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Abstract
Introduction: The	present	study	evaluated	the	application	of	incorporating	non-	linear	
J/U-	shaped	relationships	between	mean	HbA1c	and	cholesterol	levels	into	risk	scores	
for	predicting	acute	myocardial	infarction	(AMI)	and	non-	AMI-	related	sudden	cardiac	
death	(SCD)	respectively,	amongst	patients	with	type	2	diabetes	mellitus.
Methods: This	was	 a	 territory-	wide	 cohort	 study	of	 patients	with	 type	2	 diabetes	
mellitus	above	the	age	40	and	free	from	prior	AMI	and	SCD,	with	or	without	prescrip-
tions	 of	 anti-	diabetic	 agents	 between	 January	 1st,	 2009	 to	December	 31st,	 2009	
at	 government-	funded	hospitals	 and	 clinics	 in	Hong	Kong.	 Patients	 recruited	were	
followed	up	until	31	December	2019	or	their	date	of	death.	Risk	scores	were	devel-
oped	for	predicting	incident	AMI	and	non-	AMI-	related	SCD.	The	performance	of	con-
ditional	 inference	survival	forest	(CISF)	model	compared	to	that	of	random	survival	
forests	(RSF)	model	and	multivariate	Cox	model.
Results: This	study	included	261	308	patients	(age	=	66.0	±	11.8	years	old,	male	=	47.6%,	
follow-	up	duration	=	3552	±	1201	days,	diabetes	duration	=	4.77	±	2.29	years).	Mean	
HbA1c	and	low	high-	density	lipoprotein-	cholesterol	(HDL-	C)	were	significant	predic-
tors	of	AMI	on	multivariate	Cox	regression.	Mean	HbA1c	was	linearly	associated	with	
AMI,	whilst	HDL-	C	was	inversely	associated	with	AMI.	Mean	HbA1c	and	total	choles-
terol	were	significant	multivariate	predictors	with	a	J-	shaped	relationship	with	non-	
AMI-	related	SCD.	The	AMI	and	SCD	risk	scores	had	an	area	under	the	curve	(AUC)	
of	0.666	(95%	confidence	interval	(CI)	=	[0.662,	0.669])	and	0.677	(95%	CI	=	[0.673,	
0.682]),	respectively.	CISF	significantly	improves	prediction	performance	of	both	out-
comes	compared	to	RSF	and	multivariate	Cox	models.
Conclusion: A	holistic	combination	of	demographic,	clinical	and	laboratory	indices	can	
be	used	for	the	risk	stratification	of	patients	with	type	2	diabetes	mellitus	for	AMI	and	
SCD.
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1  |  INTRODUC TION

Type 2 diabetes mellitus is an increasingly prevalent disease bur-
den	 across	 the	 globe	 due	 to	 ageing	 and	 lifestyle	 westernization,	
with	numbers	projected	to	increase	by	up	to	439	million	by	2030.1 
Diabetes	mellitus	 is	 burdensome	 to	 the	 healthcare	 system	 for	 its	
chronic	 course	 and	 a	multitude	 of	 possibly	 debilitating	 and	 lethal	
complications	across	different	organ	systems.	Acute	myocardial	in-
farction	(AMI)	and	sudden	cardiac	death	(SCD)	are	major	cardiovas-
cular adverse outcomes in patients with type 2 diabetic mellitus.2,3

Given	 the	 potentially	 lethal	 and	 debilitating	 nature	 of	 such	
cardiovascular	adverse	outcomes,	many	 risk	 scores	have	been	de-
veloped	in	hopes	of	identifying	high-	risk	patients	for	early	interven-
tion	and	close	monitoring.	For	example,	 the	UKPDS	Risk	Engine	 is	
a	 type	2	diabetes	mellitus-	specific	 risk	 score	based	on	 the	United	
Kingdom	Prospective	Diabetes	Study	(UKPDS)	for	 ischaemic	heart	
disease.4	The	Reynolds	Risk	Score	was	developed	to	assess	female	
cardiovascular	risk,	and	the	China-	PAR	project	was	devised	to	tar-
get	the	Chinese	population	specifically.5,6	However,	typically	these	
risk	scores	involving	HbA1c	and	lipid	level	predicted	for	composite	
outcomes	of	major	cardiovascular	adverse	outcomes	or	cardiovas-
cular	mortality,	which	did	not	account	for	the	difference	 in	patho-
genesis and prognosis between acute coronary syndrome and lethal 
ventricular	arrhythmias.	Furthermore,	recent	studies	reported	that	
HbA1c	and	lipid	levels,	which	were	often	accounted	for	in	these	risk	
scores,	 have	 J/U-	shaped	 relationships	 with	 adverse	 outcomes.7-	10 
Therefore,	updated	risk	scores	that	incorporate	these	new	findings	
for	 predictions	 of	 specific	 cardiovascular	 adverse	 outcomes	 were	
warranted	for	personalized	management.

