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Abstract 

The scarcity of labelled data is a serious problem since deep models generally require 

a large amount of training data to achieve desired performance. Data augmentation is 

widely adopted to enhance the diversity of original datasets and further improve the 

performance of deep learning models. Learning-based methods, compared to 

traditional techniques, are specialized in feature extraction, which enhances the 

effectiveness of data augmentation.  

Generative adversarial networks (GANs), one of the learning-based generative models, 

have made remarkable advances in data synthesis. However, GANs still face many 

challenges in generating high-quality augmented images from small datasets because 

learning-based generative methods are difficult to create reliable outcomes without 

sufficient training data. This difficulty deteriorates the data augmentation applications 

using learning-based methods. In this thesis, to tackle the problem of labelled data 

scarcity and the training difficulty of augmenting image data from small datasets, three 

novel GAN models suitable for training with a small number of training samples have 

been proposed based on three different mapping relationships between the input and 

output images, including one-to-many mapping, one-to-one mapping, and many-to-

many mapping. The proposed GANs employ limited training data, such as a small 

number of images and limited conditional features, and the synthetic images generated 

by the proposed GANs are expected to generate images of not only high generative 

quality but also desirable data diversity. 

To evaluate the effectiveness of the augmented images generated by the proposed 

models, inception distances and human perception methods are adopted. Additionally, 

different image classification tasks were carried out and accuracies from using the 

original datasets and the augmented datasets were compared. Experimental results 

illustrate the image classification performance based on convolutional neural networks, 

i.e., AlexNet, GoogLeNet, ResNet and VGGNet, is comprehensively enhanced, and the 

scale of improvement is significant when a small number of training samples are 

involved. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

With the advances in artificial intelligence, machine learning has become a very 

popular research field in recent years [1]. Machine learning is a subfield of artificial 

intelligence that enables computers to learn from data to make predictions or decisions. 

Since data quality and quantity are two foundational elements in training deep learning 

models, acquiring high-quality training data is a prerequisite to achieving the expected 

performance, and training with a large amount of diverse data is one of the necessary 

factors for the desired results [2]. In some practical applications, collecting a large 

amount of training data is impractical because data collection generally takes plenty of 

time and needs to be labelled or post-processed by experts. Furthermore, public data 

might have confidentiality and privacy concerns, and most public data contain label 

limitations or quality restrictions, which are hard to be freely used for various 

applications. 

Many remarkable deep learning algorithms and models have been developed in 

recent years and demonstrated their powerful capacities to achieve great performance 

in some specific applications. However, with the increased requirements of training 

data quantity and quality, data availability is a primary factor affecting the performance 

of deep learning, and data scarcity has become a common but serious problem in the 

development of machine learning and deep learning methods [3]. A small number of 

labelled data samples hardly provide enough information for a deep model to learn well, 

and insufficient training data generally leads to negative impacts on the final 

performance of the trained deep models [4]. Consequently, the quality and quantity of 

training data are fundamental to ensure a deep learning model able to achieve the 

desired capabilities. 

1.2 Background 

Data augmentation is a technique used to increase data types with methods of data 

editions or data synthesis for enlarging data diversity and quantity. Data augmentation 

is a common resolution to mitigate the unfavourable impacts of labelled data scarcity 
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and class imbalance in machine learning [5]. Due to the demanding requirement of a 

large amount of high-quality training data in various machine learning applications, 

developing synthetic techniques for training data augmentation has become a popular 

research area [6]. In many studies, data augmentation has been proven to play a critical 

role in efficiently promoting the performance of deep learning applications [7], [8]. 

Additionally, data synthesis is a beneficial means to augment rare datasets, when 

sufficient or meaningful data are difficult to be collected in some research schemes (e.g., 

data on rare diseases, space images, remote sensing data, etc.). 

With the developments of optimisation techniques and computing hardware, 

modern computers make deep learning applications achievable, where numerous 

parameters in deep learning models need to be fine-tuned [9]. However, it is fairly hard 

to attain convincing results without collecting sufficient training data, although deep 

learning models, such as convolutional neural networks (CNNs), have achieved 

extraordinary successes in a wide range of computer vision applications (i.e., image 

classification, object recognition, etc.). Even with the latest techniques, it is still a 

challenging task to automatically synthesise high-quality data from a small number of 

training samples with limited feature information [10]. Particularly, image synthesis 

using learning-based methods needs a relatively large amount of training data to 

achieve photorealistic results and mitigate synthetic problems such as distortion and 

overfitting [11]. In this thesis, learning-based synthetic methods are developed to 

explore novel generative models, which aim to reduce the negative effects, i.e., 

overfitting, gradient vanishing, non-converge, mode collapse, hyperparameter 

optimisation etc., caused by training with a small number of sample images. These 

negative effects normally result in generative uncertainty and easily bring about 

blurring, distortion, and less diversity in the output results. 

In terms of the image mapping relationships between input and output data, the 

existing generative models used for image synthesis can be approximately categorised 

into four groups, one-to-one, one-to-many, many-to-one and many-to-many [12], [13]. 

Figure 1.1 shows the difference among these four mapping relationships by 

transforming images from source domains to target domains, where the red dots 

represent the input data in the source domain and blue dots the output data in the target 

main, the solid lines correspondingly indicate the mapping relationships between two 

domains and the dashed lines the internal relationships in one defined domain.  
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Figure 1.1: Illustration of image transforming from source domains (red dots) to target 

domains (blue dots) with different image-to-image mapping relationships. 

 

Different mapping relationships will affect the design of network structures, 

components, algorithms, loss functions and so on. A brief of each mapping relationship 

is described as follows: 1) Firstly, one-to-one mapping methods transform images from 

one style to another, such as the translation from image to sketch, from low resolution 

to high resolution, or from optical diagram to infrared spectrum. The one-to-one 

mapping generally needs paired images for models to learn the mapping relationships 

by specific objective functions. 2) Secondly, many-to-one mapping methods translate 

images from many related inputs to one united outcome. For instance, a frontal view of 

human faces can be transferred by multi-views of different facial positions and profiles. 

However, many-to-one mapping methods commonly need many input data to generate 

a few specific outcomes, which may not be suitable for regular data augmentation cases 

to create a large amount of additional and diverse data from small datasets. 3) Thirdly, 

one-to-many mapping methods synthesise many output results from one single image. 

Many data augmentation methods with generative models are based on one-to-many 

mapping relationships, which create many diverse results from a few training samples. 

4) Finally, many-to-many mapping methods control models to learn the relationships 

among many related images between different domains, and the many-to-many 

mapping generally does not need paired training images, compared to one-to-one 
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mapping. Hence, many-to-many mapping applications can be regarded as translation 

tasks between two data domains. It is notable that although many-to-many mapping 

methods eliminate the requirements on paired images, they still require the 

interpretation or labelled information between two domains, such as the image 

transformation cases of male to female, sketch to photo, real face to cartoon face, day 

scenery to night scenery and so on. Consequently, all the above-mentioned mapping 

relationships still have to rely on labelled data between two different domains to 

generate new images. 

Generative adversarial networks (GANs) are one of the learning-based generative 

models associated with deep neural networks to synthesise data. GANs are powerful 

generative models and have been applied in many image synthesis applications, such 

as facial reconstruction, image generation, style transformation, image repairing, data 

augmentation, video synthesis and so on [14]. GAN structures have been proven by 

many studies to be able to generate remarkable image samples, and the advancement of 

GANs accelerates the applications of image synthesis [15]. However, with limited 

feature information, it is challenging to generate high-quality synthetic data from small 

datasets by using learning-based generative models, and training GANs with 

insufficient data easily results in many negative impacts on the generated data, such as 

poor diversity, low reality, large distortion and so on [16]. To solve the problems in 

training GANs with small training data, novel GAN structures suitable for training 

using small datasets are developed in this thesis to not only effectively mitigate the 

synthetic problems caused by training with a small number of training samples but also 

comprehensively promote the performance in various image classification applications. 

1.3 Motivation 

The capabilities of GANs to synthesise image data have been proven by many 

studies. However, typical GAN models for image synthesis are composed of deep 

convolutional layers and are difficult to synthesise high-quality images from limited 

training information, such as very sparse conditional features and a small number of 

training images [17]. To generate photorealistic and unblurring images, the two neural 

networks of GANs, i.e., the generator and discriminator, need a large amount of training 

data to fine-tune their free parameters for generating good forgeries. In short, GANs are 

one of the most widespread generative models used for image data synthesis, but the 

drawback of GAN structures is obvious, that is, they need a large number of training 

images to reach high-quality synthetic results in image synthesis. 

In this thesis, the research motivation is to propose novel GAN frameworks or 
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improve the existing GAN structures that hardly generate promising results based on 

small training datasets and limited training features. For mitigating the synthetic 

disadvantages caused by training with limited samples, this study aims to develop novel 

GAN models, which can not only enlarge the data quantity but also increase the data 

diversity based on different image mapping relationships. Compared to traditional 

learning-based methods difficult to obtain good results from small datasets, the 

synthetic data using the proposed GANs are designed to synthesise representative data 

to promote deep learning performance, such as enhancing accuracy in image 

classification by CNNs. Hence, the following two issues are to be investigated in this 

thesis: 1) How to resolve the non-convergence and overfitting problems in training 

GANs with small training datasets and reduce unexpected distortions. 2) How to 

generate photorealistic results with learning-based generative models using limited 

information in training data. Developing enhanced GAN models to deal with the 

problems caused by a small number of training samples is critical for extending deep 

learning applications. Consequently, the main aim of this thesis is to propose new GAN 

models to generate photorealistic images of desired diversity from a small number of 

training samples. 

1.4 Thesis Structure 

The structure and content for each chapter of this thesis are as follows. 

Chapter 2 Literature Review – Part 1: In this chapter, three major topics related 

to this thesis, including convolutional neural networks, data insufficiency and methods 

of image data augmentation, are comprehensively reviewed.  

Chapter 3 Literature Review – Part 2: GANs for image synthesis and their basic 

backgrounds are introduced in this chapter with six primary GAN schemes, including 

basic theory, structure variants, loss function variants, training challenges, evaluation 

metrics, and applications. 

Chapter 4 Small Training Data Augmentation Using GANs Based on One-to-

many Image Mapping for Enhancing the Performance of Image Classification: A 

novel method for data augmentation is proposed to solve the problem of machine 

learning with small training datasets. The proposed method can synthesise similar 

images with rich diversity from only a single original training sample to increase the 

number of training data by using GANs. It is expected that the synthesised images 

possess class-informative features, which may be in the validation or testing data but 

not in the training data because the training dataset is small, and thus they can be 

effective as augmented training data to improve the classification accuracy of CNNs. 
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Chapter 5 Facial Image Synthesis from Small Training Data and Sparse Edge 

Features Using a GAN Framework based on One-to-one Image Mapping: A 

conditional GAN framework is proposed for facial image augmentation using a very 

small training dataset and incomplete or modified edge features as conditional input for 

diversity. The proposed method defines a new domain or space for refining interim 

images to prevent overfitting caused by using a very small training dataset and enhance 

the tolerance of distortions caused by incomplete edge features, which effectively 

improves the quality of facial image augmentation with diversity. Experimental results 

have shown that the proposed method can generate high-quality images of good 

diversity when the GANs are trained using very sparse edges and a small number of 

training samples. Compared to the state-of-the-art edge-to-image translation methods 

that directly convert sparse edges to images, when small training datasets were used, 

the proposed conditional GAN framework can generate facial images with desirable 

diversity and acceptable distortions for dataset augmentation and significantly 

outperform the existing methods in terms of the quality and quantity of synthesised 

images, evaluated by Fréchet inception distance (FID), kernel inception distance (KID) 

scores, student’s t-test, human perception and image classification. 

Chapter 6 Augmenting Small Facial Expression Training Dataset Using a 

Novel GAN Model Based on Many-to-many Image Mapping: A new GAN model 

is proposed to transfer neutral face images to images with diverse facial expressions to 

deal with the problem of expressional data scarcity in deep learning for facial 

expression recognition (FER) based on a small set of training samples. To mitigate 

distortions and overfitting that often happen in training GANs with small training 

datasets, a novel GAN structure is proposed, which consists of a generator with two 

encoders and two decoders, two discriminators, and a feature extractor. Specifically, a 

feature map mechanism is proposed to discover regional feature differences between 

images in the source domain and target domain, which makes the proposed GAN 

structure able to not only generate desirable facial expression images but also maintain 

the original characters in the input neutral face images. Experimental results show that, 

by using the proposed GAN to augment a training dataset of images with up to 7 facial 

expressions, the FER accuracy of several deep neural networks tested in the 

experiments can be significantly improved by over 10%. 

Chapter 7 Conclusions and Future Work: Conclusions are drawn and discussed 

in this chapter to summarise the findings of the research work. In addition, the 

limitations and future work for each proposed GAN model are presented in this chapter. 
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Chapter 2 

Literature Review on Deep Learning and 

Image Data Augmentation 

In this chapter, the state-of-the-art theory and approaches related to deep learning 

and data augmentation are reviewed. Firstly, convolutional neural networks (CNNs) are 

introduced, including the concept of deep learning, basic components and structures of 

CNNs. Secondly, since the advantages of deep learning are based on analysing a large 

amount of training data, labelled data scarcity and class imbalance become two serious 

concerns in deep learning applications. Therefore, techniques for learning from small 

training data are reviewed. Finally, image data augmentation methods with both 

traditional techniques and approaches based on deep learning methods are separately 

presented. 

2.1 Convolutional Neural Networks (CNNs) 

2.1.1 Deep Learning 

Deep learning, also called representation learning or feature learning, is defined as 

a manner to extract features in a hierarchical structure [18]. In recent years, with the 

growth of data availability and advance in computer technologies, deep learning has 

become one of the most prevalent research areas and found widespread applications in 

information retrieval, image classification, decision recommendation, social network 

analysis, data mining and so on [19]. Methods in deep learning utilise technologies to 

develop multi-layer learning models depending on traditional frameworks of neural 

networks, and many latest deep learning techniques have demonstrated remarkable 

results in various application areas, i.e., natural language processing, brain-computer 

interface, autopilot system and many other well-known applications [20]. Deep learning 

imitates the learning process of human neurons to create interconnected structures 

developed from cognition and information theory. Although deep learning is 

extensively applied to various types of real applications, it is impossible by far to 

develop one single model or network universally suitable for all requirements in reality 

[21]. 

Deep learning approaches are not new technologies, but they could not be 
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implemented due to the limitations of computing facilities in the past [22]. Fortunately, 

with the rapid development of computing capacities as well as advanced hardware in 

recent years, it has become possible to process large collections of data and parameters 

with deep learning algorithms. This improvement brings about an enormous evolution 

to enlarge realistic applications of deep learning. 

To evaluate the deep learning performance, it adopts techniques to iteratively 

improve the training process and extract the representations from trained models [23]. 

In a learning process, a volume of data should be split into three parts, the training set, 

validation set and test set. A deep learning algorithm will learn representations from the 

given training set, which could be approximative functions to find feature distributions 

or decisions based on a training set. On the other side, the validation set will be used 

during training as a method to validate the effectiveness of the training process, and the 

validation results are evidence to tune learning parameters for improving the final 

performance. Finally, a test set, which is never involved in the training process, is 

provided to determine the final accuracy of the trained model using accuracy scores or 

other effectiveness metrics. In terms of inference, the test set can be regarded as a 

process of inputting data into a trained model and obtaining inferred outputs. The 

efficiency of deep learning approaches strongly relies on the quality and quantity of 

training data [24]. Training with limited data or representations easily leads to 

unexpected results, which is the main reason why data scientists and engineers are 

always concerned about the quality and quantity of training data for each learning case.  

Deep learning is machine learning using deep neural networks. By definition, 

primary machine learning mechanisms include supervised learning, unsupervised 

learning, and reinforcement learning [25]. 

2.1.1.1 Supervised Learning 

Supervised learning needs to rely on labelled training data, which makes desired 

outputs available for supervising the learning process. Generally, supervised learning 

is a prediction mechanism, and two primary learning tasks, classification and regression, 

are usually conducted in supervised learning [26]. 

For classification, the output results of the learning tasks should be a specific set 

of classes, which can be a form of binary classification of two classes (e.g., 0 or 1, right 

or wrong, true or false, etc.) or multiple classes. Multi-class classification can be treated 

as a binary classification among every class, which directly compares the classification 

results of every class using the binary method [27]. In contrast to classification, the 

output of regression learning is continuous values of a possibility rather than binary 

values. Regression learning is a statistical technique used to discover a relationship 
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between variables for predicting the outcome of unseen input data. By estimating how 

one variable affects the others, regression learning has been broadly applied in various 

areas to fill or forecast gaps of missing data, such as risk management, price prediction, 

and so on. Regression learning is a common method for supervised learning, which 

requires labelled data. 

2.1.1.2 Unsupervised Learning 

Unsupervised learning, contrasted with supervised learning, is related to learning 

on unlabelled data [28]. In other words, the algorithms of unsupervised learning do not 

need human interventions or information about desired output to discover useful 

information for data learning purposes [29]. For instance, clustering algorithms may 

cluster data into groups without appropriate visual representations, which would be 

difficult to identify whether the clustering is appropriate or not. Therefore, the 

representation accuracies may still need to be further tested to determine an appropriate 

implementation. 

Unsupervised learning is commonly employed for clustering, density estimation 

and dimensionality reduction [30], [31]: Clustering is based on statistical algorithms 

and occurs toward an alternative selection of centroids and clusters [32]. Density 

estimation is a statistical approximation to discover a data distribution. The density 

extraction of subgroup data is an instance of density estimation for evaluating 

correlations or the approximations of data distribution in a whole view. Dimensionality 

reduction is mainly for data compression and data simplification. For the 

implementation of dimensionality reduction, autoencoders are normally used for deep 

learning to transform input data into reduced and encoded outputs. The transformation 

process can also be regarded as representation learning or feature learning, which 

allows a deep model to automatically find out the representations and features useful 

for detection or classification. It is worth mentioning that manifold is one type of non-

linear dimensionality reduction techniques, in which data with low dimensions can be 

easily plotted to show the structure of the analysed data when high-dimensional data 

are usually difficult to be visualized [33]. 

2.1.1.3 Reinforcement Learning 

Reinforcement learning is a critical area in deep learning, which trains an agent to 

take action in an environment by achieving a maximum reward. Different from 

supervised learning based on clear labels to learn, the agent decides the actions to 

discover the best possible behaviours in a specific situation, which does not merely 
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depend on the input data but the actions taken by the agent [34]. Reinforcement learning 

is regarded as an intermediate method between supervised and unsupervised learning, 

and actions are taken as a reward (or a punishment) if the data in the learning 

environment do not contain explicit labels. Typically, an agent learns from an unknown 

environment through a try-and-error way, which is a similar means for a child to 

observe new worlds. A reinforcement learning structure interacts with the environment 

to return a specific reward toward a changing environment. The purpose of 

reinforcement learning is to learn an optimal policy of maximising the rewards or other 

user-provided values as immediate rewards to take the best actions at every 

environmental transition. Reinforcement learning can infinitely occur to acquire the 

maximal rewards from the feedback of each section, and the feedback can directly come 

from the environment or can be offered by the calculation results. Two main methods 

of reinforcement learning are the policy search and value function: Policy search seeks 

the optimal values in a policy space; value functions are to estimate expected values in 

a given state and further attempt to select an optimal policy with maximal expected 

values. The policy needs to be evaluated and updated by function values. Furthermore, 

the quality function, also called the state-action value function, is the source of Q-

learning [35], which learns the value of an action in a particular state. In terms of 

machine learning applications, deep neural networks can be used for policy 

optimization and value function approximation. 

2.1.2 Basic Components of CNNs 

2.1.2.1 Convolutional Layer 

CNNs are remarkable models to solve image-related problems due to their 

immense effectiveness and high performance. In recent years, CNNs have been widely 

used in image recognition because of their extraordinary capabilities to capture accurate 

as well as abstract patterns from images. The convolutional layer is the main structure 

block of CNNs, which uses mathematical operations to merge two sets of information 

and serve as feature extractors to learn the feature representations from input images 

[36]. In general, the convolution layer is applied by kernels (or filters) to extract critical 

feature information. The filters aim to detect the key features from the input images, 

and the value and size of the kernels are not fixed, which can be designed according to 

the training requirements. In a convolutional layer, if an input image x of height H and 

width W, each element 𝑦𝑖,𝑗 in the output matrix y can be obtained by computing x with 

m × m kernel K. The equation is formulated as follows [37]: 
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𝑦𝑖,𝑗 =∑∑(𝐾 ∗ 𝑥𝑖:𝑖+𝑚−1,𝑗:𝑗+𝑚−1)  

𝑚

𝑙=1

𝑚

𝑘=1

  {
  1 ≦  𝑖 ≦ 𝐻 −  𝑚 +  1
  1 ≦  𝑗 ≦ 𝑊 −  𝑚 +  1

 (2.1) 

 

where * represents the element-wise product, in which the process is similar to the 

concept of one-dimensional convolution [38]. The outputs of convolutional layers form 

feature maps, representing edges, textures, colour patterns, etc. depending on the 

kernels that are usually determined by learning. 

Figure 2.1 is a simple example of a convolutional layer. The output is computed by 

element-wise product and summation. If the same size output is desired, a zero-padding 

method can keep the output size unchanged. If a colour image having 3 channels 

convolves with a 3 × 3 kernel. The actual kernel size is 3 × 3 × 3, where the first 

dimension is the number of input channels. 

 

 

Figure 2.1: An example of a convolutional layer. 

2.1.2.2 Regularisation Layer 

Deep learning models are capable to learn complicated mapping relationships 

between input data and output data. However, overfitting, which leads to a good 

mapping in the training set rather than the test set, easily happens with limited training 

data [39]. The regularisation layer aims to mitigate the overfitting problem when a large 
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amount of data is impossible to be acquired. Many regularisation methods are proposed, 

including L1 and L2 normalisation, early stop, batch normalisation, pooling, dropout and 

so on. These regularisation methods bring about extensive improvements and inspired 

numerous utilisations of CNNs; the following subsections list the common methods 

using regularisation layers. 

2.1.2.2.1 Pooling 

Pooling layers are one of the structure blocks of convolutional neural networks. In 

contrast to convolutional layers responsible to extract features from images, pooling 

layers consolidate the features learned by CNNs. Pooling, identified as downsampling, 

is responsible to reduce the spatial size, variances, dimensions or computation 

complexity by combining the outputs of neuron clusters from one layer into the next 

layer [40]. The purpose of pooling is to reduce the spatial resolution of feature maps, 

and the adoption of pooling helps to extract the combination of feature maps. Different 

types of pooling formulations are used, such as the maximum, average, L2, overlapping, 

spatial pyramid pooling and so on [41]. In general, the common operations are average 

pooling and max pooling: An average pooling layer propagates the average value of a 

small neighbourhood from a feature map to the next layer whilst a max pooling 

calculates the maximum values among a receptive field and then forwards them to the 

next layers. These two pooling methods provide translational invariance in image 

processing and preserve the detected features in small representations by discarding 

less important data. Max pooling and average pooling are respectively formulated as 

follows: 

 

 
𝑦𝑘(𝑝,𝑞) = 𝑀𝑎𝑥

(𝑖,𝑗)∈ℜ𝑝𝑞
𝑥𝑘(𝑖,𝑗) (2.2) 

 

𝑦𝑘(𝑝,𝑞) = 𝐴𝑣𝑔
(𝑖,𝑗)∈ℜ𝑝𝑞

𝑥𝑘(𝑖,𝑗) (2.3) 

 

where 𝑦𝑘(𝑝,𝑞) is the output of the pooling operation, which is based on the kth feature 

map. 𝑥𝑘(𝑖,𝑗) is the element at location (i, j) by the pooling region of ℜ𝑝𝑞, where a 

receptive field is among the position (p, q). 

Figure 2.2 shows the output difference between max pooling and average pooling 

values, where the input size of the feature map is 4 × 4 and the filter size is 2 × 2 with 

a stride value of 2. Max pooling outputs the maximum values of each pooling region of 

2 × 2, whilst average pooling produces the average rounded integer value. 
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Figure 2.2: An example of max pooling and average pooling. 

2.1.2.2.2 Dropout 

Dropout is a regularisation method, which ultimately improves regularisation by 

randomly skipping part of units connected with a certain probability [42]. The 

complicated connections may be multiply adapted by learning a non-linear relation in 

a deep network, which easily results in overfitting. A random dropping of some 

connections or units is beneficial to mitigate overfitting with the deep networks because 

the number of parameters can be reduced in a deep structure. Consequently, the primary 

advantage of dropout is the proven capability of significantly reducing overfitting and 

preventing feature coadaptation. 

Dropout can be applied by fully-connected layers in a deep neural network. The 

feature selection is distributed equally across the whole neurons in fully-connected 

layers, and dropout forces a network to learn from other independent features. During 

a training process, the dropped neurons will not involve in the back-propagation and 

forward-propagation processes. The dropout outputs among the layers are simply 

expressed in Figure 2.3 and described as the following formula. 

 

 𝑦 = 𝑚 ∗ 𝑎 (𝑊𝑥) (2.4) 

 

where * denotes the element-wise product between a binary mask vector m and an 

activation vector, x is the input vector, W is the weight, and 𝑎  is the nonlinear 

activation function. 
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Figure 2.3: An illustration of the dropout in a fully-connected layer. 

 

Another common dropout method is weight dropping, which is highly similar to 

the dropout in fully-connected layers [43]. In contrast to the dropout in fully-connected 

layers, the weights, which connect neurons between layers, are randomly dropped as 

the dropping target rather than the neurons. 

2.1.2.2.3 Batch Normalisation 

Batch normalisation uses methods of subtracting the mean values and dividing the 

standard deviation to normalise the outputs at each batch normalisation layer [44]. An 

adoption of batch normalisation allows the data distribution of input feature information 

normalised to a Gaussian distribution for enhancing output performance with activation 

functions. Batch normalisation is often adopted to reduce the situation of internal 

covariance shift in activation layers. The internal covariance shift is often caused by 

input data changed from previous layers, and the output data distribution will be 

correspondently shifted to the next layer. Due to the internal covariance defined by the 

activation functions, the internal covariance shift may become very high, and the deep 

networks have to take extra effort on convergence as the weights are continuously 

updated during training. Consequently, since batch normalisation is an efficient way to 

transform data distributions between layers, an operation of batch normalisation is 

employed to solve the problem of covariance shift and can be regarded as a standard 

data processing layer. 

Ideally, batch normalisation is restrained by each mini-batch in a training process 
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[45], and the mean and variance values to each minimal batch are respectively denoted 

as follows: 

 

 

𝜇𝐵 = 
1

𝑚
∑𝑥𝑖

𝑚

𝑖=1

 (2.5) 

 

𝜎𝐵 = 
1

𝑚
∑(𝑥𝑖 − 𝜇𝐵)

2

𝑚

𝑖=1

 (2.6) 

 

where B is the number in the minimal batch, m is the number of samples of the entire 

training set, and xi is the ith input data. If a d-dimensional input x = (x(1), x(2), ..., x(d)) is 

located in a layer of the network, each dimension of its input is normalised as: 

 

 

𝑥′𝑖
(𝑘)
=  
𝑥𝑖
(𝑘)
− 𝜇𝐵

(𝑘)

√𝜎𝐵
()2
+  𝜖

 
(2.7) 

where i is the ith input sample in the entire training set, k is the kth dimension, and 𝜖 is 

an arbitrarily small constant added in the denominator for numerical stability. The 

results of the normalised activation x’i
(k) have zero mean and unit variance. The above 

operation is a transform implementation of batch normalisation, and the transformation 

step to the next layer can be formulated as follows. 

 

 
𝐵𝑁𝑎(𝑘),𝑏(𝑘)  (𝑥𝑖

(𝑘)
) =  𝑦𝑖

(𝑘) = 𝑎(𝑘)′𝑖
(𝑘)
+ 𝑏(𝑘) (2.8) 

 

where a and b are learnable parameters, yi is the output of the second transformation of 

the batch normalisation from the first transformation value of x’i, and yi will be 

propagated to the next layer. 

2.1.2.3 Fully-connected Layer 

Fully-connected layer indicates that neurons in each layer must have weight values 

associated with the connection of every neuron in the adjacent layers. Fully-connected 

layers are used as a probability distribution as well as dimension reduction, and they 

commonly occur as the last part of a deep network [46]. In classification problems, a 

fully-connected layer generally interprets the feature representations using the standard 

operation of softmax. The primary purpose of fully-connected layers is to connect the 
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output features by uniting layers as a final output layer [47]. It is common to use more 

than two fully-connected layers, and the number of full-connected layers can be decided 

by different requirements. However, the computation load and memory load would 

correspondingly increase with the number of fully-connected layers. Figure 2.4 

illustrates the concept of fully-connected layers. The output of each neuron ym in a fully-

connected layer can be formulated as: 

 

 

𝑦𝑚 = 𝑎 (∑𝑥𝑛𝑤𝑚𝑛 +

𝑁

𝑛=1

𝑏𝑚) (2.9) 

 

where N is the number of inputs, xn is the output of the previous layer, bm is the bias 

term, and a is the activation function.  

  

Figure 2.4: An illustration of the fully-connected layer. 

  

2.1.2.4 Activation Functions 

Activation functions are one of the important components for convolutional neural 

networks to introduce complex mapping functions between inputs and response 

variables, which often take non-linear properties between layers [48], [49]. The 

activation function is a significant node put at the end of CNN layers to decide whether 
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the neurons forward to the next layer or not. The commonly used activation functions 

are described in the following section to compare the mathematical properties of 

different activation functions. Every activation function takes specific non-linearity 

performance to a mathematical operation. 

2.1.2.4.1 Sigmoid 

In deep neural networks, sigmoid functions map the input data to intervals of 0 and 

1. Figure 2.5 (a) shows the characteristic of the sigmoid function. The sigmoid function 

is used in many different applications, such as sound event detection and image 

processing. Furthermore, the sigmoid function confines the output probability range 

from 0 to 1 and can be expressed as follows [50]: 

 

 
Sigmoid(𝑥) =  

1

1 + 𝑒−𝑥
 (2.10) 

2.1.2.4.2 Hyperbolic Tangent 

The hyperbolic tangent (tanh) function is defined below and shown in Figure 2.5 

(b). In contrast to sigmoid functions, tanh functions map the input data from -1 to 1 [49]. 

 

 
tanh(𝑥) =  

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (2.11) 

 

2.1.2.4.3 Rectified Linear Unit 

The rectified linear unit (ReLU) [51] function provides neurons with nonlinearity 

while reducing the computation load in a gradient descent process. The output of ReLU 

function is positive or zero. The ReLU function is used as the activation function after 

the convolutional layers in the encoding stage of the noise reduction part. ReLU 

function is defined as follows and shown in Figure 2.5 (c). 

 

 
ReLU(x) = {

𝑥,  if  𝑥 > 0
0,  otherwise

 (2.12) 
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2.1.2.4.4 Leaky Rectified Linear Unit (Leaky ReLU) 

Leaky ReLU function is an improved version of the ReLU activation function. In 

contrast to the ReLU function, the output values of Leaky ReLU [52] can be either 

positive or negative and have a small slope of negative values rather than a flat slope. 

The critical advantages of Leaky ReLU are that Leaky ReLU not only solves the 

problem of ReLU returning zero-slope in negative input but also speeds up the training 

process while a balanced value between positive and negative inputs can make it learn 

faster. The Leaky ReLU function is defined by the following formula and shown in 

Figure 2.5 (d).  

 

 
Leaky ReLU(x) = {

𝑥,  if  𝑥 > 0
𝑎𝑥,  otherwise

 (2.13) 

 

where α is a constant to control the angle of the negative slope, which is available for 

negative input values and normally set with a small number, such as 0.01.  

 

 

Figure 2.5: Activation function: (a) Sigmoid function, (b) Hyperbolic tangent 

function, (c) Rectified linear unit function, (d) Leaky rectified linear unit function. 
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2.1.2.4.5 Softmax 

The softmax function, also known as the normalised exponential function, 

normalises the logistic function to multiple dimensions [53]. The softmax function is 

employed to convert a weighted sum of inputs into probabilities summing to one, which 

is usually applied as the last activation function to normalise the predicted class with a 

probability distribution in a neural network. The probability of x belonging to the ith 

class is formulated as follows: 

 

 

𝑃(𝑦 = 𝑖｜𝑥) =  
𝑒𝑥

𝑇𝑤𝑖

∑  𝑒𝑥
𝑇𝑤𝑘𝐾

𝑘=1

 (2.14) 

 

where x is a sample vector, w is a weight value, xTw represents the inner product of x 

and w, and y is the softmax output of the ith class. The P transforms the dimensional 

data of original inputs into vectors of a K-dimensional space. 

2.1.3 CNN Architecture 

The CNN architecture is composed of numerous basic components to extract 

different representations from training data. Many distinguished CNNs composed of 

these basic components have been developed and become the standard architectures 

with larger or deeper layers. Several important architectures commonly used as a 

benchmark to build up extended networks are described in the following sections. The 

listed architectures contain applicable advantages and have been proven through many 

studies or contests that they can achieve remarkable performance and have noticeable 

benefits in particular applications. 

2.1.3.1 AlexNet 

AlexNet is considered a pioneering CNN architecture, which had shown ground-

breaking results for image classification and recognition tasks. AlexNet was proposed 

by Krizhevsky et al. in 2013 [54] and its learning capability was enhanced by making 

the CNNs deeper as well as applying many parameter optimisation strategies. The basic 

architectural design of AlexNet is shown in Figure 2.6. A typical architecture of 

AlexNet encompasses more than 60 million parameters, 650,000 neurons and 630 

million connections, which contains five convolutional layers, max pooling layers at 

three convolution layers, and three fully-connected layers. ReLU activation function is 
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applied at the end of every convolution layer. 

In AlexNet, feature extraction is extended by adopting more convolutional layers 

to make them applicable to diverse categories. Despite the depth improving the 

generalisation for dealing with different image features, the main drawback of 

increasing network depth is overfitting. To address the overfitting challenge, the 

algorithm randomly skips some transformational units during the training phase to 

enforce the model learning features with robustness [55]. Compared with other 

proposed networks, additional adjustment of large-size filters is used at the initial layers, 

and ReLU is also employed as an activation function to promote the convergence rate 

and alleviate the problem of vanishing gradient [56]. Additionally, overlapping 

subsampling and local response normalisation are applied in AlexNet for improving 

generalisation. Based on the efficiency of AlexNet, it started a new generation in 

developing advanced architecture of CNNs. 

 

 

Figure 2.6: Basic architecture of AlexNet [54].  

 

2.1.3.2 VGGNet 

With the success of CNNs for image processing, Simonyan et al. proposed a simple 

and effective principle to design CNN architectures [57], and their architecture was 

named visual geometry group network (abbreviated as VGGNet). The main 
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contribution of VGGNet is that the depth of CNNs becomes a significant factor to 

achieve remarkable recognition performance and classification accuracy. Compared to 

AlexNet, VGGNet is made of deeper layers to simulate the relationships with a deeper 

representational capacity in the network [58]. 

The VGGNet architecture consists of convolutional layers, max pooling layers and 

fully-connected layers. The ReLU activation function is used, and the final layer is a 

softmax layer for classification purposes. VGGNet regulates the complexity of 

networks by placing 1 × 1 convolution between two convolutional layers, which learn 

a linear combination of the feature maps. The max pooling layer is placed after the 

convolutional layers, and padding is performed to maintain the spatial resolution [59]. 

