1	Presence of antibiotic resistance genes in the receiving
2	environment of Iqaluit's wastewater treatment plant in
3	water, sediment, and clams sampled from Frobisher
4	Bay, Nunavut: a preliminary study in the Canadian Arctic
5	Madeleine Starks ¹ , Christina M. Schaefer ^{2,3} , Kenneth M. Jeffries ² , David Deslauriers ^{3,4} Kim
6	Hoang Luong⁵, Charles S. Wong ⁶ , Mark L. Hanson ⁷ , Charles W. Knapp ^{1*}
7	1. Centre of Water, Environment, Sustainability, and Public Health; Department of Civil &
8	Environmental Engineering; University of Strathclyde, Glasgow, Scotland, UK
9	2. Department of Biological Sciences; University of Manitoba, Winnipeg, MB, Canada
10	3. Fisheries and Oceans Canada, Winnipeg, MB, Canada
11	4. Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski,
12	QC, Canada
13	5. Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main St, Winnipeg,
14	MB, R3C 3G8, Canada
15	6. Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA
16	7. Department of Environment and Geography, University of Manitoba, Winnipeg, MB,
17	Canada
18	
19	* Corresponding author:
20	Charles W. Knapp
21	75 Montrose St., Glasgow, UK G1 1XJ

22 Charles.Knapp@strath.ac.uk

This is a peer-reviewed, accepted author manuscript of the following article: Starks, M., Schaefer, C., Jeffries, K., Deslauriers, D., Hoang Luong, K., Wong, C., Hanson, M. L., & Knapp, C. (Accepted/In press). Presence of antibiotic resistance genes in the receiving environment of Iqaluit's wastewater treatment plant in water, sediment, and clams sampled from Frobisher Bay, Nunavut: a preliminary study in the Canadian Arctic. Arctic Science.

23 Abstract

24 Antibiotic resistance (AR) is a growing health concern worldwide, and the Arctic represents an understudied region in terms of AR. This study aimed to guantify AR genes from effluent 25 26 released from a wastewater treatment plant (WWTP) in Igaluit, Nunavut, Canada, thus 27 creating a baseline reference for future evaluations. Water, sediment, and truncate softshell clam (*Mya truncata*) tissue samples were compared from the wastewater, the receiving 28 29 environment of Frobisher Bay, and nearby undisturbed freshwaters. The pharmaceuticals 30 and personal care products (PPCPs) atenolol, carbamazepine, metoprolol, naproxen, sulfapyridine, and trimethoprim were found in the wastewater, but the PPCPs were 31 32 undetectable in the receiving environment. However, the relative abundances of ARGs were 33 significantly higher in wastewater than in the receiving environment or reference sites. 34 Abundances did not significantly differ in Frobisher Bay compared to undisturbed reference sites. ARGs in clams near the WWTP had similar relative abundances as those from pristine 35 areas. The lack of ARG detection is likely due to Frobisher Bay tides flushing inputs to levels 36 below detection. These data suggest that the WWTP infrastructure does not influence the 37 38 receiving environment based on the measured parameters; more importantly, further 39 research must elucidate the impact and fate of AR and PPCPs in Arctic communities.

40

41 Keywords: wastewater, contaminants, antimicrobial resistance, food security

43 Introduction

44 Antibiotic resistance (AR) genes allow bacteria to become resistant to antibiotics and naturally exist in soils; however, human activity has been contributing to their development 45 and release (Dcosta et al., 2011), including wastewater (Graham et al., 2019a; Graham et 46 al., 2019b). Few studies have characterized the impacts of wastewater effluents on receiving 47 48 environments in the Canadian Arctic, and fewer are concerned about the spread of antibiotic-resistant (AR) genes. The wastewater treatment plant (WWTP) in Igaluit (Nunavut, 49 Canada), located at the head of the Koojesse Inlet of Frobisher Bay, releases wastewater 50 effluent into Frobisher Bay annually (Neudorf et al., 2017). Neudorf et al. (2017) found that 51 52 Iqaluit's primary treatment reduced antibiotic-resistance genes (ARG) but ineffectively controlled its entire release into the environment. 53 54 The impacts in the receiving environment remain a concern, and information is limited. For 55 example, Krumhansl et al. (2015) found sediments > 500 m distance from the Iqaluit wastewater discharge point to be anoxic and devoid of benthic invertebrates. These impacts 56 concern the local population, which harvests truncate softshell clams (Mya truncata); while 57 harvesters avoid the inlet nearest the WWTP, the clams may be within distances impacted 58 59 by wastewater effluent (Manore et al., 2020). In addition, the clams closest to the Iqaluit WWTP are impacted by wastewater effluent (Schaefer et al. 2022), but the presence of AR 60

Further, the AR results depend on the conditions of the receiving environment. Hayward *et al.* (2018) focused on tundra wetland systems into which settlement lagoons discharge; they concluded that wastewater discharges increase ARG abundances, but their fate is influenced by wetland hydrology. On the other hand, Chaves-Barquero *et al.* (2016) in Cambridge Bay, NU, did not consider the concentration of pharmaceuticals and ARGs to be a concern at the time of their study. As such, the impacts of wastewater discharges and the factors that affect their fate remain largely unelucidated in Arctic communities.

bacteria has not been determined.

61

This study investigated the variation of ARGs and pharmaceutical and personal care products (PPCP) within Iqaluit's wastewater treatment plant and its associated discharge into Frobisher Bay, Nunavut. By examining ARGs and PPCPs (pharmaceuticals and personal care products), we determined whether the discharges were detrimental to Iqaluit's water quality and the potential for human exposure to AR bacteria.

74

75 Methods

76 Study location

Igaluit is the capital city of the Nunavut territory and is situated on Baffin Island, Canada 77 78 (2016 population, 7740). The city is located within Koojesse Inlet, near the top of Frobisher Bay, which is macrotidal (12m) with 17km³ of seawater flushing the Bay during a single tide 79 (Hsiao, 1992). At the time of sampling, the wastewater system in Iqaluit was comprised of 80 mechanical screening (Salsnes filter) prior to release, which was discharged continuously 81 82 year-round into an open channel, i.e., directly into the marine environment (see Figure 1). 83 The associated lagoon was for overflow or when the plant was not functional and was released monthly (Neudorf et al., 2017). Approximately 7.2 X10⁸ L of wastewater is released 84 annually (Neudorf et al., 2017). 85

86 Analysis of pharmaceutical and personal care products

A total of 28 pharmaceuticals were sampled in this work using the organic diffusive gradients in thin film (o-DGT) passive sampler as reported previously (Stroski *et al.*, 2020), including 17-estradiol, 17-ethynylestradiol, atenolol, atrazine, carbamazepine, clarithromycin, clofibric acid, diclofenac, enrofloxacin, erythromycin, estrone, fenoprofen, fluoxetine, gemfibrozil, ibuprofen, ketoprofen, metoprolol, naproxen, paroxetine, propranolol, roxithromycin, sulfamethazine, sulfamethoxazole, sulfapyridine, sulfisoxazole, sulfachloropyridazine, sulfadimethoxine, and trimethoprim. These PPCPs were monitored as they are commonly

94 found in wastewater (Ying et al., 2009; Gagnon and Lajeunesse, 2012; Challis et al., 2016), 95 including in arctic regions (Stroski et al., 2020), and existing laboratory methods and 96 capacity were in place. The assembly, extraction, and calculation of time-weighted average 97 (TWA) water concentrations o-DGT are detailed elsewhere (Challis et al., 2016) and 98 reported for Frobisher Bay, NU (Stroski et al., 2020). Laboratory and field blanks were 99 extracted with each set of samples and had negligible levels of all analytes measured. 100 Analyte concentrations were determined by liquid chromatography-tandem mass 101 spectrometry (LC-MS/MS) using an Agilent 1200 Series LC pump and Agilent 6410B MS/MS 102 (Agilent Technologies, Mississauga, ON) in electrospray ionization positive and negative 103 mode. Limits of detections (LOD) and quantifications (LOQ) are found in the SI, while 104 chromatographic and MS/MS method details are found elsewhere (Challis et al., 2016).

105 Sample collection for antibiotic resistance genes

Samples were collected 8-10th August, 2019 (Table 1 and Fig.1). From the wastewater 106 treatment plant, we sampled the wastewater influent, the retention lagoon and discharged 107 effluent and sediment as it flowed along the tidal flats to Frobisher Bay. At varying distances, 108 109 we sampled the water in Frobisher Bay; additionally, the clam tissues, sampled for another project during the same time period, were graciously provided to us (Schaefer et al., 2022; 110 see Table 1). Additional water samples from Lake Geraldine and the Sylvia Grinnell River, 111 representing pristine water sources, were also examined; however, their shoreline conditions 112 113 were too rocky to collect any sediment. Finally, a soil sample near the WTTP, but not 114 exposed to wastewater, was also collected as an additional control. All sampling was done 115 with the support of the Amaruq Hunters and Trappers Association and under a license approved by Fisheries and Oceans Canada (Licence No: S-19/20-1040-NU). 116

Waters were aseptically collected in 1L-polypropylene bottles after a triple on-site rinse;
sediments were obtained in 50mL polypropylene centrifuge tubes; both were collected by
hand. Cells from wastewaters (50-150mL) and natural waters (900mL) were filtered

120 (Whatman 0.2µm membrane filters). All samples were kept cool (< 10°C) during transport
121 and frozen (-15°C) during storage. DNA from sediment and soil were extracted directly.

122 DNA extractions

Sediment, soil (0.5 g) and water filters (cells harvested from water) were homogenized by a 123 FastPrep24 cell disruptor (MP Biomedicals; 6.0 speed 2x20s) and extracted using DNeasy 124 125 PowerSoil kit (Qiagen; Venlo, The Netherlands). The clam tissues (10-20g) in 50 mL solution of 10mM PBS (pH 7.4) and protease K were digested in a Seward Stomacher (Seward, 126 Worthing, UK); the DNA was extracted by DNeasy Blood and Tissue kit (Qiagen). Both 127 128 extraction methods followed the manufacturer's recommended protocols. The purity and 129 quantity of extracted DNA were 1.7-2.0 (A260/A280) and 10-150 ng/µL, respectively, as determined by the micro-UV-spectrophotometer. The extraction kits were selected based on 130 these purities and yields for each sample type. 131

Sediment and wastewater samples were diluted 1:20 with molecular-grade water to minimize
co-eluted PCR (polymerase chain reaction) inhibitors; the DNA from the clams were diluted
1:200. This was determined by serially diluting the extractions (i.e., from soils and clams)
pre-spiked with 10⁹ genes of *E. coli* 16S rRNA. The resultant PCR efficiencies and expected
threshold abundances were compared against a "neat" standard curve.

137 Pre-screening ARGs

138 To distinguish between ARGs from the wastewater and those that may naturally occur,

139 extracted DNA (1µg) from sediment exposed to wastewater effluent and environmental soil

samples (nearby, not in contact with wastewater) were analyzed using the Open Array

- 141 platform (Chinese Academy of Sciences Xiamen; e.g., Zhu *et al.* (2013)). We selected
- eleven gene targets from the results (Table S1): *sul1, erm*B, *acr*A, *qac*H, *dfr*A, *tet*39, *qnr*A,
- 143 *cphA, ampC, bla*_{TEM}, and *aphA* for qPCR (see below). Table S2 summarises gene
- information. In addition, a 16S-rRNA gene target was used as a surrogate measure of "total
- 145 bacteria", to which all relative abundances were calculated.

146 *Quantitative polymerase chain reactions (qPCR)*

Quantitative PCR was used to target eleven ARGs in the samples. Each 10-µL reaction 147 consisted of 2 µL of diluted DNA template, 5 µL of ssoFAST-EvaGreen gPCR reagent 148 149 (BioRad; Hercules, CA, USA), 0.2 µM primers and was made to volume with molecular-150 grade water. Reaction conditions included initial denaturation (94°C, 3min) and 30-50 cycles of primer annealing (5sec, 60°C) and denaturation (94°C, 3sec); all were conducted on a 151 BioRad iCycler5 (BioRad instrument) in triplicate. Blanks and standards were routinely run 152 153 with samples. In addition, a post-analytical melt curve (Δ -0.2C/second) was run to verify 154 amplification guality and specificity. Detections were valid when at least two replicates were within one cycle of each other without aberrant fluorescent signals. 155

Standards comprised of spiked DNA (10²–10⁸ copies/µL) in previously UV-irradiated sample
matrix (i.e., extracts from sediment, marine water, or clam tissue); the 10-minute exposure
under UV sterilizing conditions prevents existing DNA from becoming PCR-able. Therefore,
DNA standards were prepared from PCR amplicons, purified with a Qiagen PCR Purification
Kit, and quantified by UV-micro-spectrophotometry; sequences were verified by Sanger
Sequencing (GATC-Eurofins Genomics).