The	 present	 study	 evaluated	 the	 application	 of	 incorporating	
non-	linear	J/U-	shaped	relationships	between	both	mean	HbA1c	and	
cholesterol	levels	into	risk	scores	for	predicting	AMI	and	non-	AMI-	
related	SCD	respectively,	amongst	type	2	diabetes	mellitus	patients.	
A	conditional	 inference	survival	 forests	 (CISF)	model	was	used	for	
time-	to-	event	survival	data	analysis	in	predicting	AMI	and	non-	AMI	
SCD.11,12

2  |  METHODS

2.1  |  Study design

The	present	study	has	been	approved	by	The	Joint	Chinese	University	
of	Hong	Kong—	New	Territories	East	Cluster	Clinical	Research	Ethics	
Committee.	Patients	 fulfilling	 all	 of	 the	 following	 inclusion	 criteria	
were	recruited:	1)	above	the	age	40;	2)	had	documented	diagnosis	
of	type	2	diabetes	mellitus	under	the	International	Classification	of	
Disease,	 Ninth	 Edition	 (ICD-	9)	 coding	 system,	 or	 prescribed	 anti-	
diabetic	agents	between	1	January	2009	to	31	December	2009	by	
any	 of	 the	 Hong	 Kong	 Hospital	 Authority-	managed	 public	 hospi-
tals	or	outpatient	clinics;	3)	without	prior	history	of	AMI	and	SCD	
episodes.	The	data	were	collected	 from	 the	Clinical	Data	Analysis	
and	Reporting	System	(CDARS),	an	electronic	medical	database	that	

integrates	patient	data	for	shared	comprehensive	healthcare	records	
to be across the public hospitals and clinics. The system has been 
used	for	cohort	studies	by	both	the	present	research	team	and	other	
teams in the past.13-	16

2.2  |  Data extraction

The	primary	 outcome	of	 the	 present	 study,	 the	 time	 to	 the	 initial	
AMI	and	non-	AMI-	related	SCD	episode,	is	defined	as	days	from	1st	
January	2009	 to	 the	date	of	 initial	AMI/	non-	AMI-	related	SCD	or	
the	 end	of	 the	 follow-	up	period	 (31	December	2019).	A	SCD	epi-
sode	is	defined	as	an	episode	of	sustained	ventricular	tachycardia,	
ventricular	 fibrillation	 or	 non-	specific	 cardiac	 arrest.	 This	 includes	
episodes	 that	 were	 aborted	 (sudden	 cardiac	 arrest)	 and	 episodes	
that	 resulted	 in	death.	SCD	episodes	with	AMI	within	a	week	be-
fore	or	after	the	SCD	episode	were	considered	AMI-	related	and	thus	
excluded.	The	number	of	AMI	and	non-	AMI-	related	SCD	episodes	
during	 the	 follow-	up	 period	 was	 extracted	 as	 well.	 Other	 clinical	
characteristics,	 including	demographic	details	 (age	and	sex),	diabe-
tes	 duration,	 pre-	existing	 comorbidities,	 anti-	diabetic	 agents,	 and	
cardiovascular	agents	prescribed,	and	all-	cause	mortality,	were	also	
extracted.	The	onset	of	diabetes	is	determined	by	fulfilment	of	the	
following	criteria,	whichever	is	the	earliest:	1)	earliest	record	of	type	
2	diabetes	mellitus-	related	ICD-	9	codes;	2)	earliest	record	of	HbA1c	
>6.5%;	3)	earliest	record	of	fasting	blood	glucose	(FBG)	>7	mmol/L.	
The	duration	of	diabetes	is	defined	as	the	onset	of	diabetes	until	31	
December	2009.	Similarly,	follow-	up	duration	was	defined	as	from	1	
January	2009	to	31	December	2019	or	the	date	of	death.

The	 following	 pre-	existing	 comorbidities	were	 identified	 using	
ICD-	9	codes	(Table	S1):	1)	renal,	ophthalmological	and	neurological	
diabetic	comorbidities;	2)	heart	failure	(HF);	3)	atrial	fibrillation	(AF);	
4)	hypertension;	5)	peripheral	vascular	disease	(PVD);	6)	 ischaemic	
stroke;	 7)	 osteoporosis;	 8)	 chronic	 obstructive	 pulmonary	 disease	
(COPD);	9)	ischaemic	heart	disease	(IHD).	The	classes	of	anti-	diabetic	
agents	extracted	were	as	follows:	1)	biguanide;	2)	sulphonylurea;	3)	
insulin;	4)	dipeptidyl	peptidase-	4	inhibitor	(DPP4I);	5)	glucagon-	like	
peptide-	1	 agonist	 (GLPA);	 6)	 meglitinide;	 7)	 alpha-	glucosidase	 in-
hibitor;	 8)	 thiazolidinedione.	 Antihypertensives	 (angiotensinogen-	
converting	 enzyme	 inhibitor	 (ACEI)/	 angiotensin	 receptor	 blocker	
(ARB),	 beta-	adrenergic	 receptor	 blocker,	 calcium	 channel	 blocker	
(CCB),	diuretics)	and	lipid-	lowering	agents	were	also	extracted.

