

CONSTRUCTION LOGISTICS

Briefing Report – Summary Slide Set

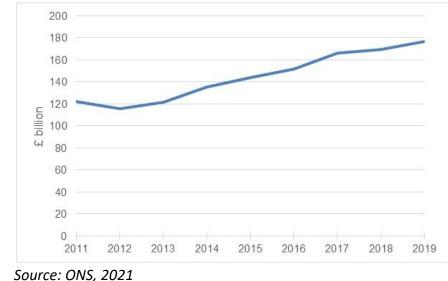
Technical Report ENG-TR.019

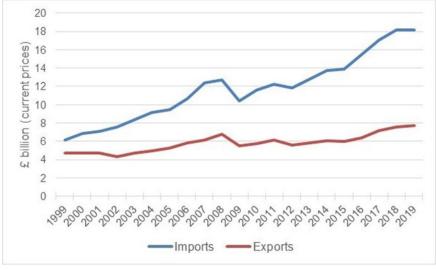
Maja Piecyk, Julian Allen and Allan Woodburn

University of Westminster

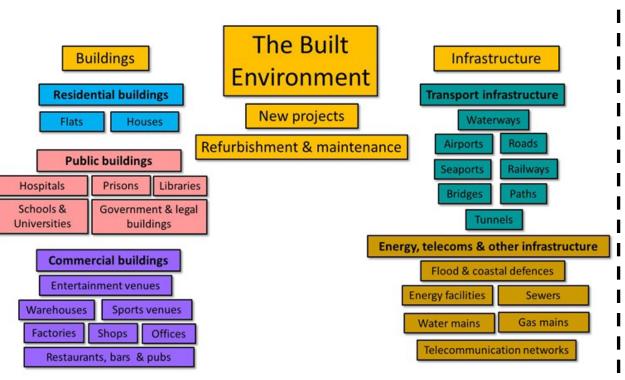
October 2021

This briefing report has been produced as part of the Centre for Sustainable Road Freight (SRF – EPSRC grant number EP/R035148/1). Further details about the SRF project are available at: <u>http://www.csrf.ac.uk/</u>




Importance of construction industry and construction logistics

- New construction work contributed £119 billion to UK economy in 2019
- Repair, refurbishment and maintenance work contributed £57 billion to UK economy in 2019
- 2.3 million people work in construction (7% of total workforce)
- 290,000 construction companies
- But UK trade deficit in construction products:
 - UK imports more than it exports
 - Large and increasing deficit (£10.4 billion in 2019)

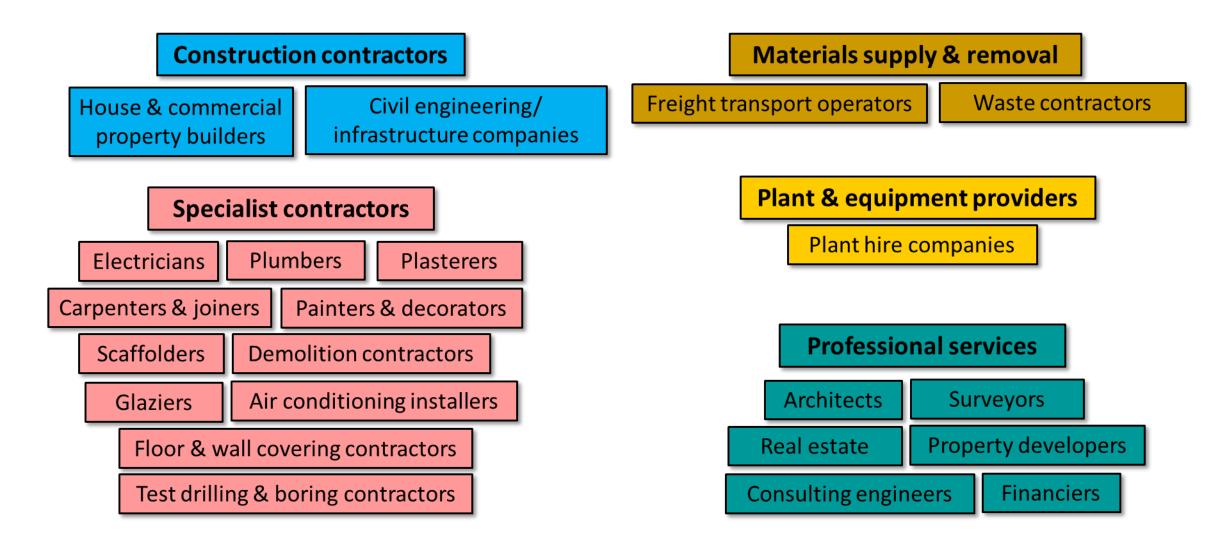


Source: BEIS, 2021

Built environment provided by the construction industry

Construction output value in the UK in 2019 by type of construction (% of total construction industry value)

Type of construction	New works	Repair and maintenance	Total
Private housing	23%	12%	35%
Public housing	4%	4%	8%
Commercial buildings*	21%	8%	29%
Public buildings**	6%	3%	9%
Infrastructure***	13%	5%	18%
TOTAL	67%	33%	100%
IUIAL	(£119 billion)	(£57 billion)	(£176 billion)


Notes:

* - includes offices, shops, entertainment venues, factories and warehouses

** - includes schools, colleges and hospitals

*** - includes transport, energy, utility, water and telecommunications infrastructure Source: calculated from data in ONS, 2021

Companies carrying out many different activities in the construction supply chain

UK construction industry – economic importance and structure

- Construction industry contributed £176 billion to the UK economy in 2019 (new work plus refurbishment & maintenance)
- Equivalent to 9% of UK economy
- 2.1 million people work in construction (6.5% of total UK workforce)
- 290,000 construction companies
 - Many small as well as large companies
 - Very high level of self-employment (36% v 13% in economy as whole)
 - Micro-businesses (less than 10 employees) accounted for almost one-third of construction industry value in 2019

Source: https://commons.wikimedia.org/wiki/File:Canada_Line_False_Creek_tunn el_construction.jpg

Source: https://upload.wikimedia.org/wikipedia/commons/5/58/GRUA_TORRE_21 LCS50.jpg

Types of construction work in UK construction industry by output value in 2019

Type of construction	New works	Repair and maintenance	Total
Private housing	23%	12%	35%
Public housing	4%	4%	8%
Commercial buildings*	21%	8%	29%
Public buildings**	6%	3%	9%
Infrastructure***	13%	5%	18%
TOTAL	67% (£119 billion)	33% (£57 billion)	100% (£176 billion)

Notes:

* - includes offices, shops, entertainment venues, factories and warehouses

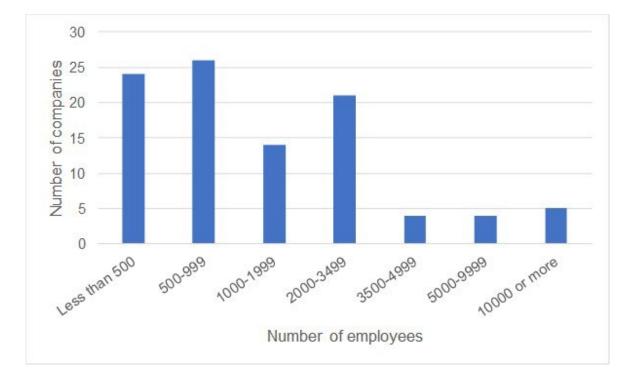
** - includes schools, colleges and hospitals

