly known and easily calculable
method to quantify strengths of variations differences, we considered that this question was most
relevant as a binary comparison of variations. Regarding the means assessments, we decided to split
the one question asking to compare means directly into easier questions which were asking steps
necessary to compare means. This approach is unorthodox, but is justified by the necessity for direct
means comparisons to remember means values to compare them, which was not what we were trying
to assess. Our aim was to evaluate participants’ capability to assess data according to focus and status
of Mask. We thus established their ability to do so by asking them to evaluate mean values when the
mask is on and overall. The question of means comparisons was thus cut into three simpler questions:

1. Assessment of the mean of the attribute while the condition is met.

2. Assessment of the mean of the attribute over the whole time frame displayed.

3. Percentage of the time in which the condition is met.
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To collect participants responses as they performed these tasks, we considered several approaches.
Our selection amongst the different methods listed in the SFNCS Response block (here indicated with
italic text) is justified by the following considerations:

• These tasks relate to questions for which the baselines are numerical values. Two choices were
then possible: offer a list of potential numerical values to select from, or provide the tools to
generate a numerical response. The selection of values that we would have generated ourselves
would have led to a loss of information, in particular the discrepancy between the responses
of the participants and the baselines. We thus disregarded Response options such as Multiple
choice and opted to provide a tool for participants to enter a numerical response.

• Different options were available to follow that approach. We considered the Form field Response
option, but considered that typos could occur and that typing numerical values often could tire
participants. We estimated that maximal ease of input would result in the least distracting effort
for participants to answer.

• Thus, we considered that providing the ability to answer everything with the mouse would be
the most comfortable, intuitive and least distracting approach to provide answers, resulting
in the three questions about numerical means being set to be answered using sliders, thus
characterizing these Responses as Slider in the SFNCS.

• Our studies are set with the philosophy that a visualization is effective when the user’s mental
model is close ’enough’ to what is encoded in the information visualization. Following that
logic, we set the Response resolution level at 1, i.e. participants could only enter integer
values. Offering a high level of precision in the input would likely result in participants getting
distracted.

Following these considerations, we summarize the structure of the study as thus: The questions of
the surveys are generated automatically in our software that also generates the visualization. The
questions thus adapt accordingly to the FOCUS required. The three first questions require the
participant to use a slider to provide a numerical answer, and the fourth one asks the participant to
claim whether they agree, disagree, or neither agree or disagree with the statement describing the data
presented to them.

The questions asked to participants are the implementations of the questions listed in the Question
block illustrated in Fig. 6.3.
We list the structures of the sentences, with the italicized terms adapting to the displayed attributes to
generate sentences that are comparable across FOCI and linguistically sound:

• WHAT_Qn:

– Mean with Mask MwM
What is the average value of the attrDrawnQn while the sentenceCondition?
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– Mean Overall MO
What is the average value of the attrDrawnQn over the whole time displayed?

– Mask Proportion MP
For what percentage of the time displayed is the sentenceCondition?

– Stability Comparison SC
The attrDrawnQn is on average more stable while the sentenceCondition than at other
times.

• WHAT_Ql:

– Mean with Mask MwM
For how long are both the attrDrawnQl and the sentenceCondition?

– Mean Overall MO
For how long is the attrDrawnQl?

– Mask Proportion ( MP )
For what percentage of the time displayed is the sentenceCondition?

– Stability Comparison SC
The attrDrawnQl switches less frequently while the sentenceCondition than at other times.

• WHERE:

– Mean with Mask MwM
What is the average distance between the trajectory and the point of interest while the
sentenceCondition?

– Mean Overall MO
What is the average distance between the trajectory and the point of interest?

– Mask Proportion MP
For what percentage of the time displayed is the sentenceCondition?

– Stability Comparison SC
The distance between the trajectory and the point of interest is more stable while the
sentenceCondition than at other times.

The variations are calculated using the following equations:

• WHAT_Qn: [abs(x(i)− x(i+1))...+abs(x(n−1)− x(n))]/n
With x being the quantitative values displayed, i representing indices, and n the number of data
points used for the calculation, depending on Mask status selection.

• WHAT_Ql: cql/n
With cql being the number of changes of status, and n being the number of data points used for
the calculations, depending on Mask status selection.
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• WHERE: [dist(p(i)− poi)...+dist(p(n)− poi)]/n
With p being the positions of the points selected and poi being the position of the point of
interest, with the selection depending on Mask status selection.

The stability of the groups with the Mask status being positive and the Mask status being negative are
compared using these calculations. Baselines for SC are set as calculations of variations of the time
frames with the Mask status being positive being inferior to the variations of the time frames with the
Mask status being negative, i.e. variation(Mask) <= variation(NoMask).
The baselines are set independently of how big the difference between the variations are. To our
knowledge, there are no recommendations concerning minimum differences of variation that can be
visually perceived, but are aware that these vary due to our data generation set up. We thus decided to
consider participants responding "neither agree nor disagree" to the statements provided to them as
being neither correct nor incorrect, and filter them out from our analysis process.

As stated previously, we also considered it was valuable to understand participants’ confidence in
their ability to perform the tasks asked of them. It is important to evaluate the self-reported confidence
of participants to perform tasks, as it is expected to relate to effort and persistence to perform tasks
[168]. Thus, for each question, the participants were asked to evaluate their confidence in their answer,
ranging from 0 to 5 included, with 5 meaning complete confidence and 0 meaning no confidence at
all in their response. We loosely use the term trust to indicate the same notion of confidence, as these
two terms relate to the same notions and are commonly used alternatively in informal conversations
as well as literature.

Using the blocks of the SFNCS, we summarize the elements of the study in Fig. 6.3.

Fig. 6.3 The Task, Question, and Response blocks from the SFNCS as they are used within our
study. For each stimulus the task is the same, it is a Synoptic Measurement Comparison task, with a
FOCUS on either a quantitative (WHAT_Qn), qualitative (WHAT_Ql) or spatial (WHERE) attribute.
Characteristics of the questions are detailed in the Question block, in the right column. The left
column indicates specific objects of the questions participants are asked to return. Note that the
questions are not all the same as the task. While the questions are designed towards helping perform
the task, the approach is not limited to questions matching the same characterization. The Response
block indicates for each question the tool provided to participants their answers.
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Study structures

The number of responses we aimed to achieved was inspired by the study of Pena-Araya [195]. The
number of participants we set for each study was calculated prior to the studies by considering for
each the number of factors we aimed to use to assess ability to perform MwM , MO , MP and SC .
Pilot studies using a convenience sample of 5 participants helped us to assess the length participants
would take to answer each question, which informed our assessment of the total number of questions
it would be reasonable to ask of a participant without them losing their attention.

We thus obtained the desired number of participants by dividing a certain number of stimuli by
the number of questions per participants. The combinations of parameters are indicated in table 6.1.

The three studies were set with a within-subjects design, with factors variations presented in a
random order and evenly presented. The even presentation ensured we collected equal number of
responses for each combination of factors, and order randomization was selected to prevent learning
factors to influence the results.

Measurement study Scaling study Distractor study

DATA COMPLEXITY 27 5 5
FOCUS 3 2 3
MASK COMPLEXITY 3 3 3
Distractor variations 1 1 2
Scaling variations 1 3 1

Number of stimuli 486 90 90
Number of responses per stimulus 3 3 3
Number of participants 160 30 30
Number of responses per participant 9 9 9
Number of responses in total (HITs) 1440 270 270

Table 6.1 The top section of this table lists factors variations for the Measurement, Scaling and
Distractor studies. The bottom section of this table indicates the number of generated stimuli resulting
from multiplying these factors, and how many times a response is collected per stimulus. The number
of participants and responses per participants results in the number of responses in total (HITs) we
collected.

In the following sections, we discuss specifics of each study. We do not discuss every detail
of the graphs due to the information produced, but discuss what we learned from the results. Our
approach to analyse the results is strongly influenced by the studies ran by Heer et al. [100] and
Pena-Araya et al. [195], but presents some differences. For the questions for which the answer
provided is a number, we do not expect participants to answer with precision the value of the baseline
generated. We thus consider that a measurement more relevant for the ability of participants to answer
the question asked of them is the difference between their answers and the baselines. We use BCa
bootstrapping to generate 95% confidence intervals [63]. If the confidence intervals of differences do
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not cross 0, it provides evidence of differences being significant, with the further away from 0 and the
smaller the CI the stronger the evidence.
Additionally, responses for questions in which participants indicate whether they agree, disagree,
or neither agree nor disagree with a statement describing the data stability ( SC ) are evaluated by
generating error rates. While both approaches would be potentially valid, we decided not to consider
answers where participants claim they neither agree nor disagree with the statement as incorrect. We
considered that if participants assess that they are not able to perform the task, then they are unlikely
to make wrongful conclusions about the data following performing that task.

6.4.2 Data Displayed and Visual Stimuli

All the stimuli of the studies are produced using selections from the IEEE VAST 2014 Challenge data
set, which has been enriched with quantitative and qualitative attributes. This process is detailed in
section 6.3. The resulting data is categorized into ordered levels of complexity ( DATA COMPLEXITY )
which we vary during the studies. The resulting characteristics for each category are illustrated in
Fig. 6.4.

Fig. 6.4 The Data block characterization for our studies. Sinuosity and number of (indicated by with
the ‘#’ symbol ) are scale-independent, but that is not the case of the length used to characterize
the trajectories that compose our studies. The lengths are defined by the pixels used to draw the
trajectories. The number of turns that are part of the characterization of the trajectories were manually
counted, which was possible in the context of the study data that consisted of trajectories of cars
travelling along constrained routes in a block-based road system.

The MASK COMPLEXITY is set by the number of variations of the mask status over time. It thus
results in the same type of complexity as the DATA COMPLEXITY for WHAT_Ql. This consideration
drove us to set the MASK COMPLEXITY with the same characteristics listed in Fig. 6.4 to categorize
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it as Easy, Medium or Hard, with respectively 1 to 3, 4 to 6, or 7 to 9 mask status variations.

There is a specificity for the Distractor and Scaling studies concerning data complexity to note.
The Distractor and Scaling studies we not set with the objective to evaluate performances in detail,
but verify whether their specific setups influenced significantly the abilities of participant to perform
the tasks. These specific variations (presence of distractor or different scaling for visualizations) are
the focus of these studies, and variations of data complexity is secondary. Thus, the selection of data
complexities picked to generate stimuli presented to participants is motivated by representation. The
selection is organized to reach the data complexities we estimate to be the most and least complex,
with intermediaries that ensure a representative sample. The selection is illustrated in Fig. 6.15 for
study Distractor and Fig. 6.28 for study Scaling.

For every question of all studies, the participant is presented with a composite graph of visualiza-
tions overlain with an A-ATS Mask. We introduced the A-ATS Mask in section 6.2, and provided an
example of the resulting composite graph with an A-ATS Mask overlaid in Fig. 5.1. The different
studies present variations that allow us to use SFNCS to structure stimuli and observations regarding
the importance of different aspects of the graphs we produced. We detail our motivations for these
changes in sections 6.5, 6.6 and 6.7.

6.4.3 Control of data for the studies

We have previously discussed in section 6.3 the process that justified the selection of the IEEE
VAST 2014 Challenge data set and why and how we enriched it. In this section, we discuss how we
controlled the generation of quantitative and qualitative data then categorized according to complexity.

Qualitative and qualitative data were generated and then categorized based on the complexity
criteria listed in Fig. 6.4. The data generation was done using Perlin noise [200] to produce realistic-
looking data. The data was then uploaded to a MongoDB database, so it could be queried according
to the categories desired for each stimulus.
We illustrate the distribution of baselines in figures 6.5. We iterated through several generations of the
attributes while modifying parameters to ensure a diverse distribution of baselines.

Additionally, we checked distribution of baselines to make sure that participants would not often
encounter questions in which the answers were often similar. The resulting distribution of baselines
differences is illustrated in Fig. 6.6.
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Fig. 6.5 The distribution of baselines for questions asking participants to provide numerical answers
( MwM , MO , MP ), according to categories.

Fig. 6.6 The differences between the distributions of baselines asking about the means with either
the condition being met or overall ( MwM against MO ). The details of the differences between
the baselines present little interest to us, but ensuring diversity within them was important to avoid
participants potentially encountering questions with exactly the same answer several times, resulting
in a confounding effect.

The same philosophy motivated our verification of baselines distribution for questions SC . There
were no specific expectations of distribution of baselines, but we ensured that no combination of
parameters resulted in a unique type of correct answer, as illustrated in Fig. 6.7.
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Fig. 6.7 This graph displays the distribution of baselines for questions asking participants whether
they agree with statements describing variations of the data ( SC ). Details about these questions are
discussed in section 6.4.1. The Likert questions can be either True or False; each block represents for
a certain combination of studies factors the number of baselines which are either True or False. This
graph indicates that while there is a diversity of baselines distributions, there is no combination of
factors for which all the baselines are a single value, which could have created a potential confounding
effect.

6.4.4 Considerations of answers quality

To ensure that participants understood the visualizations presented to them, we set up elementary
questions following the visualizations’ introduction. The questions of the introduction are displayed
in figures 6.2a, 6.2b, 6.2c and 6.2d. We name this set of questions the introduction test (TI). The TI
questions are encoded according to order, i.e. A, B, C1, C2 (this stimuli contained two questions) and
D. The detail of the questions is:

• A In which direction does the car move? (Fig. 6.2a)

• B When is the heating on? (Fig. 6.2b)

• C1 Which of these times is closest to the time at which the engine temperature reaches its
minimum? (Fig. 6.2c)

• C2 Where is the minimum value of the engine temperature reached? (Fig. 6.2c)

• D When is the gps on? (Fig. 6.2d)
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(a) The first question asked to check participants’ understanding
of the representation of the trajectory and its direction. We name
this introduction question A.

(b) The second question to check participants’ understanding of
the representation of the qualitative attribute evolution over time.
We name this introduction question B.

(c) The third and fourth questions to check participants’ un-
derstanding of the representation of the quantitative attribute
evolution over time. Answering this question requires the partic-
ipant to connect the explicit depiction of time of the quantitative
attribute’s axis to its implicit representation in the display of the
trajectory. We name the first question C1 and the second C2.

(d) The last question to check participants’ understanding of the
A-ATS Mask. We name this question D.

Table 6.2 The questions asked to participants after they were introduced to the visualizations. Except
for the first question, all the composite graphs present three types of information. The left graph is set
to communicate WHERE information: Trajectory position in space varies over time. The top right
graph is set to communicate WHAT_Qn information: a numeric quantity varying over time. The
bottom right graph is set to communicate WHAT_Ql information: a binary quality varying over time.
We name this introduction question D.

Prior to our recruitment of paid participants, we first ran a series of tests with a small convenience
sample [77]. All participants answered all questions without errors in the introduction test. Our
convenience sample was not composed of data visualization experts, giving us some evidence to
suggest that our introduction questions were understandable without prior expertise in the field.
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Fig. 6.8 The distribution of answers for the introduction test (TI). The questions are listed in the order
they are presented to participants, as illustrated in table 6.2. The number of participants answering
correctly are displayed on the left and the number of responses for alternative potential answers are
displayed in the three other bar graphs.

We thus assumed that Prolific participants with a maximal approval rate, who claimed to be fluent
in English (FiE) would perform well, at least for the introduction test, but still they performed poorly
at the introduction tests. Some participants who answered poorly were contacted through the Prolific
messaging platform. These discussions indicated that some participants may have been less fluent in
English than they claimed, as their answers were poorly written, e.g. typos, wrong order of words, or
that others participants directly admitted either not understanding English or the tasks asked of them.
Additionally, we were alerted that a high surge of registrations on Prolific followed a viral post on
TikTok that may have polluted the Prolific panel and resulted in low performance, on the 24th of July
2021 [56].

In retrospect, a more suitable approach might have been to run a pilot study with a small sample
of participants approached through Prolific. Our assumptions concerning the representivity from the
convenience sample was motivated by the diversity of participants’ professional and educational back-
ground. We failed to account accordingly for the impact of context that differentiates a convenience
sample and participants who participate for monetary motives.

We thus decided to run the studies again with a narrower set of participant selection criteria,
limiting participation to our study only to participants who claimed English as a First Language (EFL)
and who registered to use the Prolific platform before the influx of July 24th 2021.

To assess whether the ability to successfully answer the introduction test (TI) was significantly
different between these two groups of participants, we ran a CHI-Square analysis. The result is
illustrated in Fig. 6.9.
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Fig. 6.9 The CHI Square test to compare introduction test (TI) performance, according to whether
participants registered to Prolific after the TikTok influx and are Fluent in English (FiE) or registered
prior to the influx and clam English as a First Language (EFL).

Our experiment showed no difference in performance for the introduction test between the pre-
influx EFL and the post-influx FiE. This surprised us, but this test output allows us to make the
following claims:

• Post-influx FiE did not perform differently to pre-influx FiE participants.

• Prolific participants with a maximal approval rate found the elementary questions that required
them to read a graphic challenging - much more so than our convenience sample.

The introduction test results hindered our trust in the quality of the answers we collected. We
considered that further evaluating the quality of the answers could prove valuable to reinforce said trust
in the answers provided. We thus investigated for additional tests that could reinforce our confidence in
the data quality. We looked at detailed answers provided by participants, searching for characteristics
in the answers that were likely to indicate answers of low quality. The first characteristic we noticed
was that some participants answered the studies particularly quickly. Time was not part of our interest,
but could indicate low quality of answers. This statement has to be nuanced, as many factors can
influence time necessary for a participant to perform a study, e.g. distractions can force participants to
perform another activity in the middle of the study, or experienced participants might not spend as
much time on the introduction sections of the studies. According to their experience in answering
surveys, participants will perform differently [43], and thus we considered that time was an interesting
approach to filter out answer sets to investigate in detail, but not to characterize answers as invalid.
We thus aimed to set an additional data quality checking over the answers provided, which was
informed by observations of participants’ answers that seemed to be of low quality due to short study
completion times (rapid responses). The detailed analysis of these answers indicated two additional
characteristics that we could use to filter out low performance:

• Some participants constantly self-reported a confidence of 0 out of 5 or 5 out of 5 for all the
questions asked to them. Borgo [38] would label these "Smart deceivers". If participants
constantly self-reported a confidence of 0 or 5, for the total of 45 questions (4 questions for
each of the 9 stimuli), we consider that these answers are of low quality.
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• One specific error participants can make is particularly interesting: for questions with a
WHAT_Ql focus, participants are asked to estimate for how long are both the qualitative
attribute on and the condition met (WHAT_Ql MwM ). We noticed several participants who
provided higher values for WHAT_Ql MwM than for WHAT_Ql MO , which is impossible,
as WHAT_Ql MwM is a subset of WHAT_Ql MO . Responses in which WHAT_Ql MwM is
higher than WHAT_Ql MO indicate low answer quality, either due to lack of engagement or
understanding of either the visualization or the question formulation.

We thus set an additional test, termed the Rigorous Test (TR), which verifies whether the partici-
pants did not constantly self-report a confidence of 0 or 5 (out of 5), and did not provide answers with
higher values for WHAT_Ql MwM compared to WHAT_Ql MO . We verify whether the differences
in distributions of participants failing the TR is significant according to post-influx FiE or pre-influx
EFL and illustrate the result in Fig. 6.10.

Fig. 6.10 The CHI Square test to compare ability to pass the Rigorous Test (TR) according to whether
participants registered to Prolific after the TikTok influx and are Fluent in English (FiE) or registered
prior to the influx and clam English as a First Language (EFL).

Our results indicate no difference in ability to pass the Rigorous Test, between the pre-influx EFL
participants and the post-influx FiE participants. This once again surprised us, but our results allow
the following claim to be made:
Post-influx FiE participants did no perform differently to pre-influx EFL participants in terms of the
Rigorous Test.

The statistical tests we ran over the introduction questions indicated that participants from our
online panel performed less well than we expected given our experience with the convenience sample
during piloting, even with an explanation of the composite graphs and examples discussing them.

In retrospect, it can be argued that our studies would have benefited from being designed for
shorter sessions, with participants doing microtasks, to evaluate whether participants had acquired
what Bertin [33] defines as the intermediate level of understanding i.e. being able to extract trends and
other higher-level structures. This approach would also have followed the philosophy of crowdsourced
studies should be kept relatively short [38]. Our study organization was motivated by the relatively
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long required time to train participants, who were not required to have knowledge about information
visualization. As a consequence, we required participants to produce a certain level of focus that,
while we were certain was achievable for participants without experience thanks to our convenience
sample, could not be verified with online participants. It would be valuable to set another study with a
sample large enough to compare results to the ones we discuss within this thesis. Another alternative
would have been to set, additionally to our questions verifying participants’ understanding of the
visualization, tests to ensure attentiveness [38]. While efforts have been made to limit their impact,
these limitations in our studies design may have reduced the quality of the responses collected.

Orientation of the spatial stimuli for the Measurement study

A minor study parameter not mentioned previously is that half the participants of the Measurement
study were presented to a stimulus of a map and its trajectory and if present point of interest flipped
horizontally and vertically. This approach does not modify in any way the questions nor answers for
participants, but was set up to try to reduce directionality of trajectory as a confounding factor, as we
noticed a majority of trajectories records were going from left to right, potentially easing the implicit
connection between time frames where attributes of the moving entities match the condition displayed
by the A-ATS Mask. We run a CHI Square test to assess whether the difference in ability to pass TI is
influenced by the orientation of the spatial stimuli. We display the result in Fig. 6.11

Fig. 6.11 The CHI Square test to compare ability to pass the Introduction Test (TI) according
to whether participants saw a spatial stimulus (map, trajectory, point of interest) that was flipped
horizontally and vertically. The results are not significant, and we thus do not make further separation
according to this criterion when discussing answers of the Measurement study.