VGGNet changes the filter size to 3 × 3 with a stride of 2 and experimentally 

demonstrates that 3 × 3 filters can obtain better performance than the large filter size of 

5 × 5 and 7 × 7. Moreover, the use of small-size filters provides the additional benefit 

of low computational complexity by reducing the number of parameters. Consequently, 

these findings set a new research trend to work with smaller filter sizes in CNN 

developments. 

VGGNet showed good results for both image classification and object localisation. 

There are many networks extended based on the original VGGNet, such as VGG-11, 

VGG-16, VGG-19 and so on [60], in which the number indicates the total number of 

layers in VGGNets. The main limitation associated with the VGGNet is its high 

computational cost. Even with the adoption of small-size filters, VGGNets still suffer 

from high computational loads to train more than 100 million parameters. 

2.1.3.3 GoogLeNet 

 

 

Figure 2.7: Basic architecture of the inception block [61]. 
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GoogLeNet, also known as Inception V1, was proposed by Christian Szegedy et 

al. from Google company [61], which was the winner of the 2014-ILSVRC competition. 

Compared to traditional CNN, the main contribution of the GoogLeNet architecture is 

to reduce computation complexity [62]. GoogLeNet introduced a new concept of 

inception layers, which are created by different kernel sizes and have variable receptive 

fields. The initial architecture of inception layers is shown in Figure 2.7. The receptive 

fields capture sparse correlative patterns in the new feature map stack. 

The inception layer uses filters of different sizes, 1 × 1, 3 × 3 and 5 × 5, to capture 

spatial information both at fine and coarse grain levels. GoogLeNet replaces traditional 

convolutional layers with small blocks, which is similar to the idea of substituting each 

layer with a micro neural network [63]. In addition, GoogLeNet also focuses to improve 

the efficiency of training parameters. Before employing large kernel sizes, GoogLeNet 

regulates the computation by adding a bottleneck layer with a 1 × 1 convolutional filter, 

which uses sparse connections to overcome the problem of redundant information and 

neglect irrelevant feature maps. Furthermore, connection density is reduced by using a 

global average pooling at the last layer instead of a fully-connected layer [64]. 

Consequently, GoogleNet contains a deeper architecture of 22 layers than the 

predecessors AlexNet and VGGNet, but the number of parameters of 7 million is much 

lower than that of AlexNet and VGGNet, which indicates that these modifications in 

GoogLeNet have significant benefits in training and computation. 

However, the main drawback of GoogLeNet is that its heterogeneous topology 

needs to be customised from module to module. In addition, another limitation of 

GoogLeNet is that the design of a bottleneck layer reduces the feature space passing to 

the next layer, which may lead to a loss of useful feature information. 

2.1.3.4 Residual Network 

Residual Network (ResNet), the winner architecture of ILSVRC 2015, was 

proposed by He et al. [65]. The primary contribution of ResNet is that introduces the 

concept of “Residual Block” in CNN architecture and devises an efficient methodology 

for training deep networks. The design of residual blocks aims to reduce the problem 

of gradient vanishing when a deep network is developed. The basic architecture of a 

residual block in ResNet is shown in Figure 2.8. 
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Figure 2.8: Basic architecture of the residual block [65]. 

 

The residual block is a residual connection feeding forward to the next network 

layer, and the inputs of a residual block can be defined by the outputs from previous 

operations, such as convolution with different filter sizes and batch normalisation 

followed by different activation functions. The ResNet is comprised of many basic 

residual blocks. Notably, the operations of residual blocks can be varied based on 

different network architectures. 

ResNet has been developed with different numbers of layers, such as 34, 50, 101, 

152, 1202 and so on. For instance, ResNet-50 contains 49 convolutional layers and one 

fully-connected layer at the end of the network for classification. Compared with 

AlexNet and VGGNet, ResNet is 20 and 8 times deeper respectively, but it shows less 

computational complexity than AlexNet and VGGNet [66]. Recently, some remarkable 

variants of ResNet have been proposed, which promote performance by using the idea 

of residual blocks. The impressive performance of ResNet-based networks shows that 

the depth of CNNs is a critical factor in image recognition and localisation tasks. 

2.2 Techniques for Learning from Small Training Data  

Due to plenty of parameters needed to be tuned in deep learning networks, a large 

amount of labelled data is one of the key factors making deep learning models reach 
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remarkable performance.  One serious drawback of deep learning models is that the 

learning process always starts from a poor initial status to optimise the model, which 

always requires a lot of labelled data to achieve the due performance. However, 

compared to unlabelled data, only a small fraction of public datasets is labelled, and 

most of them contain copyright and usage restrictions. Consequently, techniques for 

dealing with the problem of training data insufficiency are explored in recent years to 

mitigate the impacts of labelled data scarcity. 

2.2.1 Scarcity of Labelled Data and Class Imbalance 

2.2.1.1 Scarcity of Labelled Data  

Developed deep learning methods and CNNs have led to substantial progress in 

many computer vision applications. CNNs with many convolutional layers need a large 

amount of training data to fine-tune the free parameters [67]. However, the expected 

performance may not be easily achieved if collected data are not adequate for CNNs to 

learn. Due to the increasing demands on a large amount of labelled data, many practical 

applications are suffering from lacking sufficient labelled data for training.  

Image classification is an important deep learning application relying on a set of 

labelled data. Convolutional layers can extract features from input images through a 

training process, and the possibility distributions of class scores are predicted from the 

extracted features. Classification algorithms have to learn critical labelled information 

for distinguishing object characters, such as shape, edge, colour, texture and so on, and 

ignore irrelevant parts [68]. The classification structures typically work well with a 

large amount of labelled data. However, handling labelled data scarcity and class 

imbalance is one of the significant issues in deep learning applications. 

Various approaches and techniques have been developed to overcome the problem 

of data scarcity, and these methods can be divided into three major parts: data-based 

approaches, algorithm-based approaches and hybrid approaches [69]: Data-based 

approaches aim to modify data distributions of training sets to add or delete instances 

from training data. Algorithm-based approaches change the objective functions in a 

classifier to enlarge the importance of the training data. Hybrid approaches combine 

both data-based approaches and algorithm-based approaches to solving the data scarcity 

problem. 

Deep networks with many layers have a very large number of parameters to be 

fitted, which easily leads to overfitting when trained with small datasets [70]. Data 

augmentation is a popular data-based approach to inflate the size of training datasets. 
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However, no standard techniques are available to decide whether a specific 

augmentation strategy can effectively improve performance until the training process 

is complete [71]. 

2.2.1.2 Class Imbalance 

The class imbalance problem emerges as an important issue in designing classifiers 

for real applications such as medical diagnosis cases where the number of positive 

samples is much smaller than the negative samples [72]. It is noticeable that datasets 

may not contain a balanced data amount in each class, which makes the classification 

categories unequally represented. What is worse, if a small number of instances are 

contained in the imbalanced class, it usually has extremely critical and significant 

representations for the classification task. 

Many remarkable methods have been explored to deal with the problem of class 

imbalance, and they can be mainly divided into two categories in general, external 

methods and internal methods [73]: External methods aim to process training data to 

make them balanced. Data augmentation is a typical external method. In contrast, 

internal methods deal with learning algorithms to reduce the sensitivity of imbalanced 

classes. An advantage of external methods is that existing classifiers produced by 

standard deep learning algorithms can be directly used without adjusting original 

algorithms and structures. In comparison, internal methods adjust algorithms or 

structures, which may easily cause negative predictions and have serious influences on 

model performance compared to the original ones [74]. In contrast to internal methods, 

the existing learning algorithms can be directly conducted by external methods without 

modifications, and then the data processing will be the only concern for making the 

imbalanced datasets balanced. 

Sampling techniques are external methods for handling class imbalance problems. 

Sampling can be achieved in two ways, undersampling and oversampling. 

Undersampling is applicable to remove samples, and the most popular method of 

undersampling is randomly removing the majority of class samples. However, it may 

lead to another problem of overfitting while a small amount of training data is involved 

in deep learning models. Compared to undersampling, oversampling of minority classes 

is a preferred method for deep networks to solve the imbalanced training data problem. 

The synthetic minority oversampling technique (SMOTE) is a method to deal with 

the class imbalance problem [75]. In contrast to conventional oversampling techniques, 

which directly duplicate the minority data population instead of increasing the data 

information or variation, SMOTE can randomly choose data from the minority class 

and produce data based on the nearest neighbours of assigned data. Thus, synthetic data 
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will be created between the random data and the selected neighbours for enhancing the 

data diversity. In addition, data augmentation, another popular oversampling technique, 

will be further emphasised for solving the problems of class imbalance and labelled 

data scarcity in the next section. 

2.2.2 Techniques for Learning from Small Training Data 

2.2.2.1 Transfer Learning 

Transfer learning was proposed to train deep learning models suitable for a small 

amount of data [76]. Training a deep learning model requires a large amount of training 

data, which usually is at a scale of millions of images. Transfer learning takes models 

trained by a large dataset and retrains the models to other small datasets [77]. The 

concept is that learned weights can be transferred and generalised among different 

datasets if other converged networks had learned the hierarchical representations during 

training. Transfer learning requires further training, also regarded as fine-tuning to fit 

the new data. Weights of the layers for classification will be replaced when transfer 

learning is operated on the pre-trained convolutional neural network, and the other 

layers in the convolutional neural network are optionally fine-tuned. 

Learned parameters from the state-of-the-art CNNs (e.g., AlexNet, VGGNet, 

GoogLeNet, ResNet, etc.) are all available as alternative models for transfer learning 

with a small dataset. Whether transfer learning can improve performance is still debated. 

Many experimental results have shown the training efficiency with transfer learning, 

and some researchers provide experimental results that the model with transfer learning 

obtains superior performance compared to traditional CNN training [78], [79]. If a 

transfer learning method cannot efficiently promote performance, negative transfers 

occurred. Developing transfer learning methods to avoid negative transfers is still 

challenging because it is difficult to always produce positive transfers for less related 

tasks. To sum up, transfer learning is a prevailing technique, which is widely utilised 

for image classification to reduce the time consumption in model training, especially 

during the development period. Although it is difficult to prove that transfer learning 

makes deep models easily converge or improve performance, transfer learning is still 

an efficient technique for existing CNNs to fine-tune the trained weight values using a 

small number of training samples. 
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2.2.2.2 Semi-supervised Learning 

Semi-supervised learning is an approach to improve performance assessed by a 

small number of labelled samples along with a large amount of unlabelled or uneven 

data [80]. In many applications, it is impossible to acquire a large amount of labelled 

data as training samples. Although unlabelled data may be useful if they carry important 

information in prediction tasks, these unlabelled data still need human effort and 

expertise to process as labelled ones. Semi-supervised learning conducts a combination 

of supervised and unsupervised learning, which makes use of a small number of 

labelled samples as a training set to train a model in a supervised manner and then 

employ the trained model to predict the unlabelled data. In general, semi-supervised 

learning methods attempt to improve performance with the other associated information 

or data. Semi-supervised classification methods are relevant to cases where labelled 

data are scarce. Moreover, semi-supervised learning methods are also applied to 

improve classification performance when a large amount of unlabelled data contain 

additional representations. 

Semi-supervised learning turns unlabelled data into predicted samples with a 

trained model, which is known as pseudo-labelling. Although semi-supervised learning 

and pseudo-labelling can annotate large-scale unlabelled data without human 

intervention, they still rely on the assumption that both labelled and unlabelled samples 

have the same marginal data distributions [81]. Specifically, a necessary condition of 

semi-supervised learning is the marginal data distribution over the input space should 

cover the posterior distribution information. If the input space contains no information 

about the posterior distributions, it is impossible to improve the performance with semi-

supervised learning. Consequently, semi-supervised learning utilises a small amount of 

labelled data to annotate a large amount of unlabelled data and aims to resolve the 

performance degradation caused by training with small datasets. 

2.2.2.3 One-shot Learning and Few-shot Learning 

The common ways to train models with one or a few labelled samples include one-

shot learning, few-shot learning and zero-shot learning: The advantage of one-shot 

learning is using one instance to learn classes from pre-learned classes [82]. One-shot 

learning is beneficial for adding only one enrolled sample to train with learned classes. 

Few-shot learning is an extension of one-shot learning. Few-shot learning is suitable 

for a small number of labelled training samples, the idea of which is similar to 

transferring a pre-trained model trained on large data and using it in similar 

classification tasks with fewer training samples. The training difficulty of few-shot 
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learning is that a classifier needs to be generalised very well to new classes, which may 

not be easily achieved for a small number of training samples [83]. Zero-shot learning 

is an extreme case of few-shot learning and one-shot learning. Compared to few-shot 

learning, zero-shot learning doesn’t need any visual examples of the target training 

classes whilst few-shot learning is supported by a few samples as the labelled categories. 

Zero-shot learning needs to extend the solutions of few-show learning to update the 

training information through a few generated samples or auxiliary data because the 

features in classes are not available during the training phase. 

The advantages of few-shot learning and one-shot learning are as follows [84]: 

Firstly, machines can learn from rare data, which can classify images with rare 

categories, even by collecting a very small amount of prior information. Secondly, 

machines can recognise the difference among very few samples, which is similar to 

human learning. Thirdly, the learning methods only require a small amount of data to 

train a deep learning model, and training with small datasets can significantly reduce 

computational costs. However, the drawbacks of few-shot learning and one-shot 

learning need to be noted that employing a small number of samples to fine-tune a deep 

model easily leads to overfitting, which is a challenging issue at present for reaching 

better performance than traditional supervised learning methods. 

2.2.2.4 Data Synthesis 

Good-quality labelled data are always expensive considering both time and cost, 

and individuals or small organisations might not afford a large amount of money to 

collect and maintain a large amount of ideally labelled data. Comparatively, synthetic 

data are freely available and fairly inexpensive for researchers to explore data that may 

be difficult to be acquired, such as in the fields of rare disease information and satellite 

photos [85]. Data synthesis is a widespread method to generate new features to acquire 

emulative fake data, and the common data types include sounds, images, videos and so 

on. Data synthesis always comes along with complicated algorithms and extensive 

setups, such as model designing, data testing, data validation, parameter setting, loss 

function, training algorithm, learning rate, optimiser and so on [86]. The main purpose 

of data synthesis is to meet requirements under a certain situation, in which the real data 

may be hard to be found or not available to be accessed in real applications. Data 

synthesis is theoretically used as a synthetic method to generate new types of data from 

realistic ones. Consequently, data synthesis often generates new targets as an acceptable 

benchmark to represent the original data. 

There are many benefits of data synthesis compared to real data collecting [87]: 

First of all, due to privacy rules and other regulations, real data may be restricted in use, 
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and synthetic data can learn from the statistical properties of real data without exposing 

them. Secondly, data synthesis is either free or inexpensive regarding the collecting 

time and cost. Once generative models are built up, producing synthetic pictures 

becomes more cost-effective and faster than collecting real ones. Thirdly, if real 

datasets are insufficient to guarantee system performance, synthetic data can increase 

the size and contain representation characteristics of desired data. Moreover, synthetic 

data will be a unique solution to implement training or testing experiments in required 

systems if real data are no longer available. Finally, synthetic data can preserve the 

multivariate relationships of specific variables or statistics. Taking the applications of 

3D data as an example, synthetic data can perfectly retain the calibrated labels or 

important data parameters, which may be very expensive or impossible to be collected. 

Due to the introduction of GANs in 2014 [15], the applications of data synthesis 

have been exponentially growing. With the promotion of synthetic techniques, 

generative models are suitable to be used in a variety of applications, such as video 

synthesis, image generation and data augmentation. In contrast to the baseline of 

traditional synthetic techniques, synthetic data with deep learning-based approaches 

reach advantages in many classification tasks. Consequently, because of the progress 

as well as breakthrough technologies in deep learning, data synthesis based on deep 

learning methods has been widely applied for enlarging the data amount and diversity 

to augment the original datasets. 

2.2.2.5 Data Augmentation 

It has been generally accepted that a larger amount of diverse training data can 

result in prominent performance in deep learning. However, collecting enormous 

labelled samples is an unrealistic task because of the cost and efficiency concerns [88]. 

Due to the constraints of privacy, ethics, security, computing resources and so on, 

extremely few labelled datasets are released to the public compared to unlabelled 

datasets, which results in collecting sufficient labelled data becoming a very difficult 

mission in machine learning applications. There is no doubt that deep models are hard 

to achieve remarkable performance with limited data. Even worse, if a small dataset is 

reluctantly used to train a deep model, overfitting will become a serious problem for 

deep learning methods, in which the overfitting problem indicates the production of 

analysis results is close to a particular set of training data and may statistically fail to 

fit other untrained data stably and reliably [89]. Therefore, training a deep learning 

model generally requires large amounts of data to prevent overfitting, which is a 

common concern when a deep model is fitted with a limited training set and makes a 

deep model not generalised well by the untrained data. To address the overfitting 
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problem, data augmentation has become a general way to increase the size and diversity 

of training data [90]. In terms of data augmentation, deep learning methods are the 

popular techniques in recent years to deal with the root problem of overfitting caused 

by training with insufficient samples. 

The primary concept of data augmentation is to artificially inflate the size of the 

original training data. Data augmentation is based on the assumption that if more data 

information can be extracted from original training samples through data augmentation 

methods, deep learning models are expected to reach good performance in mitigating 

the negative impacts of the overfitting problem [91]. Data augmentation is also a 

solution to the mentioned problem of labelled data scarcity [92]. Augmentation 

techniques are used to design similar but alternative samples toward real data to 

generate extra data that may be lacking in the original datasets. For example, since 

convolutional neural networks may not understand objects that have been rotated or 

cropped, processing with rotated and cropped images will be a good augmentation 

technique in this case to enhance the performance of deep networks. In addition, another 

important issue for data augmentation is the concern of class imbalance in training a 

deep model [93]. Class imbalance refers to one or more classes being predicted under 

fewer representations in a dataset and easily makes a deep model have a bias toward 

over-representative classes. Therefore, data augmentation is an efficient approach to 

overcome the problems of class imbalance and labelled data scarcity by adding more 

data information over under-representative datasets. Data augmentation can be 

considered a regularisation technique for reducing generalisation errors in deep learning 

models. Regarding the importance of data augmentation in this thesis, image data 

augmentation and its related work will be respectively discussed in the following 

sections. 

2.3 Image Data Augmentation 

Image data augmentation modifies a set of training images and additionally 

generates representative samples [94]. These extra images make models generalisable 

for improving performance on test data and avoid learning from similar features of the 

original training set. To make a deep network learn well, the augmented images should 

follow with a potential distribution of the testing set. The choice of data augmentation 

methods critically depends on the data types, which need to be improved or enhanced. 

The methods of image data augmentation can be categorised into two primary groups, 

traditional techniques and learning-based techniques: Traditional techniques transform 

images by using classic processing methods to increase the image amount. On the other 
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hand, learning-based techniques (also called smart methods or learnable augmentation 

methods) first learn the data distribution from the original training samples and then 

create images from the learned data distribution for augmenting the original datasets. 

2.3.1 Traditional Augmentation Techniques 

A challenge to computer vision applications is how to obtain robust representations 

and diverse visual features to remain unaffected in transformations. The influence of 

the real environment, i.e., occlusion, deformation, light intensity, etc., may cause 

transformations that easily result in image feature changes over the object's appearance. 

Traditional techniques for mitigating the negative transformations are to increase the 

data diversity, and augmentation techniques have become common methods to be 

employed in many computer vision applications. Image data augmentation includes two 

major transformation methods, geometric transformations and photometric 

transformations, both of which consist of classic image manipulation processes [95]: 

Geometric transformations map images with different spatial positions; photometric 

transformations manipulate the intensity values to produce augmented images. The data 

augmentation processes are performed on the original images, and the modified results 

will add back to the original dataset to increase the diversity of the original datasets. 

Several popular and classic augmentation techniques are listed in the following sections, 

where an overview of geometric transformations as well as photometric transformations 

will be further discussed. 

2.3.1.1 Geometric Transformations 

Geometric transformations, such as scaling, translating, rotation, flipping, 

reflecting, shearing, cropping and so on, are the most common and easy augmentation 

techniques [96]. Since geometric transformation strongly relies on data likelihood, the 

transformations should confidently refer to the data similarity without causing a label 

transformation. Therefore, the policy in different cases needs to be carefully considered 

whether the adopted transformation techniques are beneficial for improving the final 

performance. For instance, in terms of the traditional augmentation applications, 

rotation and flipping are common techniques to generate different images with data 

similarity but may not be confident in the case where the sign of 9 may be recognised 

as 6 for different digit labels through rotation and flipping. In the following sections, 

several common geometric transformation techniques with different processing 

methods are described. 
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2.3.1.1.1 Flipping 

Horizontal and vertical flipping are common methods in geometric transformations 

because this augmentation technique is one of the easiest ways to be implemented [97]. 

Flipping helps to maximise the image number without complicated image processing, 

and it has proven advantageous to enlarging the diversity of datasets, such as applied in 

datasets CIFAR-10 and ImageNet. Samples using the flipping technique are shown in 

Figure 2.9. 

 

 

Figure 2.9: Flipping technique, where (a) is the original image, (b) is vertical flipping, 

(c) is horizontal flipping, and (d) is vertical and horizontal flipping. 

2.3.1.1.2 Rotation 

Rotation is another type of geometric transformation for common data 

augmentation requirements [98]. Rotation is done by turning images in right or left 

directions based on the axis between 1 to 359 degrees. An efficient augmentation 

technique of rotation is heavily designed by the degrees of rotation parameters. Slight 

changes, for instance from 1 to 15 degrees or -1 to -15 degrees, could be more useful 

than large degrees of rotations. If the rotation degrees increase on a large scale, label 

information may be no longer preserved in various datasets. Samples of rotated images 

are illustrated in Figure 2.10. 
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Figure 2.10: Samples of rotated images. 

2.3.1.1.3 Translation 

An operation of translation is to shift images in different directions, such as up, 

down, right and left [99]. The translation techniques beneficially avoid positional bias 

in normalised datasets. Taking facial recognition tasks as an example, if a face dataset 

put all the facial images in the centre, it will be useful to image pre-processing as well 

as normalisation. However, a deep model may receive good features only on centred 

images. In this case, the original images can be translated into different directions 

except for the centre, and the other remains could be filled with specific values or 

random noise in terms of data augmentation. Samples of translation images are shown 

in Figure 2.11. 

 

 

Figure 2.11: Samples of translation images. 
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2.3.1.1.4 Cropping 

Cropping is an image processing method, which is practical to mix the height and 

width by cropping images at a central patch of images [100]. Cropping could be 

analogous to zooming or scaling images as well. Two types of cropping are usually 

used for data augmentation: 1) two locations in images need to be set as a starting and 

ending point. 2) two range values of the height and width are used to rescale images. In 

addition, random cropping can be used to provide various similar outcomes of 

augmented data. Compared with other techniques, cropping will reduce the size or 

resolution of the original input images, but the other techniques preserve the spatial 

dimensions of the original ones. Samples of cropping images are demonstrated in 

Figure 2.12. 

 

 

Figure 2.12: Samples of cropping images. 

 

2.3.1.2 Photometric Transformations 

2.3.1.2.1 Noise Adding 

Adding noise is a technique to insert a noise matrix, which is created by random 

values [101]. Different from geometric transformations of changing positions presented 

in training data, adding noise is an efficient solution for data augmentation to add or 

change the data distribution of images to make deep models learn more robust features. 

For data augmentation purposes, the common noise types added in target images are 

Gaussian noise and salt & pepper noise, as shown in Figure 2.13. 
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Figure 2.13: Sample images of noise added by different percentages. (a) to (d) is the 

images with salt & pepper noise, and (e) to (h) add noise with Gaussian distribution. 

2.3.1.2.2 Colour Space Shifting 

 

Figure 2.14: Sample images of colour space shifting. 

 

Shifting colour spaces is a technique by changing the pixel values instead of pixel 

positions for data augmentation requirements [102]. Humans can distinguish objects 

via their colour properties, such as brightness, contrast, saturation, hue, lighting and so 

on. In photometric transformations, colour space transformation is one of the critical 
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techniques to increase the diversity of pixel values, which can not only enlarge the 

number of images but also discover significant features hidden behind a specific colour 

space. For example, a constant pixel value can be quickly added or subtracted by 

changing the image brightness (or darkness), and the transformations to a certain colour 

space involve a restriction of pixel values in digital images, which meets the 

requirements of generating diverse colour representations for data augmentation 

purposes. Sample images of colour space shifting are illustrated in Figure 2.14. 

2.3.1.2.3 Kernel Filter 

Kernel filters are the techniques to process images by controlling pixel values with 

kernel filters, such as histogram equalisation, sharping, blurring and so on. The kernel 

filter works by sliding a kernel matrix across whole images [103]. For instance, 

histogram equalisations adjust intensity values to enhance image contrasts. Image 

harping is based on a high-contrast vertical or horizontal edge filter to boost the edge 

details and image blurring uses averaging processes to blur pixel values. The use of 

different kernel filters can result in diverse images with distorted or sharped outcomes. 

Kernel filters are popular and helpful to augment original image data with high data 

diversity. Sample images using different kernel filters are shown in Figure 2.15. 

 

 

Figure 2.15: Sample images using different kernel filters.  
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2.3.1.2.4 Random Erasing 

Random erasing is one of the image data augmentation techniques, which 

fundamentally erases some pixel values of images [104]. Random erasing can be 

regarded as a specific design to combat the recognition challenges of image occlusion 

referring to missing or unclear parts of image information. Apart from the occlusion 

challenges, random erasing is a convincing technique for making a deep network focus 

on entire images rather than preferentially learning from certain visual features. 

Image erasing generally works on square regions and masks images with specific 

pixel values, such as mean values, random values, maximum values, assigned values 

and so on. Random values have been found as well-chosen values in image data 

augmentation. Therefore, random erasing becomes a popular augmentation technique 

to directly prevent overfitting by altering images. However, the disadvantage of random 

erasing is also obvious it may not be a good technique to preserve labels. For example, 

a label error may happen by random erasing when a digit sign of 8 transforms into 9 in 

a number recognition task. Sample images of random erasing are shown in Figure 2.16. 

 

 

Figure 2.16: Sample images of random erasing. 
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2.3.2 Image Data Augmentations Based on Deep Learning 

Methods 

Since many deep learning methods have made breakthroughs in recent years, it is 

expected to use deep learning techniques to solve the problems of labelled data scarcity 

and class imbalance. Image data augmentation techniques based on deep learning 

approaches have shown advantages in many studies. 

2.3.2.1 Meta-metric Learning 

Meta-metric learning is a framework accompanied by more than two deep 

networks for objective reconstruction with loss functions [105]. The concept of meta-

metric learning is to use a deep network to optimise other deep networks. Meta-metric 

learning conducts regression approaches to promote training precision and further 

minimise the overfitting problem. Meta-metric learning is one of the deep learning 

techniques applicable in the field of data augmentation and has successfully built deep 

models to produce image data by reducing failures through a training phase. Meta-

metric learning substantially improves the precision of training a deep model, which is 

efficient to mix non-homogenous image features with a strong generalisation. However, 

compared with traditional data augmentation techniques, the drawback of meta-metric 

learning is that the training efficiency needs to be tested and proven by experts. 

Moreover, the implementation of meta-metric learning is relatively time-consuming in 

practical applications. 

2.3.2.2 Feature Space Augmentation 

Feature space augmentation uses neural networks to map high-dimensional inputs 

into lower-dimensional representations [106]. Feature space augmentation is easily 

implemented by autoencoders, in which new instances can be reconstructed from input 

features. Representative features are possibly processed by isolated vectors with a 

specific feature space, also denoted as a latent space, which is conducted by decreasing 

the output layers of a neural network. For instance, the outputs of a deep network could 

be low-dimension representative vectors instead of class labels. Autoencoders work 

well on mapping images into low-dimension representative vectors, and decoders can 

reconstruct these representative vectors back to the original ones. The use of 

representative vectors is profitable for discovering a new feature space based on the 
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input features. 

The disadvantage of feature space augmentation is hard to interpret the whole 

vector information through neural networks or other deep networks. Although feature 

space augmentation is implementable to map input images into representative vectors 

with an autoencoder, the requirement of reconstructing entire encoded parameters will 

be extremely difficult to process by the decoder structure, which is not only time-

consuming but also hard to train with high precisions. 

2.3.2.3 Augmentation Using Generative Adversarial Networks 

The universal data augmentation techniques based on deep learning methods utilise 

generative models, which can create artificial data from initial datasets, to produce data 

and enhance the performance of deep learning applications [107]. One of the popular 

generative models is generative adversarial networks (GANs). GANs are typically 

composed of two distinct deep networks, the generator and discriminator, and extract 

features by a competitive learning mechanism to learn representations from real data 

[108]. Many studies have shown that GANs not only are simple and useful as a data-

driven manipulation strategy to produce additional data but also have caused major 

changes in many deep learning applications, such as image synthesis, style transferring, 

image segmentation, imaged editing, super-resolution manipulation and so on [109]. 

Since GANs are the primary generative models used in this thesis, an overall literature 

review will be presented in the next chapter, which includes the GAN theory, structure 

variants, loss functions, training difficulties and applications. 

2.4 Conclusion 

In this chapter, significant topics of machine learning are reviewed in terms of 

learning data representations efficiently from a small training dataset. Firstly, three 

different categories of machine learning methods, including supervised learning, 

unsupervised learning and reinforcement learning, are discussed. Secondly, since 

convolutional neural networks (CNNs) are one of the state-of-the-art methods in deep 

learning applications (e.g., image classification, object detection, object recognition, 

etc.), a comprehensive review of CNNs is presented in Section 2.1. Thirdly, the basic 

components of CNNs are presented along with different functional layers and activation 

functions. In addition, several important CNNs proposed over the past few years as well 

as the contributions of these networks, including AlexNet, GoogLeNet, VGGNet and 

ResNet, are reviewed. Finally, despite the success and remarkable advances in CNNs, 
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they rely on massive labelled datasets for achieving outstanding performance. In 

general applications, the scarcity of labelled data and datasets with class imbalance have 

become serious problems for deep learning to reach expected performance and avoid 

overfitting.  

To deal with the problems of labelled data scarcity and class imbalance, techniques 

for learning from small training data and image data augmentation are respectively 

reviewed in Sections 2.2 and 2.3. The techniques described in Section 2.2 include 

transfer learning, semi-supervised learning, one-shot learning & few-shot learning, and 

data synthesis & augmentation. Among the above methods, data augmentation is one 

of the most useful techniques to produce improved datasets, which can be suitable for 

all existing CNNs without modifying the existing model structures and algorithms. 

Therefore, in Section 2.4, image data augmentation is further discussed in two main 

parts: the first part is traditional methods, and the other is deep learning methods. 

Traditional techniques of image data augmentation consist of geometric 

transformations and photometric transformations. Comparatively, the deep learning 

techniques for image data augmentation include meta-metric learning, feature space 

augmentation and GANs. Since this thesis aims to propose novel GAN models to 

automatically augment image data from small datasets, a comprehensive review of data 

augmentation using GANs will be presented in the next chapter. 

 



41 

Chapter 3 

Literature Review on Generative 

Adversarial Networks 

3.1 Introduction 

Novel generative models have been proposed and dedicated to specifically 

discovering data distributions with probability and statistics methods. In general, these 

generative models can be grouped into three main categories: variational autoencoders 

(VAEs), auto-regression networks, and generative adversarial networks (GANs) [110], 

[111]. Firstly, VAEs are probabilistic models and attempt to model the probability 

distribution of real data. However, the outcomes of probabilistic simulations usually 

have a bias, which makes the generated samples blurry. Secondly, auto-regression 

networks translate image generation into a pixel prediction task, and each pixel needs 

to be processed one by one. Finally, GANs are composed of two primary networks, the 

generator and the discriminator. In an adversarial learning process, a generator, which 

is responsible to generate fake samples from random noise, creates data to fool the 

discriminator. Oppositely, a discriminator classifies samples and distinguishes between 

real data and fake data. The learning goal of a generator is to fool the discriminator to 

believe that the generated samples are real. On the other side, a discriminator is trained 

by both real and fake samples to identify the samples generated by the generator as fake.  

GANs are not only one specific type of generative model based on learning 

techniques but also one of the most popular models, which discover the maximum 

likelihood and approximate inference of real data distributions [112]. In contrast to 

other generative models, in which a large number of parameters need to be fine-tuned 

for discovering the approximate distributions of real data, both VAEs and auto-

regression networks contain serious generalisation issues and limited processing 

efficiency. Moreover, the restricted frameworks, e.g., autoencoder for VAEs and no 

latent variables for auto-regression networks, deteriorate the generative capabilities and 

lead to unclear results. GANs provide the following advantages for efficiently 

producing desired samples [113]: 1) Compared to VAEs or auto-regression networks, 

GANs can produce more realistic outcomes. 2) GAN frameworks have good 

compatibility with deep neural networks and other existing deep models. In contrast to 

other generative models, GANs do not need a pre-requirement for specific network 
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frameworks, and the flexible frameworks are suitable for various types of real 

applications. 3) GANs can generate many types of probability density whilst VAEs and 

auto-regression networks are difficult to produce diverse and different types of 

synthetic results. 4) The restriction on the size of latent variables of GANs is less than 

VAEs and auto-regression networks, which makes GANs more efficient for various 

real applications. 

Even though GANs are not the perfect models to deal with all comprehensive 

generative problems and have potential drawbacks as discussed in Section 3.5, the 

advantages mentioned above still lead GANs to great success, especially in the field of 

computer vision, such as the thriving applications of image synthesis, image 

segmentation, image translation, super-resolution, and so on [114]. In this chapter, the 

topic of image synthesis based on GANs is comprehensively introduced and discussed 

in 6 sections, including fundamental framework, structure variants, loss function 

variants, training challenges, evaluation metrics and applications. 

3.2 A Fundamental Framework of GANs 

3.2.1 Typical GANs 

The idea of GANs was introduced by Goodfellow et al. in 2014 [15], and a typical 

GAN framework is composed of two neural networks, namely the generator and 

discriminator. The conceptual idea of the GAN structure is shown in Figure 3.1. The 

common analogy is to take one network as an art forger and the other as an art expert. 

The generator G is treated as the forger to create forgeries and aims at making realistic 

images. The discriminator D receives both forgeries and real data and aims at 

distinguishing between them. GANs have been widely used in many synthetic fields. 

Meanwhile, new methodologies have also been proposed in recent years to make model 

training stable and generate high-quality results for broadening the applications of 

GANs. 

Through a training phase, the generator generates highly realistic samples that can 

deceive the discriminator. Besides, the discriminator also tries to improve the capability 

to recognise real and fake data. The adversarial learning between the generator and 

discriminator networks can be considered as a completed status when both networks 

stop improving and stay in equilibrium [115]. The training process resembles a cat-and-

mouse game. By competing with each other between the two networks, a GAN 

framework can produce realistic synthetic data with adversarial learning. 
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Figure 3.1: Conceptual idea of the GAN structure [15]. 

 

To be specific about the training process, the discriminator is characterised as a 

mapping network to discover the data distribution from the real data. The discriminator 

is trained to classify the training data and recognise fake ones. On the other side, the 

generator continues to be trained to lower the accuracy of the discriminator when the 

discriminator is optimal. If the generated data distribution in the generator perfectly 

matches the real data distribution, then the discriminator will be maximally confused 

by the generated data. Due to the generator having no access to real images, the 

information from the discriminator is the only way to interactively learn. In contrast, 

the discriminator has access to both fake data and real data, so that the information 

provided by the discriminator knows whether the data came from real or fake, and the 

information can be also used to train the generator to produce forgeries with quality 

improvement. Formally, the minimax operation between generator G and discriminator 

D with the loss function (objective function) V(D, G) is formulated as follows [15]: 

 

 

min
𝐺
max
𝐷
𝑉(𝐷, 𝐺) =  𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝔼𝑧~𝑃𝑧(𝑧)[log (1

− 𝐷(𝐺(𝑧)))] 

(3.1) 

 

where 𝑃𝑑𝑎𝑡𝑎 is the distribution of real data, 𝑃𝑧 is the noise distribution, and 𝑃𝑧(𝑧) 

indicates the data distribution from input noise z, which follows uniform distribution or 

Gaussian distribution, x is the real data, and 𝔼 means the expectation value. Initially, 

G accepts a data distribution from random vectors z ∼ 𝑃𝑧  and generates synthetic 

samples from the certification of D. The parameters of G are then fine-tuned and 

updated by using the signals from D through back-propagation. 
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3.2.2 Convolution-based GAN 

Both generator and discriminator in a typical GAN framework can be deep neural 

networks or other machine learning models. Convolutional neural networks have 

demonstrated outstanding performance in many image-processing applications. 

