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MODELLING POLARITY-DRIVEN LAMINAR PATTERNS IN BILAYER
TISSUES WITH MIXED SIGNALLING MECHANISMS

JOSHUA W. MOORE2, TREVOR C. DALE3, AND THOMAS E. WOOLLEY?

ABSTRACT. Recent advances in high-resolution experimental methods have highlighted the
significance of cell signal pathway crosstalk and localised signalling activity in the development
and disease of numerous biological systems. The investigation of multiple signal pathways of-
ten introduces different methods of cell-cell communication, i.e. contact-based or diffusive
signalling, which generates both a spatial and temporal dependence on cell behaviours. Mo-
tivated by cellular mechanisms that control cell-fate decisions in developing bilayer tissues,
we use dynamical systems coupled with multilayer graphs to analyse the role of signalling po-
larity and pathway crosstalk in fine-grain pattern formation of protein activity. Specifically,
we study how multilayer graph edge structures and weights influence the layer-wise (lami-
nar) patterning of cells in bilayer structures, which are commonly found in glandular tissues.
We present sufficient conditions for existence, uniqueness and instability of homogeneous cell
states in the large-scale spatially discrete dynamical system. Using methods of pattern tem-
plating by graph partitioning to generate quotient systems, in combination with concepts from
monotone dynamical systems, we exploit the extensive dimensionality reduction to provide
existence conditions for the polarity required to induce fine-grain laminar patterns with multi-
ple spatially dependent intracellular components. We then explore the spectral links between
the quotient and large-scale dynamical systems to extend the laminar patterning criteria from
existence to convergence for sufficiently large amounts of cellular polarity in the large-scale

dynamical system, independent of spatial dimension and number of cells in the tissue.

Keywords: Pattern formation, Monotone systems, Pathway crosstalk, Spectral graph theory,

Cell polarity.

1. INTRODUCTION

Cell-fate determination is the process of stem, or progenitor, cell commitment to transition to
a differentiated state with adapted cellular functions [1]. This process enables the generation of
specialised cell populations during organ development as cells propagate through lineage struc-
tures with each cell-fate choice. Cell-fate decisions are typically regulated by tightly orchestrated
intracellular protein cascades often termed genetic regulatory networks (GRNs) that describe
complex intracellular protein interactions that depend on both the local cellular environment
and intrinsic genetic properties of the cell [2]. Subsequently, the investigation of the autonomous
spatial organisation of cell-fate biomarkers (active proteins for cell-fate regulation) in developing
tissues has been of significant interest as a strategy to elucidate the intracellular mechanisms

that govern such cellular behaviour bifurcations [3-5].
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(B) Cell signalling polarity.

FIGURE 1. Schematic representation of the bilayer cellular architecture of duc-
tal tissues and cellular polarity. (A) Branching tissue structures produce bilayer
ducts of layer-wise contrasting epithelial cells with the outer and inner layers
of myoepithelial and luminal cells, respectively, to facilitate the production and
secretion for the transportation of substances such as sweat, saliva and breast
milk [7-9]. Imaging the ducts for key cell-fate biomarkers highlight the pres-
ence of laminar patterns intracellular protein expression. Some well-established
cell-fate biomarkers are p63 and Notch for myoepithelial and luminal cells in
mammary and sweat glands [10, 11]. (B) An example contact-dependent sig-
nalling mechanism with activators and receptors are represented using purple
and green rectangles depicting the effect of layer-wise polarity in a bilayer of
cells.

Ductal structures commonly found in glandular tissues possess some of the most simple cell-
fate biomarker spatial patterning. Primarily comprised of just two cell types, these tissues
produce branching morphologies with a consistent bilayer ring of layer-wise contrasting cell
types (Figure 1A). To form the bilayer rings, undifferentiated cells self-organise to autonomously
produce distinct laminar patterns of opposing cell-fate biomarkers to promote the substance
transportation functions required of the organ [6]. Common examples of these laminar pattern
features can be found in glandular tissues, such as: the mammary, salivary and sweat glands
where the emergence of bilayer cell-type expression initiates the formation of ductal features
[7-9].

Though the spatial patterning of the cell-fate biomarkers can be simple in bilayer tissues, the
cellular regulatory mechanisms that generate these cell states are complex, often involving mul-
tiple inter-linked GRNs, which is referred to as pathway crosstalk [12]. Consequently, pathway

crosstalk may induce multiple modes of independent cell-cell communication channels, such as
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contact-based (juxtacrine) or short-range diffusive (paracrine) protein interactions between local
cells [10, 13]. Thus, cells receive local tissue information from a range of sources to consistently
select the appropriate cell type for functional ductal formation.

In addition to the rich interactions of intracellular GRNs, a common control mechanism
present in developing tissues is cellular polarity. In a broad sense, cell polarity is the asymmetry
of the shape or molecular distribution of the cell [14]. In this study we focus on biochemical
asymmetries that are associated with localisation of signalling activators and receptors within,
or on, the surface of the cell and refer to this as polarity herein [15]. In general, polarity
in cell signalling proteins causes anisotropic communication flow between cells and therefore
specifies a niche of adjacent interaction cells, as shown in Figure 1B as an example of apical-basal
polarity in an epithelial bilayer. The role of polarity is well-established in mechanical processes
of mammalian development such as division and adhesion, to ensure consistent morphological
features of the tissue during growth [16].

There is growing evidence in a variety of biological systems in which polarity also acts as
a spatial coordinator of cell-fate specification and promotes mechanical feedback loops to pre-
serve local cell types for healthy tissue function [17]. However, the precise role polarity has in
influencing intracellular kinetics that govern cell-fate choices is widely unknown, since cell-cell
interactions compound with complex pathway crosstalk [16]. Therefore, in this study we explore
the interplay of polarity and multiple cell-cell signalling mechanisms associated with pathway
crosstalk in generating laminar patterns of biomarkers, conforming with the process of cell-fate
determination of developing bilayer tissues.

Following Turing’s seminal paper in 1952 [18], the majority of theoretical results of pattern
formation in developmental biology focus on diffusion-driven instabilities of reaction-diffusion
(RD) systems [19, 20]. RD systems rely on the assumption that cells communicate using short-
range and/or long-range paracrine signalling mechanisms, namely the local diffusion of proteins
coupled with intracellular kinetics. However, there exists many pattern forming biological sys-
tems that rely on non-diffusive, juxtacrine communication, such as lateral-inhibition mechanisms,
where adjacent cells inhibit each other from converging to the same state, facilitating fine-grain
pattern formation [21, 22].

The fundamental differences in paracrine and juxtacrine signalling motivate contrasting mod-
elling approaches. The diffusion process in paracrine signalling extends to a spatial continuum
limit, generating small systems of partial differential equations (PDEs) allowing protein patterns
to form over multiple cell lengths to represent phenomena such as morphogen gradients over the
tissue [20]. In constrast, the discrete nature of juxtacrine signalling induced by membrane contact
necessitates the use of spatially discrete systems of ordinary differential equations (ODEs) [23].
Subsequently, these contrasting modelling paradigms restrict the specific continuum and discrete
approaches to pattern analysis in systems where both diffusive and non-diffusive mechanisms are
present.

Graphs representing spatially discrete analogues of diffusive mechanisms have previously been
employed to homogenise the analytical approaches to pattern formation and, further, investi-
gate cell structure on pattern emergence [24]. That is, graph vertices depict cells and edges
are drawn between cells if they are communicating via diffusive proteins. Critically, this ap-
proach preserves the concept of cell identity within diffusive models and transforms the systems

of PDEs into much larger systems of ODEs, consistent with the juxtacrine model formulation.
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4 MOORE, DALE, AND WOOLLEY

However, the central theme of pattern analysis is understanding the conditions that yield the
degradation of stable homogeneity of the system and is typically conducted via linear stability
analysis with coupled spatio-temporal components [25-27]. Consequently, the high-dimension of
these ODE descriptions and required nonlinear kinetics of multicellular domains render analyt-
ical approaches intractable, which lead to many studies focusing on spatially reduced systems
accompanied by numerical simulations for the larger cellular domains [23, 25, 26]. Critically, the
analysis conducted on such spatially reduced models have been shown to be insufficient for pre-
dicting the types of patterning observed numerically [25], with similar results for cell-resolution
discretised diffusive systems [28].

Adopting concepts from systems engineering, the application of interconnected dynamical
systems theory was employed in [29] to derive analytic pattern formation conditions for jux-
tacrine models, independent of the number of cells and therefore the size of the ODE system.
Namely, cells were treated as input-output (I0) components within a circuit, i.e. cells receive
signals and then produce response signal to other connected cells. This approach recasts the
large-scale ODE system in a macroscopic perspective to analyse the behaviour of only the di-
rectly spatially-dependent intracellular proteins using signal transfer functions. Furthermore,
extending the low-dimensional quotient representations of graph coupled dynamical systems as
formalised by Golubitsky, Stewart and co-authors [30-32] to IO systems, edge symmetries of
the cell-cell connectivity graphs were exploited in [33] to develop methods of graph partitioning
to form quotient graphs that represent a pattern template. Embedding the intracellular ODE
systems defined by the GRNs within these quotient graphs produces a quotient interconnected
dynamical system which is significantly smaller in dimension, specifically when analysing syn-
chronised intercellular dynamics. Namely, these quotient systems were then used to provide
pattern existence conditions for prescribed cellular patterns for interconnected juxtacrine mod-
els. These methods of pattern predictions were later extended in [34] and [35] to simultaneously
couple diffusive and non-diffusive signalling mechanisms within the interconnected dynamical
systems framework using directed multilayer graphs, namely graphs with unidirectional edges
connected to cells with multiple-input and output signals. However, the influence of edge weights
on pattern existence and convergence in these multi-channel interconnected systems is yet to be
investigated.

The spatial scalability of the interconnected methods of pattern analysis follows from the
theory of monotone dynamical systems [36]. Provided the intracellular proteins regulated by the
prescribed GRN react monotonically to intercellular stimuli, then global dynamics become pre-
dictable in a closed-loop system of cells and facilitates the introduction of control theoretic tools
for pattern stability [33]. Although, the restriction to bipartite connectivity graphs was imposed
in [29] and [35] as a sufficient measure to preserve the monotonic behaviour of lateral-inhibition
models in the large-scale forms, these restrictions limit the biological applications. Such condi-
tions can be relaxed when seeking pattern existence in quotient systems as demonstrated in [33]
but how such behaviour translates to the large-scale counterpart is not fully understood.

We have previously analysed the role of polarity in laminar pattern formation using intercon-
nected methods for a single juxtracrine signalling mechanism [37]. In this study, we generalise

and extend these results to include multiple signalling mechanisms of any type using a multilayer



114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

136

137

138

140

141

142

143

144

145

146

147

148

149

151

152
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graph approach as defined in [35]. Namely, we explore the interplay of multilayer network topol-
ogy and edge weights in laminar pattern formation in bilayer tissues using dynamical systems of
generic competitive kinetics.

Initially, we present conditions for the existence, uniqueness and instability of a homogeneous
steady state for large-scale multi-input-multi-output (MIMO) dynamical system, which extends
the conditions of [35] to yield analytically applicable statements for low-spatial order intracel-
lular GRNs. Thereafter we use methods of multilayer graph partitioning to derive polarity
conditions for the existence of laminar patterning in large-scale systems. Critically, we demon-
strate the graph commutativity requirements imposed in [35] for simultaneous diagonalisation
can be relaxed when seeking patterns of only two states, allowing a broader range of quotient
connectivities to be explored.

Next, we investigate the spectral links between quotient and large-scale dynamical systems.
We demonstrate positional changes of the eigenvalues associated with laminar patterns in the
multigraphs are dependent on the amount of polarity for non-bipartite graphs. We then discuss
the implications of spectral rearrangements with respect to bipartite graphs and laminar pat-
terning. Finally, combining our insights from the spectral rearrangements and quotient system
analysis, we explore the convergence of laminar patterns in the associated large-scale dynamics
systems.

The structure of the study is as follows. In Section 2.1 we define the large-scale interconnected
dynamical system analysed in this study. In Section 2.2 we present conditions for the existence,
uniqueness and instability of a homogeneous steady state for large-scale MIMO dynamical sys-
tem. Owur main results are presented in Section 3 where we introduce the necessary results
from monotone dynamical systems in Section 3.1 and then present conditions for the existence
of laminar patterning in Section 3.2. In Section 3.3, we demonstrate positional changes of the
eigenvalues associated with laminar patterns in the multigraphs are dependent on the amount of
polarity for non-bipartite graphs. Finally, in Section 3.4, we present sufficient polarity dependent

conditions for the convergence of laminar patterns in the large-scale systems.

2. EXISTENCE OF CELLULAR HETEROGENEITY

In this section, we are interested in deriving conditions for the existence and instability of a
homogeneous steady state (HSS) of a large-scale dynamical system that describes intracellular
kinetics within a tissue of cells. First, we define the types of interconnected dynamical sys-
tems considered in this study, namely, coupling the multiple input and output signal dynamics
of individual cells using weighted connectivity graphs associated with each respective signalling
mechanism. Thereafter, we exploit the repetitive structure of large-scale interconnected dynami-
cal systems to provide analytically tractable conditions for the existence, uniqueness and stability

of the HSS that is necessary for the investigation of polarity-driven cellular heterogeneity.

2.1. The signal polarity interconnected system for bilayer geometries with multiple

signal mechanisms.