The difference according to whether the spatial stimuli is flipped is not significant, and thus
discussions of results of those answers do not make any distinction between these two groups.

6.4.5 Analysis of results

The studies are built using the SFNCS with the same method to characterize the data and its resulting
stimuli, and participants are asked to perform the same tasks for each study. We thus construct our
argumentation for results analysis using the same approach for each study. For each task MwM ,
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MO , MP and SC we assess whether performance is dependent on the factors used to set up the
studies: i.e. FOCUS and its DATA COMPLEXITY , MASK COMPLEXITY , and scaling and presence
of distractors for the relevant studies.
We use the same approach to evaluate characteristics of the answers.

Throughout our analysis of studies results, we use data characteristics of responses by either using
them for comparisons, or to factorize the results. The characteristics selected to view results and
make comparisons are called variants and for readability are indicated by icons on the left of graphs
displaying the responses. The factors, which split the responses into groups according to data char-
acteristics are, if they are present, indicated by icons on the right of the graphs displaying the responses.

We illustrate the distribution of responses and differences between groups in Fig. 6.12 for tasks
MwM , MO , MP , and Fig. 6.13 for task SC .

Fig. 6.12 This supportive schema illustrates the structures of the graphs displaying the responses
of participants for tasks MwM , MO and MP . The responses for the three tasks are separated by
the vertical black lines. Horizontal black lines, not illustrated here, can be present to split responses
according to factors. For each task, the responses in the left gray rectangle are grouped according to
variants, while the right gray rectangle is populated by graphs illustrating the differences between
these groups. The presence of red dots in the right gray rectangle indicates a statistically significant
difference between two groups. In the response graphs, the factors and variants are illustrated by
icons.
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Fig. 6.13 Organized similarly to Fig. 6.12, this supportive schema illustrates the structures of the
graphs displaying the responses of participants for the task SC . Horizontal black lines, not illustrated
here, can be present to split responses according to factors. The responses in the left gray rectangle
are grouped according to variants, while the right gray rectangle is populated by graphs illustrating
the differences between these groups. The presence of red dots in the right gray rectangle indicates a
statistically significant difference between two groups. In the response graphs, the factors and variants
are illustrated by icons.

We structure our analysis of the results by considering whether the following statements match
participants performances, listed in table 6.3:

MwM 0 Ability to perform task is reasonable / acceptable
MwM 1 Ability to perform task is consistent in direction according to the variant
MwM 2 Ability to perform task is consistent in direction according to the variant

MO 0 Ability to perform task is reasonable / acceptable
MO 1 Ability to perform task is consistent in direction according to the variant
MO 2 Ability to perform task is consistent in direction according to the variant

MP 0 Ability to perform task is reasonable / acceptable
MP 1 Ability to perform task is consistent in direction according to the variant
MP 2 Ability to perform task is consistent in direction according to the variant

SC 0 Ability to perform task is reasonable / acceptable
SC 1 Ability to perform task is independent on variant
SC 2 Ability to perform task is consistent in direction according to the variant

Table 6.3 Encoding of interpretation of performances’ abilities for each task.
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Both considerations of performances being acceptable and performances varying consistently
with the variant rely on subjective judgements that we, as researchers, make when considering that
the strengths of the observed effects are worth reporting and draw conclusions from. Similarly,
observations about performances being independent on variant are dependent on our interpretation of
results in their global context. Considering results in their overall context is done to reduce likeliness
of claims over false positive. We thus consider that factored results can be used as a method to identify
potential false positive for global trends.
The following sections use graphical methods to present the results and as a basis for discussing them.
All the studies will present the same type of graph.
The numerical questions ( MwM , MO and MP ) are analysed using the log absolute error as
measured by Cleveland and McGill [63] and subsequently employed by Heer and Bostock [100]:
log2(|baseline−answer|+1/8).
We also directly refer to values of Responses when communicating the importance of an effect we
note.
Additionally, we discuss the relationships between the factors of interest and self-reported confidence
in ability to perform the tasks. Significance of differences between self-reported confidence is evalu-
ated with first a singular Kruskal-Wallis test, followed by Dunn’s Multiple Comparisons [74].

Graphs discussing numerical questions display information about the questions ( MwM , MO and
MP ) and are composed of 6 columns, presenting the following information, from left to right:

• Absolute error for MwM .

• Differences between absolute errors for MwM *.

• Absolute error for MO .

• Differences between absolute errors for MO *.

• Absolute error for MP .

• Differences between absolute errors for MP *.
*In the difference graphics, those differences that are statistically significant are indicated with
a red circle to the left of the confidence interval of the differences. We selected a p-value of p <
0.05, which is commonly used [119].

Our graphs indicate the number of responses collected and used for their generation. This is particu-
larly important as artefacts due to low number of responses occurred, i.e. no drawing of violin plot
generated with very low number of responses.

Graphs discussing Likert questions display error rates according to factors, with two columns to
display the following calculations, from left to right:

• Error rate for SC .
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• Differences between error rates for SC . Statistically significant differences between factors
are indicated with a red circle left to the confidence interval of the differences. Similarly, that
for numerical questions, we selected p-value of p < 0.05 to label differences as statistically
significant.

These graphs also indicate the number of responses used for their generation. It is interesting to note
that violin plots are not drawn, and confidence intervals have a width length of 0 when all participants
were either correct nor incorrect. These occurrences have to be nuanced, as it is probable that over a
larger sample of responses some variations are still likely to occur.

Due to the high number of variations of arrangements of factors, we do not discuss them in detail.
Instead, our analysis focuses on the display and analysis of variations that are the most relevant to our
interests as expressed in our research questions 1.4.
The resulting observations for each study are listed in table 6.4. We detail our conclusions drawn
from the data in the appropriate sections for each study. Our approach to assess strengths of claims is
to first analyse the data without factoring it according to the data characteristic we wish to evaluate,
and then assessing whether potentially significant observations are likely false positives by analysing
answers with factored groups.

Self-reported confidence will be presented as stacked bar charts, with each coloured stack element
presenting proportions of answers according to factors, as well as the differences of confidences
according to factors evaluated with the Dunn Test. The calculations of significance are listed in tables
6.5, 6.6 and 6.7.
Additionally, we assess the relationships between self-reported confidence and ability to perform
MwM , MO , MP and SC using violin plots.
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Study Input Question type p value p<0.05

Measurement trust according to question type 0 TRUE

Measurement trust according to FOCUS MwM 2.20E-16 TRUE
Measurement trust according to FOCUS MO 2.20E-16 TRUE
Measurement trust according to FOCUS MP 0.7654 FALSE
Measurement trust according to FOCUS SC 0.006992 TRUE

Measurement trust according to MASK COMPLEXITY MwM 0.194 FALSE
Measurement trust according to MASK COMPLEXITY MO 0.523 FALSE
Measurement trust according to MASK COMPLEXITY MP 0 TRUE
Measurement trust according to MASK COMPLEXITY SC 0.43 FALSE

Measurement trust according to DATA COMPLEXITY MwM 0.172 FALSE
Measurement trust according to DATA COMPLEXITY MO 0.039 TRUE
Measurement trust according to DATA COMPLEXITY MP 0.808 FALSE
Measurement trust according to DATA COMPLEXITY SC 0.56 FALSE

Distractor trust according to Distractor MwM 0.34 FALSE
Distractor trust according to Distractor MO 0.711 FALSE
Distractor trust according to Distractor MP 0.006 TRUE
Distractor trust according to Distractor SC 0.015 TRUE

Scaling trust according to Scaling MwM 0.113 FALSE
Scaling trust according to Scaling MO 0.042 TRUE
Scaling trust according to Scaling MP 0.18 FALSE
Scaling trust according to Scaling SC 0.997 FALSE

Table 6.5 The results of the Kruskal-Wallis tests to assess significance of factors over self-reported
confidence.
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Data transformation for results analysis

In this section, we discuss the process to transform the data resulting from the studies and generate
visualizations that help researchers for their analysis. This section is specific to our studies structure,
but constitutes an example for potential future researchers considering the best approach to evaluate
study results of their own. Our approach is strongly influenced by the works of Heer et al. [100]
and Pena-Araya et al. [195]. Our approach is based on the display of 95% confidence intervals
to analyse distributions of answers. Two calculations are used to produce the confidence intervals.
According to whether the question requests participants to provide a numerical answer or a binary
answer, the confidence intervals calculate either differences between answers from participants to
baselines priorly calculated or their error rate [188]. The choice to calculate differences between
numerical answers and baselines was due to the fact we could not expect participants to provide the
actual correct value precisely, and thus our approach differs on this calculation compared to error
rate. This approach is often used for evaluating measurements, e.g. answering time [195, 100], blood
pressure [7]. The results are returned as CSV files from the Qualtrics website. Each variation of the
study is its own Qualtrics study, e.g. the studies with and without the distractors result in two different
studies and thus two different CSV files. For each file, we filter the answers from participants who
failed to answer correctly the questions we set up in the introduction to assess their understanding of
the visualizations displayed. The Puppeteer code that was run to generate the stimuli also generates a
JSON file in which, for each image, important information about it is stored, e.g. the focus of the
question, the complexity of the elements displayed or the baselines of the questions asked. Using
that JSON file, we use a Node.js code we wrote in which the questions are transformed into a table
in which each set of answers to a stimulus are associated together with the information of the data
presented in the stimuli, i.e. the answers to the questions A1, A2, A3 and B, the self-reported trust
levels, and information such as complexity of the data displayed or baselines and differences between
answers and baselines. The data are then aggregated accordingly, with a new column indicating their
group, e.g. for the Scaling study, a "scaling" column is added to indicate for each stimulus the scaling
of the visualizations.
It’s important to note that we implemented an additional filter for the results. First analysis of results
indicated some occurrences of answers which seemed unlikely if participants were focusing and
understanding what was asked of them, e.g. participants finishing the studies drastically faster than
the average, always reporting confidence in their answers as either 0 or 5 over every single of their
answers, or providing numerical answers which are not possible. We used the Prolific messaging
system to discuss with participants who provided these odd answers. The ones who answered often
wrote messages with multiple typos, or even admitted a poor understanding of what was asked of
them, or simply of the English language. We discuss the implications of these observations in section
6.4.4.
We thus generated an R code that filters out answers from participants who constantly reported a
confidence of 0 or 5, and those who provided answers which indicated misunderstanding of the
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sentences or visualizations presented to them. The R code then generates, for the filtered data,
bootstraps to produce results graphs to help us analyse the answers. The code is set with a series
of functions that split the results by factoring according to the categories. The code allows for any
organization of factoring, but we noticed that splitting the data too many times resulted in difficulties
to compare confidence intervals. To simplify the analysis of the results, we calculate differences of
confidence intervals and indicate with red dots juxtaposed the cases for which the differences are
statistically significant.
Additionally, to ensure nuanced analysis of results, we use Violin plots [109] to display the distribution
of the differences between provided responses and baselines.

6.5 The Distractor Study

6.5.1 Study motivation and structure

Within the scope of the studies we ran, each task requires only one of the visualizations shown in
the composite graph to be consulted. The implications being that instead of considering the A-ATS
Mask as an aggregated entity, it could be valid to consider evaluations made with A-AT Masks and
A-S Masks. Our design choice is unorthodox and originates from the need to use a common visual
structure, such a visualization composite graph, for tasks of varying complexity to achieve ecological
validly through realistic stimuli and to ensure that results are comparable across a range of studies.
The elements of the composite graph that are not required for the participants to perform elementary
tasks may act as distractors. We communicate their presence or not according to the distractor status:
hidden (h) or normal (n).

Fig. 6.14 The workflow of the distractor study. Participants follow the same introduction, explaining
to them the structure of the study. First, they are split into two groups. Stimuli with the full composite
graph is presented to the first group, i.e. with the distractor status being normal (n), and stimuli with
the distractors hidden (h) is presented to the second group. The data complexity, defined in Fig. 6.15
varies the same way for the two groups of participants (letters E, M and H indicate the categorization
of the types of data). The arrows indicate the combination of combinations of data complexity, i.e.
for WHAT_Qn, WHAT_Ql and WHERE respectively, EEE, EHE, MMM, HEE, HHH, for all three
FOCI . For each factor combination, there are three variations of mask complexity, labelled Easy,

Medium and Hard.
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Qualitative studies set to assess performances in complex tasks very often display composite
graphs of visualizations and additionally some studies are set by having participants interact with
prototype software that allows them to vary the information presented to them [279, 80, 115, 19].
Another reason for the Distractor study was our intent to make a composite graph similar to what
would be encountered in professional software, i.e. realistic. To achieve this, the stimuli presented to
participants in our studies has to look as if it were records from real-life events, and that the composite
graph looked similar to some encountered in the real world. We designed the SFNCS so that it could
be used for the set up of complex studies, with tasks that are complex and require interactions with
prototype software that researchers intend to evaluate. While interactions are not within the scope of
this thesis, we expect that future work using the SFNCS will evaluate complex tasks that require them.

Fig. 6.15 The structure of the Distractor study. The categories vary according to data complexity,
focus of the questions, and complexity of mask applied. We colour the data complexities used to
generate stimuli presented to the participants of the Distractor study. The colours loosely indicate
DATA COMPLEXITY used to generate the stimuli, with green indicating relatively Easy complexity,

orange indicating Medium complexity, and red Hard complexity.

Thus, we set the Distractor study as a means of assessing the differences in performance between
participants with or without the additional (irrelevant) information in the composite graph when
performing synoptic comparative tasks. The results of the Distractor study will help us to answer the
two following research questions that are intended to validate the results of our more comprehensive
assessment of synoptic comparative tasks :

• Research question 3.5: How does the display of additional information that does not contribute
to task completion impact the ability to correctly conduct synoptic comparative tasks within
multivariate spatio-temporal data analysis?

• Research question 3.6: How does the display of additional information that does not contribute
to task completion impact self-reported trust for conducting synoptic comparative tasks within
multivariate spatio-temporal data analysis?

We illustrate the study structure in figures 6.15 and 6.14. The studies were set to compare between
the group with information that does not contribute to task completion and the one composed solely of
the necessary information. The objective of the study was not to go into details of each combination of
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categories, but rather to discuss whether observed differences in performance between the two groups
were significant. Did the distracting information, that provides a realistic stimulus for ecological
validity, have an effect on elementary synoptic comparative tasks?

6.5.2 Results analysis

The Distractor study focuses on the impact of additional information that does not contribute to task
completion. In line with the processes outlined in section 6.4.4, we rejected 40% of responses as
participants failed the Introduction Test (TI). This large proportion of rejection for TI forced us not to
filter out participants who failed the rigorous test (RT) to allow us to analyse the results.

The means of results according to the factors are illustrated in table 6.8.

study factor1 factor2 factor3 responses MwM MO MP SC (mean correctB) SC (error rate) responses (neither) SC (neither mean correctB) SC (neither error rate) str
d 237.00 9.72 9.67 5.56 0.39 0.61 175.00 0.53 0.47
d distractor 117.00 8.53 9.91 6.28 0.36 0.64 87.00 0.48 0.52 h
d distractor 120.00 10.89 9.43 4.86 0.42 0.58 88.00 0.57 0.43 n
d distractor FOCUS 39.00 8.68 7.11 5.26 0.36 0.64 35.00 0.40 0.60 h-WHAT_Ql
d distractor FOCUS 39.00 7.78 7.54 6.28 0.44 0.56 30.00 0.57 0.43 h-WHAT_Qn
d distractor FOCUS 39.00 9.13 15.09 7.31 0.28 0.72 22.00 0.50 0.50 h-WHERE
d distractor FOCUS 42.00 12.90 6.41 4.17 0.38 0.62 32.00 0.50 0.50 n-WHAT_Ql
d distractor FOCUS 42.00 9.86 8.57 5.16 0.52 0.48 33.00 0.67 0.33 n-WHAT_Qn
d distractor FOCUS 36.00 9.75 13.97 5.30 0.33 0.67 23.00 0.52 0.48 n-WHERE
d distractor MASK COMPLEXITY 38.00 8.80 7.73 5.84 0.26 0.74 24.00 0.42 0.58 h-easy
d distractor MASK COMPLEXITY 38.00 7.74 11.12 8.25 0.32 0.68 32.00 0.38 0.63 h-medium
d distractor MASK COMPLEXITY 41.00 9.01 10.81 4.87 0.49 0.51 31.00 0.65 0.35 h-hard
d distractor MASK COMPLEXITY 40.00 11.03 11.71 3.38 0.50 0.50 27.00 0.74 0.26 n-easy
d distractor MASK COMPLEXITY 40.00 11.00 6.53 6.23 0.35 0.65 29.00 0.48 0.52 n-medium
d distractor MASK COMPLEXITY 40.00 10.64 10.06 4.97 0.40 0.60 32.00 0.50 0.50 n-hard
d distractor FOCUS MASK COMPLEXITY 12.00 11.55 4.66 6.31 0.17 0.83 8.00 0.25 0.75 h-WHAT_Ql-easy
d distractor FOCUS MASK COMPLEXITY 13.00 3.87 6.37 5.37 0.31 0.69 13.00 0.31 0.69 h-WHAT_Ql-medium
d distractor FOCUS MASK COMPLEXITY 14.00 10.68 9.89 4.25 0.57 0.43 14.00 0.57 0.43 h-WHAT_Ql-hard
d distractor FOCUS MASK COMPLEXITY 14.00 5.78 4.85 4.43 0.36 0.64 10.00 0.50 0.50 h-WHAT_Qn-easy
d distractor FOCUS MASK COMPLEXITY 12.00 11.20 11.85 10.77 0.50 0.50 11.00 0.55 0.45 h-WHAT_Qn-medium
d distractor FOCUS MASK COMPLEXITY 13.00 6.78 6.46 4.12 0.46 0.54 9.00 0.67 0.33 h-WHAT_Qn-hard
d distractor FOCUS MASK COMPLEXITY 12.00 9.56 14.16 7.00 0.25 0.75 6.00 0.50 0.50 h-WHERE-easy
d distractor FOCUS MASK COMPLEXITY 13.00 8.42 15.20 8.80 0.15 0.85 8.00 0.25 0.75 h-WHERE-medium
d distractor FOCUS MASK COMPLEXITY 14.00 9.41 15.77 6.19 0.43 0.57 8.00 0.75 0.25 h-WHERE-hard
d distractor FOCUS MASK COMPLEXITY 13.00 10.72 7.71 2.86 0.62 0.38 8.00 1.00 0.00 n-WHAT_Ql-easy
d distractor FOCUS MASK COMPLEXITY 15.00 14.63 2.97 6.10 0.20 0.80 13.00 0.23 0.77 n-WHAT_Ql-medium
d distractor FOCUS MASK COMPLEXITY 14.00 13.07 8.88 3.32 0.36 0.64 11.00 0.45 0.55 n-WHAT_Ql-hard
d distractor FOCUS MASK COMPLEXITY 14.00 12.81 10.65 2.67 0.50 0.50 11.00 0.64 0.36 n-WHAT_Qn-easy
d distractor FOCUS MASK COMPLEXITY 13.00 6.66 5.35 6.10 0.62 0.38 10.00 0.80 0.20 n-WHAT_Qn-medium
d distractor FOCUS MASK COMPLEXITY 15.00 9.88 9.42 6.67 0.47 0.53 12.00 0.58 0.42 n-WHAT_Qn-hard
d distractor FOCUS MASK COMPLEXITY 13.00 9.43 16.85 4.65 0.38 0.62 8.00 0.63 0.38 n-WHERE-easy
d distractor FOCUS MASK COMPLEXITY 12.00 11.17 12.25 6.52 0.25 0.75 6.00 0.50 0.50 n-WHERE-medium
d distractor FOCUS MASK COMPLEXITY 11.00 8.58 12.45 4.75 0.36 0.64 9.00 0.44 0.56 n-WHERE-hard
d distractor FOCUS DATA COMPLEXITY 13.00 9.28 4.06 5.38 0.31 0.69 12.00 0.33 0.67 h-WHAT_Ql-E
d distractor FOCUS DATA COMPLEXITY 15.00 6.48 3.90 5.02 0.27 0.73 12.00 0.33 0.67 h-WHAT_Ql-M
d distractor FOCUS DATA COMPLEXITY 11.00 10.96 15.09 5.45 0.55 0.45 11.00 0.55 0.45 h-WHAT_Ql-H
d distractor FOCUS DATA COMPLEXITY 17.00 7.54 7.56 9.64 0.53 0.47 14.00 0.64 0.36 h-WHAT_Qn-E
d distractor FOCUS DATA COMPLEXITY 7.00 12.64 13.86 2.69 0.29 0.71 5.00 0.40 0.60 h-WHAT_Qn-M
d distractor FOCUS DATA COMPLEXITY 15.00 5.79 4.57 4.14 0.40 0.60 11.00 0.55 0.45 h-WHAT_Qn-H
d distractor FOCUS DATA COMPLEXITY 22.00 6.11 13.88 6.59 0.45 0.55 13.00 0.77 0.23 h-WHERE-E
d distractor FOCUS DATA COMPLEXITY 8.00 18.61 20.36 7.52 0.13 0.88 6.00 0.17 0.83 h-WHERE-M
d distractor FOCUS DATA COMPLEXITY 9.00 8.06 13.35 8.89 0.00 1.00 3.00 0.00 1.00 h-WHERE-H
d distractor FOCUS DATA COMPLEXITY 14.00 19.50 5.68 3.54 0.43 0.57 12.00 0.50 0.50 n-WHAT_Ql-E
d distractor FOCUS DATA COMPLEXITY 15.00 5.94 3.70 4.00 0.40 0.60 10.00 0.60 0.40 n-WHAT_Ql-M
d distractor FOCUS DATA COMPLEXITY 13.00 13.83 10.32 5.05 0.31 0.69 10.00 0.40 0.60 n-WHAT_Ql-H
d distractor FOCUS DATA COMPLEXITY 19.00 6.49 7.20 6.63 0.58 0.42 16.00 0.69 0.31 n-WHAT_Qn-E
d distractor FOCUS DATA COMPLEXITY 6.00 20.35 17.16 3.51 0.17 0.83 4.00 0.25 0.75 n-WHAT_Qn-M
d distractor FOCUS DATA COMPLEXITY 17.00 9.93 7.07 4.10 0.59 0.41 13.00 0.77 0.23 n-WHAT_Qn-H
d distractor FOCUS DATA COMPLEXITY 20.00 5.95 12.71 3.39 0.45 0.55 13.00 0.69 0.31 n-WHERE-E
d distractor FOCUS DATA COMPLEXITY 6.00 13.14 15.05 8.94 0.00 1.00 4.00 0.00 1.00 n-WHERE-M
d distractor FOCUS DATA COMPLEXITY 10.00 15.32 15.84 6.94 0.30 0.70 6.00 0.50 0.50 n-WHERE-H

Table 6.8 Results summary for the Distractor study. The table indicates the absolute difference
between responses from participants and the baselines, according to factors we varied. The columns
on the left indicate the factors and the ones on the right indicate the detail of the factored selections,
e.g. "h-WHERE-medium" indicates responses where distractors were hidden, the FOCUS was
WHERE, and the MASK COMPLEXITY was medium. The columns with "neither" in their titles
discuss the results once responses for which participants answered "Neither agree nor disagree" are
filtered.

