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Abstract. The quantum-behaved particle swarm optimization (QPSO) algorithm, a variant of particle swarm optimization 
(PSO), has been proven to be an effective tool to solve various of optimization problems. However, like other PSO variants, 
it often suffers a premature convergence, especially when solving complex optimization problems. Considering this issue, this 
paper proposes a hybrid QPSO with dynamic grouping searching strategy, named QPSO-DGS. During the search process, 
the particle swarm is dynamically grouped into two subpopulations, which are assigned to implement the exploration and 
exploitation search, respectively. In each subpopulation, a comprehensive learning strategy is used for each particle to adjust its 
personal best position with a certain probability. Besides, a modifed opposition-based computation is employed to improve the 
swarm diversity. The experimental comparison is conducted between the QPSO-DGS and other seven state-of-art PSO variants 
on the CEC’2013 test suit. The experimental results show that QPSO-DGS has a promising performance in terms of the solution 
accuracy and the convergence speed on the majority of these test functions, and especially on multimodal problems. 

Keywords: Quantum-behaved particle swarm optimization, premature convergence, exploration, exploitation 

1. Introduction 

In the past decades, many swarm intelligence algorithms have been proposed to solve complex bench-
mark and real-world optimization problems, such as particle swarm optimization (PSO) [1], artifcial 
bee colony (ABC) [2], [3], [4], ant colony optimization (ACO) [5], grey wolf optimization (GWO) [6], 
[7], [8], cuckoo search (CS) [9], etc. PSO is one of the most popular algorithms due to its simple im-
plementation and effectiveness, and has been widely applied in many real-world optimization problems, 
such as fexible job shop scheduling [10], path planning [11], circuit design [12], vehicle routing [13], 
feature selection [14], [15], [16], data clustering [17] and so on. 

In PSO, each individual in the population, called a particle, represents a potential solution to an opti-
mization problem. During the optimization process, particles adjust their fying trajectories by learning 
from their own experience and other partners’ experience which can help them fy towards a better search 
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space and quickly converge to the optimum. However, the algorithm may suffer from the problem of pre-
mature convergence which means it gets trapped into the local optimum easily especially when solving 
complicated problems. This is because that the best experience of the swarm (i.e., the global best) is 
shared amongst all particles, which can lead the particles to gather around the global best. It would be-
come diffcult for the particles to escape from the local optimum if the global best is located near it. On 
the consideration of this problem, a lot of studies have been done and different variants of PSO have 
been put forward in the past decades. For example, Shi and Eberhart [18] frst introduced the inertia 
weight in the velocity update equation of PSO in order to balance the exploration behavior of global 
search and the exploitation behavior of local search. Clerc and Kennedy [19] then added a constriction 
factor to control the convergence tendency of the particle swarm. Mendes et al. [20] developed a fully in-
formed PSO (FIPS) algorithm in which information from a fully connected neighborhood is used. Later 
in 2006, Liang et al. [21] proposed a comprehensive learning PSO (CLPSO) for global optimization of 
multimodal functions, in which the velocity update of a particle is guided by the best information from 
all other particles. Zhan et al. [22] developed the orthogonal learning strategy to guide particles to fy 
in better directions by constructing an effcient exemplar. Nasir et al. [23] proposed a dynamic neigh-
borhood learning particle swarm optimizer (DNLPSO), which modifed the learning strategy in CLPSO 
and used it to generate exemplars from a predefned neighborhood, for the purpose of enhancing the ex-
plorative nature of the algorithm. In the same year, Li et al. [24] proposed a self-learning particle swarm 
optimizer, called SLPSO, in which a particle can adaptively adjust its search behavior during the search 
space. Specifcally, there were four different strategies in SLPSO guiding particles to converge to the 
current global best, exploit the area of a local optimum, jump out of a local optimum, and explore new 
promising areas. Particles can automatically choose an appropriate learning objective at an appropriate 
moment during the search process. Besides, there also are some other PSO variants proposed in recent 
years that have been proven to be effective in solving complex optimization problems[25], [26], [27], 
[28], [29], [30]. 

Quantum-behaved particle swarm optimization (QPSO), proposed by Sun et al. in 2004 [31], is a 
variant of PSO inspired by quantum mechanics and the trajectory analysis of PSO. Each particle in 
QPSO is assumed to have quantum behavior and is further assumed to be attracted by a quantum delta 
potential well centered on its local focus. Compared to PSO, QPSO has no velocity vectors for particles 
to update and needs fewer parameters to adjust, making it easier to implement. Besides, the mean best 
position employed in this algorithm enables the particles to be more intelligent and cooperative, and 
thus the global search ability is enhanced. Given these advantages, QPSO has been widely used in many 
optimization problems [32], [33], [34], [35]. Nevertheless, it still succumbs to the issue of converging 
too fast and falling into the local optimum when solving complex multimodal problems, just like other 
PSO variants. 

Based on the above analysis, in this paper, we proposed an improved QPSO with dynamic grouping 
searching strategy, named QPSO-DGS, in order to keep a good trade-off between exploration and ex-
ploitation. In this algorithm, the particle swarm is dynamically divided into two subgroups, and each 
subgroup is assigned to conduct the exploration and exploitation search, respectively. Each particle in 
each subgroup adjusts its own personal best position using a comprehensive learning method with a 
certain learning probability. Besides, a modifed opposition-based computation is used during the search 
process to maintain the swarm diversity and thus further enhance the performance of the proposed algo-
rithm. 

The rest of this paper is organized as follows. Section 2 gives a brief introduction of PSO and QPSO. 
Section 3 describes the details of our proposed QPSO-DGS algorithm. The experimental results and 
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analysis on several benchmark functions are presented in Section 4. Finally, the work is concluded in 
Section 5. 