Consider a large-scale interconnected dynamical systems representing N spatially discrete
cells, each containing n intracellular proteins. Namely, for each cell i € {1,..., N}, let ; =
(i1, xi,n]T € X CRE, be the concentration of the intracellular proteins. The cellular signal

inputs and outputs are defined by w; = [u;1,....uir]’, Yi = [Yi1,-¥ir)l € U, Y C RL,
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6 MOORE, DALE, AND WOOLLEY

respectively, for 1 < r < n. The interconnected ODE system has the form

x; = f(zi,wi), (2.1)
yi =h(z;), (2.2)

where @; represents the derivative with respect to time. The function f : X x U — X defines
the intracellular protein dynamics which are dependent on external stimuli, u;, produced by
connected cells. We define cellular connectivity in terms of multiple signalling mechanisms later
in this section. Furthermore, h : X — Y describes the translation of intracellular dynamics
to signal outputs of the cell. We assume that both functions f () and h(-) are both C? over
their respective domains to ensure the continuity of the corresponding linearised system that is
required for the interconnected pattern analysis in Section 3. The structure of the IO system
(2.1) in context of the tissue is shown in Figure 2. For convenience when discussing tissue
behaviour, we define the large-scale vectorised counterparts of the intracellular state variables,
signal inputs and outputs by = [x1, ..., zx]T, u = [uy,...,u,]T and y = [y1,...,y,|.

For the transition of signal outputs to inputs, we assume that each output signal is independent
and defines a linear relationship between output and input signals. Let V = {vy,...,un}, be
vertices representing the cells in the tissue, then for each output signal y; ; there is an associated
connectivity graph G; = G; (V, E;), where E; is the set of edges for each output signal mechanism
1 < j < r. Note that the vertex set V is identical for each connectivity graph whereas edge
structure may differ between the respective graphs to allow for different signalling mechanisms
within the IO system (2.1). For example, the cellular connectivity graphs of contact-dependent
and long-diffusion mechanisms have potentially different edge structures as it is expected that
the average degree of the contact-based graph is less than that of a diffusive mechanism due to
the physical constraints of cellular junctions (Figure 2).

Algebraically, the cell-cell interaction graphs are represented using the weighted adjacency
matrix, W; € RYN. Let W = {W;} be the set of weighted and row-stochastic adjacency
matrices. That isj for any j € {1,...,r} and any row i € {1,...,n} then row-sum ), (W;), =1
which represents the weighted average of signal transfer between connected cells. In addition, we
assume that the connectivity graph G; associated with W is undirected and connected, and thus
W; is symmetric and irreducible, i.e., there exists no permutation matrix that transform W; to
upper triangular form [38]. We note that these assumptioned are grounded in the underlying
biological interactions that we model. Specifically, the undirected property of the graph can be
justified by the symmetric signalling capacity that arises from the proximity-based juxtacrine
and paracrine signalling mechanisms. Moreover, the cells represented by vertices in G; belong
to a single tissue generating a connected structure.

To preserve the order of signal outputs, y; ;, and therefore the cellular structure within the 10
system (2.1), we construct a global interconnection matrix, P, by interweaving each W; € W

in order of output signal defined by y; ;. Namely,

P=) W,;®D; (2.3)

j=1
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FIGURE 2. A graphical representation of the IO system (2.1) for bilayer ge-
ometries with multiple signalling mechanisms defined by the global adjacency
matrix P (2.3). Example 2D bilayer graphs are shown for contact-dependent
short and long-range diffusion over the same vertex set representing the cells in
the tissue, which are explicitly shown with membranes in G; to highlight the
bilayer cellular structure. Each of the connectivity graphs is then embedded
within the same vertex set as indicated by the dashed arrows. Therefore, each
vertex contains the intracellular kinetics defined by the 10 system (2.1) which
responds to the signal outputs of adjacent cells for each signalling mechanism
which are transformed to signal inputs by P as defined in equation (2.5).

where ® is the Kronecker product and D; = diag(d;1,...,d;,) for §; ; the Kronecker delta
function

1 i=y,

0 i#j.

The global interconnection matrix P € R™>™N produces a multilayer graph Gp that is

5 (2.4)

ij =

layer-wise independent as shown in Figure 2. Critically, the construction of P defines the linear

relationship between global signal outputs and inputs
u= Py (2.5)

where cell-wise input-output structure is preserved. The fundamental cellular identity preserving

structure of P is demonstrated in the following example.

Example 2.1. Consider the two general matrices

b b
wy= | g Wy = | (2.6)
a1 a22 b21 b22
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for the 10 system (2.1) with only two cells each with two signal inputs and outputs i.e., r = 2.

Then the global interconnection matriz, P, has the form

1 0 b b 0 0 0 b 0 b
+ 11 12 ® _ 11 12 ' (27)
0 0 b21 b22 0 1 as1 0 a2 0

0 bar 0 Do

L
I

ail a2
[ ®

a1  A22

To study the role of layer-dependent signalling polarity for the generation of laminar pattern
in bilayer geometries, we consider each graph to consist of two layers £; = {vq, ..., V) El\} and
Ly = {vz |41, vn} where [£1| =1,..., N — 1, as shown in figures 2 and 3.

This layer-wise grouping of the vertices also provides consistent structure to the weighted
adjacency matrices Wi € W. As a first-approach to the layer-dependent signal polarity, we
consider only two values of edge weights for connected cells in the same and different layers as
highlighted in Figure 3. Namely, consider the graph Gj, associated with Wy, then if v;,v; €
L1 (or L3) such that v; and v; are connected by and edge in Gy, and are in the same layer, then

(Wi)ij = wﬁ’“], for wﬁk] the row-normalised intralayer edge weight. Similarly, if v; and v; are in

different layers, v; € £1 and v; € Lo, and are connected in Gy then, (Wy);; = wgk], for t?}ék] the
row-normalised interlayer edge weight. Consequently, when vertices are indexed consecutively

from £, then Lo, each W}, has block form

W
Wi= |/, | (2.8)
(W2,L‘,1) Wl,l:z

where ‘//1\/'17 c, € R‘fol‘x %11 contains all intralayer connections scaled by w[l’“} for all the vertices in
L, Wg, £, € RLLOJX‘LQ‘ contains all interlayer connections scaled by wék] for all the vertices in
L1. Similarly ﬁ\_fl’ Ly € leOQlXILQI accounts for the intralayer connections within £o. As each G
is undirected, the interla;er connections for all vertices in Lo are represented by WQT c,» that is,

W}, is symmetric.

Example 2.2. The weighted adjacency matriz W1 associated with Gy in Figure 8 has the block

matrices
o WM o0 o 0 WM W 0 0 -0
o 0wl o @ o
‘//‘71’[;1 = ' ) and Wg’ﬁl =
gl 0 @l
M0 o 0wl o] Lo 0 - 0 0 @
(2.9)
for d)gl] = wgl]/|wm| and uigl] = w£11/|wm| where |wll| = 2w£1] + wg] is the normalising factor

for all rows ensuring the row-stochastic property of Wy. From the regqularity of G1 in Figure 3,

we have that ‘//‘\/1751 = Wl,LQ as the connections within layers are identical for L1 and Ls.

To summarise the internal cellular dynamics in terms of signal inputs and outputs, as pro-
posed in [29], we introduce the transfer function T : U — Y that describes cellular signal output
response with respect to changes to input signals determined by connected cells. It is assumed
that T (-) is bounded and C? which conforms with the biological context of the IO system (2.1),




230

231

232

233

234

236

237

238

239

240

241

242

243

244

245

246

247

248

249

251

252

253

254

255

256

MODELLING POLARITY-DRIVEN LAMINAR PATTERNS WITH MIXED SIGNALLING MECHANISMS 9

FIGURE 3. Layer-dependent edge weight structure in bilayer graphs. A 2D bi-
layer graph, Gy, with contact-dependent edge connections highlight the layer
vertex partitions with vertices in £ and L5 coloured orange and blue, respec-
tively. The edge weight structure within and between the layers is shown with

edges between vertices in the same layer weighted by wgl] and connected vertices

in different layers weighted by w[21].

namely, intracellular expression must remain finite with continuous dependence on the cellular
microenvironment. The introduction of T (-) allows for the analysis of the 10 system (2.1) from
an alternative macroscopic perspective, such that T (-) retains the underlying features of the
intracellular kinetics defined by f () and h (-) while not explicitly defining the intracellular in-
teractions. For instance, intercellular communication of lateral-inhibition and lateral-induction
pathways have a decreasing and increasing transfer function T (-), respectively [29, 39]. Explic-
itly, the transfer function allows for the definition of the auxiliary input to output transition
relation

u = P[T (u1),....,T (un)]”, (2.10)

which reduces the analytic complexity of the macroscopic analysis of spatially driven pattern
formation in large-scale systems as the dependence of cellular coupling is more accessible in this
form [29, 33, 35]. However, these methods require that the characteristic behaviour of the GRNs
is known with respect to intercellular signals i.e., prescribing monotone properties for T' (u;).
In the following section, we show that the zeros of the auxiliary input to output transition
equation (2.10) are the steady states of the IO system (2.1), thus enabling stability analysis
of the homogeneous steady state macroscopically. Subsequently, we derive conditions for the
existence and uniqueness of the HSS in the large-scale system. To induce polarity driven pattern
formation within the IO system (2.1), we seek sufficient conditions for the instability of HSS

dependent on the bilayer connectivity graphs Gy, and in particular, the polarity weights, wgk]

and wék] .

2.2. Existence, uniqueness and stability of the homogeneous steady state in the
large-scale 10 systems.

The majority of statements presented in this section were initially stated in [35] for MIMO IO
systems. Here, we have independently proven them and partially extended them to comment on
the uniqueness of the HSS. We include all results for completeness with a focus on the application
to mixed signal mechanisms in bilayer geometries. Consider the C? function § : U — X that

describes the changes to the intracellular kinetics @; by the input signals u; emanating from
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connected cells. Therefore, the following statement demonstrates that the zeros of the auxiliary
transfer relation (2.10) are the steady states of the IO system (2.1).

Lemma 2.1 ([34]). Assume that for some ug € R” the function f (x,ug) = 0 has a solution
denoted by xg = S (ug) and therefore T (ug) = h (S (ug)). If ug satisfies

Uo T(UO)
=P (2.11)
Up T(’U,())

then &g = S (ug) is a steady state of the 10 system (2.1). Conversely, if S (+) is injective and xq
is a fized point of the IO system (2.1), then the corresponding ug satisfies the auziliary system
(2.11).

Following from Lemma 2.1, we now study the transfer dynamics defined by T'(-) for the
existence of the steady states of the IO system (2.1). Critically, as T (-) represents changes in
intercellular signalling, T (-) is bounded. Therefore, the following statement ensures the existence
and uniqueness of a homogeneous steady states of the IO system (2.1) using the boundedness of

transfer dynamics.

Lemma 2.2. Let ug € R" such that the conditions of Lemma 2.1 hold and u* = 1y ® ug. Then,
there exists xg € R™ such that €* = 1y @ x¢ is a steady state of the 10 system (2.1). Moreover,
if Of (x,up) /Ox is invertible for all x € X then x* is unique.

Proof. Tt is sufficient to show that there exists ug € R” such that u* = 15y ® ug satisfies the
auxiliary system (2.11) as o = S (ug). As each W, € W is row-stochastic, then the global
interconnection matrix P is also row-stochastic by construction. Consequently, there exists an
eigenvalue A of P such that P1l,y = A1,y [40], and therefore the proof follows from verifying
the existence of ug that satisfies uwg = AT (ug).

By the bounded property of T : U — Y, there exists some constant m > 0 where || AT (+) ||z <
m. Consider the function F : B,,, — B,, where F (-) = AT () and B,,, = {v € R" : ||[v||2 < m},
noting that B,, is convex and the continuity of F (-) is induced by the continuity of T (-).
Therefore, by the Brouwer Fixed-Point Theorem [41], there exists some ug € B, such that
ug = F (ug) = AT (up).

The uniqueness of the HSS is guaranteed by the following. Assume that for any uy € R”
there exists 1, T2 € R™ where both are solutions to f (x,u¢) = 0. Specifically, f; (ZT1,uo) =
fj (@2, up) for all j € {1,...,n}. Therefore by the Mean Value Theorem [42], we construct the

linear system

0 %(%“0) gﬁ; (z,up)| [®11 — T
= : : (2.12)
0 %(1’7 ’LLQ) e gg: (:Ea U‘O) T1n — Top

and from the Invertible Matrix Theorem the kernel of 9 f /0x contains only the null vector [43],

i.€. E3) :fg. O

Remark 2.1. If the transfer function T : U — Y s Lipschitz continuous with Lipschitz constant
k € (0,1], namely,
T (wi) = T (uy) [[2 < Kllwi — w2 (2.13)



293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

MODELLING POLARITY-DRIVEN LAMINAR PATTERNS WITH MIXED SIGNALLING MECHANISMS 11

for all w;,w; € U. Then the HSS defined in Lemma 2.2 is unique by the Banach Fized-Point
Theorem [44], independent of the invertibility of f (x,u).

As we seek spatially driven instabilities of the HSS, we assume the asymptotic stability of

* in the absence of cellular connections. We say a fixed-point of a system is stable if the

T
associated Jacobian has all eigenvalues with negative real-part. Therefore, we are assuming that
A = 0f /0x; evaluated at x is stable i.e., the intracellular kinetics are not self-exciting in the
absence of interconnections.

A necessary feature for polarity-driven pattern formation in spatially discrete interconnected
systems is the connectivity-induced instability of the HSS, x*, associated with the IO system
(2.1), which can be approached by linearisation. The following results provided a convenient
method of analysing the linear stability of homogeneous large-scale 10 systems by assuming each
cellular connectivity graph G; commutes, thus enabling the parallel computation of eigenvalues

for each adjacency matrix W; € W, reducing the dimensionality of the linearisation.