Therefore, the convolution-based framework with a deep convolutional generative 

adversarial network (DCGAN) was formalised in 2016 [116], which can not only 

produce high-quality images but also has the advantage of stabilisation during training. 

Consequently, the DCGAN structure has been widely used as the fundamental GAN 

framework in many image-processing applications. One of the disadvantages of the 

DCGAN is that a large amount of labelled data is required for the DCGAN to achieve 

photorealistic results. Additionally, the mode collapse problem frequently appears 

when the model is over-fitted to a few samples, leading to an oscillating mode. 

 

 

Figure 3.2: The structure of a deep convolutional generative adversarial network. 

 

Figure 3.2 shows the structure of a DCGAN, which uses a high-dimensional 

uniform distribution for generating the noise vector to extend a small spatial 

convolutional representation with various feature maps. Each convolutional component 

at least contains a convolutional layer and an activation function as the basic 

components, and the convolutional process converts the input signals of the noise vector 

to generated images with a high-level representation, such as colour images with 3 × 

64 × 64 pixels. 
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3.3 Structure Variants of GANs for Image Synthesis 

A typical GAN learns the real data distribution from training samples and then 

generates demanded distributions of real-like data. However, the basic GAN structure 

might not be strong enough to learn complex data distributions over various application 

tasks. Many variants combined with different network structures have been proposed 

in recent years for improving the efficiency and effectiveness of image synthesis, 

leading to various GAN structure variants, which are expected to be more functional 

and efficient to deal with complex data distributions. Several structure variants of 

GANs, including condition-based GAN, auxiliary classifier GAN, autoencoder-based 

GAN and attention-based GAN, are reviewed in the following subsections, where the 

improvements and benefits for image synthesis will be discussed. 

3.3.1 Condition-based GAN 

In the basic structure of typical GANs or convolution-based GANs, both of their 

inputs in generators are random noise vectors, which easily lead to mode collapse and 

other negative impacts on the model training. For mitigating these drawbacks, a variant 

structure, condition-based GAN or conditional GAN, was proposed in 2014 [117]. The 

basic structure of a condition-based GAN is shown in Figure 3.3. In contrast with 

typical GANs and DCGANs, condition-based GANs have an extra conditional variable, 

which could be obtained from labels, texts, images, or other condition data. The 

conditional variable presenting in a condition-based GAN structure can be inputted into 

both generators and discriminators, which efficiently assists the generator to synthesise 

more reliable and less collapsed outcomes than merely inputting noise vectors. For a 

generator, the conditional variable as the auxiliary conditional information is 

determined by the feeding data combined with random noise to discover the hidden 

representations. Comparatively, for a discriminator, the conditional variable is also 

presented as the input data of the discriminative process. In addition, the loss functions 

of condition-based GANs are similar to the typical GAN, but an additional data 

distribution of the conditional variable should be considered during training. 
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Figure 3.3: The basic structure of a condition-based GAN [117]. 

 

Compared to unconditional generative models difficult to control the created 

results, condition-based GANs provide a novel idea of directing information with 

additional condition variables, which can control the properties of the generated data 

and mitigate the mode collapse problem. The condition-based GANs have shown 

promising and interesting synthetic results in many applications (e.g., image translation, 

image repairing, etc.) [118]. However, the conditional variable applied by condition-

based GANs still relies on good labelled data based on supervised learning. The input 

conditions are taken as the probabilistic distribution, and prediction errors or mapping 

mistakes could result in a huge impact on generative quality. 

Conditional variables are fed as an additional input layer in condition-based GANs. 

In other words, the original input noise and conditional variables are combined as new 

hidden representations, which allow a condition-based GAN to additionally consider 

the composition of the hidden representations. The loss function of condition-based 

GANs is formulated as follows: 

 

 

min
𝐺
max
𝐷
𝑉(𝐷, 𝐺) =  𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥|𝑦)] + 𝔼𝑧~𝑃𝑧(𝑧)[log (1

− 𝐷(𝐺(𝑧|𝑦)))] 

(3.2) 

 

where x is the input data, y is the condition data, z is the input noise, 𝑃𝑧(𝑧) is a data 

distribution generated from noise, and 𝔼 is the expectation value. 
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3.3.2 Auxiliary Classifier GAN 

The fundamental structure of an auxiliary classifier GAN, abbreviated as ACGAN, 

is very similar to a condition-based GAN. The slight difference lies in that the auxiliary 

classifier GAN extends the structure of condition-based GAN with an additional 

auxiliary classifier, and this structure variant was first proposed in 2017 [119]. The 

basic structure of an auxiliary classifier GAN is shown in Figure 3.4. The main concept 

of the auxiliary classifier GAN is to attach an extra network as a classifier to help the 

discriminator classify complex data, and the auxiliary classifier is extensively used to 

extract complex features. A pre-trained model, which is trained with other big datasets 

instead of the provided datasets, can be used as an auxiliary classifier [120]. The 

adoption of an additional auxiliary classifier is expected to boost the capabilities of 

feature recognition in image synthesis. Although the improvements by using an 

auxiliary classifier in GAN structures could be valuable to generate great visual quality 

or highly diverse images, the drawback is obvious when the auxiliary classifier needs a 

large scale of labelled datasets to improve the performance. Therefore, auxiliary 

classifier GANs still need to face the general challenge of labelled data scarcity in real 

applications. 

 

 

Figure 3.4: The basic structure of an auxiliary classifier GAN [119]. 



48 

3.3.3 Autoencoder-based GAN 

Autoencoder is a typical structure of neural networks that are trained to produce a 

latent space (or a hidden layer) and then reconstruct data from the latent space. In 

general, an autoencoder consists of two main components, encoder and decoder. The 

encoder is used to project input data onto a latent space for decreasing the dimension 

of input data, and the decoder uses the vectors received from the latent space as its 

inputs to recover the original data. 

 

 

Figure 3.5: The basic structure of an adversarial autoencoder [121]. 

 

A disadvantage of autoencoders is that a latent space produced by encoders may 

not eventually be distributed well, which will bring about a large number of synthetic 

gaps in final data distributions. Many researchers still work on overcoming this 

disadvantage, and a new structure variant combining a GAN structure with an 

autoencoder, represented as the adversarial autoencoder, was proposed in 2016 [121]. 

With the adoption of the latent space, the input data distribution can be further imposed 

to mitigate the synthetic gaps in the adversarial autoencoder structure, which will ensure 

that the gaps in synthesised images can be reduced and force a decoder to produce more 

meaningful and realistic samples. Figure 3.5 shows the basic structure of an adversarial 

autoencoder, where the latent space represents a data distribution generated by the 
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encoder. Furthermore, the generator uses noise signals to synthesise a specified 

distribution similar to the data in a latent space. The discriminator is designed to 

recognise the real or fake data from both the encoder and the generator. After training, 

the encoder can learn the expected distribution, and the decoder can finally generate the 

fake samples, which are reconstructed by the required data distribution in the latent 

space. 

With recent developments, modern generative models conjunct autoencoder 

structures and GAN structures with a shared latent space. Compared with the mentioned 

variants of condition-based GANs and auxiliary classifier GANs, the labels are not 

necessary for an autoencoder structure because autoencoder-based GANs can be 

designed as an unsupervised mechanism in image synthesis. In addition, many 

remarkable models only employ an additional encoder in a GAN structure. If the GAN 

generator can automatically learn features from a latent space to capture the changes in 

real data distributions, it will beneficially reduce the data requirements on labels or 

other conditional information. 

 

 

Figure 3.6: The basic structure of BiGAN [122]. 

 

Due to the pros and cons of the autoencoder structure, many models partially adopt 

encoders into GANs; this type of GAN structure variant uses the encoder as a tool to 

capture features in a discriminator. The generator can learn the features in a latent space 
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generated by an encoder and capture the semantic changes for the data distributions. 

Nevertheless, this GAN variant cannot learn the mapping relationships of real data 

distributions. To address this problem, BiGAN was proposed in 2017 to make valid 

inferences for generating high-quality samples [122]. The basic structure of the BiGAN 

is demonstrated in Figure 3.6. Besides the generator and discriminator, an encoder is 

additionally adopted in the proposed model. The encoder is used to inversely map data 

back to a latent space and evaluate the difference between the paired encoder and 

generator data. Since the encoder and generator do not communicate directly, the 

generator needs to learn to inversely fool the discriminator. 

Another remarkable model using an encoder in the generator was proposed in 2018, 

named adversarial generator-encoder network (AGE) [123]. AGE applies adversarial 

learning between the generator and encoder, but this structure does not contain 

discriminators. In AGE, the generator is to reduce the gap between the latent 

distribution and synthetic data distribution whilst the encoder aims to maximise the 

divergence between latent and synthetic data. Figure 3.7 demonstrates the AGE 

structure, where R denotes the reconstruction loss, and the function of reconstruction 

loss R is expected to avoid the possibility of mode collapse and other training 

drawbacks. 

 

 

Figure 3.7: The basic structure of an adversarial generator-encoder network (AGE) 

[123]. 
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3.3.4 Attention-based GAN 

The attention concept was introduced in 2015 to extend the autoencoder-based 

GAN structure [124]. For specific contexts as a critical component in generative models, 

the attention mechanism contains a capability to regionally learn from these important 

contexts rather than using a latent space. The attention mechanism simulates human 

vision to learn from image features, which avoids saturation from overloaded 

information related to an entire view. The uses of attention mechanisms, especially self-

attention, have been widespread in deep learning or representation learning. 

Self-attention or intra-attention is defined as the attention applied to a single 

context instead of across multiple contexts [125], which is efficient to capture wider 

spatial information. In tradition, GANs are applied in image synthetic tasks to capture 

local spatial information by convolutional neural networks. The receptive fields may 

not cover enough spatial ranges, which makes GANs have difficulties in learning multi-

class datasets and key components merely depending on convolutional neural networks. 

For example, the synthetic eyes in a human face may be slightly shifted to different 

positions, and it will make generative results distortive or unrealistic when using 

convolutional neural networks as the generator and discriminator. To solve this problem, 

a self-attention mechanism was proposed to ensure the spatial information was captured 

with a large receptive field. Compared with neural networks and convolutional neural 

networks, a self-attention mechanism can be used to discover a larger spatial range by 

computing the response at spatial positions and has led to many state-of-the-art models 

in various computer vision applications, such as video classification, object detection 

and so on. 

Self-attention GAN, abbreviated as SAGAN, was proposed in 2019, with the self-

attention mechanism in the generator and discriminator [126]. The self-attention GAN 

is beneficial for acquiring global long-range dependencies to synthesise images and has 

demonstrated great performance in multi-class image generation. By adopting the self-

attention mechanism, the generator can draw detailed images with the locations, which 

obtain clear details for the distant portions of the images. Additionally, the 

discriminator can accurately enforce complicated geometric constraints. It has been 

proven by experiments that the adoption of a self-attention mechanism can be 

advantageous to enlarging feature mapping relationships and improving the generative 

diversity using GANs.  

A progressive attention GAN (PA-GAN) is proposed by Zhenliang He et al. in 

2020 [127]. The approach uses a progressive structure from high to low feature levels, 

which constrains the features by using an attention mechanism at each level. With the 
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proposed attention mechanism, the encoder extracts original images to generate 

features containing the information of target attributes, and the proposed model uses 

the attention maps generated with different levels to blend the features into the original 

images for editing the attributes in a reasonable area. Based on the experimental results, 

the PA-GAN forces a GAN to learn from more meaningful attributes, and these 

attributes can be preserved to specifically generate more realistic results with proper 

data boundaries. 

3.4 Loss Function Variants of GANs 

Loss functions measure predictive accuracy, which can be used to monitor the 

progress during a GAN training phase [128]. Typical loss functions of GANs measure 

the similarity or diversity by comparing the generated images and the original ones. 

Many loss function variants are directly or indirectly designed to estimate the difference 

between the ground truth and synthetic data [129]. These loss function variants facilitate 

the selection of hyperparameter optimisation, and a good loss function does not need to 

use extra networks or additional functions to measure the generative similarity. Various 

loss function variants of GANs have been proposed for achieving good performance, 

but many of them are limited to specific scenarios or application purposes. Several 

important GAN variants based on advanced loss functions are discussed in the 

following subsections. 

3.4.1 Wasserstein GAN 

The loss function in typical GANs evaluates the similarity between two probability 

distributions to make sure the generated data y is close to the real data x, in which one 

of the probability distributions is over the fake data (ℙ𝑔), and the other is over the real 

data (ℙ𝑟). In contrast to typical GANs using the discriminator as a binary classifier to 

identify the difference between two probability distributions, Wasserstein GAN (or 

WGAN) proposed by Martin Arjovsky et al. in 2017 [130] employs the Earth-mover 

distance, namely Wasserstein distance, to replace the original quality measurement in 

typical GANs. From the experimental results, Wasserstein GAN successfully improved 

the optimisation for GAN training. 

It is noticeable that the primary difference between the Wasserstein GAN and the 

typical GAN is the loss function in the discriminator. The discriminator D of a typical 

GAN is implemented as a binary classifier. However, in the Wasserstein GAN, a fitting 
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function based on the Wasserstein distance (or Earth-mover distance) is used, which 

removes the sigmoid function in the last layer and converts the adversarial learning into 

a regression task. The Wasserstein distance is formulated as follows: 

 

 

𝑊(ℙ𝑟 , ℙ𝑔) = 𝑖𝑛𝑓
𝛾∈∏(ℙ𝑟,ℙ𝑔)

𝔼(𝑥,𝑦)~𝛾[ ‖𝑥 − 𝑦‖ ] (3.3) 

 

where W is the Wasserstein distance, γ is the moving plan to transport data from x to y, 

and ∏(ℙ𝑟 , ℙ𝑔) denotes a set of all joint probability distributions of γ(x, y), whose data 

marginals are ℙ𝑟  and ℙ𝑔 respectively. Compared with Kullback-Leibler (KL) and 

Jensen-Shannon (JS) divergence, Wasserstein distance reflects the distance even if 

ℙ𝑟 and ℙ𝑔 do not overlap. Wasserstein distance has a smooth gradient for training a 

generator spanning the complete space. However, the inf (infimum) in the equation is 

highly intractable for real computations. Therefore, the Wasserstein distance can be 

transformed by the Kantorovich-Rubinstein duality [130] and reformulated as follows: 

 

 
𝑊(ℙ𝑟 , ℙ𝑔) = sup

‖𝑓‖𝐿≤1
𝔼𝑥~ℙ𝑟[𝑓(𝑥)] − 𝔼𝑥~ℙ𝜃[𝑓(𝑥)] (3.4) 

 

where sup (supremum) is the lowest upper bound, L is 1-Lipschitz functions, ℙ𝑟 is the 

probability distribution over the real data x, ℙ𝜃  is the probability distribution 

representing a family of the parameterised density, f is the Wasserstein metric for 

transferring real data x to new data with distribution ℙ𝑔. f and x are constrained by 

|𝑓(𝑥1) − 𝑓(𝑥2)|  ≤  𝐾|𝑥1 − 𝑥2|, where K is the Lipschitz constant to function f. To 

minimize the Wasserstein distance between ℙ𝑔  and ℙ𝑟 , the loss function of the 

discriminator in the Wasserstein GAN is defined as follows: 

 

 ℒ𝐷 =  𝔼𝑥~ℙ𝑟[𝑙𝑜𝑔𝐷(𝑥)]  + 𝔼𝑥~ℙ𝜃[log (1 − 𝐷(𝑥))] (3.5) 

 

3.4.2 Wasserstein GAN with Gradient Penalty 

Although Wasserstein GAN has successfully shown a significant improvement in 

training GANs, it is still difficult to well generalise a deeper model. Due to the problem 

of vanishing gradients, the loss functions in the Wasserstein GAN easily fail to 

converge. To deal with the vanishing gradients, Wasserstein GAN with gradient penalty 

(WGAN-GP) was proposed by Gulrajani et al. [131]. WGAN-GP suggests that adding 



54 

a gradient penalty term for solving the problem of weight clipping can improve the 

model performance and training stability. Weight clipping is used to enforce the 

Lipschitz constraint in calculating the Wasserstein distance, which usually takes a long 

time to optimise the weight values and easily leads to optimization difficulties when 

the number of clipping weights is large. WGAN-GP demonstrated its stabilisation in 

training by using Adam optimiser and convergence faster than typical GANs. 

Furthermore, WGAN-GP has an outstanding convergence capability to improve 

training speed, and the quality of generated samples is more robust by pushing the 

discriminator network to learn smoother decision boundaries. The modified loss 

function of WGAN-GP is formulated as follows: 

 

 

ℒ𝐷 = 𝔼𝑥𝑔~ℙ𝑔[𝐷(𝑥𝑔)] − 𝔼𝑥𝑟~ℙ𝑟[𝐷(𝑥𝑟)]  

+  𝜆𝔼𝑥̂~ℙ𝑥̂[(‖∇𝑥̂𝐷(𝑥̂)‖2 − 1)
2] 

(3.6) 

 

where 𝑥𝑟 is sample data drawn from the real data distribution ℙ𝑟, and 𝑥𝑔 is sample 

data drawn from the generated data distribution ℙ𝑔 , ℙ𝑥̂  is a data distribution 

uniformly sampled with straight lines between pairs of points, which are sampled from 

the real data distribution ℙ𝑟  and the generated data distribution ℙ𝑔 . The first two 

terms are the original loss in Wasserstein GAN, and the modified gradient penalty is in 

the last term. 

3.4.3 Least Square GAN 

Least square GAN (LSGAN) was proposed in 2019 [132], which is a new approach 

to remedy the gradient vanishing problem with a perceptive of the decision boundary 

determined by a discriminator. In the typical GAN, the decision boundary in the 

discriminator may become very small to update the generator, which may be far from 

the expected decision boundary. LSGAN uses a least square loss to replace the typical 

GAN loss of sigmoid cross-entropy. The proposed loss function is as follows: 

 

 

ℒ𝐷 = 
1

2
𝔼𝑥~ℙ𝑟[(𝐷(𝑥) − 𝑏)

2]  +  
1

2
𝔼𝑧~ℙ𝑧[(𝐷(𝐺(𝑧)) − 𝑎)

2]  (3.7) 

 
ℒ𝐺 =  

1

2
𝔼𝑧~ℙ𝑧[(𝐷(𝐺(𝑧)) − 𝑐)

2] (3.8) 
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where a is the label of generated samples, b is the label of real samples, and c is a value 

that the generator expects the discriminator to believe in the generated data. ℙ𝑟 is the 

real data distribution, and ℙ𝑧 is the generated data distribution started from random 

noise z. 

 LSGAN introduces two benefits: Firstly, the new decision boundary generated by 

the discriminator can penalise large errors caused by the generated sample far away 

from the decision boundary. This makes the generated sample move forward to the 

decision boundary and generates great results in terms of image quality. Secondly, the 

penalty to the generated samples away from the decision boundary provides sufficient 

gradient to update the generator and mitigate the gradient vanishing problem in training 

a deep network. 

3.5 Challenges in Training GANs 

Among learning-based generative models, GANs are not perfect even though they 

are attractive, applicable and powerful. The two most significant concerns about GANs 

are that GANs are difficult to train and the synthetic results are hard to be evaluated. 

On one hand, in terms of GAN training, the main goal is to achieve Nash equilibrium, 

which is a concept in game theory and represents the state of a game player to achieve 

the desired outcome without deviating from initial strategies, after considering the 

choices of game players. The optimal strategies of GANs need to consider the decisions 

of other opponents, but it is extremely hard to stabilise the training process in practical 

implementation and promise the most optimal strategy being chosen. Due to the 

difficulty for both discriminator and generator to reach equilibrium during training, the 

generator easily fails to learn from a full distribution of real data. On the other hand, 

regarding performance evaluation, the primary issue is how to measure the performance 

of generative diversity (or dissimilarity) between real data and generated data. In 

specific, traditional estimation methods of measuring image accuracy are not suitable 

to be applied in generative cases with GANs. Therefore, it is still challenging to produce 

an appropriate evaluation metric to estimate the correspondent distributions between 

real data and generated data. In the following subsections, the problems associated with 

the above-mentioned issues are addressed. 

3.5.1 Mode Collapse 

A lack of diversity in generative results is identified as mode collapse, where GANs 
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capture a single or a few major modes but ignore other minor modes. One of the main 

problems in GAN development is mode collapse, which is short of diversity in the 

generated samples when a few modes are concentrated [133]. Therefore, mode collapse 

is one of the serious problems that need to be watched in training GAN models. A 

complete collapse is not common, but partial collapses happen very often. Figure 3.8 

shows a simple example of mode collapse using the CelebA dataset, where 200 

different human faces were input as the training samples, and the shown phenomenon 

in the right column can be regarded as mode collapse when only a few modes of data 

are generated compared with the results in the left column. For the generative target of 

various outcomes, improving training methods or algorithms to prevent mode collapses 

has become an important research issue. 

 

 

Figure 3.8: The images generated by GANs using the CelebA dataset. The left column 

shows more diverse generative results while the right column presents a mode 

collapse when only a few modes of facial data are generated. 

 

To be specific, mode collapse is a common phenomenon in GAN training. The 

ultimate objective of a generator is to create realistic images that can fool a 

discriminator. In the training phase, training data information is detected by a 

discriminator, constantly updated and sent to the generator. If a generator is trained 

without receiving updated information from the discriminator, generative results will 

easily converge into a few modes, which indicates realistic outcomes can be generated 

from a clear perspective of the discriminator [134]. Hence, concerning the full dynamic 
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view of training processes, the most effective way should progressively generate 

images with averagely diverse results among different modes instead of a few precise 

ones. However, in reality, a generator regularly produces imbalanced modes due to the 

mode collapse problem, which deteriorates the capabilities of creating various results 

in terms of generative diversification. Mode collapse makes both the generator and 

discriminator overfit to exploit a short-term local optimisation rather than global 

optimisation [135]. Fortunately, it is good news that mode collapses may not be always 

negative in some synthetic cases. For example, the application of style transfer is 

beneficial to transfer analogous styles of a few specific modes rather than diverse ones. 

Therefore, a specialisation of mode collapses can sometimes create results depending 

on different synthetic requirements. 

A solution to mode collapse is to apply sample batches by increasing the diverse 

assessment during training, and minimising the batch size is one of the techniques to 

mitigate the mode collapse problem. Another solution is to use multiple generators for 

acquiring many possible modes, which combines generated samples with different 

modes. 

3.5.2 Gradient Vanishing 

Compared to mode collapse happening on generative models only, gradient 

vanishing is a common problem in machine learning when training models with 

gradient-based learning techniques. Gradient-based learning is a method to fit 

parameters by understanding the gradient changes [136]. If the change of parameter 

values cannot result in a difference in generative results, there may be the problem of 

gradient vanishing. To train GANs optimally, both the generator and discriminator have 

to produce meaningful outcomes and valuable feedback determined by loss functions. 

Gradient vanishing may happen when a well-trained discriminator squashes the loss 

functions to a minimal value, which makes the gradients approximately close to zero 

and delivers a very small amount of feedback to the generator [137]. Consequently, 

gradient vanishing will make a generator completely stop the progress during training. 

Two common situations halt a generator from progress: Firstly, since the GAN 

training is dynamic, the gradient among parameters descends to an optimal value, and 

the training has reached a dynamic balance between the generator and discriminator 

[138]. It is a training phenomenon that the dynamic balance has been achieved and 

makes the generator stop updating. The second situation is the gradient vanishing 

problem [139]. Because of the gradient vanishing problem, the generator may fail to 

improve on producing good-quality images, but generative results are not of good 

https://en.wikipedia.org/wiki/Stochastic_gradient_descent


58 

quality. In contrast, the discriminator no longer accepts the generated sample and 

reduces the learning capacities. The gradient vanishing problem coupled with the over-

confidence makes the GAN training challenging because the discriminator does not 

forward meaningful information to the generator anymore. What is worse, the generator 

might receive wrong feedback to mislead the generative features with poor or 

inaccurate outcomes because of the gradient vanishing. To deal with the problem of 

gradient vanishing, over-training should be avoided in the discriminator, and the 

improvement between the discriminator and generator needs to be carefully detected. 

3.5.3 Non-convergence 

Convergence is a mathematical term commonly used in series or sequences studies, 

and non-convergence is a universal problem for machine learning, especially training 

with small datasets. To use loss functions to optimise the free parameters of a neural 

network, iterations are necessary to minimise the loss values by updating the weights, 

and back-propagation is designed to find an arbitrary point defined by the loss functions. 

However, non-convergence occurs if a strictly converged point fails to be found, and 

the loss value will vary within a smaller range. In training GANs, the feasibility of 

convergence can also be explained as the desirability of equilibrium, and a converged 

situation is to find a balance between the discriminator and generator [140]. Since 

generators try to synthesise the best images for fooling discriminators, generators could 

keep progressing to meet the requirements of discriminators. The GAN training falls 

into a permanent cycle like the eternal cat-and-mouse game, in which the difficulty of 

finding a training balance will become one of the primary reasons causing convergence 

failure, namely the problem of non-convergence [141]. What is worse, even though a 

training balance has been presented during training, it is still very difficult to reach the 

global Nash equilibrium when the GAN training is frequently under oscillation or 

cyclical phenomenon, which is prone to converge to a local Nash equilibrium instead 

of the global one. 

A possible solution to the non-convergence problem is to set an appropriate batch 

value in a training phase. The real image features are computed by minimal batches 

which fluctuate with every training cycle. If the batches are introduced as randomness, 

it could make it difficult for a discriminator to overfit the input data [142]. A dynamic 

feature match can be helpful to find a balanced situation between generated data and 

real data. Consequently, a suitable setting of batch values can not only improve a 

training balance between the generator and discriminator to prevent the non-

convergence problem but also maintain a static ratio of iterations to mitigate other 
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training problems, such as gradient vanishing. 

3.5.4 Hyperparameter Optimisation 

Hyperparameters are some learning parameters needing to be controlled in a 

learning process, which can be regarded as multi-objective optimisation with multiple 

hyperparameters related to objectives simultaneously optimised for training a deep 

network [143]. Apart from the serious problems mentioned in previous sections, 

hyperparameter optimising is a significant issue related to all the above problems in 

GAN training [144]. For instance, hyperparameter selection has an impact on 

convergence caused by the gradient vanishing problem, and mode collapse is also led 

by over-optimisation with inappropriate parametric values. 

However, hyperparameter optimisation is very time-consuming and needs a lot of 

patience for good training strategies. From the perspective of discovering good 

hyperparameters, training a GAN model based on weights and biases must minimise 

either training errors or model complexity to robustly trace the changing of generative 

results. Due to the used loss functions that might conflict with each other, the 

performance tradeoff between the generator and discriminator is difficult to achieve 

because a large number of variables need to be fine-tuned to achieve stable performance, 

especially when multiple loss functions are set up to understand the correlations 

between the hyperparameters and final performance [145]. Therefore, the 

hyperparameters for the optimal solution are hard to be discovered in GAN training. 

Additionally, the training in both generator and discriminator is a dynamic process that 

is generally more complex and unstable than traditional deep network training. 

It is impossible for GAN training to perform well without good hyperparameters. 

Several advanced techniques for optimisation have been developed to potentially trace 

the correlations between the chosen hyperparameters and final performance. First of all, 

stochastic gradient descent (SGD) [146] is an important iterative optimising method, 

which uses a gradient descent procedure to produce the expectation of the gradient, and 

SGD will be more efficient than gradient descent. Secondly, the Adam optimiser [147] 

is an optimisation of a first-order and gradient-based stochastic algorithm with an 

adaptive learning rate. It has been proven robust and suitable for non-convex 

optimisation. Thirdly, batch normalisation [148] is a technique to reduce the internal 

covariate shift in a deep neural network. Each batch is used to estimate the mean and 

variance by training iterations. The advantages of batch normalisation are employing a 

higher learning rate, paying less attention to the initialisation and reducing the 

requirement of dropout. Finally, regularisation techniques [149] are efficient to mitigate 

https://en.wikipedia.org/wiki/Parameter
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the optimisation problems. There are numerous regularisation methods proposed to 

stabilise the GAN training, such as regularisation at output layers, regularisation with 

the modified loss function, weight penalty, gradient penalty and so on. 

3.6 Evaluation Metrics 

GAN models have been adopted in many different applications, and each 

application contains specific evaluation metrics with different requirements. 

Universally evaluating the performance of GAN models is extremely challenging, and 

it is still an open question of how to select an appropriate evaluation metric among 

various GAN variants. There are still no universal quantitative evaluation metrics that 

can objectively and comprehensively access the GAN performance. 

There are two major problems in evaluating GANs. Firstly, model collapse and 

generative diversity may not be objectively detected and evaluated. Secondly, 

quantitative evaluation methods based on probability or likelihood scores may not 

correspond to human perceptions, which is the main reason why human perception is 

currently a reliable method to evaluate the quality of generated samples. Consequently, 

determining appropriate metrics as well as objective evaluation methods among various 

GAN applications is still a challenging task. 

Several popular approaches to accessing the performance of generative results are 

discussed in the following subsections. In terms of appropriately evaluating the GAN 

performance, these methods attempt to seek improvements to deal with the evaluation 

difficulties. The listed approaches are commonly used as quantitative evaluation 

metrics in many GAN studies.   

3.6.1 Likelihood Estimation 

Likelihood, related to similarity, uses a statistical approach to describe observed 

data with a joint probability value [150]. There is an assumption of the likelihood that 

the generative samples follow the Gaussian distribution of true data, and the generative 

data can ideally match the true data distribution. In the synthetic process, an easy metric 

should be used to measure the likelihood between the generated data and the true data. 

For example, KL divergence is a common measurement to calculate the difference 

between two probability distributions in machine learning, and an easy way to discover 

the maximum likelihood between the data distributions of the generated and true 

samples is to optimize the parameters by minimising the KL divergence value using 
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gradient descent. The log-likelihood, KL divergence and cross-entropy are commonly 

used to evaluate the data likelihood in GAN training. An overall likelihood is the sum 

of the evaluation values of discriminators and generators in a generative event. 

Likelihood estimation has disadvantages: Methods of likelihood estimation are 

generally applied at a low dimension. Furthermore, having a high score of likelihood 

estimation may not truly reflect the synthetic quality of samples generated by a GAN 

model. 

3.6.2 Inception Scores 

Inception scores are widely used to evaluate the GAN performance and were 

proposed by Salimans et al. in 2016 [151]. Inception scores are based on image 

classification with a pre-trained model to classify the generated images. The inception 

scores combine both the confidence of class predictions to evaluate the generative 

quality and the integral of marginal probability predictions to evaluate the generative 

diversity. The development of the inception scores attempts to replace human 

perception with a quantitative method, which is correlated to subjective evaluations 

among classes. Specifically, the probability of generated images belonging to each class 

is predicted, and then these prediction values are summarised as inception scores. 

Inception scores rely on two desired properties of conditional label distribution and 

marginal label distribution. The conditional label distribution is calculated by fitting 

generated data into an inception model, which should contain low entropy in terms of 

fidelity. Oppositely, the marginal label distribution has to reach a high entropy for the 

diversity of generated data. Based on the Inception V3 network, the inception score (IS) 

of a generator G is formulated as follows: 

 

 𝐼𝑆(𝐺) = exp (𝔼ℙ𝑔[𝐷𝐾𝐿(𝑝(𝑦|𝑥))‖𝑝(𝑦)]) (3.9) 

 

where ℙ𝑔 is the generated data distribution, 𝔼 indicates the expectation value, x is 

the generated image x as inputting to Inception V3, y is the output label, p(y|x) is 

conditional label distribution, p(y) is marginal label distribution, and DKL(p(y|x)ǁp(y)) 

is KL divergence between conditional label distribution p(y|x) and marginal label 

distribution p(y). 

In comparison to the disadvantage of likelihood estimation, which cannot correctly 

reflect the quality of diverse synthetic data, a high inception score indicates that the 

generative model can create high-quality samples even if the samples are diverse or 

dissimilar to the original data. However, the adoption of inception scores also remains 
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serious restrictions: Firstly, if generative models fall into mode collapse, the 

performance based on inception scores may be excellent, but the generated samples are 

still in a low-quality situation. Secondly, inception scores are sensitive to general 

classes based on the pre-trained models and fail to evaluate a specific label in datasets. 

Therefore, inception scores need a large number of training samples to get reliable 

results, such as an Inception V3 network trained with ImageNet. In addition, a simple 

way to calculate inception scores is to use a trained model, but it may not truly reflect 

human perception except for the classes in the trained model. Finally, inception scores 

do not compare synthetic samples with real data. 

3.6.3 Fréchet Inception Distance 

The Fréchet inception distance (FID) was proposed by Heusel et al. in 2017 to 

detect the intra-class mode dropping [152]. In the FID approach, generated samples are 

embedded into a feature space using a pre-trained network, and the FID values are 

calculated based on the means and covariances of the feature vectors obtained from the 

pre-trained network. Rather than directly comparing images pixel by pixel, FID is based 

on the assumption that generated samples follow a multi-dimensional Gaussian 

distribution and the distance value is calculated based on the means and covariances of 

the two Gaussian distributions of features of the generated images and real images. 

The core of FID is the distance between the distributions of the synthetic data and 

real data. By evaluating the data distributions, it is possible to measure the similarity 

between two probability distributions. A smaller FID value represents more similarity 

between the distributions of the two data groups. The FID can be formulated as follows: 

 

 

𝐹𝐼𝐷(ℙ𝑟 , ℙ𝑔) =  ‖𝜇𝑟 − 𝜇𝑔‖
2
+ 𝑇𝑟(∑+

𝑟

 ∑−

𝑔

 2(∑∑)

𝑔𝑟

1
2
) (3.10) 

 

where 𝜇𝑟  and 𝜇𝑔  are the feature-wise mean of the real and generated images 

respectively, ∑r and ∑g are the covariance matrix of the real and generated feature 

vectors, Tr indicates the trace linear algebra operation, ℙ𝑔  is the generated data 

distribution, and ℙ𝑟 is the real data distribution. 

Compared to inception scores, FID is more powerful for handling data disturbances, 

and FID can detect intra-class mode dropping. 

https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Trace_(linear_algebra)


63 

3.6.4 Kernel Inception Distance 

The major problem of FID is highly biased to small image datasets, so the sample 

size has to be large enough to obtain reliable FID values. To mitigate the problems of 

FID, kernel inception distance (KID) was proposed by Bińkowski et al., which 

measures the squared maximum mean discrepancy (MMD) between inception features 

with polynomial kernels [153]. Compared to FID, KID has the following advantages: 

Firstly, for the data distribution in activated functions, KID does not assume a 

parametric form of the activation. Secondly, with the use of cubic kernels, KID 

additionally compares the values of skewness, mean and variance. Finally, in contrast 

to FID, KID with the polynomial kernels is a more unbiased estimator. 