162 Data Analysis

The abundances of genes were log-transformed prior to statistical analysis to improve sample distribution (normality). Absolute abundances were presented for the "total bacteria" (as measured by 16S-rRNA gene targets) and represented genes detected per mL (filtered water) or gram (clam tissue, sediment or soil). In contrast, relative abundances have been normalized to the 16S-rRNA gene counts and provide a sense of whether the selection of AR genes in the system has been enriched. Due to data distributions, non-parametric tests (e..g, Mann Whitney and Kruskal Wallis) were used for statistical comparisons.

170 Repeat sample events were cancelled due to the 2019 SARS-CoV-2 pandemic. However,

171 for data comparisons, we grouped like samples: wastewater effluent (n=3), the sediment on

- which the wastewater effluent flowed (n=3), freshwater samples (Lake Geraldine and Sylvia
- 173 Grinnell River), Frobisher Bay water (n=4), and clams (5-8 clams per location; see Table 1).

174 **Results and Discussion**

175 Pharmaceutical and personal-care products

176 Compounds detected were atenolol, carbamazepine, metoprolol, naproxen, sulfapyridine, 177 and trimethoprim, but only in the sewage lagoon (Figure 2). The compounds were found at 178 levels similar (in the ng/L range) to other wastewater systems in Nunavut (Chaves Barguero et al., 2016; Stroski et al., 2020), including work in Igaluit previously (Stroski et al., 2020). 179 180 They were also not detected outside of the lagoon itself, which is consistent with previous work at this location (Stroski et al., 2020). The lack of detection suggests that compounds 181 are being a) degraded through photolytic or biological means within the lagoon or before 182 183 discharge or b) the large body of water the compounds enter (i.e., Frobisher Bay) act to 184 dilute so much as to make the concentrations negligible. There was no evidence of these compounds in the drinking water source (Lake Geraldine) and the upstream river reference 185 186 (all were non-detects).

187 Wastewater composition

188 The pre-screening assay provided relative abundances of 308 antibiotic resistance genes,

189 53 genetic elements, and 11 critical taxonomies associated with resistance genes (Table S1

and S3). Among the taxonomy results, differences in gene frequency helped select ARG

targets most relevant to the wastewater. For example, the influent comprised 33%

192 Bacteroidetes, 26% Firmicutes, 9.7% *Acinetobacter* sp. and 8.2% *Pseudomonas*,

representing human-gut microbiota (Thomas *et al.*, 2011). In contrast, the soil had half the

194 percentages of Bacteroidetes and Firmicutes and <1% of the latter two genera.

Based on the ARG pre-screen, the wastewater had a higher richness of resistance genes

196 (positive gene detections) of each antibiotic "type" (see Table S4 for the complete list). The

197 wastewater and soil had the following %-positive detections of resistance genes

198 (respectively; selected gene targets for the qPCR are also mentioned) per antibiotic class:

aminoglycosides (61%, 22%; *aphA3*), beta-lactamases (54%, 19%; *ampC*, *cphA*, *bla*_{TEM}),

fluoroquinolones (80%, 50%; *qnrA*), multidrug resistance genes (83%, 55%; *qacH*, *acrA*),

201 macrolide-lincosamide-streptogramin B (59%, 39%; *ermB*), phenicols (40%, 20%),

sulfonamides (71%, 57%; *sul1*, *dfrA*), tetracyclines (50%, 36%; *tet39*), trimethoprim (29%,

18%; *dfrA*) vancomycin (38% 13%), other resistance genes (53%, 24%), and mobile genetic
elements (79%, 55%).

Wastewater received only primary treatment at the time of sampling (August 2019). The 205 wastewater treatment plant was able to reduce the bacterial gene concentrations from 10^{8.6} 206 ^(±0.1) in the influent to 10^{7.6 (±0.5)} genes/mL (90% reduction). When examining ARG distribution 207 between wastewater influent (10^{-0.7} genes/16S-rRNA) and effluent (10^{-1.2}), there appears to 208 be a slight shift in their relative abundances. Neudorf et al. (2017) found similar removal 209 rates. However, here, for most genes, there were no significant differences (*t*-test, p>0.05; 210 see Supplemental Table S5); exceptions included lower effluent concentrations for *qac*H and 211 212 dfrA and higher concentrations of sul1. Primary treatment often remains ineffective in removing ARGs (Graham et al., 2019a); any removal would be attributed to bacteria 213 physically removed with the solids during primary treatment. 214

215 Following primary treatment, the discharged wastewater flowed >200m along the upper-tidal 216 flat to Frobisher Bay. Most ARG values representing wastewater discharges and sediment were not statistically different (Table 2). However, lower relative abundances of qnrA, dfrA 217 218 and *bla*_{TEM} genes were found in the sediment than in the flowing waters; the differences could be influenced by indigenous bacteria on the tidal flat surface on which the discharged 219 effluent flowed. We do not anticipate selective pressures from discharged pharmaceuticals 220 on the bacteria (PPCP concentrations are low); instead, we were detecting the presence and 221 222 fate of faecal bacteria and the ARG they contained.

223 Antibiotic resistance genes in the water

Relative concentrations of ARGs became diluted once they entered Frobisher Bay but
remained detectable (Table 2). To determine whether they impacted the Bay, we compared
the concentrations in Frobisher Bay with those of inland freshwater sources (i.e., Sylvia
Grinnell River and Lake Geraldine). The two inland sites represent "pristine" (minimally
impacted) sites.

Although bacteria and fungus levels were orders of magnitude lower in Frobisher Bay and freshwater samples than in wastewater (Table 2), the relative abundances helped discern whether selective pressures remained. From the results, the marine and freshwater samples had comparable concentrations for all but three genes: *qnr*A, *cph*A and *amp*C, which were similar in all locations. However, non-wastewater samples had lower relative abundances for the other genes. The decreased total bacteria and decline in relative abundances further reduce ARG risks to Frobisher Bay.

However, some concerns become highlighted when one examines the ARG more closely in 236 237 Frobisher Bay by comparing relative gene abundances from the discharge point. A clear 238 inverse trend was observed between gene abundances and distance (Table 3), which 239 suggests that wastewater discharges may impact water conditions in Frobisher Bay. This 240 analysis remains rudimentary as actual travel distance would not be direct but would be 241 influenced by the complex hydrological dynamics of circulation and tidal fluctuations. 242 However, sample collection began at high tide, and the influx of marine waters could have influenced the results. Kituriagannigitug (Bay #4) is located at a different inlet and unlikely to 243 244 be influenced by Iqaluit's wastewater; as a "control" site, it provides a context of expected 245 gene concentrations in the Bay.

246 Antibiotic-resistant genes detected in clams

Similarly, we detected resistance genes in the tissues of truncate softshell clams sampled at
 multiple sites (Table 4). The Kruskal-Wallis test showed no significant differences among the

249 ARG at the six sampling locations and no clear trends or patterns (Table S6). However, 250 higher bacteria levels were found in Koojesse Inlet (near the point of wastewater discharge 251 (Clam #1), Apex (Clam #3) and Monument Island (Clam #4); $H_5 = 12.8$, p = 0.03; Table 4). 252 It is hypothesized that the reason for no significant differences in ARG levels in *M. truncata* 253 was related to their storage following harvest. As previously mentioned, clams were harvested by Schaefer et al. (2022) for their biometrics; as part of their study, clams were 254 held in artificial seawater (2-4 °C) before dissection. M. truncata filters 2.5 litres per hour 255 256 (Peterson et al., 2003; Bernard and Noakes, 1990) and can rapidly digest the ARG-257 containing wastewater bacteria. As such, it was likely that the bacteria would have been flushed from the clams. This "depuration" method has been utilized to reduce potential 258 health hazards of bacteria (Metcalf et al., 1979) and viruses (Polo et al., 2014), and the 259 260 same process could have happened here. Further investigation is required to scrutinize 261 depuration impacts. Nevertheless, an environmental risk would remain for harvesters in contact with potentially contaminated seawater. Therefore, improving wastewater treatment 262 would confer the greatest anthropogenic and environmental benefits. 263

264 Conclusions

265 It does not appear that the concentrations of ARG have been significantly elevated in 266 Frobisher Bay due to wastewater discharge from Igaluit's municipal treatment plant. Relative 267 abundances were highest in the wastewater effluent, which potentiates the possible impact. 268 and diminishing relative abundances could be seen in Koojesse Inlet from the discharge point. However, the relative abundances were equivalent to those from upstream (albeit 269 270 freshwater) and distant marine undisturbed (reference site) samples, suggesting no 271 significant enrichment could be found. Additionally, total bacteria (per 16S rRNA gene 272 counts) similarly declined, and with the reduction of relative abundance, the absolute 273 amounts of genes being detected would be much lower.

274 Similar patterns were seen with the detectable PPCP. A contributing factor for both PCPP

and ARG fate is likely due to the seawater dilutions (e.g., Zhao et al. 2017) and efficient
flushing of Frobisher Bay during tidal fluctuations. Similar flushing could possibly help reduce
associated risks with the clams, but this requires further investigation.

278 The genes selected for analysis in this study do not represent the full range of genes that

279 could confer antibiotic resistance. A disadvantage of this investigation is that ARGs not

selected may be polluting the waters of Frobisher Bay undetected. This study, however,

provides a reference point for any future quantification risk, building on the earlier work of

Neudorf et al. (2017). Following planned upgrades to the sewage treatment works, further

studies may investigate how effective the upgrade has been with ARG and pathogen risks.

284

Acknowledgements: Special thanks to Nunavut Arctic College for providing their facilities,

286 Mara Knapp for laboratory logistics during the pandemic, and Hunters and Trappers

287 Association for their assistance and logistic support at Iqaluit.

Thank you to the three anonymous reviewers for taking their time to review our manuscript and provide helpful comments that contributed to the improvement of this manuscript.

290 **Competing interests**: The authors declare there are no competing interests.

Author contributions: M.S. did the statistical analysis and drafted the manuscript; C.M.S. collected and provided the clams; K.M.J., D.D. and M.H. conceptualized and managed the project and acquired the funding; K.H.L and C.S.W. analyzed PPCPs; C.W.K. sampled and analyzed the antibiotic resistance genes, and coordinated that aspect of the project; all authors reviewed and edited the manuscript.

Funding: The project was funded by the Fisheries and Oceans Canada Baseline Monitoring

297 Program, the University of Manitoba University Indigenous Research Program, and the

298 University of Strathclyde General Research Funds.

- 299 **Data availability**: Data generated or analyzed during this study are available in the
- 300 University of Strathclyde repository (https://pureportal.strath.ac.uk/en/datasets/data-for-
- 301 presence-of-antibiotic-resistance-genes-in-the-receiving). DOI: 10.15129/5aed02b6-abf2-
- 302 479d-98b2-c3b154834d7b.

303 **References**

- Bernard F.R. and D. J. Noakes (1990) Pumping rates, water pressures, and oxygen use in
- 305 eight species of bivalve molluscs from British Columbia. Canadian Journal of Fisheries and
- 306 Aquatic Sciences 47(7): 90-149. <u>https://doi.org/10.1139/f90-149</u>
- 307 Challis J. K., M. L. Hanson, C. S. Wong (2016) Development and calibration of an organic-
- 308 diffusive gradients in thin films aquatic passive sampler for a diverse suite of polar organic
- 309 contaminants. *Analytical Chemistry* 88(21): 10583-91.
- 310 https://doi.org/10.1021/acs.analchem.6b02749
- 311 Chaves-Barquero L. G., K Hoang Luong, C. J. Mundy, C. W. Knapp, M. L. Hanson, C. S.
- Wong (2016) The release of wastewater contaminants in the Arctic: A case study from
- 313 Cambridge Bay, Nunavut, Canada. *Environmental Pollution* 218: 542-50.
- 314 <u>https://doi.org/10.1016/j.envpol.2016.07.036</u>
- 315 Dcosta, V. M., C.E. King, L. Kalan, M. Morar, W. W. L. Sung, C. Schwarz, D. Froese, G.
- 316 Zazula, F. Calmels, R. Debruyne, G. B. Golding, H. N. Poinar, G. D. Wright (2011) Antibiotic
- 317 resistance is ancient. *Nature* 447: 457-461. https://doi.org/10.1038/nature1038.
- 318 Gagnon, C., A. Lajeunesse (2012) Low removal of acidic and hydrophilic pharmaceutical
- 319 products by various types of municipal wastewater treatment plants. *Journal of Xenobiotics*
- 320 2(e3), 13-17.
- 321 Graham, D.W., M. J. Giesen, J. T. Bunce (2019a) Strategic approach for prioritizing local
- and regional sanitation interventions for reducing global antibiotic resistance. *Water* 11(1):
- 323 27. https://doi.org/10.3390/w11010027
- 324 Graham, D. W., G. Bergeron, M. W. Bourassa, J. Dickson, F. Gomes, A. Howe, L. H. Kahn,
- 325 P. S. Morley, H. M. Scott, S. Simjee, R. S. Singer, T. C. Smith, C. Storrs, T. E. Wittum.
- 326 (2019) Complexities in understanding antimicrobial resistance across domesticated animal,
- 327 human, and environmental systems. Ann. N.Y. Acad. Sci. 1441: 17-30.