2. Related work 

2.1. Particle swarm optimization 

Particle swarm optimization (PSO) is a population-based optimization technique originally developed 
by Kennedy and Eberhart in 1995 [1], which imitates the swarm behavior of birds’ focking. In PSO, 
each particle is treated as a potential solution to a given problem, and all particles follow their own 
experiences and the current optimal particle to fy through the solution space. 

In the PSO with N particles, each particle i(i = 1, . . . , N) has a position vector Xi = (Xi,1, . . . , Xi,D) 
and a velocity vector Vi = (Vi,1, . . . , Vi,D). D is the dimension of the search space. During each iteration t, 
the particle i in the swarm is updated according to its personal best (pbest) position Pi = (Pi,1, . . . , Pi,D) 
and the global best (gbest) position G = (G1, . . . , GD) found by the whole swarm. The update strategy 
is given in Eqs. (1) and (2). 

Vi, j(t + 1) = ωVi, j(t) + c1r1(Pi, j(t) − Xi, j(t)) + c2r2(G j(t) − Xi, j(t)) (1) 

Xi, j(t + 1) = Xi, j(t) + Vi, j(t + 1) (2) 

for i = 1, 2, ..., N; j = 1, 2, ..., D, where ω is the inertia weight, c1, c2 represent the cognitive learning 
and the social learning factors, respectively. r1, r2 are two random variables uniformly distributed on 
(0, 1). 

2.2. Quantum-behaved particle swarm optimization 

Quantum-behaved particle swarm optimization (QPSO) algorithm, a variant of PSO, was inspired by 
quantum mechanics and the trajectory analysis of PSO [19]. It utilizes a strategy based on a quantum 
delta potential well model to sample around the previous best points [31]. 

In the QPSO with N particles, each particle has a position vector Xi = (Xi,1, ..., Xi,D) and a personal 
best (pbest) position Pi = (Pi,1, ..., Pi,D). D is the dimension of the search space. During the iteration t, 
the position of particle i in the swarm is updated according to the following equation 

Xi, j(t + 1) = qi, j(t) ± α | C j(t) − Xi, j(t) | ·ln(1/ui, j(t)), (3) 

for j = 1, 2, ..., D, where ui, j is a random number distributed uniformly on (0, 1), qi = (qi,1, . . . , qi,D) is 
the local attractor of particle i, calculated by 

qi = ϕ · Pi + (1 − ϕ) · G, (4) 

ϕ is a random number distributed on (0, 1) uniformly, G = (G1, . . . , GD) is the global best (gbest) posi-
tion found by the whole particle swarm during the search process.The contraction-expansion coeffcient 
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α was designed to control the convergence speed of the QPSO algorithm. C is the mean of the personal 
best positions of all the particles, namely, the mbest position, and it can be calculated as below. 

N N N NX X X X1 1 1 1
C = Pi = ( Pi,1, Pi,2, ..., Pi,D) (5)

N N N N 
i=1 i=1 i=1 i=1 

Since it was frst introduced, some improved versions of QPSO have been reported. For example, in 
[32], Coelho proposed a variant of QPSO using Gaussian mutation (GQPSO) and applied it to con-
strained engineering problems. Sun et al. [36] proposed the QPSO with local attractor point subject to 
a Gaussian probability distribution (GAQPSO). Li et al. [37] presented a cooperative QPSO (CQPSO) 
using Monte Carlo method. In [38], the generalized space transformation search was employed in QPSO 
for population initialization and generation jumping. In [39], Bhatia et al. proposed a hybrid QPSO 
with Cauchy operator and natural selection mechanism (QPSO-CD) from evolutionary computations 
and claimed its outperformance in context of stability and convergence. Chen et al. [40] proposed an 
improved Gaussian distribution based QPSO and applied it to engineering shape design problems with 
multiple constraints. 

3. The proposed QPSO algorithm with dynamic grouping searching strategy 

In this section, the proposed QPSO algorithm with dynamic grouping searching strategy (QPSO-DGS) 
is described in detail. During the search process, the swarm is randomly divided into two subpopulations. 
For these subpopulations, the dynamic grouping searching strategy is introduced in this work for the 
purpose of maintaining a balance between exploration and exploitation. In addition, a new opposition-
based computation is periodically used to improve the swarm diversity and to increase the chance of 
fnding a solution close to the optimal one. Section 3.1 and Section 3.2 present this new opposition-based 
computation and the dynamic grouping searching strategy in detail, respectively. Then the framework of 
the proposed QPSO-DGS algorithm is illustrated in Section 3.3. 

3.1. A new opposition-based computation 

Opposition-based learning (OBL) [41] is a popular concept in computational intelligence, and has 
been successfully used in various metaheuristics to enhance their performance [42], [43], [44], [45], 
[46], [47]. Its main idea is to consider an estimate and its corresponding opposite estimate at the same 
time, so as to achieve a more accurate approximation to the current candidate solution [48]. Some basic 
defnitions of OBL are presented as follows. 

Opposite number [41]: Let x ∈ [a, b] be a real number. The opposite of x is defned by 

∗ x = a + b − x, (6) 

Opposite point [41]: Let X = (x1, x2, . . . , xD) be a point in a D-dimensional space, where 
x1, x2, . . . , xD ∈ R and x j ∈ [aj, bj], j = 1, 2, . . . , D. The opposite point X∗ = (x1 

∗ , x2 
∗ , . . . , x ∗ 

D) is de-
fned by 

∗ x j = aj + bj − x j, j = 1, 2, ..., D, (7) 
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Fig. 1. The OBL concept 

In this paper, we made a modifcation to the computation of the opposite solution in the OBL model, 
and used it during the search process in order to provide another chance for fnding a solution closer to 
the global best as well as to improve the swarm diversity. This modifed computation is stated as 