We list notes in the table 6.4 and use its indices to refer to them, but focus our discussion on our
interpretation of these notes.
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Numerical questions: Mean with Mask ( MwM ), Overall Mean ( MO ), Mask Proportion ( MP )

The overall results for the Distractor study are displayed in Fig. 6.16, and results factored according
to focus and Mask are displayed in figures 6.17 and 6.18.

Fig. 6.16 The overall results (all FOCI , all DATA COMPLEXITY and all MASK COMPLEXITY )
for MwM , MO and MP the Distractor study. The left icons indicate the variant: the top left icon
indicate that graphical elements not required to perform the tasks are hidden; and the bottom left icon
indicates all graphical elements are displayed - some are distractors in this full composite graph.

Fig. 6.17 The MwM , MO and MP answers factored according to FOCUS . We note occurrences of
significant differences between display or not of distractor for MO and MP when the FOCUS is
WHERE.
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Fig. 6.18 The MwM , MO and MP answers factored according to MASK COMPLEXITY .
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We report in index 0 of the table 6.4, a doubt about whether MO can be influenced by the display
of elements that are not necessary for the completion of the task. The difference is significant in
Fig. 6.18 when Mask is set to Medium. We notice in Fig. 6.19 that as MO is factored by both focus
and Mask, the difference of performance for MO is not significant in this case, indicating the effect
doesn’t show a consistent pattern across factors. This indicates to us that the previous observations
were likely false positive. This leads us to conclude that Mask has no significant effect over the ability
to perform MwM , MO and MP when results are organized according to presence of elements not
necessary to perform the tasks.
Fig. 6.17 indicates that both MO and MP are significantly poorer in the distractor condition for
WHERE tasks. Once the results are factored by both FOCUS and the DATA COMPLEXITY , the
claim is no longer true for MO , and only true for the factor WHERE Easy for MP . This leads
us to conclude that previous observations were likely false positive, and that we do not have strong
evidence that the focus has significant effects on the ability to perform MwM , MO or MP when
results are organized according to the presence of elements not necessary to perform the tasks - the
composite graph distractors.
We see no strong evidence that the distractors are having widespread or systematic effects that we
can explain, and therefore speculate that the significant differences between the two conditions are
spurious false positives.

Likert question: Stability Comparison ( SC )

We observe in Fig. 6.21 that performance for Stability Comparison ( SC ) is fairly poor, independent
on distractor condition. As reported in index 2 of table 6.4 and illustrated in Fig. 6.23, performances
for SC are significantly poorer when the elements which are not necessary for the completion of
the task are displayed and the complexity of the Mask is set to Easy. We notice that while not
displaying significant differences, performances for SC are not following the same order according to
whether the Mask is set to Medium or Hard. We notice that both when the Mask is Easy and Medium,
participants with elements not necessary performed less well, but the opposite occurred with a Hard
Mask. This statement is supported by the analysis of the SC answers as displayed in Fig. 6.22.
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Fig. 6.21 The error rate for SC of the Distractor study with presence of elements not necessary to
perform the task (distractors) as the variant.

Analysis of the SC when results are factored by both focus and the MASK COMPLEXITY , as
displayed in Fig. 6.24. indicate that this trend is not global for each case where the Mask is set to
Easy, but rather a unique case where the focus is WHAT_Ql and the Mask is Easy. We thus conclude
that this difference is a false positive.
Note that Fig. 6.25, which displays error rates for SC , factored by both focus and DATA COM-
PLEXITY , does not contain information that strongly changes our conclusions. It does show very
narrow confidence intervals for both cases of focus WHERE Medium and WHERE Hard. This is an
artefact of all our answers being incorrect for these groups. Due to the low number of answers we
have gathered for these groups, we do not consider these observations as valid for the interpretations
of the results.

Fig. 6.22 The error rate for SC with presence of elements not necessary to perform the task as the
variant and FOCUS as the factor.
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Fig. 6.23 The error rate for SC with presence of elements not necessary to perform the task as the
variant and MASK COMPLEXITY as the factor.

Fig. 6.24 The error rate for SC with presence of elements not necessary to perform the task as the
variant and both FOCUS and MASK COMPLEXITY as the factor.
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Fig. 6.25 The error rate for SC with presence of elements not necessary to perform the task as the
variant and both focus and DATA COMPLEXITY as the factor.

Self-reported confidence

The bar charts in Fig. 6.26 indicate, for questions MwM , MO , MP and SC , self-reported
confidence, factored by the distractor status: hidden (h) or normal (n).
Differences in self-reported confidence between the two groups for questions MwM and MO are
not significant, indicating the presence of elements not necessary does not affect perceived ability
to perform the task. For the question MP the Dunn test indicates that the difference is significant
between the two groups. The mean self-reported confidence for graphs without elements not necessary
to perform the task is 3.02 against 3.47 when those elements are displayed. We can thus claim that
participants are more confident for MP when elements that are not necessary are displayed. In
the composite graphs presented to participants, the Masks are displayed both over the WHAT_Ql
and WHAT_Qn views, as well as indicated by the trajectory being coloured accordingly. We thus
consider that this result could potentially indicate that the repetition of the Mask information reinforces
participants’ trust in their answer.
Additionally, the Dunn test between the two groups is significant for the SC question. The means of
self-reported confidence are 2.84 for D(without) and 3.33 for D(within). As this effect is light and
we are unable to consider an explanation for it, we consider that this is observation is likely a false
positive.
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Fig. 6.26 The bar charts labelled as hidden indicate the reported self-reported trust according to
question when there is no display of attributes which are not necessary to perform the task. The bar
charts labelled normal indicate the self-reported trust according to question when there are distractors
drawn. Bars are coloured from yellow to red, with 0 indicating no confidence at all in their answer
and 5 indicating absolute confidence in their answer.

Conclusion

We verified whether characteristics of potential significance without factoring results presented the
same significance once factored, for MwM , MO , MP and SC . No case of potentially significant
characteristic was present when comparing different numbers of factors. This suggests that the
characteristics with a significant impact over performances were likely false positives, the chances of
our highly factored analysis returning these being high given the 5% significance levels used in our
testing and the lack of any post-hoc correction to account for family effects. From this we conclude
that there is no evidence that the presence of graphs which are not necessary to answer the questions
hinders performances.
Our analysis of the self-reported confidences in participants answer did not indicate significant differ-
ences according to whether participants were presented elements not necessary to perform the task or
not.
This is an interesting result, as it reinforces the validity to set up one visualization system with
composite graphs to assess different tasks. Furthermore, with the SFNCS, composite graphs can
be characterized, and we suspect that this approach can facilitate comparisons of composition of
graphs for tasks which require to make implicit connections between elements displayed in different
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visualizations.

These results ensure that the presence of distractors does not hinder performances. Thus, these
results reinforce the validity of previous qualitative studies in which participants had, as part of the
domain specific activities evaluated, to perform comparative synoptic tasks with systems comprised
of a dashboard of visualizations, e.g. [20, 11, 223].
The analysis of the results thus gave us strong evidence to claim:

• Presence of the distractors displayed does not modify significantly ability to perform MwM ,
MO , MP , or SC .

• Presence of the distractors increases self-reported confidence for MP .
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6.6 The Scaling study

6.6.1 Study motivation and structure

As we designed the visualization to assess the A-ATS Mask, specific efforts were made to balance out
external validity, i.e. make the composite graph look real, and internal validity, i.e. allow tasks with
different foci to be compared without confounds. Comparing ability to perform synoptic comparative
tasks within multivariate spatio-temporal data analysis according to different foci requires stimuli to
be presented for each task with enough space allocated to do so. According to the focus, the visual
space necessary may differ, however.

Fig. 6.27 The workflow of the Scaling study. Participants are split into three groups. They follow the
same introduction, explaining to them the structure of the study. Participants are split into three groups.
They presented with a series of nine questions with data complexity varying as defined in Fig. 6.28.
According to the group they are assigned to, the size allocated for the display of the quantitative and
qualitative attributes vary according to the group, being either 300, 450 or 600 pixels wide. The data
complexity, defined in Fig. 6.28 varies the same way for the two groups of participants (letters E, M
and H indicate the categorization of the types of data). For each factor combination, there are three
variations of mask complexity, labelled Easy, Medium and Hard. The arrows indicate the combination
of combinations of data complexity, i.e. for WHAT_Qn, WHAT_Ql and WHERE respectively, EEE,
EHE, MMM, HEE, HHH, for all the FOCI . Note that there are no questions with a WHERE focus,
as this aspect is evaluated in other studies and not influenced by the scaling of the temporal axis in the
quantitative and qualitative attributes displays.
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Fig. 6.28 The structure of the Scaling study. The categories vary according to DATA COMPLEXITY ,
FOCUS , and MASK COMPLEXITY . We colour the data complexities used to generate stimuli

presented to the participants of the Scaling study.

There are still unanswered questions concerning the impact of screen size and interaction methods
over performances of visualization tasks and understanding of information communicated [187, 134].
Our intent for the Scaling study is to evaluate for a certain range of potential scaling combinations
whether they meaningfully impact ability to perform synoptic comparative tasks. The set of studies
presented in this thesis are all run on computers, i.e. no smartphones and no pads. This sets certain
expectations concerning screen size available that can be used for the set up of the studies [137].
The choices made for the set up of the composite graph presented to participants are motivated by
a will to present a design similar to the Time Mask [20, 11] and the subjective impression that the
view is ’good enough’ to allow participants to understand the information presented to them. Once
again, our confidence in this was reinforced by small informal studies with convenience samples
in which participants answered elementary questions, e.g. ability to detect the number of turns for
trajectories or identification of direction of trajectories, finding the maximal value of a quantitative
attribute displayed, or the number of variations of status of a qualitative attribute.
Designing the composite graph we would present to participants, we had to consider whether some
constraints had to be respected. One constraint for the studies we set up was the usage of the map
used as a background from the data generated for the IEEE VAST 2014 challenge. We justified
the selection of this data set, and by extension this background map in section 6.3. Selecting the
visual space allocated to display the map background was based on consideration about screen size
participants were likely to have when participating in our studies [175] and how to set up a composite
graph with elements sharing the allocated space with each element being allocated enough space to
perform the task according to the focus. We selected a space of 500 pixels of height, resulting in 686
pixels of width. We did not modify the data set of trajectories generated for the IEEE VAST 2014
challenge, to ensure we did not alter its validity.
To guarantee internal validity, participants were provided the same tools to answer questions no matter
the focus, i.e. three sliders ranging from 0 to 100 for the MwM , MO and MP questions, as well as a
set of answers to express their opinion for the SC question. This required questions with a WHERE
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focus to be presented on a map background at a scale that would result in our baselines ranging from
0 to 100. Considerations of how long this scale could be with our set of trajectories set constraints for
our design. To ensure the baselines for questions with a WHERE focus would range from 0 to 100,
we thus added a scale ranging from 0 to 100 with a width of 300 pixels.
The length of this axis thus sets potential values that could be used for the scaling of the axes of the
quantitative and qualitative attributes displayed. The first approach considered was for all axes of the
composite graph to share the same length, i.e. 300 pixels here. This approach would thus result in
the graphs presenting quantitative and qualitative attributes to also have a width of 300 pixels. While
consistent, this approach does not use the screen width as one would expect from a realistic software,
i.e. the screen area is likely to have a relatively large space that isn’t used to help the participant
perform the task, while readability of the attributes might be hindered by that relatively small width.
Alternatively, we considered setting the axes for the quantitative and qualitative attributes to be double
the size of the one of the geographical one, i.e. 600 pixels here. This approach produces the largest
space available for the display of the quantitative and qualitative attributes. It is possible that this
approach would result in the highest readability, but we argue might be ’too much’ space, i.e. take
more space than necessary to perform the tasks.
The third approach we considered was motivated by the aim to set up the visualizations with ’enough’
space, i.e. wide enough to perform the task. We are aware that this notion is subjective and requires
tests to ensure such a claim to be made confidently. We adopted a space that is in line with these
expectations with a ratio of 1.5 times the axis of the geographical graph, i.e. 450 pixels. This resulted
in a ratio is not uncommon in composite graphics that involve time series [? ].
Accounting for the effects of the width allocated to perform the tasks with a WHAT_Qn and WHAT_Ql
focus allows us to assess the validity of the other studies and reinforce our trust in the reusability
of the system for future work. We thus set up the Scaling study, which compares ability to perform
synoptic comparative tasks within multivariate temporal data analysis and self-reported confidence
over ability to perform such tasks, according to the width set to display the graphs.

The set up of this study is made to help us answer the following research questions:

• Research question 3.3: How does the scaling of the axis displaying time variations impact
the ability to correctly conduct synoptic comparative tasks within multivariate temporal data
analysis?

• Research question 3.4: How does the scaling of the axis displaying time variations impact
self-reported trust for conducting synoptic comparative tasks within multivariate temporal data
analysis?

The structure of the scaling study is illustrated in figures 6.28 and 6.27.
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6.6.2 Results analysis

The Scaling study focuses on the impact of varying the width allocated to the display of the WHAT_Ql
and WHAT_Qn attributes. As mentioned in section 6.4.4, data quality implied a high amount of
answers is filtered. The analysis of the answers produced for the Scaling study is done using data of
participants who passed the introduction test (TI). 40% of responses were rejected as a result.
We list observations in the table 6.4 and use its indices to refer to them, but focus our discussion on
our interpretation, which follows these observations. We discuss the different variants of width by
considering their ratio, i.e. 300 px is a ratio of 1, 450 pixels is a ratio of 1.5 and 600 pixels is a ratio
of 2, e.g. we refer to ’scaling 0’ instead of ’cases with a width of 300 pixels assigned for width’ for
readability.

The means of the results according to the factors are illustrated in table 6.9.

study factor1 factor2 factor3 responses MwM MO MP SC (mean correctB) SC (error rate) responses (neither) SC (neither mean correctB) SC (neither error rate) str
s 171.00 8.08 6.00 6.02 0.34 0.66 134.00 0.43 0.57
s scaling 54.00 5.38 4.86 6.01 0.33 0.67 44.00 0.41 0.59 0.00
s scaling 63.00 5.15 5.05 4.60 0.38 0.62 55.00 0.44 0.56 1.00
s scaling 54.00 14.21 8.24 7.70 0.30 0.70 35.00 0.46 0.54 2.00
s scaling FOCUS 29.00 3.47 5.02 4.54 0.38 0.62 24.00 0.46 0.54 0-WHAT_Ql
s scaling FOCUS 25.00 7.59 4.66 7.71 0.28 0.72 20.00 0.35 0.65 0-WHAT_Qn
s scaling FOCUS 31.00 5.65 5.73 5.28 0.39 0.61 27.00 0.44 0.56 1-WHAT_Ql
s scaling FOCUS 32.00 4.67 4.40 3.93 0.38 0.63 28.00 0.43 0.57 1-WHAT_Qn
s scaling FOCUS 29.00 18.15 8.23 5.32 0.31 0.69 21.00 0.43 0.57 2-WHAT_Ql
s scaling FOCUS 25.00 9.64 8.25 10.46 0.28 0.72 14.00 0.50 0.50 2-WHAT_Qn
s scaling MASK COMPLEXITY 18.00 5.95 2.81 3.39 0.33 0.67 15.00 0.40 0.60 0-easy
s scaling MASK COMPLEXITY 21.00 4.88 6.44 5.79 0.38 0.62 16.00 0.50 0.50 0-medium
s scaling MASK COMPLEXITY 15.00 5.38 5.10 9.45 0.27 0.73 13.00 0.31 0.69 0-hard
s scaling MASK COMPLEXITY 26.00 3.43 4.63 5.27 0.42 0.58 24.00 0.46 0.54 1-easy
s scaling MASK COMPLEXITY 18.00 5.25 7.08 2.56 0.50 0.50 17.00 0.53 0.47 1-medium
s scaling MASK COMPLEXITY 19.00 7.42 3.72 5.60 0.21 0.79 14.00 0.29 0.71 1-hard
s scaling MASK COMPLEXITY 19.00 16.13 8.36 8.14 0.32 0.68 13.00 0.46 0.54 2-easy
s scaling MASK COMPLEXITY 17.00 10.21 11.36 6.20 0.35 0.65 12.00 0.50 0.50 2-medium
s scaling MASK COMPLEXITY 18.00 15.96 5.17 8.64 0.22 0.78 10.00 0.40 0.60 2-hard
s scaling FOCUS MASK COMPLEXITY 9.00 1.57 1.63 2.32 0.56 0.44 8.00 0.63 0.38 0-WHAT_Ql-easy
s scaling FOCUS MASK COMPLEXITY 11.00 4.27 6.53 4.67 0.45 0.55 8.00 0.63 0.38 0-WHAT_Ql-medium
s scaling FOCUS MASK COMPLEXITY 9.00 4.39 6.58 6.60 0.11 0.89 8.00 0.13 0.88 0-WHAT_Ql-hard
s scaling FOCUS MASK COMPLEXITY 9.00 10.33 3.99 4.45 0.11 0.89 7.00 0.14 0.86 0-WHAT_Qn-easy
s scaling FOCUS MASK COMPLEXITY 10.00 5.55 6.34 7.02 0.30 0.70 8.00 0.38 0.63 0-WHAT_Qn-medium
s scaling FOCUS MASK COMPLEXITY 6.00 6.87 2.88 13.73 0.50 0.50 5.00 0.60 0.40 0-WHAT_Qn-hard
s scaling FOCUS MASK COMPLEXITY 16.00 3.25 5.04 6.93 0.50 0.50 16.00 0.50 0.50 1-WHAT_Ql-easy
s scaling FOCUS MASK COMPLEXITY 7.00 7.92 10.89 3.82 0.43 0.57 6.00 0.50 0.50 1-WHAT_Ql-medium
s scaling FOCUS MASK COMPLEXITY 8.00 8.47 2.58 3.27 0.13 0.88 5.00 0.20 0.80 1-WHAT_Ql-hard
s scaling FOCUS MASK COMPLEXITY 10.00 3.72 3.96 2.63 0.30 0.70 8.00 0.38 0.63 1-WHAT_Qn-easy
s scaling FOCUS MASK COMPLEXITY 11.00 3.55 4.65 1.76 0.55 0.45 11.00 0.55 0.45 1-WHAT_Qn-medium
s scaling FOCUS MASK COMPLEXITY 11.00 6.66 4.55 7.29 0.27 0.73 9.00 0.33 0.67 1-WHAT_Qn-hard
s scaling FOCUS MASK COMPLEXITY 10.00 22.74 7.85 4.89 0.30 0.70 6.00 0.50 0.50 2-WHAT_Ql-easy
s scaling FOCUS MASK COMPLEXITY 12.00 12.13 12.62 6.09 0.33 0.67 10.00 0.40 0.60 2-WHAT_Ql-medium
s scaling FOCUS MASK COMPLEXITY 7.00 21.91 1.26 4.60 0.29 0.71 5.00 0.40 0.60 2-WHAT_Ql-hard
s scaling FOCUS MASK COMPLEXITY 9.00 8.80 8.93 11.75 0.33 0.67 7.00 0.43 0.57 2-WHAT_Qn-easy
s scaling FOCUS MASK COMPLEXITY 5.00 5.60 8.33 6.45 0.40 0.60 2.00 1.00 0.00 2-WHAT_Qn-medium
s scaling FOCUS MASK COMPLEXITY 11.00 12.17 7.66 11.22 0.18 0.82 5.00 0.40 0.60 2-WHAT_Qn-hard
s scaling FOCUS DATA COMPLEXITY 9.00 4.98 6.66 7.15 0.33 0.67 7.00 0.43 0.57 0-WHAT_Ql-E
s scaling FOCUS DATA COMPLEXITY 14.00 3.04 2.60 2.63 0.50 0.50 12.00 0.58 0.42 0-WHAT_Ql-M
s scaling FOCUS DATA COMPLEXITY 6.00 2.22 8.22 5.08 0.17 0.83 5.00 0.20 0.80 0-WHAT_Ql-H
s scaling FOCUS DATA COMPLEXITY 12.00 4.52 5.18 10.17 0.33 0.67 10.00 0.40 0.60 0-WHAT_Qn-E
s scaling FOCUS DATA COMPLEXITY 6.00 15.31 4.50 4.18 0.17 0.83 5.00 0.20 0.80 0-WHAT_Qn-M
s scaling FOCUS DATA COMPLEXITY 7.00 6.22 3.92 6.50 0.29 0.71 5.00 0.40 0.60 0-WHAT_Qn-H
s scaling FOCUS DATA COMPLEXITY 15.00 6.87 4.56 7.86 0.47 0.53 13.00 0.54 0.46 1-WHAT_Ql-E
s scaling FOCUS DATA COMPLEXITY 12.00 4.58 3.36 3.04 0.33 0.67 11.00 0.36 0.64 1-WHAT_Ql-M
s scaling FOCUS DATA COMPLEXITY 4.00 4.29 17.19 2.36 0.25 0.75 3.00 0.33 0.67 1-WHAT_Ql-H
s scaling FOCUS DATA COMPLEXITY 14.00 3.30 4.43 3.07 0.50 0.50 11.00 0.64 0.36 1-WHAT_Qn-E
s scaling FOCUS DATA COMPLEXITY 6.00 8.05 3.83 2.46 0.33 0.67 6.00 0.33 0.67 1-WHAT_Qn-M
s scaling FOCUS DATA COMPLEXITY 12.00 4.59 4.66 5.67 0.25 0.75 11.00 0.27 0.73 1-WHAT_Qn-H
s scaling FOCUS DATA COMPLEXITY 9.00 25.04 0.82 4.43 0.22 0.78 6.00 0.33 0.67 2-WHAT_Ql-E
s scaling FOCUS DATA COMPLEXITY 13.00 11.32 11.36 6.43 0.23 0.77 9.00 0.33 0.67 2-WHAT_Ql-M
s scaling FOCUS DATA COMPLEXITY 7.00 21.98 11.95 4.41 0.57 0.43 6.00 0.67 0.33 2-WHAT_Ql-H
s scaling FOCUS DATA COMPLEXITY 10.00 6.01 4.96 9.52 0.30 0.70 7.00 0.43 0.57 2-WHAT_Qn-E
s scaling FOCUS DATA COMPLEXITY 7.00 19.43 12.15 13.27 0.29 0.71 4.00 0.50 0.50 2-WHAT_Qn-M
s scaling FOCUS DATA COMPLEXITY 8.00 5.60 8.97 9.15 0.25 0.75 3.00 0.67 0.33 2-WHAT_Qn-H