Baseline	 laboratory	 data	 from	 complete	 blood	 count	 (lympho-
cyte,	 neutrophil	 count	 and	 haemoglobin	 level),	 liver	 function	 test	
(alanine	 aminotransferase	 (ALT),	 alkaline	 phosphatase	 (ALP),	 albu-
min	 and	 total	 protein),	 renal	 function	 test	 (creatinine,	 sodium,	po-
tassium,	 urea),	 lipid	 (high-	density	 lipoprotein-	cholesterol	 (HDL-	C),	
low-	density	 lipoprotein-	cholesterol	 (LDL-	C),	 total	 cholesterol,	 tri-
glyceride)	 and	glycaemic	profile	 (FBG,	HbA1c)	 between	1	 January	
2008	to	31	December	2008	were	obtained.	Baseline	anaemia	was	
defined	as	haemoglobin	count	<13	g/dL	amongst	male,	and	<12	g/dL	
amongst	female.	Mean	HbA1c	and	FBG	from	1	January	2004	to	31	
December	2008	were	also	calculated.
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2.3  |  Statistical analysis

The	annualized	rate	and	mean	event	frequency	were	calculated	for	the	
primary outcomes. The annualized rate was calculated by dividing the 
total	number	of	episodes	across	the	cohort	by	the	number	of	patient-	
years	follow-	up.	The	mean	event	annual	frequency	was	calculated	by	
averaging	the	individual	mean	number	of	episodes	per	year	through-
out	follow-	up	amongst	those	who	experienced	the	event.	Univariate	
Cox	regression	was	used	to	identify	predictors	for	 incident	episodes	
of	 both	AMI	 and	 non-	AMI-	related	 SCD.	 Patients	with	 AMI	 prior	 to	

non-	AMI-	related	 SCD	 were	 excluded	 for	 the	 SCD	 analysis.	 Hazard	
ratio	(HR),	95%	confidence	interval	(CI)	and	P	value	were	reported	for	
the	Cox	regression.	Univariate	predictors	with	P <	0.10	were	entered	
into	 a	multivariate	model.	 Significant	 predictors	were	 then	 selected	
into	predictive	scores.	The	multivariate	Cox	regression	was	 then	re-
peated	with	only	the	significant	predictors	to	obtain	the	HR	for	adjust-
ments	for	the	score.	For	variables	with	HR	between	0.67	and	1.5,	a	
score	of	1	was	assigned,	otherwise	a	score	of	2	was	assigned.

To	examine	 the	potential	 incorporation	of	 the	 J/U-	shaped	 re-
lationship	 reported	 between	 glycaemic/cholesterol	 profile	 and	

TA B L E  1 Baseline	characteristics	for	categorical	variables	in	the	present	cohort

Characteristics

Number (%)

Total cohort 
(n = 261 308)

Acute myocardial infarction 
(n = 20 419)

Sudden cardiac 
death (n = 12 282)

Male 124	495	(47.6) 10	221	(50.1) 6454	(52.5)

Mortality 86	908	(33.3) 14374	(70.4) 12	096	(98.5)

Acute	myocardial	infarction	(AMI) 20	419	(7.81) —	 —	

Sudden	cardiac	death	(SCD) 12	282	(4.74) —	 —	

Baseline	anaemia 37	286	(14.3) 5048	(24.7) 3470	(28.3)

Anti-	diabetic	agent

Biguanide 180	232	(69.0) 13	797	(67.6) 7776	(63.3)

Sulphonylurea 167	174	(64.0) 14	421	(70.6) 8684	(70.7)

Insulin 27	269	(10.4) 3620	(17.7) 2115	(17.2)

Meglitinide 25	(0.010) 3	(0.015) 3	(0.024)

Dipeptidyl	Peptidase−4	Inhibitor 316	(0.121) 22	(0.108) 10	(0.081)

Thiazolidinedione 3741	(1.43) 335	(1.64) 162	(1.32)

Glucagon-	like	Peptide−1	Agonist 15	(0.006) 0	(0) 0	(0)

Acarbose 3119	(1.19) 404	(1.98) 218	(1.77)

Cardiovascular drugs

Angiotensinogen-	converting	enzyme	inhibitor	(ACEI)/	
angiotensin	receptor	blocker	(ARB)

49	712	(19.0) 5769	(28.3) 3363	(27.4)

Beta-	adrenergic	receptor	blocker 38	144	(14.6) 4577	(22.4) 2524	(20.6)

Calcium	channel	blocker 45	542	(17.4) 5604	(27.4) 3265	(26.6)

Diuretic 24	204	(9.26) 3209	(15.7) 2079	(16.9)

Lipid-	lowering	agent 27	828	(10.6) 3797	(18.6) 1932	(15.7)

Comorbidities

Renal diabetic complication 3049	(1.17) 563	(2.76) 382	(3.11)

Peripheral	vascular	disease	(PVD) 299	(0.114) 78	(0.382) 33	(0.269)

Ophthalmological diabetic complication 3255	(1.25) 627	(3.07) 376	(3.06)

Neurological diabetic complication 1066	(0.408) 191	(0.935) 116	(0.944)

Ischaemic	stroke 8612	(3.30) 1095	(5.36) 774	(6.30)

Atrial	fibrillation	(AF) 7187	(2.75) 931	(4.56) 778	(6.33)

Heart	failure	(HF) 9107	(3.49) 1548	(7.58) 1157	(9.42)

Intracranial haemorrhage 3161	(1.19) 285	(1.40) 254	(2.07)

Ischaemic	heart	disease	(IHD) 20	059	(7.68) 3474	(17.0) 1528	(12.4)

Osteoporosis 124	(0.047) 17	(0.083) 12	(0.098)

Hypertension 60	321	(23.1) 7564	(37.0) 4472	(36.4)