∗∗ x j = (aj + bj − x j) ∗ r1 ∗ ln(1/r2), (8) 

where a j, bj are respectively the lower and upper bounds of x j, which are obtained according to the 
minimal and the maximal values of the jth dimension of the current population. r1, r2 are two random 
numbers distributed uniformly on (0, 1). To better understand this computation, we make a further de-
scription here. Assuming that x j is the jth dimension of a particle, then its opposite location in the OBL 
model is x ∗ 

j , as illustrated in Fig.1. It can be seen that the locations of x j and x ∗ 
j are totally symmetric in 

[aj, bj]. After multiplying r1 and ln(1/r2), just as shown in Eq. (8), the location of x ∗∗ 
j would move to 

the one near or far away from x ∗ 
j . This, to some degree, would increase the randomness of the opposite 

locations, and would further enhance the possibility of fnding a promising candidate solution. Besides, 
the random number r1 is used here to adjust the movement scope of x ∗∗ 

j . As we know that the function 
y = 1n(1/x) is a decreasing function and that the value of y is larger than 1, if 0 < x < 0.37. This 
means that there would be a certain number of opposite solutions jumping out of the scope [aj, bj] if we 
only multiply by ln(1/r2). Therefore, the utilization of r1 in Eq. (8) could help the algorithm fnd more 
suitable opposite solutions within the scope. 

3.2. The dynamic grouping searching strategy 

As stated in Section 2, the movement of each particle in the canonical QPSO is infuenced by the local 
attractor and the mbest position. The local attractor attracts the particles to itself, and the mbest makes 
particles wait the lagged ones when they converge to the local attractor [31]. In short, the local attractor 
and the mbest position together make particles have strong ability of global search. Besides, according to 
the Eq. (4), the local attractor qi of particle i is produced by the mutual interaction between the personal 
best position Pi and the global best position G. The value of the random number ϕi can be regarded as 
the weight of the infuence that Pi has on the location of qi. Similarly, the value of 1 − ϕi represents the 
weight of the infuence that G has on the location of qi. If the value of ϕi is larger than that of 1 − ϕi, 
then the location of qi is decided mainly by the personal best position of particle i. In this case, most 
of particles in the swarm search in the vicinity of their own personal best positions, bringing relatively 
great swarm diversity. In contrast, if the value of ϕi is smaller than that of 1 − ϕi, then the location of qi 
is decided mainly by the best position found by the whole particle swarm. In this case, most of particles 
in the swarm move to and further exploit the area of this best position. Therefore, on the basis of the 
above considerations, we randomly divide the entire particle swarm into two groups with the same size, 
and reset the local attractor for each group. This procedure is illustrated in Algorithm 1. 
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Algorithm 1 Computing the local attractors 
1: // For group 1; 
2: for particle i in group 1 do 
3: ϕ1,i = 1 − ϕi ∗ η1; 
4: q1,i = ϕ1,i ∗ Pi + (1 − ϕ1,i) ∗ Plb1; 
5: end for 
6: // For group 2; 
7: for particle i in group 2 do 
8: if rand < δ then 
9: ϕ2,i = ϕi ∗ η2; 

10: else 
11: ϕ2,i = ϕi; 
12: end if 
13: q2,i = ϕ2,i ∗ Pi + (1 − ϕ2,i) ∗ G; 
14: end for 

In Algorithm 1, for group 1, we set the weight of particle i in this group, i.e., ϕ1,i, to be a larger value, 
and use the local best position Plb1 instead of the global best position G to generate the local attractor 
q1,i. Thus, the particles in group 1 are explorative and group 1 has good ability of exploration. Unlike 
group 1, we generate a random number for each particle in group 2. Empirically, if this random number 
is smaller than a predefned threshold δ, the weight of particle i in this group, i.e., ϕ2,i, is set to be a 
smaller value; otherwise, it remains to be ϕi, as defned in the Eq. (4). Therefore, the particles in group 
2 are exploitative and group 2 has good ability of exploitation. Besides, the values of η1, η2 and δ in this 
paper are set to 0.3, 0.3, 0.7 respectively according to the simulation results. 

Meanwhile, the comprehensive learning method [21] with a learning probability Pc is adopted here to 
adjust the personal best positions of particles in each subpopulation. More precisely, we randomly select 
two particles in each subpopulation, then the one with better ftness value is chosen as the exemplar. The 
exemplar for each dimension is determined according to the learning probability Pc, and the Pc value 
for particle i is calculated as 

exp(10(i − 1)/(N − 1)) − 1
Pci = 0.05 + 0.45 ∗ , (9)

exp(10) − 1 

where N is the population size. A random number is generated here for each dimension, and if this 
random number is smaller than the Pci value, the corresponding dimension of particle i is adjusted 
according to another particle’s pbest. Otherwise, the corresponding dimension of particle i remains to 
be its own pbest. Particularly, if all dimensions come from the same particle, we randomly choose 
one dimension to be modifed according to another particle in its subpopulation. In order to ensure the 
effectiveness of this learning method and to minimize the time wasted on poor directions, we set a 
refreshing gap m as suggested in [21], that is to say, a new pbest is generated if there is no improvement 
for m consecutive iteration steps. 

After the local attractors of two groups are determined, the position of each particle in both groups is 
updated according to the Eq. (3). Then the personal best positions of all particles, the local best positions 
of two groups and the global best position of the whole particle swarm are updated successively. 
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Furthermore, we defne a regrouping gap R as the criterion of dynamic grouping, that is, the whole par-
ticle swarm is regrouped into two new subpopulations every R iteration steps. In detail, if the regrouping 
gap is met, then we employ the modifed opposition-based computation stated in Section 3.1 for each 
particle so as to produce an opposite population. Next, the fttest particles that have the best ftness val-
ues are picked as a new population from the original population and the opposite population. This new 
population is then randomly regrouped into two subpopulations in the subsequent search process. This 
procedure is listed as shown in Algorithm 2. 