Lemma 2.3. Let A == 0f/0x;, B = 0f/0u; and C := Oh/0x;, be each evaluated at the steady
state o for fixed ug. Let the steady state of the global 10 system be x* = 1y ® xg. Assume
that all W; € W commute and denote A; = diag (A1 j, ..., Ar,j) where \; j is the jth eigenvalue
of W; w.r.t. the common eigenbasis of all matrices in WW. Then x* is asymptotically stable if
A+ BA;C is stable for all j and unstable otherwise.

Proof. Linearisation of the global IO system (2.1) about the fixed point * = Iy @ ¢ yields the
Jacobian

J=IN®A+(IN®B)P(Iy®C),

=In® A+ (Iy ® B) <2T:Wi®Di> (In®C),

i=1
=Iv® A+) W,® BD,C, (2.14)
i=1
by direct substitution of the definition of P in terms of the independent signalling mechanisms
and the mixed products property of Kronecker products [45]. As W, W, = W,;W, for all
W;, W; € W and all matrices W; are real and symmetric, then there exists a matrix R that
simultaneously diagonalises all adjacency matrices W; € W [43]. Moreover, the eigenbasis
defined by R fixes the order of the diagonal entries in each Z; = R™'W; R = diag (Ai1s s AiN)
such that the sum of the diagonalised matrices Z; are unique. Specifically, reordering the
eigenvectors that form the eigenbasis R would only permute the sum of the diagonal values of
Z;.
Consider the transformed Jacobian H = (R_1 ® In) J (R ® I,,) then by the mixed products
property of Kronecker products

H=(R'®IL)INn®A) (RoI,)+ (R'®I,) <ZT: W, ® BDi(/‘) (RoI,),

=R 'INR®I,AI, + Z R 'W,R®I,BD,CI,,

i=1

=Iv® A+ Z;® BD,C. (2.15)
i=1
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By the diagonal structure of Z; the matrix H has the block diagonal form
A+>_, \i1BD,C
H= , (2.16)
A+ \i.BD,C
and therefore, as 22:1 i, ;BD;C = BA;C then the eigenvalues of H are those of A+ BA;C
for all 1 < j < N. Consequently, if A 4+ BA;C has eigenvalues with all negative real-part, for

all 1 <5 < N, then H is stable and therefore the stability of J follows by the bijection between
the linearised systems H and J. O

Before discussing the behaviour of flows of the IO system (2.1) near the HSS, we first introduce

a convenient condition for the instability of a matrix.

Lemma 2.4 ([33]). If M € R"*" is stable then (—1)" det (M) > 0. Conversely, if (—1)" det (M) <

0 then M has an eigenvalue with positive real-part.

Invoking lemmas 2.3 and 2.4 leads to the following sufficient condition for the instability of

the HSS associated with an IO system (2.1) with commuting connectivity graphs G,.

Theorem 2.1. Consider the large-scale 10 system (2.1) that is spatially coupled via the global
interconnection matrizc P (2.3) such that each W; € W commute. Denote DT = 0T /0u; and
let Aj = diag (A1 j,..., Ar,j) where \; j is the jth eigenvalue of W; w.r.t. the common eigenbasis
of all matrices in W. Then the HSS x* = 1y ® o is unstable if there exists a A; such that

T

[T =ps) <o, (2.17)

i=1
where p; ; are the eigenvalues of A;DT (ug) and wg is the steady state input vector associated

with xq.

Proof. By Lemma 2.3 we only need to show that there exists a positive eigenvalue of A+ BA;C
for A; some diagonal matrix of eigenvalues of all matrices W; € VW to demonstrate the instability
of the HSS. Consider (—1)" det (A + BA;C), then by Sylvester’s Determinant Theorem [46] we
have that,

(—=1)"det (A + BA;C) = (—1)" det (A)det (I, + A;,CA™'B),
= (—1)"det (A) det (I, — A;DT (uy)), (2.18)

where the final equality holds from DT (ug) = —CA™'B as derived in [29]. As A is stable
by assumption we have that A~! exists and (—1)" det (A) > 0 by Lemma 2.4. Therefore if
det (1, — A;DT (up)) < 0 then * = 1y ® xg is unstable, by the converse statement of Lemma
2.4. Hence as the determinant of a matrix is the product of the eigenvalues [43], we have that

T

det (I, — A;DT (uo)) = [ [ (1 — i) (2.19)
i=1

for all matrices A; (1 < j < N). O
Applying the HSS instability condition derived in Theorem 2.1 IO systems with one, or two,

spatially dependent components, known as single-input-single-output (SISO) and double-input-

double-output (DIDO) interconnected systems produces simple forms of the instability condition
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(2.17). Explicitly, the IO system (2.1) is SISO when r = 1 and DIDO when r = 2. Let Spec (M)
denote the set of eigenvalues of M then, critically, we recover the SISO instability condition

initially derived in [29] where we allow for generic intracellular kinetics here.

Corollary 2.1. Consider the large-scale I0 system (2.1) and denote DT := 0T /Ou;. We have:
(i) If the 10 system (2.1) is SISO with connectivity matric Wy then the HSS x* = 1y Q@ x

1s unstable if
1< )\17jT/ (UO) (220)

for some A1 ; € Spec (Wh).
(i) If the 10 system (2.1) is DIDO with global interconnection matriz P constructed by the

commutative adjacency matrices W1 and Ws then the HSS ©* = 1y ® x is unstable if
1 <tr (A]DT (’LL())) — det (AJDT (Uo)) (221)

for some A; = diag (A1 ;,N2;), where Aij € Spec(Wh) and Xo; € Spec(Wa) both

associated with the same eigenvector.

Proof. In the case of a SISO system when r = 1, the T': U — V is a scalar function and we have
that inequality (2.17) simply becomes 1 — Ay ;7" (ug) < 0 yielding the SISO condition (2.20).
For a DIDO system where r = 2, there are two potentially different adjacency matrices Wi and
W, that form P. Therefore from inequality (2.17) we have that

0> (1 — :U/l) (1 — /,(,2) =1+4tr (—A]DT (Uo)) + det (—A]DT (UO))
— 1~ tr (A;DT (u)) + det (A, DT (up)) (2.22)

using the relations between determinant, trace and the eigenvalues of a matrix [43]. Rearrange-
ment of inequality (2.22) yields the DIDO HSS instability condition (2.21). O

The HSS instability conditions outlined in Theorem 2.1 allow the study of polarity regimes
via graph edge weights to induce heterogeneity of cellular states within the bilayer tissues using
analytic methods. Critically, the sufficient patterning conditions of Theorem 2.1 are independent
of the precise intracellular kinetics and we do not impose any specific feature on the transfer
function, T (-), other than the mild requirement of boundedness that follows immediately when
modelling protein dynamics.

In the following section, we introduce methods of graph partitioning for templating laminar
patterns in bilayer geometries that produce analytic conditions for the existence of the laminar
patterns with multiple signalling mechanisms. Formally, we define laminar patterns in bilayer
graphs in the following way.

Definition 2.1 (Laminar patterns in bilayer IO systems). Let x; and x_ be heterogeneous
steady states of the I0 system (2.1), i.e., xy,x_ € X and x_ # x. The IO system (2.1)
is said to have converged to a laminar pattern state if for some ty > 0 we have x; = x_ and
x; =x4 fori=1,..,|L| and j = |L1|+1,...,;N and for all t > to.

When seeking laminar pattern formation the bilayer 10 systems 2.1, we show that the commu-
tative properties of the adjacency matrices W; € W required for the HSS instability condition in
Theorem 2.1 can be relaxed when seeking dichotomous cell states in bilayer structures with same
layer connectivity symmetries, namely semi-regular bilayer graphs. In addition, by restricting

the characteristic behaviour of intracellular kinetics to competitive interactions, we ensure that
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the HSS instability converges to laminar patterns by applying results from monotone dynamical

system theory.

3. LAMINAR PATTERN CONVERGENCE WITH MONOTONE KINETICS IN SEMI-REGULAR BILAYER
GRAPHS

The instability of the HSS of the IO system (2.1) does not imply the existence of stable het-
erogeneous cell states, even in systems with a unique HSS and bounded dynamics as there may
exist oscillatory or chaotic solution trajectories. We leverage results from monotone dynamics
systems and techniques of graph symmetry reduction to ensure the convergence to dichotomous
cell states at the instance of HSS instability in the bilayer geometries. These methods of discrete
pattern analysis were first introduced for SISO systems in [33] and later briefly extended to
MIMO systems in [35]. Here we demonstrate the applicability of these methods to two-state
pattern formation with pathway crosstalk kinetics in bilayer geometries. In addition, we empha-
sise the link to the corresponding large-scale IO system (2.1), namely, when are the predicted

patterns in the symmetry reduced system preserved in the large-scale system.

3.1. Monotone kinetics for pattern convergence.
Let ¢ (z1) and ¢¢ (x2) be two solutions to the IO system (2.1) where 1 < @2 are initial
conditions. It is said that the dynamical system (2.1) is monotone if ¢ (€1) < ¢4 (2) for all
t € [0,00) [47]. Furthermore, the IO system (2.1) is said to be strongly monotone if ¢; (z1) <
¢ (x2) for all t € [0,00) [47]. Critically, the property of strong monotonicity is crucial for the
asymptotic convergence of solutions ¢ (¢) on bounded domains X C RZ,, analogous to the
Monotone Convergence Theorem for bounded sequences [48]. B

A dynamical system can be shown to be monotone by studying the sign structure of the
associated Jacobian matrix on convex domains. The trajectory domain X is convex if for any
a,b € X then ta+ (1—t)b € X for all t € [0, 1], i.e., there exists a line segment between any two
points in the domain that lies in the interior of X. The monotone identification via the Jacobian
matrix relies on the inter-component monotonicity of vector-valued functions and the convexity
of their respective domains, as initially studied by Kamke [49], leading to the classification of
type K functions. Namely, a function g (-) is said to be type K if for each i, g; (a) < g; (b)
for any two points a,b € X satisfying a < b and a; = b; where X is a convex domain [47].
The identification of type K functions in dynamical systems leads to the sufficient condition for

monotone trajectories.

Lemma 3.1 (Type K monotone systems [47]). Consider the general autonomous dynamical
system
z=g(z2), (3.1)
where z € Z and Z C R™ is convex. Then the dynamical system (3.1) is monotone if it is type
K. Furthermore, by the Fundamental Theorem of Calculus, the general autonomous dynamical
system (3.1) is guaranteed to be type K when the row-sums of the associated Jacobian satisfy
> % >0 (3.2)
g# Y

forall1 <i<mn.
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A direct consequence of Lemma 3.1 is that the IO system (2.1) is monotone provided that all
off-diagonal components of the associated Jacobian are non-negative for all x € X as previously
applied in large-scale IO pattern formation studies [29, 34]. In addition, Hirsch provided a
sufficient condition for strong monotonicity that is dependent on the irreducibility of the Jacobian
of the dynamical system [50]. Specifically, a matrix M is said to be irreducible if there exists

no permutation matrix U such that U” MU is in upper block triangular form [46].

Lemma 3.2 ([47]). Consider the dynamical system (3.1) as in Lemma 3.1. If the Jacobian, %,
is irreducible and type K for all z € Z then system (3.1) is strongly monotone.

The combination of lemmas 3.1 and 3.2 yield sufficient conditions for the identification of
strongly monotone dynamical systems using standard linearisation methods, which are particu-
larly applicable to interconnected dynamical systems. Namely, connected graphs have irreducible
adjacency matrices [38].

Time-dependent monotone systems are often characterised into two distinctive classes: coop-
erative dynamics where all solutions are monotone in forward-time (¢ — o0), and competitive
dynamics where all solutions are monotone in backward-time (¢ — —o0) [47]. It has previously
been demonstrated that competitive dynamics lead to pattern generation in large-scale 10 sys-
tems, specifically, when studying processes of mutual cellular inhibition which are a common
feature of cell-fate dynamics in developing tissues [29]. For example, the lateral-inhibition inter-
actions of Notchl and Deltal are often found in tissues with a dichotomy of spatially organised
cell-types and conform to the monotone competitive description [10, 26]. Subsequently, we focus
our attention on competitive intracellular kinetics which leads to the following assumption on
the behaviour of the transfer function T'(-) to ensure the asymptotic convergence of solutions

with tissue heterogeneity.

(Al) The derivative of the transfer function DT (u) of the IO system (2.1) has one of the

following sign structures

Sy =

S1

for all u € U where any sign can be replaced by zero provided DT (u) is irreducible.

Critically, the conditions imposed on the intracellular kinetics by (Al) are not restrictive in
the context of cellular pattern formation as activation and repression of intracellular signals are
typically modelled using monotonic functions, such as Hill or logistic functions that relate to
Michaelis-Menten kinetics for enzyme-catalyst reactions [51]. Furthermore, the irreducibility of
DT (u) follows immediately if there exist no zero entries. That is, each spatially dependent
component is continuously dependent on all other spatially dependent components.

In the following section, we will use the competitive properties of the transfer function to
predict the existence of laminar pattern formation in bilayer geometries graph partitioning. In

particular, we focus on the analysis of the transfer function, as this considers only the spatially
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dependent components of the IO system (2.1), which potentially reduces the dimensionality of

the analysis while preserving the underlying behaviour of the system.