Chronic obstructive pulmonary disease 770	(0.295) 80	(0.392) 85	(0.692)
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cardiovascular	adverse	events,	the	deciles	of	these	parameters	that	
were included in the score were obtained and used to derive the HR 
predicting	for	AMI	and	non-	AMI-	related	SCD	respectively	through	
univariate	Cox	 regression.	 Then,	 the	 decile	with	 the	minimal	HR,	
excluding	 the	 first	 and	 last	 decile,	was	 selected	 as	 the	 reference	
decile	and	compared	against	the	remaining	deciles.	Univariate	Cox	
regression	 was	 then	 repeated,	 and	 the	 derived	 HR	 was	 plotted.	
Parameters	 that	displayed	a	 J/U-	shaped	 relationship	with	 the	 se-
lected	 outcome	would	 have	 had	 the	 score	 adjusted	 for,	with	 the	

minimum	and	maximum	cut-	offs	derived	deciles	that	had	a	statis-
tically	insignificant	difference	in	HR	with	the	reference	decile.	The	
cut-	off	 for	 other	 continuous	 variables	 included	 in	 the	 score	 was	
derived	by	maximizing	 the	 sensitivity	 and	 specificity.	 To	 evaluate	
the	 scores,	 a	 receiver	 operating	 characteristic	 (ROC)	 curve	 was	
then	generated	for	the	scores,	and	the	area	under	the	curve	(AUC)	
was	calculated.	Statistical	significance	was	defined	as	P	<	0.05.	The	
statistical	analysis	was	performed	using	RStudio	software	(Version:	
1.1.456).

Characteristics

Mean ± SD

Total cohort 
(n = 261 308)

Acute myocardial 
infarction (n = 20 419)

Sudden cardiac 
death (n = 12 282)

Age 66.0	±	11.8 71.6	±	10.7 72.9	±	10.6

Follow-	up	duration	(days) 3552	±	1201 2949	±	1239 2008	±	1143

Diabetes	duration	(y) 4.77	±	2.29 8.74	±	4.12 9.95	±	3.11

Liver	function	test

Alkaline	phosphatase	
(U/L)

79.8	±	37.4 81.3	±	33.7 86.3	±	51.5

Alanine	
aminotransferase	
(U/L)

25.8	±	24.0 22.6	±	19.8 22.6	±	19.3

Total	protein	(g/L) 74.3	±	6.99 73.9	±	7.24 73.1	±	7.46

Albumin	(g/L) 38.7	±	5.39 38.0	±	5.33 37.0	±	5.61

Complete blood count

Lymphocyte	count	
(x109/L)

1.88	±	1.05 1.85	±	0.78 1.77	±	1.58

Neutrophil count 
(x109/L)

5.33	±	2.68 5.62	±	2.76 5.70	±	2.86

Haemoglobin count 
(x109/L)

12.8	±	4.29 12.4	±	1.87 12.2	±	1.94

Lipid	profile

High-	Density	
Lipoprotein-	
Cholesterol	(HDL-	C)	
(mmol/L)

1.20	±	0.34 1.15	±	0.33 1.17	±	0.36

Low-	Density	
Lipoprotein-	
Cholesterol	(LDL-	C)	
(mmol/L)

2.92	±	0.88 2.93	±	0.93 2.88	±	0.93

Total cholesterol 
(mmol/L)

4.84	±	1.03 4.84	±	1.10 4.73	±	1.08

Triglyceride	(mmol/L) 1.72	±	1.36 1.83	±	1.52 1.72	±	1.38

Renal	function	test

Creatinine	(umol/L) 103	±	92 128	±	125 139	±	152

Potassium	(mmol/L) 4.22	±	0.48 4.27	±	0.51 4.24	±	0.52

Sodium	(mmol/L) 139	±	3 139	±	3 139	±	3.54

Urea	(mmol/L) 6.85	±	4.04 8.24	±	5.01 8.52	±	5.61

Glycaemic	control

Fasting	blood	glucose	
(mmol/L)

7.75	±	2.60 8.21	±	2.00 8.12	±	2.08

HbA1c	(%) 7.44	±	1.45 7.88	±	1.25 7.83	±	1.31

TA B L E  2 Baseline	characteristics	for	
continuous variables in the present cohort
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3  |  RESULTS

3.1  |  Baseline characteristics

This	 study	 included	 261308	 patients	 (age	 =	 66.0	 ±	 11.8	 years	 old,	
male	=	47.6%,	 follow-	up	duration	=	3552	±	1201	days,	diabetes	du-
ration	=	4.77	±	2.29	years).	The	categorical	and	continuous	baseline	
demographic,	clinical	and	laboratory	features	are	presented	in	Tables	1	
and	 2,	 respectively.	 The	mean	HbA1c	 level	was	 7.67	 ±	 1.17%,	with	
anaemia	 present	 in	 14.3%	 of	 the	 cohort	 at	 baseline.	 On	 follow-	up,	
33.3%	(n	=	86	908)	of	the	patients	died.	The	five	most	prevalent	co-
morbidities	in	decreasing	order	are	hypertension	(23.1%),	IHD	(7.7%),	
HF	(3.5%),	ischaemic	stroke	(3.3%),	and	AF	(2.8%).	On	average,	patients	
had	0.44	±	0.80	of	the	extracted	comorbidities.	In	terms	of	drug	use,	
most	 patients	were	 on	monotherapy	 or	 combination	 therapy	 of	 bi-
guanide	(69.0%),	sulphonylurea	(64.0%)	and	insulin	(10.4%),	on	average	
on	1.45	±	0.80	anti-	diabetic	agents.	ACEI/ARB	(19.0%)	was	the	most	
common	class	of	antihypertensive	prescribed,	followed	by	CCB	(17.4%)	
and	 beta-	adrenergic	 receptor	 blocker	 (14.6%).	 Lipid-	lowering	 agents	
were	prescribed	in	10.6%	of	the	patients.	On	average,	patients	from	
the	present	cohort	were	on	1.58	±	1.27	cardiovascular	medications.