328 <u>https://doi.org/10.1111/nyas/14036.</u>

- Hayward J., A. Jackson, L. Johnston, R. Jamieson (2018) Hydrological analysis of municipal
- source water availability in the Canadian Arctic territory of Nunavut accounting for population
- growth, infrastructure upgrades, and climate change. *Atlantic Geology* 54.
- 332 <u>https://doi.org/10.4138/atlgeol.2018.003</u>
- Hsiao S. I. C. (1992) Diel, tidal and vertical variations of phytoplankton and its environment
- 334 in Frobisher Bay. Arctic 45(4): 327-413. <u>https://doi.org/10.14430/arctic1411</u>
- 335 Krumhansl K. A., W. H. Krkosek, M. Greenwood, C. Ragush, J. Schmidt, J. Grant, J. Barrell,
- L. Lu, B Lam, G. A. Gagnon, R. C. Jamieson (2015) Assessment of Arctic community
- 337 wastewater impacts on marine benthic invertebrates. *Environmental Science & Technology*
- 338 49(2): 760-6. <u>https://doi.org/10.1021/es503330n</u>
- 339 Metcalf, T. G., B. Mullin, D. Eckerson, E. Moulton, E. P. Larkin (1979) Bioaccumulation and
- 340 depuration of enteroviruses by the soft-shelled clam, *Mya arenaria*. *Applied and*
- 341 Environmental Microbiology 38(2): 275-82. <u>https://doi.org/10.1128/aem.38.2.275-282.1979</u>
- Moanor A. J. W., S. L. Harper, J. M. Sargeant, S. Weese, A. Cunsolo, A. Bunce, J. Shirley,
- E. Sudlovenick, K. Shapiro (2020) *Cryptosporidium* and *Giardia* in locally harvested clams in
- 344 Iqaluit, Nunavut. Zoonoses 67(4): 352-61. <u>https://doi.org/10.1111/zph.12693</u>
- Neudorf K. D., Y. Nan Huang, C. M. Ragush, C. K. Yost, R. C. Jamieson, L. Truelstrup
- Hansen (2017) Antibiotic resistance genes in municipal wastewater treatment systems and
- receiving waters in Arctic Canada. *Science of the Total Environment* 598: 1085-94.
- 348 <u>https://doi.org/10.1016/j.scitotenv.2017.04.151</u>
- 349 Petersen J. K., M. K. Sejr, J. E. N. Larsen (2003) Clearance rates in the Arctic bivalves
- 350 *Hiatella arctica* and *Mya* sp. *Polar Biology* 26: 334-41. <u>https://doi.org/10.1007/s00300-003-</u>
- 351 <u>0483-2</u>

- Polo D., C. Álavarez, M. L. Vilariño, Á. Longa, J. L. Romalde (2014) Depuration kinetics of
- hepetatis A virus in clams. *Food Microbiology* 39: 103-7.
- 354 <u>https://doi.org/10.1016/j.fm.2013.11.011</u>
- 355 Schaefer C. M., D. Deslauriers, K. M. Jeffries (2022) The truncate softshell, *Mya truncata*, as
- a biomonitor of municipal wastewater exposure and historical anthropogenic impacts in the
- 357 Canadian Arctic. Canadian Journal of Fisheries and Aquatic Sciences 79(3): 367-79.
- 358 https://doi.org/10.1139/cjfas-2021-0078
- 359 Stroski K. M., K. Hoang Luong, J. K. Challis, L. G. Chaves-Barquero, M. L. Hanson, C. S.
- 360 Wong (2020) Wastewater sources of per- and polyfluorinated alkyl substance (PFAS) and
- 361 pharmaceuticals in four Canadian Arctic communities. Science of the Total Environment
- 362 708: 134494. https://doi.org/10.1016/j.scitotenv.2019.134494
- 363 Thomas F., J.-H. Hehemann, E. Rebuffet, M. Czjzek, G. Michel (2011) Environmental and
- 364 gut *Bacteroidetes*: the food connection. *Frontiers in Microbiology* 2.
- 365 <u>https://doi.org/10.3389/fmicb.2011.00093</u>
- 366 Ying, G.-G., R. S. Kookana, D. W. Kolpin (2009) Occurrence and removal of
- 367 pharmaceutically active compounds in sewage treatment plants with different technologies.
- 368 Journal of Environmental Monitoring 11, 1498-1505.
- 369 Zhao Q., J. Mao, H. Cai, H. Dai (2019) Driving factors of the flushing time of bays formed
- 370 where tributaries enter a reservoir. *River Research and Applications* 35(7): 881-91.
- 371 <u>https://doi.org/10.1002/rra.3497</u>
- 372 Zhu, et al. (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms.
- 373 *Proceedings of the National Academy of Sciences-USA* 110(9) 3435-3440.
- 374

Table 1. Sample locations and brief descriptions.

Sample	Location	Description
Wastewater	Influent* (n=3)	Raw sewage as it enters the treatment plant, 50 ml each.
	Discharge #1	Sediment (n=3, 10 g each, composited) and water (n=1;
	N63°44.6817/W68°32.3427	100 mL) at an outlet 50m from the treatment plant; the water
		begins to flow on the tidal flats.
	Discharge #2	Same as above, ~300m from the outlet as the discharged
	N63°44.5483/W68°32.2508	water flows the on tidal flats
	Discharge #3	Same as above, ~300m from the outlet as the discharged
	N63°44.5171/W68°32.2117	water flows the on tidal flats
	Retention lagoon (n=2) N63°44.6829/W68°32.1864	Raw sewage from the retention lagoon next to the treatment plant.
Frobisher Bay	Bay #1	Water sample (1000 mL) from Koojesse inlet, closest to the
	N63°44.6829/W68°31.9472	wastewater treatment plant
	Bay #2	Water sample (1000 mL) from Koojesse inlet, 2.1km from
	N63°43.6829/W68°31.1491	the outlet.
	Bay #3	Water sample (1000 mL) from Koojesse inlet, 5km from the
	N63°43.1289/68°26.9805	outlet, near Apex community.
	Bay #4	Water sample (1000 mL) from the western end of Frobisher
	N63*39.5901/008*46.4771	Bay, distant (SW-15km) from discharge, near
		Kitunadannigitud. This represents a control sample,
Othor	Coroldino Lako	Erochwater camples from the lake's couthwestern shereline
Ourier	N63°45 3667/W68°30 1360	close to the drinking water intake
	Sylvia Grinnell river	Ereshwater sample from upstream of Frohisher Bay
	N63°46.8088/W68°37.1494	
	Environmental soil sample *	This was a soil sample (10 g) collected near the lagoon, but
	N63°44.6829/W68°32.1864	it was not in direct contact with the wastewater.
Clams	Clams #1 (n=7)	Direct wastewater exposure; tidal flats near the outlet.
(Mya truncata) **		
	Clams #2 (n=8)	Potential wastewater exposure (SE-3km), near "Tundra Ridge"
	Clams #3 (n=5)	Potential wastewater exposure (S-5km); popular clam
		harvesting location "Apex"
	Clams #4 (n=6)	Potential wastewater exposure (S-4.9km); Monument Island
	`	is an uninhabited island at the mouth of the Koojesse inlet.
		Also a popular harvest location
	Clams #5 (n=6)	Collected near an uninhabited island, Aupalajat, which is
		distant (W-5.2km) from discharge with a geographical barrier
		(Peterhead inlet).
	Clams #6 (n=6)	At the western end of Frobisher Bay, distant (SW-15km)
		from discharge, near Kituriaqannigituq. It represents a
		" "control" sample, unlikely impacted by discharges.

376 377

- * Samples analysed by quantitative microarray analysis.
- 378 ** Locations were adapted from Schaefer et al. (2021)

- **Table 2**. Relative abundances of ARGs (log ARG/16S-rRNA), bacteria and fungus (either
- 381 genes/mL or genes/g) at four grouped locations. Values represent sample means (log-
- transformed) with standard deviations in parentheses. *Statistical comparisons did not
- include sediment values.

384

Gene	Wastewater	Wastewater Sediment*	Freshwater	Frobisher Bay	K-Wallis statistic*
	(3 locations)	(3 locations)	and lake)	(4 locations)	$(H_2 \text{ and } H_2)$
	(, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	,	, , , , , , , , , , , , , , , , , , ,	p-values)
sul1	-2.1 (0.5)	-1.5 (0.6)	-3.6 (0.0)	-4.0 (0.2)	6.7 / 0.04
ermB	-1.8 (0.2)	-2.8 (1.1)	-5.0 (0.2))	-4.6 (0.8)	6.6 / 0.04
acrA	-3.0 (0.2)	-2.5 (0.4)	-3.9 (0.3)	-3.9 (0.2)	6.6 / 0.04
qacH	-2.3 (0.6)	-2.5 (1.5)	-4.8 (1.2)	-5.0 (0.7)	6.6 / 0.04
dfrA	-2.8 (0.3)	-4.2 (0.9)	-4.0 (0.7)	-3.9 (0.7)	5.5 / 0.06
tet39	-1.4 (0.5)	-2.0 (0.9)	-5.2 (0.4)	-3.4 (1.3)	7.9 / 0.02
qnrA	-2.9 (1.5)	-4.0 (0.6)	-5.2 (1.5)	-4.0 (0.9)	3.5 / 0.17
cphA	-2.9 (0.5)	-2.0 (0.4)	-2.9 (0.4)	-2.5 (0.6)	0.2 / 0.91
ampC	-3.7 (1.1)	-3.1 (0.6)	-3.0 (0.2)	-3.9 (0.4)	3.3 / 0.19
<i>bla</i> тем	-2.5 (0.4)	-3.1 (0.6)	-3.0 (0.4)	-3.2 (0.3)	5.5 / 0.07
aphA3	-3.2 (0.3)	-3.5 (0.5)	-4.3 (0.1)	-4.5 (0.8)	6.9 / 0.03
Pootoria	70(02)	0.0 (0.4)	52(01)	64(02)	7 9 / 0 02
Fungus	6.9 (0.3)	9.9 (0.4) 9.1 (0.6)	5.3 (0.4) 4.9 (0.3)	5.6 (0.7)	4.8 / 0.09

385 386

- **Table 3**. The relative abundance of each ARG selected, with increasing distance from the
- 389 WWTP effluent outlet. The colour gradient shows the highest (red) to lowest (green) relative
- 390 abundance.

Gene	Wastewater discharge	Bay #1 , near wastewater	Bay #2	Bay #3 , Apex	Bay #4 Kituriaqannigituq
sul1	-2.05	-3.75	-4.12	-3.93	-4.12
ermB	-1.80	-3.65	-4.27	-5.25	-5.25
acrA	-3.02	-3.90	-3.80	-3.71	-4.21
qacH	-2.33	-4.46	-4.36	-5.54	-5.70
dfrA	-2.83	-3.10	-4.06	-3.65	-4.71
tet39	-1.43	-2.24	-2.39	-4.13	-4.81
qnrA	-2.92	-3.03	-3.64	-3.98	-5.20
cphA	-2.88	-1.65	-2.67	-2.74	-3.00
ampC	-3.70	-3.54	-3.76	-3.89	-4.37
<i>bla</i> тем	-2.54	-2.94	-3.01	-3.40	-3.63
aphA3	-3.21	-3.53	-4.93	-5.23	-4.33

Table 4. Relative abundances of ARGs (log ARG/16S-rRNA), bacteria and fungus (log genes/g of tissues) in clam tissues. Values represent sample means (log-transformed) with standard deviations in parentheses (in brackets); frequency (%) of detection in samples are also mentioned.