*** - includes transport, energy, utility, water and telecommunications infrastructure

Source: calculated from ONS, 2021

Top twenty UK construction companies by annual turnover in 2018

Company	Turnover	Pre-tax profit margin (%)	Reporting date
Balfour Beatty Plc	7,802.0	2.3	Dec-18
Kier Group Plc	4,512.8	2.4	Jun-18
Interserve Plc	3,225.7	-3.4	Dec-18
Galliford Try Plc	3,132.3	4.6	Jun-18
Morgan Sindall Group Plc	2,971.5	2.7	Dec-18
Amey UK Plc	2,667.8	-16.0	Dec-18
Mace Ltd	2,350.0	1.4	Dec-18
ISG Plc	2,237.6	1.2	Dec-18
Keller Group Plc	2,224.5	0.4	Dec-18
Laing O'Rourke Plc	1,985.7	-1.3	Mar-18
Skanska UK Plc	1,935.4	2.3	Dec-18
Wates Group Ltd	1,601.0	2.2	Dec-18
Costain Group Plc	1,489.3	2.7	Dec-18
Willmott Dixon Holdings Ltd	1,323.2	2.7	Dec-18
Multiplex Construction Europe Ltd	1,064.9	1.7	Dec-18
M Group Services Ltd	1,027.8	-0.5	Mar-18
Homeserve Plc	1,003.6	13.9	Mar-19
VolkerWessels UK Ltd	984.0	2.9	Dec-18
BAM Construct UK Ltd	949.8	2.0	Dec-18
Bowmer & Kirkland Ltd	937.6	2.3	Aug-18


Source: Construction News, 2019

A small number of very large construction companies in the UK

Annual turnover of the top 100 UK construction companies in 2018

35 30 Number of companies 25 20 15 10 5 0 Less than 200 200:299 300399 800.999 00.599 600109 1000-2499 4000 or more Annual turnover (£ million)

Number of employees of the top 100 UK construction companies in 2018

Source: calculated from data in Construction News, 2019.

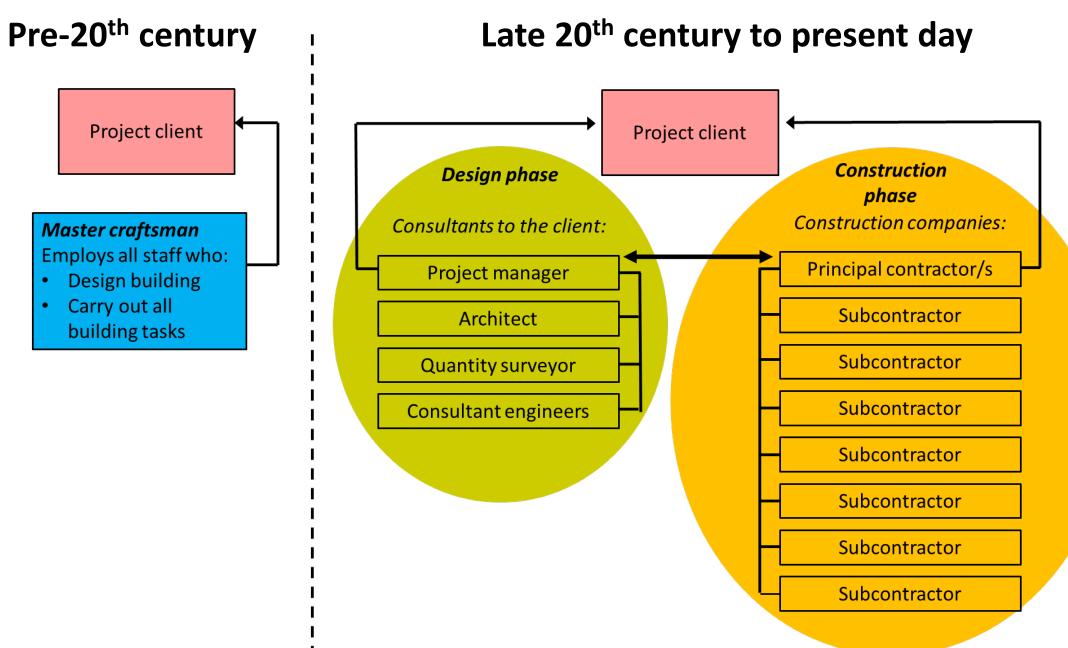
And many small companies:

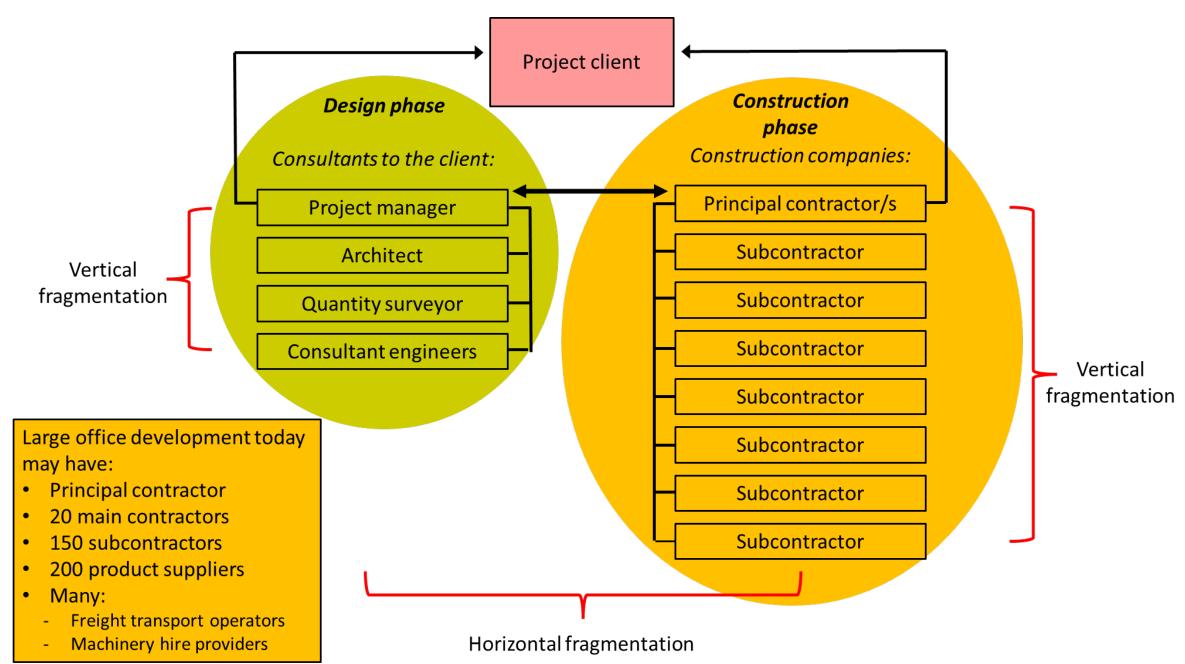
employee size of companies in the UK construction industry, 2019

Size of Company (number of people employed)	Companies (%)	Employees (%)
0 (sole proprietors)	12%	-
1	40%	9%
2-3	28%	14%
4-7	11%	13%
8-13	4%	9%
14-24	2%	8%
25-34	1%	4%
35-59	1%	7%
60-79	0.18%	3%
80-114	0.16%	3%
115-299	0.17%	8%
300-599	0.05%	5%
600-1,199	0.02%	4%
1,200 and over	0.02%	13%
TOTAL	100%	100%
IUIAL	(290,374)	(1.28 million)

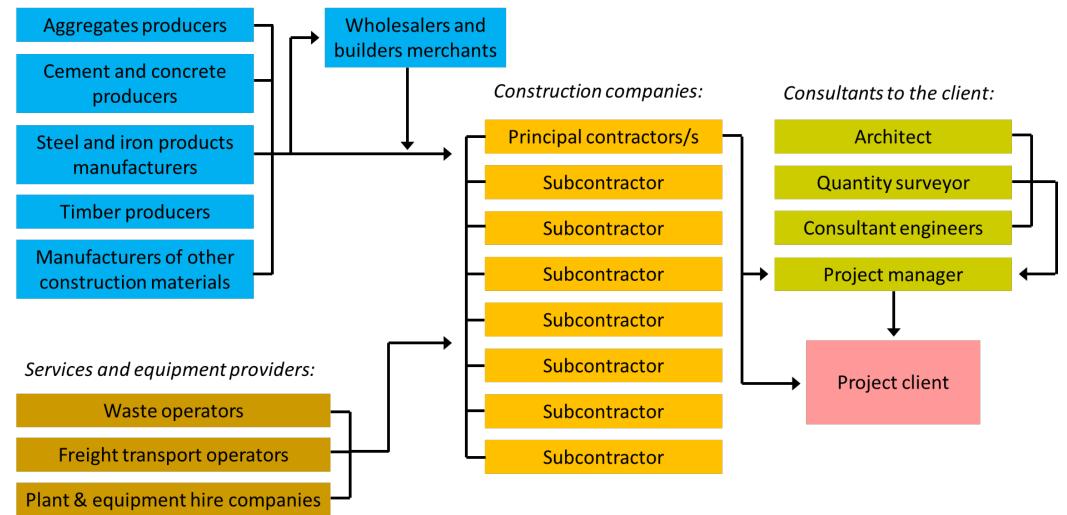
Source: calculated from data in ONS, 2021