3.2. Dimension reduction by graph partition for polarity laminar pattern existence.

Methods of graph partitioning have previously been employed in large-scale 10 systems to
predict the existence of patterns with a predefined pattern structure [33, 34]. These predefined
pattern structures allow for the construction of bespoke systems by exploiting the symmetries
of the cellular connectivity graphs, Gy, thereby analysing only representative vertices from each
pattern partition of the large-scale graphs, vastly reducing the dimensionality associated IO sys-
tems. Under the assumption of monotone transfer kinetics (A1), we provide sufficient conditions
for the existence of polarity-driven laminar patterns in bilayer geometries with multiple spatially
dependent components using graph partitioning. Critically, we demonstrate the prior require-
ment of commutative connectivity graphs G, can be relaxed when seeking patterns with only
two contrasting states.

The method of pattern templating via graph partitions seeks to group cells that are assumed
to have the same steady-state solutions and therefore impose that cells within the same group
behave identically, or more formally described as synchronised vertex dynamics [30, 52, 53]. This
assumption allows for the study of two representative cells from each layer in the bilayer large-
scale graphs, Gy, to predict the existence of laminar patterns as shown in Figure 4. Formally,
we are assuming the existence of an equitable partition, mo, of the vertices v; € V into the
pattern groups £1 and Ly of each layer for all connectivity graphs Gi. This means that v € £;
has the same number of adjacent vertices in both £; and £s, independent of the vertex, v [38].
We are imposing that cells within the same layer have the same edge connectivity structure,
and therefore the connectivity graphs Gi must be layer-wise regular as highlighted in Figure 4.
However, we note that these connectivity symmetries are not necessary for the construction of
an equitable partition with weighted edges [53]. Algebraically, the partition s is equitable if

[k] > 0 such that

there exists some w;;

S ol =wl vuer, (3.3)
vEL;
where 12)2[];] are the ij-th elements of the row-stochastic adjacency matrix Wi, € W [38]. In

addition, we say that the laminar pattern partition, ms, is simultaneously equitable if w5 is
equitable for all graphs G.

Let Wy € R2>E2 be the reduced adjacency matrix for the quotient graph Gy r, = Gi/m2 as
depicted in Figure 4, that are element-wise composed with the constants defined by equation
(3.3). Applying the IO preserving interconnection matrix definition (2.3) to the set of reduced

adjacency matrices, we have the reduced interconnection matrix of the form,

-
P=) W,®D, (3.4)

i=1
noting that the row-stochastic property of each W; € W is preserved in the quotient mapping

such that each W is row-stochastic. In particular, as the partition 7, allocates the vertices
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FIGURE 4. Templating for laminar patterns in bilayer geometries using the eq-
uitable partition ma. The cellular connectivity graph, Gy, is semi-regular such
vertices within the same layer, £; or L5, have the same number of adjacent
vertices in each of the layers which induce an edge symmetry with respect to
vertices in the same layer. The equitable partition, ms, leverages the edge sym-
metries of G, to generate a quotient graph Gy, », consisting of two representative
cells, one from each layer £ and L.

v € V into either of the sets, £1 or L5, each reduced adjacency matrix is of the form,

— i l—a;
w,=| ¢ “ (3.5)
1-0; b;

for all 1 < i < r, where a;,b; € (0,1) are composed of the polarity weights wgi] and wg].
Explicitly, a; and b; have the layer-dependent form

i, L nld

n w w
= ad b= (3.6)
Ny p, Wi + Ny p Wy Ny, W1 + Ny p, Wy

where the superscripts correspond to the spatial connectivity mechanism, ¢, and n[f]b > 1 and
1~

n[;,]ﬁj > 1 are the number of connected vertices in the same and opposing layer, respectively,

from the perspective of each layer, j = 1,2. For example, n[l’“]L1 = n[lk]ﬁ2 =2

n[zlf]ﬁz = 2 for Gy in Figure 4.

, n[2k]£1 = 1 and

A key property of the equitable partition, 7o, is the preservation of eigenvalues when mapping
between the large-scale and quotients graphs, that is, Spec (Wz) C Spec (W;) [38]. Using this
property, any spatially driven instability of the HSS observed in the quotient system also exists
in the associated large-scale system. However, to apply the HSS instability conditions derived
in Theorem 2.1 to large-scale connectivity graphs, we require that all W; must commute to
generate a common eigenbasis for simultaneous diagonalisation. Commutativity is not preserved
in the quotient transformation in general due to the reduced form of equation (3.5). Although,
the following statement enables the use of the HSS instability conditions independent of the
commutative properties of W; by demonstrating the existence of a common eigenbasis for all

reduced adjacency matrices partitioned by 7o, independent of commutativity.

Lemma 3.3. Let P € RQZTOXQT be the reduced mized interconnection matriz (3.4) associated with
the equitable partition wo. Given any matriz M € R™" where M = I, ® M the etgenvalues of
PM are those ofM and XQM where Ay = diag(ay + b1 —1,...,a, + b, —1).

Proof. By definition of the family of the reduced adjacency matrices (3.5), Spec (WZ) ={l,a;+

b; — 1}, where all reduced adjacency matrices share the common eigenvector v = 15, associated
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with the common eigenvalue Xi’l = 1. Without loss of generality, let R be the transformation
matrix for W such that ﬁ’lwlﬁ is in Jordan normal form [43]. Specifically, as v; must
represent a column of R as it is an eigenvector for all W, then let v; form the first column of
R such that ﬁ_lwlﬁ has diagonal entries 1 and a; 4+ b; — 1, respectively. Moreover, as each
W, € R2>62, then ﬁ_lwiﬁ must be upper triangular form as 1 is a common eigenvalue for
all 1 < i7§ r, that is, R simultaneously upper triangularises the family of reduced adjacency
matrices such that each R—lwﬁ has diagonal entries 1 and a; + b; — 1.

Consider the invertible transformation R = R ® I,.. Denote the adjacency triangulation
transformation of PM by H = R~'PM R. Therefore, we have that

H = (ﬁ*@L) PM (ﬁ@L),
- (ﬁ—1®b> <;Wi®pi> (IQ®J\7) (ﬁ@L«),

i=1

Specifically, H is of block upper triangle form such that
I.M ZM

H= -
0 A.M,

: (3.8)

where Z is some real r X r matrix constructed by interweaving the upper right entries of the
transformed reduced adjacency matrices. Thus the eigenvalues of H are those of M and Ao M,

and therefore are the eigenvalues of PM via bijective transformation defined by R. O

Subsequently, by seeking the existence of laminar patterns using the partition 75, Lemma 3.3
enables an analytic approach to determine the spatially driven instability of the HSS with any
combination of layer-wise semi-regular bilayer graphs. Specifically, we need only determine the
eigenvalues of DT (u*) to ensure the HSS instability condition (2.17) is satisfied.

By applying the strongly monotone properties of the transfer kinetics outlined in Section 3.1,
we seek to ensure the asymptotic convergence of heterogeneous solutions in the instance of HSS
instability. However, it can be shown (see Lemma A.1 in Appendix A) that the interconnection
matrix, P, and consequently the reduced interconnection matrix P is reducible, and therefore
unable to conform to the strongly monotone criteria in Lemma 3.2. However, we recover the

irreducibility of P and P by multiplication with a suitable class of matrices.

Lemma 3.4. Let P be the mixed interconnection matriz (2.3) and Q = diag (Q1, ..., QN) such
that Qi € R™*" is irreducible for each k € {1,...,N}. Then PQ is irreducible.

Proof. A graph is said to be strongly connected if there exists a path between any two vertices.
We aim to show that the graph defined by the weighted adjacency matrix PQ is strongly
connected and therefore use the property that a graph is strongly connected if and only if the
associated adjacency matrix is irreducible [54].

For an unweighted, nonnegative adjacency matrix M, it can be shown that the (4, j)th element
of M* represents the number of ways to travel from vertex v; to vertex v; along exactly k edges.
Therefore if M defines a connected graph of I vertices, then M' contains no zero entries for all
(i,7), that is, there exists a path between any two vertices in less than, or equal, to I steps [54].

The converse statement is also true. In the case of weighted, nonnegative adjacency matrices,
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the elements (4, j) of M* no longer represent the number of ways to get from vertex i to vertex
j along exactly k edges, but nevertheless are non-zero if there exists a path between v; to vertex
v; along k, or less, edges.

The set of vertices has cardinality |Vpg| = N owing to the total number of interconnections
within the large-scale 10 system (2.1). Hence consider the adjacency matrix (PQ)TN. From

Lemma A.3 it can be shown that

r rN r
pmz(zﬁm®a> => W/N®D;, (3.9)

i=1 i=1

and by the above argument WY has no zero elements as each W represents a connected graph of
N vertices. Therefore, P™ is the interweave of 7 completely non-zero matrices and thus w.l.o.g.
for any non-zero elements p; ; of PN then Di+r,j and p; j+, are also non-zero. Specifically there
exist no two non-zero elements in P™V that are more than r elements apart in each row and
column, as in Example 2.1 where r = 2, N = 2. In addition, define Q’,;N = Q. By assumption,
Qk has no zero entries for all 4,5 € {1,...,r} by irreducibility and so Q"™ = diag (Ql, e QN)
Applying the definition of the matrix product, the elements of (PQ)TN are given by

rN
(PTNQTN)Z»]» = Zpi,kfik,j #0 (3.10)

k=1
foralli,j € {1,...,rN}, as every column of Q™" contains r consecutive non-zero elements. There-
fore (PQ)TN is a non-zero matrix which implies that the graph of PQ is strongly connected,
thus PQ is irreducible. (Il

The statement of Lemma 3.4 applies also to the reduced interconnection matrix P as it has
identical structure to the corresponding large-scale interconnection matrix P and therefore the
irreducibility of the product is preserved under the quotient mapping by 7. Hence by ensuring
the irreducibility of the Jacobian of the reduced IO system (2.1) spatially coupled by P, then
by Lemma 3.4 and (Al), the following statement provides polarity-dependent conditions that
guarantee the existence of laminar patterns in semi-regular bilayer graphs by using the strongly

monotone dynamics of solution trajectories.

Theorem 3.1 (Existence of laminar patterns with semi-regular graphs). Consider the I0 system
(2.1) with interconnection matriz P (2.8). Let wo be the layer-wise simultaneously equitable
partition for all bilayer connectivity graphs, Gy, defined by P such that the associated reduced
interconnection matriz P (3.4) defines the reduced 10 system of representative cells from each
layer. Assuming that (A1) is satisfied and there exists Ao such that the HSS instability condition
(2.17) holds for all n[lk}ﬁlw[lk] < ngk}ﬁlwgk] (i € {1,2},k € {1,...,7}), then any solutions in the

neighbourhood of the HSS, x*, converge to laminar patterns in the reduced system.

Proof. Following from Lemma 2.1 we consider the auxiliary dynamic system defined by the

Z1

transfer kinetics for the reduced IO system
—|T
+P (AW:F@% (3.11)

[Zg] - T (252)

as this represents the behaviour of reduced IO system using only the spatially dependent com-

zZ2

ponents. Note that the fixed points of the auxiliary system (3.11) are those of the IO system
(2.1). Namely, the auxiliary system (3.11) has HSS 2* = 15 ® ug for the cell-wise input steady
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state ug associated with &*. Linearising the auxiliary system about the HSS yields the following

Jacobian
oF

0z

First, we show that sign structures, S; and Sa of (Al), are equivalent up to linear transforma-

(2*) = — Iy, + P (I, ® DT (2*)). (3.12)

tion on the Jacobian (3.12), thereby ensuring the competitive solution dynamics of the auxiliary
system (3.11). Following that, we then use a competitive to cooperative bijective transforma-
tion to show that the auxiliary system is strongly monotone. Critically, the boundedness in
combination with strongly monotone kinetics of the transfer function ensures the convergence
of heterogeneous solutions in the auxiliary system (3.11) and thus the reduced 10 system by
Lemma 2.1. A sketch of the following proof is given in Figure 5.

Denote the reflection transformation M = I, ® M where
M = diag ((~1), (=1)%, .., (=1)" 1, (=1)").. (3.13)

Note that M~! = M and therefore M~! = M. Introducing the coordinate transformation
w = M z which converts between Jacobians with sign structures S; and Sy. Explicitly, consider
the auxiliary system (3.11) with Sgn (DT (-)) = Sz, then the Jacobian (3.12) with respect to w
yields

oOF

M <az (Mw)> M= (L M) (~I, + P (L ® DT (Mw))) (& M),

- I, + (12 ® M) (ZW ® DZ-> (I, ® DT (Mw)) (IQ ® M) :
=1

—I, + (iWﬂXJDz) (b@ﬂ) (I ® DT (Mw)) (IQ ®M)’

= I, + (Z W, ® Di> (12 ® MDT (Mw) M) , (3.14)
i=1

where the third and fourth equality follow from the commutativity of diagonal matrices and the

mixed multiplication property of the Kronecker product. The transformed Jacobian (3.14) is a

non-positive matrix as

(MDT (Mw) M) = (-1)"7 (DT (Mw)) (3.15)

ij Ei
by direct computation. For i+ j odd, (DT (Mw))ij switches sign, i.e. MDT (Mw) M has sign
structure Sy. Therefore, we continue by considering the transfer function with Sgn (DT (+)) = Ss.

The Jacobian (3.12) with Sgn (DT (-)) = Ss is a non-positive matrix as all element of P are
non-negative. From Lemma 3.3 the polarity dependent eigenvalues \; » of W, have eigenvectors,
v; 2, with sign structure Sgn (v; 2) = [—, +]T. Therefore, motivated by polarity-driven patterning
and the requirement of the positivity of the dominant instability mode for monotone kinetics
[47], we construct a transformation, R, to ensure that any polarity driven instability satisfies the
monotonicity criteria, that is, monotone with respect to alternating domains. Then consider the
transformation R = R ® I, where R = diag (—1,1). Noting again that R~! = R as R~' = R.