Table 6.9 Results summary for the Scaling study. The table indicates the absolute difference between
responses from participants and the baselines, according to factors we varied. The columns on
the left indicate the factors and the ones on the right indicate the detail of the factored selections,
e.g. "0-WHERE-medium" indicates responses where the scaling is indexed 0, i.e. 300 pixels, the
FOCUS was WHERE, and the MASK COMPLEXITY was medium. The columns with "neither"

in their titles discuss the results once responses for which participants answered "Neither agree nor
disagree" are filtered.
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Numerical questions: Mean with Mask ( MwM ), Overall Mean ( MO ), Mask Proportion ( MP )

We discuss the answers of questions MwM , MO and MP , which asked participants to provide
numbers as an answer in this section. We split the sets of observations according to characteristics of
the stimuli.

Fig. 6.29 The absolute errors for MwM , MO and MP with the variant being Scaling.

The overall results for the Scaling study are displayed in Fig. 6.29. We observe in Fig. 6.29
significant differences for Mean with Mask ( MwM ) according to scaling. Scaling 2 results in
significantly poorer performances for MwM , while scaling 0 and 1 are strongly similar. We also
observe that performances for Mask Proportion ( MP ) are significant better when scaling is 1.5
( MP 1).
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Fig. 6.30 The absolute errors for MwM , MO and MP with the variant being Scaling and the factor
being focus.

The results factored according to focus are illustrated in Fig. 6.30. Factoring according to focus,
the same trend is observed, with performance deteriorating as scaling increases ( MwM 2). Those
differences of performances are significant between scaling 1 and 2 for WHAT_Ql and 1.5 and 2 for
WHAT_Qn.
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Fig. 6.31 The absolute errors for MwM , MO and MP with the variant being Scaling and the factor
being MASK COMPLEXITY .

The ordering of performances for MwM is also noticeable when variants are factored according
to masks, as illustrated in Fig. 6.31. The trend is consistent and provides some evidence that perfor-
mance deteriorates as scaling increases. This observation should be nuanced, as differences are only
statistically significant (5%) between scaling 1 and 2 and 1.5 and 2, when the Mask is Hard. The
previous observation MP 1 about performances being significantly higher for scaling 1.5 is no longer
true except in the case where Mask is Medium.
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Fig. 6.32 The absolute errors for MwM , MO and MP with the variant being Scaling and the factors
being FOCUS and MASK COMPLEXITY .

Fig. 6.32 shows that MwM 2 is true when results are factored according to Focus and MASK
COMPLEXITY . We notice that significant differences of performance between each combination
of scaling with a WHAT_Ql focus and Mask Hard ( MO 1). This combination is unique due to
the previous statement and the observation that it presents a trend of performance inverse to most
MO results, them being either poorer as MO as scaling increases, or without strong trend. This leads

us to conclude that an unpredicted element of our study setup may result in a confounding factor. The
previous observation about MP 1 is once more contradicted, which leads us to conclude it was a false
positive. It is interesting to note that MO here indicates a strong trend, with accuracy being higher,
the lower the scaling, with the particular exception of WHAT_Qn and Mask Hard as a factor. This
leads us to think that Overall Mean varies accordingly to Scaling ( MO 2).

Fig. 6.33 The absolute errors for MwM , MO and MP with the variant being Scaling and the factors
being focus and its complexity.

Fig. 6.33 shows that MwM 2 is true when results are factored according to focus and its complex-
ity. The previous observation about MO 2 is here nuanced with the factor WHAT_Ql set to Easy. We
thus conclude that MO 2 is significant within a certain range of difficulties parameters.
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Likert question: Stability Comparison ( SC )

We discuss the answers of questions SC , which asked participants to indicate whether they agreed
with the description of stability in the data. We split the sets of observations according to characteris-
tics of the stimuli.

Fig. 6.34 The error rates for the SC of the scaling study. We note no significant difference of
performance according to the Scaling.

(a) The error rates for the SC of the scaling study factored by
FOCUS .

(b) The error rates for the SC of the scaling study factored by MASK
COMPLEXITY .

Table 6.10 We see no evidence that Scaling has an effect on the error rates when factored by
FOCUS (Qn|Ql) or MASK COMPLEXITY (Easy|Medium|Hard).
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Fig. 6.35 The error rates for the SC of the scaling study, with the scaling being the variant, factored
by both FOCUS and MASK COMPLEXITY .

Fig. 6.36 The error rates for the SC of the scaling study, with the scaling being the variant, factored
by both FOCUS and DATA COMPLEXITY .
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Note that we have very wide confidence intervals for the representation of the error rates, indicating
answers are low on both accuracy and precision, although this has to be nuanced with the relatively
low number of participants who passed the introduction test (TI). We noticed that performances for
SC seem to get poorer with scaling getting higher when the focus is WHAT_Ql and focus is Easy

and Medium, but answers with WHAT_Ql and focus is Hard follow an inverse relationship. We thus
consider that these observations are not strong enough to draw conclusions upon, at least for SC .

Self-reported confidence

We display the distribution of self-reported confidence in Fig. 6.37. For each question, we assess
whether different scaling results in significantly different levels of confidence using a Kruskal-Wallace
test for significance and a pot-hoc Dunn test to account for family-wise error and identify the
differences. The results of these tests are listed in table 6.7.
We did not have strong expectations concerning the impact of the horizontal scaling of the WHAT_Ql
and WHAT_Qn graphs. As discussed previously, our understanding of the impact of the space
allocated for a graph is dependent on the subjective notion that there is ’enough’ space allocated
for participants to confidently perform the tasks asked of them. We consider that this notion is
likely shared for both accuracy and confidence, although they may differ in values which define
the subjective thresholds, e.g. participants could theoretically be overconfident and claim a high
confidence with a certain graph size, while accuracy evaluations could indicate a higher graph size is
necessary to perform said task efficiently.
The visual analysis of thee bar charts seem to indicate differences between groups, particularly for
the group where the stimuli is 450 pixels wide. The Dunn tests indicate that the differences are not
statistically significant, except for the single case of question MP and scaling being either 450 pixels
wide and 600 pixels wide. This finding is not in line with others and is not easily explained, which
leads us to report it, but consider it likely that this is a false positive.
We thus conclude that there are no significant differences in self-reported confidence between groups
according to scaling for questions MwM , MO , MP and SC .
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Fig. 6.37 The figures are composed of bar charts indicating the reported self-reported trust according
to question when the stimuli are 300 pixels wide in figure when index of scaling is 0, 450 pixels in
figure when index of scaling is 1 and 600 pixels when index of scaling is 2. Each set of bar charts
indicates the self-reported trust in the following order: MwM , MO , MP and SC . Bars are coloured
from yellow to red, with 0 indicating no confidence at all in their answer and 5 indicating absolute
confidence in their answer.

Conclusion

We verified the impact of the width of the graphs set to display the WHAT_Qn and WHAT_Ql infor-
mation, through their scaling, over the performances and self-reported confidence of participants for
Mean with Mask ( MwM ), Mean Overall ( MO ), Mask Proportion ( MP ) and Stability Comparison
( SC ). As stated previously, the relatively low number of participants who passed the introduction test
(TI) requires some caution in interpreting our observations.
We noticed that performances for MwM were poorest with the widest space allocated for the graphs,
while it had little effect over performances for MO , MP and SC . Additionally, the variations of
performances noticed for MwM were not consistent as we factored the results according to the focus
of the questions or the MASK COMPLEXITY . We thus consider that the difference in performance
observed for MwM when the width is at its highest is likely a false positive.
We also conclude that performances for MO , MP and SC are not impacted by the scaling of the
WHAT_Ql and WHAT_Qn graphs, although the fairly low results of SC might simply indicate an
inability to perform the task as we set it for the studies, independently of scaling. This warrants further
investigation.
Our analysis of reported self-confidence indicates no significant difference according to the scaling
assigned to the graphs. In summary, Scaling (1.5) time series graphics performed no worse than
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Scaling(1.0) or Scaling (2.0) and that in some circumstances they may have been associated with
marginally improved performance. This supports the use of Scaling(1.5) for the time series graphics
used in the realistic composite graphs for the Measurement tests that follow.

The analysis of the impact of the Scaling factor over results let us claim tentatively that, for our
three selected Scaling values of 300, 450 and 600 pixels width allocated for the graphs of WHAT_Ql
and WHAT_Qn:

• MwM , MO , MP and SC are not impacted by the Scaling.

• Self-reported confidence is not significantly impacted by the Scaling selected.



6.7 The Measurement Study 172

6.7 The Measurement Study

6.7.1 Study motivation and structure

The Measurement study is the main study that we ran during this thesis. As discussed in section 5,
the novelty of the A-ATS Mask means that we lack knowledge about the strengths, weaknesses and
limitations that arise with this design. Informally, we could simply state that the motivation to run the
Measurement study originates from our impression that the time mask of Andrienko et al. [20, 11]
was promising, and that further design extensions seemed likely to be valuable.

Fig. 6.38 The workflow of the Measurement study. This study details more DATA COMPLEX-
ITY combinations and FOCI on their impact on effectiveness for performing synoptic comparative
tasks. For the Measurement study, all the DATA COMPLEXITY are generated. There are three
FOCI : WHAT_Qn, WHAT_Al, WHERE, for each combination of data complexity. The detail of the
data complexities are illustrated in Fig. 6.39.

Fig. 6.39 The structure of the study termed Measurement. The categories vary according to data
complexity, focus of the questions, and complexity of mask applied. We colour the data complexities
used to generate stimuli presented to the participants of the Measurement study. Additionally, for
each set of combinations, there are three MASK COMPLEXITY .

Due to the novelty of the design presented, the first studies to run would have to be limited
concerning the number of elements to show to the participants of the studies, i.e. we display a single
moving entity, a single quantitative attribute, a single qualitative attribute, and a single mask resulting
from a query.
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The study is configured to help us answer the following research questions:

• Research question 3.1: How does the visualization of conditions over time-space-attributes
support synoptic comparative tasks within multivariate spatio-temporal data analysis?

• Research question 3.2: How does the visualization of conditions over time-space-attributes
impact self-reported trust for conducting synoptic comparative tasks within multivariate spatio-
temporal data analysis?

The structure of the Measurement study is illustrated in figures 6.39 and 6.38.

6.7.2 Results analysis

The Measurement study was set to evaluate the impact of diverse factors over the performances and
self-reported confidence while performing Mean with Mask ( MwM ), Overall Mean ( MO ), Mask
Proportion ( MP ) and Stability Comparison ( SC ). As in the case of the Distractor and Judgment
studies (see section 6.4.4) a high proportion of respondents were omitted through the quality filter.
The analysis of the answers produced for the Measurement study is done using data from participants
who passed the introduction test (TI) and the rigorous test (RT).
The Measurement study was designed to assess the impact of the different Mask difficulties, the
different FOCI of the questions, and the variations of difficulties for each focus. Thus, unlike the
Scaling and Distractor studies, the Measurement studies assess different variants. We thus have graphs
to analyse absolute errors and error rates according to different FOCI , MASK COMPLEXITY , and
difficulties for each focus.

The list of of results according to factors can be found in table 6.11. For MwM , MO , MP , the
values are the means of the absolute differences between responses and baselines, and for SC the
values are, as listed in the table, either the mean or of responses being correct or the error rate.
The table lists both performances for SC with or without considering responses "Neither agree nor
disagree" as false. The ones who filter out these responses are indicated by the keyword "neither".

The following subsections split the results according to their answer method.

Numerical questions: Mean with Mask ( MwM ), Overall Mean ( MO ), Mask Proportion ( MP )

The results for the three tasks ( MwM , MO and MP , columns) factored by FOCUS are displayed
in Fig. 6.40.

• For Mean with Mask MwM (left), performance differs significantly according to FOCUS :
performance in WHERE tasks is inferior to both WHAT_Qn and WHAT_Ql.

• Mean Overall MO shows significant differences between all FOCI : WHAT_Ql performance
is significantly better than WHAT_Qn and WHERE, with WHAT_Qn performance signifi-
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study variant factor1 factor2 # responses MwM MO MP mean SC error rate SC log MwM log MO log MP #responses noNeither mean noNeither SC error rate noNeither SC str
m 585 10.93 9.25 15.15 0.37 0.63 2.82 2.49 3.42 432.00 0.50 0.50
m FOCUS 195 9.44 6.33 16.24 0.33 0.67 2.62 1.85 3.54 145.00 0.45 0.55 WHAT_Ql
m FOCUS 195 9.38 7.16 14.72 0.43 0.57 2.67 2.33 3.30 147.00 0.56 0.44 WHAT_Qn
m FOCUS 195 13.97 14.26 14.48 0.35 0.65 3.17 3.29 3.41 140.00 0.49 0.51 WHERE
m MASK COMPLEXITY 192 12.50 8.64 18.04 0.40 0.60 3.00 2.43 3.68 148.00 0.52 0.48 easy
m MASK COMPLEXITY 191 8.58 9.08 15.02 0.32 0.68 2.52 2.41 3.46 136.00 0.46 0.54 medium
m MASK COMPLEXITY 202 11.67 10.00 12.51 0.38 0.62 2.93 2.62 3.12 148.00 0.52 0.48 hard
m DATA COMPLEXITY 195 8.79 7.83 15.73 0.35 0.65 2.48 2.26 3.46 135.00 0.51 0.49 E
m DATA COMPLEXITY 195 13.10 10.93 15.03 0.37 0.63 3.16 2.65 3.36 147.00 0.49 0.51 M
m DATA COMPLEXITY 195 10.90 8.99 14.68 0.38 0.62 2.82 2.56 3.43 150.00 0.50 0.50 H
m FOCUS MASK COMPLEXITY 60 9.90 4.82 18.05 0.37 0.63 2.61 1.63 3.73 41.00 0.54 0.46 WHAT_Ql-easy
m FOCUS MASK COMPLEXITY 70 7.92 6.75 17.34 0.29 0.71 2.44 1.72 3.74 51.00 0.39 0.61 WHAT_Ql-medium
m FOCUS MASK COMPLEXITY 65 10.66 7.27 13.37 0.35 0.65 2.83 2.18 3.15 53.00 0.43 0.57 WHAT_Ql-hard
m FOCUS MASK COMPLEXITY 58 10.58 6.20 22.25 0.45 0.55 2.88 2.19 4.04 48.00 0.54 0.46 WHAT_Qn-easy
m FOCUS MASK COMPLEXITY 64 6.38 7.08 12.69 0.39 0.61 2.25 2.35 3.04 50.00 0.50 0.50 WHAT_Qn-medium
m FOCUS MASK COMPLEXITY 73 11.07 8.01 10.51 0.44 0.56 2.88 2.42 2.94 49.00 0.65 0.35 WHAT_Qn-hard
m FOCUS MASK COMPLEXITY 74 16.10 13.64 14.75 0.39 0.61 3.42 3.26 3.37 59.00 0.49 0.51 WHERE-easy
m FOCUS MASK COMPLEXITY 57 11.86 14.19 14.78 0.30 0.70 2.92 3.32 3.59 35.00 0.49 0.51 WHERE-medium
m FOCUS MASK COMPLEXITY 64 13.38 15.03 13.91 0.34 0.66 3.10 3.30 3.30 46.00 0.48 0.52 WHERE-hard
m FOCUS DATA COMPLEXITY 65 6.93 4.80 16.80 0.28 0.72 2.20 1.42 3.51 45.00 0.40 0.60 WHAT_Ql-E
m FOCUS DATA COMPLEXITY 65 10.60 8.22 15.99 0.38 0.62 2.85 2.08 3.51 48.00 0.52 0.48 WHAT_Ql-M
m FOCUS DATA COMPLEXITY 65 10.79 5.98 15.92 0.34 0.66 2.81 2.05 3.60 52.00 0.42 0.58 WHAT_Ql-H
m FOCUS DATA COMPLEXITY 65 8.89 5.98 15.25 0.38 0.62 2.53 2.13 3.43 45.00 0.56 0.44 WHAT_Qn-E
m FOCUS DATA COMPLEXITY 65 10.49 8.32 15.23 0.46 0.54 2.91 2.47 3.21 50.00 0.60 0.40 WHAT_Qn-M
m FOCUS DATA COMPLEXITY 65 8.77 7.20 13.68 0.43 0.57 2.58 2.38 3.26 52.00 0.54 0.46 WHAT_Qn-H
m FOCUS DATA COMPLEXITY 65 10.56 12.72 15.16 0.40 0.60 2.71 3.23 3.44 45.00 0.58 0.42 WHERE-E
m FOCUS DATA COMPLEXITY 65 18.21 16.26 13.87 0.26 0.74 3.73 3.39 3.37 49.00 0.35 0.65 WHERE-M
m FOCUS DATA COMPLEXITY 65 13.14 13.79 14.42 0.38 0.62 3.07 3.24 3.42 46.00 0.54 0.46 WHERE-H
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 21 7.46 6.90 23.92 0.33 0.67 2.15 1.58 4.13 14.00 0.50 0.50 WHAT_Ql-easy-E
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 16 12.55 2.30 13.56 0.44 0.56 2.83 1.25 3.28 11.00 0.64 0.36 WHAT_Ql-easy-M
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 23 10.29 4.69 15.81 0.35 0.65 2.88 1.95 3.68 16.00 0.50 0.50 WHAT_Ql-easy-H
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 24 4.72 1.50 14.74 0.33 0.67 1.88 1.11 3.48 18.00 0.44 0.56 WHAT_Ql-medium-E
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 26 9.49 13.69 19.43 0.31 0.69 2.73 2.43 3.78 17.00 0.47 0.53 WHAT_Ql-medium-M
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 20 9.72 4.02 17.76 0.20 0.80 2.73 1.53 3.99 16.00 0.25 0.75 WHAT_Ql-medium-H
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 20 9.03 6.54 11.79 0.15 0.85 2.63 1.61 2.89 13.00 0.23 0.77 WHAT_Ql-hard-E
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 23 10.51 6.15 13.79 0.43 0.57 3.00 2.26 3.36 20.00 0.50 0.50 WHAT_Ql-hard-M
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 22 12.28 9.12 14.37 0.45 0.55 2.82 2.62 3.17 20.00 0.50 0.50 WHAT_Ql-hard-H
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 22 8.63 6.04 22.67 0.45 0.55 2.62 2.19 4.08 18.00 0.56 0.44 WHAT_Qn-easy-E
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 19 9.37 5.63 24.46 0.47 0.53 2.83 2.19 4.19 15.00 0.60 0.40 WHAT_Qn-easy-M
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 17 14.44 7.04 19.25 0.41 0.59 3.26 2.18 3.82 15.00 0.47 0.53 WHAT_Qn-easy-H
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 21 4.68 4.21 13.64 0.38 0.62 2.05 1.82 3.30 15.00 0.53 0.47 WHAT_Qn-medium-E
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 16 10.46 10.13 10.98 0.56 0.44 2.88 2.78 2.56 14.00 0.64 0.36 WHAT_Qn-medium-M
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 27 5.29 7.49 12.96 0.30 0.70 2.03 2.51 3.12 21.00 0.38 0.62 WHAT_Qn-medium-H
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 22 13.16 7.60 9.36 0.32 0.68 2.90 2.38 2.91 12.00 0.58 0.42 WHAT_Qn-hard-E
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 30 11.22 9.06 11.65 0.40 0.60 2.97 2.48 2.94 21.00 0.57 0.43 WHAT_Qn-hard-M
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 21 8.65 6.94 10.10 0.62 0.38 2.73 2.39 2.99 16.00 0.81 0.19 WHAT_Qn-hard-H
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 23 12.03 13.98 18.32 0.39 0.61 3.11 3.35 3.71 16.00 0.56 0.44 WHERE-easy-E
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 30 20.06 13.35 12.47 0.37 0.63 3.76 3.23 3.13 25.00 0.44 0.56 WHERE-easy-M
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 21 14.90 13.68 14.07 0.43 0.57 3.29 3.20 3.32 18.00 0.50 0.50 WHERE-easy-H
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 20 8.86 13.67 15.37 0.45 0.55 2.44 3.26 3.54 13.00 0.69 0.31 WHERE-medium-E
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 18 13.64 13.56 14.88 0.17 0.83 3.43 3.19 3.59 12.00 0.25 0.75 WHERE-medium-M
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 19 13.33 15.35 14.05 0.26 0.74 2.94 3.51 3.65 10.00 0.50 0.50 WHERE-medium-H
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 22 10.57 10.54 11.65 0.36 0.64 2.55 3.07 3.06 16.00 0.50 0.50 WHERE-hard-E
m FOCUS MASK COMPLEXITY DATA COMPLEXITY 17 19.78 24.27 15.25 0.18 0.82 3.98 3.90 3.56 12.00 0.25 0.75 WHERE-hard-M

Table 6.11 Results summary for the Measurement study. The table indicates the absolute difference
between responses from participants and the baselines, according to factors we varied. In this table,
the factor most to the right is the variant. The columns on the left indicate the factors and the
ones on the right indicate the detail of the factored selections, e.g. "WHERE-medium-E" indicates
responses where the FOCUS was WHERE, the MASK COMPLEXITY was medium and the DATA
COMPLEXITY was easy. The columns with "neither" in their titles discuss the results once responses
for which participants answered "Neither agree nor disagree" are filtered.

cantly better than WHERE. These observations reveal a particularly strong order concerning
performance and focus for MO ( MO 2).