Key issues facing the construction industry

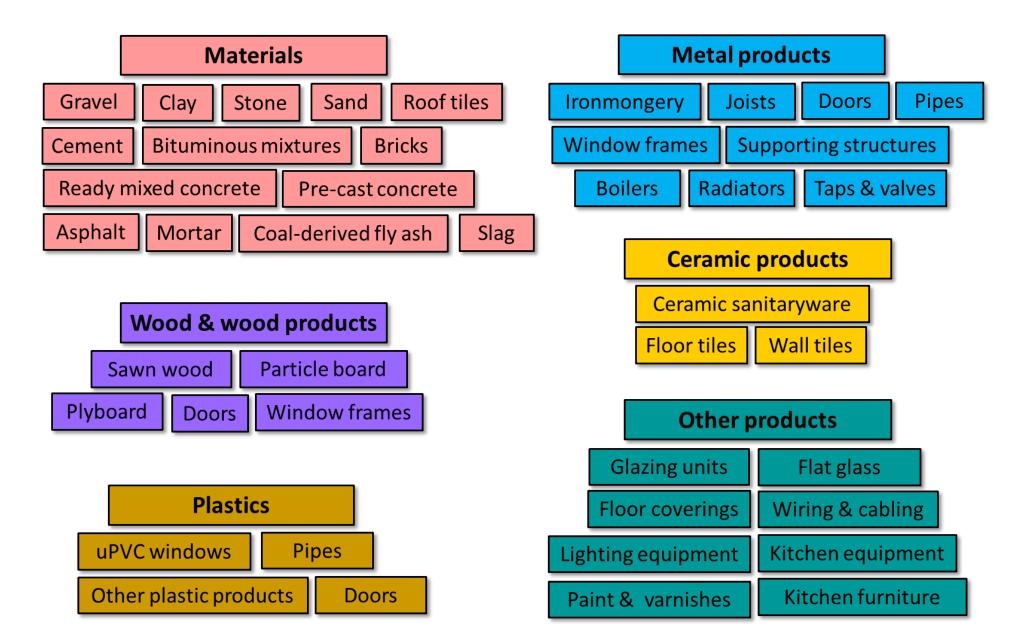

- Unique, one-off nature of construction projects (and separation of design and construction phases and parties)
- Many small companies and very high level of selfemployment (36% v 13% in economy as whole)
- Fragmented nature of the industry (many parties with differing interests and motivations – trust issues)
- Training and worker skills deficits
- Poor industry image
- Ageing workforce and worker shortages
- Lack of collaboration and innovation
- Environmental sustainability and road traffic impacts


Source: https://commons.wikimedia.org/wiki/File:Europa_Building_(EU_Brussels) _18.jpg

Changes in the construction industry over time



Fragmentation in late 20th century construction industry



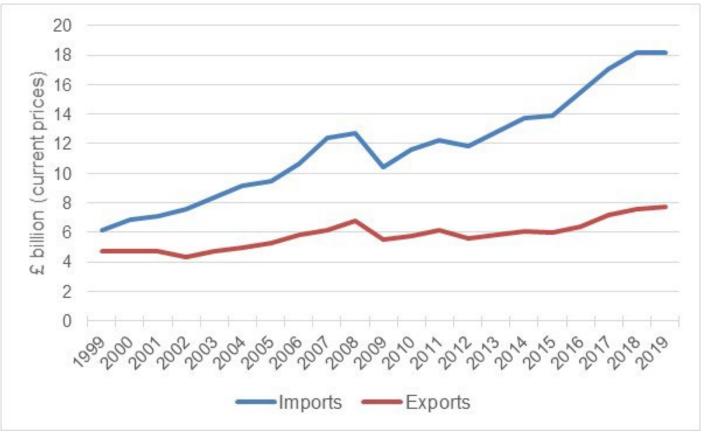
The parties involved in wider construction supply chain for a specific project today

Construction material providers:

Materials and products used by the construction industry

Materials consumed and waste arising in UK construction

Major consumer of materials and products


Material or product	Quantity (2019)
Land-won sand and gravel	46.8 million tonnes
Marine-dredged sand & gravel	11.8 million tonnes
Clay & shale	4.5 million tonnes
Gypsum	1.6 million tonnes
Cement	9.1 million tonnes
Bricks	2.0 billion bricks
Concrete blocks	70.3 million square metres
Concrete roofing tiles	27.8 million square metres
Ready mix concrete	16.2 million cubic metres
Sources: BEIS, 2021b; Bide, 2021	

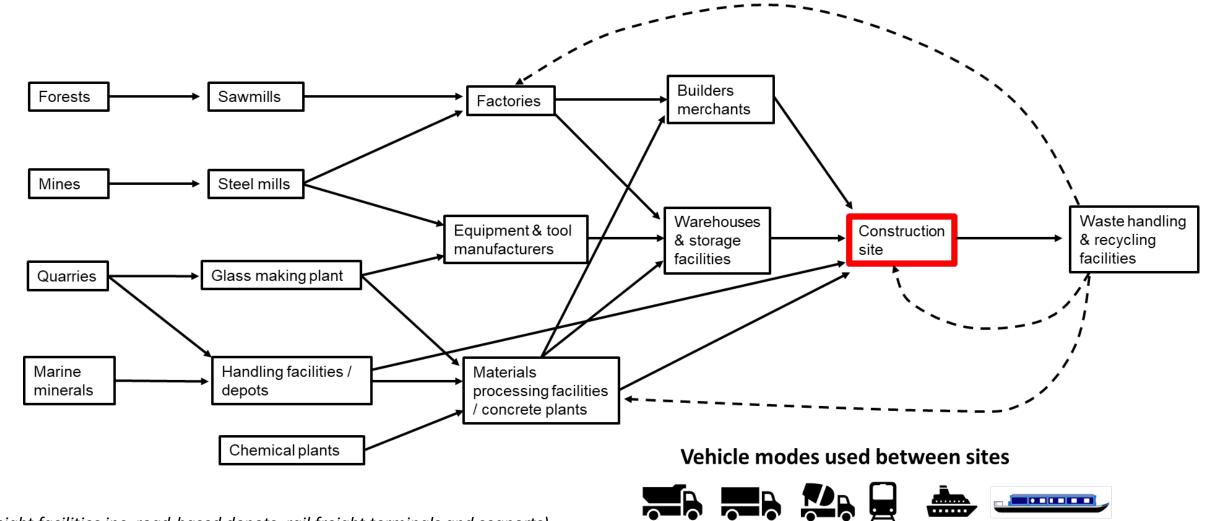
Major generator of waste materials

Type of waste and source	Tonnes (2018)
Mineral waste from construction	65.1 million
Soils from construction	58.1 million
Mineral waste from quarrying	14.6 million
Off-shore dredging spoils	11.3 million
Metallic waste from construction	2.2 million
Wood waste from construction	0.6 million
Glass waste from construction	0.1 million
Household & food waste from construction	0.1 million
Plastic waste from construction	0.1 million
Paper & cardboard waste from construction	0.02 million
TOTAL	152.6 million