By similar calculations as above, it can be shown that by the coordinate transformation w = Rz
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the Jacobian (3.12) has the form

OF e~
R < (Rw)) R=-I,+) RW;R® D;DT (Rw), (3.16)
0z P
where the quotient adjacency matrix is transformed to the following form
T i -1—-a
RW,R=| “ (1-a;) (3.17)
—(1=1b;) b;

Therefore, let 7 (i) = (i — 1) mod r + 1 then the row-sum of the transformed auxiliary Jacobian
(3.16) can be expressed as

r

(20-)=1) > (D-oDPT(Rw)),; 1<i<r,
OF j=1,i#j
T I
i Yo @w -1 Y (Dr@DT(Rw)),, r+l<i<or

J=Li#j

(3.18)

Hence by the assumption n[llf}ﬁiw[lk] < ngf}ﬁiwgc] (i €{1,2},k € {1,...,7}), we have that 2a,—1 < 0

and 2b;, — 1 < 0 by direct substitution into equation (3.6). Critically, as DT (Rw) is a negative

> (75 tmrm)) 21 029

for all i € {1,...,2r}, thus satisfying the type K condition in Lemma 3.1. Furthermore, by

matrix, we have that

Lemma 3.4, the transformed auxiliary Jacobian (3.16) is irreducible and therefore the auxiliary
dynamical system (3.11) is strongly monotone (cooperative) with respect to the laminar pattern
transformation R.

The cooperative auxiliary dynamical system (3.11) is monotone with respect to the standard
domain RQZTO and has a positive eigenvector v > 0 associated with the polarity driven instability
Ay of the transformed HSS Rz* by the Perron-Frobenius Theorem [55]. Consequently, for
small €, any solution starting at Rz = Rz* + ev must have positive derivative and increase
in the transformed trajectory domain RQZ’"O [47]. Critically, if the solutions of the cooperative
auxiliary dynamical system (3.11) are bounded, then the strongly monotone property ensures

the convergence to another steady state, Rz** % Rz*.

The transfer function T (-) is bounded and so there exists b > 0 such that || P[T (z1), T (22)]7]]2 <

b for all z;. Thus, as the cooperative auxiliary dynamical system (3.11) is monotone with respect
to R%, we have that the sets centered about the HSS V. = Rz* + (R, N [0,b]*") are forward
invar_iant, ie. ¢t (Rz) € Vy for all t € [0,00). Therefore all solutions are bounded within a
compact domain and thus converge to Rz** # Rz* by the Cooperative Irreducible Convergence
Theorem (Theorem 4.3.3 in [47]). Subsequently, the corresponding non-transformed system
(3.11) must have each vertices with solutions in V4 and V_, respectively, ensuring contrasting
cell-wise solutions. Finally, as any steady state solution to the auxiliary dynamical system (3.11)
is a steady state of the associated reduced IO system (2.1), by Lemma 2.1 the reduced IO system

2.1) converges to laminar patterns. O
( g p

From Theorem 3.1 we can conclude that the existence of a polarity-driven instability of the
HSS implies the existence of heterogeneous steady states within the quotient system. This follows

as solution trajectories diverge when transforming between competitive to cooperative systems
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Partially competitive L® M Competitive
dy .p > p _
ynamics dynamics
R® M\ /Nz ® I,
Cooperative
dynamics

/

/
» HSS instability
‘7 + strongly monotone

4
Cell 1 Cell 2 Cell T Cell 2
‘ ~ 1
o (20) (R ® Ir) o (zo)
bt (20) :
) or Oy (Z())
-1 °
<R ® M>

FIGURE 5. A sketch of the proof of Theorem 3.1 for system transformations
where I, is the identity matrix, M is the competitive sign structure transfor-
mation, R is the competitive to cooperative transformation and ¢ (zo) is a
solution trajectory with initial condition zg.

as highlighted in Figure 5. Moreover, as the competitive dynamics of the reduced 10 system
(2.1) are isomorphic to cooperative dynamics, all periodic solutions are unstable [56], implying
the convergence to contrasting cell states. The following example demonstrates how Theorem

3.1 can be applied to prove the existence of laminar patterns in large-scale 10 systems.

Example 3.1. Consider the DIDO system with two spatially-dependent components describing

lateral-inhibition with a diffusive crosstalk as represented in Figure 6,

Ty = g1 (uin) - g2 (wi2) - f1 (wi2) — 241, (3.20)
Tio = fo(®in) — 2i2, (3.21)
T3 = g3 (Ti1) — T3, (3.22)
Yi1 = Ti,2, ( )
Yi,2 = T4,3, ( )

for each cell 1 < 1 < 60. The functions f; and g;, j = 1,2,3, are positive, bounded, and
increasing and decreasing functions, respectively, of the form,
k.
i 1
fi(@)=——— and g;(z)= W

3.25
aj + ki (3.25)
where o, Bj,kj,hj > 0. Let u; 1 and u; o be defined by short-range diffusion and contact-based

bilayer connectivity graphs G1 and Go, respectively as in Figure 6. Fxplicitly, we have that outputs
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are converted to inputs via the global interconnection matriz such thatu = (W1 ® D1 + Wy ® Do)y
for Wi, Wy € W. Here, we focus on the associated reduced 10 system (3.20-8.24) which is de-
fined by the simultaneously equitable partition mo. Namely, in the reduced IO system, outputs
are converted to inputs by w = (Wl QD1 +Wy® Dg) y where

QwEI] 4w£1] 2w£2] 2w[22]
JE— [1] [1] [1] [1] JE— [2] [2] [1] [2]
_ 2w +4w 2w +4w. _ 2w; T +2w 2w;i +2w.
Wl o 1411)[1] ’ 1211)[1 ’ and W2 o 1211)[2] ’ 1211)[2 ’ (326)
2 1 2 1
2w£1]+4w£1] 2w[11]+4w£1] 2w£2]+2w£2] 2w[12]+2w£2]

such that n[11]£1 = n[11]£2 = n[lz]ﬁl = n[12]£2 =2, n[21]£1 = ”[21]52 =4 and n[;]ﬁl = n[22]£2 = 2. We seek

to show the existence of polarity driven laminar patterns using the quotient graphs and so we
first require the HSS of the 10 system (3.20-3.24), then we derive the derivative of the transfer
function DT (u;), highlighting that (A1) is satisfied. Applying Theorem 3.1, we generate polarity

regimes for the existence of patterning.

Short-range
diffusion

0
70 O
AP

FIGURE 6. A schematic of the IO system considered in Example 3.1.

The HSS of the 10 system (3.20 - 3.24) can be determined by solving

91 (f2 (1)) - 92 (f2 (21)) - f1 (93 (27)) — 271 =0 (3.27)

for xy by setting u; 1 = ;2 and u; 2 = x; 3, conforming to homogeneous input and outputs of the
tissue. Furthermore, the HSS defined by solving equation (3.27) is always stable in the absence of

interconnections. This can be shown by considering the linearisation of the intracellular kinetics

-1 L0
=9y flgzgz 0 (3.28)
== | - . .
g5 0 -1

As det (A) = fig1fo95 — 1 < 0 always holds by the monotonicity of the functions f; and gj,
then the HSS defined by solving equation (3.27) is unique by Lemma 2.2. In addition, A has

etgenvalues

pr=—1, pp=—-14++/figifogs and pz=—-1—+/f191f395 (3.29)
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and so as p1, R (p2) , R (pu3) < 0 we have that A is stable. Thus any instability of the HSS will
be induced by the interconnection of cells in the tissue.

The derivative of the transfer function can be determined by linearisation of the 10 kinetics
(3.20 - 3.24) as demonstrated in [29] such that DT (u;) = —CA~'B where B and C are the
linearised inputs and outputs respectively as in Lemma 2.3. For the IO system (3.20 - 3.24), the

derivative of the transfer function has the form

0 1 0 1 fig195 0 f19297  9192f1
DT (u;) = — det (A) " . 1] g1 0 0 0
- g5 f1919595 1 — f19195 0 0

= —det (A4)~" (3.30)

192139 mmﬁﬁ]
_f192939;'3 91921195 7
where each of the functions f; and g; are evaluated using the corresponding arguments for the
given input state w;. The multiplication of bounded functions are bounded [43] and subsequently
DT (u;) is element-wise bounded as fj, g;, f; and g} are bounded. In addition, from the mono-
tonicity of f; and g; we have that

Sgn (DT (u;)) = =& (3.31)

and so the 10 system (3.20 - 3.24) satisfies (A1). Therefore by Theorem 3.1 we have that the I0
system (8.20 - 3.24) spatially coupled using the quotient graphs Gi ., and Ga r,, the instability
of the HSS in addition to the monotone polarity conditions wgl] < 2w£1] and wgz] < wg], produce
contrasting cell-wise states.

By Corollary 2.1 we apply the DIDO instability inequality (2.21) to the 10 system (3.20 -
8.24). Asdet (DT (u;)) = 0, the DIDO instability inequality (2.21) reduces to 1 < tr (A;DT (u;)),
namely the HSS is unstable only if

. witl — 9l wi? — 2
1 < —det(A) ((W) frg291f5 + (M) 9192f{9§> (3.32)

w&” + 2w, 1 2

for the reduced I0 system (3.20 - 3.24). The monotone polarity conditions wgl] < 2w£1] and

w?] < wg]

of Theorem 2.1 confirm that each of the reduced connectivity matrices must have
negative eigenvalues to produce the instability of the HSS. as figegify < 0 and gig2figs < 0.
Crritically, the HSS instability inequality (3.32) highlights that as the layer-wise activator/receptor
polarity increases, i.e. w[li] < wg], the potential to induce laminar patterns also increases in the
quotient system. Then by the spectral retention property of the equitable partition ms, we have
that laminar patterns must exist in the pattern space of the associated large-scale system.

To illustrate the application Theorem 3.1 to the 10 system (3.20 - 3.24) numerical verification
of the polarity parameter regime for laminar pattern existence determined by inequality (3.32) is

given in Figure 7.

As demonstrated in Example 3.1, the method of pattern templating for contrasting solutions
between cells in opposing layers can be used to show the existence of layer-wise differing steady
states via polarity-driven instabilities. However, the associated large-scale systems may have
many locally stable steady states that produce the pattern space of the 10 system which could

have been lost during the dimension reducing transformation by the partition, 7o [33]. Therefore,
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Cell 1 Cell 2

0.25 N ) \ 0.4 0.2 0.2
Irmnin ' = T =
., VO patterning | 50.2 Fo.1 201
1 0 0 0
0.15 X , 0 50 100 0 50 100 0 50 100
L ; t t t
0.1 : 0.4 02 0.2
1 i 7 al __d =0
0.05 > F021 goi 201 _[_j
& 0 0 0
0 0 50 100 0 50 100 0 50 100
0 05 1 15 2 25 : ; ;

wl!

FIGURE 7. Polarity parameter regimes for the existence of laminar patterns

in the IO system (3.20-3.24). For fixed wél] = wf] = 1, inequality (3.32) in

addition to the monotone polarity conditions wgl] < wgl] and w[12] < 2w£2] to

define a regions in (wgl], w?])-space for the existence of laminar patterns. The

dashed line in the (w[ll],w?])—space corresponds to the monotone condition

w[ll] < 2w£”. Example simulations are given for polarity parameter values in-
side the pattern region, (0.6,0.02), and outside the pattern region (1.5,0.15).
Initial conditions were given as small random perturbations about the HSS,
x* = [0.18,0.03,0.05]T. 10 system (3.20-3.24) parameter values and details on
simulations are given in Appendix B.

in the following section, we investigate the spectral properties of the bilayer connectivity graphs

to ensure that the laminar patterns produced by Theorem 3.1 are indeed globally dominant.

3.3. Spectral links between quotient and large-scale bilayer connectivity graphs.
For linearised dynamical systems near steady state, the local solution trajectories are a linear
combination of the associated eigenvectors scaled by the corresponding exponent of the eigenval-
ues [57]. Thus, in the instance of steady-state instability, all trajectories close to the steady-state
will locally tend in the direction of the eigenvector associated with the largest real-part eigen-
value. Critically, to ensure the monotone convergence of laminar patterns in the reduced IO
systems in Theorem 3.1, we transformed the polarity-dependent eigenvector to be directed in
the positive orthant, conforming to the behaviour of cooperative dynamics. Thus, motivated by
this positive direction transformation, we seek to understand when the eigenvalue associated with
laminar pattern formation dominates the large-scale spectra. This ensures the perturbed trajec-
tories from the HSS to be preferably pointed in the direction to achieve layer-wise contrasting
states in the large-scale IO systems.

Previous studies on pattern formation using IO systems have imposed the sufficient condition
that the large-scale and quotient multilayer connectivity graphs Gy, are bipartite, as this generates
monotone dynamics with respect to the bipartition vector [29, 33-35]. Namely, a graph Gy is
said to be bipartite if the vertices v € V' can be partitioned into two independent sets V; and
V4 such that no two vertices in the same set are adjacent [38]. Example bipartite bilayer graphs
are given in Figure 8A. However, it can be demonstrated that for bipartite bilayer graphs,
the polarity-dependent eigenvalue, Ay 2, associated with laminar pattern formation cannot be

dominant.