Similar to FID, KID computes the squared maximum mean discrepancy between 

the features from a pre-trained Inception Network with the real and generated images 

as inputs respectively. Although KID is strongly correlated to FID, KID can produce 

unbiased estimates to make the values fairly and truly reflect the difference between 

generated data and real data along with more inception channels. A lower KID value 

indicates more visual similarity between real and generated images, and the KID is 

formulated as follows: 

 

 

𝐾𝐼𝐷(ℙ𝑟 , ℙ𝑔) =  𝔼𝑥𝑟,𝑥𝑟′~ℙ𝑟[𝑘(𝑥𝑟 , 𝑥𝑟
′ )]  +  𝔼𝑥𝑔,𝑥𝑔′ ~ℙ𝑔[𝑘(𝑥𝑔, 𝑥𝑔

′ )]

− 2𝔼𝑥𝑟~ℙ𝑟,𝑥𝑔,~ℙ𝑔,[𝑘(𝑥𝑟 , 𝑥𝑔)] 

(3.11) 

 

where k denotes a polynomial kernel function, k(x, 𝑥′ ) = (
1

𝑑
𝑥𝑇𝑥′ + 1)3 , d is the 

representation dimension, ℙ𝑔 is the generated data distribution, and ℙ𝑟  is the real 

data distribution. 

3.6.5 Classification Accuracy as an Evaluation Metric 

A common problem for inception score, FID and KID is that these three metrics 

have a heavy reliance on pre-trained models, which do not consider a dataset containing 

different classes from the datasets for the pre-trained model [154]. As a result, inception 

score, FID and KID may not correctly or truly capture the class properties, and they 

will not appropriately reflect the real quality of generative samples. It is reasonable to 

assume that if a generator has captured the distributions of the real data, the difference 
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between the real and fake data should be small. Therefore, classifiers, apart from pre-

trained models, can be trained by real data to evaluate the quality of fake data generated 

by GANs. In terms of the performance evaluation of GANs, various classifiers could 

be directly used, and the classification accuracy of the fake data can be used to evaluate 

the generative quality. 

3.7 Applications of GANs in Image Synthesis 

The most direct application for a generative model is to create new data. GAN, as 

one of the generative models, can efficiently learn from the data distributions of real 

images and generate new images following the distributions of real data with desired 

diversity. The applications of GANs in image synthesis are reviewed in this section. At 

present, there are many popular applications of GANs for computer vision, i.e., image 

synthesis, image transformation and video generation, and many GAN variants were 

proposed for solving different synthetic problems. It needs to be noted here that these 

remarkable applications strongly rely on a large number of training samples, and several 

thriving image synthesis applications with GANs, including image super-resolution, 

image repairing, face synthesis, image translation and video synthesis, are presented in 

the following subsections. 

3.7.1 Image Super-resolution 

A super-resolution generative adversarial network (SRGAN) was proposed in 2017 

[155]. Low-resolution images are taken as the inputs, and SRGAN generates high-

resolution images as the outputs, with four times up-scaling in image resolutions. 

However, SRGAN has a serious problem for real applications, which is that the 

generative textures are blurry and not clear enough compared to real images. Moreover, 

the synthetic results are always accompanied by noises or distortions. To deal with this 

problem, an enhanced super-resolution generative adversarial network (ESRGAN) was 

proposed to improve the performance [156]. Compared to SRGAN, ESRGAN 

improved the structure of the network, adversarial loss, and perceptual loss. According 

to experimental results, the images generated by ESRGAN are of higher quality than 

those by SRGAN. 
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3.7.2 Image Repairing 

Image repairing is a common application for image processing. The operations of 

image repairing generally need to find out missing parts and replace the marked regions 

with synthetic contents. GANs perform well for repairing backgrounds if the missing 

parts are very similar to the backgrounds. On the other side, if the important parts are 

lost rather than backgrounds, such as repairing the missing parts of a human face, the 

images should be divided into critical patterns (e.g., eyes, mouth, eyebrows, nose, etc.) 

and the lost features can be filled with corresponding objects. Li et al. [157] proposed 

a structure using an autoencoder and a GAN coupled with two adversarial losses for 

image repairing. Vitoria et al. in 2019 [158] proposed an improved version using 

Wasserstein GAN to complete the missing regions of images. Dhamo et al. [159] 

adopted convolutional neural networks and GANs to generate the scene background by 

removing the object in the image foreground and using methods of background 

subtraction to detect motions. Although the above GAN-based methods have provided 

great experimental results in image repairing, the processing time and cost for 

computational efficiency are still serious issues to be considered, compared to 

traditional repairing methods. 

3.7.3 Face Synthesis 

Face synthesis is a popular area in image synthesis and has been an important 

direction for GAN applications. Many researchers make efforts to generate 

photorealistic face images using GANs. The face images generated by many GAN 

models can well retain identical features and produce a large number of look-like fake 

faces. GANs can efficiently recognise facial attributes to generate high-quality as well 

as high-resolution synthetic results. To generate identical facial features with GAN 

frameworks, many strategies and structures are employed in face synthesis, and several 

remarkable GAN models were proposed. A two-pathway generative adversarial 

network (TP-GAN) was presented to generate high-quality front face images from a 

single face image [160], Dual-agent GANs (DA-GAN) tried to synthesise profile faces 

[161], and CR-GAN manipulated multi-view facial generation [162]. A style-based 

generator architecture for GANs (StyleGAN) was proposed in 2019 [163], in which 

high-level facial attributes are generated and can be controlled by the intuitive mixing 

or interpolation operation. In StyleGAN, a new latent space free from the restriction 

that latent space always follows the probability density of the training data was newly 
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introduced to improve the weaknesses in face synthesis. 

In addition, other notable works adopted marks, symbols, segmentations, or other 

reference information to synthesise photorealistic faces from random seeds. GP-GAN, 

for instance, attempted to generate samples by landmark-guided samples [164]. 

However, these methods heavily depend on reference features based on very narrow 

and specific facial representations, which generally degrades the performance in facial 

generation tasks. The StarGAN [165] overcame the drawbacks of requiring reference 

features to edit facial attributes, and only employed labelled data with adversarial loss, 

attribute classification loss and reconstruction loss to successfully modify facial 

attributes without using any additional reference feature information. 

3.7.4 Image Translation 

Image translation converts image contents from one data domain to another, and 

the main objective is to learn the mapping relationships between output images and 

input images. Many image-to-image translation approaches were proposed and 

achieved remarkable performance. The experimental results showed that both pix2pix 

[166] and pix2pixHD [167] were effective for most graphic as well as visual 

applications with a pixel-level image translation. Although pix2pix and pix2pixHD can 

be used to solve primary image translation problems, it still needs corresponding 

features (or paired images) as the required training data. However, paired images with 

corresponding features are very difficult to be collected in real applications. Different 

from pix2pix and pix2pixHD, CycleGAN [168] adopted the concept of cycle 

consistency to achieve two domain translations, which enforces a mapping from one 

domain to another domain that is roughly the same in each direction and does not need 

paired data to learn the mapping information between images. Other GAN models, such 

as DiscoGAN [169] and DualGAN [170], were also proposed to solve the similar issue 

of training on unpaired data. In addition, to deal with the translation problem among 

multiple domains instead of two domains, StarGAN was proposed by Choi et al. in 

2018, which can translate images among multi-domains with one single GAN model 

[165]. The details of paired image-to-image translation and unpaired image-to-image 

translation will be further described in the following subsections. 

3.7.4.1 Paired Image-to-image Translation 

Image-to-image translation is a typical image translation method, which learns a 

mapping relationship to synthesise the desired images from conditional inputs and 
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random noise. Pix2pix was proposed by Isola et al. in 2018 [167], which is based on 

structures of both convolution-based GANs and condition-based GANs. Pix2pix is a 

GAN model with one-to-one image migration and has demonstrated efficiencies in 

various image-to-image translation tasks. Pix2pix adopts an encoder-decoder structure 

in the generator, which is comprised of convolutional layers. Figure 3.9 shows the basic 

structure of pix2pix, where the conditional image and the real image are composed of 

a set of paired data. 

 

 

Figure 3.9: The basic structure of the pix2pix model [167]. 

 

Pix2pix model has three important advantages: 1) Pix2pix is a general generative 

model to solve the real problem of image translation pixel by pixel, which is usually 

suitable for almost all one-to-one synthetic cases. 2) Pix2pix provides specific loss 

functions, and the networks learn the mapping relationships between the conditions and 

generative results with specific loss functions. 3) Pix2pix takes the advantage of shared 

information between the encoder and decoder as the network framework for acquiring 

high-quality mapping results. However, its drawback is still evident that pix2pix 

requires a large amount of labelled data with corresponding features, which are 

generally not available or difficult to be collected in practical implementations. 

In terms of pix2pix training, since the generated images are desired to be close to 

ground truth, an additional content loss, besides the adversarial loss, is added to the 

objective function, which measures the L1 distance between the output images and the 

ground truth images. The overall loss functions in pix2pix are shown as follows: 
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ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) =   𝔼𝑥,𝑦[log𝐷(𝑥, 𝑦)]

+ 𝔼𝑥,𝑧 [log (1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))] 
(3.12) 

 ℒ𝐿1(𝐺) =   𝔼𝑥,𝑦,𝑧[‖𝑦 − 𝐺(𝑥, 𝑧)‖1] (3.13) 

 ℒ𝑎𝑙𝑙 =  min
𝐺
max
𝐷
 ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) +  𝜆 ℒ𝐿1(𝐺) (3.14) 

 

where x is the observed image, z is the random noise vector, and y is a mapping result 

to the observed image of x. The discriminator D and generator G are trained by the 

content loss to produce the mapping results from x to y, which is hard to be 

distinguished by the adversarial loss. 

It can be emphasised that, before the presence of pix2pix, most researchers used 

the mean square loss of L2 to train transformation networks and autoencoder-based 

GANs, which have been proven unable to transform images with clear results between 

two domains. In pix2pix, a loss function with the conventional L1 loss was newly used 

for training an encoder-decoder network. The adoption of the L1 loss function can be 

treated as a benchmark for image-to-image translation methods based on condition-

based GAN structures. Consequently, pix2pix enlarges the applications of image-to-

image transformation by mixing the structure of convolution-based GANs and 

condition-based GANs. 

3.7.4.2 Unpaired Image-to-image Translation 

A large number of paired images may not be available in many applications. A 

novel GAN structure, known as CycleGAN, was proposed by Jun-Yan Zhu et al. in 

2017 [168] for unpaired image-to-image translation. A cycle consistency is adopted as 

the primary approach of CycleGAN to learn the mapping relationships between two 

different domains. Before the appearance of CycleGAN, most GAN models are based 

on supervised methods and highly rely on paired images for image-to-image translation. 

The structure of CycleGAN makes a great improvement by training with unpaired data, 

which significantly enlarges potential translation applications without using paired 

images. The basic structure of CycleGAN is shown in Figure 3.10: . 

CycleGAN typically consists of two generators and two discriminators. The cycle 

consistency loss is added to make the generated images roughly the same with a 

translation between two unpaired data domains. In CycleGAN, the generator structure 

is similar to the autoencoder structure, which contains two main components, i.e., 

encoder and decoder. The basic principle of CycleGAN focuses on domain data 
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adaption and tries to identify the data distribution learned from labelled images between 

two different domains. 

 

 

Figure 3.10: The basic structure of the CycleGAN [168]. 

 

CycleGAN discovers the marginal matching relationships, which map the outputs 

to match the empirical distribution between two domains. Two generators are trained 

to fool two discriminators and then enforce the marginal matching over the target 

domain and source domain separately. The learning objectives in the form of loss 

functions are formulated as follows to minimise the loss function with respective 

generators: 

 

 

ℒ𝐺𝐴𝑁(𝐺1, 𝐷1, 𝑋, 𝑌)

=  𝔼𝑦~𝑃𝑑𝑎𝑡𝑎(𝑦)[𝑙𝑜𝑔𝐷1(𝑌)] + 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[log (1

− 𝐷1(𝐺1(𝑋)))] 

(3.15) 

 

where G1 is the generator, G1 (X) is the generated images from real data in domain X, 

and D1 is the discriminator aiming to distinguish generated images G1 (x) and real 

images in domain Y. The generator tries to minimise the training objective whilst the 

discriminator aims to maximise it. 

On the other hand, the cycle consistency enforces the transformed results and 
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reconstructive results remain close to the original images. In image translation cases, 

the similarity is typically measured by L1 or L2 normalisation. The cycle consistency 

with L1 can be formulated as: 

 

 
ℒ𝑐𝑦𝑐(𝐺1, 𝐺2) =  𝔼𝑥~ℙ𝑑𝑎𝑡𝑎(𝑥)‖𝐺2(𝐺1(𝑥)) − 𝑥‖1 (3.16) 

 

where x is the image in domain X, G1 indicates the generator transferring images from 

domain X to domain Y, G2(G1(x)) is the image reconstruction, which is expected to be 

similar to the original image x. 

3.7.5 Video Synthesis 

Inspired by the success of GANs in image synthesis, researchers have extended 

GAN applications to video synthesis. Compared to image synthesis, video synthesis 

based on GAN structures requires faster computing facilities and larger memory to deal 

with video frames, especially in real-time video synthesis tasks. The generative 

adversarial network for video (VGAN) was proposed by Vondrick et al. [171], which 

combines a static background and a moving foreground video. The generator needs to 

process two different data streams: the background stream generated with 2D 

convolutional layers and the foreground stream generated as a 3D foreground with 

spatial-temporal 3D convolutional layers. Since VGAN manipulates videos as 3D 

objects, it requires powerful hardware to process video data. In addition, MoCoGAN 

was proposed by Tulyakov et al. for video generation [172], which decomposes videos 

into motion and content vectors respectively and employs a recurrent network to map a 

sequence of motion vectors and content vectors. Two discriminators are used in 

MoCoGAN, with one discriminator distinguishing the real from fake frames whilst the 

other distinguishing fake videos. 

Although recent works attempt to extend the remarkable performance of GANs, 

generating realistic videos remains a significant challenge in practical applications. 

Owning to the limitations of hardware and training stability, high-quality videos are 

still more difficult to be generated than images. Reviewing the current development of 

video generation with GANs, it is clear that video synthesis techniques can be improved 

from the following perspectives: Firstly, it is expected to produce more high-resolution 

videos. Secondly, the quality of generated videos can be promoted along with the frame 

number increased. Finally, more realistic results are expected to reduce the blurs of 

generated video content. 
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3.8 Conclusion 

A literature review for image synthesis based on GANs is presented in this chapter. 

The main topics in this chapter include the GAN theory, structure variants, loss variants, 

training difficulties, evaluation matrices and applications. Firstly, the basic principles 

of GANs commonly used for image generation are introduced. The derived structure 

and loss variants are discussed in the first part. The challenges in training GANs are 

reviewed with a focus on how to find a balance between generators and discriminators 

for generating high-quality images. For performance evaluation, generally used 

matrices are presented to assess the synthetic performance of GANs. Finally, the 

applications of GANs in image synthesis are reviewed. 
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Chapter 4 

Small Training Data Augmentation Using 

GANs Based on One-to-many Image 

Mapping for Enhancing the Performance of 

Image Classification 

4.1 Introduction 

Computer vision approaches are used to analyse visual data, such as images and 

videos, for making decisions or predicting results. Recently, the field of deep learning 

has rapidly grown due to the enhancement of computational capacity, and visual data 

can be well recognised by analysing the feature and contextual information in computer 

vision applications. Convolutional neural networks (CNNs) can automatically extract 

features from the given training images, which significantly improves the accuracy of 

image classification [173]. However, traditional deep learning methods require a large 

number of labelled samples for the CNNs to learn sufficient features to prevent the 

problem of overfitting [174]. To deal with this problem, many regularisation methods 

have been proposed for the structure of CNNs. On the other hand, increasing data 

diversity has been proven to effectively overcome overfitting by using data 

augmentation methods (e.g., by traditional image transformation, adding noise, etc.) 

[175]. Generally, a good learning approach in computer vision should involve 

diversified information that can be flexibly adapted to various real environments. Data 

diversity ensures the training data contain more discriminative information and enforce 

models to learn from the complement information. In other words, to achieve robust 

and reliable results for image classification tasks, it is necessary to collect as many 

representative sample images as possible. Consequently, having a diversity of training 

data for a deep neural network can prevent the problem of overfitting and make the 

training results more robust. 

However, in some application areas, obtaining sufficient labelled data requires a 

great deal of expertise and time [176]. Limited training data would exacerbate the 

performance of classification, due to lacking the diverse data to learn the various 

representations. Therefore, training with sufficient diversified training data is a solution 

to overcome the overfitting problem in image classification. Data augmentation 
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methods have been proven capable to increase the diversification from a limited number 

of image data [177]. The commonly used traditional techniques of image data 

augmentation include geometric transformation and photometric transformations, such 

as reflection, rotation, translation, scaling, cropping, noise adding, kernel filtering and 

so on. They all aim to enlarge the variations of the existing images as diverse data so 

that the neural networks can learn from the augmented differences to increase the 

diversification of original datasets. 

Taking an autopilot system or gesture recognition as an example, if one single ideal 

pattern is fed into a deep network and expected to recognise all the similar traffic signs 

or gestures in a deep learning system, the network is impossible to attain the desired 

performance due to the problem of training data scarcity. Deep models cannot 

comprehensively learn the realistic representations from a small but perfect dataset 

because the learning effectiveness needs to be promoted by a large number of diverse 

training samples to achieve the expected performance. Figure 4.1 shows a huge 

expectative gap that training with a small number of perfect samples cannot achieve 

expected performance in deep models, and a large number of diverse samples of images 

are essential as good training data. In real cases, data diversity and data amount have 

become serious training problems to bring deep learning to real-world applications. 

 

 

Figure 4.1: Comparison of perfect training samples in human vision (left column) and 

good training samples in deep learning models (right column). 

 

In terms of one-to-many image mapping, a novel unconditional GAN model is 

proposed in this chapter for applications where one single image is typically impossible 



74 

to carry sufficient features for training a deep model to learn representations 

comprehensively. The proposed approach aims to transfer images from a single sample 

and create diverse augmented images that are suitable to train a deep network. The 

proposed method is based on an unsupervised deep generative model using a one-to-

many mapping method. In terms of data augmentation, the images generated by the 

proposed model are designed to increase the diversity and amount from a small dataset, 

which can be used to promote image classification performance when a large number 

of augmented samples are involved to train a convolutional neural network. 

A convolution-based GAN is adopted as the fundamental structure of the proposed 

model to produce fake images, which can enlarge the data amount and data diversity. 

Additionally, a proposed perturbation mechanism is newly introduced with the one-to-

many image mapping method to generate images from a single sample. A 

transformation matrix M can be conducted to normalise the original image; another 

transformation matrix M’ is used to generate extended images to simulate the results of 

good training samples. In the proposed perturbation mechanism, matrix M is 

responsible for image quality, and matrix M’ controls the diversity of the generative 

results. With an appropriate design of these two transformation matrices of M and M’, 

the proposed GAN framework can synthesise good-quality and diverse images from 

one training image only. In contrast to one-shot learning adding one sample to each 

learned class, the proposed model learns from one image without any pre-training 

requirements. These augmented images that are class-informative are similar to the 

original training samples and can be used as good training data in deep learning models. 

The details of the proposed model will be presented in Section 4.2. 

For evaluating the performance of data augmentation, image classification 

experiments were applied as an evaluation metric to analyse the effectiveness of the 

data augmented by the proposed GAN framework. Four common CNNs, including 

AlexNet, GoogLeNet, VGGNet and ResNet, were involved in the evaluation 

experiments. Notably, two datasets of MNIST [178], [179] and RPS [180] were 

conducted, and the reduced training samples, from 1 to 20 images per class, were used 

as the small training dataset, but a large amount of validation data has remained for 

reliable validation results. In addition, in the statistical evaluation, the validation 

accuracies with augmented training data were statistically employed to compare those 

without augmentation with a student’s t-test method. Furthermore, the confusion matrix 

[181] and t-distributed stochastic neighbour embedding (t-SNE) [182] were applied to 

further evaluate the classification effectiveness of augmented data generated using the 

proposed GAN model. From the experiments, results show that the proposed GAN 

model used to generate additional images as the augmented training data can 

significantly improve the accuracies of image classification among the CNNs. The 
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contributions in this chapter are as follows: 

• A novel GAN framework based on one-to-many image mapping is 

proposed to synthesise many realistic images with desirable diversity from 

one original image only, which overcomes the drawback of traditional 

GANs that need plenty of original images to generate high-quality images. 

• A perturbation mechanism based on two transformation matrices is 

proposed to balance the quality and diversity of the images generated by 

GANs using a single original image only and thus provide an effective 

approach for image training data augmentation, as demonstrated by the 

experimental results in Section 4.4. 

4.2 Methods 

In this section, a GAN framework is proposed to generate images of both high 

quality and good diversity from a small number of real images, even with just one single 

perfect sample. Based on the proposed method, the straightforward approach to create 

diverse results from a single image is to intentionally adopt the perturbative information 

into input instances for diversified results, which can not only fool the GAN model to 

generate various possible predictions but also prevent the happens of overfitting. 

Based on adversarial learning with the perturbation mechanism, the well-defined 

parameters in the proposed GAN model serve as an alternative way to dynamically 

generate various possible samples. Contrasted to typical GANs, the proposed 

perturbation mechanism is located in the input of the discriminator and controls the 

inputting instances, which has the advantage of independently manipulating the inputs 

in the discriminator. For instance, during a training phase, the discriminator learns the 

feature information from a single image and forwards the gradients to a generator for 

image synthesis. If the overfitting problem and gradient vanishing happen, the 

generated results will not be improved anymore through the training process, which 

indicates the discriminator is over-optimised to the input data without passing updated 

gradients to the generator in a training phase. By using the perturbation mechanism, the 

fitted parameters in the discriminator can be re-updated by the renewed input instances. 

In short, the perturbations mechanism rules the discriminator to learn renewed 

perturbative features and mitigate the drawbacks caused by training with a small 

number of images, such as gradient vanishing, overfitting and mode collapse. 
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4.2.1 Network Framework 

Figure 4.2 shows the architecture of the proposed method illustrating an overall 

view of the proposed GAN framework. Inspired by the deep convolutional GAN 

(DCGAN) proposed by Radford et al. [116], convolutional neural networks usually 

have a strong visual fidelity and spatial localisation of image objects in the input 

instances. The proposed GAN model adopted the architecture of convolution-based 

GANs as the basic structure because it is composed of a simple and foundational 

framework to create high-quality synthetic images from an original image dataset with 

reasonable training time [183], [184]. Moreover, compared to typical GANs and other 

structural variants of GANs, convolution-based GANs can be used to create diverse 

images by appropriate hyperparameters settings between the discriminator and 

generator with an unsupervised learning method [185]. 

To solve the problems led by giving a single training image or a very small number 

of images as the training dataset, a perturbation mechanism with two transformation 

matrices is conducted to update the input instances in front of the discriminator when 

training the proposed GAN model. The perturbation mechanism is introduced to shift 

the input images into diverse appearances, and the generated images should be 

recognisable but diverse from the original training samples for data augmentation 

requirements. The detail of the perturbation mechanism, model building and training 

process will be discussed in the following sections. 

 

 

Figure 4.2: Overview of the proposed GAN framework for data augmentation from a 

single original image. 
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4.2.2 Perturbation Mechanism 

In the proposed perturbation mechanism, the parameters are updated by the input 

data with batch values, which are fine-tuned by processing real images passing to the 

discriminator and can be regarded as the continuously updating input information. With 

an appropriate setup of different transformation matrices and updating frequency, the 

proposed GAN framework will be able to balance the similarity and diversity of the 

images generated from a small training dataset. The main function of the transformation 

matrix M’ is to transform image pixels to generate new images to introduce diversity, 

such as rotation and scaling whilst the transformation matrix M is used to normalise the 

original image by resizing, cropping and alignment. 

Additionally, the perturbation mechanism passes the renewed features to the 

discriminator at an appropriate setup by using the transformation matrices M and M’. It 

forces the discriminator re-learn the updated inputs with batch values. Different from 

the traditional DCGAN, where the input batch to the discriminator is renewed epoch by 

epoch, the updating of transformation matrices additionally controls the timing of the 

input batches. Setting a smaller updating frequency of transformation matrices is 

profitable for generating realistic images by the DCGAN with a larger number of 

training epochs. It is noticed that the updating frequency of transformation matrices 

affects generated images, and a larger frequency value will result in more diverse results 

for the synthetic outputs. Therefore, the updating frequency should be determined in a 

balanced manner, which specifically depends on the used image datasets and will be 

discussed in Section 4.2.5. 

4.2.3 Model Building 

The proposed GAN model is made up of two separative networks, the generator 

network G and discriminator network D. The discriminator is responsible to learn the 

distributions of the original data whilst the generator simulates the data distributions for 

data generation purposes. The designed generator receives a noise signal of z and 

generates data from the random noises, called random vectors. A discriminator 

determines whether the generated samples are realistic or not. The input parameter of 

the discriminator is x, which is image data forwarded to the proposed perturbation 

mechanism. The output in the discriminator D(x) represents the probability of real 

pictures. On the other hand, the input information of the generator is a mixed value of 

D(x) and noise vectors z. Consequently, the discriminator can be regarded as a binary 
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classifier that outputs 0 to generated samples and 1 to the real ones. 

In contrast to the typical GANs, both networks of the proposed generator and 

discriminator are composed of convolutional layers rather than fully-connection layers 

because the convolutional neural network has been proven to perform well in both 

image classifications and image generations. Moreover, the algorithms of the generator 

and discriminator are extended from the applications of convolution neural networks. 

 

 

Figure 4.3: The model components of discriminator (left column) and generator (right 

column), where the repeated components indicate the upsampling or downsampling 

number of convolutional layers in the proposed GAN model. 

 

Inspired by the framework of DCGAN, the proposed GAN model is designed on 

convolution-based structures. In the discriminator, batch normalisation is not required 

at the first convolutional layer because of the adoption of the perturbation mechanism, 

and the following combination components are the convolutional layer, batch 

normalisation, and activation function of LeakyReLU. On the other hand, in the 

generator, the first layer is the fully-connection layer and the following combination 
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components are the convolutional layer, batch normalisation, and activation function of 

ReLU. The last convolution layer is activated by the hyperbolic tangent (tanh) 

activation function. The network components of the discriminator and generator are 

shown in Figure 4.3. 

The discriminator used for image classification in the proposed method inputs 

colour images of 64 by 64 pixels with 3 channels (red, green and blue). Because of the 

diversification of various image datasets, a mixture of transformation matrices as matrix 

multiplications can be used in the proposed GAN model, which not only normalises the 

original images but also meets the requirements for automatically generating diverse 

images with transformation matrices updated at appropriate frequency during the 

training process. 

4.2.3.1 Generator 

Regarding the similarity between original images and augmented ones, a small 

difference in image features needs to be specifically created by the generator. 

Generating slightly different results of augmented data relies on the learning capability 

of the generator network. To synthesise augmented features continuously, the generator 

should maintain a balance between the discriminator and the generator in the training 

phase. Based on the training balance concerns, a generator network is implemented 

similar to convolution-based structures. To meet the required channel numbers and 

generative size through convolution layers, the generator network expects to produce 3 

channels of colour augmented images with a resolution of 64 × 64 pixels, and 4 repeated 

components, shown in Figure 4.3, are designed. The ReLU is empirically used as the 

activation function in the generator network. 

The details of the generator network and the released parameters are shown in 

Table 4.1. The generator model consists of a series of convolutional layers. The inputs 

of the generator are random vectors as the noise signal, and the size of the input is a 

100 × 1 × 1 random vector, which is drawn from a Gaussian distribution. The size of 

the inputting vector is changed to 1024 × 4 × 4 by the convolutional transposition in 

the first layer, and the number of channels is decreased in the next convolutional layer. 

The subsequent convolutional layers are up-sampling layers till reaching the outputting 

vector of 3 × 64 × 64. To generate features smoothly, the number of upsampling 

channels in each convolution layer is halved, and the output tensor is doubled. Finally, 

the last generated image is activated by the tanh activation function.  
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Table 4.1: The generator network and related parameters. 

Name Type Input Size Output Size 

Conv. Layer 0 Conv. Transposition 100 × 1 × 1 1024 × 4 × 4 

Batch Nor. Layer 0 Normalisation  1024 × 4 × 4 1024 × 4 × 4 

ReLU 0 Activation 1024 × 4 × 4 1024 × 4 × 4 

Conv. Layer 1 Conv. Upsampling 1024 × 4 × 4 512 × 8 × 8 

Batch Nor. Layer 1 Normalisation  512 × 8 × 8 512 × 8 × 8 

ReLU 1 Activation 512 × 8 × 8 512 × 8 × 8 

Conv. Layer 2 Conv. Upsampling 512 × 8 × 8 256 × 16 × 16 

Batch Nor. Layer 2 Normalisation  256 × 16 × 16 256 × 16 × 16 

ReLU 2 Activation 256 × 16 × 16 256 × 16 × 16 

Conv. Layer 3 Conv. Upsampling 256 × 16 × 16 128 × 32 × 32 

Batch Nor. Layer 3 Normalisation  128 × 32 × 32 128 × 32 × 32 

ReLU 3 Activation 128 × 32 × 32 128 × 32 × 32 

Conv. Layer 4 Conv. Upsampling 128 × 32 × 32 64 × 64 × 64 

Batch Nor. Layer 4 Normalisation  64 × 64 × 64 64 × 64 × 64 

ReLU 4 Activation 64 × 64 × 64 64 × 64 × 64 

Conv. Layer 5 Conv. Transposition 64 × 64 × 64 3 × 64 × 64 

Tanh Activation 3 × 64 × 64 3 × 64 × 64 

 

4.2.3.2 Discriminator 

To reach data augmentation requirements, the capability of feature extraction is a 

critical factor that impacts the results of augmented images. However, the feature 

information and gradients easily vanish through backward propagation among 

convolutional layers. Therefore, a small number of convolutional layers is applied in 

the discriminator network to extract features based on a very small number of training 

samples. Although a deep network has more strong capabilities to classify features, it 

easily results in the problems of overfitting and gradient vanishing when training with 

small datasets. Furthermore, training both generator and discriminator networks is time-

consuming and needs powerful computing abilities. Considering that the difference of 

input images can be controlled by the proposed perturbation mechanism, the 

discriminator need not use a very deep network to identify the feature difference. As a 

result, the proposed discriminator network is merely designed with 4 repeated 

downsampling components, as shown in Figure 4.3. The repeated components in the 

discriminator network are composed of convolutional layers, batch normalisation layer 

and activation function, where convolutional layers are responsible for feature 
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extraction. 

Normalisation plays an important role in training the discriminator because one 

image might be merely involved during a training phase. According to the idea of model 

designing, normalisation could focus on one single image. The batch normalisation 

layer pays attention to the overall distribution of input images and often ensures the 

consistency of data distribution. Batch normalisation calculates the mean and standard 

deviation values in each batch, which can affect the correction of renewed images sent 

from the perturbation mechanism. Therefore, the output information in the 

discriminator network can be controlled by normalisation with a progressive view of 

each batch. In image generation tasks, the information obtained by batch normalisation 

will also provide benefits with a whole view of the updated data. Consequently, batch 

normalisation learns information directly from a single image, and it can maintain the 

independence of renewed images among batches. 

 

Table 4.2: The Discriminator network and related parameters. 

Name Type Input Size Output Size 

Conv. Layer 0 Conv. Transposition 3 × 64 × 64 64 × 64 × 64 

Leaky ReLU 0 Activation 64 × 64 × 64 64 × 64 × 64 

Conv. Layer 1 Conv. Downsampling 64 × 64 × 64 128 × 32 × 32 

Batch Nor. Layer 1 Normalisation  128 × 32 × 32 128 × 32 × 32 

Leaky ReLU 1 Activation 128 × 32 × 32 128 × 32 × 32 

Conv. Layer 2 Conv. Downsampling 128 × 32 × 32 256 × 16 × 16 

Batch Nor. Layer 2 Normalisation  256 × 16 × 16 256 × 16 × 16 

Leaky ReLU 2 Activation 256 × 16 × 16 256 × 16 × 16 

Conv. Layer 3 Conv. Downsampling 256 × 16 × 16 512 × 8 × 8 

Batch Nor. Layer 3 Normalisation  512 × 8 × 8 512 × 8 × 8 

Leaky ReLU 3 Activation 512 × 8 × 8 512 × 8 × 8 

Conv. Layer 4 Conv. Downsampling 512 × 8 × 8 1024 × 4 × 4 

Batch Nor. Layer 4 Normalisation  1024 × 4 × 4 1024 × 4 × 4 

Leaky ReLU 4 Activation 1024 × 4 × 4 1024 × 4 × 4 

Conv. Layer 5 Conv. Transposition 1024 × 4 × 4 1 

Sigmoid 1 Classifier 1 1 

 

The related components and parameters of the discriminator network are shown in 

Table 4.2. The first convolutional layer is connected by the output of the perturbation 

mechanism, which is a 3-channel colour image with 64 × 64 pixels, shown as 3 × 64 × 

64. The following convolutional layers are downsampling the vectors and increasing 
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the number of channels to the next layer as well. The ReLU is implemented as the 

activation function. 

Connectivity between the perturbation mechanism and discriminator network is a 

critical strategy to improve the capability of feature extraction. To augment images, 

data diversity is a critical considering factor that impacts the performance of image 

classification. The feature diversity is expected to be identified by the discriminator 

network, and the perturbation mechanism can input controllable and renewable features 

to the discrimination network. This process takes advantage to extract more different 

representations by renewing the prior fine-tuned parameters in the discriminator. An 

appropriate design of the discriminator network coupled with the perturbation 

mechanism will alleviate the serious training difficulty contrasted to typical GANs. 

Therefore, the operations between the perturbation mechanism and discriminator are 

supposed to mitigate the negative influence caused by a small number of training 

samples. 

4.2.4 Loss Functions 

Two main loss functions are used for training the proposed GAN model. First of 

all, the loss of the generator is the sigmoid of cross-entropy given by the discriminator 

to score the chosen image and generated images. Secondly, another loss is to compute 

the similarity between the original image and generated image with weights on the end 

layer of the discriminator. Consequently, the overall loss for the proposed method is 

the sum of these two losses, shown in the following function. 

 

 

min
𝐺
max
𝐷
𝑉(𝐷, 𝐺)

=  𝔼𝑥~𝑃𝑑𝑎𝑡𝑎[𝑙𝑜𝑔𝐷(𝑥)] + 𝔼𝑧~𝑃𝑑𝑎𝑡𝑎[log (1 − 𝐷(𝐺(𝑧))] 

(4.1) 

 

where x is the real image, and D(x) is the probability values calculated by the 

discriminator network when inputting image x as the training sample. G(z) is a sample 

generated by the generator network with the input vectors of noise z. The D(G(z)) 

indicates the probability of the generated sample being created by the generator. 

4.2.5 Training Process 

The entire training process is described in Algorithm 1. It is mainly a recurrent and 
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iterative training process based on the perturbation mechanism, generator network and 

discriminator network. In each training epoch, the transformation matrix of M 

normalises the input image and passes the calculated vectors to the next transformation 

matrix of M’, where M and M’ are 2 × 2 matrices used to transfer the original set of 

image pixels to a new set. Furthermore, the transformation matrix of M’ updates the 

vector received from the matrix of M until the end of the repetitive loops at this step. 

The perturbation mechanism is updated with j times. The outputs of the perturbative 

results are updated toward the discriminator and generator at each iteration. A standard 

gradient-based optimisation method is conducted to learn with the loss functions, where 

the SGD and Adam optimiser are implemented in the experiments [186], [187]. 