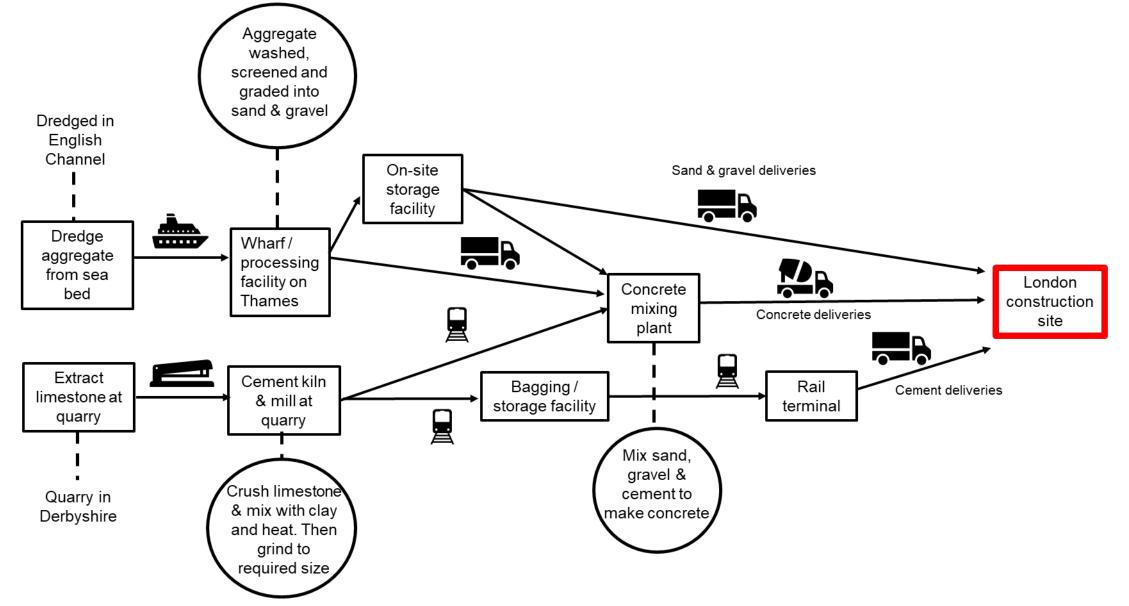
Sources: calculated from data in DEFRA, 2021.


Value of UK Overseas Trade in Construction Materials, 1999-2019

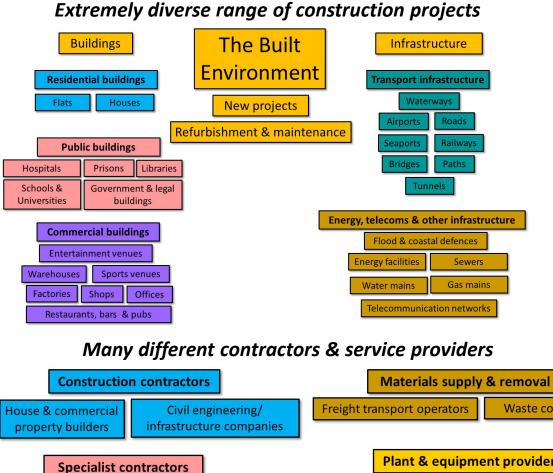
Source: BEIS, 2021

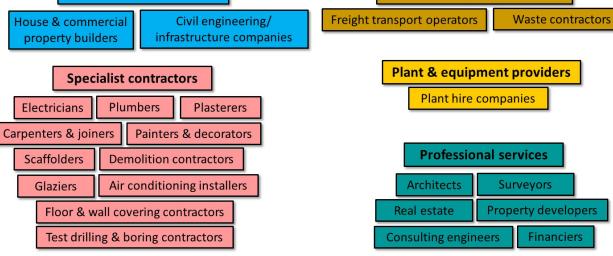

- Although majority of construction materials and products are manufactured nationally, there is also a sizeable overseas trade in these products
- UK overseas trade in these materials and products is growing, with the total value of imports and exports increased from £10.9 billion in 1999 to £25.9 billion in 2019 (in current prices)
- UK also has growing deficit in this overseas trade, which increased from £1.5 billion in 1999 to £10.4 billion in 2019

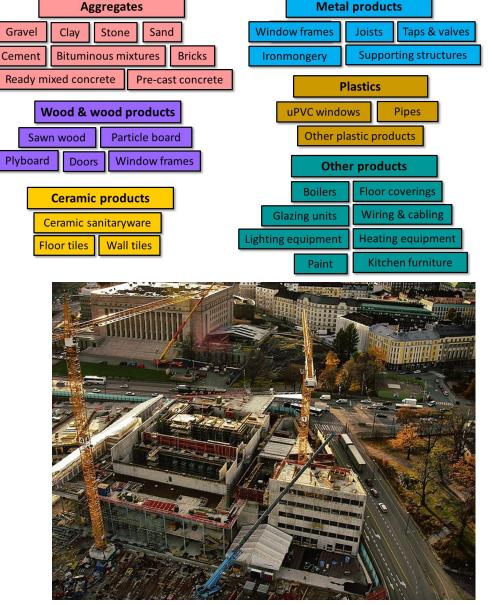
The processes and activities across the lifecycle of a construction project


Note: * - could also involve repairs, maintenance, major refurbishment and renovation of existing building/infrastructure

The sites and freight transport activity involved in the construction supply chain


(Freight facilities inc. road-based depots, rail freight terminals and seaports)


Illustration of supply chain for aggregate, cement and concrete for use at a London construction site


Source: Compiled from information provided for a London construction site provided in DfT, 2008.

The complexity of the UK construction industry

Very wide range of materials & products delivered to construction sites

Source: https://commons.wikimedia.org/wiki/File:Helsinki_Music_Centre_construction_from_air.jpg

Attributes of construction materials

- Many construction materials have:
 - High bulk and transport density
 - Low value density
- So, freight transport costs are high per value of unit moved
- Leading to desire to minimise transport distance where possible
- But some materials are not locally available due to:
 - Geology
 - Processing requirements
 - Manufacturing locations
 - Where construction takes place

Material or product	Bulk density (kg/cubic metre)	Product value in 2019 (from manufacturers' sales data)
Sand	1500-2000	Construction sand: £13 per tonne
Gravel	2400	Construction gravel: £13 per tonne
Stone chips and ballast	1600-2000	Stone chips and ballast for construction: £12 per tonne
Asphalt	2200	Bituminous material: £60 per tonne Coated roadstone: £68 per tonne
Limestone	2400	Bulk: £7 per tonne Crushed: £13 per tonne
Cement	1280-1440	Portland cement: £86 per tonne
Concrete components, blocks and tiles	2000-2500	Concrete construction blocks: £37 per tonne Concrete roofing tiles: £94 per tonne Prefabricated concrete components: £158 per tonne
Ready mix concrete	1300	£67 per tonne

Construction-related transport by road goods vehicles

- Wide range of vehicle types used in construction-related transport (mostly large, heavy goods vehicles):
 - Tippers (with or without grabs/cranes)
 - Flatbeds /dropside (with or without grabs/cranes)
 - Curtainsiders
 - Box / Lutons
 - Low-loaders
 - Volumetric concrete lorries
 - Concrete mixers / pumps
 - Tankers
 - Skip vehicles
 - Refuse vehicles
 - Sweeper vehicles
 - Vans
- Estimated approx. 30% of tonnes lifted and 20% of tonnekms by road freight transport in Britain in 2019 related to construction supply chain

Source: https://commons.wikimedia.org/wiki/File:Cement_mixer_trucks,_Kirtling_Street,_London_SW8.jpg

Source: https://upload.wikimedia.org/wikipedia/commons/2/20/Volvo_FH12_and_Wacker_Neuson_14504_ %283%29.jpg

Goods lifted by HGV by commodity group and length of haul in Britain in 2019 (% of tonnes lifted by length of haul)

Commodity group	Up to 25km	Over 25km to 50km	Over 50km to 100km	Over 100km to 150km	Over 150km	TOTAL
Stone, sand, gravel, clay, peat and other quarrying products	25%	26%	31%	10%	10%	100%
Glass, cement and other non-metallic mineral products	32%	20%	21%	11%	15%	100%
Commercial waste products	27%	28%	25%	9%	11%	100%
ALL COMMODITIES CARRIED BY HGV	19%	18%	24%	14%	26%	100%