734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

26 MOORE, DALE, AND WOOLLEY

Lemma 3.5. Let G, be a bipartite bilayer graph with weighted adjacency matric Wy € W.
Then for any w[lk],w[;} > 0 the polarity-dependent eigenvalue ng associated with the reduced
adjacency matriz W, satisfies

A2 # min (Spec (Wy,)) . (3.33)

Proof. Consider A ; € Spec (W), then by the spectral symmetry of bipartite graphs about the
origin we have that —\j ; € Spec (W},) [38]. As W, € W then A\, 1 = max (Spec (Wy)) =1 by
the connected and row-stochastic properties of Wy, [40]. Consequently, —\x 1 = min (Spec (Wy)) =
—1. However, the minimal eigenvalue of the reduced adjacency matrix W, defined by the lam-
inar pattern partition, 7y, must be of the form ng = ag + by, — 1 for ag, by € (0,1) by Lemma
3.3. Critically, this implies that Ay € (—1,1) and therefore A\; 2 # min (Spec (W})) for any
layer-wise polarity values wgk] , wék] > 0. O

A direct consequence of Lemma 3.5 is that if the large-scale 10 system (2.1) is spatially coupled
by a bipartite bilayer graph G then any trajectory initiated from a small perturbation of an
unstable HSS will not be dominantly travelling in the direction of the eigenvector associated
with laminar patterning. Critically, there will always exist a greater instability mode of the
IO system (2.1). Figure 8B demonstrates the consequences of Lemma 3.5, and for the given
bipartite graphs, the laminar patterning polarity-dependent eigenvalue \x o defines a spectral
gap about the origin which is proved in Appendix C.

Following Lemma 3.5, we focus our attention on the spectral investigation of non-bipartite
semi-regular bilayer graphs. As we are interested in the polarity-driven pattern events using a
pre-defined pattern template, ma, we seek layer-wise polarity conditions in which Ay 2 becomes
minimal. Subsequently, we considered a variety of non-bipartite graphs each with different edge
connectivity structure and varied the same-layer weighting parameter wgk] for fixed wgc] =1,
measuring the position of A; 2 in terms of the ascending spectrum of the associated large-scale
graph. A summary of the non-bipartite connectivity structures that were considered are in given
Table 2 in Appendix B.

For each of the non-bipartite bilayer graphs that were considered, we observed that decreasing
same-layer weighting parameter, wgk], shifted the eigenvalue A o associated with laminar pattern

formation towards the minimum of the spectrum (Figure 9). Furthermore, we demonstrate that
(%] (k]

A2 = min (Spec (W},)) for values of w; " < wy ', noting that this was achieved for higher values of

K] . . . .
wg l'in the graphs with more cross-layer connections than same-layer connections, n; », < na z,.

Critically, Figure 9 highlights that there exists large-scale non-bipartite connectivity graphs
that have the capacity to be fully characterised by the extrema of the spectrum of the laminar
quotient graph by control of the amount of polarity in the system. That is, with high layer-wise
polarity, wgk] < wgk], we have min (Spec (W})) = min (Spec (W},)) and max (Spec (Wy)) =
max (Spec (Wy)).

By Theorem 3.1 we demonstrated that the existence of laminar patterns with competitive
kinetics is dependent on the existence of connectivity polarity within the quotient connectivity
graphs to induce both HSS instability and monotonicity of solutions. Therefore, in the following
section, we explore whether solution behaviours observed in the reduced systems are preserved in
the associated large-scale systems when the quotient graphs preserve the extrema of the spectra
of the large-scale graphs. Namely, we show that the analysis conducted on the reduced 10
systems yields global pattern convergence in high polarity regimes. Specifically, we say that the
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(A) Bipartite bilayer graphs.

(k]

wi - = 0.05 wy = 0.2
ettt 1
R ..0.9."_"_ - _T/\ZD 2
50
< _
o P O A2D,2
------- A2D,2 1 Logse®™
20 30 0 10 20 30
Eigen index, i Eigen index, i

400 0 200 400
Eigen index, 7 Eigen index, 7

(B) Example spectra of bipartite bilayers.

FIGURE 8. Structure and spectra of bipartite bilayer connectivity graphs. (A)
Example regular bipartite graphs where vertices are coloured with respect to

the bipartition sets V4 and V» in black and white, respectively. (B) Spectra of
two bipartite graphs Gop and G3p is shown for wgk] = 0.05 and wgk] = 0.2 for

fixed w[Qk] =1 (k € {2D,3D}) where the eigen index refers to the position of the
eigenvalue when listed in ascending order. The dashed red lines correspond to
the polarity-dependent eigenvalue Xk’g highlighting its position with respect to
the ascending spectrum of the associated large-scale graph. The vertices of the
graphs are coloured layer-wise to emphasise their bilayer structure.

large-scale IO system (2.1) globally converges to laminar patterns if x conforms to Definition
2.1 for all sufficiently small perturbations about the HSS, a*.

3.4. Polarity induced laminar pattern formation derived by quotient systems for
large-scale bilayer geometries.

In this section, we investigate the conditions in which the patterns predicted using the dimension
reduction technique of quotient templating are the globally dominant patterns produced in the
large-scale 10 systems. We have demonstrated in Section 3.3 that the spectra of non-bipartite
semi-regular bilayer connectivity graphs have the capacity to be bounded by the extrema of the
spectra of the associated quotient graphs defined by 7. This implies that the polarity-driven
HSS instability imposed by the pattern existence condition of Theorem 3.1 in the quotient

systems must also exist in the large-scale systems and can become dominant in high-polarity



788

789

790

791

792

793

794

795

796

7

©
N

28

MOORE, DALE, AND WOOLLEY

witl =1 wfl = 0.5
1 - 1 =
%:; 0 ————— .:. ;M“ 0 “u-"
Iy : e
-1 L 1 l
0 20 40 0 20 40
1 .. 1 ..
S0 - 0 i
E st
-1 1 o1l
0 20 40 0 20 40
1 -1 ~
":; 0 ” 0 um..
~ L MW R o00e®®’
| ol
I 1l
0 20 40 0 20 40
1 w 1 o
1 | okl 0 =
T i
-1 | -1 I
0 20 40 0 20 40

Eigen index, @

trajectory direction.

FEigen index, i

wif = 0.1
1 e
0 g
=] "
0 20 40
1 -
0 ”,,..--“""
nﬂ"'
1 el
0 20 40
1 —
0 aasese®®
L anend
=] 9"”
0 20 40
1 L)
0 e
qr "
0 20 40

Eigen index, ¢

FI1GURE 9. Eigenvalues associated with laminar pattern trajectories tend to the
minimum of the large-scale spectra as polarity increases in non-bipartite bilayer
graphs. The non-bipartite graphs Gy (k = 1,2, 3,4) are shown on the left with
vertices coloured layer-wise. The spectrum of each graph is then shown in as-
cending order for same-layer polarity values wgk] =1, wgk] = 0.5 and wgk] =0.1,
where the eigen index corresponds to the increasing ordering of the eigenvalues.
In each of the plots, Ag o is highlighted in red with dashed lines included to
emphasise the value position in the ascending ordering of eigenvalues. Details
on the connectivity structures each of the graphs is provided in Appendix B.

regimes. Therefore, we now focus our attention on whether the large-scale IO system is monotone

with respect to the eigenvector locally directing solutions to laminar patterns, thus preserving

Lemma 3.6. Consider the large-scale 10 system (2.1) spatially coupled by the global adjacency

matriz P (2.3) where Wi, € W for k € {1,...,r}. Assuming that (A1) is satisfied and the

laminar pattern partition, ms, is simultaneously equitable. If all connectivity graphs Gy are highly

polarised, w

(%]

direction of laminar patterns.

Proof. Similar to Theorem 3.1 we consider the large-scale auxiliary system

!

ZN

Z1

ZN

T (1)

< wy ', the large-scale 10 system (2.1) generates monotone solutions in the

(3.34)
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which has the identical behaviour to the large-scale IO system (2.1) by Lemma 2.1 yet the aux-
iliary system (3.34) only explicitly considers the spatially dependent components of the model.
First, we will construct the sign structure of the eigenvector associated with laminar patterns in
the large-scale graphs. Then, by transforming the auxiliary system (3.34) to ensure the positivity
of the laminar pattern eigenvector, we demonstrate that the large-scale 10 system (2.1) has the
capacity to become type K for high polarity bilayers.

Linearising the auxiliary system (3.34) about a generic point z € ]REN yields

DT (Zl)
oF
O pn+P s (3.35)
DT (zn)

where T (-) satisfies (A1) and thus sgn (DT') = Sy or sgn (DT') = S,. As in the proof of Theorem
(3.1), the transformation M = Iy ® M , where M as given in equation (3.13), demonstrates
the equivalence of the sign structures. That is, if sgn (DT') = S; then sgn (MTDTM) = &s.
Therefore we continue assuming sgn (DT') = Sa, critically that diag (DT (z1), ..., DT (zn)) is a
non-positive matrix.

The reduced graphs associated with the laminar pattern template Gy ., have eigenvalues
A1 = land A\ 2 = ap+b,—1 with eigenvectors Ty 1 = [1,1]T and vy 0 = [1, (b — 1) / (1 — ax)]7,
noting that ag, by, € (0,1) by definition of the reduced adjacency matrix Wy, (3.5). Subsequently,
the polarity dependent eigenvector has sign structure sgn (vy 2) = [+, —]7. Furthermore, as my
is equitable for all graphs Gy, then there exists a matrix L € {0, 1}?*2 that maps the large-scale
graph into the quotient graph such that

LW, = W,L (3.36)

where L allocates the vertices of the large-scale system into the reduced groups associated with
the laminar pattern template [38]. Owing to the layer-wise vertex indexing as constructed in

Section 2.1, we have that

I_ (3.37)

12, x1 0|£1|><1‘|
Oicoix1 gy x1 '
From the quotient to large-scale algebraic relation (3.36), we have that LTy o is an eigenvector
of W}, with eigenvalue A, 2. Specifically, this implies that the eigenvector associated with lami-
nar patterning in the large-scale graphs has the sign structure sgn (LUy 2) = [+, .oy +, = ooy —| T
which has |£1]| and |L2| positive and negative entries, respectively. Hence, the matrix R =
diag(1,...,1,—1,...,—1) orientates the laminar patterning eigenvector LTy o in the positive or-
thant, i.e., ﬁLFkQ > 0.

We next introduce the transformation w = Rz where R = R ® I,, noting that R™! =
R. Following this change of variables, let X; = diag (DT (z1),...,DT (zml‘)) and Xy =
diag (DT (z|£1|+1) s ey DT (zN)) be non-positive matrices, then in combination with the layer-

wise block formulation of the bilayer adjacency matrices, Wy, the linearised auxiliary system
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(3.35) has the form

OF

Ry

X, 0
R=-I.y+RP|"! R,
0 X,

i
~ X 0
_"N+<ZRVVi®Di>'[O —XJ’

=1
| WiLeDi Wy eDi |\ [x, o
=L+ | 2| (i \7 U ' :
= |- (W) epi -Wl', @D 0 -X,
(Wi ep)xi - (W, ©D;)X;

—Ip N+ —~m \T — , (3.38)
2| (W) en)x (o)

by the mixed-product and block-product properties of the Kronecker product [58]. The trans-

formed auxiliary system (3.38) is monotone if the off-diagonal row-sum is non-negative by Lemma

3.1. Namely, if 7 (¢) = (¢ — 1) mod r + 1 then

7|Ly] | Lo]
W) S (X1, - Bl > (Xa)ywy  1<i<rL,
oF j=1,57 =157
Z<RR> _ J=1j# J=Lj#
E N 0% ) )
_“727 ' Z (Xl)'r(i)j + wlT ' Z (XQ)T(i)j rlfil+1<i<rN.
j=1.j#i j=1,5#i
(3.39)
In particular, as sgn (DT') = Ss, then all positive and negatives components of the row-sum are
scaled by wgf] and wgk], respectively. Then for sufficiently small values of wgk] combined with
(k] (k] (K]

relatively large values w, ', confirmed by w; ' < ws"', we have that,

> (Rgl:R) >0 (3.40)

i i
for all 1 < 4 < rN. Therefore the auxiliary system (3.34) is type K by Lemma 3.1 and so
is monotone in the direction for solutions associated with laminar patterning in high polarity

regimes. O

Applying the cooperative transformation in high-polarity regimes to an IO system (2.1) where
the extrema of the spectra are preserved in the quotient mapping guarantees the global con-
vergence of laminar patterns in the large-scale systems. Critically, this extends the existence

statement of Theorem 3.1 to sufficient conditions for large-scale laminar patterning.

Theorem 3.2 (Global convergence of laminar patterns in highly-polarised regimes). Consider
the large-scale 10 system (2.1) spatially coupled by the global adjacency matrix P (2.3) where
Wi, € W for k € {1,....,r}. Assuming that (A1) is satisfied, the laminar pattern partition o
is simultaneously equitable, and each connectivity graph, Gy, is highly polarised, wgk] < wék].
If Ao = min (Spec (Wy)) such that the laminar pattern existence criterion, Theorem 3.1, is

satisfied, then laminar patterns are globally convergent in the large-scale 10 system (2.1).

Proof. Following Theorem 3.1, by analysing the quotient graphs there exists A, such that the
HSS instability condition (2.17) is satisfied. In addition, Lemma 3.6 guarantees that the 10

system (2.1) generates monotone solutions in the direction of laminar patterns, such that the
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eigenvector associated with Xk’g is directed in the positive orthant, ﬁLFk,g > (0. Furthermore,
Lemma 3.4 ensures that the linearised IO system is irreducible and thus the IO system (2.1) is
strongly monotone by Lemma 3.2.