Gene	Clam #1	Clam #2	Clam #3	Clam #4	Clam #5	Clam # 6	Kruskal
	Wastewater	Tundra Ridge	Apex	Monument	Aupalajat	Kituriaqannigituq	Wallis <i>p</i> -
	(n=7)	(n=8)	(n=5)	Island (n=6)	(n=6)	(n=6)	value
sul1	-4.3 (0.3)	-4.4 (0.3)	-3.9 (0.2)	-4.1 (0.1)	-3.7 (0.2)	-3.9 (0.1)	0.20
	100%	88%	100%	100%	83%`́	100%	
ermB		-4.5 (0.5)	-5.7		-4.5		0.74
	0%	50%	20%	0%	17%	0%	
acrA	-3.7 (0.3)	-3.1 (0.3)	-3.1 (0.2)	-3.6 (0.3)	-2.9 (0.4)	-3.2 (0.4)	0.72
	100%	100%	100%	100%	67%	100%	
qacH	-3.2 (0.4)	-3.1 (0.3)	-3.3 (0.2)	-5.8 (0.3)	-3.6 (0.7)		0.15
	43%	50%	80%	50%	67%	0%	
dfrA	-3.7 (0.5)	-3.0 (0.5)	-3.8 (0.7)	-3.8 (0.4)	-3.5 (0.8)	-3.8 (0.6)	0.72
	43%	50%	80%	83%	50%	83%	
tet39	-5.4	-3.6 (0.1)	-4.4 (0.6)	-4.7 (0.8)	-3.6 (1.2)	-4.5 (0.3)	0.56
	14%	38%	60%	67%	50%	50%	
qnrA	-4.7 (0.6)	-4.9 (0.7)	-4.3 (0.6)	-4.0 (0.7)	-5.2 (0.3)	-4.2 (0.3)	0.51
	86%	63%	80%	100%	100%	83%	
cphaA	-4.2 (0.3)	-4.0 (0.4)	-4.0 (0.4)	-3.6 (0.2)	-3.5 (0.2)	-4.2 (0.2)	0.34
	86%	63%	100%	100%	100%	83%	
ampC	-4.0 (0.2)	-4.1 (0.1)	-3.7 (0.3)	-4.0 (0.2)	-3.5 (0.4)	-3.3 (0.4)	0.42
	86%	25%	100%	100%	83%	67%	
bla _{TEM}	-4.8 (0.2)	-4.2 (0.1)	-4.2 (0.3)	-4.4 (0.4)	-4.4 (0.2)	-4.3 (0.1)	0.36
	86%	75%	60%	83%	83%	83%	
aphA3	-3.9 (0.8)	-4.4 (0.3)	-3.7 (0.7)	-4.7 (0.4)	-4.1	-3.6 (0.4)	0.63
	43%	50%	60%	67%	17%	33%	
Total	4.5 (0.2)	4.2 (0.1)	4.5 (0.1)	4.7 (0.1)	4.2 (0.1)	4.2 (0.1)	0.03
bacteria							
(genes/g)							
Total	5.7 (0.3)	5.6 (0.3)	5.1 (0.5)	5.3 (0.2)	5.2 (0.2)	5.3 (0.6)	0.88
fungus							
(genes/g)							

Figure 1: Map of sample locations in August 2019. Key: \blacktriangle = wastewater samples; \triangle = Frobisher Bay samples; \circ = clam samples; \blacksquare = wastewater effluent-contaminated sediment (and water); and \square = "clean" soil sample.

Figure 2: Concentrations of compounds detected in Iqaluit Lagoon August 2019. Mean (±SD n=3) time-weighted averages of pharmaceuticals in Iqaluit municipal wastewater lagoon: atenolol (ATE), carbamazepine (CBZ), metoprolol (MET), naproxen (NAP), sulfapyridine (SPY), trimethoprim (TRI) and sulfamethoxazole (SMX).

Madeleine Starks¹, Christina M. Schaefer^{2,3}, Kenneth M. Jeffries², David Deslauriers^{3,4} Kim Hoang Luong⁵, Charles S. Wong⁶, Mark L. Hanson⁷, Charles W. Knapp^{1*}

- Centre of Water, Environment, Sustainability, and Public Health; Department of Civil & Environmental Engineering; University of Strathclyde, Glasgow, Scotland, UK
- Department of Biological Sciences; University of Manitoba, Winnipeg, MB, Canada
- 3. Fisheries and Oceans Canada, Winnipeg, MB, Canada
- 4. Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada
- 5. Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main St, Winnipeg, MB, R3C 3G8, Canada
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada

* Corresponding author:

Charles W. Knapp

75 Montrose St., Glasgow, UK G1 1XJ

Charles.Knapp@strath.ac.uk

	Overall Relative abundances ranking		Overall at	oundance	
		Plant	Nearby	Plant	Nearby
		influent	soils	influent	soils
Aminoglycoside	aac3-Via	-1.85	-1.34	2	1 3
Aminoglycoside	aadA_99	-1.86	-3.63	2	3 27
Aminoglycoside	aadA17	-1.95	-3.82	2	5 36
Aminoglycoside	aadA2-1	-2.36	-4.02	3	4 47
Aminoglycoside	aadA16	-2.67	-3.63	4	6 28
Aminoglycoside	aac3ia	-2.80		5	5
Aminoglycoside	aadA10	-2.93	-3.90	6	2 42
Aminoglycoside	aadA6	-2.98	-4.05	6	8 49
Aminoglycoside	aadA5	-3.13	-4.08	7	6 51
Aminoglycoside	aph3-III	-3.29		8	51
Aminoglycoside	aphA3	-3.33		8	5
Aminoglycoside	aadB	-3.35	-5.09	8	9 104
Aminoglycoside	sat4	-3.36	-5.86	9	1 138
Aminoglycoside	aph(3'')-ia	-3.40	-5.65	9	3 132
Aminoglycoside	ant6-ia	-3.57		10	7
Aminoglycoside	aadA7	-3.59	-3.29	10	8 19
Aminoglycoside	aac(3)-iid_iii_iif_iia_iie	-3.71	-4.16	11	6 58
Aminoglycoside	ant6-ib	-3.75		12	.' O
Aminoglycoside	aac(6')-Ib	-3.82		12	:6
Aminoglycoside	aph3via	-3.95		13	0
Aminoglycoside	Aac6-Aph2	-4.01		13	5
Aminoglycoside	spcN	-4.12	-4.26	13	9 61
Aminoglycoside	aph6ic	-4.21	-4.13	14	2 57
Aminoglycoside	aph4ib	-4.27	-3.91	14	3 45
Aminoglycoside	aph6ia	-4.28	-4.77	14	4 88
Aminoglycoside	aacC2	-4.41		15	4
Aminoglycoside	acc3-iva	-4.52	-4.90	15	8 91
Aminoglycoside	aac(6)-im	-5.11		19	1
Aminoglycoside	aac(6)-ir	-5.13	-5.24	19	3 114
Aminoglycoside	aac(6)-ig	-5.14	-5.56	19	4 129
Aminoglycoside	aac(6')-II	-5.14		19	15
Aminoglycoside	aph3-ib	-5.29		20	13
Aminoglycoside	aph3-viia	-5.45		21	1
Aminoglycoside	aacA_aphD	-5.47		21	3
Aminoglycoside	aac(6)-iz	-5.52	-4.95	21	7 96
Aminoglycoside	aac(6)-iw	-5.78		22	.6
Aminoglycoside	aacA43	-5.83		22	.9
Aminoglycoside	apmA		-5.12		106
Aminoglycoside	aph(2')-Id				
Aminoglycoside	strB				
Aminoglycoside	aph_viii				
Aminoglycoside	ArmA				
Aminoglycoside	ant4-ib				
Aminoglycoside	aadA2-2				
Aminoglycoside	aac(6)-IIC				

aadD

aadA9

Aminoglycoside

Aminoglycoside

Supplemental Table S1. Initial screening results of relative abundances (per 16S rRNA) and rank of antibiotic resistance genes in wastewater and nearby soils.