 

Algorithm 1 Proposed GAN Model for Data Augmentation Purposes 

1. Input: training image (x, y) 

2. Normalisation: transferring image (x, y) to the size of 64 × 64 pixels 

with 3 channels. 

3. for the number of training epochs do 

4.     transfer image (x, y) to (x0, y0) by transformation matrix M: 

       (x0, y0) = (x, y) × M 

5.     for k steps do 

6.          a random boolean value { bi = 1 or 0｜i = 1, ....., k } 

7.          if (bi = True) do 

8.             transfer image (x0, y0) to (x’, y’) by transformation 

matrix M’: (x’, y’) = (x0, y0) × M’ 

9.          else  (x’, y’) = (x0, y0) 

10.         end if 

11.         for j steps do 

12.             generated image (xj, yj) = G{D[(x’, y’), (x, y)]}  

13.             saving image (xj, yj) as one of the augmented samples 

14.             optimising Generator and Discriminator with loss 

functions and Adam Optimiser 

15.         end for 

16.     end for  

17. end for 

 

As seen in Algorithm 1, the proposed model has two main phases, the perturbation 

mechanism phase and the GAN training phase. In the perturbation mechanism phase, 

two primary matrices of M and M’ are conducted. For the first matrix of M, one of the 

target images of (x, y) in the dataset is chosen as the input data (x, y). The input image 



84 

of (x, y) will be transferred to (x0, y0) using the transformation matrix of M. Then, a 

perturbation is repetitive by k times, and a random boolean set controls the activation 

of M’, which changes the (x0, y0) as a new image data (x’, y’). 

In the GAN training phase, there are several steps for the proposed model to 

complete the training process: 1) At the first step of the GAN training phase, the 

perturbative outputs (x’, y’) pass through the computing processes as the forwarded 

input vectors. 2) Secondly, the input vectors pass through the convolutional layer and 

batch normalisation layers to obtain the feature maps. 3) Thirdly, the feature maps go 

through the activation function and get the activation maps to the next convolutional 

layers. 4) Furthermore, the value of a designed loss function is computed. 5) Finally, 

the loss value is backpropagated to update the weights. During the training phase, the 

steps are repeated until the loss is converged. 

On another side, the forward and backward loss values should keep a balance status 

when the two convolutional neural networks of the generator and discriminator are 

trained in the proposed GAN model. Considering both the quality and diversity of 

generated images, the following setups should be taken: 1) Firstly, the number of 

channels inputting to the discriminator for each batch should be appropriately set with 

different image types. For instance, 3 channels are set in every batch for colour images 

because (x0, y0) and (x’, y’) respectively contain channels of red, green and blue. 2) 

Secondly, the learning rate for the generator should be larger than that for the 

discriminator. This setting forces the generator to learn faster than the discriminator. If 

the learning rate in the generator is equal to or smaller than that in the discriminator, it 

will be difficult to attain qualitative results by the proposed frameworks with the 

transformation matrices updated at a certain frequency. 3) Thirdly, for the sake of image 

diversity, the transformation matrix M’ can be designed as a mixture of various basic 

transformation matrices (e.g., rotation, scaling, brightness adjustment, etc.). Updating 

the transformation matrix M’ with small changes after an interval of a certain number 

of epochs, which is called a training cycle, will be helpful for the proposed GAN to 

generate highly realistic images without large distortion. 4) Finally, there is no doubt 

that if the discriminator can learn from one single batch with more epochs, it can be 

expected to generate images of higher quality. The updating frequency or the number 

of epochs for the training batch can be controlled by the parameter value of k and j to 

update the input features by using transformation matrices. More detail about the 

parameter setting will be discussed in the experimental section. 
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4.3 Experiments with the Proposed GAN Framework  

4.3.1 Data Preparation 

Two image datasets were used in the experiments to evaluate the performance of 

the proposed methods. A small part of the datasets, from 1 to 20 images per class, were 

used as training data, and the remaining images were for validation data. The first 

dataset is the MNIST [178], [179], which contains grayscale images of handwritten 

single-digit numbers with 28 × 28 pixels. MNIST has a training set of 60,000 samples 

and a test set of 10,000 samples. The second dataset is the rock paper scissors (RPS) 

dataset [180], which contains 840 training images and 124 test images in each class 

from 3 hand gestures of the rock-paper-scissors game. Each image has 300 × 300 colour 

pixels. In our experiments, a small number of images per class were randomly selected 

from the original training set to form a small training dataset. Moreover, for the MNIST 

dataset, 1,000 images per class were randomly selected as our validation dataset; for 

the RPS dataset, the remaining images, except for the chosen training set, and all the 

test images were mixed as the validation dataset in our experiments. 

4.3.2 Hardware & Software 

In the implementation, Python and TensorFlow were used as deep learning 

frameworks to build the models and networks, and Matlab was used to compute the 

accuracies of image classification tasks. All of our experiments from Chap 4 to Chap 6 

were conducted on a desktop computer with a processor of Intel Core i7-6700 (3.4GHz) 

and 16G RAM. An exception in this chapter was all the generative experiments without 

using any Graphics Processing Units (GPUs) to illustrate the generative efficiency of 

the proposed model. Table 4.3 and Table 4.4 shows the hardware environment and 

software version separately. 

In terms of the synthetic efficiency and basic hardware requirements, the hardware 

specifications intentionally skip the machines of GPUs to accelerate the experimental 

process. The executive time is 20 to 30 minutes to generate around 256,000 augmented 

results with the size of 64 pixels by 64 pixels, all of which are trained by a single 

original image within 4,000 epochs based on the proposed algorithm. 
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Table 4.3: Hardware environment. 

Configuration Value 

Processor Intel(R) Core(TM) i7-6700 @ 3.40 GHz 3.41 GHz 

Installed RAM 16.0 GB 

System Type 64-bit Operation System, x64-based Processor 

Hard Disk 500 GB 

GPU None 

 

Table 4.4: Software version. 

Configuration Value 

Operation System  Windows 10 Education 

Anaconda Individual Edition 2020.11 

Python 3.7.2 

TensorFlow 1.14.0 

Matlab R2019b 

 

4.3.3 Hyperparameters Setting 

The setting of parameter values is demonstrated in Table 4.5. For data 

augmentation, finding a balance between the generator and discriminator is critical to 

generate fake images with both similarity and diversity, especially when there are only 

a few images as the training data. This can be done by properly setting hyper-parameter 

values, such as learning rates and frequency for updating transformation matrices. In 

other words, when the GAN model is trained with inappropriate hyper-parameter 

settings, the synthetic images could be over-diversified, as shown in Figure 4.4, where 

the images generated by the proposed GAN framework are implemented with a rotation 

angle of 50 degrees of the transformation matrix M’ using one training cycle only. 

Additionally, generative results with the same learning rate of both discriminator and 

generator are hard to be recognised as a similarity compared to the original image. 

Obviously, adding the type of generated images as the augmented data cannot enhance 

image classification performance.  
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Table 4.5: The setting of parameter values. 

Parameters Values 

Image Size 3 × 64 × 64  

Batch Size 1 

Noise Vector Size 100 × 1 × 1 

Learning Rate of Generator 0.0002 

Learning Rate of Discriminator 0.0001 

Optimiser Adam 

β1 0.5 

β2 0.999 

Kernel Size 4 × 4 

Batch Normalisation Discriminator & Generator 

Dropout None 

Dimension Extension Upsample to 2 × 2 

Dimension Deduction Convolution with strike 2 

Number of Kernel 1024 to 64 

 

 

 

Figure 4.4: The original image and generated images with a bad setup of generating 

images from a single original image using the proposed GAN framework.  
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Table 4.6: Augmented images from the original image using different transformation 

matrices M’. 

(x0, y0) (x’, y’) Augmented Images 

  
K’1 = 1 
K’2 = 0 
K’3 = 0 
K’4 = 1 

 

 

 
K’1=cos15° 
K’2=-sin15° 
K’3=sin15° 
K’1=cos15° 

 
 

 

 
K’1=1.3 
K’2 =0.0 
K’3 = 0.0 
K’4 = 1.1 

 
 
 

 

 
Assigned 

(x’, y’) 
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As described in the previous section, the designation of transformation matrix M’ 

should be modified with a small range for each training cycle, and the learning rate 

between discriminator and generator should be adjusted, if necessary, when training the 

proposed GAN to prevent extreme distortions. The number of epochs within a training 

cycle and thus the frequency for updating transformation matrices can be optimised 

through a trial-and-error approach in the experiments. For generating high-quality 

images with large rotation angles, transformation matrix M can be used to normalise 

the original image in rotation transformation to reduce unexpected distortions. 

 

 

Figure 4.5: Original images (left column) for training and the generated images (right 

column) using the proposed model with different transformation matrices M’ on the 

MNIST dataset. 

 

There are different methods available for designing the transformation matrices, 

which can be adaptive or fixed with values assigned based on prior knowledge or 

experience. In our experiments, some simple transformation matrices M’ demonstrated 

the effect with an identity matrix M. As shown in Table 4.6, the original image is a face, 

and various high-quality images with good diversity can be generated using three 

different M’ matrices for rotation and scaling with the proposed GAN framework. On 

the other hand, if the desired transformation is very hard to implement by using the 

transformation matrix, it is practical to directly assign a new picture rather than using a 

transformation formula to guide the synthetic processes, as shown at the bottom of 

Table 4.6. Take a face mixture task for instance, two different faces are required to be 
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fused as one, but the generated results cannot be extended from one face by merely 

using the transformation matrices. Since the augmented images cannot be derived from 

the input image (x0, y0), it is appliable to directly allocate another image as the assigned 

(x’, y’). However, when applying an assigned image, attention should be paid to the 

alignment and normalisation using the matrix M in the proposed method. In our 

experiments, the GAN training ran for 4,000 epochs using the assigned transformation 

matrix M’. The Adam optimiser was used with a learning rate of 0.0002 for the 

generator and a learning rate of 0.0001 for the discriminator. 

 

 

Figure 4.6: Original images and the generated images with small-scale rotations 

implemented by matrix M’ and larger-scale rotations implemented by matrix M. 

 

Due to the different requirements of image classification, the transformation matrix 

M’ can be designed for the GAN to simulate real images with class-informative features. 
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Taking the MNIST for instance, the provided images contain many similar features 

with diverse rotation angles, and assigning the transformation matrix M’ with different 

rotation angles can generate augmented training data for better classification 

performance than other transformation formulas. In addition, the MNIST dataset 

contains features without complicated lines, colours or textures. Diverse images of high 

quality can be generated using a well-designed matrix M’ with the proposed GAN 

framework. Figure 4.5 shows the images generated by the proposed GAN using 

transformation matrices M’ mixed with rotations of 10 to 30 degrees and scaling of 1 

to 1.4 times. It can be seen that the proposed GAN framework can generate more 

diverse images than the traditional rotation and scaling transformation. 

It is worth noting that if transformation matrix M’ varies on a large scale at every 

training cycle, it will cause dramatic distortions and fail to generate high-quality images. 

Therefore, a slight variance of the transformation matrix M’ in each cycle will be useful 

to generate meticulous texture and colour on the RPS dataset, as well as on some 

realistic images. On the other hand, transformation matrix M can be used to make large-

scale image changes rather than directly applying large transformation using 

transformation matrix M’. Figure 4.6 demonstrates images generated by the proposed 

GAN framework with large-scale rotations implemented by matrix M and slight 

rotations implemented by matrix M’. It can be seen that the generated images are 

diverse and of good quality without dramatic or unidentical distortions. 

4.4 Evaluation of Training Data Augmentation for 

Image Classification 

In this section, several comparative experiments are conducted to evaluate the 

performance of augmented datasets generated by the proposed GAN model: Firstly, the 

augmented images are used to compare the classification accuracies with the original 

datasets via the method of transfer learning. Secondly, the student’s t-test is designed 

to compare the performance from a statistical perspective. Thirdly, based on the worse 

performance in the student’s t-test, a further experiment on the confusion matrix is 

implemented to evaluate that the augmented images can confidently improve the 

performance of CNNs. Finally, the augmented images generated by our proposed GAN 

model are compared with popular traditional augmentation methods, and which 

experiment aims to compare the difference between other common augmentation 

techniques. 
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4.4.1 Performance Comparison of Image Classification with 

Augmented Image Data 

In order to evaluate the effectiveness of using the images generated by the proposed 

GAN framework for training data augmentation, transfer learning with 4 famous pre-

trained CNNs, AlexNet, VGGNet-16, GoogLeNet and ResNet-18, were used for image 

classification on the MNIST and RPS datasets respectively. A very small number of 

training images is formed by random selections from the training set of MNIST and 

RPS. Due to divergent loss values often appearing during fine-tuning the pre-trained 

CNNs, especially when there are only 1 to 10 training samples per class, the validation 

accuracy has been calculated as the mean value of the best 10 runs to reach reliable 

results. 

Figure 4.7 and Figure 4.8 show the validation accuracy values of the 4 used CNNs 

with different numbers of original training samples and augmented training samples 

based on the MNIST dataset and RPG dataset respectively. The number of original 

training samples was set to 1, 5, 10, 15, and 20 respectively for producing results with 

a small training dataset. The same number of augmented samples per training image 

was selected although more images could be generated using the proposed GAN 

framework, and the remaining samples on the MNIST and RPS datasets were used as 

the validation data. At most 20 original training samples per class were used in the 

experiment for performance comparison, because the four CNNs trained with 20 

samples per class can achieve quite reliable validation accuracy, up to 85% to 92%, 

which is robust enough for real-world classification on a small dataset and suitable to 

investigate performance enhancement by training data augmentation. From Figure 4.7 

and Figure 4.8, it can be seen that using the images generated by the proposed GAN 

model for training data augmentation can improve the validation accuracy of the four 

CNNs by 3~35%, depending on the number of original training samples used. 
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Figure 4.7: Comparison of validation accuracy of CNNs on the MNIST dataset. 

 

 

 

Figure 4.8: Comparison of validation accuracy of CNNs on the RPS dataset. 
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4.4.1.1 Student’s T-test 

The student’s t-test with the following statistical hypotheses has been conducted to 

find out whether the performance improvement of the training data augmentation is 

statistically significant in the classification trials: 

 

• Null hypothesis (H0) - the mean accuracy achieved with augmented training 

data is equal to the mean accuracy achieved without using augmented training 

data at the 5% significance level. 

• Alternative hypothesis (H1) - the mean accuracy achieved with augmented 

training data is greater than the mean accuracy achieved without using 

augmented training data at the 5% significance level. 

 

Table 4.7 presents the p-values obtained from the t-test comparing the validation 

accuracy with augmented training data and the validation accuracy without augmented 

training data for each CNN on the MNIST and RPS datasets respectively. The p-values 

were calculated by the 15 best classification results between augmented and non-

augmented data based on the same 10 training samples of each class. It can be seen that 

all the t-test results reject hypothesis H0 and accept hypothesis H1, with p-values much 

smaller than 0.05. Therefore, the performance improvement by the proposed method 

for training data augmentation is statistically significant. 

 

Table 4.7: Significance test results (p-values) for comparing validation accuracy of 

CNNs trained with vs without augmented training data. 

 MNIST RPS 

AlexNet 2.09e-06 1.01e-04 

VGGNet 3.08e-07 2.42e-05 

GoogLeNet 2.48e-06 1.36e-05 

ResNet 2.68e-06 5.24e-06 

  

4.4.1.2 Evaluation by Confusion Matrix 

Referring to the p-values in the student’s t-test, shown in Table 4.7, all four CNNs 

in the experiment had the statistical confidence that the augmented data achieve 

significant impacts on the final classification accuracies. However, AlexNet achieved 

the worst performance on both MNIST and RPS datasets, shown as the red marks. In 

this experiment, further evaluations were conducted with confusion matrices to further 
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analyse the performance of the AlexNet. Figure 4.9 to Figure 4.12 demonstrate the 

confusion matrixes for the testing data when trained with and without augmented 

images on MNIST and RPS datasets respectively. The confusion matrices are based on 

the classification results of the AlexNet trained with 10 randomly chosen images per 

class as a small and balanced training dataset. 

 

 

Figure 4.9: Confusion matrix for testing data on the RPS dataset. The AlexNet is 

trained without using augmented data. 

 

Figure 4.10: Confusion Matrix for testing data on the RPS dataset. The AlexNet is 

trained with the original and augmented data. 
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Figure 4.11: Confusion Matrix for testing data on the MNIST dataset. The AlexNet is 

trained without using augmented data. 

 

 

Figure 4.12: Confusion Matrix for testing data on the MNIST dataset. The AlexNet is 

trained with the original and augmented data. 
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The validation data in the MNSIT dataset consisted of the same number of 500 

images per class, while the RPS dataset had 840 images per class. The same training 

parameters were used to compare the efficiency between a small training dataset and 

the augmented images generated by the proposed GAN modes. AlexNet was applied as 

a convolutional network. For the dataset of MNIST and RPS, Figure 4.9 and Figure 

4.11 respectively illustrate the confusion matrix without using the augmented data, and 

Figure 4.10 and Figure 4.12, on the other side, show the analysis results with augmented 

data. 

It can be found that augmented data enhance image classification performance, 

which significantly reduces the negative effects of training with a very small dataset. 

According to the experimental results, for the MNIST dataset, adding augmented data 

into original datasets acquired a higher validation accuracy of 86.37% than the original 

accuracy of 71.59% when only 10 images per class are involved to fine-tune the 

hyperparameters in AlexNet. Similarly, the performance of the RPS dataset also 

exhibits a better classification accuracy of 87.8% with the augmented data than that of 

78.08% without using augmented data.  

For further evaluating the classification performance between the augmented data 

and the original small dataset. A set of 4 estimation factors (sensitivity, specificity, 

accuracy and precision) was calculated to evaluate the performance of augmented data 

in AlexNet. The provided equations to compute the four factors are shown as follows. 

 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.2) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4.3) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +𝐹𝑃 + 𝐹𝑁
 (4.4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4.5) 

 

where the sensitivity is measured by true-positive (TP) and false-negative(FN), and the 

specificity is calculated by true-negative (TN ) and false-positive (FP). The accuracy is 

based on true-positive (TP), false-positive (FP), true-negative (TN), and false-negative 

(FN). The precision is measured with true-positive (TP) and false-positive (FP).  
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Figure 4.13: A comparison of the sensitivity, specificity, accuracy and precision with 

augmented data and original small data to train the AlexNet. 

 

Figure 4.13 shows the calculated results with and without using the augmented data 

in terms of accuracy, sensitivity, specificity, and precision. The results depict that the 

augmented images on the dataset of MNIST can be effectively classified by the high 

factor scores of sensitivity, specificity, accuracy, and precision of 86.36%, 98.48%, 

97.27%, and 86.36% respectively. On the other hand, the augmented images on the 

dataset of RPS also receive higher scores for the sensitivity, specificity, accuracy, and 

precision of 85.97%, 93.99%, 91.58%, and 85.97% respectively. In short, compared to 

the small datasets without using augmented data, the generated images can 

comprehensively enhance the classification performance evaluated by the four factors 

of sensitivity, specificity, accuracy, and precision. 

Both the results for confusion matrices in Figure 4.10, Figure 4.12 and estimation 

factor values in Figure 4.13 show the aggregate statistical results with augmented 

datasets; augmented images generated by the proposed GAN model are advantageous 

to boost the final classification performance based on the same validation set, even 

when AlexNet statistically reaches the worse classification performance among the 

other CNNs in the student’s t-test experiment. Moreover, a small number of images (10 

random images) was used as the training samples, and the AlexNet trained by 

augmented images can still comprehensively improve the classification performance. 

To sum up, it is proven from the experimental results that when a small number of 

samples is involved in the training dataset, the validation accuracies in image 

classification can be boosted with the augmented images generated by the proposed 

GAN model. 
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4.4.1.3 Evaluation by t-SEN Plot 

To visualise the final distributions of validation performance data by training with 

the augmented data and original data in the previous experiment, t-distributed stochastic 

neighbour embedding (t-SNE) was applied to evaluate the data distribution of the last 

softmax layer of the AlexNet. The t-SNE is a common dimensional reduction algorithm 

to visualise the data in high dimensions. For instance, the MNIST contains 10 

dimensions (10 classes) in the final softmax layer, and the t-SNE can transform the 

high-dimensional data into a two-dimensional distribution as the t-SNE plot for the 

visualisation of classified data distributions. A t-SNE plot applies the distance in each 

dataset and weights the correlation with another dataset. Figure 4.14 and Figure 4.15 

illustrate the two-dimensional scatter plot using the t-SNE method to visualise the data 

distribution of the softmax layer when the original training data and augmented training 

data are used separately. According to the t-SEN plots for the validation data 

distribution in the last softmax layer of the AlexNet, a conclusion can be made that the 

classification results using augmented images keep the validation data distributions 

more uncovered and less overlapped than training with original images. Training with 

augmented data distributes the validation data into more correct dimensions with a high 

validation accuracy of image classification when a clear distribution margin is acquired 

in the last layer. A difference between the t-SNE plots in Figure 4.15 may not be 

visually clear due to the large class number obscuring the classification improvement. 

 

      (a)            (b) 

Figure 4.14: Two-dimension t-SEN plot of the RPS dataset. (a) The validation data 

distribution with a validation accuracy = 78.08% when the AlexNet is trained by the 

original small training data. (b) The validation data distribution with a validation 

accuracy = 87.8% when the AlexNet is trained by the original small training data and 

augmented data. 
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      (a)            (b) 

Figure 4.15: Two-dimension t-SEN plot of the MNIST dataset. (a) The validation data 

distribution with a validation accuracy = 71.59% when the AlexNet is trained by the 

original small training data. (b) The validation data distribution with a validation 

accuracy = 86.37% when the AlexNet is trained by the original small training data 

and augmented data. 

4.4.2 Comparison of Image Classification Accuracies with 

Traditional Image Augmentation Methods 

An important performance is observed with our augmented method that can 

efficiently improve the classification accuracies. However, it is proven that traditional 

techniques of data augmentation are also able to increase the performance in image 

classification tasks. Therefore, to compare the difference between non-augmentation, 

our GAN-based method and usual data augmentation methods, the parameters were set 

in rotation and scaling with 20 training samples in each class, which are the very 

common augmentation methods in traditional augmentation, to check the final 

validation accuracy in image classification. Moreover, the same settings of traditional 

augmentation as our parameters were used in the transformation matrix of M’. The main 

reason for the parameter setting is to simplify the feature transformation to find out the 

differentiation between traditional augmentation and our method with the same 

parameter setting. 
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Table 4.8: Validation accuracy of 20 sample images per class for our method and 

traditional data augmentation on the MNIST dataset. (Unit: %) 

Dataset MNIST 

Networks AlexNet GoogLeNet ResNet VGGNet 

Non-augmentation 89.23 89.74 85.27 88.62 

Tradition augmentation with 30 degrees 

rotation in 50% of training images per 

epoch 

87.27 89.32 87.22 88.37 

Ours with 30 degrees rotation of matrix M’ 92.77 93.96 93.51 93.66 

Tradition augmentation 

with 30 degrees rotation and 1.3 times 

scaling in 50% of training images per epoch 

86.67 90.61 86.72 87.02 

Ours with 30 degrees rotation and 1.3 times 

scaling of matrix M’ 
89.87 93.51 90.26 91.51 

 

 

Table 4.9: Validation accuracy of 20 sample images per class for our method and 

traditional data augmentation on the RPS dataset. (Unit: %) 

Dataset RPS 

Networks AlexNet GoogLeNet ResNet VGGNet 

Non-augmentation 89.43 89.33 92.63 90.13 

Tradition augmentation with 30 degrees 

rotation in 50% of training images per 

epoch 

92.08 91.68 91.67 91.72 

Ours with 30 degrees rotation of matrix M’ 95.73 95.44 94.91 94.69 

Tradition augmentation 

with 30 degrees rotation and 1.3 times 

scaling in 50% of training images per epoch 

92.86 93.24 91.65 92.67 

Ours with 30 degrees rotation and 1.3 times 

scaling of matrix M’ 
95.12 94.63 93.51 93.78 
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Additionally, in terms of image classification, the augmentation performance 

strongly relies on the generative similarity of the validation data, and different learning-

based models usually involve many parameters to set, which easily leads to diverse 

results in image classification. To prevent the bias caused by the parameter setting 

among the learning-based models, simple transformation settings, rotation and scaling, 

were merely conducted in the experiment to evaluate the difference between the 

traditional augmentation methods and our proposed methods. Table 4.8 and Table 4.9 

show the validation accuracy in different CNNs and augmentation methods. Based on 

the experimental results, traditional data augmentation methods are not obvious enough 

to entirely promote the performance of training with small datasets. What’s worse, in 

some specific cases, such as the AlexNet on MNIST and ResNet on PRS, the traditional 

data augmentation cannot efficiently enhance the final performance depending on the 

parameter settings with only 20 images in each class. Consequently, our method can 

not only increase the validation accuracies among the four CNNS but keep the 

validation accuracies in a more stable range than the traditional augmentation methods 

when deep networks are conducted as classifiers for image classification applications. 

4.5 Conclusion 

In this chapter, a one-to-many image augmentation method is proposed, which 

adopts the convolution-based GAN architecture and the perturbation mechanism to 

generate realistic but diverse augmented images. Compared to the traditional 

augmentation techniques, the augmented images generated by the proposed GAN 

model offer more advantages to promote classification accuracies when a small number 

of training samples are used to train CNNs. Based on the analysis using confusion 

matrix, t-SEN plot, student’s t-test, and accuracy in image classification, the 

experimental results demonstrated that the proposed model can mitigate the problem 

caused by labelled data scarcity, especially when a large number of images are 

impossible to be collected for training convolutional networks. Consequently, the 

proposed GAN framework for image data augmentation can significantly enhance the 

classification performance of DCNNs, which is beneficial in real applications where 

original training data is small and limited. 
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Chapter 5 

Facial Image Synthesis from Small Training 

Data and Sparse Edge Features Using a 

GAN Framework based on One-to-one 

Image Mapping 

5.1 Introduction 

The motivation in this chapter is to augment a small image dataset by making use 

of conditional edge features extracted from the available training images, and it can be 

expected that the synthesised images are more diverse and less distorted than those 

obtained from traditional methods. As discussed in Section 2.3.1, traditional approaches 

to data augmentation include photometric transformations and geometric 

transformations, i.e., translation, scaling, flip, rotation, noise adding, colour space 

shifting etc., especially available for image data [188]. However, the data diversity 

introduced by traditional augmentation methods is limited and insufficient for many 

applications. To solve the limitations of traditional approaches, conditional inputs, such 

as edges, mark points, masks, semantic maps, labels and so on, can be used to make the 

synthetic images generated by GANs not only diverse but also controllable [189], [190]. 

Furthermore, one-to-one image translation methods using condition-based GANs can 

directly control the generated results by learning the pixel mapping relationship of 

paired images between conditions and real images [191].  

Although one-to-one image translation methods based on conditional GANs have 

been developed for controllable image synthesis, there are still several problems that 

should be resolved when applying them to a small training dataset: 1) Compared with 

unconditional GANs, a limitation of condition-based GANs is that the output images 

must be generated from the corresponding conditional features, so a clear mapping 

relationship between inputs and outputs should be correctly established. Corresponding 

mapping relationships are hard to be discovered, especially when only a very small 

training dataset is available for deep neural networks to learn. 2) With a small training 

dataset, the training process for image-to-image translation is easy to converge but 

difficult to obtain high-quality results due to the overfitting and insufficient information 

about the underlying data distribution. Whether the used conditional features are of high 
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quality or not, the discriminator will overfit the training data [192], and the generator 

would produce unexpected distortions in the generated images in the validation or 

application phase [193], [194]. 3) Training GANs with a small dataset must deal with 

the inevitable problem of mode collapse [195], which implies that the GANs may learn 

the training data distribution only from a limited number of samples but overlook other 

useful training data [196]. Other training issues, such as non-convergence and 

instability, would also worsen the quality of the generated images [197]. Consequently, 

condition-based GANs are still difficult to synthesise photorealistic images merely 

relying on limited training data, such as incomplete conditional features and a small 

number of training images. 

Edge-based image translation methods using condition-based GANs have the 

advantage of introducing diversity in image data augmentation. However, it is 

challenging in terms of generating high-quality photorealistic images because extracted 

edges cannot be regarded as the perfect conditional features to support various visual 

tasks and contain potential visual information of perceptual relevance [198]. Since 

edges, contrasted to other conditional features, generally contain incomplete 

information, such as unintegral geometry, simplified lines, discontinuous shapes, 

missing components, and undefined contours, it is hard for one-to-one translation 

methods to map edges into realistic images without clear conditional information. 

 

 

Figure 5.1: Examples of training results with a different number of training images 

and different conditional edge inputs by using the same parameter setting for the one-

to-one translation method. 
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Figure 5.2: Examples of inference results with a different number of training images 

and different conditional edge inputs by using the same parameter setting for the one-

to-one translation method. 

 

To simply demonstrate the impact on the quality of the images generated by 

condition-based GANs, some preliminary experiments of the training results and 

inference results with a different number of training images and incomplete conditional 

edges are shown in Figure 5.1 and Figure 5.2 respectively. It can be observed that two 

important factors, the density of inputting conditional edges and the number of training 

images, have a considerable influence on the generative quality for both training and 

inference results, in which inference results are more critical for real applications 

because the edge features inputted in the inference process have not been learned during 

the training phase. 

In this chapter, a new one-to-one image translation framework using condition-

based GANs is proposed, which is expected to produce diverse and photorealistic 

images with fewer distortions when trained with a small number of training images. 

Instead of deepening the convolutional layers or increasing the number of parameters, 

the proposed condition-based GAN framework aims to learn additional relationships 

between incomplete edges and corresponding images; regional binarization and 

segmentation masks are used as new reference information, which can be automatically 

obtained by image processing. In particular, the proposed method can beneficially 

obtain extra mapping correlations between conditional edges and the corresponding 

ground truth images to mitigate negative impacts on inference results, such as synthetic 
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distortion, uncertainty and overfitting. If the condition-based GANs can efficiently 

learn from informative conditional inputs (e.g., colour, texture, edges, labels, etc.), then 

it would be effortless to generate corresponding photorealistic outputs [199], [200]. A 

new GAN structure is proposed in this chapter, which divides the image synthesis task 

into two main stages: 1) The first stage transforms the conditional input of incomplete 

edges into refined images as the new conditional input. 2) In the second stage, the pixel 

values are processed by combining the information from segmentation masks and 

binarised images and then transforming the refined images into photorealistic image 

outputs. 

The experimental results have demonstrated that the proposed GAN can generate 

diverse images of high quality even with a very small training dataset and the sparse 

unseen edge features as the conditional inputs. In addition, for data augmentation 

purposes, the proposed model efficiently mitigates large distortions easily caused by 

incomplete or untrained edge inputs. The contributions in Chapter 5 are as follows: 

• To deal with the problem of distortions in one-to-one mapping images 

generated by GANs due to using limited training data, a network structure 

has been proposed for converting the original incomplete edges into new 

conditional features in a refined domain, in which distortions caused by 

small training data and incomplete conditional edges can be alleviated. 

• For the first time, the proposed method uses the mixture of pixel values of 

both binary images and segmentation masks to enhance the conditional 

input in a new refined domain, which can integrate facial components, 

including eyes, nose, mouth, etc., to introduce diversity and enhance the 

quality of the images generated by conditional GANs trained with a very 

small training dataset. 

• A facial image augmentation method using conditional GANs has been 

proposed, which can generate photorealistic facial images of diversity from 

incomplete edges or hand-drawn sketches. Compared with traditional edge-

to-image translation methods without ideal conditional inputs, the proposed 

method is tolerant to various incomplete edges as conditional inputs and 

able to generate diverse images of high quality in terms of Fréchet inception 

distance (FID) and kernel inception distance (KID). 

5.2 Methods 

One-to-one image translation methods are supposed to find specific mapping 

relationships between source distribution and target distribution. In general, a small 
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number of paired training features may not comprehensively align the data distribution 

with imperfect conditional inputs, such as incomplete edges and a small training dataset. 

Therefore, data refining between paired features can be processed to expand the 

mapping relationships based on unclear conditions and small training datasets. In this 

section, a new method with a very small training image dataset is proposed for facial 

image synthesis. 

With incomplete conditional features in the source domain and small training data 

in the target domain, the mapping relationships between source and target domains 

cannot be clearly described by one-to-one image translation methods. The method 

proposed in this chapter transfers the source domain to an interim domain for refining 

images with extra annotated information, in which newly defined images in the interim 

domain need to be generated based on a small training dataset. This interim domain is 

designed able to provide extra reference information for discovering more precise 

mapping relationships between the source and target domain. 

 

 

Figure 5.3: The proposed translation method by defining a refined domain based on a 

small training dataset. The GANs and image pre-processing are adopted to enrich the 

mapping relationships from the source domain to target domain. 

 

Figure 5.3 shows the proposed translation method suitable for training with a small 

dataset. It is difficult for a small training dataset to contain a comprehensive view of 

correct mapping relationships between the source domain and target domain without 

sufficient representative training samples, as shown by the blue line in Figure 5.3. Even 

if changing the types of conditional inputs, a similar situation remains, and it is still 
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difficult to learn correct mapping relationships, as demonstrated by the red line in 

Figure 5.3. To comprehensively find correct mapping relationships, extending the 

mapping relationships with an interim domain and refined images, as shown by the 

green dotted line in Figure 5.3, can reduce uncertainty caused by using a small training 

dataset and incomplete edge features as conditional inputs to generate photorealistic as 

well as diverse results. More detail will be explained when introducing the proposed 

condition-based GAN framework later. 

As training condition-based GANs with small training datasets, the following 

factors should be considered: 1) It is difficult to avoid distortions in the generated 

images and training imbalance with a small number of training images or insufficient 

samples. 2) Through convolutional neural network structures, such as convolution, 

normalisation and downsampling, it is easy to lose spatial information and impractical 

to completely preserve the conditional information from a small number of training 

images [201], [202]. If the conditional inputs contain sparse, unclear, limited, 

discontinuous, or incomplete features, fine-tuning model parameters without distortions 

becomes much more difficult. 3) The small training dataset and limited conditional 

features will make the training easy to overfit but hard to obtain realistic reference 

results. Since many parameters in a convolutional neural network need to be fine-tuned, 

it is impossible to optimise all the parameter values with a small number of training 

samples in terms of the generalisation capability of training a deep convolutional neural 

network. To tackle the above problems of using a small number of images to train a 

GAN, several training strategies are adopted in the proposed method, described as 

follows: 

Enlarging the diversity of source domain: The GAN training using a small 

training dataset easily converges but frequently attains unrealistic inference results, 

mainly because of the overfitting. It is impossible to expect GANs to have a whole view 

of the target domain by merely training with a limited number of images. For the goal 

of achieving photorealistic results, both the discriminator and generator should stay in 

an equilibrium balance. Increasing the training data diversity and widening the mapping 

relationship between the source domain and target domain could help achieve the 

required balance between the generator and discriminator when a small number of 

training images are involved in training. In the proposed method, new reference 

information is created by image pre-processing, and the adoption of the interim domain 

for refining images can enlarge the data diversity in the source domain. 

Double translation: Double translation aims to reduce the impact of the 

uncertainty due to using incomplete edges as conditional inputs. The double translation 

strategy not only decreases the chance of mode collapse compared to a single translation 

approach but also alleviates the distortions caused by training with a small number of 
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images. For generating additional reference information, the proposed method 

combines binary images and segmentation masks to produce refined images as 

conditional input in the second translation. Specifically, in the first translation, refined 

images with annotated facial components are generated from incomplete edge features. 

This translation is conducted between the source domain and the interim domain. On 

the other side, the second translation is conducted between the interim domain and 

target domain, which can successively learn from the possible distortions in the first 

stage to avoid or alleviate negative distortions in the final outputs. 