Empty running by HGVs by industry and vehicle type in Britain in 2019 (% of vehicle kilometres travelled empty)

Industry category	Rigid HGV	Artic HGV	All HGVs
Construction	38.3	40.8	38.5
ALL INDUSTRIES	30.6	29.6	30.0

Source: calculated from data in Department for Transport, 2020

Estimated goods lifted and moved related to the construction industry by HGVs in Britain in 2019

Commodity group	Goo	ods lifted	Goods	moved
	Tonnes (million)	% of all goods lifted by HGV in Britain	Tonne-kilometres (million)	% of all goods moved by HGV in Britain
Stone, sand, gravel, clay, peat and other mining/quarrying products	147	10.2%	10,010	6.5%
Cement, lime and plaster	23	1.6%	2,183	1.4%
Other construction materials	96	6.7%	5,740	3.7%
Commercial waste	77	5.4%	5,873	3.8%
Plant equipment and scaffolding	38	2.6%	2,491	1.6%
Wood and cork products (except furniture)	12	0.8%	1,359	0.9%
Rubber and plastic products	2	0.1%	259	0.2%
Glass and glass products, ceramic and porcelain products	13	0.9%	1,634	1.1%
Metal products	14	1.0%	1,800	1.2%
TOTAL	421	29.2%	31,348	20.4%

Source: calculated from data in Department for Transport, 2020

Construction-related freight transport estimated to account for 29% of the goods lifted by HGVs in Britain in 2019, and 20% of the goods moved (i.e. tonne-kilometres) by HGVs in 2019

Vehicle fleet size and turnover of selected UK construction companies

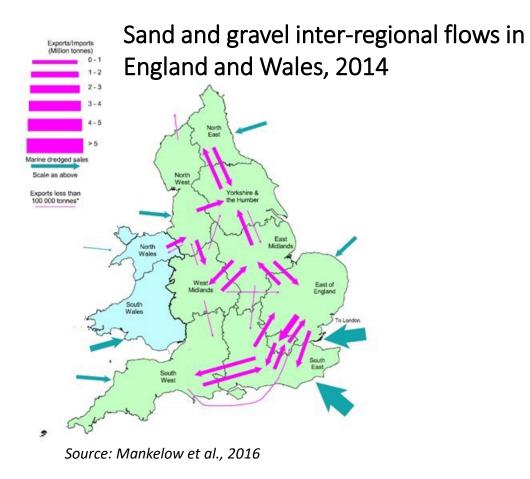
Company name	Turnover	Ranking by	Vehicle fleet size in 2019		
	(2018)	turnover	Number of HGVs	Number of vans	Number of cars
Balfour Beatty	£7,802 m	1	750	2,000	3,500
Kier	£4,513 m	2	509	724	687
Morgan Sindell	£2,972 m	5	80*	438	978
Amey	£2,668 m	6	2,500	3,000	2,000
Skanska	£1,935 m	11	389	752	1,874
Costain	£1,489 m	13	23	749	1,059
Eurovia**	£501 m	35	418	517	180
FM Conway	£329 m	47	403	564	82
Clancy Group	£268 m	58	158	1,432	477
Colas	£240 m	65	311	718	247

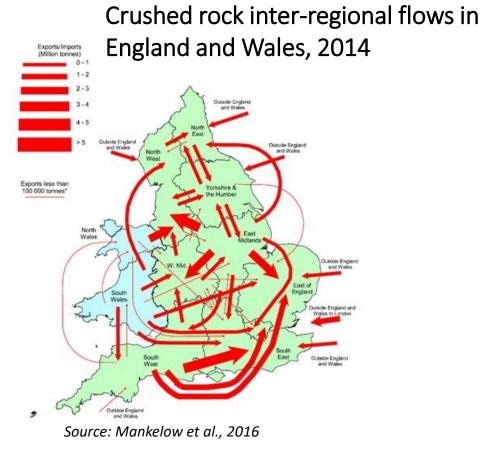
Notes:

* HGV fleet data for 2015

** Fleet size is for Eurovia's Ringway subsidiary.

Source: Construction News, 2019; Amey, 2019; Balfour Beatty, 2019, Clancy Group, 2019; Colas, 2019; Costain, 2019; Driving for Better Business, 2019; Fleet News, 2015; FM Conway, 2019; Kier, 2019; Morgan Sindell, 2019; Ringway, 2019, Skanska UK, 2019.

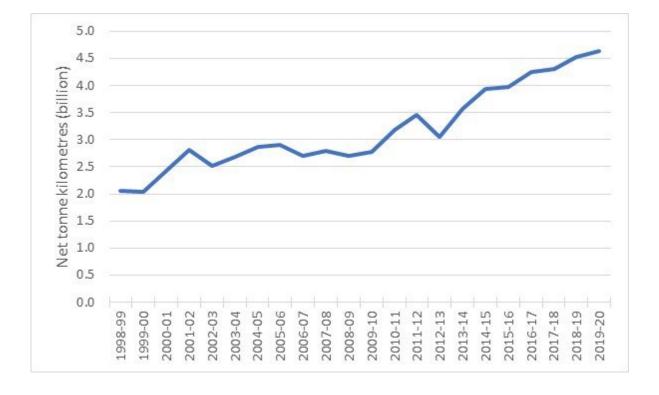

Vehicle fleet size, sites, staff and turnover of major UK aggregates and cement suppliers


Company	Turnover	Number of goods vehicles in UK*	UK sites and staff
Aggregate Industries	£1.3 bn in UK in 2019 (parent LafargeHolcim - CHF 23.1 bn in 2020)	1,250 HGVs and 450 vans in 2019	200 sites, 3,700 staff
Breedon	£930 m in UK (2019)	Utilised a fleet of 1,500 goods vehicles in 2018	350 sites, 3,500 staff
CEMEX UK	£775 m in UK (parent CEMEX - \$13 bn in 2020)	800 goods vehicles in 2019	22 quarries, 2,200 staff
Hanson UK	€17.6 bn (parent Heidelberg in 2020)	Currently utilises a fleet of 1,200 HGVs	300 sites, 3,500 staff
Tarmac	\$27.6 bn (parent CRH in 2020)	2,000 HGVs and 1,100 vans in 2019	400 sites, 7,000 staff

Notes:

* - either operated by company or franchised contractors

Source: Aggregate Industries, 2021; Breedon, 2019; Breedon, 2020; CEMEX, 2021; CRH, 2021; Fleetpoint, 2019; Hanson, 2021; Heidelberg Cement, 2021; LafargeHolcim, 2021; London Road Safety Council, 2019; Robinson, 2019; Tarmac, 2019; Tarmac, 2021.


Principal transport method in England and Wales in 2014 (million tonnes)

	Road	Rail	Water	
Sand & gravel	52.9 (97.0%)	1.3 (2.5%)	0.3 (0.5%)	
Crushed rock	73.5 (85.6%)	12.2 (14.2%)	0.2 (0.2%)	
All aggregates	126.3 (90.0%)	13.5 (9.6%)	0.5 (0.3%)	

Source: Mankelow et al., 2016

Growing importance of construction in rail freight transport

Construction traffic moved by rail freight in Britain, 1998-99 to 2019-2020

Commodities moved by rail freight in Britain, 1998-99 to 2019-2020

Commodity type	Percentage change in net tonne-kilometres		
Construction	126%		
Domestic intermodal (incl. maritime)	92%		
Other	-22%		
Metals	-34%		
Oil and petroleum	-37%		
International	-56%		
Coal	-92%		
TOTAL	-4%		

Source: calculated from data in ORR, 2020

Rail freight tonnes lifted in the UK by major suppliers of aggregates and cement

Company	Tonnes lifted
Aggregate Industries	4.8 million (2018)
Breedon	1.0 million (2020)
CEMEX UK	2.0 million (2020)
Hanson UK	2.5 million (2020)
Tarmac	9.0 million (2020)

Source: Aggregate Industries, 2021; Breedon, 2021; CEMEX, 2020; Hanson, 2021; Tarmac, 2020.