Amineglycoside apA1 Aminoglycoside aac(3)-ib Aminoglycoside aac(3)-ib Aminoglycoside aac(6)/I1 Aminoglycoside aac(6)/I1 Aminoglycoside aac(6)/I1 Aminoglycoside aac(6)-ly Aminoglycoside aac(7)-X Aminoglycoside aac(7)-X Aminoglycoside aac(7)-X Beta lactamase blaTEM -2.74 Beta lactamase blaCT -3.32 -4.01 84 46 Beta lactamase blaACT -3.32 -4.01 84 46 Beta lactamase blaACT -3.49 4.94 100 95 Beta lactamase blaACT -3.71 -5.34 117 117 Be	Aminoglycoside	spec_aph				
Aminoglycoside apc(3)-b Aminoglycoside aac(6')11 Aminoglycoside aac(3)-b Aminoglycoside aac(3)-ld_le Aminoglycoside apt(3)-ld_le Aminoglycoside apt(2)-ld_le Aminoglyc	Aminoglycoside	aac(6)-ij				
Aminoglycoside aac(6)-lb Aminoglycoside aadC(2)-ld Aminoglycoside aadC(2)-ld Aminoglycoside aac(6)-ly Aminoglycoside aac(6)-ly Aminoglycoside aac(6)-ly Aminoglycoside aac(6)-ly in Aminoglycoside aac(6)-ky in Beta lactamase aac(6)-ky in Beta lactamase aac(6)-ky in Beta lactamase blaTEM 2.74 51 Beta lactamase blaTEM 2.74 51 Beta lactamase blaOXY-1 3.26 -3.89 Beta lactamase blaOXY-1 3.22 -4.01 84 Beta lactamase blaOXY-1 -3.26 Beta lactamase blaOXY-1 -3.32 Beta lactamase blaOXY-1 -3.32 Beta lactamase blaOXY-1 -3.34 109 Statatamase blaOXY-1 Beta lactamase blaCTX-M-1.3.15 -5.75 Beta lactamase blaCX-M	Aminoglycoside	aphA1				
Aminoglycoside aac(6')I1 Aminoglycoside aad(3)-id_ie Aminoglycoside aac(3)-id_ie Aminoglycoside aac(6)-ly Aminoglycoside aac(6)-ly Aminoglycoside ac(6)-ly Aminoglycoside ac(6)-ly Aminoglycoside ac(6)-la (L_) X Aminoglycoside ac(6)-la (L_) X Aminoglycoside ac(3)-xa Aminoglycoside ac(6)-la (L_) X Aminoglycoside ac(6)-la (L_) X Aminoglycoside ac(6)-la (L_) X Aminoglycoside ac(6)-la (L_) X Aminoglycoside ac(7) ac(8)-la (L_) X Aminoglycoside ac(7) 3 Beta lactamase bla7DM Beta lactamase bla0XY-1 Bota lactamase bla0XY-1 Beta lactamase bla0XY-2 Beta lactamase bla0XY-2 Beta lactamase bla0XY-2 Beta lactamase bla0XY-1 Beta lactamase bla0XY-2 Beta lactamase bla0XY-1	Aminoglycoside	aac(3)-ib				
Aminoglycoside aadE Aminoglycoside aadC(3)-id_ie Aminoglycoside aplA-ia Aminoglycoside aatC(6)-ly Aminoglycoside str Aminoglycoside aac(6)-is_iu_ix Aminoglycoside aac(6)-is_iu_ix Aminoglycoside aac(6)-iv_ih Beta lactamase phA Beta lactamase blaTEM Path lactamase blaTEM Beta lactamase blaCXY-1 Beta lactamase blaCXY-1 Beta lactamase blaOXY-2 Beta lactamase blaOXY-1 Beta lactamase blaOXY-2 Beta lactamase blaOXY-1 Beta lactamase blaOXY-1 Beta lactamase blaOXY-1 Beta lactamase<	Aminoglycoside	aac(6')I1				
Aminoglycoside aac(3)-id_ie Aminoglycoside aph4-ia Aminoglycoside str Aminoglycoside str/ Aminoglycoside str/ Aminoglycoside str/ Aminoglycoside str/ Aminoglycoside str/ Aminoglycoside aac(6)-ki aac(6)-ki ni Aminoglycoside str/ Aminoglycoside aac(6)-ki aac(3)-xi -2.63 -4.71 41 83 Beta lactamase bla/CT -2.363 -4.01 84 49 Beta lactamase bla/XY-1 -3.26 -3.89 80 39 Beta lactamase bla/XY-1 -3.26 -3.89 109 9 Beta lactamase bla/XY-2 -3.63 109 9 Beta lactamase bla/XEN -3.78 -5.15 122 108 Beta lactamase bla/XY-1 -3.98 133 9 50 Beta lactamase bla/XON	Aminoglycoside	aadE				
Aminoglycoside aac(6)-ly Beta lactamase blaTEM -2.68 4.70 Beta lactamase blaCX+1 -3.26 -3.89 Beta lactamase blaCX+1 -3.26 -3.89 Beta lactamase blaCX+2 -3.63 109 Beta lactamase blaCX+4 Beta lactamase blaCX+4 Beta lactamase blaCX+4	Aminoglycoside	aac(3)-id_ie				
Aminoglycoside aac(6)-ly str aac(6)-ls_i_u_ix Aminoglycoside aac(6)-ls_i_u_ix Aminoglycoside aac(3)-xa Aminoglycoside aac(6)-lv, ih Beta lactamase aac(6)-lv, ih Beta lactamase aac(6)-lv, ih Beta lactamase bhTEM -2.68 -4.70 47 81 Beta lactamase bh3CPh -3.00 72 72 Beta lactamase bh3CN1 -3.26 -3.89 80 39 Beta lactamase bhaOX1-1 -3.26 -3.89 80 39 Beta lactamase blaOXY-1 -3.26 -3.89 80 39 Beta lactamase blaOXY-2 -3.63 109 9 Beta lactamase blaOXY-2 -3.63 109 9 Beta lactamase blaOXY-1 -3.39 33 5 Beta lactamase blaOXY-1 -3.36 1.10 10 95 Beta lactamase blaOXY-1 -3.78 -5.15 122 108 Beta lactamase blaCN -4.77	Aminoglycoside	aph4-ia				
Aminoglycoside str Aminoglycoside aac(6)-is_iu_ix Aminoglycoside aac(3)-xa Aminoglycoside aac(3)-xa Aminoglycoside aac(6)-iv_ih Betal lactamase aac(6)-iv_ih Betal lactamase aac(6)-iv_ih Betal lactamase blaTEM -2.74 51 Beta lactamase blaZ_opha -3.00 72 Beta lactamase blaZ_opha -3.00 72 Beta lactamase blaOXY-1 -3.26 -3.89 80 39 Beta lactamase blaOXY-1 -3.22 -4.01 84 46 Beta lactamase blaACT -3.29 -4.01 84 46 Beta lactamase blaACT -3.26 -3.89 80 39 Beta lactamase blaACT -3.26 -5.34 117 117 Beta lactamase blaACX-1 -3.63 109 9 5 5 122 10 96 133 5 5 122 10 5 6 6 6 6 6 6	Aminoglycoside	aac(6')-ly				
Aminoglycoside atc/(6)-is_ju_ix Aminoglycoside atc/(3)-xa aminoglycoside acc(3)-xa Aminoglycoside acc(3)-xa Aminoglycoside acc(3)-xa Beta lactamase appC -2.53 4.71 41 83 Beta lactamase banc -2.68 -4.70 47 83 Beta lactamase bla DEM -2.74 51 51 Beta lactamase bla OXY-1 -3.26 -3.89 80 39 Beta lactamase bla OXY-1 -3.26 -3.89 80 39 Beta lactamase bla OXY-1 -3.26 -3.89 80 39 Beta lactamase bla OXY-2 -3.63 109 90 <t< td=""><td>Aminoglycoside</td><td>str</td><td></td><td></td><td></td><td></td></t<>	Aminoglycoside	str				
Aminoglycoside strA Aminoglycoside aac(3)-xa Aminoglycoside aac(6)-v. ih Beta lactamase cphA -2.68 -4.70 47 81 Beta lactamase blaTEM -2.74 51 51 Beta lactamase blaZopha -3.00 72 72 Beta lactamase blaZopha -3.00 72 74 84 Beta lactamase blaXY-1 -3.26 -3.89 80 39 Beta lactamase blaXCT -3.32 -4.01 84 46 Beta lactamase blaACT -3.32 -4.01 84 46 Beta lactamase blaACT -3.49 -4.94 100 95 Beta lactamase blaOXY-2 -3.63 109 117 117 Beta lactamase blaOXY-4 -3.76 -5.15 122 108 128 Beta lactamase blaADX_2MA -4.38 150 133 146 133 Beta lactamase blaCN -4.57 160 161 63 Be	Aminoglycoside	aac(6)-is_iu_ix				
Aminoglycoside aac(3)-xa Aminoglycoside aac(6)-iv ih Beta lactamase mpC -2.53 -4.71 41 83 Beta lactamase cphA -2.68 -4.70 47 81 Beta lactamase blaTEM -2.74 51 51 Beta lactamase blaOXY-1 -3.26 -3.89 80 39 Beta lactamase blaOXY-1 -3.22 -4.01 84 46 Beta lactamase blaOXY-2 -3.63 109 55 Beta lactamase blaOXY-2 -3.63 109 55 Beta lactamase blaOXY-2 -3.63 109 55 Beta lactamase blaOXY-1 -3.98 133 56 Beta lactamase blaOXD_blaCMY -3.84 128 108 Beta lactamase blaNOX_blaCMY -3.84 128 108 Beta lactamase blaACMY -4.38 150 56 Beta lactamase blaACMY -4.57 160 </td <td>Aminoglycoside</td> <td>strA</td> <td></td> <td></td> <td></td> <td></td>	Aminoglycoside	strA				
Aminoglycoside aac(6)-iv_ih Beta lactamase ampC -2.53 -4.71 41 83 Beta lactamase biaTEM -2.68 -4.70 47 81 Beta lactamase biaTEM -2.74 51 51 Beta lactamase biaTEM -2.74 51 51 Beta lactamase biaACT -3.32 -4.01 84 46 Beta lactamase biaVEB -3.71 -5.34 117 117 Beta lactamase biaCTX-M-1_3_15 -3.78 -5.15 122 108 Beta lactamase biaFOX -4.17 140 41 63 Beta lactamase biaFOX	Aminoglycoside	aac(3)-xa				
Beta lactamase ampC -2.53 -4.71 41 83 Beta lactamase cphA -2.68 -4.70 47 81 Beta lactamase bla ² cpha -3.00 72 51 Beta lactamase bla ² cpha -3.00 72 51 Beta lactamase blaOXY-1 -3.26 -3.89 80 39 Beta lactamase blaMIR -3.49 4.01 84 46 Beta lactamase blaMIR -3.49 4.94 100 95 Beta lactamase blaMIR -3.49 4.94 100 95 Beta lactamase blaVEB -3.71 -5.34 117 117 Beta lactamase blaOX_blaCMY -3.84 128 108 108 Beta lactamase blaCMY -3.84 128 108 161 63 Beta lactamase blaCMY -4.38 150 160 164 63 161 63 Beta lactamase blaCARB </td <td>Aminoglycoside</td> <td>aac(6)-iv_ih</td> <td></td> <td></td> <td></td> <td></td>	Aminoglycoside	aac(6)-iv_ih				
Beta lactamase cphA -2.68 -4.70 47 81 Beta lactamase blaTEM -2.74 51 Beta lactamase blaOXY-1 -3.00 72 Beta lactamase blaOXY-1 -3.26 -3.89 80 39 Beta lactamase blaOXY-2 -3.63 109 9 Beta lactamase blaOXY-2 -3.63 109 117 Beta lactamase blaOXY-2 -3.64 128 128 Beta lactamase blaCXY-1 -3.84 128 108 Beta lactamase blaCX-11 -3.98 133 108 Beta lactamase blaCX-10 -4.57 160 166 Beta lactamase blaCARB -4.59 -4.28 161 63 Beta lactamase <t< td=""><td>Beta lactamase</td><td>ampC</td><td>-2.53</td><td>-4.71</td><td>41</td><td>83</td></t<>	Beta lactamase	ampC	-2.53	-4.71	41	83
Beta lactamase ba TEM -2.74 51 Beta lactamase bl3_opha -3.00 72 Beta lactamase bla-ACT -3.26 -3.89 80 39 Beta lactamase bla-ACT -3.32 -4.01 84 46 Beta lactamase blaACT -3.32 -4.01 84 46 Beta lactamase blaACY-2 -3.63 109 9 Beta lactamase blaOXY-2 -3.63 109 9 Beta lactamase blaOXY-1 -5.34 117 117 Beta lactamase blaCTX-M-1_3_15 -3.78 -5.15 122 108 Beta lactamase blaCAMY -3.84 128 106 106 Beta lactamase blaCNPW -4.38 150 106 10	Beta lactamase	cphA	-2.68	-4.70	47	81
Beta lactamase bl3_cpha -3.00 72 Beta lactamase blaQXY-1 -3.26 -3.89 80 39 Beta lactamase blaACT -3.32 -4.01 84 46 Beta lactamase blaMR -3.49 100 95 Beta lactamase blaOXY-2 -3.63 109 Beta lactamase blaOXS_blaCMY -3.84 117 117 Beta lactamase blaCX-M-1.3_15 -3.78 -5.15 122 108 Beta lactamase blaGOX, blaCMY -3.84 128 133 140 140 140 140 140 141 140 141 140 141 140 141 140 141 140 141	Beta lactamase	blaTEM	-2.74		51	
Beta lactamase blaO/Y+1 -3.26 -3.89 80 39 Beta lactamase bla-ACT -3.32 -4.01 84 46 Beta lactamase blaOXY-2 -3.63 109 9 Beta lactamase blaOXY-2 -3.63 109 9 Beta lactamase blaOXY-2 -3.63 109 9 Beta lactamase blaVEB -3.71 -5.34 117 117 Beta lactamase blaCTX-M-1_3_15 -3.78 -5.15 122 108 Beta lactamase blaSHV-11 -3.98 133 109 100	Beta lactamase	bl3 cpha	-3.00		72	
Beta lactamase bla-ACT -3.32 -4.01 84 46 Beta lactamase blaMIR -3.49 -4.94 100 95 Beta lactamase blaOXY-2 -3.63 109 117 117 Beta lactamase blaOXY-2 -3.63 109 117 117 117 Beta lactamase blaCTX-M-1_3_15 -3.78 -5.15 122 108 Beta lactamase blaSHV-11 -3.98 133 133 140 140 140 140 140 141 140 140 140 140 140 140 140 140 140 140 141 140 141 140 141 140 141 <td< td=""><td>Beta lactamase</td><td>blaOXY-1</td><td>-3.26</td><td>-3.89</td><td>80</td><td>39</td></td<>	Beta lactamase	blaOXY-1	-3.26	-3.89	80	39
Beta lactamase blaMIR -3.49 -4.94 100 95 Beta lactamase blaOXY-2 -3.63 109 Beta lactamase blaVEB -3.71 -5.34 117 117 Beta lactamase blaCXX-/2 -3.63 109 108 Beta lactamase blaCXX-/1 -5.15 122 108 Beta lactamase blaCXA/10 -3.84 128 106 Beta lactamase blaCARB -4.57 160 108 100 4.65 168 63 64 63 64 63 64 63 64 64 64 64 64 64 64 64 64 64 64 70 80 84 128 124 124 14 144 144	Beta lactamase	bla-ACT	-3.32	-4.01	84	46
Beta lactamase blaOXY-2 -3.63 109 Beta lactamase blaOXY-2 -3.63 117 117 Beta lactamase blaCTX-M-1_3_15 -3.78 -5.15 122 108 Beta lactamase blaOXy-blaCMY -3.84 128 128 133 140 Beta lactamase blaSHV-11 -3.98 133 140 140 140 Beta lactamase blaSHV-11 -3.98 150 160 160 161 63 Beta lactamase blaPSE -4.59 -4.28 161 63 64 64 66 160 168 168 168 161 63 164 170 80 181 117 117 117 117 117 117 117 117 1111 111 1111 <	Beta lactamase	blaMIR	-3.49	-4.94	100	95
Beta lactamase blaVEB -3.71 -5.34 117 117 Beta lactamase blaVCX-M-1_3_15 -3.78 -5.15 122 108 Beta lactamase blaNOX_blaCMY -3.84 128 133 140 140 140 140 140 140 140 140 140 141 140 140 141 140 141 140 141 140 141 140 141 140 141 140 141 140 141 140 141 140 141 140 141 140 141 140 141 140 141 140 141 140 141 140 141 140 161 63 163 163 163 163 163 163 163 163 163 164 163 164 170 80 164 163 164 170 171 175 164 164 170 160 164 164 164	Beta lactamase	blaOXY-2	-3 63		109	
Beta lactamase blaCTX-M-1_3_15 -3.78 -5.15 122 108 Beta lactamase blaCTX-M-1_3_15 -3.78 -5.15 122 108 Beta lactamase blaCTX-M-1_3_15 -3.78 -5.15 122 108 Beta lactamase blaCTX-M-1 -3.98 133 133 133 Beta lactamase blaCTX-M-1 -3.98 133 161 63 Beta lactamase blaEN -4.37 160 160 160 Beta lactamase blaQXA10 -4.65 168 163 163 Beta lactamase blaQARB -4.69 -4.66 170 80 Beta lactamase blaQAPDC -4.70 171 175 Beta lactamase blaPAO_PDC -4.70 171 175 Beta lactamase blaPAC-1 -5.10 190 181 190 Beta lactamase blaCX-1 -5.10 190 190 190 115 Beta lactamase blaCX-1 -5.10 190 116 116 116 116 116 116 <td>Beta lactamase</td> <td>blaV/FB</td> <td>-3 71</td> <td>-5.34</td> <td>100</td> <td>117</td>	Beta lactamase	blaV/FB	-3 71	-5.34	100	117
Deta latatamase blaMOX_blaCMY -3.84 128 Beta latatamase blaMOX_blaCMY -3.84 133 Beta latatamase blaMOX_blaCMY -4.87 140 Beta latatamase blaFOXnew -4.17 140 Beta latatamase blaFOXnew -4.17 140 Beta latatamase blaCXP -4.88 150 Beta latatamase blaPSE -4.57 160 Beta latatamase blaPSE -4.65 168 Beta latatamase blaCARB -4.69 -4.66 170 80 Beta latatamase blaPAO_PDC -4.70 171 80 Beta latatamase blaPAO_PDC -4.70 171 80 Beta latatamase blaACC-1 -5.10 190 80 Beta latamase blaACC-1 -5.10 190 80 Beta latamase cefa_ampc -5.27 202 804 80 80 80<	Beta lactamase	blaCTX-M-1 3 15	-3.78	-5 15	122	108
Deta lactamase blaktory_blabini -0.04 120 Beta lactamase blaSHV-11 -3.98 133 Beta lactamase blaFOxnew -4.17 140 Beta lactamase blaEN -4.38 150 Beta lactamase blaEN -4.57 160 Beta lactamase blaPSE -4.59 -4.28 161 63 Beta lactamase blaOXA10 -4.65 168 168 170 80 Beta lactamase blaCARB -4.69 -4.66 170 80 864 164 63 164 171 175 80 84 181 171 175 80 181 190 181 190 11 11 11 11 11 11 11 11 11 11	Beta lactamase	blaMOX_blaCMV	-3.84	-0.10	122	100
Deta lactalitade blaFOXnew -4.17 140 Beta lactamase blaFOXnew -4.17 140 Beta lactamase blaLEN -4.38 150 Beta lactamase blaPSE -4.57 160 Beta lactamase blaPSE -4.59 -4.28 161 63 Beta lactamase blaOA10 -4.65 168 168 Beta lactamase blaOARB -4.69 -4.66 170 80 Beta lactamase blaAC_PDC -4.77 171 80 Beta lactamase blaACC-1 -5.10 190 100 100 Beta lactamase blaACC-1 -5.10 190 100	Bota lactamase		-0.04		120	
Deta lactamase bla/CMIew -4.17 140 Beta lactamase bla/EN -4.38 150 Beta lactamase bla/SE -4.57 160 Beta lactamase bla/SE -4.57 160 Beta lactamase bla/SE -4.57 160 Beta lactamase bla/CARB -4.69 -4.66 170 80 Beta lactamase bla/CARB -4.70 171 80 Beta lactamase bla/CARB -4.70 171 80 Beta lactamase bla/CARB -4.77 175 80 Beta lactamase cfiA -4.77 175 80 Beta lactamase bla/CC-1 -5.10 190 80 Beta lactamase bla/CC-1 -5.27 202 204 Beta lactamase nomobile_bla/DC -5.27 202 204 Beta lactamase bla/CX-M -5.47 214 214 Beta lactamase bla/IMI -6.04 235 235 Beta lactamase bla/IMI -6.04 235 235	Beta lactamase	blaCity-it	-3.30		133	
Deta lactamaseDial.E.N-4.30150Beta lactamaseblaPSE-4.57160Beta lactamaseblaPSE-4.59-4.28161Beta lactamaseblaOXA10-4.65168Beta lactamaseblaCARB-4.69-4.6617080Beta lactamaseblaPAO_PDC-4.7017180Beta lactamaseblaPAO_PDC-4.7017180Beta lactamaseblaPAO_PDC-4.7017180Beta lactamaseblaPAO_PDC-4.7017180Beta lactamaseblaPAO_PDC-4.7017180Beta lactamaseblaPAO_PDC-4.7017180Beta lactamaseblaPAO_PDC-4.7017180Beta lactamaseblaCARB-4.5117080Beta lactamaseblaACC-1-5.1019080Beta lactamaseblaACC-1-5.1019090Beta lactamasecefa_ampc-5.2920480Beta lactamaseblaCTX-M-5.4721480Beta lactamaseblaVIM-5.6422180Beta lactamaseblaIMI-6.0423515Beta lactamaseblaIMI-6.0423515Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaI	Deta lactamase		-4.17		140	
Deta lactantaseDeta lactantas	Deta lactamase		-4.50		150	
Deta lactantaseDia SE-4.59-4.2516103Beta lactantaseblaOXA10-4.65168Beta lactamaseblaCARB-4.69-4.6617080Beta lactamaseblaPAO_PDC-4.70171175Beta lactamasebla-L1-4.96181190Beta lactamaseblaACC-1-5.10190190Beta lactamaseblaACC-1-5.10190190Beta lactamasecefa_ampc-5.27202204Beta lactamasecefa_ampc-5.2920414Beta lactamaseblaCTX-M-5.47214214Beta lactamaseblaCC-5.53218115Beta lactamaseblaGES-5.27115115Beta lactamaseblaGES-5.27115115Beta lactamaseblaINI-6.04235115Beta lactamaseblaINIR-5.27115115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27125Beta lactamaseblaINIR-5.27125Beta lactamaseblaINIR-5.2712	Beta lactamase		-4.57	1 20	100	62
Deta lactamaseblaCARD-4.65106Beta lactamaseblaCARB-4.69-4.6617080Beta lactamaseblaPAO_PDC-4.70171175Beta lactamasebla-L1-4.96181181Beta lactamasebla-L1-5.10190190Beta lactamasenonmobile_blaADC-5.27202Beta lactamasecefa_ampc-5.29204Beta lactamaseblaCC-1-5.10114Beta lactamaseblaCTX-M-5.45212Beta lactamaseblaCC-5.53218Beta lactamaseblaCES-5.64221Beta lactamaseblaUIM-6.04235Beta lactamaseblaIMI-6.04235Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamasebla1MIR-5.27115Beta lactamasebla1-5.275.27Beta lactamasebla1-5.27115Beta lactamasebla1-5.27115Beta lactamasebla1-5.27115Beta lactamasebla1-5.275.27Beta lactamasebla1-5.27115Beta lactamasebla1-5.275.27Beta lactamasebla1-5.275.27Beta lactamasebla1-5.275.27Beta lactamasebla1-5.275.27Beta lactamasebla1-5.275.27 </td <td>Dela lactamase</td> <td></td> <td>-4.59</td> <td>-4.20</td> <td>101</td> <td>03</td>	Dela lactamase		-4.59	-4.20	101	03
Beta lactamaseblaCARB-4.69-4.6617080Beta lactamaseblaPAO_PDC-4.70171Beta lactamasecfiA-4.77175Beta lactamasebla-L1-4.96181Beta lactamaseblaACC-1-5.10190Beta lactamasenonmobile_blaADC-5.27202Beta lactamasecefa_ampc-5.29204Beta lactamaseblaCTX-M-5.45212Beta lactamaseblaCTX-M-5.47214Beta lactamaseblaInt-6.04235Beta lactamaseblaGES-5.27115Beta lactamaseblaINI-6.04235Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.2712Beta lactamaseblaINIR-5.2712Beta lactamaseblaIND-5.2712Beta lactamaseblaIND-5.2712Beta lactamaseblaIND-5.2712Beta lactamaseblaINIR-5.2712Beta l	Deta lactamase	blaCARR	-4.05	4.66	100	00
Beta lactamaseblaPAO_PDC-4.70171Beta lactamasecfiA-4.77175Beta lactamasebla-L1-4.96181Beta lactamaseblaACC-1-5.10190Beta lactamasenonmobile_blaADC-5.27202Beta lactamasecefa_ampc-5.29204Beta lactamaseblaCTX-M-5.45212Beta lactamaseblaCTX-M-5.47214Beta lactamaseblaVIM-5.64221Beta lactamaseblaVIM-5.64221Beta lactamaseblaGES-5.27115Beta lactamaseblaGES-5.27115Beta lactamaseblaIMI-6.04235Beta lactamaseblaGES-5.27115Beta lactamaseblaIMI-6.04235Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.275.27Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.275.27Beta lactamaseblaIMIR-5.275.27Beta lactamaseblaIMIR-5.275.27Beta lactamaseblaIMIR-5.275.27Beta lactamase <t< td=""><td>Bela laciamase</td><td></td><td>-4.09</td><td>-4.00</td><td>170</td><td>80</td></t<>	Bela laciamase		-4.09	-4.00	170	80
Beta lactamaseCIIA-4.77175Beta lactamasebla-L1-4.96181Beta lactamaseblaACC-1-5.10190Beta lactamasenonmobile_blaADC-5.27202Beta lactamasecefa_ampc-5.29204Beta lactamaseblaCTX-M-5.45212Beta lactamaseblaCTX-M-5.47214Beta lactamaseblaCTX-M-5.64221Beta lactamaseblaVIM-5.64221Beta lactamaseblaVIM-5.64235Beta lactamaseblaGES-5.27115Beta lactamaseblaGES-5.27115Beta lactamaseblaIMI-6.04235Beta lactamaseblaGES-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamasebla1-5.27115Beta lactamasebla1-5.27115Beta lactamasebla1ND-5.27125Beta lactamasebla1-5.27125Beta lactamasebla1-5.27125Beta lactamasebla1-5.27125Beta lactamasebla2-5.27125Beta lactamasebla3-5.27125Beta lactamasebla1-5.27-5.27Beta lactamasebla3-5.27-5.27Beta lactamasebla4-5.27-	Bela laclamase		-4.70		171	
Beta lactamasebla-L1-4.96181Beta lactamaseblaACC-1-5.10190Beta lactamasenonmobile_blaADC-5.27202Beta lactamasecefa_ampc-5.29204Beta lactamasePbp5-5.45212Beta lactamaseblaCTX-M-5.47214Beta lactamaseblaCC-5.53218Beta lactamaseblaVIM-5.64221Beta lactamaseblaVIM-5.64235Beta lactamaseblaGES-5.27115Beta lactamaseblaGES-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIND-5.27115	Beta lactamase		-4.77		175	
Beta lactamaseblaACC-1-5.10190Beta lactamasenonmobile_blaADC-5.27202Beta lactamasecefa_ampc-5.29204Beta lactamaseblaCTX-M-5.45212Beta lactamaseblaCTX-M-5.47214Beta lactamaseblaCCC-5.53218Beta lactamaseblaVIM-5.64221Beta lactamaseblaVIM-5.64221Beta lactamaseblaGES-5.27115Beta lactamaseblaGES-5.27115Beta lactamaseblaIMI-6.04235Beta lactamaseblaIMI-6.04235Beta lactamaseblaGES-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamasebla1-5.27115Beta lactamasebla1-5.2712Beta lactamasebla1-5.2712Beta lactamasebla1-5.2712Beta lactamasebla1-5.2712Beta lactamasebla1-5.2712Beta lactamasebla1-5.2712Beta lactamasebla1-5.27-5.27Beta lactamasebla1-5.27-5.27Beta lactamasebla1-5.27-5.27Beta lactamasebla1-5.27-5.27Beta lactamasebla1-5.27-5.27Beta lactamasebla1-5.27-5.27Beta lactamasebla1-5.27-5.27 <td>Beta lactamase</td> <td>DIA-L1</td> <td>-4.96</td> <td></td> <td>181</td> <td></td>	Beta lactamase	DIA-L1	-4.96		181	
Beta lactamasenonmobile_blaADC-5.27202Beta lactamasecefa_ampc-5.29204Beta lactamasePbp5-5.45212Beta lactamaseblaCTX-M-5.47214Beta lactamaseblaCtX-5.53218Beta lactamaseblaVIM-5.64221Beta lactamaseblaVIM-6.04235Beta lactamaseblaGES-5.27115Beta lactamaseimp-marko-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27-5.27Beta lactamaseblaIMIR-5.27-5.27Beta lactamaseblaIMIR-5.27-5.27Beta lactamaseblaIMIR-5.27-5.27Beta lactamaseblaIMIR-5.27-5.27Beta lactamaseblaIMIR-5.27-5.27Beta lactamaseblaIMIR-5.27-5.27Beta lactamaseblaIMIR-5.27-5.27Beta lact	Beta lactamase	DIAACC-1	-5.10		190	
Beta lactamasecefa_ampc-5.29204Beta lactamasePbp5-5.45212Beta lactamaseblaCTX-M-5.47214Beta lactamasebl1acc-5.53218Beta lactamaseblaVIM-5.64221Beta lactamaseblaIMI-6.04235Beta lactamaseblaGES-5.27115Beta lactamaseimp-marko-5.27115Beta lactamaseblaIMIR-5.64221Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27125Beta lactamasebla1-5.27125Beta lactamasebla1-5.27125Beta lactamasebla1-5.27125Beta lactamasebla1-5.27-5.27Beta lactamasebla1-5.27-5.27Beta lactamasebla1-5.27-5.27Beta lactamasebla1-5.27-5.27Beta lactamasebla1-5.27-5.27Beta lactamasebla1-5.27-5.27Beta lactamasebla2-5.27 <td< td=""><td>Beta lactamase</td><td></td><td>-5.27</td><td></td><td>202</td><td></td></td<>	Beta lactamase		-5.27		202	
Beta lactamasePbp5-5.45212Beta lactamaseblaCTX-M-5.47214Beta lactamasebl1acc-5.53218Beta lactamaseblaVIM-5.64221Beta lactamaseblaIMI-6.04235Beta lactamaseblaGES-5.27115Beta lactamaseimp-marko-5.27115Beta lactamaseblaIMIR-5.47-5.27Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaIND-5.27115	Beta lactamase	ceta_ampc	-5.29		204	
Beta lactamaseblaCTX-M-5.47214Beta lactamasebl1acc-5.53218Beta lactamaseblaVIM-5.64221Beta lactamaseblaIMI-6.04235Beta lactamaseblaGES-5.27115Beta lactamaseimp-marko-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaIND-5.27115Beta lactamaseblaIND-5.27-5.27	Beta lactamase	Pbp5	-5.45		212	
Beta lactamasebl1acc-5.53218Beta lactamaseblaVIM-5.64221Beta lactamaseblaIMI-6.04235Beta lactamaseblaGES-5.27115Beta lactamaseimp-marko-5.27115Beta lactamasekPC-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaIMIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamaseblaINIR-5.27115Beta lactamasebla1-5.27-5.27Beta lactamasebla1-5.27-5.27Beta lactamasebla1-5.27-5.27Beta lactamasebla1-5.27-5.27Beta lactamasebla-SME-5.27-5.27Beta lactamasebla-SME-5.27-5.27Beta lactamaseblaHERA-5.27-5.27Beta lactamaseblaIND-5.27-5.27	Beta lactamase	blaCTX-M	-5.47		214	
Beta lactamaseblaVIM-5.64221Beta lactamaseblaIMI-6.04235Beta lactamaseblaGES-5.27115Beta lactamaseimp-marko5.27115Beta lactamaseKPC5.27115Beta lactamaseblaIMIR5.27115Beta lactamaseblaIMIR5.27115Beta lactamaseblaIMIR5.27115Beta lactamaseblaIMIR5.27115Beta lactamaseblaIMIR5.27115Beta lactamaseblaIMIR5.27115Beta lactamasebla15.27115Beta lactamasebla15.275.27Beta lactamasebla15.275.27Beta lactamasebla15.275.27Beta lactamasebla15.275.27Beta lactamasebla-SME5.275.27Beta lactamasebla-SME5.275.27Beta lactamasebla-SME5.275.27Beta lactamasebla-SME5.275.27Beta lactamaseblaHERA5.275.27Beta lactamaseblaIND5.275.27	Beta lactamase	bl1acc	-5.53		218	
Beta lactamaseblaIMI-6.04235Beta lactamaseblaGES-5.27115Beta lactamaseimp-marko5.27115Beta lactamaseKPC5.27115Beta lactamaseblaIMIR5.27115Beta lactamaseblaIMIR5.27115Beta lactamaseblaIMIR5.27115Beta lactamaseblaIMIR5.27115Beta lactamaseblaIMIR5.27115Beta lactamaseblaIMIR5.27115Beta lactamasebla15.27115Beta lactamasebla15.275.27Beta lactamasebla-SME5.275.27Beta lactamasebla-SME5.275.27Beta lactamasebla-SME5.275.27Beta lactamasebla-SME5.275.27Beta lactamaseblaHERA5.275.27Beta lactamaseblaIND5.275.27	Beta lactamase	blaVIM	-5.64		221	
Beta lactamaseblaGES-5.27115Beta lactamaseimp-marko115Beta lactamaseKPCBeta lactamaseblaIMIRBeta lactamasebla1Beta lactamasebla1Beta lactamasebla-SMEBeta lactamasebla-SMEBeta lactamaseblaHERABeta lactamaseblaIND	Beta lactamase	blaIMI	-6.04		235	
Beta lactamaseimp-markoBeta lactamaseKPCBeta lactamaseblaIMIRBeta lactamasebla1Beta lactamaseNDM newBeta lactamasebla-SMEBeta lactamasepbpBeta lactamaseblaHERABeta lactamaseblaIND	Beta lactamase	blaGES		-5.27		115
Beta lactamaseKPCBeta lactamaseblaIMIRBeta lactamasebla1Beta lactamaseNDM newBeta lactamasebla-SMEBeta lactamasepbpBeta lactamaseblaHERABeta lactamaseblaIND	Beta lactamase	imp-marko				
Beta lactamaseblaIMIRBeta lactamasebla1Beta lactamaseNDM newBeta lactamasebla-SMEBeta lactamasepbpBeta lactamaseblaHERABeta lactamaseblaIND	Beta lactamase	KPC				
Beta lactamasebla1Beta lactamaseNDM newBeta lactamasebla-SMEBeta lactamasepbpBeta lactamaseblaHERABeta lactamaseblaIND	Beta lactamase	blaIMIR				
Beta lactamaseNDM newBeta lactamasebla-SMEBeta lactamasepbpBeta lactamaseblaHERABeta lactamaseblaIND	Beta lactamase	bla1				
Beta lactamasebla-SMEBeta lactamasepbpBeta lactamaseblaHERABeta lactamaseblaIND	Beta lactamase	NDM new				
Beta lactamasepbpBeta lactamaseblaHERABeta lactamaseblaIND	Beta lactamase	bla-SME				
Beta lactamase blaHERA Beta lactamase blaIND	Beta lactamase	pbp				
Beta lactamase blaIND	Beta lactamase	blaHERA				
	Beta lactamase	blaIND				