Reusing the conditional information: Spatial information in conditional edges 

can be easily lost by training under convolutional neural layers, and the relationship 

between the source domain and target domain will become incomprehensive and 

unmapped. To reduce the spatial information vanishing, edge features in the source 

domain can be reused in each translation. Since the incomplete edge inputs contain 

useful conditional information for introducing the diversity of generated images, 

reusing the conditional information can keep the limited conditional inputs tight to 

reinforce the mapping relationships at each translation stage. 

Freezing weights: Weight freezing is a strategy to overcome the gradient 

vanishing problem during training, which often happens when a small dataset is used 

as the training data. If the provided training data cannot give the discriminator enough 

information to progress the generator, the gradient will become smaller or close to zero 

when forwarding the gradient among the deep network layers. Incomplete conditions 

would worsen the gradient vanishing problem and make it impossible to fine-tune the 

model parameters well to obtain realistic results. Hence, freezing part of weights in 

separate training stages allows the discriminator to acquire useful gradients from each 

training stage rather than tuning all parameters at one time. 

5.2.1 The Proposed Condition-based GAN Framework 

To mitigate the output distortions led by using a small training dataset and 

incomplete edge as conditional input, additional paired segmentation masks and 

regional binary images are used as reference information in the proposed method, which 

can enrich the mapping relationships between the source domain and target domain. 

Consequently, the proposed method creates additional data distributions from the small 

training using image pre-processing, and the data in the interim domain provides more 

referable features than the original incomplete edges in the source domain. 

Two U-nets [203], [204] are adopted in the proposed condition-based GAN 

framework for image-to-image translation. When training a condition-based GAN with 
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small training data, U-nets can achieve high performance for two reasons: 1) On one 

hand, during a training process, the U-net creates images based on the special 

concatenating structure, which is beneficial to retain the matched features from limited 

conditional features with an integral perception in convolutional layers. 2) On the other 

hand, the U-net structure is simple and advantageous to generate images without using 

very deep convolutional layers, which is critical for alleviating the gradient vanishing 

problem caused by training with small datasets and incomplete edges. The proposed 

framework also reuses the conditional input information to strengthen the input features 

at each training stage, and freezing weights for separate networks at each training stage 

can prevent gradient vanishing as well. To sum up, the proposed condition-based GAN 

framework can not only alleviate the negative influences on training with a small 

number of training images in the target domain but also intensify the meaningful 

conditional information in the source domain. An overview of the proposed condition-

based GAN framework is shown in Figure 5.4 and described as follows. 

 

 

Figure 5.4: Overview of the proposed model for translating edges to photorealistic 

images using two U-nets. 

 

The proposed model consists of three primary parts: 1) image pre-processing and 

refining, 2) generators and 3) discriminators. The two generators use the same 

convolutional structure of the U-net, both of which downsample and then upsample to 

the original size of input images [205], [206]. All convolutional layers use convolution 

kernels of size 3 × 3, and normalisation is applied to all convolutional layers except for 

the input and output layers. In the training phase, the first generator is used to create 
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refined images based on the original sparse edges and ground truth. The refined images 

are referred to the image pre-processing, which contains features related to texture, 

colour, and shape of different facial components. In addition, the second generator is 

designed to improve the synthetic process to generate photorealistic images from the 

interim domain. In the inference phase, the generators use fine-tuned parameters to 

generate photorealistic images from conditional edges that may have not been seen 

during training. The two discriminators have the same task of distinguishing between 

real and fake images; the first one is to identify generated images in terms of refined 

images, and the other is in terms of ground truth. 

5.2.2 Image Pre-processing and Refining 

Image refining is essential for providing informative conditional features since 

incomplete edges generally contain much unidentical information representing the 

same facial component. This uncertainty makes it difficult for condition-based GANs 

to comprehensively find pixel relevance between different domains. For instance, an 

unclear “black circle” with incomplete edges can represent either nose, ear or eye, even 

if using a powerful network, it is difficult to learn well with a rare sign of “circle” as a 

conditional input without any other crucial information (e.g., colour, types, angels, 

positions, textures, sub-components, brightness, layouts, shapes, etc.). Moreover, there 

is no guarantee that ideal conditional inputs can be always obtained in real applications, 

especially if the conditional inputs are incomplete or sparse edges, in which these 

uncertainties commonly result in unexpected distortions. A refining process can be 

employed within an image-to-image translation method, which enhances the one-to-

one mapping by providing close to ideal conditional inputs. If the refining images in 

the interim domain provide more specific mapping information, the synthetic quality 

will be correspondingly improved. Consequently, enhancing conditional information is 

one of the important goals for image pre-processing and refining. 

5.2.3 Edge Extraction 

Edges may contain incomplete features with many possible feature types, such as 

undefined density, shape, geometry and so on. However, to achieve high performance, 

one-to-one image translation methods need clear mapped conditions [207]. To generate 

photorealistic images from limited conditional information, extending translation 

relationships with proper reference information can make the mapping relationships 
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between the source domain and target domain more precise based on a small training 

dataset. As an example, the corresponding relationships among the ground truth, 

conditional features, and refined image are shown in Figure 5.5. Ground truth images 

are responsible for providing not only realistic features but also reference images to 

composite the refined images. The red boxes shown in Figure 5.5 indicate the eye 

mapping among different domains, and the new mapping relationships are expected to 

effectively reduce the mapping uncertainty in one-to-one image translation. 

 

 

Figure 5.5: Corresponding mapping relationships among the conditional inputs, 

refined image and ground truth. 

5.2.4 Adoption of Interim Domain 

In contrast to directly transforming the source edges to target results, the proposed 

GAN framework first converts conditional edges to a refined interim domain. The 

interim domain reconstructs the incomplete conditional features using a U-net to get 

the possible missing information. Mode collapse and generative distortion problems 

may happen in the interim domain when incomplete edges are transferred to a refined 

image. Nevertheless, the translation at this stage is useful for facial image refining 

because the incomplete edges in the source domain are further processed. The refined 

images provide clearer accessorial information than the original incomplete edges, even 

if they are converted into simplified samples when mode collapse happens. By trial and 

error, regional features as reference images can efficiently reduce distortions and 

mismatches of generative features based on very sparse edges. Therefore, the refined 
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images are constructed by combining binarised images and segmentation masks, as 

shown in Figure 5.6. In short, the main function of the interim domain is to refine the 

original data distribution in the source domain for strengthening the incomplete 

conditional edge features. 

 

  

Figure 5.6: Inference results in translating sparse edges to labelled segmentation 

masks with 50 random training images. (a) The outputs can roughly resume the 

missing facial components from incomplete layouts when given abstract inputs. (b) 

The red boxes indicate the corresponding indefinite contours in the original inputs and 

generative masks. 

 

Figure 5.6 (a) shows some inference results of using uncertain edges to generate 

segmentation masks from 50 paired training images. To handle the incomplete edges 

as the conditional inputs, facial components can be reconstructed by a U-net in an 

interim domain. The experimental results show that the proposed condition-based GAN 

can learn from only 50 segmentation masks to generate more integral face components, 

such as nose, eyebrow, hair and mouth. Figure 5.6 (b) illustrates examples where 

incorrect eye shapes are obtained, as shown in the red boxes, which would aggravate 

distortions in the target domain. What is worse, this situation is hard to be solved 

because it is difficult to increase the number of diverse samples based on a small dataset 

as GANs generally require more diverse data to be trained well. To resolve this problem, 
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additional binary images with clear regional information are additionally obtained 

through image pre-processing, which can enhance the contours and reduce uncertain 

distortions in facial components, as shown in Figure 5.5. In contrast to imprecisely 

depicting facial components in segmentation masks, binary images processed by 

appropriate thresholding can create more correct contours than segmentation masks and 

thus alleviate the problems caused by very limited training data. 

 

 

Figure 5.7: Inference results in translating sparse edges to binary regional images with 

50 random training images. (a) The outputs integrate discontinued contours when 

given sparse inputs. (b) The outputs get rid of ‘bogus’ edges when given very dense 

inputs. 

 

Figure 5.7 shows that binary images can handle the uncertain edge density in the 

inference phase to enhance crucial edge information with regional distributions. 

Binarised regional features can be extracted by the corresponding edge distribution 

from a small training dataset, which can not only integrate crucial contours, as shown 

in Figure 5.7 (a), but also get rid of meaningless noise if various untrained edges may 

be unrecognisable in the inference phase, as shown in Figure 5.7 (b). It is noteworthy 

that the results presented in Figure 5.6 and Figure 5.7 can be regarded as those from an 

ablation study, which shows that removing the component of combining binarised 

regional features in the proposed method will significantly deteriorate the performance 
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of the proposed condition-based GAN. 

5.2.5 Model Training and Loss Functions 

For training the proposed GAN framework, it is difficult to find a balance between 

the generator and discriminator, especially when there are very limited training data. 

Using an appropriate loss function is critical to ensure the good quality of the generated 

images. Firstly, to distinguish real images from fake ones, the following basic loss 

function is used between the two convolutional neural networks of generator and 

discriminator, which is treated as a conditional adversarial loss. 

 

 

    ℒ𝑎𝑑𝑣(𝐷, 𝐺) =   𝔼𝐼,𝑆[𝑙𝑜𝑔 𝐷(𝑆|𝐼)]  

+  𝔼𝐼,𝐼′[𝑙𝑜𝑔(1 − 𝐷(𝐼, 𝐺(𝐼′|𝐼)))] 
(5.1) 

 

where the function employs the expected value 𝔼, the generator G, the discriminator D, 

the source image S, the conditional edge feature input I, and the generated image I’. In 

the first U-net, S should contain a mixture of pixels of binary image, segmentation mask 

and ground truth to distinguish between real refined image and fake generated image. 

In the second U-net, S needs to be set as the ground truth only. 

Secondly, inspired by the pix2pix GAN model, in which the L1 normalisation was 

used for achieving more realistic results than using L2 normalisation [166], the L1 

normalisation is adopted as feature matching loss in the synthesised fake images. Since 

the paired images are used in the training phase, the L1 distance between the generated 

image (I’) and source image (S) can be defined as follows: 

 

 
ℒ𝐿1(𝐺) = 𝔼𝑆,𝐼,𝐼′[‖𝑆 − 𝐺(′|𝐼)‖1] (5.2) 

 

Finally, the main purpose of the loss function is to help the generator to synthesise 

photorealistic images by miniating the loss value with limited input conditional images. 

The overall loss function is defined as: 

 

 
min
𝐺
max
𝐷
ℒ𝑎𝑑𝑣(𝐷, 𝐺) + 𝛼ℒ𝐿1(𝐺) (5.3) 

 

where 𝛼 is the weight value of the loss function. A larger value of 𝛼 encourages the 

generator to synthesise images less blurry with L1 normalisation. 
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The second U-net uses the refined images and original sparse edges as inputs to 

generate photorealistic images with the same loss function but different training 

parameters and freezing weights. Another difference between these two networks is the 

source image S, which should be either the refined images or the ground truth images. 

5.3 Experiments with the Proposed GAN Framework 

5.3.1 Data Preparation 

A small set of images, 50 training images randomly chosen from the dataset of 

CelebA-HD [208], formed the training samples in our experiments. CelebA-HD 

includes 30,000 high-resolution celebrity facial images. All the images were resized to 

256 × 256 in our proposed model. CelebA Mask-HQ [209] is a face image dataset 

consisting of 30,000 high-resolution face images of size 512 × 512 and 19 mask classes, 

including skin, nose, eyes, eyebrows, ears, mouth, lip, hair, hat, eyeglass, earring, 

necklace, neck, cloth and so on. All the images in CelebA Mask-HQ were selected from 

the CelebA-HD dataset, and each image has segmentation masks of facial attributes 

corresponding to CelebA-HD. 

Since different numbers of segmentation masks were used to compare the 

performance of different methods with different numbers of training samples, the 

CelebA Mask-HQ was used as the standard segmentation mask of reference images. If 

a very small training dataset is used, it would be fine to manually generate the 

segmentation masks by image pre-processing. In our experiments, the segmentation 

masks from CelebA Mask-HQ were used as the common reference images of the 

corresponding training images. 

5.3.2 Implementation Details 

The hyperparameter values were determined through trial and error because 

finding a balance between the generator and discriminator is still very challenging in 

GAN training, and optimisation with the hyperparameters needs to take plenty of time 

and computation capacities to affirm them. Therefore, the following parameters were 

the preliminary settings for training the proposed condition-based GAN framework: 

The Adam optimiser [147] was used to minimise the loss function with the initial 

learning rate set to 0.0002 and the momentum 0.5. The weight parameter α in the loss 
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function was set to 100. All the experiments were conducted on a desktop computer 

with NVIDIA GeForce RTX 2080 GPU, Intel Core i7-6700 (3.4 GHz) processor, and 

16G RAM. 

 

 

Figure 5.8: Comparison of different edge detectors: (a) results of Canny. (b) results of 

Sobel. (c) results of Laplace. (d) results of Gradient. 

 

Incomplete edges or hand-drawn sketches usually represent abstract concepts of 

conditional inputs, which are beneficial for generating diverse results for data 

augmentation, but it is difficult for condition-based GANs to generate photorealistic 

images with limited conditional inputs based on small training data. In our experiments, 

edges extracted by the Canny edge detector [210] can produce simple and continuous 

lines from realistic images by setting intensity gradient values. The edges produced by 

the Canny edge detector are more similar to hand-drawn sketches than those by other 

commonly used edge detectors, as shown in Figure 5.8. Two intensity gradient 

magnitudes are used in the Canny edge detector as a parameter to control the edge 

density, which is determined by a threshold value in our experiments. The high-

intensity gradient magnitude is set as a variable determined by the maximal threshold 
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value, and the low-intensity gradient magnitude of the low threshold value is 40% of 

the high threshold value. The threshold ratio in the Canny edge detector was 

appropriately chosen through trial and error in our experiment. The red box in Figure 

5.8 shows the edges extracted with the threshold ratio setups, which contain clear 

information about facial components and meet the requirement of good conditional 

inputs without unexpected noise. 

 

    

Figure 5.9: Inference results for refined images and final outputs. The red boxes 

represent blending areas in the refined region, which can be reflected by the 

brightness in the generated image outputs. 

 

For the design of the interim domain, the pixel values of the refined image were 

set by the following mixture ratios: 25% from the binary image, 25% from the 

segmentation mask, and 50% from the original image. Figure 5.9 shows the inference 

results of the refined images and the corresponding generated image outputs. The red 

boxes represent blending areas in the masks, binary images and texture features 

between the refined images and output images, which reflect the brightness changes in 

the generated images. The overlapped regions are visually darker and gloomier 

compared to other regions. Therefore, these blending areas from different reference 
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images conduct transitions in brightness and lightness to synthesise realistic results. 

With the interim domain, the proposed condition-based GAN can efficiently deal with 

both overlapped and non-overlapped mappings between segmentation masks and 

binary regions, which lead to more photorealistic outputs. 

Image blending with different styles is beneficial to diversely augment images. In 

the proposed condition-based GAN framework, generated images were controlled by 

conditional edge inputs. Exchanging or modifying edge features is an easy way to 

generate different images that increase data diversity and expand original facial features. 

Figure 5.10 shows an example to generate images with a small training dataset, in which 

the facial components are processed by exchanging edge features in conditional inputs. 

It can be seen that the generated images can preserve facial attributes with the swapped 

conditional edges and then reconstruct the incomplete or undefined input edges into 

clear as well as diverse results. 

 

 

Figure 5.10: Synthesis results of exchanging conditional facial edges to generate 

diverse styles of facial images. 
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5.4 Results and Performance Evaluation 

In this chapter, the proposed condition-based GAN framework was used to 

generate images with a different number of training images in the target domain and 

various settings of conditional edge inputs in the source domain. To demonstrate the 

performance of augmented data using the proposed method, some qualitative and 

quantitative approaches, including the visual inspection, FID score, KID score, human 

perception and image classification, are conducted as the metrics to evaluate the 

synthetic performance. In addition, state-of-the-art edge-to-image translation methods 

were used to compare the generative quality. 

5.4.1 Diversity in Facial Image Augmentation Using the 

Proposed Condition-based GAN 

It is clear that the threshold ratio values processed by the Canny edge detector 

design the density level of the extracted edges, in which the conditional inputs would 

affect the quality of images generated by the proposed condition-based GAN. It is 

desired that the condition-based GAN can generate diverse images with the change of 

edge density levels in the conditional input but be robust to the quality of the generated 

images. Figure 5.11 shows the inference results with different density levels in the 

conditional edges, which were not included in the training phase except for those in the 

red box. It can be seen that the generated images are slightly different with different 

density levels in the conditional edge inputs, and the distortions are small even when 

the GANs were trained using a small dataset of 50 training images. The generated 

images are more photorealistic if the conditional input contains less noise or unidentical 

edges, which correspond to those generated with the edge density level chosen in the 

training phase, as shown in the red box. Fortunately, with the change of density levels 

of the conditional edge inputs, the quality of the generated images is prevented from 

considerable deterioration because the refined images can integrally represent the facial 

features at an acceptable level based on a small dataset. Consequently, as the refined 

images are inputted to the second U-net in the second stage, the proposed interim 

domain plays an important role in reducing the distortions of the generative facial 

attributes. 
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Figure 5.11: Inference results in the source, interim, and target domains respectively. 

The various density levels in the conditional inputs are not in the training phase 

except the one in the red box generated by the Canny edge detector with the threshold 

value of 0.4. The results are from GANs trained using 50 images only. 
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Figure 5.12: Examples of facial image augmentation results using 50 training images, 

with parts of input edges modified for introducing diversity to augment each training 

image with desirable facial features. 
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Figure 5.12 shows examples of facial image augmentation results using 50 training 

images to train the proposed condition-based GAN framework. Diverse facial images 

can be generated from each training image, in which the extracted edges are modified 

for desirable facial features as new conditional inputs. The modifications to the 

extracted edges include adding or deleting parts of the edges or changing facial 

expressions or directions, as shown in Figure 5.12. It can be seen that the image data 

augmentation results using the proposed condition-based GAN are more diverse than 

traditional augmentation methods, and the generated images are of good quality due to 

the use of the interim domain. For data augmentation purposes, deliberately modified 

edges as the conditional inputs make the proposed condition-based GAN framework 

able to boost the data diversity even with a small available set of training images. 

 

 

Figure 5.13: Examples of facial image augmentation results using 50 training images, 

with face components and hairstyles in different training images swapped in the edges 

as conditional inputs to generate diverse facial images. 



124 

 

Figure 5.14: Inference results shown by images in the source, refined, and target 

domains respectively. The conditional inputs are hand-drawn sketches showing 

different facial expressions. The proposed GAN was trained using 50 training images. 
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Figure 5.13 shows some other augmentation examples of facial images using 50 

training images to train the proposed condition-based GAN. The edge features are 

swapped from multiple training images as the new conditional inputs. The red boxes in 

the figure indicate the training images, and the other images in a row are generated by 

the proposed condition-based GAN, which shows the swapped facial features 

(including eyes, eyebrows, nose and mouth) and corresponding styles. It can be 

concluded that the proposed condition-based GAN, on the one hand, can efficiently 

keep the generated facial images of good quality. On the other hand, for data 

augmentation purposes, exchanging multiple edges as the new conditional images can 

improve the generative diversity with a small number of training images.  

In general, it is difficult for one-to-one image translation methods to generate high-

quality images if the conditional inputs do not directly correspond to features in the 

training images, such as untrained hand-drawn sketches. In previous experiments, it has 

been demonstrated that the interim domain is helpful to generate high-quality as well 

as diverse images with various edge density levels. In our experiments, hand-drawn 

sketches can be also used as the conditional inputs for the proposed condition-based 

GAN to generate photorealistic facial images with customer-designed edge features. 

Figure 5.14 shows the inference results with hand-drawn sketches as the conditional 

inputs, with the proposed condition-based GAN trained using a dataset of 50 training 

images. It is obvious when inputting unidentical or incomplete facial contours of the 

conditional inputs, the refined images generated by the first U-net in the proposed 

condition-based GAN structure are responsible for not only reducing the distortions of 

generated images but keeping the diverse facial attributes introduced by the hand-drawn 

sketches. 

5.4.2 Qualitative Comparison 

To evaluate the quality of synthetic results, the images generated by the proposed 

condition-based GAN were compared with those generated by the state-of-the-art edge-

to-image translation methods, including pix2pix [166] and pix2pixHD [167], by 

inputting the same untrained edge conditions and in terms how the generated images 

are comparable to the ground truth images. Figure 5.15 shows a comparison of some 

representative images generated respectively by the three condition-based GANs, 

trained with the same small dataset of 50 training images. The sparse edges as 

conditional inputs were tested. The results in Figure 5.15 demonstrate that the proposed 

method can generate more photorealistic facial images with fewer distortions than 

pix2pix and pix2pixHD when the GANs were trained by a small number of training 
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images. 

 

 

Figure 5.15: Inference results generated with sparse edge inputs (the first row), in 

comparison with those obtained from the state-of-the-art condition-based GANs. The 

images were generated respectively by the three GANs for comparison, trained using 

the same small dataset of 50 training images. 

5.4.3 Quantitative Comparison 

For data augmentation purposes, the proposed GAN model aims to generate 

photorealistic facial images and mitigate the distortions with very limited conditional 

features and a small set of training images. In this section, a series of evaluation 

experiments are designed to quantitatively evaluate the impacts on generated images, 

including the conditional edges, model architecture, number of training samples, human 

perception, and image classification performance. The setting detail and experimental 

result are described as follows.   
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5.4.3.1 Evaluation of the Influence of Conditional Edges 

The quality of conditional edges make a huge influence on the generative results. 

Since features generated by the proposed GAN model should refer to the inputting 

conditions correspondingly, having clear and easily distinguished conditional edges can 

strengthen the generative quality. For influence evaluation on various conditional edges, 

the same 50 training images as the training data were respectively conducted with two 

setting types of edge density levels: one threshold value was 0.4, and the other threshold 

values were 0.2, 0.4 and 0.6. A set of 1,000 validation images with different types of 

edge density were used as the validation data for each conditional edge density. To 

comprehensively compare the impacts on different edge densities, the 11 types of edges 

density in the source domain, including the threshold value of 0.01, 0.05, 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, were used to analyse the effects between the edge density 

in the source domain and synthetic quality in the target domain. Figure 5.16 illustrates 

samples of the conditional edges produced by the Canny edge extractor with different 

used threshold values. 

 

 

Figure 5.16: Samples of different threshold values using the Canny edge extractor. 

 

For quantitatively comparing the performance of images generated by different 

conditional edges, FID and KID scores were adopted to evaluate the realistic scales of 

the generated images in this experiment. FID is widely used to evaluate the visual 

quality of generated images, which calculates the Wasserstein distance between the 

generated images and the corresponding ground truth images. Similar to FID, KID 

scores are based on an unbiased estimator with a cubic kernel. Lower FID and KID 

scores represent a better match between the generated images and the corresponding 
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ground truth images. 

To evaluate the effectiveness of the generated quality produced by the proposed 

condition-based GAN structure, the validation data conducts the comprehensive 

conditional edges, which are extracted by the Canny edge detector with various 

threshold values. Each threshold value contains the same 1,000 validation images as 

the ground truth to create diverse edge conditions, and the generated images are 

compared with the ground truth for calculating the FID and KID scores. On one side, 

in the training phase, two types of edge thresholds were used as the training data: 1) 

Firstly, the training edge type was threshold value = 0.4 in the source domain along 

with 50 training images in the target domain. Secondly, three input settings with 

threshold values = 0.2, 0.4 and 0.6 were conducted with the same number of 50 training 

samples. 2) On the other side, in the inference phase, the comprehensive data of 11 

different threshold values (0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) were 

set to validate the performance of synthetic reality. Figure 5.17 separately shows the 

FID and KID scores of inference results at each threshold value. 

 

 

Figure 5.17: FID and KID scores with different levels of input edge density using the 

proposed model. One input type (high threshold = 0.4) and three input types (high 

threshold = 0.2, 0.4, 0.6) in the source domain were used during training with a small 

training dataset of 50 images. The FID and KID scores were evaluated based on the 

same 1,000 inference images for each edge density level from 0.01 to 0.9. 

 

According to the experimental results shown in Figure 5.17, three conclusions can 

be made: 1) Firstly, compared to training with only one conditional type, training with 

three types of conditional edge density levels can achieve more robust performance 

than one type for reducing the negative effects on the uncertainty of inputting edges 

when various edge density levels are used as the validation data. 2) Secondly, in terms 

of the lowest FID and KID values of the two different training conditional types, both 

of the best generative qualities almost overlap at the threshold value of 0.4, which also 
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correspond to the training threshold value of conditional edge density. This overlapping 

phenomenon means that the edge densities for training the proposed model are a critical 

parameter to achieving good inference performance. In other words, good realistic 

results can be acquired when inputting edges are close to training conditional density. 

3) Finally, the best performance of inference results among the edge inputs is between 

the threshold value of 0.3 to 0.5, and the ideal conditional edge setting is very close to 

the threshold value of 0.4, which value is also similar to the density used in the training. 

Compared with the other two threshold values of 0.2 and 0.6 also used to train the 

proposed model, the best realistic results appears at the training value of 0.4 rather than 

0.2 or 0.6. It indicates choosing clear edges and appropriate density levels to form the 

conditional data in the source domain are key factors for the proposed model to generate 

photorealistic synthetic results. 

5.4.3.2 Evaluation of the Usefulness of Interim Domain 

In this experiment, the use of the interim domain in our proposed double translation 

method with two U-nets was compared to a directive translation method with a single 

U-net. Figure 5.18 and Figure 5.19 present the comparative results between the single 

translation method and our proposed GAN model by using the interim domain. 

Followed with previous experiments, the same parameters of the edge densities in the 

source domain were continuously conducted as the default training data and validation 

data to evaluate the inference performance. The proposed model and the single 

translation model were compared under the same training parameters and validation 

data. Figure 5.18 shows the FID and KID values with 1 type of edge setting of the 

threshold = 0.4 between the single translation method and ours, and Figure 5.19 

demonstrates the FID and KID values with 3 types of edge settings of threshold = 0.2, 

0.4 and 0.6. 

In Figure 5.18 and Figure 5.19, it can be found from the experimental results that 

the proposed GAN framework with the interim domain has a significant influence on 

generative reality, and two major points can be concluded: 1) Firstly, our proposed 

model with the interim domain can improve the synthetic quality with a flatter curve 

and lower values on KID and FID scores, which significantly mitigate the generative 

distortions compared to the single translation method. 2) In addition, according to the 

generative performance, the proposed model with double translation is more robust than 

the U-net to deal with the deficiency of the untrained edge densities when extremely 

sparse and dense edges away from the training densities are employed. For instance, 

referring to the generative quality in the threshold value of 0.01 and 0.9, the inference 

results generated by the proposed model outperform the directive translation method. 
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Consequently, based on the overall experimental results, the proposed GAN model 

achieves lower FID and KID values than the single translation model of U-net, which 

proves the use of an interim domain in the proposed condition-based GAN can not only 

reduce distortions caused by incomplete conditional edges but also improve the realistic 

quality of the generated images when a small number of images are involved in training. 

 

 

Figure 5.18: FID and KID scores of double U-nets with refined domain and single U-

net with one input type (high threshold = 0.4) in the source domain, where a small 

training dataset of 50 images was used during training. The FID and KID scores were 

calculated based on the same 1,000 inference images at different edge density levels. 

 

 

Figure 5.19: FID and KID scores of double U-nets with refined domain and single U-

net with three input types (high threshold = 0.2, 0.4, 0.6) in the source domain, where 

a small training dataset of 50 images was used during training. The FID and KID 

scores were calculated based on the same 1,000 inference images at different edge 

density levels. 
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5.4.3.3 Evaluation of the Impact of the Number of Training Samples 

The proposed model aims to generate photorealistic facial images using condition-

based GANs trained with a small set of training images for data augmentation. To 

evaluate the effects on the number of training images and compare the generative 

quality of our proposed condition-based GAN with pix2pix and pix2pixHD, different 

numbers of training images (25, 50, 100, and 500) were used to train each of the three 

condition-based GANs separately. Moreover, to demonstrate the effects of different 

conditional edge density levels, both sparse edges (threshold ratio = 0.4) and dense 

edges (threshold ratio = 0.2) were used to generate 1,000 images by each trained 

condition-based GAN. The FID and KID scores of the images generated by the three 

condition-based GANs were calculated respectively. 

 

 

Figure 5.20: Changes in FID scores (first row) and KID scores (second row) with a 

different number of training images. Comparison among three edge-to-image 

translation methods with sparse and dense edge inputs respectively: pix2pix, 

pix2pixHD and ours. 
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Figure 5.20 shows the changes in FID and KID scores with the different numbers 

of training images, from which the following three points can be made: 1) The proposed 

condition-based GAN achieves lower FID and KID scores than pix2pix and pix2pixHD 

when trained with the same number of training images. 2) Dense conditional edges 

achieve lower KID and FID scores than sparse edges, but the diversity in the generated 

images may be constrained. 3) With the increase in the number of training images, the 

advantage of the proposed method over the existing methods becomes less obvious. 

This tendency indicates that the proposed condition-based GAN framework is very 

effective when it is trained with a small number of training samples, and its performance 

would approach that of the existing methods when the number of training samples 

becomes relatively large. 

5.4.3.4 Evaluation by Human Perception 

To further evaluate the proposed method, randomly selected sparse edges were 

used to generate images in the inference phase by the three methods: pix2pix, 

pix2pixHD and ours. In our analysis, the method of pairwise comparison (also known 

as paired comparison analysis) is adopted to evaluate the generative quality between 

ours and different competing models, in which the voters submit their preference by 

choosing from many paired options, and the total percentage is calculated to represent 

the relative importance between the compared entities. In this experiment, the 

generated images were arranged randomly in pairs, ours vs. pix2pix, or ours vs. 

pix2pixHD, and presented together with the corresponding ground truth images to 

human participants. The participants were asked to choose which image in each pair is 

more photorealistic. Google Forms were used for this evaluation with 100 pairs of 

generated images, where the participants were required to select a better one between 

the paired images visually and complete the task with 100 image pairs within 15 

minutes. Both postgraduate and undergraduate students, aged from 18 to 28, in the 

School of Computer Science and Electronic Engineering (CSEE) at Essex University, 

were invited to take part in this evaluation, and 112 effective responses were received. 

Based on these received responses, the percentage of preference for the generated 

images was calculated in terms of their photorealistic quality. Table 5.1 shows the 

results of the evaluation by human perception, which indicate that 86% of the 

participants preferred the images generated by our method over those generated by 

pix2pix, and 78% preferred images generated by our method over those generated by 

pix2pixHD. 
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Table 5.1: Results from user preference study. The percentage indicates the users who 

favour the results of our proposed method over the competing method. 

 Ours vs Pix2pix Ours vs Pix2pixHD 

Preference 86 % 78 % 

   

5.4.3.5 Evaluation by Balanced Image Classification 

According to the results shown in the previous section, the images generated by 

the proposed model achieve high preference in human perception. To further evaluate 

the augmentation performance of adding these synthetic images into original datasets 

as the newly augmented dataset, an image classification task as the evaluation metric 

was designed in this experiment, where gender recognition based on two classes (male 

and female) was conducted for the image classification task. A different number of 

training images per class were randomly chosen as the small training dataset and these 

chosen images were also used as the training samples in the proposed model. For 

instance, if there are 15 images in each class are used for image classification tasks, the 

same 15 images in each class are the training samples for the proposed model to 

generate many diverse images, and the generated images will be added back to the 

original 15 images as the new augmented datasets. All the validation data were taken 

from the CelebA dataset, and each class used 2,000 images as the validation data to 

calculate the validation accuracy in image classification. The methods of transfer 

learning were employed to access whether the augmented images can improve the 

performance of image classification. Four convolutional neural networks (CNNs), 

including AlexNet, GoogLeNet, VGGNet and ResNet, were taken as the classifier of 

transfer learning methods. In particular, the same input edges of conditional features 

were commonly used in both male and female classes, and different numbers of 

augmented images, including 50, 100, 500 and 1,000 synthetic images were added to 

the original training data for evaluating the validation accuracies of image classification. 

Figure 5.21 illustrates some inference samples from the same input conditional data 

and the corresponding synthetic results in the male and female classes separately. All 

the results were generated from 15 training images used for data augmentation. 

Additionally, Table 5.2 shows the validation accuracies of CNNs, where a different 

number of original images and augmented images per class are used. The same number 

of augmented images, including 50, 100, 500 and 1,000 images, were added to both 

female and male classes. 
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Figure 5.21: Samples of inference results (second and third row) generated from the 

classes of male and female separately (bottom row), where the results are generated 

with 15 training images by inputting the same sparse edges (top row). 

 

As seen in Table 5.2, besides the conclusion that the augmented data generated by 

the proposed model can efficiently promote the validation accuracies in a gender 

classification task, additional conclusions can be obtained from the experimental results: 

Firstly, as the number of augmented images increased by 50 to 100 per class, the 

validation accuracies are promoted compared to those without data augmentation. 

Secondly, when the number of augmented images sets from 100 to 500, it is the 

preferred data amount of synthetic images to efficiently promote classification 

performance. Based on the experimental results of adding 100 to 500 augmented images, 

the validation accuracies, shown in Table 5.2, generally stays at a relatively stable level. 

Finally, the enhancement of validation accuracies becomes unobvious in most cases 

when the number of augmented images is added by more than 500 synthetic images. 

The main reason for this situation is that the CNNs have already learned sufficient 

information from the augmented features. If no extra useful representations or new data 
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can be discovered, no significant improvement will be obtained despite more 

augmented images being added to the original data. Consequently, to find a balance 

between performance enhancement and computing efficiency, having the appropriate 

number of augmented images generated by the proposed model can not only boost the 

classification accuracies but also reduce the training cost to discover an optimisation. 

 

Table 5.2: Validation accuracies of CNNs trained with different numbers of original 

images and augmented images per class. 

No. of 
Training 
Images 

per Class 

No. of 
Augmented 

Images 
per Class 

GoogLeNet AlexNet VGGNet ResNet 

5 

0 76.05% 71.68% 74.61% 73.35% 

50 88.07% 78.03% 83.63% 80.97% 

100 90.16% 81.35% 85.35% 89.63% 

500 91.52% 87.47% 83.99% 87.72% 

1,000 91.40% 87.58% 90.94% 80.49% 

10 

0 86.18% 78.69% 74.36% 80.46% 

50 87.59% 85.49% 90.64% 89.64% 

100 91.45% 87.61% 74.95% 91.27% 

500 91.24% 86.60% 91.49% 90.10% 

1,000 93.07% 89.96% 82.08% 91.38% 

15 

0 88.09% 78.87% 84.82% 85.90% 

50 90.65% 79.96% 87.14% 87.75% 

100 91.76% 82.63% 86.47% 91.87% 

500 91.86% 88.84% 89.97% 91.36% 

1,000 92.97% 88.60% 90.16% 92.35% 

 

5.4.3.6 Evaluation by Imbalanced Image Classification 

In most medical diagnosis cases, the class imbalance is a common challenge for 

deep networks to achieve good classification performance. In this section, to evaluate 
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the influence of the proposed GAN model on imbalanced image classification, a 

reduced magnetic resonance imaging (MRI) dataset [211], [212] was used as an 

imbalanced dataset, and the proposed GAN model was applied to generate augmented 

images from a small number of training images in the minority class for comparing the 

classification performance with and without using augmented image data for training 

deep neural networks. 