3.2  |  Acute myocardial infarction prediction

A	total	of	20419	patients	suffered	from	AMI	(annualized	rate:	7.37%/
year)	with	an	annual	 frequency	of	0.536	±	8.74	episodes.	The	sig-
nificant	 univariate	 predictors	 were	 summarized	 in	 Table	 S2.	 The	
following	 parameters	 were	 identified	 as	 significant	 predictors	 on	
multivariate	regression	(n	=	34	015;	Table	S3):	1)	age	(HR=1.02,	95%	
CI	=	[1.02,	1.03],	P	<	0.0001)	and	male	sex	(HR	=	1.07,	95%	CI	=	[1.01,	
1.14],	P	 =	0.023);	2)	baseline	anaemia	 (HR	=	1.18,	95%	CI	=	 [1.10,	
1.27],	P	<	0.0001);	3)	serum	creatinine	(HR	=	1.00,	95%	CI	=	[1.00,	
1.00],	P	<	0.0001);	4)	serum	HDL-	C	(HR	=	0.802,	95%	CI	=	[0.732,	
0.878],	P	<	0.0001)	and	triglyceride	(HR	=	1.04,	95%	CI	=	[1.03,	1.05],	
P	<	0.0001);	5)	comorbidities:	ophthalmological	diabetic	complica-
tion	(HR	=	1.35,	95%	CI	=	[1.22,	1.51],	P	<	0.0001),	PVD	(HR	=	1.53,	
95%	CI	=	 [1.18,	1.97],	P	=	0.001),	 IHD	(HR	=	1.59,	95%	CI	=	 [1.48,	
1.71],	P	<	0.0001),	hypertension	(HR	=	1.16,	95%	CI	=	[1.09,	1.24],	
P	 <	 0.001);	 6)	 mean	 HbA1c	 (HR	 =	 1.16,	 95%	 CI	 =	 [1.12,	 1.19],	
P	 <	 0.0001).	 Details	 of	 the	 multivariate	 Cox	 regression	 are	 sum-
marized	 in	 Appendix	 S1.	 Both	 HDL-	C	 and	 mean	 HbA1c	 showed	
linear	relationships	with	AMI	risk	(Figure	1,	top	and	middle	panels).	
After	adjusting	for	the	multivariate	HR	of	the	included	parameters	
(Table	S4),	a	score-	based	system	was	developed	(Appendix	S1).	On	
ROC	analysis,	the	AMI	score	had	an	AUC	of	0.666	(95%	CI	=	[0.662,	
0.669];	Figure	1,	bottom	panel).

3.3  |  Sudden cardiac death prediction

For	risk	stratification	of	SCD,	0.822%	(n	=	2149)	patients	were	ex-
cluded	because	 of	AMI	 occurring	 before	 the	 SCD	episode,	 or	 the	

SCD	was	associated	with	AMI.	For	this	excluded	subset	of	patients,	
only	 triglyceride	 levels	were	predictive	of	SCD	 (Appendix	S1).	 For	
the	remainder	of	the	cohort,	SCD	occurred	in	12	282	patients	(an-
nualized	rate:	4.40%/year)	at	an	annual	frequency	of	0.169	±	0.569	
episodes.	Findings	under	univariate	Cox	regression	are	summarized	
on	Table	S5.	Multivariate	Cox	regression	 (n	=	33	423)	 then	 identi-
fied	 following	significant	predictors,	which	were	 incorporated	 into	
the	predictive	score	 (Table	S6):	1)	age	 (HR	=	1.03,	95%	CI	=	 [1.02,	
1.03],	P	<	0.0001)	and	male	sex	(HR	=	1.34,	95%	CI	=	[1.23,	1.45],	
P	<	0.0001);	2)	baseline	anaemia	(HR	=	1.41,	95%	CI	=	[1.29,	1.54],	

F I G U R E  1 The	association	between	mean	HbA1c	(top)	or	
high-	density	lipoprotein-	cholesterol	(middle)	and	acute	myocardial	
infarction.	The	receiver	operator	characteristic	(ROC)	curve	for	the	
acute	myocardial	infarction	predictive	score	(bottom)
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P	 <	 0.0001);	 3)	 serum	albumin	 (95%	CI	 =	0.973,	 95%	CI	 =	 [0.964,	
0.981],	 P	 <	 0.0001);	 4)	 serum	 total	 cholesterol	 (HR	 =	 1.04,	 95%	
CI	=	 [1.00,	1.08],	P	=	0.033);	5)	 serum	creatinine	 (HR	=	1.00,	95%	
CI	 =	 [1.00,	 1.00],	P	 <	 0.0001);	 5)	 comorbidities:	 ophthalmological	
diabetic	complication	(HR	=	1.23,	95%	CI	=	[1.07,	1.41],	P	=	0.004),	
AF	(HR	=	1.31,	95%	CI	=	[1.14,	1.50],	P	<	0.0001)	and	HF	(HR	=	1.19,	
95%	CI	=	[1.06,	1.33],	P	=	0.003);	6)	mean	HbA1c	(HR	=	1.11,	95%	
CI	 =	 [1.07,	 1.15],	P	 <	 0.001).	 Both	mean	HbA1c	 and	 total	 choles-
terol	 demonstrated	 a	 J-	shaped	 relationship	 with	 non-	AMI-	related	
SCD	 (Figure	2,	 top	and	middle	panels).	Therefore,	 the	 cut-	offs	 for	
mean	HbA1c	and	 total	 cholesterol	were	adjusted	accordingly.	The	
multivariate	HR	that	the	marks	assigned	 in	the	score	are	shown	in	
Table	S7.	None	of	the	variables	had	HRs	beyond	the	ranges	of	0.67-	
1.5.	 Details	 of	 the	 score	 system	 are	 shown	 in	 Appendix	 S1,	 with	
ROC	analysis	 showing	 an	AUC	of	0.677	 (95%	CI	=	 [0.673,	 0.682])	
(Figure	2,	bottom	panel).