Beta lactamase Beta lactamase Beta lactamase Beta lactamase	nonmobile blaBEL blaGOB blaZ blaOCH				
Beta lactamase	CTXA				
Beta lactamase	penA				
Beta lactamase	cepA				
Beta lactamase					
Beta lactamase	ampC_blaDHA				
Beta lactamase	blaPER				
Beta lactamase	blaROB				
Beta lactamase	blaSFO				
Beta lactamase	blaTLA				
Beta lactamase	mecA				
Beta lactamase	blaB-11_13_14				
fluoroquinolone	qnrS2	-1.17	-4.34	7	66
fluoroquinolone	qepA_1_2	-3.34	-3.65	87	29
fluoroquinolone	qnrB46_47_48	-3.56	-4.60	105	78
fluoroquinolone	oqxA	-3.64	-5.69	112	134
fluoroquinolone	QnrS1_S3_S5	-3.72		119	
fluoroquinolone	qnrD	-4.12		138	
fluoroquinolone	QnrB4	-4.36	-4.36	148	68
fluoroquinolone	QnrVC4_VC5_VC7	-5.51		216	
fluoroquinolone	QnrVC1_VC3_VC6				
fluoroquinolone	norA				
MDR	qacH_351	-1.56	-2.97	15	13
MDR	merA-marko	-1.63	-2.77	17	11
MDR	рсоА	-2.05	-4.25	28	60
MDR	arsA	-2.49	-2.89	40	12
MDR	cefa_qacelta	-2.64	-4.11	44	55
MDR	tcrB	-2.73	-5.48	49	124
MDR	mdth	-2.81	-5.37	56	120
MDR	сорА	-2.83	-3.88	59	38
MDR	toIC	-2.94	-5.17	63	109
MDR	czcA	-2.97	-3.15	66	17
MDR	acrB	-2.98	-5.34	67	116
MDR	acrA	-3.18		78	
MDR	terW	-3.37		92	
MDR	acrR	-3.56	-5.50	104	127
MDR	mdtg	-3.67	-3.69	115	33
MDR	sugE	-3.80	-5.37	123	119
MDR	bexA norM	-3.81		125	
MDR	marR	-4.06		137	
MDR	pbrT	-4.40	-4.56	152	76
MDR	, mexB	-5.80		228	
MDR	mtrD	-5.96		231	
MDR	adel				
MDR	cmr				
MDR	mtrE				
MDR	silE				
MDR	cadC				
MGE	IS26	-0.98	-1.83	4	5
MGE	int1	-1.23	-2.00	8	8
					-