Estimated construction materials (aggregate, cement and concrete products) lifted and moved in Britain in 2018 by transport mode

Transport mode	Goods lifted			Goods moved		
	Tonnes (million)	% share by mode	% of all goods lifted by mode	Tonne- kilometres (billion)	% share by mode	% of all goods moved by mode
Road	197.0	82%	14%	13.5	67%	9%
Rail	28.7	12%	34%	5.7	28%	31%
Water	13.7	6%	14%	0.9	5%	4%
TOTAL	239.4	100%	15%	20.1	100%	10%

Source: calculated from data in Department for Transport, 2020; MDS Transmodal, 2019; ORR, 2020.

- Estimated that road, rail and water accounted for 82%, 12% and 6% of all aggregate, cement and concrete lifted, respectively, in UK in 2018
- Estimated that road, rail and water accounted for 67%, 28% and 5% of all aggregate, cement and concrete toonekilometres, respectively, in UK in 2018
- Difference due to longer average distance over which these goods are moved by rail compared to road

Estimated goods lifted and moved related to entire construction industry in Britain in 2018 by transport mode

Transport mode	Goods lifted		Goods moved			
	Tonnes (million)	% share by mode	% of all goods lifted by mode	Tonne- kilometres (billion)	% share by mode	% of all goods moved by mode
Road	429.8	91%	31%	31.0	82%	20%
Rail	28.7	6%	34%	5.7	15%	31%
Water	13.7	3%	14%	0.9	2%	4%
TOTAL	471.8	100%	29%	37.6	100%	19%

Source: calculated from data in Department for Transport, 2020; MDS Transmodal, 2019; ORR, 2020.

- Estimated that road, rail and water accounted for 91%, 6% and 3%, respectively, of all goods lifted in entire construction industry in UK in 2018
- Estimated that road, rail and water accounted for 82%, 15% and 2%, respectively, of all tonne-kilometres in entire construction industry in UK in 2018
- Difference due to longer average distance over which these goods are moved by rail compared to road

Logistics activities on construction sites requiring plant and equipment

- Materials handling
- Access
- Digging & excavating trenches
- Moving soil
- Dredging

- Tree cutting
- Demolition
- Levelling surfaces
- Making bore holes
- Pile driving

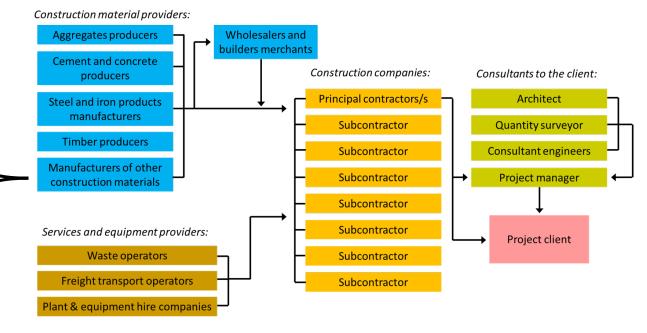
Wide range of machinery used on construction sites

- Loaders
- Telehandlers
- Fork lifts
- Boom lifts
- Dump trucks
- Tower cranes
- Excavators
- Backhoe

- Graders
- Trenchers
- Pavers
- Compactors
- Feller bunchers
- Demolition machines
- Pile boring machines

Problems that arise in construction supply chains

- McKinsey and Company study (2017):
 - poor procurement: overpaying up to 15% for materials & services
 - poor supply chain management: 10-30% of cost & time overruns
- Problems can arise in:
 - material flow
 - communication (internal within one company or external between companies)
 - other issues (such as changes made by the client, lack of standardisation and weather)
- Where problems arise:
 - construction site project processes
 - wider supply chain
 - intersection between these two
- Much scope for greater collaboration across organisations in construction project
- But multi-stakeholder, fragmented and temporary nature make this challenging


Construction supply chain: challenges and consequences

Challenges

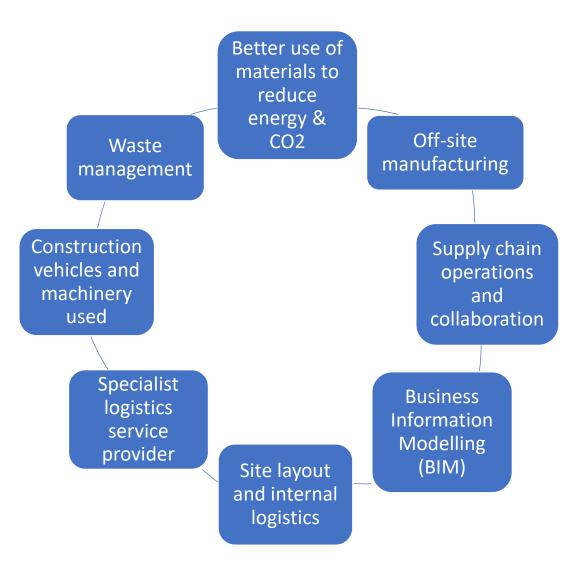
- Project-based: each project unique with specific start and end point
- Large number of companies providing different services
- Many small companies
- Substantial use of sub-contracting
- Lack of communication and data flows
- Poorly skilled workforce
- Lack of logistics management

Consequences

Complex supply chain

- Little supply chain collaboration
- Poor productivity
- High levels of waste

Conflicting incentives for construction supply chain parties under traditional contract relationships


Party	Motivation	Clashing behaviours		
	Reliably deliver project in timely fashion	Constantly push contractors and suppliers to expedite production and delivery; engage expediters for critical path items		
Client/Owner	Receive value for money	Seek cost savings throughout (e.g., contractors, suppliers, labour, utilities, etc.)		
	Avoid high-profile setbacks or failures	Engage best contractors and offload complete risk onto them		
Main contractor	Maximize profit margin	Charge for any scope changes and submit claims, variations, and project extensions		
	Ensure financial stability	Get milestone-based payments; stall work until instalment is paid		
Designer/architect	Illustrate creative edge and reputation	Submit drawings and designs in random order and not the way required by construction contractors		
	Minimize effort and resources	Work according to their own resource availability and timeline, rather than under project timelines		
Subcontractor	Optimize resources	Deploy cheapest available labour and machinery; in case of any issues, submit claims		
Materials supplier	Financial stability	Make high margin on raw materials, logistics, etc.		
OEMs for long lead items	Financial stability	Try to sell technology or product that is most profitable instead of the most appropriate solution for owner		
Other equipment supplier	Maximize profit margin	Squeeze subcontractor cost by negotiations, claims, variations, and project extensions Low motivation to adhere to quality, health, safety, and environment standards unless tight third-party inspection done by main contractor or owner		

Source: adapted from McKinsey & Company, 2017.

Improving supply chain operations and collaboration in construction

- Better and more collaborative supply chain management can lead to improved:
 - product procurement
 - stock control & inventory management
 - management of deliveries & collections from construction sites
 - construction activity decision-making
 - costs & productivity (as well as social & environmental impacts)
- Mace focuses on importance of logistics performance and building longterm relationships with supply chain subcontractors:
 - Since 1990s real time system to monitor logistics performance and share with partners
 - 2006 set up in-house business school to train its own staff and subcontractors in supply chain management
- 'Supply Chain Sustainability School' set up in 2012 by 7 major UK construction companies: available to clients, subcontractors and supply chain partners to share knowledge and experience and increase skills and collaboration

Supply chain & logistics innovations in construction

Construction site layout and internal logistics problems

- Site layout important as a dangerous location with constrained size
- Materials have to be received, stored and moved around to avoid delays
- Traditional approach:
 - many subcontractors each taking own responsibility for their materials and on-site logistics activities
 - site layout and logistics in theory overseen by principal contractor but no overall logistics planning
 - outcome: unavailability of materials, tools and machinery where and when required on site
- On-site logistics is important project cost and has major impact on productivity
 - inconsistencies, duplication and gaps in on-site logistics activities
 - operational confusion and inefficiencies
- Study estimated that craftsmen in Scandinavia spend 14% of working time moving materials and equipment to assembly area (Strandberg and Josephson, 2005)
- Swedish construction workers spent, on average, 50% of their time waiting and handling materials (Josephson and Saukkoriipi, 2007)