3.4  |  Machine learning survival analysis

A	CISF	model	was	developed	to	predict	AMI	and	SCD	based	on	the	
baseline	 clinical	 variables.	Optimal	 tree	 number	 of	 CISF	model	 to	
predict	AMI	was	set	as	700	to	predict	AMI,	while	the	number	was	
set	as	600	to	predict	SCD,	based	on	the	fivefold	cross-	validation	pa-
rameter	selection	results	as	shown	in	Figure	S1.	Survival	curves	to	
predict	AMI	and	non-	AMI-	related	sudden	cardiac	death	were	gen-
erated	using	 the	CISF	model	 (Figure	 S2).	Variable	 importance	 val-
ues	and	relative	importance	values	of	variables	to	predict	AMI	and	
non-	AMI-	related	SCD	are	presented	in	Table	3.	Creatinine	and	age	
were	ranked	as	the	most	important	predictors	of	AMI,	followed	by	
baseline	anaemia,	mean	HbA1c,	triglyceride,	male	sex,	hypertension	
and	IHD	(Figure	S3,	top	panel).	For	non-	AMI-	related	SCD,	age	and	
creatinine	were	the	most	important	predictors,	followed	by	baseline	
anaemia,	mean	HbA1c,	HF,	male	sex,	total	cholesterol,	AF,	ophthal-
mological	diabetic	complication	(Figure	S3,	bottom	panel).	The	 im-
portance	values	of	the	different	risk	variables	can	be	easily	applied	
to	construct	predictive	 frailty	 scores	of	AMI	and	non-	AMI-	related	
SCD	for	clinical	practice	use.

The	 performance	 of	 CISF	 model	 was	 compared	 with	 that	 of	
Random	Survival	Forest	 (RSF)	model	and	multivariate	Cox	for	sur-
vival	 analysis	 (Table	 4)	 using	 a	 fivefold	 cross-	validation	 approach.	
CISF	model	significantly	improves	the	survival	performance	of	AMI	
(precision:	0.91,	recall:	0.89,	AUC:	0.93,	C-	index:	0.91)	and	non-	AMI-	
related	SCD	(precision:	0.91,	recall:	0.89,	AUC:	0.89,	C-	index:	0.89)	
than	RSF	model	and	multivariate	cox	model.

4  |  DISCUSSION

There	are	several	major	findings	from	the	present	study:	1)	a	com-
bination	of	clinical	and	 laboratory	parameters	can	be	used	to	pre-
dict	AMI	and	SCD	amongst	patients	with	type	2	diabetes	mellitus;	
2)	J/U-	shaped	relationships	were	not	presented	consistently	across	

different	cardiovascular	adverse	outcomes;	3)	the	J/U-	shaped	rela-
tionships	between	mean	HbA1c,	HDL-	C,	and	total	cholesterol	and	
adverse cardiovascular outcomes can be incorporated into scores 
for	clinical	risk	stratification;	4)	CISF	model	identified	that	albumin,	
age,	 creatinine,	 total	 protein,	 baseline	 anaemia,	 heart	 failure	 and	
male	gender	are	the	most	important	predictors	of	both	incident	AMI	
and	non-	AMI-	related	SCD,	followed	by	hypertension,	atrial	fibrilla-
tion,	HDL-	C,	mean	fasting	blood	glucose	for	AMI	while	mean	fasting	
blood	glucose,	hypertension	and	mean	HbA1c	for	non-	AMI	SCD;5)	

F I G U R E  2 The	association	between	mean	HbA1c	(top	panel)	
and	total	cholesterol	(middle	panel)	and	sudden	cardiac	death.	The	
receiver	operator	characteristic	(ROC)	curve	for	sudden	cardiac	
death	predictive	score	(bottom	panel)
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CISF	significantly	improves	prediction	performance	of	incident	AMI	
and	non-	AMI	SCD	than	RSF	and	multivariate	Cox	models.