MGE	IS21-ISAs29	-1.24	-4.31	9	65
MGE	tnpA-7	-1.24	-3.87	10	37
MGE	IS6100	-1.29	-1.70	12	4
MGE	IS613	-1.62	-5.10	16	105
MGE	TN5403	-1.65	-4.07	18	50
MGE	Tp614	-1.74	-5.03	19	100
MGE	Tn3	-1.81	-4.46	20	72
MGE	IS200-2	-1.98	-4 11	26	54
MGE	tnpA-6	-2 14	-3 89	30	40
MGE	nBS228-IncP-1a	-2.35	-3.91	33	43
MGE	ISEcn1	-2.37	-3 50	35	25
MGE	tnnΔ-5	-2.01	-2.98	30	20 16
MGE	19200-1	_2.40 _2.75	_1 92	52	03
MGE	IncN ren	-2.15	-4.92	52	90 04
MCE	trb C	-2.15	-4.34	50	34
MGE	10-0	-2.00	-3.05	00 60	50
MGE	intl2	-2.99	E 10	09	110
MGE	101047	-3.03	-0.10	74	110
MGE	151247	-3.07	-3.31	70	20
MGE	1591	-3.35		88	
MGE	151133	-3.44	5.00	95	400
MGE	IS256	-3.44	-5.06	96	102
MGE	IncN_korA	-3.49		101	
MGE	TN5	-3.52		103	
MGE	pAKD1-IncP-1ß	-3.56	-4.04	106	48
MGE	IncP_oriT	-3.64	-3.71	113	34
MGE	IncQ_oriT	-3.75	-5.49	121	125
MGE	orf39-IS26	-4.19		141	
MGE	intl2	-4.28		145	
MGE	PAMBL-1-F_377old	-4.41		153	
MGE	IS630	-4.44	-4.77	156	87
MGE	trfa	-4.46	-2.98	157	15
MGE	orf37-IS26	-4.55		159	
MGE	IS6_257	-4.63		166	
MGE	traN	-4.72	-3.49	172	24
MGE	mobA	-4.73	-4.82	173	89
MGE	IncF FIC	-4.92		180	
MGE	EAE_05855	-4.98		182	
MGE	IS1111	-5.43		209	
MGE	cro	-5.66	-5.95	222	141
MGE	ISCR1	-6.02		234	
MGE	IncW trwAB		-5.93		140
MGE	IS5 IS1182		0.00		
MGE	Incl1 repl1				
MGE	IncHI2_smr0018				
MGE					
MGE	tro A				
MGE	IncN oriT				
MCE	the A 1				
MCE	uiμi topA 2				
	uipa-z				
	uipa-s				
				-	
MLSB	msr(E)	-0.82	-2.23	3	10
MLSB	erm(F)	-1.51	-1.93	14	6

MLSB	$\operatorname{erm}(\Omega)$	-1 86	-4 27	22	62
MLSB	erm(B)	_1.00	-4 55	24	75
MLSB	mphA	-2.04	-4.12	27	56
MISB		-2.04	-1 22	37	50
MISB	mefA	-2.40	-4.22 _1 00	18	52
MISB	mdtA	-2.71	-4.03	40 57	52
MISE		-2.01		61	
MLOD	liluC InuR	-2.90	4.04	70	02
	IIIUD mof/P)	-3.00	-4.91	70	92
	niei(B)	-3.00	-3.40	11	21
MLSB	erm(E)	-3.33	-4.39	80 400	69
MLSB	erm(O)	-3.50	-4.75	102	86
MLSB	ermx	-3.63	4.50	110	70
MLSB	ImrA	-4.30	-4.52	146	73
MLSB	vatB	-4.31		147	
MLSB	erm(35)	-4.43	-5.36	155	118
MLSB	pikR2	-4.91	-5.69	179	133
MLSB	pica	-5.05	-4.41	187	70
MLSB	lnu(F)	-5.07		188	
MLSB	ermA_ermTR	-5.15		196	
MLSB	vgaA	-5.29		205	
MLSB	erm(A)	-5.58		219	
MLSB	lsa(C)	-5.70		223	
MLSB	InuA	-5.77	-5.41	225	121
MLSB	erm(36)	-5.98		232	
MLSB	erm(S)	-5.98	-5.07	233	103
MLSB	oleC		-5.73		136
MLSB	emrB gacA				
MLSB	ermK				
MLSB	mphB				
MLSB	carB				
MLSB	msr(D)				
MLSB	msr(A)				
MLSB	vat(F)				
MLSB	erm(D)				
MISB	vet(A)				
MISB	ermV				
MISE	$\operatorname{crm}(24)$				
MLOD	effil(54)				
MLSB	VgaB				
MLSB	erm(42)				
MLSB	erml				
MLSB	msr(C)				
Multidrug	acrF	-2.96	-5.44	65	122
Multidrug	mdtE_yhiU	-3.00		73	
Multidrug	ttgB	-3.31	-3.43	83	23
Multidrug	floR	-3.36	-3.89	90	41
Multidrug	emrD	-3.45	-5.80	99	137
Multidrug	mexE	-3.63	-3.79	111	35
Multidrug	adeA	-4.38		151	
Multidrug	ttgA	-4.59		162	
Multidrug	oprD	-4.61	-3.67	164	32