• Performance for Mask Proportion MP is consistent for each FOCUS , indicating, as we would
expect, that the condition can be read independent on the FOCUS .

The results for the Measurement study of MwM , MO and MP with the variant being the MASK
COMPLEXITY are displayed in Fig. 6.42.

• Responses to MwM (left) indicate that performance is relatively weak , but significantly less
so when MASK COMPLEXITY is Medium. We also note that the performances are similar
between MASK COMPLEXITY Easy and Hard. This goes against our expectations as instead
of a trend of performances getting worse with MASK COMPLEXITY increasing, we find no
global trend.

• MO (center) shows little difference in performance according to MASK COMPLEXITY , which
fits our expectations.
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Fig. 6.40 The overall results for the Measurement study according to FOCUS .
FOCUS has an effect on performance in MwM and MO tasks. Specifically, we see that both
MwM and MO are estimated less well in spatial (WHERE) than binary attribute (WHAT_Ql)
FOCUS conditions.

Fig. 6.41 The overall results for the Measurement study according to FOCUS factored by MASK
COMPLEXITY . We note a significant trend for which performances of MO are ordered as such:
WHAT_Ql, WHAT_Qn, WHERE. This trend is always not statistically significant between WHAT_Ql
and WHAT_Qn when the MASK COMPLEXITY is Hard, but remains true, thus indicating that the
trend is globally important.
For the task MwM , the FOCUS WHAT_Ql results in significantly better performances than
WHAT_Qn and WHERE with MASK COMPLEXITY being Easy and Medium, while the differences
are minor while the MASK COMPLEXITY is Hard.
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Fig. 6.42 The overall results for the Measurement study according to MASK COMPLEXITY .
MASK COMPLEXITY has an effect on task ( MP ) with performance improving as mask complexity

increases. Performance in Mean with Mask tasks ( MwM ) was better when MASK COMPLEXITY was
Medium than in the Easy or Hard conditions.

• MP performance (right) is significantly different between MASK COMPLEXITY Medium and
Hard, and MASK COMPLEXITY Easy and Hard, with performance deteriorating as the MASK
COMPLEXITY increase. This is counter-intuitive, potentially indicating that other parameters
than the ones we selected are impacting ability to perform MP .

The results for the Measurement study of MwM , MO and MP with the variant being the DATA
COMPLEXITY factored by FOCUS are displayed in Fig. 6.44.

• MwM (left) presents a single case of significant difference when the focus is WHAT_Qn,
which leads us to think it is a false positive.

There are two significant differences when the focus is WHERE. Each group with the complexity
of WHERE is Easy is significantly better than groups with WHERE is set to a Medium
complexity. We notice some occurrences where performances for MwM follow the order of the
complexity of the focus, but Medium complexity results several times in poorer performances
than Hard, which drives us not to consider these as valid for our analysis. WHERE Medium
ask performance is significantly worse than the Easy or Hard conditions for MwM . This is
unexpected and not something we can explain for certain. We discuss visual analysis of stimuli
with the poorest performances in section 6.9.2.

• MO (center) The 95% confidence intervals of performance for Overall Mean for focus being
WHAT_Ql at an Easy complexity contain the baseline, indicating fairly good performances
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Fig. 6.43 The overall results for the Measurement study according to MASK COMPLEXITY factored
by FOCUS .
For FOCUS WHAT_Ql we note some significant differences between MASK COMPLEXITY Medium
and Hard and Easy and Hard for MO and MP , both cases due to strong differences in performances
for MASK COMPLEXITY Hard, but worse performances for MO and better performances for MP .
We also note unexpected differences of performances for FOCUS WHAT_Qn, i.e. for MwM the
performances are significantly better for MASK COMPLEXITY Medium and MP are significantly
worse for MASK COMPLEXITY Easy.

from participants in this case ( MwM 0). But absolute errors increase as FOCUS complexity
increases. Performance in the WHAT_Ql condition with Easy complexity is better than the
harder conditions, adding to the evidence that tasks can be undertaken with some success at this
focus and DATA COMPLEXITY level ( MwM 1).

• MP (right)Performances for Mask Proportion indicate little variations according to the factors
we set.

Measurement study data for the MwM (left), MO (centre) and MP (right) tasks with variation
in DATA COMPLEXITY , factored by MASK COMPLEXITY are displayed in Fig. 6.45.

• MwM (left) Performance is relatively weak but significantly stronger where FOCUS complex-
ity is Easy over Medium for all FOCI .

• MO (center) performance is not affected by MASK COMPLEXITY across all FOCI . The
tendency for MO performance to be better when FOCUS is Easy reported above is reflected
in the lower error rates for Easy WHAT_Qn and WHERE, one of which is significant in the
former case.

• MP (right) Performances for Mask Proportion is not dependent on FOCUS complexity. This
could have been a distractor when interpreting Time Masks, but we see no evidence of this in
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Fig. 6.44 Results for the Measurement Study, with the variant being the DATA COMPLEXITY ,
factored by FOCUS .
We note some evidence that MO performance is better when FOCUS complexity is lower, but not in
the case of WHERE, where performance is consistently poor.
MwM performance is low (add absolute numbers - means) but with some evidence that this is less
true when FOCUS complexity is low as MwM performance is significantly better for Easy level of
complexity than at least one of the more challenging complexity levels in all three FOCI .
As expected, mask proportion ( MP ) performance does not vary with FOCUS .

our results, suggesting that masks and data can be interpreted independently.

Measurement study data for the MwM (left), MO (center) and MP (right) tasks with variation
in DATA COMPLEXITY factored by both MASK COMPLEXITY and FOCUS are displayed in
Fig. 6.46.

Considering the high amount of categories from this double factorisation, only three observations
stand out: performances for MwM are significantly better when the focus is WHERE Easy, that
WHERE Medium, independently of the MASK COMPLEXITY ; performances for Overall Mean
are significantly good for WHAT_Ql with an Easy complexity, independently of the Mask; and
performances for WHAT_Ql with an Easy complexity are significantly better than WHAT_Ql Medium
and WHAT_Ql Hard independently of MASK COMPLEXITY .
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Fig. 6.45 Results for the Measurement Study, with the variant being the DATA COMPLEXITY ,
factored by the MASK COMPLEXITY .
MwM performance is low , but significantly better for Easy/Simple FOCUS than higher levels of
FOCUS complexity across all types of FOCUS and all levels of mask complexity. This is important

as it suggests that our abilities to interpret Masks are relatively limited in terms of the complexity of
underlying data.
MO performance is weak, but there is a suggestion that this is better when FOCI are less complex,

as shown by the single significant difference ( MASK COMPLEXITY Medium) and supporting trends
in other mask complexities. This effect is shown more clearly in Fig. 6.40 and Fig. 6.44and, as
anticipated, is not particularly dependent upon MASK COMPLEXITY .
As expected, mask proportion ( MP ) performance does not vary with FOCUS , when factored
by MASK COMPLEXITY .

• MwM task performance is reasonable for WHAT_Ql (binary) settings (add average error in
absolute terms), with no systematic bias. Errors are lower where FOCUS complexity is low
(Easy) irrespective of MASK COMPLEXITY in with WHAT conditions, but this effect is weakest
in the complex (Hard) Mask case. In the WHERE FOCUS , performance is slightly less strong
(add average error in absolute terms and see below) but there is a consistent difference between
the Easy and Medium FOCUS complexity levels, with the less complex WHERE FOCUS re-
sulting in significantly smaller errors for all levels of MASK COMPLEXITY . Surprisingly,
this pattern is not apparent in the Most complex (hard) FOCI , with MwM performance in
tasks with complex (Hard) trajectories being indistinguishable from the with simple (Easy)
trajectories for all levels of MASK COMPLEXITY . (But then there is of course the question
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about whether these errors are equivalent across FOCUS given that they use different numbers
of pixels, etc!)

• MO There is a relatively consistent pattern here that shows MO performance to be better
when FOCUS complexity is low in the WHAT_Qn and particularly the WHAT_Ql FOCI .
This is supported by general trends and seven significant differences between conditions that
all point in this direction. We do not see strong evidence that this is dependent upon MASK
COMPLEXITY and nor would we expect it to be. It is not the case in WHERE tasks, where
performance is low irrespective of FOCUS complexity. So we can claim with some confidence
that Overall Mean estimation tasks are achievable where FOCI are simple, but performance
deteriorates for WHAT, but not WHERE, as FOCUS complexity increases.

• MP task performance is not influenced by FOCUS complexity for any FOCUS for any level
of MASK COMPLEXITY .
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Likert question: Stability Comparison ( SC )

The graphs to discuss the Likert questions follow the same structure as the graphs to discuss the
Numerical questions.

Data showing performance for Stability Comparison with the variant set to focus are displayed
in Fig. 6.47. Performance in this task was poor. As showed in table 6.11 when considering answers
where participants answered "neither agree nor disagree" as wrong, the mean of error rate was higher
than 50%, i.e. worse than random. It is equal to 50% when considering responses "neither agree nor
disagree" as neither correct nor incorrect but filtering them out. As mentioned previously, we consider
that labelling responses "neither agree nor disagree" as correct nor incorrect is fallacious, and thus
filter these out from our analysis. This leads us to ask questions about abilities to interpret levels of
variation within and beyond the conditions displayed visually in A-ATS Masks. Given this, we do
see that performance for Stability Comparison was significantly better for WHAT_Qn than the other
FOCI .

Fig. 6.47 The SC answers with the variant being FOCUS . The performances are significantly better
when the FOCUS is WHAT_Qn.

Data showing performance in the Stability Comparison task, varying by MASK COMPLEXITY are
displayed in figure Fig. 6.49. Stability Comparison does not vary according to MASK COMPLEXITY ,
and there is no trend to suggest that Mask complexity has an effect on performance.

We can dig deeper with graphics that set the variant to complexity of the FOCUS and factor by
FOCUS or Mask.

The results for the SC with the variant being FOCUS factored by MASK COMPLEXITY are
displayed in Fig. 6.48 and show the strongest differences between FOCI in the results where the
MASK COMPLEXITY is Hard. Particularly, FOCUS WHAT_Qn responses are significantly better.

This observation is true with all MASK COMPLEXITY but only statistically significant in the
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Fig. 6.48 The SC answers with the variant being FOCUS , factored by MASK COMPLEXITY . We
note that differences are relatively small between FOCI , except in the case of MASK COMPLEX-
ITY being Hard where the FOCUS WHAT_Qn results in significantly better performances.

Fig. 6.49 The SC answers with the variant being MASK COMPLEXITY . The differences between
variants are not statistically significant.

previously mentioned case, which leads us to consider that the higher MASK COMPLEXITY results
in a greater ease to perform SC . This goes against our expectations.

Performance data for the Stability Comparison task, with varying DATA COMPLEXITY , factored
by MASK COMPLEXITY are displayed in Fig. 6.52. We notice that performances get poorer for SC as
DATA COMPLEXITY increases for both MASK COMPLEXITY Easy and Medium, but the opposite
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Fig. 6.50 The SC answers with the variant being MASK COMPLEXITY , factored by FOCUS . The
differences between variants are not statistically significant.

occurs for MASK COMPLEXITY Hard. Additionally, performances with MASK COMPLEXITY Hard
and DATA COMPLEXITY Hard are better than the others, which goes against our expectations.

Fig. 6.51 SC according to DATA COMPLEXITY factored by FOCUS . Variations of DATA
COMPLEXITY are not significant for FOCUS WHAT_Qn and WHAT_Ql, but are significant for
FOCUS WHERE in two variations (Easy-Medium, Medium-Hard) as the performances for the
SC are much worse when the MASK COMPLEXITY is set to Medium.

The Stability Comparison performance data are presented with the variant set to DATA COM-
PLEXITY , factored by FOCUS in Fig. 6.51. Performance is low and there is no difference in error
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Fig. 6.52 Performances for SC with DATA COMPLEXITY as the variant and factored by MASK
COMPLEXITY . We note that while light, there is a trend of DATA COMPLEXITY increasing resulting
in poorest performances for MASK COMPLEXITY Easy and Medium, but the trend is inverted for
MASK COMPLEXITY Hard.

rates within or between factors, meaning that we see no evidence that DATA COMPLEXITY has an
effect for any FOCUS .

The performance data for the Stability Comparison task are presented with the variant set to DATA
COMPLEXITY , factored by both FOCUS and MASK COMPLEXITY in Fig. 6.53. This reveals low
performance across the board, and given that we are looking at 27 relationships, finding two that are
statistically significant at the 95% confidence level should not surprise us. We consider them likely to
be false positives as they do not relate to any other evidence and are not easily explained. The double
factoring of the data results in small numbers of observations being used in our bootstrapping and
thus wide confidence intervals, which give us reason to be cautious concerning claims about light
trends observed. As such, we conclude that task performance is surprisingly and consistently low for
Stability Comparison SC and that FOCUS complexity has no effect for any mask complexity for any
FOCUS .
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Self-reported confidence

In this section, we discuss the impact of the focus, MASK COMPLEXITY and their combination over
the self-reported confidence for questions MwM , MO , MP and SC .

We display the distribution of self-reported confidence in Fig. 6.54 and Fig. 6.55. For each
question, we assess whether different scaling results in significantly different levels of confidence
using the Dunn test. The results of these tests are listed in table 6.6.

The Dunn tests comparing self-reported confidence according to focus indicate significant differ-
ences for MwM and MO . Visual analysis of the graphs in Fig. 6.54 suggest a global trend: for both
MwM and MO , self-reported confidence is highest for WHAT_Ql, followed by WHAT_Qn, and

lowest for WHERE. The average of self-reported confidence is respectively 3.65, 3.11 and 2.52.
The differences between FOCI for MP are not statistically significant and visually look quite

similar Fig. 6.54. Visually, the bar charts indicate similar trends according to the different focus.
With average means of self-reported confidence of 3.55, 3.43 and 3.47 for WHAT_Ql, WHAT_Qn
and WHERE, this seems to indicate a relatively high confidence in the ability to perform MP ,
independently of the focus.
The differences between focus for SC is only significant between WHAT_Ql and WHERE. With
respective means of self-reported confidence of 3.39, 3.32 and 3.05 for WHAT_Ql, WHAT_Qn
and WHERE, and a relatively strong visual difference of trends in the graphs of Fig. 6.54. These
results show that SC is perceived to be most straightforward for WHAT_Ql, perhaps slightly more
challenging for WHAT_Qn, and significantly harder for WHERE.
In combination, these results provide strong evidence to support a global trend for tasks with WHERE
to result in lower self-reported confidence than the two WHAT tasks.
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Fig. 6.54 The figures are composed of bar charts indicating self-reported trust according to FOCUS .
Each set of bar charts shows trust in the four tasks in the following order: MwM , MO , MP and
SC . Bars are coloured from yellow to red, with 0 indicating no confidence at all in an answer and 5

indicating absolute confidence in an answer.

We follow the same approach to assess the impact of Mask complexity as the one we just used for
FOCUS . According to the Dunn tests listed in table 6.6, MASK COMPLEXITY does not result in

significant differences in self-reported confidence for MwM , MO and SC . This was expected for
MO as this questions does not rely in any way on considerations of the Mask, but was a surprise for
MwM and SC , both of which involve consideration of the mask and its form.
MP indicated significant differences between self-reported confidence according to Mask for Mask

Easy against Mask Medium and Mask Easy against Mask Hard. Visual analysis of the graphs show a
large portion (almost 75%) of self-reported trusts are 4 or 4 out of a maximum 5. We thus conclude
that participants are more confident in their ability to perform the tasks asked of them when the Mask
is Easy.
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Fig. 6.55 The figures are composed of bar charts indicating self-reported trust according to the MASK
COMPLEXITY . Each set of bar charts shows trust in the four tasks in the following order: MwM ,
MO , MP and SC . Bars are coloured from yellow to red, with 0 indicating no confidence at all in an
answer and 5 indicating absolute confidence in an answer.
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The relationships between performances and self-reported confidence

It is important to assess the relationship between performance and self-reported confidence, as two
scenarios are to be assessed and avoided:

• Participants under evaluating their ability to perform the tasks asked of them using the A-ATS
Mask implies that they would likely not make decisions based on graphs using this visualization
method.

• Participants over evaluating their ability to perform the tasks asked of them using the A-ATS
Mask implies that they would likely make decisions based on wrongfully interpreted information
using this visualization method.

We thus analyse the distribution of answers according to self-reported confidence and verify differences
of trends according to them. Similarly to our approach to analyse results according to previous factors,
we analyse the data with different levels of factorization to reinforce or reject interpretation of results.
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Fig. 6.56 The overall performances for the Measurement study according to the self-reported confi-
dence. The plots are ordered with the highest trust (5 out of 5) at the top, and with the lowest trust (0
out of 5) at the bottom. The performances for MwM , MO and MP are set with the absolute value of
the participants answers minus the baseline, thus the lower the difference, the better the performances.
The display of the SC distribution is set with the correct answers being on the left and the wrong
answers on the right.
Distributions seem to display a minor positive correlation between levels of self-reported confidence
for MwM . MO seems to indicate a minor correlation relationship between self-reported confidence
and performance. MP seems to indicate a minor negative correlation between self-reported confidence
and performance. SC shows a minor positive correlation between performance and self-reported
trust.
These results indicate that participants appear fairly effective at assessing their own ability to perform
the tasks asked of them, except for MP .
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Fig. 6.57 The performances for the Measurement study according to the self-reported confidence
factored by FOCUS . The plots are organized the same way as for Fig. 6.56.
We note that for MwM and MO , responses for WHAT_Ql show a stronger tendency to have
self-reported confidence match performance. WHAT_Qn shows a similar tendency but is less strong,
particularly for MwM .
Some factors result in limited ranges of performances, particularly WHAT_Ql with the lowest
confidence for MO and MP . This is odd, as these are not particularly worse performances. These
results may be the results of confounding factors. We discuss visual analysis of stimuli to assess
potential confounding factors is 6.9.2.
Performance is consistent across all levels of self-reported confidence for WHAT_Ql, as opposed to
WHAT_Qn and WHERE which display fairly strong positive correlation.
Note that absence of violin plot for a category indicates that the number of responses is inferior or
equal to two, as the R program can not generate underpopulated violin plots.
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Fig. 6.58 The performances for the Measurement study according to the self-reported confidence
factored by MASK COMPLEXITY . The plots are organized the same way as for Fig. 6.56.
Questions for MwM do not seem to show very strong trend between performance and self-reported
confidence.
Questions for MO show a fairly strong trend of performances being better according to self-reported
confidence. This could indicate that MASK COMPLEXITY has no effect on ability of participants to
evaluate their ability to perform tasks not relying upon analysing them.
MP does not seem to present strong patterns for MASK COMPLEXITY Easy and MASK COM-

PLEXITY Hard, but we note that for MP with MASK COMPLEXITY Medium, the trend seems to be
inverted. This contrasts with Fig. 6.42 where significant differences of performance for MP according
to MASK COMPLEXITY followed a negative trend. These may indicate a poor understanding of the
task MP .
SC shows a positive correlation between the performances and self-reported confidence for MASK

COMPLEXITY Easy and MASK COMPLEXITY Hard, but not for MASK COMPLEXITY Medium.
These responses seem to indicate that distribution of MASK COMPLEXITY Medium result in per-
ceived complexity being skewed.
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The responses from participants seem to indicate that participants are fairly good at assessing
their ability to perform the tasks asked of them, except MP . We estimate it is possible a confounding
factor is responsible for both poorer performances when the MASK COMPLEXITY is Easy compared
to when it is Hard, and the MASK COMPLEXITY being Medium resulting in the poorest ability
to assess ability to perform MP . We discuss visual analysis of some stimuli to reflect upon this in
section 6.9.2.