Algorithm 2 Regrouping 
1: // Update the boundaries of each dimension; 
2: for j = 1 : D do 
3: aj = min[Xi, j]; 
4: bj = max[Xi, j]; 
5: end for 
6: // Executing the opposition-based computation; 
7: for i = 1 : N do 
8: for j = 1 : D do 
9: r1 = rand; 

10: r2 = rand; 
X∗∗11: i, j = (aj + bj − Xi, j) ∗ r1 ∗ ln(1/r2); 

12: end for 
13: Repair X∗∗ if it is beyond the search scope; i 
14: Evaluate f (X∗∗);i 
15: end for 
16: Sort all the ftness values and select the best N particles as the new population; 
17: Update G; 
18: //Regrouping the swarm; 
19: Divide the swarm into two groups randomly; 
20: Update the local best position Plb1, Plb2; 

3.3. QPSO-DGS algorithm 

Based on the above description, the procedure of implementing our proposed QPSO-DGS algorithm 
is given in Algorithm 3. The search process stops when the termination criterion is satisfed. 

4. Experimental studies 

A variety of experiments are carried out in this section to evaluate the performance of the proposed 
QPSO-DGS algorithm. We frst describe the test problems and then conduct a set of experiments to 
fnd out how different values of the regrouping gap R affect the performance of the algorithm. Next, 
we compare the proposed QPSO-DGS with other variants of PSO in terms of solution accuracy and 
convergence speed. Besides, we further investigate the effectiveness of the strategies used in QPSO-
DGS. 
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Algorithm 3 QPSO-DGS 
Input: N (the swarm size), [Xmin, Xmax] (the search scope), D (dimension) 
Output: Optimal solution 
1: Initialize: Xi, j = Xmin + rand · (Xmax − Xmin), i = 1, ..., N, j = 1, ..., D; 
2: Pi = Xi; 
3: G = Pg, where g = arg min16i6N [ f (Pi)]; 
4: Divide the swarm into two groups randomly; 
5: Find the local best positions Plb1, Plb2; 
6: Set α in Eq. (3); 
7: while termination criterion is not fulflled do 
8: Compute the mbest positions of two groups using Eq. (5); 
9: for i = 1 : N do 

10: Adjust Pi if the refreshing gap is met; 
11: Compute the local attractors q1,i, q2,i according to Algorithm 1; 
12: Update Xi using Eq. (3); 
13: Update Pi, Plb1, Plb2; 
14: Update G; 
15: end for 
16: if the condition is satisfed then 
17: Regrouping the particle swarm according to Algorithm 2; 
18: end if 
19: end while 

4.1. Test problems 

In order to assess the performance of the QPSO-DGS algorithm, we use CEC’2013 test suit in the 
following experiments, which contains 28 test problems. A summary of this test suit is given in Table 
1. As we can see that the CEC’2013 test functions can be divided into three classes according to their 
properties: unimodal functions ( f1− f5), basic multimodal functions ( f6− f20) and composition functions 
( f21 − f28). All the problems used in this paper are minimization problems. More details about the 
CEC’2013 functions can be found in [49]. 

4.2. Parameter sensitive analysis 

The value of the regrouping gap R may have infuence on the performance of QPSO-DGS. Therefore, 
we studied the performance of QPSO-DGS under variant R values so as to select a better value for this 
parameter. In the experiments, fve different values of R, i.e., R = 10, 20, 50, 100, 200, are tested. 

For other parameters in QPSO-DGS, we used the following settings. The population size (N) was set 
to 40. The number of particles in group 1 and group 2 were 15 and 25, respectively. α linearly decreases 
from 0.7 to 0.3. The dimension of each test function (D) was 30, then the maximal number of ftness 
evaluations (Max_FEs) was D × 10000, as suggested in [49]. All the experiments were conducted 30 
runs for each test functions. 

The mean and standard deviation (Std) values are shown in Table 2 where the best ones for each test 
function are highlighted in bold background. It can be seen that R = 50 obtains the most favorable 
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Table 1 
Summary of the CEC’2013 test suit. 

Functions Name Type f ∗ ∗ = )i fi(x 

f1 

f2 

f3 

f4 

f5 

Sphere 
Rotated High Conditioned Elliptic 

Rotated Bent Cigar 
Rotated Discus 

Different Powers 

Unimodal 

-1400 
-1300 
-1200 
-1100 
-1000 

f6 Rotated Rosenbrock -900 
f7 Rotated Schaffers F7 -800 
f8 Rotated Ackley -700 
f9 Rotated Weierstrass -600 
f10 Rotated Griewank -500 
f11 Rastrigin -400 
f12 Rotated Rastrigin -300 
f13 Non-Continuous Rotated Rastrigin Multimodal -200 
f14 Schwefel -100 
f15 Rotated Schwefel 100 
f16 Rotated Katsuura 200 
f17 Lunacek Bi_Rastrigin 300 
f18 Rotated Lunacek Bi_Rastrigin 400 
f19 Expanded Griewank plus Rosenbrock 500 
f20 Expanded Scaffer’s F6 600 
f21 Composition Function 1 (n=5, Rotated) 700 
f22 Composition Function 2 (n=3, Unrotated) 800 
f23 Composition Function 3 (n=3, Rotated) 900 
f24 

f25 

Composition Function 4 (n=3, Rotated) 
Composition

Composition Function 5 (n=3, Rotated) 
1000 
1100 

f26 Composition Function 6 (n=5, Rotated) 1200 
f27 Composition Function 7 (n=5, Rotated) 1300 
f28 Composition Function 8 (n=5, Rotated) 1400 

Search Range: [−100, 100]D 

x ∗ stands for the global optima. n is the number of functions composed. 

performance especially on benchmark functions from f6 to f28. Therefore, the value of the regrouping 
gap R is set to 50 in the following experiments. 

4.3. Comparative study with PSO variants 

In this section, QPSO-DGS is compared with seven other PSO variants, including PSO with constric-
tion factor (PSO-cf) [50], QPSO, comprehensive learning PSO (CLPSO) [21], dynamic neighborhood 
learning PSO (DNLPSO) [23], enhanced leader PSO (ELPSO) [25], self regulating PSO (SRPSO) [27], 
and MPSO [28]. 