Multidrug Multidrug Multidrug Multidrug	mepA mexA multidrug resistance pmrA ceoA	-4.79 -5.08 -5.22	-4.99	177 189 198	97
othor	ceo/R)	0.01	1 50	EQ	77
other	ere(D)	-2.01	-4.30	0C	11
other		-3.71	-4.70	118	82
other	Arrz	-3.97		131	
other	ARR-3	-3.98		134	
other	catB8	-4.05	4 70	136	
other	fabK	-4.64	-4.73	167	84
other	qacA_B	-5.02		185	
other	mcr-1	-5.25	-5.20	200	112
other	bacA	-5.43		207	
other	fosb				
other	mcr-2				
other	fosX				
other	catA1				
other	nimE				
other	nisB				
other	qnrA				
other	qacF_H				
Phenicols	cmIA5	-2.56	-5.12	43	107
Phenicols	qnrB-bob_resign	-3.17	-4.30	77	64
Phenicols	catQ	-3.81	-4.35	124	67
Phenicols	catA2	-3.92		129	
Phenicols	cat	-3.97		132	
Phenicols	catP	-5.04		186	
Phenicols	cmIA1				
Phenicols	cmx(A)				
Phenicols	catA3				
Phenicols	catB2				
Phenicols	catB9				
Phenicols	cat(nC221)				
Phenicols	cmIV				
Phenicols	fexΔ				
Phenicols	ontrA				
Sulfonamide		1 3 2	1 08	13	7
Sulfonamido	dfr∆1	-1.32	-1.90	10	101
Sulfonamido	dfr A 12	-2.39	-5.05	30	125
Sulfonamido	fol A	-2.07	-5.71	40	121
Sulfonomide		-4.59	-5.04	100	131
Sulfonamido		-4.05		109	
Sulfonamido	sull				
	Sullii	4.07	0.07	4.4	04
tetracycline		-1.27	-3.07	11	31
tetracycline	tetR	-2.13	-4.10	29	53
tetracycline		-2.44	-3.42	38	22
tetracycline		-2.74	-4.63	50	79
tetracycline	tet(32)	-2.78	-4.99	54	98
tetracycline	tetG_F	-2.95	-3.54	64	26
tetracycline	tetPA	-3.43	-3.91	94	44
tetracycline	tet44	-3.45	-5.46	98	123
tetracycline	tetD	-3.67	-4.74	114	85

tetracycline tetracycline	tetT tetbP tetH tetB tet(36) tetL tetA tetX tetC tetA tetX tetC tet40 tetK tetS tetJ tetU tetQ tetPB tet(38) tetW tetO	-4.62 -4.73 -5.73 -5.78 -5.90	-5.20	165 174 224 227 230	111
trimethoprim trimethoprim trimethoprim trimethoprim trimethoprim trimethoprim trimethoprim trimethoprim trimethoprim trimethoprim trimethoprim trimethoprim trimethoprim trimethoprim trimethoprim trimethoprim	dfra14 dfra21 dfrA15 dfrA22 dfrA10 dfrA18 dfrBmulti dfra17 dfra7 dfra7 dfrA25 dfrA25 dfrA27 dfra5 dfrA84 dfrA8 dfrC dfrG dfrK	-2.29 -2.34 -3.82 -4.77 -4.89	-5.62 -4.85 -5.91	31 32 127 176 178	130 90 139
Vancomycin Vancomycin Vancomycin Vancomycin Vancomycin Vancomycin Vancomycin Vancomycin Vancomycin Vancomycin Vancomycin Vancomycin Vancomycin Vancomycin Vancomycin Vancomycin Vancomycin Vancomycin Vancomycin	vanTG vanA vanHB vanHD vanRD vanRC4 vanD vanRB VanB vanYD vanSB vanYD vanSB vanRA vanG vanSA vanSC vanS2_vanC3 vanXA	-4.38 -4.99 -5.19 -5.23 -5.42 -5.43 -5.45 -5.50 -5.63	-5.21 -5.00 -5.52	149 183 197 199 206 208 210 215 220	113 99 128

Vancomycin	vanWB
Vancomycin	vanTE
Vancomycin	vanXB
Vancomycin	vanTC
Vancomycin	vanC
Vancomycin	vanYB
Vancomycin	vanRC

Supplemental Table S2. Target genes and PCR primers.

Resistance	Gene	Forward (F)/ Reverse (R) primers	Associated antibiotics	Resistance	Host bacteria
type ^a			(examples) ^b	mechanism	(examples) ^b
Aminoglycoside	aphA3	F: AAAAGCCCGAAGAGGAACTTG R: CATCTTTCACAAAGATGTTGCTGTCT	Kanamycin	Antibiotic inactivation	Escherichia coli, Klebsiella pneumoniae, Moraxella, Pseudomonas, P. aeruginosa
Beta lactamase	ampC	F: TGGCGTATCGGGTCAATGT R: CTCCACGGGCCAGTTGAG	Cephalosporinases and penicillins e.g. amoxicillin, piperacillin, cefoxitin, cephalexin, cefazolin and ceftriaxone	Antibiotic inactivation	Escherichia coli, Shigella flexneri, Shigella sonnei
	cphaA	F: GCGAGCTGCACAAGCTGAT R: CGGCCCAGTCGCTCTTC	Cephalosporinases and penicillins e.g. amoxicillin, piperacillin, cefoxitin, cephalexin, cefazolin and ceftriaxone	Antibiotic inactivation	Aeromonas hydrophilia
	bla _{TEM}	F: AGCATCTTACGGATGGCATGA R: TCCTCCGATCGTTGTCAGAAGT	Cephalosporinases and penicillins e.g. amoxicillin, piperacillin, cefoxitin, cephalexin, cefazolin and ceftriaxone	TEM beta- lactamase	Frequently foundin <i>E. coli</i> and <i>Klebsiella pneumoniae.</i>
Quinolone	qnrA	F: AGGATTTCTCACGCCAGGATT R: CCGCTTTCAATGAAACTGCAA	Low-level resistance to quinolone	Antibiotic target protection	Many Gram-negative bacteria
Multidrug	qacH	F: CATCGTGCTTGTGGCAGCTA R: TGAACGCCCAGAAGTCTAGTTTT	Multiple antibiotics	Antibiotic efflux pump	Pseudomonas aeruginosa
	acrA	F: CAACGATCGGACGGGTTTC R: TGGCGATGCCACCGTACT	Multiple antibiotics	Antibiotic efflux pump	-
Mobile genetic element ^C	int1	F: GGCTTCGTGATGCCTGCTT R: CATTCCTGGCCGTGGTTCT	Class 1 integron gene	n/a	Particularly in Gram-negative bacteria
MLSB	ermB	F: TAAAGGGCATTTAACGACGAAACT R: TTTATACCTCTGTTTGTTAGGGAATTGAA	Macrolides e.g. erythromycin and Azithromycin	Antibiotic target alteration	Enterococcus faecium
Sulfonamide ^d	sul1	F: CGCACCGGAAACATCGCTGCAC R: TGAAGTTCCGCCGCAAGGCTCG	Sulfonamides	Antibiotic target replacement	Gram-negative pathogenic bacteria, e.g. <i>E. coli</i> and <i>Salmonella</i>
	dfrA1	F: GGAATGGCCCTGATATTCCA R: AGTCTTGCGTCCAACCAACAG	Trimethoprim	Antibiotic target replacement	Gram-negative pathogenic bacteria, e.g. <i>E. coli</i> and <i>Salmonella enterica</i>
Tetracycline	tet39	F: CTCCTTCTCTATTGTGGCTA R: CACTAATACCTCTGGACATCA	Tetracycline, doxycycline and minocycline.	Antibiotic efflux pump	Acinetobacter baumannii, Ac. junii, Ac. nosocomialis,

				Klebsiella oxytoca
Total bacteria ^e	16S- rRNA	F: AYTGGGYDTAAAGNG R: TACNVGGGTATCTAATCC, TACCRGGGTHTCTAATCC, TACCAGAGTATCTAATTC, CTACDSRGGTMTCTAATC		
Total fungus ^f	18S- rRNA	F: AAGTCTGGTGCCAGCAGCCG R: CCCGTGTTGAGTCAAATTAAGC		

- a) Zhu, et al. (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. *Proceedings of the National Academy of Sciences-USA* 110(9) 3435-3440. <u>https://doi.org/10.1073/pnas.1222743110</u>
- b) Alcock et al. (2023) CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. *Nucleic Acids Research*, 51: D690-D699. <u>https://doi.org/10.1093/nar/gkac920</u>.
- c) Luo, et al. (2010) Trends in antibiotic resistance genes occurrence in the Haihe river, China. *Environmental Science & Technology* 44(19): 72220-5. <u>https://doi.org/10.1021/es100233w</u>
- d) Pei, et al. (2006) Effect of river landscape on the sediment concentrations antibiotics and corresponding antibiotic resistance genes (ARG) *Water Research* 41(12): 2427-2435. <u>https://doi.org/10.1016/j.watres.2006.04.017</u>
- e) Cole, et al. (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. *Nucleic Acids Research* 42: D663-D642. <u>https://doi.org/10.1093/nar/gkt1244</u>
- f) Hadziavdic, et al. (2014) Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. *PLoS One* 9(2): e87624. <u>https://doi.org/10.1371/journal.0087624</u>

Guilds	Influent	Nearby soil
Bacteroidetes	32.88%	15.50%
Enterococcus	0.28%	0.00%
A. baumannii	0.05%	0.00%
K. pneumoniae	0.04%	0.00%
Staphylococcus aureus		
(MRSA)	0.00%	0.00%
P. aeruginosa	0.00%	0.00%
Firmicutes	25.98%	16.32%
Acinetobacter	9.71%	0.06%
Pseudomonas	8.15%	0.85%
Xanthobacter	0.06%	0.11%
Enterobacter	0.00%	0.00%
Total:	77.15%	32.84%

Supplemental Table S3. Key taxonomy of microorganisms commonly associated with ARGs in wastewater influent and nearby soil, not exposed to wastewater.

Supplemental Table S4. The number of genes, their relative richness (%), and representative genes (used in this study) from each class of ARGs.

	Plant influent		Nearby soil		
Gene class	Detects		Detects		Representative gene(s)
Aminoglycoside	14	100%	11	79	aphA3
Beta lactam	29	54%	10	19%	<i>amp</i> C, <i>cph</i> A, bla _{тем}
Fluoroquinolone	8	80%	5	50%	qnrA
Multidrug resistance	33	83%	22	55%	qacH, acrA
Mobile genetic	42	79%	29	55%	
element					
MLSB	27	59%	18	39%	<i>erm</i> (B)
Other	9	53%	4	24%	
Phenicol	6	40%	3	20%	
Sulfonamide	5	71%	4	57%	sul1, dfrA1
Tetracyclines	14	50%	10	36%	<i>tet</i> 39
Trimethoprim	5	29%	3	18%	dfrA
Vancomycin	9	38%	3	13%	

Supplemental Table S5. Comparison of influent and effluent gene concentrations in the wastewater treatment plant.

	Influent Relative abundance (log(gene/16SrRNA)	Effluent Mean relative abundance (log(gene/16SrRNA)_n=3	t-test Statistics	
		standard deviation in brackets.	t_2	p
acrA	-3.18	-2.96 (0.20)	1.86	0.20
ampC	-2.53	-4.09 (0.94)	-2.87	0.10
aphA	-3.33	-3.17 (0.36)	0.76	0.53
Ыа _{тем}	-2.74	-2.47 (0.47)	0.97	0.44
cphA	-2.68	-2.94 (0.55)	-0.82	0.59
dfrA	-2.39	-2.98 (0.16)	-6.23	0.03
<i>erm</i> (B)	-1.92	-1.76 (0.27)	1.06	0.40
qacĤ	-1.56	-2.58 (0.32)	-5.46	0.03
qnrA	-1.17	-3.79 (0.37)	-10.06	0.06
sul1	-1.32	-2.29 (0.23)	-7.21	0.02
<i>tet</i> (39)	-1.27	-1.48 (0.64)	-0.56	0.63

Supplemental Table S6. A Kruskal-Wallis test was applied to determine whether there was a statistically significant difference in ARGs present in the *M. truncata* clams at the six sampling locations. A significant level of p<0.05 was set; *d.f.* = 5.

ARGs	<i>H</i> value	p value
ΣARGs	4.2	0.51
acrA	2.2	0.82
ampC	3.4	0.63
aph	4.9	0.42
Ыа _{тем}	4.5	0.48
cph	6.7	0.24
dfrA	2.6	0.76
ermB	3.5	0.48
intl1	3.7	0.59
qacH	6.7	0.24
qnr	6.5	0.26
sul1	10.6	0.06
sul2	10.3	0.07
sul3	4.0	0.55
tet39	3.7	0.60