The analysis of the relationships according to the self-reported confidence allows us to make the
following claims:

• Participants can relatively effectively evaluate their own ability to perform MwM and MO .

• Participants can relatively effectively evaluate their own ability to perform SC but that statement
has to be nuanced, as some combinations of factors, such as WHAT_Ql Easy or MASK
COMPLEXITY Medium, indicate the opposite trend.

Conclusion

We structured a study using SFNCS to assess the impact of FOCUS , MASK COMPLEXITY , and
DATA COMPLEXITY on performance and self-reported confidence in four tasks that relate to values

( MwM , MO , MP ) and their variation ( SC ) established through visual interpretation of A-ATS
Masks.

We noticed a strong difference in performance when the focus is WHERE for MwM , and a
strong indication that participants perform best for MO when the focus is WHAT_Ql, followed by
WHAT_Qn, and finally WHERE. Performances were poor, particularly for MP and SC .

As the studies were set to understand strengths and weaknesses of the A-ATS Mask in a realistic
context, the questions participants were asked to answer were relatively complex, but results suggest
that some participants likely misunderstood the concept of the Mask, as indicated by the inconsistency
between MASK COMPLEXITY and performances. We tentatively discuss potential explanations
behind these surprising results in section 6.9.1.

Following the analysis of the results of the study, we detail a set of claims we draw from them.

• We claim that categorization of DATA COMPLEXITY according to FOCUS is correlated to
performances while performing MO , and to a lesser extent MwM for FOCUS WHAT_Ql
and WHAT_Qn. The correlation is likely light though.

• For MwM and MO , categorizing FOCUS WHERE DATA COMPLEXITY according to
the parameters we set for our studies does not match performance, as the mid-group Medium
resulted in the worst performances. Considering the categorization was based on perceived
complexity of trajectory, we claim tentatively that the perceived complexity of the trajectory
does not correlate to performance for MwM and MO .
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• Performance for MP is independent on the FOCUS or the DATA COMPLEXITY .

• MP is not strongly influenced by the MASK COMPLEXITY applied in the A-ATS Mask.

• SC has an error rate higher than 50% for WHAT_Ql DATA COMPLEXITY being Easy or
Hard. This leads us to speculate that participants did not understand the stability comparison
qualitative attribute according to whether time frames overlap with the status of the MASK .

• The error rate for SC is significantly higher when the DATA COMPLEXITY of the FO-
CUS WHERE is Medium.

The previous points highlighted direct insight from the result analysis. We further synthesize
the information gathered from the previous claims and following reflections upon their implications,
discuss what we learned through the Measurement study in these statements:

• Performances for MP not being significantly influenced by MASK COMPLEXITY while
MO varies significantly according to DATA COMPLEXITY for FOCUS WHAT_Ql indicates

different levels of understandings from participants for tasks which are fundamentally the same,
i.e. assess proportion of either grey or red rectangles over a timeline. Stronger communication
and training are thus necessary to consider usability of the A-ATS Mask to ensure its proper
use. As stated in our literature review, similar visualization methods to the A-ATS Mask have
been used efficiently, but noteworthily by experts in scientific domains, indicating scientific
education could be a critical factor.

• The distributions of the responses are relatively wide for all numerical tasks, indicating diversity
in participants’ ability which may be due to characteristics yet unknown, e.g. experience of
interacting with visualizations.

• Participants are fairly efficient at assessing their ability to correctly perform MwM , MO ,
MP and SC . We thus estimate that alternative approaches of categorizing visualization

attributes could be assessed effectively by asking participants self-reported confidence in
performing these tasks by varying attributes.

• Performances not varying according to our categorization of MASK COMPLEXITY indicates
that other factors of the Masks are responsible for difficulty to perform MwM , MO , MP and
SC .

Following these reflections, we can summarize what we have learned in order to answer our
research questions:

• Research Question 1- How does the visualization of conditions over time-space-attributes
support synoptic comparative tasks within multivariate spatio-temporal data analysis?
Evaluating how the visualization of conditions over time-space attributes during synoptic
comparative tasks within multivariate spatio-temporal data analysis allowed us to understand
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more about abilities of participants to do such tasks. Variations of the parameters of the
visualization method we developed to display conditions over time-space-attributes, the ATS-
ATS Mask, resulted in differences of performances, but varied differently to our expectations.
We previously discussed nuances behind these results, but can summarize the following answer:
the display of conditions impacts performances, but further studies to evaluate additional
parameters for condition displays could reinforce our understanding of which parameters are
the most influential. Additionally, variations of data parameters over which the conditions are
displayed impact more significantly the ability to perform the tasks.

• Research Question 2 - How does the visualization of conditions over time-space-attributes
impact self-reported trust for conducting synoptic comparative tasks within multivariate spatio-
temporal data analysis?
Through our studies, we have learned that participants were fairly effective at evaluating their
own ability to correctly perform synoptic comparative tasks within multivariate spatio-temporal
data analysis with conditions of time-space-attributes overlaid. This contrasts with the relatively
low performances overall. As mentioned previously, we suspect that some participants did not
fully understand the ATS-ATS Mask displaying conditions. Our interpretation from these results
is thus that participants were able to fairly accurately evaluate whether their understanding of
the visualization was correct.
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6.8 About a Judgement study

In this section, we briefly discuss plans for the Judgement study. The Judgement study is designed as
a complementary study to the Measurement study, and is similar to the Measurement study, but with
some of the elements defining its questions based on Judgements rather than Measurements.
An important element of the SFNCS is that it allows for the characterization of diverse elements
to generate a variety of potential studies, with variations over elements which are to be evaluated,
be it elements from the visual stimuli, data, question or answer. Each of these elements can be
Measurements or Judgements.

The characterizations that the SFNCS allows has consequences over the possible approaches to
evaluate participants’ responses.
If any element of the question asked to the participant is a Judgement, it implies that the question
subjectivity is overall a Judgement and thus no baseline exists.
The implication due to a lack of baselines is that the methods that can be employed to analyse the
responses provided thus have to differ from quantitative studies. Questions formed with judgements
are thus more appropriate to evaluate notions such as differences of perceptions between participants,
self-reported trust, comfort, or impact of variations of factors on speed.
The Judgement study is designed to be strongly similar to the Measurement study, with the major
difference being questions will be generated with judgement terms.
For the design of our studies, we aim to modify the Task subjectivity of the question: instead of asking
for measurements, we are interested in asking for judgements. This approach can help researchers
evaluate if there are shared perceptions over terms which are judgements, e.g. when is a temperature
hot. We discussed this notion in detail in section 4.4.4. Solely gathering information about agreement
on transformation from quantitative data to qualitative, e.g. most people in the United Kingdom
agree that a temperature of 30 degrees Celsius is "hot", presents a limited interest. Potentially, fuzzy
logic could be used to consider characterisations of the participants’ responses to do so. But we
consider that using the SFNCS to precisely characterize diverse elements (belonging to the Task,
Question, Data, Visual Stimuli and Response block) could be used to assess responsible factors of
participants’ interpretation of the information presented to them. This enables us to, for example,
assess understanding of complex relationships between attributes present in the information presented
to participants.
Considering that the Judgement study could be valuable to search for elements that are responsible
for participants’ perception and interpretation of the information first entails two questions: which
elements drive participants to evaluate a certain information relationship exists, and which elements
drive participants to evaluate that a relationship is significant.
This approach implies that by varying some factors from Measurements to Judgements, the Judgement
study can help researchers assess both performances of participants performing tasks, but also whether
they judge the evaluated effect significant.
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Further refinement is needed regarding question automation, but questions asking about either
a relationship existing or if the relationship, pre-defined, is significant, could be generated using a
structure similar to the following questions:

• The attribute 1 is related to attribute 2.

• The variations of the attribute 1 are much stronger while condition is met.

The first question structure is an example where the existence of a relationship is not declared and
participants would have to determine whether it is strong enough to report it, while the second question
structure is an example where the relationship is defined, but using a Judgement term to qualify it,
participants have to assess whether their interpretation of the qualification matches their perception.
We consider that a study following this approach could help us further understand the relationships
between self-reported confidence, data displayed, and interpretations of what participants consider to
be significant observations when using visualizations.

6.9 Global studies reflections

The analysis of the results have indicated that our categorization does not consistently result in a match
between performances and complexity, be it for MASK COMPLEXITY or DATA COMPLEXITY . In
this section, we thus discuss elements which may have influenced participants ability to perform the
tasks asked of them. To do so, we visually analysed stimuli that resulted in very low performances
according to different factors. We first consider whether visual elements could present confounding
effects we missed during our study set up, and then discuss alternative elements which may explain
differences between categorization of Data and performances of Responses.

6.9.1 Discussion

The claims made in section 6.7.2 are direct reflections from the responses. As the study is complex,
multiple factors have to be considered to draw further insight from the participants performances.
Within this subsection, we discuss potential explanations behind data observations:

• A high number of participants failed the introduction test (TI). As stated previously, our
convenience sample when we prepared the study was composed of five participants who were
not visualization experts, and none of them failed the introduction test. As we personally know
the academic background of our convenience sample, we are certain that the introduction test
can be passed independently of it. But an element we did not factor was that our convenience
sample being composed of friends and family motivated only to help and not by financial
compensation meant they fully focused on the study as they participated in the test. This is an
important notion to consider because due to our efforts to present a set of stimuli that looked
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realistic and similar to what could be found in a professional software, our sentences were
particularly set to try to avoid different interpretations of information presented and tasks asked
of participants. If we are to consider that participants on crowdsourcing platforms like Prolific
try to perform the tasks as quickly as possible to perform as many studies as possible, resulting
in the highest remuneration, they may consider that the time and effort to read attentively the
information presented to them is not worth the effort.
The set up of a study, similar to the Measurement study, but set with sentences asking directly
about visual stimuli rather than attributes, could help to indicate whether realistic studies result
in poorer performances.

• As the previous point states, we ask participants complex tasks, and they may consider that they
are not paid accordingly to the effort asked of them.
Assessing the appropriate monetary incentive considering the complexity of the tasks asked
of participants is not simple. Potentially, work should be set to ensure perceived fairness in
pay [272], which would require to understand the perceived amount of effort necessary to
perform the tasks. Furthermore, we should consider the impact of intrinsic motivations, such
as enjoyment, as indicated by Kaufmann et al. [130] are likely more important than extrinsic
motivational categories (immediate payoffs, delayed payoffs, social motivation). The tasks
we set up for our studies are similar to activities done by professionals but might not be what
participants are used to, implying an additional difficulty to assess correctly the appropriate
amount to reward participants with.

• Our efforts to set up realistically looking stimuli might have contained confounds aimed at
ecological validity, e.g. details about cars setting up expectations for participants, or background
map leading participants to misinterpret the information presented to them.

• Participants also often failed the Rigorous Test (RT) (40% out of the participants who passed
TI), most of them by providing higher values for MwM than MO when the focus is WHAT_Ql,
which is a result that can not occur, as the answer MwM is necessarily a subsection of MO .
This likely indicates that some participants misunderstand the ’and’ of questions such as ’For
how long are both the gps on and the wiper on?’ as the sum of the time frames, instead of their
overlap.
Running some studies with only focus on WHAT_Ql and different phrasing to ask MwM ,
MO and MP could help us to understand which sentences variations are likely to be misunder-

stood.

• Participants were significantly more confident when performing tasks with a Mask set to Easy,
which is contradictory with their ability to perform MP according to MP . This dissonance
between the performance and self-reported trust could indicate that some elements of the study
were misunderstood by participants.
It is possible that we poorly explained either the A-ATS Mask or the tasks to perform using it.
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One approach to evaluate if the explanations are poor would be to re-run some studies with the
same type of stimuli, factors configurations, but with minimal explanations. If performance is
not poorer with minimal explanations, it would indicate that our explanations were not clear
enough.

• Overall performances were fairly poor, but it is unclear whether more experience with this type
of tasks would result in higher performances.
We could assess the impact of experience for these types of tasks by running the study again
with visualization experts, and compare whether the differences are significant according to the
two groups.

6.9.2 Visual analysis of stimuli

Since our studies had several FOCI and participants performed different tasks, we made our selection
of worse performances accordingly. We thus decided to select visual stimuli using the following
protocol: we factor the responses by FOCUS , and then for questions about MwM , MO and
MP , we selected for each task the three responses with the responses being the furthest from their

respective baselines; for questions about SC , with the same factoring, we selected the three stimuli
which resulted in the most incorrect answers, and if the number of stimuli matching that criteria was
higher than three then the selection was made randomly. Following this process we visually analysed
32 stimuli (the selection was set for 36 stimuli but four of them resulted from our selections twice).

To investigate what could be the potential causes for the poorest performances, we first analysed
the visual stimuli displayed when these poorest performances occurred, considering only the visual
stimuli and the task asked of participants for it. The next step of our analysis process was to consider
if alternative measurements could have been performed, indicating a potential misunderstanding of
the task. The final consideration was to investigate whether the answer could have been provided
for another question, potentially indicating the participant entering their answers without paying
attention on Qualtrics. We also investigated whether some participants provided consistently the
poorest responses, or if these answers were likely low effort.
In this section, we do not discuss each stimulus that resulted in low performances but rather use some
of these stimuli to illustrate our reflection about potentially impactful factors to investigate in future
studies or alternative design approaches.

We organize this discussion by considering notes for each FOCUS and reflect upon the most
interesting ones.

WHAT_Ql

We note for several stimuli that resulted in low performances some occurrences of Mask that either
overlap or have edges in close proximity to the qualitative attribute displayed.
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Fig. 6.61 An example of the stimuli where the distinction whether
the edges of the WHAT_Ql belong to the time frames of the Mask
is particularly difficult, due to the proximity of their edges.

This phenomenon occurred for
8 out of the 11 stimuli we
analysed for WHAT_Ql (one of
them repeatedly resulted in low
performances), with the number
of occurrences ranging from a
single time up to eight times.
While we estimate it is unlikely
to influence strongly assessing
the duration of either the WHAT_Ql status being positive or the Mask status being positive, it seems
possible that it can affect, at least slightly, the ability to assess time frames with the WHAT_Ql
status being positive and the Mask status being positive. Analyzing the stimuli, we considered that
assessing status stability for WHAT_Ql could be fairly compromised by occurrences of overlap or
close proximity between time frames with the status WHAT_Ql or Masks being positive. If it is
unclear whether the edge of a time frame belongs or not to the time frame of the other status, assessing
their proper chronology may become arduous.

Still, one out of the three stimuli had no occurrence of overlap or close proximity, and the two
other stimuli having either one or two occurrences of overlap or close proximity. We thus consider
that investigating this effect in future work could be valuable. One approach to evaluate this factor
would be to generate an alternative design, e.g. one group with these stimuli and another with the
Mask juxtaposed to the display of the WHAT_Ql without overlapping it, and compare performances
of the two groups.

WHAT_Qn

Out of the 11 stimuli we analysed for WHAT_Qn, only three of them are DATA COMPLEXITY Hard
(one of them repeatedly resulted in low performances). The display of the Mask over the WHAT_Qn
does not seem to hinder in any way its perception. We thus consider that the Mask is unlikely to
strongly influence ability to perform MO for WHAT_Qn.

Yet, visual analysis of the stimuli shows that some of them are overlaid with relatively narrow
and closely spaced Masks. While we do not expect this to be related to difficulty to perform MwM ,
MO or MP , we tentatively claim that the narrow width of the Masks may result in a higher difficulty

to consider how the stability of the WHAT_Qn while the narrow Masks overlay them weigh compared
to the other values.
We also noticed one response where the answer for MO was actually fairly close to the range of the
WHAT_Qn displayed. But since the range of WHAT_Qn was an output of the random generation
over which range was only partially controlled, and not logged as a factor, it is unsafe to claim this
observation to be more than anecdotal.
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Fig. 6.62 An example of the stimuli where some of the Masks are narrow and closely spaced. This
type of stimuli may result in higher difficulty to consider proportions of time ranges affected by the
status of the Mask.

WHERE

The diversity in trajectories displayed in the stimuli resulting in the worst performances indicate that it
is likely other factors can influence the Tasks where the FOCUS is WHERE. We notice that the Masks
with a narrow time frame displayed are likely easier to spot when overlaid over the WHAT_Qn and
WHAT_Ql attributes. We considered that this approach was likely to simplify the process of spotting
sections of the trajectory recorded over time frames in which the status of the Mask was positive.
Relatively bad results from participants, including for the introduction tests (TI), may indicate that
this assumption was wrong, despite our best efforts to communicate that the A-ATS Mask was the
display of the same condition projected over different graphs.

Additionally, the position of the point of interest (POI) was set with constraints due to the study,
i.e. it had to be set in a manner that resulted in baselines for Tasks of FOCUS WHERE to belong in a
range between 0 and 100. This resulted in POI being often fairly close to the trajectory, while that
was not specifically set as our standards (POI was supposed to be within the range of latitude and
longitude of the edges of the trajectories). It is possible that position of the POI for the Tasks relating
to FOCUS WHERE influences participants’ performances. We suggest that a future study evaluating
this parameter as a factor could refine our understanding of its potential impact.

6.9.3 The study set up

The studies we set up resulted in a rich amount of information to analyse for which we followed
approaches previously exploited [195, 100] but as the results went against our expectations, they
indicated that our categorization of Data complexity did not consistently reflect on performance.
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Fig. 6.63 An example of the stimuli where the POI is quite close to the trajectory, potentially resulting
in a difficulty to evaluate differences between distances of points where the Mask is positive or
negative.

It is interesting to reflect upon the relatively high number of participants who failed the introduc-
tion test (TI). The high number of errors indicate that we overestimated abilities of participants to
correctly answer these relatively simple questions. But beyond participants’ low performances, it is
an opportunity to reflect upon the way to prepare participants to studies set to evaluate visualization
methods. The distribution of the errors for each question made in the introduction test indicates that
despite our best efforts to clearly communicate about the visualization methods, some aspects of
them were perceived as more complex. The introduction questions assessing whether participants
can easily spot the minimum WHAT_Qn value, and link the time of this occurrence to space resulted
in the poorest responses, but neither these questions were indicative of comprehension of the graph
displaying the WHAT_Ql attribute. Our approach concerning participants filtering was conservative,
and thus we rejected any false set of responses provided by participants who failed any of the TI. This
choice was motivated by the aim to produce valid results, but as we reflect on the study set up, we
consider that broader discussions about validity of approaches to assess response quality could enrich
the scientific literature.

Since the studies we set up had the objectives of both assessing the A-ATS Mask and the SFNCS
in practice, being conservative was likely necessary to ensure the validity of claims would not be
questioned beyond reasonable doubt. But studies are not limited to conservative approaches, e.g.
Nobre et al. [184] who set up online studies in which participants providing wrong responses are
indicated of their mistake and their system only allows participants to continue the study once they
provide the correct response. Nobre et al. mention that participants had to correctly answer two tasks
to proceed with their online studies, but did not mention participants could provide random answers
until they have them right. We think that such choices should be discussed, both in publications
but also between researchers concerning their validity, and the impact of such approaches on claims
validity.
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Concurrently, our conservative approach has resulted in rejecting a fairly high number of participants,
and it is hard to assess whether the mistakes made were due to participants input mistakes, misunder-
standings of the visualization presented to them, or of the phrasing of the questions. Striking a proper
balance is a complicated matter, for which researchers also have to consider extra-academical factors,
such as funding or ease to access participants quickly.

Additionally, during our literature review we noted that communication of studies set up in
the visualization field are often concise in publications, as studies are tools to generate insight
about contributions, and not themselves the focus of publications. We argue that either detailed
communication of the studies set up or online access are necessary to fully understand the strength of
the claims made concerning results analysis.

6.10 Chapter summary

In this chapter, we discussed the studies we ran to evaluate different aspects of the A-ATS Mask. First
we justify our data selection. Then, to simplify the communication of the results, we describe the
commonalities between studies: across studies, participants are asked the same questions, with the
same data, with variations of stimuli according to each study. We list the tasks and their corresponding
questions according to focus, following the WHAT-WHERE-WHEN model of Peuquet [201].
We then detail the motivation and specific elements for the Distractor, Scaling and Measurement
studies. Using the same methodology for each study, as done by Heer et al. [101], we analysed results
using confidence interval for answers about means with mask, overall mean, or mask proportion, and
confidence intervals for error rates for questions about stability comparison.
The results allowed to make certain claims on the ability of participants to perform synoptic compara-
tive tasks within multivariate spatio-temporal data analysis within multivariate spatio-temporal data
analysis. Performances were relatively poor, potentially indicating that the A-ATS Mask requires
further training to ensure comprehension of the visualization method is necessary to perform complex
tasks. This hypothesis is reinforced by a high proportion of participants failing a relatively simple test
to verify their understanding of the visualization method used for the studies.
Still, the results of the studies allow making some interesting claims; we can claim that the display of
elements not necessary to perform synoptic comparative tasks does not impact significantly perfor-
mance, and that considering a minimum width (300 pixels in our set up), synoptic comparative tasks
is not significantly affected by scaling.
The results of the Measurement study allows us to claim that the categorization of the quantitative
and qualitative attributes correlates to the performance to synoptic comparative tasks. Additionally,
the Measurement study allow us to claim that estimation of mean overall of either a quantitative,
qualitative, or spatial attribute is not affected by the overlay of a Mask. We discussed how the notion
of Judgement, introduced in sec. 4.4.4 could be used to generate a qualitative study generated in a
similar approach to the Measurement study.