In the reduced MRI dataset, two classes, normal and abnormal, were adopted in 

our experiment. To create training datasets with different imbalance ratios, 20 images 

were randomly picked from the abnormal class whilst different numbers of normal 

images were randomly picked, with 20, 100, 300, and 500 tested separately. The 

validation dataset consists of 1500 images per class, which are different from any 

picked training samples. Transfer learning was conducted with training datasets of 

different imbalance ratios respectively to train four CNNS: AlexNet, GoogLeNet, 

VGGNet and ResNet. The validation accuracies of the 4 CNNs trained by datasets of 

different imbalance ratios are shown in Table 5.3, where the validation accuracies are 

values averaged over the 10 best classification results to make sure that the obtained 

validation accuracies were close to the ideal fitting in real data distribution for 

mitigating the overfitting problem. It can be seen from the experimental results that 

classification performance drops as the imbalance ratio increases. 

 

Table 5.3: Validation accuracies of CNNs trained with different numbers of normal 

images in the imbalanced training dataset. (Unit: %) 

No. of training images  

(abnormal/ normal) 
AlexNet GoogLeNet VGGNet ResNet Avg. 

20/20 67.39 69.42 72.51 71.95 70.32 

20/100 55.27 57.96 57.60 61.31 58.04 

20/300 52.93 56.13 53.87 54.22 54.29 

20/500 50.85 54.61 51.64 53.26 52.59 

 

A further experiment using the proposed GAN models for image augmentation to 

enhance the classification performance of CNNs was conducted using the imbalanced 

training dataset with 20 abnormal and 500 normal images, based on which the CNNs 

achieved an average accuracy of 52.59% only without using augmented data. 
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The training dataset for the proposed GAN model consists of 20 images in the 

abnormal class containing brain tumour features, and additional 20 mask images in the 

interim domain were generated from the training data to specify the tumour sizes and 

locations. The edges as conditional input were extracted from normal images. The 

proposed GAN model can learn the mapping relationship between the extracted edges 

and the real images with tumour features, which makes it possible to transfer the edges 

extracted from the normal class into many augmented images containing tumour 

features and thus increases the number of images in the minority class. This is similar 

to oversampling an imbalanced dataset, leading to a balanced dataset for training CNNs 

for brain tumour detection. Figure 5.22 shows some examples of the inference results 

from the trained GAN, with normal images, extracted edges, refined images and 

augmented images in comparison. 

 

 

Figure 5.22: Samples of inference results (bottom row) from the proposed GAN, 

trained by 20 images in the abnormal class, where the input edges (second row) are 

extracted from the normal images (top row).  

 

The validation accuracies of CNNs trained with and without using augmented 

images are demonstrated in Table 5.4. Similarly, as in Table 5.3, the validation 

accuracies are values averaged over the 10 best classification results of each CNN. It 

can be observed that the validation accuracies can be significantly improved when the 

augmented images generated by the proposed GAN model are used to enlarge the 
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amount of training data and the diversity in the minority class. 

 

Table 5.4: Comparison of validation accuracies of CNNs trained with and without 

using augmented images. (Unit: %) 

No. of training images  

(abnormal/ normal) 
AlexNet GoogLeNet VGGNet ResNet Avg. 

20/500 50.85 54.61 51.64 53.26 52.59 

520 (20 & GAN) /500 62.32 61.77 65.81 69.26 64.79 

 

 

 

Figure 5.23: Comparison of confusion matrices of the GoogLeNet trained with and 

without using augmented images: The left column shows the results without using 

augmented images and the right column shows the results using augmented images. 

 

For imbalanced image classification, accuracy may not be a good performance 

metric. As GoogLeNet performed the worst in this experiment, it was further analysed 

by the confusion matrix and other performance metrics. Figure 5.23 respectively 

illustrates the confusion matrices of the GoogLeNet trained with and without using 

augmented images. Although the performance improvement by using augmented 

images for training is significant, it can be seen that the false positive rates are quite 

high, which could be due to overfitting as a result of using a very small training dataset. 

To further evaluate the effectiveness of using image augmentation to improve 

classification performance with imbalanced original datasets, accuracy, precision, 

recall and F1 were calculated based on the confusion matrix as follows: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5.4) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5.5) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.6) 

 
𝐹1 = 2 × 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5.7) 

 

where TP, FP, TN and FN represent true positive, false positive, true negative and false 

negative. 

 

 

Figure 5.24: Comparison of the accuracy, precision, recall and F1 of GoogLeNet 

trained with and without using augmented images. 

 

Figure 5.24 shows the accuracy, precision, recall and F1 values of the GoogLeNet 

trained with and without using augmented images for comparison. As shown in the 

figure, the use of augmented images generated by the proposed GAN model 

consistently improved the accuracy, precision, recall and F1 of the GoogLeNet for 

imbalanced image classification. 
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It can be seen from the above preliminary results that the classification 

performance of CNNs can be significantly improved by using augmented images 

generated by the proposed GAN model. However, the classification performance is still 

quite poor with a high false negative rate. For practical applications, further 

investigation should be conducted with larger original training image datasets. 

5.5 Conclusion 

In this chapter, a novel GAN model using one-to-one mapping methods is proposed. 

The proposed model is designed to generate diverse as well as photorealistic augmented 

images from limited input features, including sparse edges in the source domain and a 

small number of training images in the target domain. Refined images in the interim 

domain, presented in Section 5.2, are used to improve the synthetic reality and reduce 

the distortions caused by training with sparse edges and limited samples. The 

experimental results, shown in Section 5.4, demonstrate that the proposed GAN model 

can not only outperform the state-of-the-art image-to-image translation methods but 

also accordingly improve the validation accuracies of CNNs for image classification. 

The proposed one-to-one image translation method makes it feasible for a learning-

based generative model to generate unblurring images from a small number of training 

samples, which would be beneficial to deal with problems in deep learning, such as 

scarcity of labelled data and imbalanced training data in real applications. To sum up, 

the proposed GAN model is advantageous in synthesising controllable, photorealistic 

and diverse augmented images from a small dataset, with promising applications in 

deep learning when a large number of training images are difficult to be collected. 
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Chapter 6 

Augmenting Small Facial Expression 

Training Dataset Using a Novel GAN Model 

Based on Many-to-many Image Mapping 

6.1 Introduction 

Facial expressions provide critical information about an individual’s physical and 

psychological status [213]. With the developments of deep learning and computer 

vision in recent years, facial expression recognition (FER) has played an important role 

in human-machine interfaces, especially in many realistic applications, such as mental 

detection, pain feeling, emotional understanding, human-machine communication, 

psychological analysis, and so on. However, it is a difficult task to collect a large 

number of expressional samples for training deep learning models with high 

performance [214]. Most publicly available facial expression datasets are constructed 

with limited facial expression sets, which generally contain insufficient representations 

for a deep learning model to learn effectively. 

It is nearly impossible to acquire perfect and comprehensive facial expression data 

since each person can have diverse emotional expressions with 44 action units (facial 

muscles) [215]. It is challenging for machine learning models to recognise facial 

expressions based on small training datasets [216]. For instance, “happiness” may be 

due to various levels of facial actions, such as smiling, laughing, yelling, pouting and 

so on. Data augmentation is one of the efficient ways to mitigate the problem of lacking 

labelled facial expression data. By increasing the diversity and amount of training data 

from a small set of well-defined facial expression images, data augmentation can 

improve the FER performance in real applications. 

GANs have been proven to have powerful capabilities for generating complex and 

high-quality synthetic images [217]. Nevertheless, it is hard for traditional GANs to 

generate photorealistic expressional images without sufficient labelled training data 

[218]. Generating realistic expressional images from a small number of training 

samples is not an easy task because with limited training samples there exists the 

overfitting problem in the discriminator, and thus the generator receives inadequate 

feedback on the quality of the generated images, which may also cause the problem of 

training collapse [219]. 
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The motivation of the research in this chapter is to enhance the FER performance 

by developing a new GAN model capable of generating good-quality images with 

diverse facial expressions from a small number of training samples to enlarge the 

diversity and amount of facial expression images as an augmented training dataset for 

deep learning models to learn more meaningful representations in FER. The proposed 

model is based on a many-to-many image translation method [220], which is 

empowered by discovering a wider mapping relationship between two different labelled 

image domains especially when the unpaired expressional attributes are difficult to be 

found using traditional CNN structures. Specifically, the proposed GAN model can 

learn representations from a very small number of training samples and identify the 

spatial difference between expressions and facial attributes from two domains. The 

spatial information is provided by a feature map mechanism, which is proposed to assist 

the proposed model in transferring expressions correctly. 

To demonstrate the effectiveness of the proposed GAN model for augmenting 

facial expression images, the augmented images are firstly evaluated with visual 

analysis and then applied to enhance the FER performance of convolutional neural 

networks (CNNs), including AlexNet, GoogLeNet, ResNet and VGGNet. The CNNs 

will be initially trained with a small number of original facial expression images in each 

emotional class, which are also used as the training data for the proposed GAN model 

to transfer neutral face images into different facial expression images. Due to the 

training restrictions, CNNs are the merely deep learning models to evaluate the 

performance of the generative models, even though many deep learning models were 

proposed in recent years, e.g., active appearance model (AAM), active shape model 

(ASM), manifold-based models, etc., which have been proved to reach remarkable 

results in FER applications [221]. For performance evaluation, classification accuracies 

of CNNs are preliminarily compared to identify the difference between performances 

with and without using the augmented images generated by the proposed model. 

Experimental results show that the proposed GAN model can effectively transfer 

neutral face images to images with different facial expressions and of high quality in 

terms of Fréchet inception distance (FID) [152] and kernel inception distance (KID) 

[153], and using these synthetic images as an augmented training dataset can 

significantly improve the FER accuracy of the CNNs even though a very small amount 

of original facial expression data is involved in training the proposed GAN for image 

data augmentation. The contributions of this chapter can be summarised as follows: 

• To the best of our knowledge, this is the first study on GANs based on 

many-to-many image translation for facial expression transfer by using a 

very small set of training samples. The proposed GAN model not only 

increases data diversity in generating images with different facial 
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expressions from neutral face images but also maintains critical 

characteristics of the neutral face images, which is particularly desirable for 

meeting the data augmentation requirements based on learning labelled 

image mapping relationships from a small number of training samples.  

• A novel feature map mechanism is introduced to enlarge the spatial view 

on expressional attributes, and a feature extractor is adopted in the proposed 

GAN model, which forwards the feature map information to the generator 

for synthetic diversity. Relying on the designed loss functions, the 

embedded feature map mechanism with an appropriate balance between the 

feature extractor and the discriminators is developed to generate desired 

facial expression images of high quality and good diversity from a very 

small set of training samples. 

• Experimental results have demonstrated the effectiveness of the proposed 

methods in enhancing FER performance. According to the FER results 

from four different CNNs and student’s t-test values, the use of augmented 

images can significantly improve the validation accuracy by more than 10% 

when only a small number of real images in each expressional class were 

used as training samples. 

6.2 Methods 

A novel many-to-many image translation method is introduced in this section. The 

image synthesis process relies on a cycle structure in the proposed GAN model. In 

contrast to the initial cycle structure in CycleGAN, the proposed model employs 

different network structures, mechanisms and loss functions to improve the learning 

efficiency from small FER datasets. The proposed model has the advantage of working 

with a small number of training samples due to the following reasons: 1) Firstly, for 

two different labelled domains, known as the source domain and target domain, the 

generator synthesises facial expressions without needing to use paired images. 2) The 

decoder specifically replaces expressional features with the extra region information 

provided by the proposed feature map mechanism. 3) The image synthesis process can 

recognise a larger range of mapping vision than traditional convolutional layers, which 

mitigates the generative uncertainty caused by a small training dataset. 

An overview of the proposed GAN model is shown in Figure 6.1. Two differently 

labelled real facial expression images (represented as X and Y) are allocated in the 

source domain and target domain respectively. The model is composed of five 

subnetworks, including two generators with the encoder and decoder structure, a feature 
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extractor and two discriminators. Four loss functions, including adversarial loss, cycle 

loss, perceptual loss and feature loss, are designed to separately work on different 

network components, as shown with the red dashed lines in Figure 6.1, and all are 

combined as the total loss function. The detail of each adopted loss function will be 

further discussed in Section 6.2.3. In the application phase, facial expression attributes 

should be transferred from the neutral face images in the source domain to new facial 

images with desired labelled attributes (or expressions) in the target domain. Contrasted 

to condition-based GANs, the images in the target domain here are equivalent to the 

conditional inputs. 

 

 

Figure 6.1: An overview of the proposed GAN model, which contains five 

subnetworks, including two generators with the encoder and decoder structure, a 

feature extractor and two discriminators. The proposed feature map mechanism is 

involved in both the encoder and feature extractor. 
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6.2.1 Subnetworks 

Since a GAN framework hardly generates new contents of facial expressions 

without new identities, transferring additional neutral face images into images with 

various facial expressions as a new augmented dataset is a beneficial way to increase 

the data diversity as well as data amount from a small facial expression dataset. The 

proposed GAN model aims to regionally enlarge the mapping relationships between the 

source domain and target domain to mitigate the uncertainty of facial expression 

attributes resulting from using a very small set of training samples. Two discriminators 

are involved to recognise the quality of synthetic images in two different domains, and 

generators transfer images from one domain to another. In addition, since training 

GANs with a small number of training samples easily leads to overfitting, the proposed 

GAN model utilises additional subnetworks, consisting of the encoders, decoders and 

a feature extractor, which provides additional perspectives in the image synthesis 

process, to mitigate the overfitting or over-optimisation problem caused by limited 

training features. The details of the subnetworks, feature map mechanism, and training 

formulations are described as follows. 

6.2.1.1 Generators 

The generators in the proposed GAN model are made up of two encoders and two 

decoders to create facial expression attributes by reconstructing expressions from the 

two domains. The generator network and related parameters are shown in Table 6.1. 

Due to the generator taking responsibility to translate facial features across two 

different domains, the encoder is trained to identify the attribute difference, and feature 

map information is used by the decoder to regionally reconstruct facial attributes. The 

encoder is composed of convolutional layers, residual layers and a feature map 

mechanism, and the decoder has corresponding but contrasted components of 

convolutional layers and residual layers as in the encoder. The proposed feature map 

mechanism is embedded in the encoder and provides the generator with more capacity 

to process data, which enables the model to modify facial expressions with semantic 

regions so that the decoder can synthesise new images with desired facial expressions. 

The detail of the proposed feature map mechanism will be described in Section 6.2.2. 

Instance normalisation is conducted in the normalisation layers of the generator for 

improving the performance of expression transferring. Instance normalisation was 

proposed by Ulyanov et al. in 2017 [222] and has been proven to significantly boost 

the normalisation in domain transfer compared to batch normalisation. Different from 
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batch normalisation, instance normalisation computes the spatial dimension 

independently with each channel, which is applied by unchanged test time. Instance 

normalisation has been widely used in image generation tasks, such as style 

transformation and image-to-image translation. Due to the powerful capacities of 

instance normalisation in domain transferring, the proposed generator adopts it to 

statistically exploit instance features whilst batch normalisation is usually affected by 

the parameter of a minimal batch value for statistical computations. 

Additionally, residual blocks are embedded in the generators and provide a strong 

capacity to recognise expressional data from different domains. The residual blocks are 

expected to help the generators to modify the expressional attributes as well as 

recognise facial features. Furthermore, since the proposed feature map mechanism 

provides important semantical information in image synthesis, the residual blocks can 

process the feature maps fed into the mechanism and then assist to decode the outputs 

from the feature map mechanism. To well recognise the expression attributes, four 

residual blocks are used as parts of the encoder-decoder structure in the image synthesis 

process. The residual block used in the generator network is shown in Figure 6.2. 

 

  

Figure 6.2: The residual block used in the proposed GAN model. 

 

6.2.1.2 Discriminators 

The two discriminators are designed to distinguish between real and fake images 

in separated domains during the training phase. New facial expression attributes can be 

functionally created to transfer facial expressions between two domains through a good 

balance between training the generator and discriminator. The feature map mechanism 

is also used in the discriminators. However, similar to traditional GANs, the two 

discriminators recognise the similarity between fake and real images in separate 

domains; the discriminator network and related parameters are shown in Table 6.2.  
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Table 6.1: The generator network and related parameters. 

Part Name Type Input Size Output Size 

Encoder 

(Convolutional 

Block) 

Conv. Layer 1 
Conv. 
Transposition 3 × 256 × 256 64 × 256 × 256 

Instance 
Normalisation 1 

Normalisation  64 × 256 × 256 64 × 256 × 256 

Leaky ReLU 1 Activation 64 × 256 × 256 64 × 256 × 256 

Conv. Layer 2 
Conv. 
Downsampling 64 × 256 × 256 128 × 128 × 128 

Instance 
Normalisation 2 

Normalisation  128 × 128 × 128 128 × 128 × 128 

Leaky ReLU 2 Activation 128 × 128 × 128 128 × 128 × 128 

Conv. Layer 3 
Conv. 
Downsampling 128 × 128 × 128 256 × 64 × 64 

Instance 
Normalisation 3 

Normalisation 256 × 64 × 64 256 × 64 × 64 

Leaky ReLU 3 Activation 256 × 64 × 64 256 × 64 × 64 

Encoder 

(Residual 

Block × 4) 

Residual Block 1-
4  

Residual Block 256 × 64 × 64 256 × 64 × 64 

Instance 
Normalisation 1-4 

Normalisation  256 × 64 × 64 256 × 64 × 64 

Leaky ReLU 1-4 Activation 256 × 64 × 64 256 × 64 × 64 

Encoder 

(Feature Map 

Mechanism) 

Max Pooling 1 Normalisation  256 × 64 × 64 256 × 32 × 32 

Fully-connected 
Layer 1 

Dense 256 × 32 × 32 256 × 1 × 1 

Average Pooling 1 Normalisation  256 × 64 × 64 256 × 32 × 32 

Fully-connected 
Layer 2 

Dense 256 × 32 × 32 256 × 1 × 1 

Concatenate 1 Inception  512 × 64 × 64 512 × 64 × 64 

Decoder 

(Residual 

Block × 4) 

Conv. Layer 1 
Conv. 
Transposition 512 × 64 × 64 256 × 64 × 64 

Residual Block 1-
4  

Residual Block 256 × 64 × 64 256 × 64 × 64 

Instance 
Normalisation 1-4 

Normalisation  256 × 64 × 64 256 × 64 × 64 

Leaky ReLU 1-4 Activation 256 × 64 × 64 256 × 64 × 64 

Decoder 

(Convolutional 

Block) 

Conv. Layer 1 
Conv. 
Upsampling 256 × 64 × 64 128 × 128 × 128 

Instance 
Normalisation 1 

Normalisation 128 × 128 × 128 128 × 128 × 128 

Leaky ReLU 1 Activation 128 × 128 × 128 128 × 128 × 128 

Conv. Layer 2 
Conv. 
Upsampling 128 × 128 × 128 64 × 256 × 256 

Instance 
Normalisation 2 

Normalisation  64 × 256 × 256 64 × 256 × 256 

Leaky ReLU 2 Activation 64 × 256 × 256 64 × 256 × 256 

Conv. Layer 3 
Conv. 
Transposition 64 × 256 × 256 3 × 256 × 256 

Tanh 1 Activation 3 × 256 × 256 3 × 256 × 256 
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Table 6.2: The discriminator network and related parameters. 

Name Type Input Size Output Size 

Conv. Layer 0 
Conv. 

Transposition 
3 × 256 × 256 64 × 128 × 128 

Leaky ReLU 0 Activation 64 × 128 × 128 64 × 128 × 128 

Conv. Layer 1 
Conv. 

Downsampling 
64 × 128 × 128 128 × 64 × 64 

Leaky ReLU 1 Activation 128 × 64 × 64 128 × 64 × 64 

Conv. Layer 2 
Conv. 

Downsampling 
128 × 64 × 64 256 × 32 × 32 

Leaky ReLU 2 Activation 256 × 32 × 32 256 × 32 × 32 

Conv. Layer 3 
Conv. 

Downsampling 
256 × 32 × 32 512 × 16 × 16 

Leaky ReLU 3 Activation 512 × 16 × 16 512 × 16 × 16 

Conv. Layer 4 
Conv. 

Downsampling 
512 × 16 × 16 1024 × 8 × 8 

Sigmoid 1 Classifier 1 1 

6.2.1.3 Feature Extractor 

The feature extractor, which is based on a convolutional network, is supposed to 

semantically extract specific expressional features from both the source domain and 

target domain. The feature extractor network and related parameters and shown in Table 

6.3. To promote the mapping relationships between two domains, a feature map 

mechanism is embedded in the feature extractor to enlarge the mapping vision. To 

control the synthetic process of expressional transfer, the feature extractor is trained to 

extract regional information from real expressional data. Due to unpaired images used 

as the translation conditions, it is very difficult to acquire precise mapping relationships 

from a small number of training samples. The feature extractor is designed to acquire 

additional expressional representations with attention maps, which can roughly identify 

the activation regions of expressional attributes from feature maps. In addition, a feature 

map mechanism is embedded in the feature extractor and proposed to enlarge the 

mapping relationships between two domains by providing critical spatial region 

information in the image synthesis process. Feature maps can be produced by the 

feature extractor, which also forwards the progressing information to the encoder 

during the training phase. Compared with convolutional layers, this proposed feature 

map mechanism in the feature extractor is to reduce the expression uncertainty in facial 
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image synthesis and successfully transfer facial expressions based on a small set of 

facial expression image samples, which will be further discussed in Section 6.2.2. 

 

Table 6.3: The feature extractor network and related parameters. 

Part Name Type Input Size Output Size 

Conv. 

Block 

Conv. Layer 0 
Conv. 
Transposition 3 × 256 × 256 64 × 256 × 256 

Leaky ReLU 0 Activation 64 × 256 × 256 64 × 256 × 256 

Conv. Layer 1 
Conv. 
Downsampling 64 × 256 × 256 128 × 128 × 128 

Leaky ReLU 1 Activation 128 × 128 × 128 128 × 128 × 128 

Conv. Layer 2 
Conv. 
Downsampling 256 × 128 × 128 256 × 64 × 64 

Leaky ReLU 2 Activation 256 × 64 × 64 256 × 64 × 64 

Feature 

Map 

Mechanism 

Max Pooling 1 Normalisation  256 × 64 × 64 256 × 32 × 32 

Fully-connected 
Layer 1 

Dense 256 × 32 × 32 256 × 1 × 1 

Average Pooling 
1 

Normalisation  256 × 64 × 64 256 × 32 × 32 

Fully-connected 
Layer 2 

Dense 256 × 32 × 32 256 × 1 × 1 

Concatenate 1 Inception  512 × 64 × 64 512 × 64 × 64 

Sigmoid 1 Classifier 1 1 

 

In contrast to the discriminator network for recognising real or fake data, the 

feature extractor is responsible for recognising differences in regional attributes to 

acquire geometric information of attention maps with a larger view. By an appropriate 

design of loss functions, a balance between the discriminators and feature extractor can 

be achieved, and the generator can synthesise photorealistic and desirable facial 

expression images in terms of data augmentation requirements. 

6.2.2 Feature Map Mechanism 

Feature maps are vectors of latent variables, which need to be extracted from the 

last convolutional layers of the encoder and feature extractor. Convolutionally acquired 

from input data consisting of images with different facial expressions of two domains, 

feature maps represent different attributes between two differently labelled expressions. 

In theory, convolutional features as feature maps are calculated based on small local 

neighbourhoods using filters (or kernels), which are difficult to receive a 
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comprehensive view through a small amount of training data, as the positions of facial 

attributes are always within a larger region than the perceptive fields of kernels. 

Based on the above concerns, a feature map mechanism is proposed, which is 

implemented by two subnetworks, including the feature extractor and encoder. The 

feature extractor is designed to automatically acquire the active regions from the real 

images of two domains and further pass the extracted information is passed to the 

encoder via adversarial learning, formulated as Ex∼Pdata [Genc(X)] = Ey∼Pdata [Genc(Y)], 

where Y is the real data in the target domain; X is the real data in the source domain; 

Genc is the output of the encoder. The outputs from the feature map mechanism are also 

the inputs of the decoder. 

In the proposed mechanism, the use of pooling and fully connected layers can 

semantically consider a larger expressional range than the convolutional layers to assist 

regional expression discovery. Each feature map, denoted as Fi, is weighted by a weight 

value wi, which automatically calculates the importance of each feature map from the 

real data. The weighted sum of absolute values of the feature maps, also known as 

attention maps, can be treated as a new map denoted as A0, which is formulated as 

follows: 

 

 

∑𝑤𝑖|𝐹𝑖|

𝑛

𝑖=1

=∑𝐴𝑖 =

𝑛

𝑖=1

𝐴0  (6.1) 

 

where n is the number of channels or filters. 

Figure 6.3 shows the feature map mechanism in the proposed model. Whether the 

input features are from residual layers in the encoder or convolutional layers in the 

feature extractor, they need to be normalised by maximum pooling and average pooling, 

both of which aim to detect a larger relationship. Furthermore, for discovering a closer 

mapping relationship among feature maps, fully-connected layers are used to compute 

the weight values from max pooling and average pooling separately. The final attention 

map obtained by a weighted sum of all the feature maps with semantical regularisations 

can be regarded as covering a clearer and wider view than the original feature maps. 

As a whole, the adoption of the pooling in the feature map mechanism is to enlarge 

the mapping relationships by reducing the feature size of the convolutional layers, and 

the fully connected layers are to evaluate the importance of each feature map derived 

from the results of separate pooling with weight values. In the proposed mechanism, 

the outputs of attention maps are trained to highlight the critical regional information 

learnt from the real expressional images in both the source domain and target domain. 

Consequently, the final attention map provides a comprehensive view and significant 
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regional information in the sense that the regions with higher weight values should be 

paid more attention in the image synthesis process. 

 

 

Figure 6.3: The feature map mechanism in the proposed model. 

6.2.3 Model Learning 

For generating desired facial attributes, several loss functions are adopted, and they 

work together as the objective function to train the proposed GAN model: 1) Firstly, an 

adversarial loss function should be designed with the fundamental principle of 

adversarial learning in a GAN-based model. 2) Secondly, regarding the cycle 

consistency structure, the image translation is designed to be constrained by a cycle loss 

function during training. 3) Furthermore, since the generated images have to maintain 

similar characteristics of the input neutral face images for data augmentation 

requirements, a perceptual loss function is involved in the learning. 4) Finally, the 

proposed feature map mechanism is expected to encourage the model to transfer 

photorealistic expressional representations, and a feature loss function should be 

included to effectively augment neutral face images based on a small training dataset. 

Consequently, the above-mentioned loss functions are combined as the overall 

objective function to simultaneously train the five subnetworks of the proposed GAN 

model. The details of the loss functions are described as follows. 
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6.2.3.1 Adversarial Loss 

 Let X be real images in the source domain and Y real images in the target domain. 

To find the expectation values 𝔼 of the data distribution 𝑃𝑑𝑎𝑡𝑎, the generator G has to 

capture the data distribution from both domains with an adversarial learning process, 

whilst the discriminators, Ds and Dt, aim to distinguish the fake and real data from the 

source domain and target domain respectively. The adversarial loss is designed to make 

the generated images visually photorealistic under a balance between the generator and 

discriminator [15], where the adversarial losses in the source domain and target domain 

are separately formulated as follows: 

  

 

ℒ𝑎𝑑𝑣(𝐺, 𝐷𝑠, 𝑋, 𝑌)

= 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎[𝑙𝑜𝑔𝐷𝑠(𝑋)]

+ 𝔼𝑦~𝑃𝑑𝑎𝑡𝑎[log (1 − 𝐷𝑠(𝐺(𝑌))] 

(6.2) 

 

ℒ𝑎𝑑𝑣(𝐺, 𝐷𝑡, 𝑌, 𝑋)

= 𝔼𝑦~𝑃𝑑𝑎𝑡𝑎[𝑙𝑜𝑔𝐷𝑡(𝑌)]

+ 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎[log (1 − 𝐷𝑡(𝐺(𝑋))] 

(6.3) 

 

where G(.) is defined such that {𝑋
𝐺(𝑋)
→  𝑋′ ≈ 𝑌

𝑌
𝐺(𝑌)
→  𝑌′ ≈ 𝑋

 

Ideally, with an adversarial loss, the generated images G(X) should follow a data 

distribution of the real data Y whilst G(Y) follows that of the real data X. To evaluate 

the generative quality, two discriminators are designed to guide the generators to create 

data with expectation values 𝔼. When the two discriminators are used to respectively 

distinguish fake images from real ones in different domains, the generated images will 

be labelled as the data transferred to another domain. However, only with adversarial 

loss, it is easy to generate visually meaningless results with unexpected expression 

distortions, especially when trained with a small dataset. Even though the proposed 

model can learn the basic representations to transfer expressions, distortions and unreal 

generative results usually happen with the adversarial loss function when the generators 

merely receive the real or fake information from discriminators. Furthermore, the 

generators are expected to map a set of input images and generate desired expressional 

data in the target domain, but the adversarial loss only indicates the similarity or 

difference between real and fake data distributions, which cannot guarantee to map 

neutral face images to desired expressional features. Therefore, besides an adversarial 

loss function, additional attribute constraints need to be used to train the proposed GAN 

model. 
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6.2.3.2 Cycle Loss 

To enhance the mapping capacity between two different domains, the adoption of 

cycle loss is a beneficial method in the sense that images transferred to another domain 

can be brought back to the original one. Thus, the generators are forced to learn more 

specific mapping relationships instead of merely learning the generative similarity with 

the adversarial loss. 

To enlarge the mapping relationships among unpaired images, the loss defined in 

CycleGAN [168] is adopted as the cycle loss function that aims to learn the mapping 

consistency between the source domain and target domain to reduce the problem of 

mode collapse, which often happens with all input images mapped to a few output 

images. For real images X in the source domain, the synthetic images X’ should satisfy 

the cycle consistency; that is when X is transferred to X’ in the target domain, and then 

X’ is transferred back to X” in the source domain, X and X” should be visually similar, 

represented as X ≈ X”. The same situation should be satisfied with real images Y in the 

target domain, i.e., Y ≈ Y”. The L1 norm is used to formulate the cycle loss [223], which 

is widely applied to measure the similarity between two different pictures. The cycle 

loss is defined as follows: 

 

 ℒ𝑐𝑦𝑐(𝐺) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎‖𝑋" − 𝑋‖1 + 𝔼𝑦~𝑃𝑑𝑎𝑡𝑎‖𝑌" − 𝑌‖1 (6.4) 

 

where G(.) is defined such that {𝑋
𝐺(𝑋)
→  𝑋′

𝐺(𝑥′)
→   𝑋" ≈ 𝑋

𝑌
𝐺(𝑌)
→  𝑌′

𝐺(𝑌′)
→   𝑌" ≈ 𝑌

 

6.2.3.3 Perceptual Loss 

For facial image reconstruction and data augmentation, the generated expressional 

face images are expected to look similar to the input neutral face images with desirable 

facial expressions but without a large scale of differences and distortions. For this 

purpose, a loss function is additionally needed for comparing the similarity between the 

generated images and original images, where the L1 norm is used as well to represent 

the perceptual loss for reducing the generative blurriness and distortions. The 

perceptual loss is formulated as follows: 

 

 ℒ𝑝𝑒𝑟(𝐺) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎‖𝑋
′ − 𝑋‖1 (6.5) 

 

It is noted that the perceptual loss only evaluates the generated data with one 
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transformation direction from real images X to fake images X’ instead of from Y to Y’ 

mainly because the proposed model is only designed to augment the neutral face images 

to expressional ones. The generated contents are expected to augment images similar 

to the original input of neutral faces in the source domain, but an adversarial loss is not 

able to verify whether the generated images look similar or not. Therefore, the 

generated data X’ is further constrained by the perceptual loss for learning the data 

similarity between two labelled domains. Consequently, the perceptual loss 

concentrates on the feature similarity between input images and synthetic results, which 

are designed to transfer facial attributes, except for expressions, for meeting the data 

augmentation requirements. 

6.2.3.4 Feature Loss 

To generate images with expected facial expressions using a small training dataset, 

the feature extractor in the proposed GAN model needs to identify the feature 

representations between two different classes of facial expressions. For this purpose, a 

feature loss is designed for training the proposed GAN model, which aims to enhance 

the quality of the final attention map generated by the encoder Genc and feature extractor 

E for correctly translating expressional attributes. The feature loss function is defined 

as follows: 

 

 

ℒ𝑓𝑒𝑎(𝐺𝑒𝑛𝑐 , 𝐸, 𝑋, 𝑌)

= 𝔼𝑥,𝑦~𝑃𝑑𝑎𝑡𝑎[log𝐸(𝑋, 𝑌)]

+ 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎[log (1 − 𝐺𝑒𝑛𝑐(𝑋)] 

(6.6) 

 

where 𝐸(𝑋, 𝑌) ≈ 𝐺𝑒𝑛𝑐(𝑋)  =  𝐺𝑒𝑛𝑐(𝑌) 

Different from the previously proposed loss functions for evaluating the quality of 

generative results, the feature loss is designed to assess the quality of the regional 

information in the feature map mechanism. Due to the facial reconstruction process that 

significantly relies on the feature map mechanism, improving the learning process of 

the proposed model to control the synthetic quality in the feature map mechanism is a 

critical factor in facial reconstruction. The activation regions of the final attention map 

in the feature map mechanism are constrained by the feature loss function. With the use 

of feature loss, the model can be more sensitive to the expression attributes, and the 

attention map information can be correctly forwarded to the encoder during the training 

process. The adoption of the feature loss constrains the encoders to learn knowledge 

from the final attention map. Consequently, the expression difference and regional 

information are restricted by the feature loss, and photorealistic results can be generated 
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by regionally mitigating the unexpected distortions caused by training the proposed 

GAN model with a small number of labelled facial image samples. 

6.2.3.5 Overall Loss 

By combining the adversarial loss, cycle loss, perceptual loss, and feature loss, the 

objective of training the proposed GAN model is as follows: 

 

 

min
𝐷𝑠,𝐷𝑡,𝐸 

max
  𝐺,𝐺𝑒𝑛𝑐 

ℒ𝑎𝑑𝑣(𝐺, 𝐷𝑠, 𝑋, 𝑌 ) +ℒ𝑎𝑑𝑣(𝐺, 𝐷𝑡 , 𝑌, 𝑋) + 𝜆1ℒ𝑐𝑦𝑐(𝐺)

+ 𝜆2ℒ𝑝𝑒𝑟(𝐺) + 𝜆3ℒ𝑓𝑒𝑎(𝐺𝑒𝑛𝑐, 𝐸, 𝑋, 𝑌) 

(6.7) 

 

where λ1, λ2 and λ3 are weighting parameters controlling the contribution of the gradient 

penalty to the overall loss. 

6.3 Experiments with the Proposed GAN Framework 

In this section, datasets, experimental setup and ablation studies for the proposed 

method are described as follows. 

6.3.1 Datasets 

Three facial expression datasets, the extended Cohn-Kanade (CK+) [224], 

Karolinska directed emotional faces (KDEF) [225] and Taiwanese facial expression 

image database (TFEID) [226], were partially used as the small labelled datasets to 

evaluate the performance of the proposed GAN model. 

6.3.1.1 Extended Cohn-Kanade Dataset 

The extended Cohn-Kanade dataset (CK+) is composed of 593 videos from 123 

subjects of different genders and heritage. The participants consist of 100 university 

students aged from 18 to 30 years old, where 65% are female; 15% are African-

American; 3% are Asian or Latino. Images in the database were extracted from videos 

and each subject was instructed to perform expressions. The videos illustrate facial 

shifts from neural expression to the targeted expression with a resolution of 640 × 480 

pixels. 