Over	recent	years,	there	is	increasing	reports	on	the	J/U-	shaped	
relationship between both glycaemic and cholesterol indices and 
diabetic	adverse	outcomes.	However,	these	studies	mostly	focused	
on	composite	outcomes,	such	as	all-	cause	mortality	and	major	car-
diovascular adverse events.7,17-	20	Currently,	there	is	a	lack	of	studies	
looking	at	the	relationship	between	HbA1c	and	cholesterol	indices	
with	 specific	 cardiovascular	 adverse	 outcomes,	 such	 as	 AMI	 and	
SCD.	 In	 the	 present	 study,	 a	 linear	 relationship	was	 observed	 be-
tween	both	mean	HbA1c	and	HDL-	C	against	AMI,	whilst	a	J-	shaped	
relationship	was	depicted	for	both	mean	HbA1c	and	total	cholesterol	
against	SCD.	The	incorporation	of	these	biochemical	variables	into	
the	risk	scores	yields	comparable	AUC	to	recent	predictive	models	
that	involve	machine-	learning	techniques	to	account	for	latent	inter-
actions	thus	demonstrates	the	importance	of	involving	biochemical	
indices	in	risk	stratification.21

The	difference	that	the	mean	HbA1c	has	against	AMI	and	SCD	
can	 be	 explained	 by	 the	 different	 underlying	 pathogenic	 mecha-
nisms.	The	 linear	 relationship	between	mean	HbA1c	and	AMI	was	
supported	 by	 other	 studies	 with	 cohorts	 like	 the	 present	 study,	
comprised	of	younger	patients	with	more	diverse	pre-	existing	mac-
rovascular	 complications,	 which	 demonstrates	 the	 importance	 of	

personalized glycaemic control.22,23	Furthermore,	coronary	athero-
sclerosis	 is	 associated	with	 insulin	 resistance,	which	also	 supports	
the linear relationship.24,25	 In	 the	 double-	blinded	 Trial	 Comparing	
Cardiovascular	 Safety	 of	 Insulin	 Degludec	 vs	 Insulin	 Glargine	 in	
Patients	with	Type	2	Diabetes	at	High	Risk	of	Cardiovascular	Events	
(DEVOTE),	whilst	hypoglycaemia	increased	the	risk	of	cardiovascular	
diseases,	the	elevation	in	risk	for	non-	fatal	AMI	and	unstable	angina	
was	 insignificant.	These	findings	were	consistent	with	the	present	
study,	where	low	mean	HbA1c	is	associated	with	an	increased	risk	
for	SCD	but	not	AMI.26

On	a	 separate	 note,	 the	U-	shaped	 relationship	 between	mean	
HbA1c	and	SCD	may	be	explained	by	the	increased	arrhythmic	po-
tential during both persistent hyperglycaemia and hypoglycaemia. 
Under	chronic	hyperglycaemia,	persistently	increased	activation	of	
calcium	channels,	and	increased	oxidative	stress	can	induce	arrhyth-
mogenesis.27-	30	By	contrast,	hypoglycaemia	is	a	well-	known	trigger	
for	ventricular	tachyarrhythmia	and	is	associated	with	delayed	repo-
larization and altered repolarization gradients.31-	33 During prolonged 
hypoglycaemia,	vagal	reactivation	occurs	and	the	relative	bradycar-
dia	increases	the	risk	of	atrial	ectopy.34	Severe	hypoglycaemia	was	
reported	 to	 increase	 the	 risk	 of	 arrhythmic	 death	 by	 77%	 in	 the	
Outcome	Reduction	with	Initial	Glargine	Intervention	(ORIGIN)	trial,	
which	agrees	with	our	findings.35	However,	it	should	be	noted	that	

TA B L E  3 Variable	importance	ranking	generated	by	CISF	model

Acute myocardial infarction Sudden cardiac death

Variable Importance
Relative 
importance Variable Importance

Relative 
importance

Creatinine	(mmol/L) 0.1061 1.0000 Age,	years 0.0986 1.0000

Age,	y 0.0906 0.8545 Creatinine	(mmol/L) 0.0923 0.9361

Baseline	anaemia 0.0156 0.1469 Baseline	anaemia 0.015 0.1517

Mean	HbA1c	(%) 0.0108 0.102 Mean	HbA1c	(%) 0.0126 0.1274

Triglyceride	(mmol/L) 0.003 0.0284 Heart	failure 0.0119 0.1208

Male	sex 0.0028 0.0268 Male	sex 0.0086 0.0871

Hypertension 0.002 0.0193 Total	cholesterol	(mmol/L) 0.0039 0.04

Ischaemic heart disease 0.0012 0.011 Atrial	fibrillation 0.0024 0.0245

High-	density	lipoprotein-	
cholesterol	(mmol/L)

0.0005 0.0045 Ophthalmological diabetic 
complication

0.0003 0.0032

Peripheral	vascular	disease 0.0001 0.0011

Ophthalmological diabetic 
complication

0.0000 0.0004

TA B L E  4 Comparisons	between	CISF,	multivariate	Cox	and	RSF	model	(fivefold	cross-	validation)

Outcome Acute myocardial infarction Sudden cardiac death

Evaluators Precision Recall AUC C- Index Precision Recall AUC C- Index

CISF 0.9083 0.8851 0.9270 0.9029 0.9137 0.8900 0.8912 0.8918

RSF 0.8634 0.8606 0.8506 0.8290 0.8464 0.8406 0.8691 0.8536

Multivariate	Cox 0.8197 0.7568 0.7255 0.7684 0.7918 0.8276 0.7412 0.8193
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the	J-	shaped	relationship	 is	mainly	attributed	by	the	 lowest	decile	
of	HbA1c,	suggesting	that	the	relationship	may	be	disrupted	by	ex-
treme	cases	of	persistent	hypoglycaemia.	For	patients	with	HbA1c	
values	within	the	normal	range,	the	relationship	between	HbA1c	and	
SCD	was	linear.