Chapter 7

Conclusion

7.1 Chapter Presentation

In this thesis we developed the SFNCS that characterizes the elements that define studies that evaluate
the efficacy of multivariate spatio-temporal data analysis, presented a novel method for encoding
conditions over existing visualizations that are realistic in nature and used the SFNCS to conduct a
systematic assessment of the performance of the proposed encoding for a range of spatio-temporal
tasks with different foci and levels of complexity.

This final chapter summarizes the benefits and limitations of our contributions, discusses options
for future work, and concludes with overall thoughts about the thesis.

7.2 Benefits and limitations

In this section, we review the benefits and limitations that results from our contributions as we
provided answers to our research questions. These discussions are broader than the ones in section
4.6 and are discussed to orientate the next section, in which we discuss future work.
Our first research question was the following: Research question 1:
How can the information visualization reference model be expanded to define the evaluation process
when generating a study to assess a novel contribution?
We address this question with the Systematic Framework for N-scales Characterizations of Studies
(SFNCS): connecting Task, Question, Data, Visual Stimuli, and Response into one structure from
which characteristics transfer.
Our second research question was: Research question 2:
How can the time mask be extended into a theoretical framework that enables filtering according to
time, attributes, and space?
We address this question with the ATS-ATS Mask. The ATS-ATS Mask is a visualization method
which indicates through overlays on time frames the data that matches one or more conditions.
Our third research question was the following: Research question 3:
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How does the visualization of conditions over time-space-attributes affect people’s capabilities in
conducting synoptic comparative tasks within multivariate spatio-temporal data analysis?
We addressed this question with a series of studies from which we drew claims.
Our discussion of benefits and limitations reflect upon the output from our contributions.

Benefits

Characterizing the Task, Question, Data, Visual Stimuli, and Response blocks of a study The
SFNCS allows characterizing blocks which are necessary to set a study. This model derived from
the Card model [51] can be populated with other frameworks to fill its blocks, and thus presents an
advantage to previous literature discussed in chapter 2 by enabling connections between blocks with
the same characterization of the information.

Extending the time mask to allow indications through overlays of time frames for which
data matches one or more conditions over visualizations displaying space, time or attributes
The ATS-ATS Mask extends the time mask of Andrienko et al. [20, 11] by allowing to represent
and communicate about queries related to space, time, or qualities over existing visualizations. We
discussed queries based on time, space, and qualities, and presented one implementation of the
ATS-ATS Mask with the A-ATS Mask.

Enrichment of knowledge concerning the ability to perform synoptic comparative tasks
within multivariate spatio-temporal data analysis Through the evaluation of the A-ATS Mask, we
contributed to further understanding about ability and confidence to perform synoptic comparative
tasks within multivariate spatio-temporal data analysis. Synoptic comparative tasks within multivariate
spatio-temporal data analysis were evaluated by participants assessing the following values: Mean
with Mask ( MwM ), Mean Overall ( MO ), Mask Proportion ( MP ), and performing Stability
Comparison ( SC ).
These studies allow us to claim that ability to perform MwM , MO , MP and SC are not affected by
the presence of elements unnecessary to perform said tasks nor by the scaling of the graph displaying
the quantitative attributes; participants performed relatively poorly for MwM , MO , MP and SC ,
but were fairly efficient at evaluating their ability to perform successfully those tasks. Performances
for synoptic multivariate spatio-temporal data analysis was impacted by the complexity of the output
of the query of the A-ATS Mask, but no strong systematic trend regarding their impact was noted.

Limitations

Interaction and results analysis not integrated in the SFNCS
The SFNCS does not characterize interactions allowing to modify selected Data or displayed Visual
Stimuli, nor does it characterize the approach selected by researchers to draw insight from the
Response. We discuss potential approaches to include Interaction and Results Analysis into the
SFNCS in sections 7.3.3 and 7.3.4.
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No categorization in the SFNCS
The SFNCS allows characterizing information throughout the steps to set up a study for researchers
to evaluate their contributions, but does not offer standardized approaches to categorize the elements
used in the studies. We presented one method to categorize Data in our studies, in section 4.4.1, but
make no claim about our approach being valid for alternative studies set up. We further discuss this in
section 7.3.2.

Display of the ATS-ATS Mask is not universal
The ATS-ATS Mask can potentially be applied over any visualizations which displays information
that relate to the query, but due to constraints created by each specific visual stimuli, we do not claim
that the approach to indicate the output of the ATS-ATS Mask can always follow the same output
to generate an overlay of Visual Stimuli, e.g. in our composite graphs made with the A-ATS Mask,
the Mask is represented by colouring the time frames for which the condition is met, while it is
represented with colouring trajectories sections for which the condition is met.

Limitations inherent to the frameworks populating the blocks
The framework developed by Andrienko et al. [12] was envisioned with a priority over the analysis of
spatio-temporal attributes. While this framework allows to characterize components of visual elements
used to encode visualizations, it does lack the ability to consider potentially important notions, such
as connections, particularly useful if we were to attempt to characterize node-link diagrams.
Additionally, our set of characterizations for Response was designed while considering most com-
monly used hardware, i.e. a keyboard and a mouse, and thus our characterization of Response does not
allow incorporating Responses produced using VR [32], AR [28] technologies, or tactile interaction,
e.g. on mobile devices [122].

7.3 Future work

In this section, we discuss potential future work and potential approaches to perform it. Even though
these ideas are not all yet as refined as we would like them to be, we wish to discuss the potential
value they could add to our current contributions.

7.3.1 Enriching the blocks of the SFNCS

As mentioned in section 7.2, the claims about the SFNCS are limited by the blocks used to build them.
Replacing the blocks that compose the SFNCS is possible, and we consider it to be a valid approach,
particularly when the researcher wishes to run studies for tasks with a low-level of abstraction. But we
wish for the researcher to ensure that the blocks share some characterizations between blocks. Were
the researchers to replace each block with the level of abstraction they wish would be valid, but would
make comparison with other contributions complicated. We thus advocate for connecting elements
with low levels of abstraction to their respective block with a high level of abstraction, whenever
possible.
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Potentially, the data block could be refined, as alternative measurements are later considered to be
more fit as complexity measurements. It is likely that as research evolves, alternative complexity
measurement methods are created, perhaps on the basis of improved (empirical) understanding of
the relationships between measured complexity, perceived complexity and performance. The design
of the SFNCS is set with blocks that can be replaced, and thus we hope that this issue will also be a
fertile ground for refinement of knowledge.
Alternatively, further research could indicate that new frameworks could be better fits into the SFNCS.
Whichever scenario occurs, an element we wish to be refined is the consideration of time. With
the current version of the SFNCS, considering all the nuances related to time is complicated. It is
particularly important as its characteristics, such as cyclic proprieties, increases the range of tasks that
can be incorporated into the model, with different levels of abstraction.
The Visual stimuli block could be enriched to allow for the incorporation of connections between the
elements displayed, as its current version, with the Visual Stimuli block populated by the framework
developed by Andrienko et al. [12], presents limitations e.g. the impossibility to characterize
node-link diagrams.

7.3.2 Data characterization to data categorization

For our studies we have categorized data selections according to their quantitative, qualitative, spatial
attributes, and the displayed A-ATS Mask, either as "Easy", "Medium" or "Hard" based on our
expectations of the impact of number of Masks over perceived complexity. This approach is helpful
to simplify organizations of studies and discussions of results, but even with their best efforts and
checks of their expectations, researchers can set up the categories based on false expectations. This
statement has to be nuanced, as the names chosen for the categories indicate prior expectations over
the influence of characteristic values used for categorisation, they fundamentally do not change the
methodology to analyse the results, since these elements are not communicated to the users and
analysis methodology does not vary according to these labels.
We worked towards ensuring that our categorizations are relevant, but still advocate for sharing of the
data and results for any study run, so that if later research indicates alternative selections of catego-
rizations or structures to be more relevant, new results can be produced from the previously recorded
answers. Furthermore, the reusability of studies reports with different methods to characterize the
data complexity presents the pragmatic advantage of reducing costs to run studies, i.e. a diverse study
results population might be easier to reach if new studies re-use previously published data for results
comparison.
A potential alternative would be to consider only the characteristics of the data and not categorize it.
This approach implies further reflections considering evaluations of influences of characteristics over
tasks, e.g. this approach is incompatible with reporting confidence intervals of differences between
answers and baselines factored by categories like we do in section 6.7.
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7.3.3 Characterization of interactions

An important element of the visualizations we did not discuss is the possibility to include consideration
of interaction. Future work should include interactions as part of the SFNCS. Our first approach
would be to consider interaction as an approach to either filter or aggregate information presented,
or to vary the information display. The incorporation of these concepts in the SFNCS would likely
result in the transformation of the Visual stimuli block into an array of possible Visual stimuli the
participant can access, with each Visual stimuli block being attributed a series of potential interaction,
from 0 to n according to what suits it. We illustrate a potential update of the SFNCS in Fig. 7.1.
Another point to consider for future work to include interaction into the SFNCS would be how to
characterize the interactions available to the users, as different sets of visualizations can potentially
have their own sets of interactions.
Furthermore, we suspect that communication of interactions records are likely to make valuable
contributions, but complex to communicate with potentially different sets of visual stimuli.

Fig. 7.1 Potential approach to consider the inclusion of characterizations of interactions for future
iterations of the SFNCS. The Interaction block has arrows directed towards the Data and Visual Stimuli
blocks, indicating the range of elements participants could potentially modify while participating in
studies.

7.3.4 Characterization of results analysis

Selecting the methods to analyse results from studies is a step that is to be taken prior to running
them. The range of potentially valid analytical methods is dependent of the type of information
collected from participants - the details of the Responses block e.g. whether these are nominal, ordinal,
numerical, spatial, text-based, or whether researchers are interested in their precision, accuracy while
performing tasks with baselines, participants’ perception, trust or understanding of the visualizations,
data, and tasks asked of them. Relations between these elements and their characteristics are necessary
to select analytical approaches that can be considered valid.

We consider that the SFNCS could be enhanced by a formal characterization of methods to
analyse results from studies. Similarly to other blocks of the SFNCS, we consider an Analysis block,
connected to the Responses one, and as other blocks of the SFNCS, it is composed of a hierarchy of
blocks.
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Fig. 7.2 Potential approach to characterize results analysis by extending the framework.

Our approach is the result of the reflections about the separation between measurement and
judgement to characterize information, as discussed previously in section 4.4.4. While we consider
that the separation of information is not binary but composed of nuances dependent of sum of elements
that have to be considered, discussions about results analysis is often classified as quantitative or
qualitative. We thus consider these two elements as characterization blocks of the highest level of
abstraction to categorize approaches to analyse results.

For quantitative studies, we considered that their characterization should be whether the result
process follows a Frequentist or a Bayesian methodology, as they are the most used for results
analysis [30] of quantitative results analysis. Other approaches could be considered as blocks, such
as likelihood approaches [209], but as they are not as commonly used [30], we consider statisticians
with a higher level of competence should be the ones to consider whether such addition would be
beneficial.
There are numerous qualitative data analysis methods. Justifying a selection of the nuances of each
method is beyond the scope of this thesis, but as we aimed to consider a potentially valuable approach
to the enriched SFNCS, we focused on methods that are commonly used. Carrera et al. [53] presented
a comprehensive list of Qualitative methods of data analysis in psychology. While the subject differs
from ours, the methods can still be relevant in our field and in showing the flexibility of SFNCS, we
list the 6 methods most used in publications as reported in their work [53] :

• Qualitative content analysis.

• Narrative analysis.

• Discourse analysis.

• Thematic analysis.

• Grounded theory.

• Interpretive phenomenological analysis (IPA).
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Following the characterizations previously discussed, we illustrate a potential representation of
the extended SFNCS in Fig. 7.2.

7.3.5 Future usage of the SFNCS

We hope that the SFNCS can be used in the future for the development of further studies. The details
of the Judgement study are discussed in section 6.8, but within this section we wish to consider more
variations on combinations of measurements and judgements. Our studies were set to only consider
one moving entity, displaying one quantitative attribute, one qualitative attribute and its trajectory,
with one condition over time. By increasing the number of elements presented to the user, the range
of tasks that can be evaluated becomes richer. The potential combinations of different categories with
different levels of subjectivity also opens up the door to interesting discussions about interpretation of
measurements impact over judgement according to various sets of controlled combinations of stimuli,
data, or tasks.

More categories

The taxonomy of tasks we use for the characterization of tasks, designed by Andrienko et al. [18],
is valuable, but precise definitions of relations that can be searched for, such as patterns, could help
to clarify comparison between different studies evaluating visualization designs. An interesting
contribution that could be used to enrich the taxonomy is the review of research carried by Dodge
et al. [72] which discusses classifications of movement patterns.

More entities displayed

As emphasized by the ’N’ in SFNCS, the framework can be used to characterize numerous elements.
The Question block is set with the Form, Identifications, and Conditions, with the latter two being
potentially non-existent or a potentially infinite number of elements, as the ’N’ notation commonly
indicates in equations writing.
While it must be nuanced that the numbers N that can be used for the Identifications and Conditions
blocks are theoretically infinite, we do expect that there will be a certain threshold beyond which
usefulness will be lost, and before that a certain threshold beyond which neither clear communi-
cation nor understanding of the question can be achieved. Future studies that vary the numbers of
identifications and conditions will be interesting to enrich the corpus of understanding concerning
strengths and weaknesses of visualizations for the tasks assessed, but they also present an opportunity
to consider formation of sentences with many elements to communicate while aiming for clarity of
communication between researchers and participants doing the studies they set up.



7.3 Future work 217

7.3.6 Alternative designs to evaluate

The Gradual ATS-ATS Mask

As discussed in section 4.4.4,the SFNCS allows for the characterization of information as being a
measurement or a judgement. We first ran studies set to ask questions about judgement over visualiza-
tion depicting measurements, discussed in section 6. One limitation of the ATS-ATS Mask is that it
can only account for queries based on information which can be directly set into a query similar to a
database-system, be it quantitative, qualitative, or spatial. By incorporating selections like a database
query would, the ATS-ATS Mask presents a limitation: participants who interact and enter a query
value wrong can hinder their analysis by disregarding data very close to matching their interest, but is
rejected by the binary filter of the query. This limitation was discussed informally by the authors of
the Time Mask [20]. Our studies discussed in chapter 6 were set to first evaluate the A-ATS using a
binary filter and displaying the output as returned by the query.
When exploring a data set, it is likely that the precise values which have to be queried to discover
new insights are unknown. We thus consider that extending queries output beyond data points fitting
binary queries would greatly increase the use of the ATS-ATS Mask.
Thus, one design approach we wish to develop and assess in future work is a variation of the ATS-ATS
Mask where the masks overlay vary according to a degree of query match, as opposite to a binary
query match as it is currently implemented, i.e. a Mask which indicates a data point is close or far
from the value queried rather than a binary match. Indicating the importance of the difference could
be done with Masks with visual parameters, e.g. opacity with its value related to the difference to the
query entered. Such visualization design could be named a Gradual ATS-ATS Mask. The concept
of the Gradual ATS-ATS Mask would be to use adapt colour parameters according to data points
matching the query, but take into account the difference between the value of the query and the one of
the data point.

The Distinctive ATS-ATS Mask

Another design variation that could be interesting to consider would be alternative designs to consider
the display of separate queries and integrate them into the ATS-ATS Mask. As the system currently
is, it aggregates several queries into one mask. Providing unique colours for different queries was
implemented in the time mask by Andrienko et al. [11], but that approach will not scale up beyond
a number for which differentiating the unique hues would be simple. One approach we considered,
during the premises of the studies set ups, was to convey time ranges belonging to spaces by using a
structure similar to UpSet [152]. Icons whose design would be inspired by UpSet could be juxtaposed
to time ranges accordingly to each combination of query matches. Such design approach could be
named a Distinctive ATS-ATS Mask.



7.4 Conclusion 218

7.3.7 Population of results comparison and extensions

The SFNCS is designed as a tool that allows rich characterization of many elements composing the
blocks Task, Question, Data, Visual Stimuli, and Response. We are aware that the relative complexity
of the framework, with numerous elements that can be categorized, induces the risk to be unappealing
to researchers that wish for a fast approach to consider their design ideas in respect to previous
contributions. One approach we believe could help to simplify the adoption of the SFNCS would
be to generate an online software with its embedded database that could be used to query previous
contributions according to selected criteria. We found inspirations in websites such as the survey from
Schottler et al. [225] present online at the following address: https://geonetworks.github.io. One
element that requires further reflection is whether the scope of the contributions should be limited,
and if so, how. Limitations of the SFNCS are discussed in section 7.2 and indicate that due to the high
level of abstraction of the SFNCS, the scope of contributions that can be incorporated is large, albeit
modifications of the components of its block might have to be updated accordingly. We consider
that, if a survey of previous contributions were to be generated and uploaded into an online queryable
database, its first elements should discuss movement and event data, as the framework to characterize
tasks of [12] is focused on analysing movement.
A modification that would be necessary to extend the scope of the SFNCS would be to provide a
richer method to characterize visualization techniques, as the one from Andrienko et al. [12] is solely
designed for movement and event data. Visualizations that are currently difficult to characterize
include, for example, node-link diagrams and Sankey diagrams. The model from Andrienko et al. [12]
would have to encode more information about angles of drawn elements, and be more precise on
inclusion of drawn elements within others.

7.4 Conclusion

Extending Card’s model [51], we developed the SFNCS and used it to characterize blocks of studies
set to evaluate efficacy of multivariate spatio-temporal data analysis, populating these blocks with
either blocks of previous frameworks [12, 201, 18] or our own characterizations for the novel blocks
Question and Response.

The studies were set with a novel approach consisting in characterizing the information presented
to the user according to its potential resulting perceived complexity. Part of the information char-
acterization included novel distinctions of Judgement and Measurement, as part of an approach to
allow different levels of abstraction to coexist in classifications and thus compare contributions with
different approaches.
The work presented is discussing only a part of the scope that our contributions can characterize. Our
approach addresses an ensemble of gaps to simplify characterization and comparisons of contributions
for studies about analysis of multivariate spatio-temporal data.

https://geonetworks.github.io
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We hope that the framework presented here will contribute towards ongoing discussion of the
quality, nature, effectiveness and scope for developing and using information visualization methods.



Glossary

This glossary defines some of the terms used through this thesis. They are specific to the context of
this thesis. It was written to reduce risks of ambiguity due to different interpretations.
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Term Definition
Behaviour Action or reaction of an individual, response to a stimulus
Comparison Evaluation of differences between two or more items
Condition Factor or circumstance used to generate a selection
Confidence Interval (CI) The mean of an estimate, plus or minus the variation in the

estimate
Data Collection of information stored in a computing environment,

encoded in different ways, such as texts, numbers or images.
Elementary Characterization relating to the direct level of analysis neces-

sary for comprehension
Event Phenomenon identifiable by the time of its occurrence
Location Geographical point that relates to the analysis of moving

entities
Mark Visual element composing a visualization
Moving entity Object or organism with the ability of movement over a

physical space
Outlier Element that is defined by characteristics judged as strongly

different from the others
Pattern Characterization of features of a behaviour in a parsimonious

manner
Prediction Estimation of a future value that can not be predicted with

certainty
Space Geographical area that relates to the analysis of moving enti-

ties
Synoptic Characterization relating to the necessity to consider infor-

mation as a whole for comprehension
Task Activity performed to gain insight based on the information

collected in the data
Time Measurement used to order series of events, commonly de-

fined by its units such as seconds, minutes, hours, days,
weeks, months, years.

Trajectory Series of recorded locations and time records related to a
moving entity

Visualization Representation of data in a visual form, with different levels
of abstraction possible depending of needs assessed by the
designer



References

[1] Agarwal, P. K., Fox, K., Munagala, K., Nath, A., Pan, J., and Taylor, E. (2018a). Subtrajectory
clustering. Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems - SIGMOD/PODS 18.

[2] Agarwal, P. K., Fox, K., Munagala, K., Nath, A., Pan, J., and Taylor, E. (2018b). Subtrajectory
clustering: Models and algorithms. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems. ACM.

[3] Aigner, W., Hoffmann, S., and Rind, A. (2013). Evalbench: A software library for visualization
evaluation. In Computer Graphics Forum, volume 32, pages 41–50. Wiley Online Library.

[4] Aigner, W., Miksch, S., Schumann, H., and Tominski, C. (2011). Visualization of time-oriented
data. Springer Science & Business Media.

[5] Al-Dohuki, S., Wu, Y., Kamw, F., Yang, J., Li, X., Zhao, Y., Ye, X., Chen, W., Ma, C., and
Wang, F. (2017). Semantictraj: A new approach to interacting with massive taxi trajectories. IEEE
transactions on visualization and computer graphics, 23(1).

[6] Allain, K., Turkay, C., and Dykes, J. (2019). Towards a what-why-how taxonomy of trajectories
in visualization research.

[7] Altman, D. G. and Bland, J. M. (2011). How to obtain the confidence interval from a p value.
Bmj, 343.

[8] Amar, R., Eagan, J., and Stasko, J. (2005). Low-level components of analytic activity in
information visualization. In IEEE Symposium on Information Visualization, 2005. INFOVIS 2005.,
pages 111–117. IEEE.

[9] Amar, R. A. and Stasko, J. T. (2005). Knowledge precepts for design and evaluation of information
visualizations. IEEE Transactions on Visualization and Computer Graphics, 11(4):432–442.