The frst two algorithms are the canonical PSO and QPSO. In CLPSO, a comprehensive learning 
strategy is used to improve the performance on complex multimodal problems. DNLPSO is an improved 
variant of CLPSO which introduces neighborhood based selection of the exemplar for velocity updating 
to enhance its exploration ability. ELPSO uses a fve-staged successive mutation strategy to the swarm 
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Table 2 
Sensitivity of R. 

R=10 R=20 R=50 R=100 R=200 
Mean Std Mean Std Mean Std Mean Std Mean Std 

f1 6.82E-14 1.06E-13 6.82E-14 1.06E-13 6.06E-14 1.02E-13 9.85E-14 1.15E-13 9.85E-14 1.15E-13 
f2 3.72E+06 1.30E+06 3.32E+06 1.59E+06 2.92E+06 1.03E+06 3.67E+06 1.83E+06 3.42E+06 1.33E+06 
f3 3.80E+07 4.09E+07 3.95E+07 3.36E+07 2.17E+07 1.91E+07 4.27E+07 6.25E+07 3.35E+07 3.63E+07 
f4 4.34E+04 5.16E+03 4.50E+04 5.01E+03 4.20E+04 4.97E+03 4.56E+04 5.26E+03 4.34E+04 3.97E+03 
f5 1.71E-13 5.78E-14 1.63E-13 5.73E-14 1.52E-13 5.45E-14 1.74E-13 6.50E-14 1.71E-13 5.78E-14 
f6 2.92E+01 1.86E+01 3.38E+01 2.09E+01 2.85E+01 1.94E+01 3.47E+01 2.34E+01 4.06E+01 2.87E+01 
f7 1.51E+01 7.88E+00 1.55E+01 9.16E+00 1.35E+01 6.93E+00 1.59E+01 6.57E+00 1.63E+01 9.66E+00 
f8 2.13E+01 7.32E-02 2.13E+01 7.05E-02 2.13E+01 5.41E-02 2.13E+01 7.03E-02 2.13E+01 6.33E-02 
f9 1.46E+01 2.45E+00 1.39E+01 2.30E+00 1.33E+01 2.58E+00 1.43E+01 2.30E+00 1.35E+01 2.33E+00 
f10 3.80E-01 1.37E-01 4.54E-01 2.43E-01 3.47E-01 1.55E-01 4.41E-01 2.00E-01 3.75E-01 2.24E-01 
f11 1.34E+01 4.46E+00 1.54E+01 4.35E+00 1.41E+01 3.84E+00 1.65E+01 6.21E+00 1.43E+01 4.34E+00 
f12 2.41E+01 8.09E+00 2.23E+01 6.77E+00 2.34E+01 6.09E+00 2.48E+01 7.94E+00 2.42E+01 8.98E+00 
f13 5.77E+01 1.79E+01 6.35E+01 1.98E+01 5.02E+01 1.98E+01 5.82E+01 1.86E+01 6.20E+01 2.14E+01 
f14 1.02E+03 3.86E+02 1.03E+03 3.59E+02 9.04E+02 2.99E+02 1.01E+03 3.54E+02 1.01E+03 3.34E+02 
f15 2.72E+03 7.47E+02 2.98E+03 6.55E+02 2.79E+03 7.08E+02 2.95E+03 5.75E+02 2.75E+03 5.68E+02 
f16 5.48E+00 7.29E-01 5.34E+00 1.01E+00 5.11E+00 1.30E+00 5.58E+00 9.39E-01 5.50E+00 7.59E-01 
f17 4.25E+01 3.17E+00 4.46E+01 4.78E+00 4.32E+01 3.61E+00 4.38E+01 3.80E+00 4.43E+01 3.25E+00 
f18 6.22E+01 1.25E+01 5.93E+01 9.61E+00 5.87E+01 9.64E+00 5.87E+01 1.20E+01 5.98E+01 1.03E+01 
f19 3.55E+00 6.33E-01 3.25E+00 5.85E-01 3.14E+00 6.50E-01 3.45E+00 4.69E-01 3.32E+00 5.77E-01 
f20 1.28E+01 4.79E-01 1.24E+01 9.56E-01 1.25E+01 6.52E-01 1.24E+01 8.39E-01 1.26E+01 8.81E-01 
f21 3.25E+02 8.01E+01 3.12E+02 5.81E+01 2.94E+02 8.55E+01 3.20E+02 7.70E+01 3.01E+02 5.92E+01 
f22 7.25E+02 2.54E+02 6.77E+02 2.35E+02 6.82E+02 2.64E+02 6.48E+02 2.16E+02 6.59E+02 2.64E+02 
f23 2.74E+03 7.93E+02 2.66E+03 6.80E+02 2.50E+03 7.85E+02 2.66E+03 6.45E+02 2.66E+03 6.77E+02 
f24 2.34E+02 9.67E+00 2.36E+02 1.12E+01 2.33E+02 1.04E+01 2.34E+02 9.93E+00 2.36E+02 1.12E+01 
f25 2.61E+02 6.72E+00 2.60E+02 7.10E+00 2.59E+02 5.73E+00 2.59E+02 6.75E+00 2.61E+02 6.17E+00 
f26 2.62E+02 6.76E+01 2.67E+02 6.85E+01 2.39E+02 6.10E+01 2.56E+02 6.47E+01 2.64E+02 6.56E+01 
f27 6.52E+02 8.18E+01 6.63E+02 7.35E+01 6.50E+02 7.65E+01 6.55E+02 1.01E+02 6.71E+02 9.44E+01 
f28 3.74E+02 2.80E+02 3.00E+02 0.00E+00 2.93E+02 3.65E+01 3.00E+02 0.00E+00 3.00E+02 0.00E+00 

leader at each iteration considering the problem of premature convergence. SRPSO, inspired by learning 
principles found in human cognitive psychology, employs the self-regulating inertia weight to the best 
particle for stronger exploration and the self-perception of the global search direction to the rest of the 
particles for stronger exploitation. MPSO is a modifed PSO, in which particles can adaptively choose 
the strategies of position updating according to the corresponding conditions, and thus achieving a better 
balance between exploration and exploitation. 