Use of specialist logistics service provider

- Principal contractor can engage specialist construction logistics provider to take control and improve site logistics through planning and control
- Tasks can involve:
 - On-site coordination, storage and handling of the construction materials and waste on the site only
 - Above plus coordination and management of delivery and collection arrangements and operations (including booking systems and vehicle marshalling on arrival)
 - Above plus consolidating flows of products upstream of site to reduce deliveries to site and storage on site (i.e. operating off-site Construction Consolidation Centre)
- Potential benefits:
 - Improve site productivity: reduce total project time & cost
 - Could result in overall project cost savings of 2-4% (Sullivan, 2010)

Business Information Modelling (BIM) in construction

- BIM computer modelling software allows (Beaumont and Underwood, 2015):
 - creation of virtual 3D building or infrastructure
 - virtual testing of that building and processes to be used for its production
 - Virtual management of production process, including data associated with this
- Lets all stakeholders in supply chain (architects, engineers and construction contractors) gain insight and information to better plan, design, construct, and manage the sequence of activities before and during construction
- Can provide productivity and quality improvements, and reduce waste, time taken and project costs in design and construction phase (World Economic Forum and Boston Consulting Group, 2018)
- BIM requires collaborative working and data sharing between construction supply chain parties (has not traditionally happened)

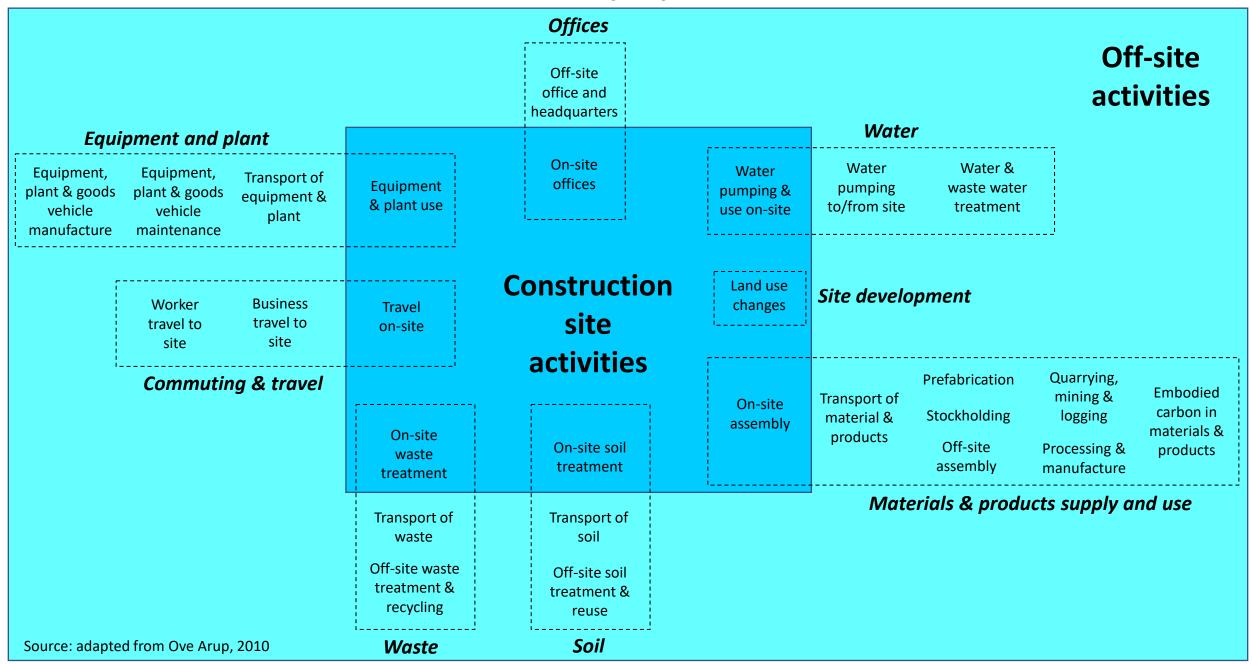
Source: https://commons.wikimedia.org/wiki/File:SafetiBase.jpg

Source: https://upload.wikimedia.org/wikipedia/commons/8/84/Instant_Clash.jpg

Off-site manufacturing (1)

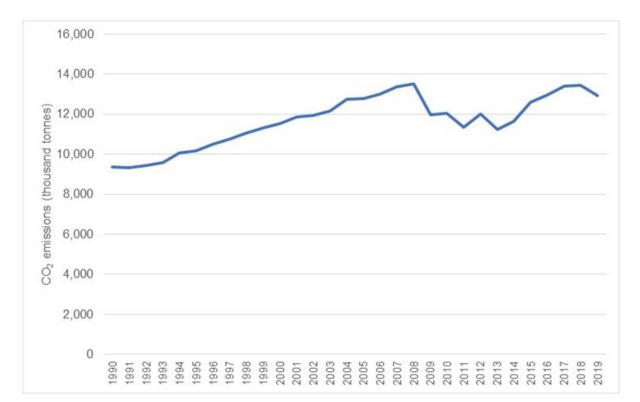
- Involves production, preparation and assembly of building products in factories upstream of construction site
- These components then delivered to construction site and assembled
- Removes need for complicated building processes on site that require many different contractors and complicated sequencing of tasks in small and non-optimal working environment

Source: https://commons.wikimedia.org/wiki/File:Crossbox_CG_Architectes.jpg


Off-site manufacturing (2)

- Off-site manufacture can result in:
 - Potential 20–60% reduction in construction programme time
 - Potential 20–40% reduction in construction costs
 - Can help prevent on-site project delays and defect rates
- Off-site manufacture can also help:
 - Improve on-site worker safety
 - Overcome shortage of construction workers (potential reduction of 70% or more in on-site labour)
 - Reduce noise and air pollution at construction sites
 - Reduce goods deliveries and other travel to site

Source: https://commons.wikimedia.org/wiki/File:SafetiBase.jpg


Processes related to construction projects that result in GHG emissions

CO₂e emissions from construction industry

UK total:

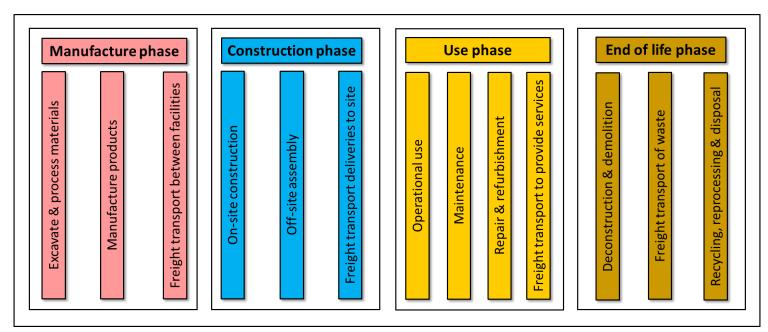
- Construction industry responsible for 10% of CO₂e emissions in UK (not including the manufacture of construction materials and freight transport in construction - ONS, 2021)
- Built environment accounts for approximately 40% of UK energy consumption (HM Government, 2018)
- UK construction CO₂e emissions were approximately 40% higher in 2019 than in 1990
- These emissions can be seen to be linked to the scale of construction activity, falling with the onset of the economic downturn in 2008, and then beginning to rise again from 2014

CO₂e emissions from UK construction industry, 1990-2019

Notes: Does not include GHG emissions from the manufacture of materials and products used in construction or from freight transport in construction. Source: BEIS, 2020

Skanska UK assessment of CO₂e from its construction supply chain including freight transport

- Freight transport operations by Skanska, its subcontractors, waste operators, and freight companies and suppliers delivering materials estimated to account for about 10% of its total CO₂e emissions in 2018
- Plant, equipment and energy used on construction sites by Skanska staff and subcontractors accounted for about 15% of total CO₂e emissions in 2018