The	 inverse	 relationship	 between	 HDL-	C	 level	 and	 cardiovas-
cular	adverse	outcomes	is	well	established,36	and	reinforced	by	re-
cent	findings	of	the	 inversed	association	between	high	 lipoprotein	
function	 and	 atherosclerotic	 burden.37	 Recent	 studies	 exploring	
the relationship between cholesterol indices and cardiovascular 
events	demonstrate	that	the	J-	shaped	relationship	is	mainly	present	
in	 LDL-	C.20,38	 The	U-	shaped	 relationship	 between	HDL-	C	 and	 all-	
cause	mortality	reported	may	be	attributed	to	other	causes	of	death,	
such	as	infection	and	external	causes,	and	confounded	by	alcohol-
ism	which	raises	HDL.39-	41	These	findings	suggest	that	the	J-	shaped	
relationship	between	 total	 cholesterol	 and	SCD	may	be	driven	by	
LDL-	C,	 given	 the	observed	 linear	 association	between	HDL-	C	and	
AMI.	Given	that	the	J-	shaped	relationship	between	total	cholesterol	
and	SCD	is	mainly	attributed	by	the	highest	decile	for	total	choles-
terol,	there	is	also	a	possibility	that	the	increase	in	SCD	risk	may	only	
occur	in	outliers	with	extremely	high	total	cholesterol.42 The varied 
pathogenesis	underlying	different	cardiovascular	adverse	outcomes	
suggests	 that	 cause-	specific	 analysis	 on	 the	 relationship	 between	
both	glycaemic	and	cholesterol,	and	cardiovascular	mortality,	should	
be	performed.

The	Cox	proportional	hazards	model	has	been	widely	used	as	for	
right-	censored	time-	to-	event	data	analysis	since	it	is	convenient	for	
its	 flexibility	 and	 simplicity.	However,	 their	 use	 is	 not	 appropriate	
when	 the	proportional	 hazards	 assumption	 is	 violated.	 Extensions	
to	 the	Cox	proportional	hazards	model	were	developed	but	often	
remained	 dependent	 on	 restrictive	 functions	 (eg	 Heaviside	 func-
tions)	that	are	difficult	to	construct	and	implement.	RSF	models,	as	
extensions	of	classification	and	regression	trees	and	random	forests,	
have	been	 identified	 as	 alternative	 survival	 data	 analysis	methods	
when the proportional hazard assumption is violated.43	RSF-	based	
models	have	been	applied	to	enhance	risk	stratification	in	different	
clinical	 settings,	 including	 diabetes.44-	48	 However,	 RSF	model	 has	
been	criticized	 for	 the	bias	due	 to	 favouring	covariates	with	many	
split-	points.49	 In	 our	 study,	 the	CISF	model	was	 used	 for	 time-	to-	
event	survival	data	analysis	in	predicting	AMI	and	non-	AMI	SCD,11,12 
which	were	shown	to	shown	superior	predictive	performance	com-
pared	to	RSF	and	multivariate	Cox	models.

4.1  |  Limitations

Several	 limitations	 should	be	noted	 for	 the	present	 study.	First	of	
all,	 given	 its	 observational,	 data-	based	 nature,	 it	 is	 susceptible	 to	
under-	coding	and	coding	error,	with	an	inability	to	establish	causal	
relationships.	 In	addition,	 the	 large	number	of	patients	 included	 in	
the	 analysis	 drove	 the	 high	 statistical	 significance	 but	 low	 hazard	
ratio	in	some	predictive	parameters.	Thus,	findings	of	these	param-
eters	may	be	driven	by	the	statistical	power	of	the	analysis	and	may	

have	limited	clinical	significance.	Furthermore,	duration	of	diabetes	
was	not	adjusted	for,	given	the	possible	competing	variable	of	time	
from	baseline	till	outcome	onset.	This	is	also	to	avoid	interference	of	
inaccuracy	in	diabetic	duration	because	of	a	 lack	of	data	beyond	a	
decade	prior	to	baseline.	Additionally,	the	effect	of	medications	was	
not	accounted	 for	due	 to	 the	potential	drug-	drug	 interactions	and	
effect	upon	the	laboratory	markers,	which	would	greatly	complicate	
the	analysis.	Finally,	data	on	other	cardiovascular	health	predictors,	
such	 as	 smoking	 status,	 alcohol	 use	 and	 family	 history	 of	 cardiac	
conditions,	were	unavailable	due	to	limitations	of	our	administrative	
database	of	not	converting	them	into	structured	data	for	extraction.

5  |  CONCLUSION

A	holistic	combination	of	demographic,	clinical	and	laboratory	indi-
ces	can	be	used	for	the	risk	stratification	of	patients	with	type	2	dia-
betes	mellitus	against	AMI	and	SCD.	Cause-	specific	analysis	should	
be	applied	to	further	examine	the	relationship	between	both	mean	
HbA1c	and	lipid	parameters	against	different	cardiovascular	adverse	
outcomes.	The	application	of	machine-	learning	techniques	can	im-
prove	the	sensitivity	and	specificity	of	risk	prediction	by	identifying	
the	latent	interactions	between	risk	variables.
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