By the identical arguments of Theorem 3.1, the corresponding large-scale auxiliary system
(3.35) has bounded solutions, which induces the convergence of solutions to steady-state Rz** #
Rz* by the Cooperative Irreducible Convergence Theorem (Theorem 4.3.3 in [47]). Critically,
mapping back to the original coordinating system guarantees that vertices in different layers

have contrasting solutions. O

The sufficient conditions for large-scale laminar patterning outlined in Theorem 3.2 ensure
that the behaviour observed in the quotient systems is preserved in the corresponding large-scale
systems. Subsequently, this enables an analytic approach to pattern prediction as we can fully
determine the spectra of the quotient graphs Gs independently and without imposing commu-
tativity conditions on the reduced adjacency matrices. The following example demonstrates the
accessibility of the analysis for large-scale IO systems spatially coupled multilayer connectivity

graphs.

Example 3.2. We revisit Example 3.1 to seek a polarity regime that guarantees the global
convergence of laminar patterns using analysis conducted in the quotient systems when templating
the large-scale system using the equitable partition, ma. Namely, in conjunction with the results
of applying Theorem 3.1 to the DIDO system (8.20-3.24) as in Example 3.1, we also invoke

51] and w£2] in which the extrema

Theorem 3.2 to isolate regions of polarity parameter values for w
of the quotient graph spectra are the extrema of the large-scale graphs.

As each of the connectivity large-scale and quotient graphs are row-stochastic, we always have
max (Spec (W},)) = max (Spec (W},)) = 1, (3.41)

therefore, the quotient graphs retain the mazimum eigenvalues, and so now we focus on the

preservation of the minimal eigenvalues.
In Figure 9 we have demonstrated that for wgk] < 0.5 and wgk] =1, the quotient connectivity
graphs for short-range diffusion and contact-dependent signalling mechanism, G », and Ga r,

(which are denoted Gy and Gs in Figure 9, respectively) have the capacity to bound the spectra of
the large-scale graphs G and Go from below. Critically, this implies that for any wgk] < 0.5 with
fized wgk] = 1, which induced HSS instability, solutions will be locally directed towards laminar
patterning and so following from Theorem 3.2, for sufficiently small wgk] < 0.5, the large-scale
DIDO system (3.20-3.24) will converge to laminar patterns.

To highlight the results of applying both theorems 3.1 and 3.2 to the example DIDO system
(3.20-3.24), regions of pattern convergence were found numerically in Figure 10 which includes

examples of large-scale simulations for which laminar patterns are and are not dominant. It

is worth noting that the magnitude of the difference between wgk] and wgk]
the magnitude of the entries of DT (u;) and thus assuming that wgk] < wgk]

is dependent on
18 sufficient for
the monotonicity of the large-scale system but is mot necessary to satisfy the type K criteria
(Lemma 3.1). Subsequently, simply selecting polarity parameters in which both the HSS instability
condition for the reduced system (3.32) and min (Spec (W)) = min (Spec (W})) are satisfied
resulted in the large-scale system converging to laminar patterns without requiring significant

layer-wise polarity.
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F1GURE 10. Polarity parameter regimes for the existence and convergence of
laminar pattern in the large-scale IO system (3.20-3.24). The grey existence re-
gion is determined using the quotient system analysis and is defined by polarity-
driven HSS instability inequality (3.32) for fixed w[21] = w[22] = 1. The green
convergence region highlights the subset of grey region in (wgl],w?g-space

in which min (Spec (W},)) = min (Spec (Wy)). Example large-simulations are
shown for polarity parameters inside the convergence region, (0.4,0.1), and in-
side the existence region (1.5,0.05). Large-scale bilayer graphs are shown with
both G; and G5 embedded in the same vertex set with edges in black and red,
respectively. Vertex colour corresponds to the values of z;; in each v;. Simu-
lations were initiated from small random perturbations about the HSS of the
IO system (3.20-3.24) and first and final states are shown following trajectory
convergence. 10 system (3.20-3.24) parameter values and details on simulations
are given in Appendix B.

As highlighted in Example 3.2, theorems 3.1 and 3.2 facilitate the analytic study of laminar
pattern formation in large-scale interconnected dynamical systems, independent of the number
of cells in the system or physical dimension owing to the topological definition of the connec-
tivity graphs. Hence the pattern analysis conducted on the quotient systems can evolve from
explorative- which geometries enable laminar patterning, to constructive- how much edge weight

manipulation is required to robustly generate laminar patterns.

4. DI1SCUSSION

In this study, we have developed analytic methods for exploring the interplay of cellular
polarity and multiple signalling mechanisms in the emergence of laminar patterns in bilayer tis-
sues independent of the precise intracellular kinetics. To facilitate such analysis we focused on
methods of dimension reduction of large interconnected dynamical systems that preserve funda-
mental cellular behaviour. Specifically, we demonstrate that cell signalling transfer dynamics can
be treated as a proxy for intracellular components, reducing the dimensionality of the spatially
discrete ODE systems by analysing only the spatially dependent intracellular components, which
enabled us to provide sufficient conditions for the existence and uniqueness of the homogeneous

steady state.
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In addition, we use properties of commuting graphs to decompose large MIMO systems into
lower-order interconnected systems, decoupling the spatial and temporal components. This not
only has advantages in reducing the computational cost associated with large-scale eigenvalue
problems but also enables the direct analysis of the influence each signalling mechanism has on
driving spatial instabilities of the homogeneous steady state. From a practical standpoint, the
requirement of commuting graphs of cell signalling currently limits the applications of the large-
scale HSS instability results in general pattern formation problems as there exist no analytically
tractable methods for checking these conditions for large graphs. Therefore developing a proce-
dure for constructing commuting families of large signalling graphs is critical to broadening the
scope of these modelling approaches.

Combining methods of multilayer graph partitions with monotone dynamical systems the-
ory, we demonstrate the existence of laminar pattern formation with competitive kinetics relies
on the amount of signalling polarisation present within each graph. Critically, the application
of equitable partitions to the connectivity structures where layer-wise symmetries are present
enables drastic dimensionality reductions of the global dynamical system when seeking contrast-
ing steady-states between the bilayer of cells. Thereby exploiting the spectral structure of the
quotient graphs we demonstrate the instability conditions derived for large-scale interconnected
dynamical systems that can be applied to the reduced system, independent of commutativity
of the quotient graphs, which facilitates the investigation of whether the pre-defined contrast-
ing states are achievable with the given kinetics. The symmetry requirements of the equitable
partitions need not be restricted to globally regular cell-cell interaction graphs. We only require
regularity within each partition which therefore permits the application of semi-regular graphs
for dimension reduction. Such graphs can then capture characteristic traits of the biological sys-
tem such as subpopulation phenotypes and tissue curvature, and their influence on intracellular
behaviour.

These methods of prescribing patterns allude to studying the inverse problem, specifically,
starting with the desired pattern of the tissue and then defining constraints for the intracellu-
lar kinetics that have the potential to induce such instabilities, as previously demonstrated in
spatially continuous Turing systems [59]. Additionally, as the full and quotient system analy-
sis depends only on the topology of the connectivity networks, the results from this study are
immediately applicable to more biologically relevant 3D morphologies. Classically, introducing
3D structures drastically increases the computational complexity in pattern formation analysis
[19, 60, 61], yet the topological approach allows for the transition between physical dimension
with no additional requirements as discussed in [37].

Investigating the link between the reduced and large-scale dynamical systems when seeking
laminar patterns, we demonstrate the statements of laminar existence derived using pattern-
templating have the capacity to be globally convergent in the corresponding large-scale inter-
connected system in high polarity regimes. To show the existence of a monotone transformation
we imposed weak but sufficient conditions that wgk] < wék], highlighting the requirement of
edge weight anisotropy for laminar pattern formation. However, we suspect that this condition
can be significantly refined by illustrating a dependence on the magnitude of entries of DT (u;)
when applying the type K criterion for monotone solution behaviour, namely, having a priori

estimations of the size of the cellular output signals for given input signal regimes.
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Furthermore, to explore these links between the quotient and large-scale systems, we impose
the restrictive semi-regular bilayer structure with identical edge weights. This ensures the ex-
istence of an equitable partition to generate low-dimensional dynamical representations with
common spectra which is guided by a graphical perspective. However, these vertex symmetries
are not the only be a subset of the graph topologies in which preserve spectra between quotient
and large-scale systems. These results may be generalised to less restrictive spatial domains
which are more realistic in biological applications by investigating the lifting maps of the pat-
tern representing quotient graphs as previously considered in synchronised subspaces of balanced
systems [53]. In addition, our methods of ensuring desired pattern convergence in the large-scale
dynamics by exploiting the simple block structure of the weighted adjacency matrices Wy, € W
can also be generalised by the row-sum constructions of block weighted adjacency matrices in
general liftings as highlighted in [52, 53], such that the structures considered in this study present
as a special case of those discussed previously. Subsequently, further work is required to isolate
desired vertex pattern modes from generic lifted weighted adjacency matrices, specifically under
the control of edge weights to satisfy the type K criterion to guarantee global convergence within
these more general graph structures.

As discussed in the previous interconnected monotone systems studies of pattern formation
[29, 34, 35], the most limiting assumption in large-scale systems analysis is the existence of
competitive to cooperative monotone kinetics transformation which previously has relied on the
sufficient requirement of the connectivity graphs being bipartite. However, in Section 3.4 we not
only demonstrate that laminar patterns are not the dominant pattern of bipartite bilayer graphs
but also manipulating graph edge weights of non-bipartite graphs enables competitive to coop-
erative kinetics transformations for laminar pattern formation. The key feature of cooperative
dynamics used in these pattern formation studies is the guarantee of non-periodic solutions when
considering bounded kinetics [47]. Therefore another promising direction to ensure such solution
behaviour is the study of variational families associated with the interconnected systems [62],
that is, applying Lyapunov methods for non-oscillatory dynamics to enable the investigation of
intracellular crosstalk inference in biologically relevant morphologies.

Throughout this study, we have reserved the precise definitions of the intracellular kinetics
and associated signalling mechanisms to consider general competitive MIMO dynamics. Sub-
sequently, the generality of results presented here enables the investigation of crosstalk of key
molecular pathways with multiple spatially dependent intracellular signalling components, such
as the well-established Wnt-Notch interactions that have been observed in both intestinal and
mammary epithelia [63]. Both the Wnt and Notch pathways are involved in cell-fate determi-
nation and have been observed to have active apical-basal polarity mechanisms during tissue
development [64, 65]. However existing models have previously been limited to analysis of one
or two cells [66, 67], the methods we provide here allow us to study how the geometry of the
tissue influences such cell-fate choices, specifically within the bilayer structures commonly found

in mammary glands.
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APPENDIX A. ADDITIONAL PROPERTIES OF INTERWOVEN MATRICES

Here, we present further properties of interwoven matrices which have particular applications
in dynamical network theory of mixed kernels. Specifically, an interwoven matrix P is composed
of the sequence of real matrices M = {M; | M; € R¥*N} called constructor matrices such that
the rows and columns of each matrix M, are uniformly separated by zero elements, preserving
the structure of M;, where the order of M defines the sequence of spacing. Formally we define

an interwoven matrix P by

P: ZMi@)diag(éi,l,...,éi,r), (Al)

i=1
where ® is the Kronecker product and ¢; ; is the Kronecker delta function (2.4) as defined in

Section 2.1. Here we do not assume that the constructor matrices M, are nonnegative.
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The following statement provides a constructive diagonal decomposition of the P, illuminating

the spectral structure of P.

Lemma A.1. Let P be the interwoven matriz defined as defined in equation (A.1) and let Q

be the permutation matrix such that

Q:[IN®617---7IN®6T]- (AQ)
T
where € = (0,1, ..., 0;r| - Then
Q"PQ =P M, (A-3)
i=1

where @ is the direct sum of tensors.

Proof. Consider the permutation map 7 : {1,...,7N} — {1,...,7N} such that

(@) = ((z — 1) modr>N+V;1J+1 (A.4)

which permutes the rows and columns of P so any row and columns M; of P become adjacent

for 1 <4 < r. In cycle notation, 7 (x) defines the mapping

1 2 T r+1 .- rN (A5)
1 N+1 -~ (r—=1)N+1 2 -« (r—1)N+N ’

which represents the column and row permutation of P. The cycle (A.5) defined by equation

(A.4) yields the following matrix representation
Q: [IN®617"'7IN®67“}7 (AG)

namely, Q; ;) = 1 and zero entries else. Therefore applying the transformation @ to P produces

the block diagonal representation where
QT PQ = blkdiag (M, ..., M) (A7)

which is by definition the direct sum of matrices M;. O

The block diagonal representation of P following from Lemma A.1 motivates the subsequent

properties involving the spectra and inverse of the interwoven matrix P.

Lemma A.2. Let P be the interwoven matriz as defined in equation (A.1). Then P has the

following properties:
(i) T
Spec (P) = U Spec (M) (A.8)
i=1
including multiplicities;

(i) if M; is invertible for all 1 < i <k, then the inverse of the interwoven matriz P is the

interweave of the inverse of the construction matrices. That is,

Pl= Z M;l ® dmg (61’717 ey 62’77') R (AQ)

i=1
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1195 (1ii) the trace of the interwoven matriz is the sum of the traces of the constructor matrices
T

1106 tr(P) =Y tr(M), (A.10)
i=1

1197 (iv) the determinant of the interwoven matriz is the product of the determinant of the con-

1198 structor matrices :

1100 det (P) = [ ] det (M) . (A.11)
i=1

1200 Proof. Let A\, ; € Spec (M}) with its associated eigenvector vy ;. Then define the interweave

o1 extension of vy ; by
01
1202 Vi =Vk;® |+ |. (A.12)
5k,r
For brevity, denote the Kronecker diagonal matrix by D; = diag (6;1, ..., ;) and then by direct

computation we have

Poyj = (Z M; ® D¢> Bhj,

i=1

_ (i Mi ® Dz) (’Uk’j & [5]@,1, cee (S}c,r} T) )
i=1
— (Xr: M;vy ; @ D; [5’“1’ o 6k’T]T> 7

i=1
T

= Mjvg,; @ [5k,17 oo 5k,7} ) (A.13)

1203 where the last two equalities follow from the mixed product property of the Kronecker product

1204 and that direct multiplication of the Kronecker matrix and vector are non-zero only if ¢ = j.