For the fairness of fairness, all the above algorithms are tested on all 28 test functions and run 30 times 
independently, with the population size (N) and the dimension of each test problem were set to 40 and 
30, respectively. The termination criterion of all algorithms is the maximal number of ftness evaluations 
(Max_FEs) set as D × 10000. The settings of other parameters for all algorithms are shown in Table 3. 

The comparison results of mean and standard deviation (Std) values are listed in Table 4, Table 5 and 
Table 6, where the best results performed by those algorithms on each benchmark functions are marked 
with bold font. In these tables, the performance of each algorithm is ranked in terms of both the mean 
and standard deviation values, and the fnal rank for each algorithm is given according to its average rank 



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

11 Q. You et al. / Quantum-behaved Particle Swarm Optimization with Dynamic Grouping Searching Strategy 

Table 3 
Parameters setting for different algorithms. 

Algorithms Year Parameters settings 

PSO-cf [50] 2000 χ = 0.729, c1 = c2 = 2.05 
QPSO [31] 2004 α = 1.0 − 0.5 
CLPSO [21] 2006 ω = 0.9 − 0.4, c = 1.49445, m = 7 
DNLPSO [23] ω = 0.9 − 0.4, c1 = c2 = 1.49445, m = 3, g = 10 
ELPSO [25] 2015 ω = 0.9 − 0.4, c1 = c2 = 2.0 
SRPSO [27] 2015 ω = 1.05 − 0.5, c1 = c2 = 1.49445, η = 1, λ = 0.5 
MPSO [28] 2020 ω = 0.9 − 0.4, c1 = c2 = 2.0 
QPSO-DGS α = 0.7 − 0.3, η1 = η2 = 0.3, δ = 0.7, R = 50, m = 7 

value over 28 test problems. Besides, in order to evaluate the statistical difference between QPSO-DGS 
and the other PSO variants, the Wilcoxon signed rank test results with a signifcance level of 0.05 are 
presented in Table 7. In this table, the symbol “+” means that QPSO-DGS performs signifcantly better 
than the compared algorithms, “≈” means that there is no signifcant difference between QPSO-DGS 
and the compared algorithms, and “−” means that the compared algorithms perform signifcantly better 
than QPSO-DGS. 

As shown in Table 4, on unimodal functions (i.e., functions from f1 to f5), we can see that the proposed 
QPSO-DGS algorithm outperformed its competitors on functions f1 and f3, and that the DNLPSO was 
the worst on all of these benchmark functions. PSO-cf obtained the best solution on function f2, while 
QPSO and QPSO-DGS were respectively the second best and the third best. According to the statistical 
result in Table 7, there is no signifcant difference between the performance of QPSO and QPSO-DGS 
on function f2. MPSO did the very best on function f4 while QPSO-DGS performed the second worst, 
just better than DNLPSO. As for function f5, most of these algorithms got relatively approximate mean 
values except algorithms DNLPSO, ELPSO and SRPSO. 

On multimodal and composition problems, QPSO-DGS yielded the best mean values on functions 
f7, f9, f12, f13, f15, f18, f20, f23, f24, f27, f28, i.e., 11 out of 23 test functions. CLPSO provided the best 
performance on functions f8, f11, f14, f17, f19, f21, f22, f26, i.e., 8 out of 23 test functions. PSO-cf ob-
tained the best mean values on functions f6 and f10, while MPSO was the best on function f16. In terms 
of QPSO-DGS, it got the second best performance on functions f11, f14, f17, f19, f21, f22, f25. For func-
tion f6, the mean value of QPSO was slightly lower than that of QPSO-DGS, while the corresponding 
statistical result in Table 7 shows that there is no signifcant difference between QPSO and QPSO-DGS 
on this benchmark function. For function f8, QPSO-DGS got the second worst performance, which is 
just better than DNLPSO. But it should be noted that the mean values obtained by these test algorithms 
are all around 2.10E+01, and that the difference between the best value and the value of QPSO-DGS 
is only 0.4. For function f10, QPSO was the second best among all of these compared algorithms, fol-
lowed by MPSO and QPSO-DGS. Specially, we can see that PSO-cf and QPSO performed better than 
other PSO variants on both functions f6 and f10. This may be related to the unique characteristics and 
landscapes of these functions, and different strategies used in different algorithms may affect their effec-
tiveness of dealing with these two functions. For function f16, which is a non-separable and asymmetrical 
multimodal problem, having plenty of local optimum, the mean value of QPSO-DGS was larger than 
most of its competitors except DNLPSO. Although QPSO got the minimal mean value on function f25, 
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Table 7 
Wilcoxon signed rank test results with a signifcance level of 0.05. 

QPSO-DGS versus Functions 
PSO-cf QPSO CLPSO DNLPSO ELPSO SRPSO MPSO 

f1 + + + + + + + 
f2 − ≈ + + + + + 
f3 + + + + + + + 
f4 − − − + − − − 
f5 + + + + + + − 
f6 − ≈ + + + + ≈ 
f7 + + + + + + + 
f8 − − − + − − − 
f9 + + + + + + + 
f10 − − + + + + − 
f11 + + − + + + + 
f12 + + + + + + + 
f13 + + + + + + + 
f14 + + − + + + + 
f15 + + + + + + + 
f16 − − − + − − − 
f17 + + − + + + + 
f18 + + + + + + + 
f19 + + − + + + ≈ 
f20 + + + + + + + 
f21 − + − + + + + 
f22 + + − + + + + 
f23 + + + + + + + 
f24 + + + + + + + 
f25 + ≈ + + + + + 
f26 + ≈ − + + − ≈ 
f27 + + ≈ + + + + 
f28 + + + + + + + 

+/ ≈ /− 21/0/7 20/4/4 17/1/10 28/0/0 25/0/3 24/0/4 20/3/5 

it did not show signifcant difference between QPSO and QPSO-DGS according to the corresponding 
results in Table 6 as well as the statistical result in Table 7. For function f26, SRPSO was the second 
best algorithm among all of these compared ones, followed by QPSO-DGS, QPSO and MPSO. And the 
statistical results in Table 7 suggests that there is no signifcant difference among algorithms QPSO-
DGS, QPSO and MPSO. Besides, it can be seen that DNLPSO performed the worst on all of these 
benchmark functions, followed by ELPSO and SRPSO. 