[10] Andrienko, G. and Andrienko, N. (2008). Spatio-temporal aggregation for visual analysis of
movements. In 2008 IEEE symposium on visual analytics science and technology, pages 51–58.
IEEE.

[11] Andrienko, G., Andrienko, N., Anzer, G., Bauer, P., Budziak, G., Fuchs, G., Hecker, D., Weber,
H., and Wrobel, S. (2019). Constructing spaces and times for tactical analysis in football. IEEE
transactions on visualization and computer graphics.

[12] Andrienko, G., Andrienko, N., Bak, P., Keim, D., Kisilevich, S., and Wrobel, S. (2011a). A
conceptual framework and taxonomy of techniques for analyzing movement. Journal of Visual
Languages & Computing, 22(3):213–232.

[13] Andrienko, G., Andrienko, N., and Fuchs, G. (2016a). Understanding movement data quality.
Journal of location Based services, 10(1):31–46.

[14] Andrienko, G., Andrienko, N., Fuchs, G., and Garcia, J. M. C. (2017a). Clustering trajectories
by relevant parts for air traffic analysis. IEEE transactions on visualization and computer graphics,
24(1):34–44.



References 223

[15] Andrienko, G., Andrienko, N., and Heurich, M. (2011b). An event-based conceptual model for
context-aware movement analysis. International Journal of Geographical Information Science,
25(9):1347–1370.

[16] Andrienko, G., Andrienko, N., Hurter, C., Rinzivillo, S., and Wrobel, S. (2011c). From
movement tracks through events to places: Extracting and characterizing significant places from
mobility data. In 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).
IEEE.

[17] Andrienko, G., Andrienko, N., Hurter, C., Rinzivillo, S., and Wrobel, S. (2012a). Scalable
analysis of movement data for extracting and exploring significant places. IEEE transactions on
visualization and computer graphics, 19(7):1078–1094.

[18] Andrienko, N. and Andrienko, G. (2006). Exploratory analysis of spatial and temporal data: a
systematic approach. Springer Science & Business Media.

[19] Andrienko, N. and Andrienko, G. (2013). Visual analytics of movement: An overview of
methods, tools and procedures. Information Visualization, 12(1):3–24.

[20] Andrienko, N., Andrienko, G., Camossi, E., Claramunt, C., Garcia, J. M. C., Fuchs, G., Hadzagic,
M., Jousselme, A.-L., Ray, C., Scarlatti, D., et al. (2017b). Visual exploration of movement and
event data with interactive time masks. Visual Informatics, 1(1):25–39.

[21] Andrienko, N., Andrienko, G., Garcia, J. M. C., and Scarlatti, D. (2018). Analysis of flight
variability: a systematic approach. IEEE transactions on visualization and computer graphics,
25(1):54–64.

[22] Andrienko, N., Andrienko, G., and Gatalsky, P. (2000). Supporting visual exploration of object
movement. In Proceedings of the working conference on Advanced visual interfaces. ACM.

[23] Andrienko, N., Andrienko, G., and Gatalsky, P. (2003). Exploratory spatio-temporal visualiza-
tion: an analytical review. Journal of Visual Languages & Computing, 14(6):503–541.

[24] Andrienko, N., Andrienko, G., and Rinzivillo, S. (2016b). Leveraging spatial abstraction in
traffic analysis and forecasting with visual analytics. Information Systems, 57:172–194.

[25] Andrienko, N., Andrienko, G., Stange, H., Liebig, T., and Hecker, D. (2012b). Visual analytics
for understanding spatial situations from episodic movement data. KI-Künstliche Intelligenz,
26(3):241–251.

[26] Aubin, J.-P. and Frankowska, H. (2009). Set-valued analysis. Springer Science & Business
Media.

[27] Bach, B., Dragicevic, P., Archambault, D., Hurter, C., and Carpendale, S. (2017a). A descriptive
framework for temporal data visualizations based on generalized space-time cubes. In Computer
Graphics Forum, volume 36, pages 36–61. Wiley Online Library.

[28] Bach, B., Sicat, R., Beyer, J., Cordeil, M., and Pfister, H. (2017b). The hologram in my hand:
How effective is interactive exploration of 3d visualizations in immersive tangible augmented
reality? IEEE transactions on visualization and computer graphics, 24(1):457–467.

[29] Bastien, J. C. (2010). Usability testing: a review of some methodological and technical aspects
of the method. International journal of medical informatics, 79(4):e18–e23.

[30] Bayarri, M. J. and Berger, J. O. (2004). The interplay of bayesian and frequentist analysis.
Statistical Science, 19(1):58–80.

[31] Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2014). The state of the art in visualizing
dynamic graphs. EuroVis (STARs).



References 224

[32] Bergmann, T., Balzer, M., Hopp, T., van de Kamp, T., Kopmann, A., Jerome, N. T., and Zapf,
M. (2017). Inspiration from vr gaming technology: Deep immersion and realistic interaction for
scientific visualization. In VISIGRAPP (3: IVAPP), pages 330–334.

[33] Bertin, J. (1983). Semiology of graphics; diagrams networks maps. Technical report.

[34] Blok, C., Köbben, B., Cheng, T., and Kuterema, A. A. (1999). Visualization of relationships be-
tween spatial patterns in time by cartographic animation. Cartography and Geographic Information
Science, 26(2):139–151.

[35] Boas, T. C., Christenson, D. P., and Glick, D. M. (2020). Recruiting large online samples in the
united states and india: Facebook, mechanical turk, and qualtrics. Political Science Research and
Methods, 8(2):232–250.

[36] Bogorny, V., Renso, C., Aquino, A. R. D., Siqueira, F. D. L., and Alvares, L. O. (2013). Constant
- a conceptual data model for semantic trajectories of moving objects. Transactions in GIS, 18(1).

[37] Bonham, C., Noyvirt, A., Tsalamanis, I., and Williams, S. (2018). Analysing port and shipping
operations using big data.

[38] Borgo, R., Lee, B., Bach, B., Fabrikant, S., Jianu, R., Kerren, A., Kobourov, S., McGee, F.,
Micallef, L., von Landesberger, T., et al. (2017). Crowdsourcing for information visualization:
Promises and pitfalls. In Evaluation in the Crowd. Crowdsourcing and Human-Centered Exper-
iments: Dagstuhl Seminar 15481, Dagstuhl Castle, Germany, November 22–27, 2015, Revised
Contributions, pages 96–138. Springer.

[39] Borkin, M., Gajos, K., Peters, A., Mitsouras, D., Melchionna, S., Rybicki, F., Feldman, C., and
Pfister, H. (2011). Evaluation of artery visualizations for heart disease diagnosis. IEEE transactions
on visualization and computer graphics, 17(12):2479–2488.

[40] Brehmer, M., Lee, B., Bach, B., Riche, N. H., and Munzner, T. (2016). Timelines revisited: A
design space and considerations for expressive storytelling. IEEE transactions on visualization
and computer graphics, 23(9):2151–2164.

[41] Brehmer, M. and Munzner, T. (2013). A multi-level typology of abstract visualization tasks.
IEEE Transactions on Visualization and Computer Graphics, 19(12).

[42] Brehmer, M. M. (2016). Why visualization?: task abstraction for analysis and design. PhD
thesis, University of British Columbia.

[43] Bri Cho, J. L. (2021). Data quality at prolific - part 2: Naivety and engagement. https:
//blog.prolific.co/data-quality-at-prolific-part-2-naivety-and-engagement/. [Online; accessed 24-
Nov-2021].

[44] Brusilovsky, P., Grady, J., Spring, M., and Lee, C.-H. (2006). What should be visualized? faculty
perception of priority topics for program visualization. ACM SIGCSE Bulletin, 38(2):44–48.

[45] Buschmann, S., Trapp, M., and Dollner, J. (2014a). Real-time animated visualization of massive
air-traffic trajectories. 2014 International Conference on Cyberworlds.

[46] Buschmann, S., Trapp, M., and Döllner, J. (2016). Animated visualization of spatial–temporal
trajectory data for air-traffic analysis. The Visual Computer, 32(3).

[47] Buschmann, S., Trapp, M., Lühne, P., and Döllner, J. (2014b). Hardware-accelerated attribute
mapping for interactive visualization of complex 3d trajectories. In 2014 International Conference
on Information Visualization Theory and Applications (IVAPP). IEEE.

[48] Cai, Z., Chen, M., Zhao, H., Zhao, Y., Zhou, F., and Zhang, K. (2014). Vast 2014 mini-challenge
1: Meat—multiview event analysis tool of diverse data sources. In 2014 IEEE Conference on
Visual Analytics Science and Technology (VAST), pages 315–317. IEEE.

https://blog.prolific.co/data-quality-at-prolific-part-2-naivety-and-engagement/
https://blog.prolific.co/data-quality-at-prolific-part-2-naivety-and-engagement/


References 225

[49] Cao, N., Gotz, D., Sun, J., and Qu, H. (2011). Dicon: Interactive visual analysis of multidimen-
sional clusters. IEEE transactions on visualization and computer graphics, 17(12):2581–2590.

[50] Cao, N., Sun, J., Lin, Y.-R., Gotz, D., Liu, S., and Qu, H. (2010). Facetatlas: Multifaceted
visualization for rich text corpora. IEEE transactions on visualization and computer graphics,
16(6):1172–1181.

[51] Card, M. (1999). Readings in information visualization: using vision to think. Morgan
Kaufmann.

[52] Carpendale, S. (2008). Evaluating information visualizations. In Information visualization,
pages 19–45. Springer.

[53] Carrera-Fernandez, M. J., Guardia-Olmos, J., and Peró-Cebollero, M. (2014). Qualitative
methods of data analysis in psychology: An analysis of the literature. Qualitative Research,
14(1):20–36.

[54] Carver, S., Watson, A., Waters, T., Matt, R., Gunderson, K., and Davis, B. (2009). Developing
computer-based participatory approaches to mapping landscape values for landscape and resource
management. In Planning support systems best practice and new methods, pages 431–448.
Springer.

[55] Chang, and Zhou, B. (2009). Multi-granularity visualization of trajectory clusters using
sub-trajectory clustering. 2009 IEEE International Conference on Data Mining Workshops.

[56] Charalambides, N. (2021). We recently went viral on tiktok - here’s what we learned. https:
//blog.prolific.co/we-recently-went-viral-on-tiktok-heres-what-we-learned/. [Online; accessed
24-Nov-2021].

[57] Chen, S., Andrienko, G. L., Andrienko, N. V., Doulkeridis, C., and Koumparos, A. (2019).
Contextualized analysis of movement events. In EuroVA@ EuroVis, pages 49–53.

[58] Chen, W., Huang, Z., Wu, F., Zhu, M., Guan, H., and Maciejewski, R. (2018). Vaud: A visual
analysis approach for exploring spatio-temporal urban data. IEEE transactions on visualization
and computer graphics, 24(9).

[59] Chen, Y.-C., Wang, Y.-S., Lin, W.-C., Huang, W.-X., and Lin, I.-C. (2015). Interactive visual
analysis for vehicle detector data. In Computer Graphics Forum, volume 34, pages 171–180. Wiley
Online Library.

[60] Chi, E. H.-h. (2000). A taxonomy of visualization techniques using the data state reference
model. In IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings, pages
69–75. IEEE.

[61] Chu, D., Sheets, D. A., Zhao, Y., Wu, Y., Yang, J., Zheng, M., and Chen, G. (2014). Visualizing
hidden themes of taxi movement with semantic transformation. 2014 IEEE Pacific Visualization
Symposium.

[62] Clarkson, E., Desai, K., and Foley, J. (2009). Resultmaps: Visualization for search interfaces.
IEEE Transactions on Visualization and Computer Graphics, 15(6):1057–1064.

[63] Cleveland, W. S. and McGill, R. (1984). Graphical perception: Theory, experimentation,
and application to the development of graphical methods. Journal of the American statistical
association, 79(387):531–554.

[64] Cook, K., Grinstein, G., and Whiting, M. (2014). The vast challenge: History, scope, and
outcomes: An introduction to the special issue.

[65] Cox, J., House, D., and Lindell, M. (2013). Visualizing uncertainty in predicted hurricane tracks.
International Journal for Uncertainty Quantification, 3(2).

https://blog.prolific.co/we-recently-went-viral-on-tiktok-heres-what-we-learned/
https://blog.prolific.co/we-recently-went-viral-on-tiktok-heres-what-we-learned/


References 226

[66] Crampton, J. W. (2002). Interactivity types in geographic visualization. Cartography and
geographic information science, 29(2):85–98.

[67] Cummings, M. (2017). Automation bias in intelligent time critical decision support systems.
Decision Making in Aviation.

[68] Daly, J., Kellehear, A., and Gliksman, M. (1997). The public health researcher: A methodologi-
cal guide. Oxford University Press.

[69] Deitrick, S. (2013). Uncertain decisions and continuous spaces: Outcomes spaces and uncertainty
visualization. In Understanding Different Geographies, pages 117–134. Springer.

[70] Deitrick, S. and Wentz, E. A. (2015). Developing implicit uncertainty visualization methods
motivated by theories in decision science. Annals of the Association of American Geographers,
105(3):531–551.

[71] Dmytrów, K., Gdakowicz, A., and Putek-Szeląg, E. (2020). Methods of analyzing qualitative
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PLEXITY , factored by FOCUS and MASK COMPLEXITY . With the FOCUS being
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mances when the DATA COMPLEXITY is Medium. Trend of difficulty do not follow
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Figure 1: Our WHAT-WHY-HOW taxonomy of trajectories visualization research illustrated using the Bertifier technique [PDF14]. The
documents are ordered through Bertifier’s visual similarity algorithm that makes patterns easier to discern. Find the data here: https:
//bit.ly/2vyoSoQ. The blue column indicates a document discussed as a populating example here:https://bit.ly/3047x5l

Abstract
Effective analysis of movement often requires a comprehensive approach where computational and visual methods are combined
to address a wide variety of tasks involving movers with diverse characteristics. In order to help the process of designing
effective methods for a wide range of movement analysis cases, we develop a provisional taxonomy that links what Brehmer et
al. [BM13] term statements of WHY-WHAT-HOW with tasks, types of movers, context and methods used to compute or visualize
data. Within this document we present the origin of this taxonomy, the process we followed to populate it, discuss the novel
categories within it, and finally use it to explore relationships between elements of trajectory analysis. Our main contribution is
to provide a new means of connecting elements of WHY-WHAT-HOW when analysing trajectories.

1. Introduction

As capacity to collect data records of movements has increased,
many methods and tools have been developed in an effort to analyse
movement [AA13]. Brehmer et al. [BM13] introduced a typology
that links WHY-WHAT-HOW for the analysis of a field. This model
can be used to identify the data, tasks and idioms being employed.
It provides “a scaffold to think systematically about design space”
[BM13] and enables us to develop a taxonomy that may help us
learn about current practice, guide analysts and designers and iden-
tify gaps for research and design. This document uses the model
developed by Brehmer et al. [BM13] to link WHAT-WHY-HOW

for the analysis of movement. The result is a taxonomy presented
in Figure 1, with 54 documents populating it. Two existing works
are relevant to our proposed taxonomy: the conceptual framework
by Andrienko et al. [AAB∗11] that presents a series of approaches
to analyse spatio-temporal data by linking low-level analysis tasks
and visualisation methods (WHY-HOW); and the taxonomy devel-
oped by Mazimpaka et al. [MT16] that details the types of op-
erations that can be applied to support certain higher-level tasks,
provides suggestions for mining methods, and to a lesser extent,
visualisation methods (WHY-HOW). Both those papers link tasks
and methods to analyse movement and discuss different movers

c© 2019 The Author(s)
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through examples but none attempt to identify mappings between
tasks, methods and movers. Their work provides the baseline tax-
onomy that we build upon. Our scope for movers is the same as
theirs, i.e. a mover with a single position, sized at a “human scale”,
e.g. natural phenomena, animal, urban, naval and aerial mover. In
an effort to understand how types of movers and context impact tra-
jectory analysis, we enlarged the scope of the baseline taxonomy
by adding attributes of elements belonging to the WHAT aspect of
our taxonomy. We first produced a taxonomy populated by papers
selected following a convenience sampling [EMA16] approach in
order to find categories which needed modifications. The conve-
nience sample was useful to indicate issues with the categories of
the taxonomy, but was neither systematic nor reproducible, thus
we restarted populating the taxonomy, following this approach: (1)
Search on Scopus for all conference papers and journals articles
that discuss “trajector(y/ies)”,“visuali(s/z)ation” and exclude key-
words that were representative of notions that fell out of our scope,
e.g. "trajectories of eye movement". (2) Remove posters, short pa-
pers and VAST challenges to ensure contributions at a full paper
level. (3) Remove the papers outside of our scope and use the re-
maining ones to populate the taxonomy. The categories WHY and
HOW within this taxonomy are not described in detail within this
work due to their lack of novelty, but further information can be
found here: https://bit.ly/2V7iUWt. In this document we dis-
cuss the elements composing WHAT, reflect upon the resulting tax-
onomy, and conclude and discuss potential future work.

2. WHAT-WHY-HOW Taxonomy & Reflections

Analysis of visualisation is influenced by knowledge the user pos-
sesses about the elements being part of it [MGM19]. Our moti-
vation to develop the attributes composing the elements of WHAT
was based on documents mentioning their importance during the
analysis of trajectories. One case is Bonham et al. [BNTW18] dis-
cussing explanations of vessels trajectories that appear counter-
intuitive unless rules they have to abide to and whether they are the
ones deciding the trajectories undertaken are known. Another case
is Andrienko et el. [AAGS19a] who discuss flight variability and
underlines the importance of context such as weather. Brehmer et
al. [BM13] acknowledge that “WHAT” comprises a visualisation
isn’t agreed upon within the literature and advocate for a “bring
your own what” mentality. Building upon our baseline taxonomy,
we designed the following categories of WHAT:
Mover’s decision capabilities (MDC): The mover’s decision ca-
pabilities is a category that indicates whether the mover is the one
deciding for the trajectory they follow. The mover’s decision ca-
pability is useful to assess if a trajectory is an error, if the mover
possessed the ability to take another trajectory, or the existence of
potential interactions in between several movers.
MDC1 - Natural movers: this category describes objects where the
movement will not undergo modifications due to the will or action
of a sentient being, e.g. storms or glaciers. - MDC2 - Independent
movers: Independent movers are responsible for deciding their own
movement, e.g. a pedestrian or a car being driven by an occupant.
- MDC3 - Dependent movers: Dependent movers are not making
the decisions for the movement they are undergoing, e.g. a plane
following direction given by an agent outside.
Levels of constraints (C): This section presents categories that de-

fine how constrained a mover is, i.e. how many rules the mover has
to abide to. This notion is a continuum rather than a series of pre-
cisely defined ordered categories, and this notion can also change
depending on the context, e.g. a car is semi-constrained, limited
normally by legal constraints, but has access to a range of veloci-
ties and several directions. It can however be forced into a deviation
in various ways: when being towed, or when under instruction by
an external person, making it entirely constrained exceptionally.
C1 - Zero constraints: whereby the mover is able to go in any direc-
tion within its physical capability so to reach its destination. - C2
- Semi constrained: whereby the mover has sets of possibilities for
trajectories, but is not free to take all of them. - C3 - Entirely con-
strained: whereby movers are unable to move in ways other than
those predefined, e.g. trains are forced to move on rail roads, and
are unable to deviate from the planned routes.
Contextual data (CTXT): This category is used to label documents
which display contextual data different to movement, e.g. display
of metadata of points of interest that can help to understand the rea-
son behind the time a mover stops at a specific location.

Reflecting on the results: Through the development of the taxon-
omy we made a number of observations, some of which can be seen
in the taxonomy table as well, and we reflect on some here. Tasks
‘Characterisation of locations (T1)’ and ‘Characterisation of mov-
ing objects (T3)’ are mainly discussed while using the visualisation
method ‘Spatial aspect of trajectories (Vm2)’, and most movers are
‘Independent movers (MDC2)’, but there is more variety on level of
constraints with the task ‘Characterisation of moving objects (T3)’
which might indicate this task being researched within more do-
mains, implying more types of movers. Additionally, most cases
of ‘Context (CTXT)’ are in documents discussing (T1), indicating
the usefulness of displaying contextual data for providing richer
semantic context. Still, the over-representation of ‘(MDC2)’ could
indicate a lack of diversity in our population, making the emer-
gence of strong links less likely. Furthermore, all cases of ‘Entirely
constrained (C3)’ are linked to ‘Dependent movers (MDC3)’, po-
tentially indicating combinations of our WHAT elements which are
not separable, and thus flaws in our structure.

3. Conclusion

In this poster we introduce a taxonomy that links particular com-
ponents of WHAT to a WHY-HOW structure of trajectory analysis.
The taxonomy is populated with academic papers that involve the
visualization of trajectories, and draws links to help navigate the
design space in trajectory analysis. In the current form of the tax-
onomy these links are limited, likely due to particular elements of
WHAT being inseparable. Our taxonomy is an in-progress frame-
work that is open for changes to incorporate alternative WHAT
structures. Potential modifications could be merging (MDC) and
(C) into one dimension. This dimension would indicate how likely
a mover is to follow a trajectory that appears illogical or difficult to
interpret, unless provided with information about its intentions or
rules it’s abiding to. Additional categories could be physical char-
acteristics of trajectories, e.g. sinuosity, granularity, and attributes
of locations, and whether those are constant, e.g. elevation of area,
or time-dependent, e.g. precipitation.

c© 2019 The Author(s)
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Appendix B

The design workshop

This appendix is set to illustrate the drafts and notes taken by participants of our workshop to investi-
gate visualization designs appropriate for the ATS-ATS Mask. Discussions about our interpretation of
those drafts is present in section 5.
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