1205 Therefore we have that

T T
1206 P’[)k,j = Mkv;m- ® |:5k,1; ey &w} = )\k,jvkyj & [5k,1; ceey 6k,r = )\k‘,jf)k‘,ja (A14)

1207 thus Ag ; is an eigenvalue of P with associated eigenvector vy, ;.

1208 Next, there exists M[l for all 1 < i < r from the assumption in (ii). Note that

Or><r Z#]v

then consider the following matrix R defined by the multiplication

i=1

D. L
1209 D;D; = { pored (A.15)

= (M, ® D,) (Z M ' ® DZ-) + ..+ (M, ® D,) (Z M ' ® Di> . (A.16)

i=1 i=1
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From the mixed-product property of the Kronecker product and equation (A.15), we have
that (A.16) reduces to

R=MM;'®D +..+ M,M; "' ®D,,
=> I,®D; = Iy, (A.17)
=1

hence the inverse of P is given by P~ =>""_ M~ ! ® D; as required for (ii).
The trace of a Kronecker product is the product of the trace [45] such that tr (M; ® D;) =
tr (M;) tr (D;). Therefore applying the trace to the definition of P (A.1) yields

i=1
where the second equality holds by the trace of the sum of matrices [45] and the fourth holds by
tr(D;)=1forall 1 <i<r.

Property (iv) follows immediately from (i) by expressing the determinant of a matrix as
the product of the eigenvalues including multiplicities [45]. From (i) we have that Spec (P) =
Spec (M;) U ... U Spec (M,) including multiplicities and so we know the eigenvalues of P are
all the eigenvalues of each M;. Subsequently, the determinant of P must be the product of all

these eigenvalues which leads to the required representation

N

det (P HALJ : H = det (M) ... det (M, Hdet (A.19)

O

A direct consequence of Lemma A.2 is that if M; are nonnegative, then the spectral radius,

p, of interwoven matrix P is a real eigenvalue and is defined by

p (P) =max (p (M;)) = max <U Spec (MJ) (A.20)

! i=1
from the Perron-Frobenius theorem for nonnegative matrices [47].
In addition to its spectral properties, the interwoven matrix (A.1) also has the following

exponent property.

Lemma A.3. Let P be the interwoven matriz defined as defined in equation (A.1). Then for
alln e N

- iMﬁ@Di. (A.21)

i=1

Proof. The result follows by induction. Assume for some k € N that equation (A.21) holds.
Consider the case for k + 1,

. k+1 ” - k
(Z M; ® Di) = <Z M; ® Di) (Z M; ® Di) )
<Z M; ® Di> (Z M} @ Dl-) : (A.22)

i=1 i=1



1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

42

MOORE, DALE, AND WOOLLEY

where the second equality follows from the inductive hypothesis. Applying the multiplication

property of the of Kronecker matrix (A.15), expansion of equation (A.22) and the mixed-product

property of the Kronecker product leads to the following cancellations,

(zr:Mi(@Di) (ZT:Mf®Di
i=1 i—1

) =(M1®D1)<

iMﬁ ® D;

i=1

=M M} ® D, +---+ M, M@ D,,

- ZT: MM @ D;.

i=1

>+-~-+(M,-®D,.)<

:éi: ]»4;k Q@-l)i

i=1

(A.23)

That is, the inductive hypothesis is satisfied and thus equation (A.21) holds for all n € N by the

principle of induction.

APPENDIX B. COMPUTATIONAL METHODS

O

The ODE systems in this study were solved numerically using the ODE15s solver in Matlab

(R2021a). Simulations were performed over a total of 1000 time units in addition to an stopping

event applied to the ODE solver to check for solution convergence. Namely, if all trajectories

varied less than 1 x 10~ over four consecutive iterations, then we assume that the system has

converged to a steady state. We note that all simulations presented in this study satisfied the

convergence criteria. The intracellular kinetics parameter values of the IO system (3.20-3.24)

used in all simulations are given in Table 1 below.

Parameter

ai

az

by

by

b3

ky

ko

hy

ha

h3

Value

0.01

1

100

100

100

2

2

2

2

1

TABLE 1. Parameter values used in the simulations of the IO system (3.20-3.24).

Random initial conditions were sampled from a uniform distribution using the rand func-

tion. The homogeneous steady state of the system was calculated using the fsolve function

that implements the trust-region-dogleg minimisation algorithm [68]. In addition, heterotypic

weighting parameters was set to w

(K]
2

= 1 for all simulations. Both quotient and large-scale ODE

systems where solved using the same kinetics functions where respective adjacency matrices were

introduced as an argument to these kinetics functions to ensure solution consistency.

To visualise the approximate cell membranes in the large-scale simulation Voronoi diagrams

were drawn around graph vertices using the delaunayTriangulation and voronoi functions

within the Computational Geometry toolbox in Matlab (R2021a). Ghost vertices were intro-

duced to ensure that each graph vertex has a closed boundary.

Eigenvalues of the adjacency matrices were calculated using the eig function from the Linear

Algebra toolbox in Matlab (R2021a). The edge structures of the semi-regular non-bipartite

graphs used in the numerical spectral investigation are given in Table 2. These graphs were

confirmed non-bipartite by violating the spectral symmetry property of bipartite graphs.

Source code for the simulations presented in this study can be found at https://github.

com/joshwillmoorel/Mixed_Signal_mechanisms.

)
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Nic, | N2.c, | M,Lo | N2,L,
g1 2 2 2 2
Go 2 3 2 3
s 2 4 2 4
G4 4 3 4 3

TABLE 2. Summary of the bilayer edge connectivity structures for the graphs
used in the numerical investigation of non-bipartite spectra in Figure 9.

APPENDIX C. PROOF OF m-DEPENDENT SPECTRAL GAP FOR Gop AND Gsp FROM FIGURE 8B

Bipartite graphs have many particularly convenient algebraic properties due to the existence
of a simple canonical form of the respective adjacency matrix. Namely, for any bipartite graph
Gi with adjacency matrix Wy, there exists a permutation matrix U that re-indexes the vertices
with respect to the independent sets V; and V5 such that
0 Xk]

Ci1
Xt o (1)

U'w,U = [
where X, is the biadjacency matrix [38]. Subsequently, the spectra of the bipartite graphs have
a distinct structure such that there is a symmetry of eigenvalues respective to the biadjacency
matrices, i.e., Spec(Wj) = Spec(Xy) U Spec (—Xy). Leveraging the spectral symmetry of
bipartite graphs and the spectral retention of equitable partitions, we demonstrate that for the
bipartite bilayer graphs Gop and Gsp in Figure 8, the smallest eigenvalue of X is —kag, the

polarity driven eigenvalue associated with laminar pattern template mo.

Lemma C.1. Let G be a regular bipartite bilayer graph with associated row-stochastic weighted
adjacency matriz Wy, (2.8) for 2D or 8D tissues as shown in Figure 8 (k = 2D, 3D). Consider
the equitable partition mo such that the quotient graph, Gy r,, consists of only two representative
vertices in each layer of Gy and has the reduced adjacency matriz Wy, (3.5). Then biadjacency

matriz Xy associated with Wy, satisfies
— Ag,2 = min (Spec (X)), (C.2)

where \i o is the smallest eigenvalue of Wy, with associated eigenvector Uy o.

Proof. We present the proof for Gop as the following argument holds immediately for Gsp also. As
we make use of the biadjacency form of Wspy, we first construct the biadjacency transformation
U. The bipartite bilayer graph Gop has vertex indices in layer-wise order as defined in Section
2.1 with block adjacency matrices given in Example 2.2. To reorder the vertices of Gop such

that vertex groups V7 and V5 are ordered consecutively, we define the permutation matrix

- [fie2®D1 Iig2® Dy

: (C.3)
Ii,))2® D2 Iiz,))2 @ Dy
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where |£1| = |L£2] as each layer has the same number of vertices. In particular we have the

biadjacency form
Ligy2® Dy gy 2 ® D2
Ligy12®@ D2 Iigy)72 ® Dy

_ [ 0 X2D]’ (C.4)
XD 0

U™WypU = [

Wic, War,| [Ligy)2® D1 Iigy)2 ® Do
Wi Wic,| [ Ligs2® Dy Iy @Dy

181 for Xop in cyclic tridiagonal form

_u”)gD] 7JJ?D] 0 o 0 w?D]'
.[2D] .[2D]  [2D]
wy Wy wy

1282 Xop = h , (C.5)

] uA)£2D] w?D]

" £2D] " £2D]

. [2D
wy
0

L™ 0 ]

1283 noting that XJ, = Xap by the regularity of Gop and therefore UT WapU is symmetric.
1284 As the laminar pattern template partition mo is equitable there exists a lifting matrix L €

1285 {0,1}7V*2 that maps the large-scale adjacency matrix Wap into its reduced form Wop such that
1286 WopL = LW op, (C.6)

1287 as demonstrated in [69]. The lifting transformation is constructed by grouping vertices associated
1288 with the partition 73 on Wap for example L;; = 1 if v; € £;. Owing to the block structure of

1280 Wap (2.8) which follows from the layer-wise vertex indexing, we have that

liz,1 Oz
Oi,10 Ljzgpn

1290 L= (C.7)

1201 Critically, the lifting matrix L provides the algebraic link between the quotient and large-scale
1202 graphs.

1293 Following from the regular structure of Gop and direct computation, the eigenvector associated
1204 with Aop 2 has the form Top2 = [1, —1]7. The spectral retention property of the equitable
1205 partition, 72, guarantees that Aap 2 € Spec (Wap) where Luap o is the corresponding eigenvector
1206 for the large-scale graph Gop (by Theorem 9.3.3 in [38]). Explicitly, we have that the lifted
1207 eigenvector is of the form

1208 Lvop o = [ Licia ‘| , (C.8)

~Licapa
1200 with associated eigenvalue Aop 2. In the biadjacency matrix form (C.4), the corresponding

1300 eigenvector has the transformed representation

T
1301 u::UTL@D,zz[} -1 -+ 1 -1 1 =1 --- 1 _1J ) (C.9)

[L1] [£2]
1302 The spectral symmetry of bipartite graphs ensures that if there exists an eigenpair (XQD,Q, v =[x, yT])

1303 then there must also exist the eigenpair (—A2p,2, 7 = [z, —y”]) [38]. Therefore the eigenvector

1304 associated with —Agp o has biadjacency form

T
1305 ﬂ:Ll -1 -1 =1 =1 1 - -1 11] . (C.10)

[£1] [L2]
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which negates the signs of those entries associated with the latter half of the vertices in Gop.
Subsequently, the first |£;| entries of U are an eigenvector of Xsp with eigenvalue 7X2D72 fol-
lowing from the canonical bidjacency representation of Wap (C.4). We denote this reduced

eigenvector in normalised form

vy = ! {1 -1 -1 —ﬂT, (C.11)

V1L

[£1]

and therefore it remains to show that the eigenpair (—XQD’Q, 171) is minimal in the spectrum of
Xop.
The Rayleigh quotient for Xsp is defined by
y" Xopy
y'y
and as Xop is real and symmetric by the Min-Max theorem the Rayleigh quotient is bounded by

Rx.p (y) = (C.12)

the maximal and minimal eigenvalues of the matrix, Rx,, (¥) € [Amin, Amax| [38]. In particular,
Rx,, (y) generates the eigenvalues of Xop when y is the respective eigenvector. Hence we show
that #; minimises Rx,, (y), namely

argmin (Rx,, (y)) = 1. (C.13)

yeRIL1]
[ly[|=1

where the normality constraint follows from Xsp being real and symmetric and so the eigenvec-
tors of Xop are orthonormal with real eigenvalues.
The normalised form of &y yields o{ ; = 1 and therefore the Rayleigh quotient evaluated at

) simplifies to Rx,, (1) = o Wapi. By direct computation we have that

[L1] |[£4]

Vl XQDlll— E E X2D k] Vl) ( )
k=1j5=1
[L1] [£1]-1

=2 (Ko ()] + 3 (7 D; (Xap)i oy (1), + (o), (1), )
=2

(1), ((X2D)1 o (U1)y + (X2p)y 2y (’71)\£1\>

01,1 (X20)j, 0 23+ (Xop) 1 Py, 1)
(C.14)

+
+

by the cyclic tridiagonal form of Xsp (C.5). Critically as (XQD) > 0 for all 4, j, then ¥ Xopoy
is minimised when Sgn ((21),) # Sgn (1)) for all k € {1,...,|£1| — 1} which is satisfied by
definition of ;. Furthermore, the orthonormal property of the eigenbasis of Xsop ensures that
no other eigenvector has this alternating sign structure which implies that —XQD,Q is the smallest
eigenvalue of Xop.

O

A consequence of Lemma C.1 is the existence of a spectral gap about the origin for Gop and

G3p.

Theorem C.1. Let G; and Gy », be defined as in Lemma C.1 and let Ay ; € Spec(Wy). If

Xk,g < 0 then )‘kyj € (ng, 7Xk72).
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Proof. From Lemma C.1 we have that —\; » = min (Bk,j * pk,j € Spec (X)) and thus ~Ak2 > 0.
From the symmetry of the spectrum of bipartite graphs we have that Ay 2 < 0 is the maximum
of the negative eigenvalues of W, therefore defining a region about the origin bounded by A 2

and —Xk,)g that contains no eigenvalues. O
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