The number of “Best/2nd Best/Worst” is counted for each algorithm in the last row of Table 6. We 
can see that the proposed QPSO-DGS algorithm outperformed the others on 13 out of 28 benchmark 
functions and obtained the second best mean values on 8 out of 28 benchmark functions. Overall, it 
ranked the frst over the other PSO variants. CLPSO ranked the second, followed by MPSO, while 
DNLPSO ranked the last. Meanwhile, according to the statistical results in Table 7, we can also conclude 
that QPSO-DGS is evidently superior to its competitors and that DNLPSO is the worst among all of these 
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Fig. 2. Convergence graphs of different algorithms on functions f1 − f8. 
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Fig. 3. Convergence graphs of different algorithms on functions f9 − f16. 
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Fig. 4. Convergence graphs of different algorithms on functions f17 − f24. 
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Fig. 5. Convergence graphs of different algorithms on functions f25 − f28. 

tested algorithms in solving the CEC’2013 test suit. 
Figures from Fig. 2 to Fig. 5 show the convergence curves of the above eight algorithms. It should 

be noted that the convergence curves in these fgures are the result of the minimum rather than the 
average of 30 independent runs. From these fgures, we can see that the proposed QPSO-DGS can 
converge with a good convergence speed on most of the benchmark functions, except on functions f4 

and f8, which is consistent with the results in tables from Table 4 to Table 7. This might be due to the 
unique characteristics of these test functions and the possibility that the comprehensive learning and 
dynamic grouping scheme in QPSO-DGS make the swarm lack of exploitation ability in solving these 
problems, and thus getting trapped into the local optimum. In particular, for some benchmark functions, 
i.e., functions f12, f13, f14, f15, f18, f22, f23, the convergence curves of QPSO-DGS in Fig. 3 and Fig. 4 
can be roughly divided into two segments. Particles in the former half segment have relatively strong 
diversity and explore the whole search space to approach the global optimal area. Once reaching the 
vicinity of the global optimum, they converge quickly in the latter half segment. Besides, we can see 
that the convergence graphs of QPSO-DGS for functions f16 and f20 in Fig. 3 and Fig. 4 have a similar 
trend of change. For the convergence graph of function f16 in Fig. 3, it is obvious that the ftness value 
of QPSO-DGS fuctuates within a certain range during nearly the whole search process, and decline 
sharply to its minimum at the end. For the convergence graph of function f20 in Fig. 4, the ftness value 
of QPSO-DGS fuctuates but tends to decrease with the iteration step increases, and then reaches to a 
value lower than those of other PSO variants. 
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Table 8 
Mean and Standard deviation (Std) values obtained by QPSO, DGS1, DGS2 and QPSO-DGS. The best values are highlighted 
in bold background. 

QPSO DGS1 DGS2 QPSO-DGS 

Mean Std Mean Std Mean Std Mean Std 

f1 2.20E-13 4.15E-14 2.05E-13 6.94E-14 8.94E-13 3.82E-13 6.06E-14 1.02E-13 
f2 1.95E+06 1.10E+06 2.85E+06 1.09E+06 2.57E+06 1.33E+06 2.92E+06 1.03E+06 
f3 3.75E+07 3.64E+07 1.33E+08 1.87E+08 6.77E+08 9.65E+08 2.17E+07 1.91E+07 
f4 1.63E+03 8.03E+02 5.18E+04 4.00E+03 2.95E+03 3.05E+03 4.20E+04 4.97E+03 
f5 2.35E-13 5.92E-14 1.25E-13 3.47E-14 9.17E-13 4.89E-13 1.52E-13 5.45E-14 
f6 2.23E+01 1.27E+01 3.12E+01 2.49E+01 4.99E+01 2.82E+01 2.85E+01 1.94E+01 
f7 2.38E+01 1.29E+01 3.12E+01 1.45E+01 7.71E+01 2.52E+01 1.35E+01 6.93E+00 
f8 2.09E+01 4.66E-02 2.13E+01 6.67E-02 2.09E+01 4.26E-02 2.13E+01 5.41E-02 
f9 2.02E+01 6.73E+00 1.66E+01 3.19E+00 1.89E+01 2.60E+00 1.33E+01 2.58E+00 
f10 2.28E-01 2.04E-01 5.06E-01 3.42E-01 3.68E-01 3.19E-01 3.47E-01 1.55E-01 
f11 1.85E+01 1.44E+01 2.52E+01 8.00E+00 4.51E+01 1.38E+01 1.41E+01 3.84E+00 
f12 1.50E+02 3.93E+01 4.35E+01 1.07E+01 8.75E+01 2.82E+01 2.34E+01 6.09E+00 
f13 1.67E+02 2.89E+01 1.13E+02 2.39E+01 1.76E+02 3.10E+01 5.02E+01 1.98E+01 
f14 5.15E+03 1.32E+03 1.70E+03 4.05E+02 1.38E+03 3.26E+02 9.04E+02 2.99E+02 
f15 7.19E+03 2.44E+02 3.99E+03 6.11E+02 4.22E+03 1.43E+03 2.79E+03 7.08E+02 
f16 2.45E+00 2.68E-01 2.02E+00 1.19E+00 2.41E+00 3.44E-01 5.11E+00 1.30E+00 
f17 1.55E+02 2.49E+01 5.46E+01 6.74E+00 7.39E+01 1.37E+01 4.32E+01 3.61E+00 
f18 2.07E+02 1.28E+01 8.68E+01 1.37E+01 1.96E+02 3.32E+01 5.87E+01 9.64E+00 
f19 7.02E+00 3.58E+00 2.99E+00 6.60E-01 4.07E+00 1.37E+00 3.14E+00 6.50E-01 
f20 1.41E+01 1.41E+00 1.42E+01 7.15E-01 1.46E+01 1.03E+00 1.25E+01 6.52E-01 
f21 2.87E+02 8.47E+01 3.36E+02 9.06E+01 3.18E+02 8.61E+01 2.94E+02 8.55E+01 
f22 3.75E+03 1.80E+03 1.24E+03 4.27E+02 1.27E+03 3.12E+02 6.82E+02 2.64E+02 
f23 7.19E+03 2.90E+02 5.36E+03 1.15E+03 4.19E+03 1.66E+03 2.50E+03 7.85E+02 
f24 2.43E+02 7.67E+00 2.42E+02 1.14E+01 2.67E+02 1.08E+01 2.33E+02 1.04E+01 
f25 2.56E+02 6.53E+00 2.68E+02 8.60E+00 2.87E+02 9.17E+00 2.59E+02 5.73E+00 
f26 2.64E+02 6.99E+01 2.88E+02 6.86E+01 3.32E+02 5.30E+01 2.39E+02 6.10E+01 
f27 6.90E+02 9.06E+01 7.46E+02 8.59E+01 8.68E+02 9.37E+01 6.50E+02 7.65E+01 
f28 3.72E+02 2.75E+02 3.38E+02 2.07E+02 5.44E+02 6.56E+02 2.93E+02 3.65E+01 