156 

6.3.1.2 Karolinska Directed Emotional Faces Dataset 

The Karolinska directed emotional faces dataset (KDEF) provides images with 762 

× 562 pixels, which were taken from 70 individuals (35 females and 35 males) with a 

set of 5 different angles. Seven fundamental emotional expressions are used, including 

neutral, happiness, anger, sadness, disgust, surprise, and fear. In our experiments, only 

the frontal view of each individual was randomly selected as the small training dataset. 

6.3.1.3 Taiwanese Facial Expression Image Dataset 

The Taiwanese facial expression image database (TFEID) contains 7,200 images, 

and 40 participants are involved with one neural class and seven facial expressions, 

which are anger, contempt, disgust, happiness, surprise, fear and sadness. The images 

are based on two different angles of 0° and 45°. Only frontal face images with angles 

of 0° were adopted in our experiments. 

 

Table 6.4: Description of facial expression datasets. 

Name Expressions 
No. of 

Images 
Resolution 

CK+ 
Neutral, sadness, surprise, happiness, 

fear, anger, contempt and disgust 
486 640 × 480 

KDEF 
Neutral, anger, disgust, fear, happiness, 

sadness and surprise 
490 762 × 562 

TFEID 
Angry, Fearful, Disgusted, Sad, Happy, 

Surprised and Neutral 
7,200 600 × 480 

 

Table 6.4 shows the FER information of used datasets, including expression types, 

number of released images and resolution details. The datasets are labelled with 6 or 7 

different facial expressions (e.g., happy, sad, surprise, angry, neutral, fear, disgust, etc.) 

to train the proposed model. A detailed description of the dataset along with facial 

expressions as well as the number of images is presented in Table 6.4. To form a small 

training dataset, only a limited set of images was chosen from the facial expression 

datasets, which was partially adopted to train the proposed GAN model, and the 

remaining images were employed as the validation data for performance evaluation. 

The numbers of chosen images used as the small training dataset are shown in Table 

6.5.  



157 

Table 6.5: Number of images used as the small datasets. 

 CK+ KDEF TFEID Domain 

Neutral 50 70 40 Source Domain 

Sadness 28 70 40 

Target Domain 

Surprise 62 70 36 

Happiness 59 70 40 

Fear 24 70 40 

Anger 45 70 34 

Disgust 59 70 40 

Contempt 45 / 40 

Total 372 490 310 / 

6.3.2 Experimental Setup 

The Adam optimiser [147] was used for model training, where the values of β1 and 

β2 were set to 0.5 and 0.999 respectively. The learning rates for both the discriminator 

and generator were set to 0.0001, and the batch size was chosen appropriately for small 

training datasets. For evaluating the performance without over-training and preventing 

the overfitting problem, for all cases, the number of training epochs was less than 4,000. 

The training was conducted with two Nvidia RTX 2080 GPUs. The input and output 

images were cropped to keep the centre part with faces only, which is particularly useful 

in the case of training with small datasets. The resolution was initialised to 256 × 256 

pixels, and the size of attention maps is 64 × 64 pixels. The values of the weighting 

parameters λ1, λ2, λ3 were set to 101, 102 and 103 separately, which were determined by 

the experimental results of an ablation study, shown in Section 6.3.3.1. 

Since the adopted datasets include basic facial expression categories (e.g., sadness, 

happiness, surprise, sadness, etc.), the expressional images in each class can be directly 

used as the well-defined training data in the target domain, which provides essential 

information for augmenting neural faces to new expressional faces. The chosen 

expressional face images are not necessarily paired with neutral face images, i.e., they 

can be from different subjects. 

6.3.3 Ablation Studies 

To evaluate the effectiveness of the proposed GAN model, three ablation studies 

are presented in this section: 1) Firstly, the impacts of the loss functions with different 
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weight values are discussed in Section 6.3.3.1. 2) Secondly, in Section 6.3.3.2, different 

adversarial loss functions are compared in terms of the generative performance. 3) 

Finally, the synthetic results with or without using the proposed feature map mechanism 

are demonstrated in Section 6.3.3.3. The details and experimental results of the above 

ablation studies are described as follows. 

6.3.3.1 Weighting Values in the Overall Loss Function 

Finding out the optimal weight values in the overall loss function is not easy, 

especially when millions of free parameters in the network need to be tuned for a 

specific set of weight values. In this ablation study, the impacts of the weighting 

parameters in the overall loss function on the quality of generated images are analysed 

with the KDEF dataset. It is difficult to determine the weighting values because the 

hyperparameters cannot be learned using gradient-based methods, and no universal 

optimization methods can be followed to quickly discover the optimal weighting values. 

A decimal scale is used with trail-and-error approaches to preliminarily examine the 

effect of different values for weighting parameters λ1, λ2 and λ3 on the quality of the 

generated facial expression images. Figure 6.4 shows the effects of different weight 

values in the overall loss function on the generated surprise images based on a small 

KDEF dataset consisting of 20 surprise images and 70 neutral images. 

Three points can be found from the experimental results: 1) Firstly, small weight 

values of λ1, λ2, λ3 (e.g., λ1 = 1, λ2= 1 and λ3= 1) easily cause distortions in the generated 

images, but large weight values (e.g., λ1 = 1,000, λ2= 1,000 and λ3= 1,000) cannot lead 

to photorealistic expressional results either. 2) Secondly, relatively large values of λ1, 

λ2 (e.g., λ1 =100, λ2=1,000 or λ1 =1,000, λ2=100) can mitigate synthetic blurs and 

generate images similar to the input images. Fortunately, with relatively small values 

of λ1, λ2 (e.g., λ1 = 10 and λ2 = 10), the generative results are still acceptable results 

without obvious distortions. 3) Thirdly, a large weight value of λ3 (e.g., λ3 = 1,000) 

coupled with a small weight ratio of λ1 and λ2 (e.g., λ1 = 10, λ2 = 10 or λ1 = 10, λ2 = 100) 

leads to desirable results, i.e., expected expression transfer and photorealistic quality. 

It can be concluded from the experimental results shown in Figure 6.4 that the 

weight values have a significant impact on the performance of the GAN model for facial 

expression transfer. Without appropriate weight values in the overall loss function, it is 

difficult for the proposed GAN model to preserve the facial attributes in the neutral face 

images and generated images with desired facial expressions by facial expression 

transfer. According to the above observations, the following weight values were chosen 

for further experiments: λ1 = 10, λ2 = 100 and λ3 = 1,000. Based on the above 

experimental findings, the weight values of λ1 = 10, λ2 = 100 and λ3 =1,000 achieve 
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competitive performance to generate expected expression results than the images 

generated by other weight values. Accordingly, this set is picked as the default weight 

value to train the proposed model in the remaining experiments. Moreover, the set 

found from the KDEF dataset is still functional to the datasets of CK+ and TFEID for 

visualising the obvious expressional changes. Even if these selected weighting values 

are not the best for achieving the best synthetic results, they could be available as a 

baseline to evaluate the preliminary performance and enable further optimisation in the 

future. 

 

Figure 6.4: Effect of different weight values in the overall loss function on the 

generated surprise images with the KDEF dataset.  
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6.3.3.2 Adversarial Loss 

The adversarial loss function is fundamental for adversarial learning in a GAN-

based structure. In this ablation study, the state-of-the-art loss functions, including those 

used in WGAN [130], WGAN-GP [131] and LSGAN [132], were adopted to replace 

the adversarial loss defined in (6.2) and (6.3) in order to evaluate the effect of different 

adversarial loss functions on the performance of adversarial learning in the generators 

and discriminators of the proposed GAN model. Surprise images generated by the 

proposed GAN model based on different adversarial loss functions are shown in Figure 

6.5 and Figure 6.6 with the KDEF and CK+ datasets respectively. 

It can be seen that the images generated by WGAN and WGAN-GP contain more 

blurring distortions and uncertainty than the results generated by the proposed GAN 

model and LSGAN. LSGAN and the proposed GAN model achieved competitive 

results in transferring neutral faces to surprise expression images, but the adversarial 

loss function in the proposed GAN model is simpler and can achieve a good balance 

between training the generators and discriminators with a small number of training 

samples. 

 

 

Figure 6.5: Effect of different adversarial loss functions on the generated surprise 

images with the KDEF dataset. 
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Figure 6.6: Effect of different adversarial loss functions on the generated surprise 

images with the CK+ dataset. 

 

It has to be emphasised although many studies have proven that WGAN, WGAN-

GP and LSGAN reached excellent performance, compared to the adversarial loss in 

some specific cases and applications [130], [131], [132], the adversarial loss is still an 

efficient method by using a binary classifier to simply check the synthetic quality with 

real or fake information, especially when a very small number of training samples are 

collected. The proposed GAN model with the adversarial loss can outperform the other 

state-of-the-art methods, which represents that loss functions need to be carefully 

validated in different applications. On the other hand, it is evident based on the 

experimental results that a powerful loss function generally needs a large amount of 

training data to support the algorithm for fine-tuning the hyperparameters of deep 

networks. Nevertheless, the adversarial loss contains a fundamental function to check 

the synthetic quality, which makes two deep networks, discriminator and generator, 

simply discover a potential data distribution with a small number of training images 
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and have a lower computation cost to cooperate with other loss functions. 

6.3.3.3 Feature Map Mechanism 

 

Figure 6.7: Comparison of facial expression images generated by the proposed GAN 

model with and without the feature map mechanism. The real images are from the 

KDEF dataset without being involved in the training, during which fear images were 

used as target samples and neutral images were used as inputs. 

 

This ablation study is to demonstrate the role of the feature map mechanism in 

improving the performance of the proposed GAN model. The use of the feature map 

mechanism aims to regionally recognise the mapping difference between the target 
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domain and source domain based on a small number of training samples. In this 

experiment, the training samples were chosen from the KDEF dataset with 70 neutral 

images in the source domain and 20 images of fear class in the target domain. Figure 

6.7 shows the images generated by the proposed GAN model with or without the feature 

map mechanism respectively, which demonstrates the benefit of using the feature map 

mechanism that can pay attention to the expressional attributes of the transforming 

regions (lighter areas), such as eyes, mouth, teeth and eyebrows, as indicated on the 

attention maps. On the other hand, the feature map mechanism enables the generated 

images to maintain the original features of the neutral faces with low distortions in the 

light-weight regions (darker areas). Consequently, the feature map mechanism further 

assists the proposed GAN model to generate more photorealistic and high-quality 

images, compared to the situation without using it, especially when only a small number 

of samples were used as the training data. 

6.4 Performance Evaluation 

Both visual analysis and quantitative evaluation are presented in this section. 

Firstly, for visual analysis, images generated by the proposed GAN model with 

different numbers of training samples in the target domain are visually compared, and 

the comparative results with various expressional classes are illustrated in the visual 

analysis as well. Secondly, for quantitative evaluation, FID, KID and transfer learning 

are employed separately to evaluate the synthetic reality of augmented images and their 

role in improving the accuracy of image classification using deep learning models. 

Additionally, the student’s t-test is used to further evaluate the FER performance of the 

CNNs trained with augmented facial expression images. Four CNNs, i.e., AlexNet, 

VGGNet, GoogLeNet and ResNet, were trained with and without using the augmented 

data respectively for the purpose of evaluating the role of using the facial expression 

images generated by the proposed GAN model in enhancing the FER performance of 

CNNs. 

6.4.1 Qualitative Comparison 

6.4.1.1 Visual Analysis with Different Number of Training Images in 

the Target Domain 

In this experiment, visual analysis was adopted to evaluate the performance of the 
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generative quality of the proposed GAN model with different numbers of training 

samples. The generative results were obtained by using different numbers of 

expressional face images in the target domain coupled with a constant number of neutral 

face images in the source domain. Forty neutral images were used in the source domain, 

and different numbers (5, 10, 15, 20, 40) of surprise face images were randomly chosen 

for the target domain, which formed a small training dataset for training the proposed 

GAN. For comparing the effect of using different numbers of training samples on the 

quality of the generated images, Figure 6.8 and Figure 6.9 show typical examples of 

the generated surprise face images on the KDEF and TFEID datasets respectively, 

where the first column shows the real neutral faces and the last column the ground truth 

of targeted surprise faces, which are from the datasets but not involved in the training, 

and the other columns show the surprise images generated by the proposed GAN model 

trained with different numbers of training images. 

 

 

Figure 6.8: Images generated by the proposed GAN model for augmenting the 

surprise class of the KDEF dataset. All the synthetic results were obtained by using 40 

neutral images in the source domain and up to 40 surprise images in the target 

domain. The real images shown in the figure were not involved in the training. 
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Figure 6.9: Images generated by the proposed GAN model for augmenting the 

surprise class of the TFEID dataset. All the synthetic results were obtained using 40 

neutral images in the source domain and up to 40 surprise images in the target 

domain. The real images shown in the figure were not involved in the training. 

 

It can be seen from Figure 6.8 and Figure 6.9 that the proposed GAN model 

produced realistic facial expression images even with a small number of training 

samples. However, when the number of training samples is too small, i.e., 5 or 10, 

unexpected distortions easily happen in the generated images. This is because the GAN 

model cannot well learn the mapping relationship between the inputs and expected 

outputs from such a small number of training samples. As the number of training 

samples increased, the quality of the augmented images improves correspondingly. 

According to our own experience, more than 20 training images per expressional class 

is recommended in real FER applications for two reasons: Firstly, from our 

experimental results, the proposed GAN model trained with 20 expressional images can 

robustly generate facial expression images with acceptable visual quality. The 

generated outputs are easily blurry and cannot promise to always achieve results with 

expected expressions when the model was trained with less than 20 images. 

Furthermore, 20 images are a rational small data size that can be collected by general 

users. Therefore, in the remaining experiments, 20 training samples per class were used 
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to train the proposed GAN model for generating images with various facial expressions. 

6.4.1.2 Visual Analysis with Different Expressional Classes 

In this experiment, different facial expression images chosen from the three FER 

datasets were used to form small datasets to train the proposed GAN model. The 

training data were produced as follows: 20 training samples per expressional class were 

randomly chosen as the data in the target domain whilst a different number of neutral 

face images, which depends on the number of subjects on each dataset, were used as 

the data in the source domain to form a small training dataset for training the proposed 

GAN model. The numbers of neutral face images chosen from the TFEID, CK+ and 

KDEF datasets are 40, 50, and 70 respectively, which are expected to contain sufficient 

original characteristics of the subjects’ neutral faces in the source domain. 

 

 

Figure 6.10: Images generated by the proposed GAN model by augmenting the 

TFEID dataset, where 40 neutral images and 20 images of each emotional class were 

used to train the proposed GAN model for transferring neutral images to images with 

various facial expressions. 
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Figure 6.11: Images generated by the proposed GAN by augmenting the CK+ dataset, 

where 50 neutral images and 20 images of each emotional class were used to train the 

proposed GAN model for transferring neutral images to images with various facial 

expressions. 

 

Figure 6.12: Images generated by the proposed GAN by augmenting the KDEF 

dataset, where 70 neutral images and 20 images of each emotional class were used to 

train the proposed GAN model for transferring neutral images to images with various 

facial expressions. 
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Figure 6.10 to Figure 6.12 demonstrate the synthetic results of the proposed GAN 

model by transferring neutral face images to targeted facial expression images, based 

on the three facial expression datasets respectively, where the first column shows 

neutral face images from the datasets that were the real data in the source domain, and 

the other columns show the face images generated by the proposed GAN model with 6 

or 7 different targeted facial expressions. The experimental results demonstrate that all 

the generated face images are of appropriate expressional features and acceptable image 

quality. Compared to the input neutral faces, the generated images with targeted facial 

expressions not only contain the expected expressional features but also maintain 

critical face characteristics in the original neutral faces for meeting the data 

augmentation expectations. To sum up, the proposed GAN model trained with a small 

training dataset can effectively generate desirable facial expressions from neutral face 

images without unacceptable distortions. 

 

6.4.1.3 Comparison with the State-of-the-art 

In this experiment, the state-of-the-art generative models were used to visually 

compare the generative results based on the same small training dataset. The selected 

models should follow the critical factors that the unpaired labelled images need to be 

applied as the input data by using unsupervised image-to-image translation methods, 

and their network structures are based on GANs. Therefore, the generative models for 

comparison are the CycleGAN [168], unsupervised image-to-image translation (UNIT) 

[227], multimodal unsupervised image-to-image translation (MUNIT) [228], unpaired 

image-to-image translation using attention-guided generative adversarial networks 

(AttentionGAN.v2) [229] and ours (the proposed GAN model). Firstly, UNIT learns 

joined data distributions between two different domains. A shared latent space is used 

as a critical component for image generating relying on the variational autoencoder and 

GAN structure. Moreover, MUNIT is an unsupervised image-to-image translation 

method, which additionally translates image representations from a latent space into a 

content space and further shares the learned information with both the source and target 

domain. The content space is aligned with a Gaussian distribution, and the image 

representations are decomposed into a content code and a style code. To transfer images 

between the source domain and target domain, a combination of the content code with 

an assigned style code can specifically control the generative style. Finally, 

AttentionGAN.v2 adopts attention-guided generators, which can produce attention 

masks and use them to fuse the generative outputs for obtaining high-quality synthetic 

images. The attention mechanism proposed in AttentionGAN.v2 can preserve the 
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background of the input images and discover the discriminative contents by producing 

attention masks and content masks respectively. 

The number of used neutral face images in the source domain is shown in Table 

6.5. Only one-way translation, from neutral faces to surprise faces, was recorded in this 

experiment. Twenty samples were randomly chosen from the surprise class as the 

training data in the target domain. The codes of CycleGAN, UNIT, MUNIT and 

AttentionGAN.v2 were downloaded from their official Github websites and trained 

with the default parameter settings, except that the batch size was reset to a small 

number suitable for training with small datasets. 

Figure 6.13 shows the results of the state-of-the-art methods. Compared with the 

original input images, CycleGAN cannot effectively produce the desired expression 

attributes in the generated images because the expressional attributes with a larger 

spatial range are difficult to be learned by merely using convolutional layers. UNIT 

produces unexpected distortions in the generated surprise images, especially in areas of 

the eyes and mouth. The distortive phenomenon usually happens when feature maps 

fail to contain sufficient information, which is the case when UNIT was trained with a 

small training dataset. MUNIT performed better than UNIT for correctly transferring 

neutral face images to the expected facial expression images. The generated surprise 

images not only contain the expressional attributes but also keep the characteristics of 

the neutral faces. However, the images generated by MUNIT have limited expressional 

attributes, leading to low diversity in the generated images, which is mainly due to the 

insufficient expressional information in the latent space, caused by training with a small 

training dataset. AttentionGAN.v2 achieved competitive results but some of the facial 

attributes, i.e., hairstyles, facial contour, shapes, etc., have a large-scale shifting 

compared to the input neutral faces. 

Compared with CycleGAN, UNIT and MUNIT, our proposed GAN model (ours) 

with the feature map mechanism is able to effectively extract expressional attributes 

from a small number of training samples with a focus on specific regions such as eyes, 

nose, and mouth for facial expression transfer. It also maintains the important 

characteristics in the neutral face images so as to avoid or reduce distortions in the 

generated facial expression images. It can be seen from the experimental results in 

Figure 6.13 that the proposed GAN model trained with a small number of samples can 

not only transfer neutral face images to expressional images but also preserve important 

facial attributes in neutral faces. This is a desirable property for image data 

augmentation. 
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Figure 6.13: Comparisons of facial expression transfer from neutral face images (first 

column) to surprise expression by CycleGAN, MUNIT, UNIT, AttentionGAN.v2 and 

the proposed GAN model respectively: (a) CK+ dataset. (b) KDEF dataset. (c) TFEID 

dataset. 
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6.4.2 Quantitative Evaluation 

6.4.2.1 Evaluation by FID and KID 

In this experiment, to evaluate the facial reality and expression modification in the 

generated images, FID and KID are used to assess the reality between pairs of images. 

To be specific, the neutral face images are used as the untrained data, which are 

designed to transfer images from the source domain to the target domain, and then these 

neutral face images can be augmented by modifying neutral facial images with the 

expected expressions. The generated images with the desired expressional faces in 

different classes are directly compared to the same participants with the real 

expressional faces provided from the datasets for calculating the FID and KID values. 

A low value of FID or KID indicates a high similarity between a pair of images. 

Table 6.6 shows the average FID and KID values between the real facial expression 

images and the corresponding facial expression images generated by CycleGAN, 

MUNIT, UNIT, and the proposed GAN model (ours). It can be seen that ours generally 

generated more photorealistic results than CycleGAN, MUNIT and UNIT. There is a 

special case in which CycleGAN outperformed ours on the CK+ dataset in terms of 

FID and KID values. However, as shown in Figure 6.13, CycleGAN did not always 

produce expected facial expressions but the generated images look like the input neutral 

face images. In our analysis, the main reason causing the deviation between the FID 

and KID values and visual judgment is that CycleGAN attempts to synthesise realistic 

results with low image distortions but ignores the importance of expressional attributes 

that need to be essentially transferred. Even though low distortion can achieve high 

realistic performance in terms of the FID and KID values, it is not beneficial for data 

augmentation purposes when the expected expressions are not specifically transferred 

in the generated results. To verify the assumption mentioned above, in the next 

experiment, performance enhancement in transfer learning will be utilised as another 

evaluation metric to confirm the assumption that using the augmented images generated 

from the CK+ dataset by CycleGAN in transfer learning may not promote the FER 

performance of CNNs. 
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Table 6.6: Reality scores estimated by FID and KID metrics. Lower FID and KID 

values indicate higher visual similarity between real and generated images. 

Dataset Methods FID KID 

CK+ 

CycleGAN 108.6633 9.096827 

MUNIT 118.2545 17.44388 

UNIT 158.9326 20.57399 

AttentionGAN.v2 116.4804 14.28450 

Ours 114.0547 12.11755 

KDEF 

CycleGAN 163.0129 19.75672 

MUNIT 156.1264 19.55005 

UNIT 116.0834 22.2877 

AttentionGAN.v2 79.08684 11.15851 

Ours 71.95389 12.56995 

TFEID 

CycleGAN 169.167 32.1291 

MUNIT 135.3592 23.72745 

UNIT 163.4647 32.30063 

AttentionGAN.v2 94.17466 19.78435 

Ours 81.17159 16.32507 

 

6.4.2.2 Evaluation by Performance Enhancement in Image 

Classification 

Transfer learning was conducted in this experiment, and four CNNs, i.e., AlexNet, 

GoogLeNet, ResNet, and VGGNet, were applied as the classifiers for facial expression 

recognition. A small number of training images were randomly chosen from the facial 

expression datasets as the small training datasets, facial expression images were 



173 

generated by CycleGAN and the proposed GAN model respectively, and the FER 

performances of the CNNs trained with and without using the augmented facial 

expression images were compared to show the effect of using the augmented facial 

expression images on enhancing the FER performance of the CNNs. 

The experimental setup was as follows: To form a small training dataset for training 

the proposed GAN model and the CNNs, 20 expressional images from each facial 

expression class were randomly chosen from each facial expression dataset, and 70 

neutral images from KDEF, 50 from CK+, 40 from TFEID were randomly chosen as 

real data in the target domain. The remaining images in each dataset were used as 

validation data to evaluate the FER performance of the CNNs, which were trained with 

the above-formed small training datasets with or without using augmented facial 

expression images. To evaluate the effect of the augmented facial expression images 

on the FER performance of the CNNs, the augmented facial expression images were 

combined with the original 20 images of each facial expression class to retrain the four 

CNNs. For reducing the negative influence of overfitting caused by using small training 

datasets, the presented validation accuracies are the mean values of the best 10 runs of 

each CNN. 

 

Table 6.7: Comparison of validation accuracies of four CNNs trained with 20 training 

samples from each class and augmented facial expression images generated by the 

proposed GAN and CycleGAN on the CK+ dataset. (Unit: %) 

Accuracy(%) 

 

Dataset 

CNNs 

Avg. 

AlexNet GoogLeNet VGGNet ResNet 

CK+ 71.62 64.74 69.04 70.41 68.95 

CK+ & CycleGAN 75.91 66.46 58.49 62.74 62.56 

CK+ & our GAN 81.58 77.63 80.21 78.71 79.53 
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Table 6.8: Comparison of validation accuracies of four CNNs trained with 20 training 

samples from each class and augmented facial expression images generated by the 

proposed GAN on the CK+, KDEF and TFEID facial expression datasets 

respectively. (Unit: %) 

Accuracy(%) 

 

Dataset 

CNNs 

Avg. 

AlexNet GoogLeNet VGGNet ResNet 

CK+ 71.62 64.74 69.04 70.41 68.95 

CK+ & our GAN 81.58 77.63 80.21 78.71 79.53 

KDEF 60.65 64.05 58.30 63.17 61.54 

KDEF & our GAN 82.46 83.17 85.40 82.18 83.30 

TFEID 64.31 68.45 58.86 60.14 62.94 

TFEID & our GAN 74.83 76.76 70.17 73.32 73.77 

 

Table 6.7 shows the validation accuracies of the four CNNs on the CK+ dataset 

under three situations: trained with 20 original samples from each expression class only, 

trained with 20 original samples from each expression class plus augmented facial 

expression images generated by CycleGAN, and trained with 20 original samples from 

each expression class plus the same amount of augmented facial expression images 

generated by our proposed GAN model. It can be seen that using the augmented images 

generated by the proposed GAN model improved the FER performance by over 10% 

whilst using the augmented images generated by CycleGAN actually degraded the FER 

performance of the CNNs. This may be because CycleGAN sometimes generated facial 

expression images incorrectly, as shown in Figure 6.13. 

Figure 6.8 shows the validation accuracies of the four CNNs on the CK+, KDEF 

and TFEID datasets, with the CNNs trained with 20 original samples from each 

expression class only and trained with 20 original samples from each expression class 

plus the augmented facial expression images generated by our proposed GAN model, 
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respectively. It can be seen that using the facial expression images generated by our 

proposed GAN model to augment small training datasets improved the FER validation 

accuracy of the CNNs by 10% ~ 22% on average. 

6.4.2.3 Student’s T-test 

Because training with small datasets is usually unstable and easily causes 

overfitting, to confirm the statistical significance of the FER performance improvement 

by using the augmented facial expression images generated by the proposed GAN 

model, the student’s t-test was conducted based on the FER performance data from 10 

runs of each CNN. The null hypothesis is that there is no significant difference between 

the validation accuracies of the CNNs trained with or without using the augmented 

facial expression images. The significant level α is set to 0.05 as usual, which implies 

when the p-value of the student’s t-test is smaller than 0.05, the null hypothesis will be 

rejected. 

Table 6.9 shows the p-values of the student’s t-test for comparing the performances 

of the four CNNs trained with and without using the augmented facial expression 

images generated by the proposed GAN model. It can be seen that all the p-values for 

the four CNNs are smaller than 0.05, which leads to an entire rejection of the null 

hypothesis and shows that the validation accuracies obtained with augmented training 

data are significantly greater than those without using augmented training data. 

 

Table 6.9: The p-values of the student’s t-test for comparing the performances of four 

CNNs trained with and without using augmented facial expression images 

respectively. 

 CK+ KDEF TFEID 

AlexNet 3.65e-04 1.33e-12 3.29e-04 

VGGNet 0.0026 5.79e-13 5.80e-04 

GoogLeNet 0.0206 6.49e-12 7.84e-06 

ResNet 0.0301 1.51e-14 1.26e-06 
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6.5 Conclusion 

In this chapter, a many-to-many image translation method is developed to 

synthesise augmented data from neutral face images to expressional images with the 

proposed GAN model. Experimental results with a small number of training images 

show that the augmented images with our proposed GAN significantly improve the 

accuracy by using the CNNs as classifiers for FER tasks. It is also demonstrated that 

our proposed GAN model is more functional for correctly transferring neutral face 

images to photorealistic expression images than other many-to-many image translation 

methods when a small number of facial expression images are involved as the training 

data in the target domain. Consequently, the proposed GAN model can not only 

mitigate the negative effects of training with a small training dataset but also enlarge 

the potential applications of data augmentation, especially if a large amount of 

expressional data is difficult to be collected. 
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Chapter 7 

Conclusions and Future Work 

7.1 Summary of Contributions 

A common problem with deep learning is addressed in this thesis, which is caused 

by insufficient labelled data for training deep learning models. Building novel GAN 

models for augmenting small training datasets to promote the classification 

performance of deep learning models is the main objective of this thesis. Three GAN 

models based on different input and output image mapping relationships, including one-

to-many mapping, one-to-one mapping and many-to-many mapping, are proposed 

respectively. According to the experimental results using a small number of images as 

the training dataset, the images generated by the proposed GAN models are of high 

photorealistic quality and good diversity, but with low distortions. The synthetic images 

can be used as augmented data to mitigate the negative effects caused by training with 

limited feature information (e.g., insufficient labelled training data, spare conditional 

inputs, etc.) and further promote the performance of image classification when CNNs 

are applied as classifiers with a small training dataset. Detailed contributions of this 

thesis work are summarised as follows. 

In Chapter 4, a novel GAN model is proposed with a perturbation mechanism and 

a novel network framework for synthesising many diverse images from one target 

image, which aims to solve the data scarcity problem in training deep learning models. 

The proposed model is designed to augment a small number of training images for the 

purpose of enhancing the image classification performance of deep neural networks. 

Experimental results show that the augmented dataset can effectively enhance the 

image classification performance of CNNs through transfer learning. It can be 

concluded that the proposed GAN model, which can generate many diverse images 

from one pattern only, can significantly improve the image classification performance 

of deep neural networks originally trained with a very small number of training samples. 

As the second contribution presented in Chapter 5, a new condition-based GAN 

framework is proposed for edge-to-image translation based on a small set of training 

data, which can synthesise photorealistic diverse facial images using incomplete edges 

as conditional inputs for data augmentation purposes. To solve the problem of training 

condition-based GANs with a small dataset, an interim domain for refining images is 

introduced in the proposed condition-based GAN, which can effectively reduce 
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unexpected distortions and improve the quality of the generated images. Experimental 

results have demonstrated that blending segmentation masks and regional binary 

images as refined reference images can reduce the distortions in generative components 

to efficiently learn realistic features from a small number of training images. Compared 

with the existing edge-to-image translation methods, the proposed condition-based 

GAN can not only automatically transfer incomplete conditional edges to reference 

images with more facial features in the interim domain but also effectively reduce 

unexpected distortions caused by small training data. Compared to directly translating 

images from one domain to another domain, the proposed method can have a more 

comprehensive view to generate more photorealistic edge-to-image translation results 

when using various incomplete conditional edges for data augmentation. More 

informative reference images can be constructed in the interim domain from incomplete 

edge inputs to integrate useful facial components. The proposed condition-based GAN 

trained with a small dataset can synthesise various photorealistic facial images by 

manipulating conditional edges or using hand-drawn facial sketches to synthesise 

diverse augmented image data. Contrasted to the existing one-to-one image translation 

methods, the images generated by the proposed condition-based GAN have less 

distortion and more diversity, which is desirable for data augmentation purposes. 

Finally, in Chapter 6, a novel GAN model is proposed for generating facial 

expression images based on a small number of training facial expression samples. The 

proposed GAN model adopts a feature map mechanism to extract useful spatial 

information related to targeted facial expressions from a small number of training 

samples by a feature extractor, which can mitigate unexpected distortions to generate 

photorealistic images for meeting data augmentation requirements on many-to-many 

mapping relationship. The experimental results show that the proposed GAN model can 

not only successfully generate desired facial expression images from a small number of 

facial expression samples but also maintain the original characters in the corresponding 

input neutral face images. It is also demonstrated that using the synthetic facial 

expression images generated by the proposed GAN model can significantly improve 

the FER performance of CNNs. The application of this study is limited to FER tasks, 

but it can be extended to other classification problems. 

7.2 Limitations and Future Work 

For the proposed GAN model presented in Chapter 4, the image resolution and data 

reality can be further improved by further exploring the model structure and learning 

algorithm. Several limitations need to be considered to promote synthetic quality in the 
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future. Firstly, the diversity of the generated images is still dependent on traditional 

augmentation methods by using transformation matrices in the perturbation mechanism, 

although the proposed GAN model has demonstrated the capability of creating more 

diverse results than traditional techniques in the experiments. An improved GAN model 

with a more powerful feature extractor could extract complex features to improve the 

diversity of the generated images. Secondly, the quality of the generated images based 

on a small set of training images is to be further improved. Advanced methods need to 

be developed to improve the learning efficiency and avoid mode collapse and gradient 

vanishing problems in training with small datasets. 

For the work presented in Chapter 5, due to the limited GPU computing facilities 

available for our experiments, it is hard to optimise the hyperparameters of the tested 

models, and the performance evaluation is based on the comparison with two state-of-

the-art methods only. More extensive comparative studies would be desirable in future 

research to draw more reliable conclusions. The advantage of the proposed condition-

based GAN framework over the existing methods becomes less obvious when the 

number of training samples is relatively large. For future work, the interim domain 

could be improved, so that the proposed condition-based GAN framework would also 

significantly outperform existing methods for image data augmentation when a 

reasonably large number of training images are available. On the other side, although 

the experimental results have demonstrated the effectiveness of our proposed method 

in image classification, there are still some limitations for real applications of image 

data augmentation. For instance, more diverse results can be created from the undefined 

areas in the conditional features. Besides, regarding generating photorealistic results 

based on a small training dataset, the mode collapse problem cannot be 

comprehensively eliminated in our experiments. Advanced normalization methods and 

training strategies could be explored in future work to address the mentioned problems. 

Referring to the experimental results from visual analysis and quantitative 

comparison in Chapter 6, the effectiveness of the many-to-many image translation 

using the proposed GAN model has been demonstrated. However, some limitations are 

also discovered in the experiments, and the proposed model could be improved based 

on the following ideas. Firstly, the diversity in the generated facial expression images 

is still very limited when only a small number of labelled samples are used because the 

proposed GAN model pays foremost attention to the reality of the generated images in 

terms of facial expressions. Data similarity and diversity are two critical factors 

affecting the performance of data augmentation, an advanced GAN model should be 

able to generate more diverse facial expressions for good data augmentation 

performance with a small number of training samples. Secondly, compared with other 

facial synthesis tasks, the good quality of fake expressions is difficult to be generated 
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from a small amount of training data. Expressional attributes commonly have a large 

range of spatial relationships, and the correct mapping positions and attributes need to 

be identified by improving the feature map mechanism in the proposed GAN model to 

mitigate the distortions in the generated images. Thirdly, the mode collapse problem is 

not completely eliminated in this proposed GAN model either, which degrades the 

efficiency of data augmentation. Finding the optimal values is still difficult and has to 

rely on high computational capabilities, advanced techniques to optimise 

hyperparameters could be adopted for mitigating the overfitting problem, especially 

when training without sufficient training data. Furthermore, based on the experience 

from our experiments, image pre-processing and facial normalisation are critical in the 

proposed model for reducing synthetic blurs and distortions caused by training with 

small FER datasets, which could bring about a limitation to the proposed model. If the 

input facial images cannot be aligned as the images to a mapped position, (i.e., front 

faces or profile faces), the proposed model may be inefficient to discover the correct 

mapping relationship from small training datasets and thus difficult to generate desired 

expressional features. Finally, because of only limited features being learnt, the 

proposed model may be hard to acquire comprehensive knowledge to deal with all the 

expressional attributes relying on a small training dataset, which generally causes 

unexpected distortions in the generated images. 

In addition, a series of general limitations in deep learning models still need to be 

further analysed in real applications, i.e., the training efficiency, model complexity, 

processing speed, computational cost, improvement level, capabilities of generalization, 

regularisation, optimisation, universality, and so on. All in all, it is continuous work to 

explore advanced GAN structures and develop appliable learning algorithms, which 

can synthesise high-quality and diverse images from a small number of training samples 

for promoting the performance of deep learning models. 
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