Above all, our proposed QPSO-DGS algorithm outperforms the other PSO variants in terms of the 
mean values and the convergence speed on most of the benchmark functions, especially on multimodal 
and composition ones. 

4.4. Further study on DGS 

In order to investigate the effect of the dynamic grouping searching strategy employed in the QPSO-
DGS algorithm, we carried out a set of experiments to study the performance of QPSO-DGS without 
comprehensive learning, QPSO-DGS with comprehensive learning only, and QPSO-DGS, and compared 
these algorithms with QPSO. For the purpose of simplicity, we denote the former two algorithms as 
DGS1 and DGS2. As for the parameters, we used the same settings as described in Section 4.2. The 
CEC’2013 test suit was used and each algorithm was conducted 30 runs for each benchmark function. 
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Table 8 illustrates the mean and standard deviation (Std) values of the above four algorithms, and the 
best results are highlighted in bold background. It is obvious that QPSO-DGS is the best among all com-
petitors, for it obtained the minimal mean values on most of the benchmark functions, especially on mul-
timodal and composition ones. According to the comparison results between QPSO and DGS2, we can 
see that DGS2 only outperformed the QPSO on functions f8, f9, f12, f14, f15, f16, f17, f18, f19, f22, f23, 
i.e., 11 out of 28 benchmark functions, which means that using comprehensive learning only did 
not have signifcant effect on improving the performance of QPSO when solving every benchmark 
function in the CEC’2013 test suit, but did enhance the searching ability of global optimum for the 
complex ones. However, comparing the results between QPSO and DGS1, we can see that DGS1 
performed better than QPSO on functions f1, f5, f9, f12, f13, f14, f15, f16, f17, f18, f19, f22, f23, f24, f28, 
i.e., 15 out of 28 benchmark functions, which means that the other parts in the dynamic group-
ing searching strategy did have positive infuence on enhancing the performance of QPSO. Further-
more, combining comprehensive learning with the dynamic grouping searching strategy can effec-
tively increase the chance of obtaining better ftness values, particularly on multimodal and compo-
sition problems, for the mean values obtained by QPSO-DGS were better than those of QPSO on 
functions f1, f3, f5, f7, f9, f11, f12, f13, f14, f15, f17, f18, f19, f20, f22, f23, f24, f26, f27, f28, i.e., 20 out of 
28 test problems. 

Overall, we can conclude that the dynamic grouping searching strategy adopted in our proposed 
QPSO-DGS algorithm could effectively improve the performance of the QPSO algorithm in solving 
complicated optimization problems. 

5. Conclusions 

In this paper, we proposed a hybrid QPSO with a dynamic grouping searching strategy, named QPSO-
DGS, to solve complex optimization problems. In this algorithm, the particle swarm is dynamically 
grouped into two subpopulations, and each subpopulation is assigned to conduct the exploration and 
exploitation search, respectively. The comprehensive learning method with a certain learning probability 
is adopted for particles in each subpopulation to adjust their personal best positions so as to generate 
proper exemplars to guide their movement. Besides, a modifed opposition-based computation is used 
periodically during the search process to maintain the swarm diversity. 

In order to testify the performance of QPSO-DGS, we carried out various experiments to compare 
it with other seven state-of-art PSO variants. The experimental results show that QPSO-DGS can get 
better solutions as well as faster convergence speed on most of the test functions. It also reveals the 
competitive performance of QPSO-DGS and the ability of dealing with complex optimization problems 
such as multimodal and composition ones. Furthermore, we investigated the effect that the dynamic 
grouping searching strategy has on enhancing the performance of our proposed algorithm. The exper-
imental results demonstrated that this strategy can effectively improve the algorithmic performance of 
QPSO-DGS, particularly when dealing with multimodal and composition problems. 

As future work, we will focus on strengthening the performance of QPSO-DGS to make it more 
effective in solving complex optimization problems. In addition, we will also try to apply QPSO-DGS 
to real-world optimization problems. 
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