CO₂e emissions from Skanska UK construction operations, 2018

Category	Proportion of CO2e emissions
Fuel (project)	6.1%
Fuel (premises)	0.2%
Process and fugitive	0.01%
Electricity (project)	0.6%
Electricity (premises)	0.1%
Imported heat	0.0%
Vehicle fuel	1.5%
Public transport	0.2%
Subcontractors (inc. freight & plant)	13.8%
Waste	1.5%
Materials	75.9%
TOTAL	100%

Source: Skanska UK, 2019

Assessing energy efficiency and CO₂ emissions of buildings

- Assessment of energy and emissions of buildings often only takes account of operational life ('use phase') of building
- Even then, such assessments often omit energy and emissions associated with maintenance and refurbishment during life of building
- Proper consideration must take account of energy used to construct and dispose of it at end of its operational life referred to as 'embodied' energy and emissions
- Better materials and building design improve embodied energy and efficiency

Sustainability targets and plans of the Top 15 UK construction companies (1)

Company	Turnover (£ billion - end Dec 2018)	CO ₂ reduction target fif so, target by when)	Scope 3* CO2 emissions explicitly mentioned?	Waste included? (if so, target by when)	Freight transport mentioned?	Off-site manufacturin g mentioned ?	Procurement of more sustainable materials mentioned?	Supply chain collaboration mentioned?	Publishes detailed environmenta l performance data?	Company	Turnover (£ billion - end Dec 2018)	CO ₂ reduction target (if so, target by when)	Scope 3* CO2 emissions explicitly mentioned?	Waste included? (if so, target by when)	Freight transport mentioned?	Off-site manufacturin g mentioned?	Procurement of more sustainable materials mentioned?	Supply chain collaboration mentioned?	Publishes detailed environmenta l performance data?
		Beyond net zero by		40% reduction by		Yes, reduce on-site				Keller Group Plc	2,224	Intention to reduce but no target	No	Intention to reduce but no target	No	No	No	No	No
Balfour Beatty Plc	7,802	2040	Yes	2030. Net zero waste by 2040	No	activity by 25% by 2025	Yes	Yes	Yes	Laing O'Rourke Plc 1,9	1,986	75% reduction in own CO ₂ by 2030	Yes	Intention to reduce but no target	No	Yes	Yes	Yes	No
Kier Group Plc	4,512	Reduce energy use by 30% by 2030. Net zero CO ₂ by 2045.	Yes	Eliminating avoidable waste by 2035	No	Yes	Yes	Yes	Yes	Skanska UK Plc	1,935	50% reduction in CO ₂ by 2030; net-zero by 2045	Yes	Intention to reduce but no target	No	No	Yes	Yes	Yes
Interserve Plc	3,226	Intention to reduce CO ₂ use but no target	No	Intention to reduce but no target	No	No	Yes	Yes	No	Wates Group Plc	1,601	Net zero CO_2 in own operations by 2025	No	Zero waste by 2025	No	No	No	No	No
Galliford Try Plc	3,132	Intention to reduce energy use but no target	No	Intention to reduce but no target	No	No	Yes	Yes	No	Costain Group Plc	1,489	Net zero CO ₂ by 2035	Yes	Intention to reduce to zero	No	No	Yes	No	Yes
Morgan Sindall Group Plc	2,971	Intention to reduce CO ₂ use but no target	Yes	Intention to reduce but no target	Yes	No	Yes	Yes	Yes	Willmott Dixon Holdings Ltd	1,323	55% reduction in CO_2 by 2030 and net zero CO_2 operations by	Yes	Zero avoidable waste by 2030	No	Yes	Yes	Yes	No
Amey Plc	2,668	Intention to reduce CO ₂ use but no target	No	Intention to reduce but no target	No	Yes	Yes	Yes	No			2040							
Mace Ltd	2,350	Reduce CO ₂ by 60% and eliminate diesel use on sites by 2030	Yes	Reduce by 20% by 2030	Yes	Yes	Yes, reduce embodied carbon by 20% by 2030	Yes	Yes	Multiplex Construction Europe Ltd	1,065	Net zero CO ₂ operations by 2030	Yes	Zero avoidable waste by 2030	Zero transport emissions by 2030	No	Yes, reduce embodied carbon by 50% by 2030	Yes	Yes
ISG Plc	2,238	Operational net zero CO ₂ by 2030	No	Intention to reduce but no target	No	No	Yes	Yes	No		•	emissions are t					•	•••	y

Notes: * - Scope 3 emissions are those that arise in these construction companies' supply chains, arising from construction materials and their transport and the operations of subcontractors.

Source: Construction Index, 2019 – for company turnover data; Amey, 2020; Balfour Beatty, 2021; Galliford Try, 2020, 2021; Keller, 2021; Kier, 2019; Kier, 2020, 2021; Interserve, 2020; Laing O'Rourke, 2021; MACE, 2020, 2021; Morgan Sindall, 2020; 2021; Multiplex Europe, 2021; Skanska UK, 2021; Willmott Dixon, 2020.

Sustainability targets and plans of the Top 15 UK construction companies (2)

- All of the top 15 UK construction companies shown in table on previous slide have at least a stated intention to reduce their CO₂e emissions in their published sustainability plans
- 10 of the 15 have set a specific reduction target and date for their CO_2e emissions.
- 9 of the 15 consider the CO₂e emissions arising in their supply chains from subcontractor activities and the supply of materials as part of these commitments.
- 6 of the 15 have set specific targets and dates for waste reduction
- Vast majority of these companies include mention of collaboration with supply chain partners (including with subcontractors) and the procurement of sustainable building materials as part of their CO₂ emissions reduction strategies
- 6 of the 15 also mention off-site manufacturing
- These major construction companies rarely include freight transport considerations in their sustainability plans concerning CO₂e emissions and environmental impacts, with only one company including a target to eliminate freight transport CO₂ emissions by a specified date
- If goods vehicles are considered by these construction companies it is usually as part of the health and safety strategies in terms of the risks they pose to workers and the general public

Waste management in construction

- Environmental taxes introduced in UK to reduce waste:
 - Landfill Tax (1996) to reduce waste going to landfill per tonne tax for disposing of waste at landfill site
 - Aggregate Levy (2002) tax on primary virgin aggregates (rock, sand and gravel used in construction to encourage shift in demand to recycled and secondary construction material
 - Recycled and secondary aggregates comprised 29% of total aggregates supply in the UK in 2017
 - 92% of non-hazardous construction and demolition waste recovered in UK in 2016
- Construction industry working with UK Government to develop a route map of how to achieve 'zero avoidable waste'
- Focus on better building design and construction practices
- Tackling flytipping

Source: https://commons.wikimedia.org/wiki/File:D%C3%BClmen,_Abbrucharbeiten_e hem._KiK-Geb%C3%A4ude_--_2016_--_1410.jpg

Source: https://commons.wikimedia.org/wiki/File:D%C3%BClmen,_ehem._Diskothek_ %22Fantasy%22_--_2020_--_0183.jpg

Innovation in freight flows to/from construction sites

Goods vehicle issues:

- **Fuel source** •
- Vehicle design •

Planning conditions for site logistics

Logistics operation good practice safety schemes

- CLOCS
- FORS •
- CCS •

Goods vehicle driver training

This Photo by Unknown Author is licensed under CC BY-SA

Construction consolidation

centres

Use of cargo

cycles

Use of non-road modes

Traffic management schemes for goods vehicles

- **On-street waiting areas**
- Holding areas •
- **Timing of deliveries** ۲
- Use of traffic marshalls •
- Providing drivers with site • & route information
- **Delivery Management** • Systems

Traffic management schemes for cyclists and pedestrians

- Keeping cycle lanes operating
- **Checking footways**
- Understanding vulnerable ۲ road users

Use of specialist logistics service provider

Fuel source of goods vehicles & machinery used on construction sites

- Most goods vehicles and construction machinery powered by diesel fuel at present
- Machinery: Start-stop technology shuts down site machinery engines when stationary - reduces fuel consumption by 30%
- In longer term, electricity or hydrogen fuel has potential to remove CO₂ emissions and local air pollution, as well as reducing noise
- In 2021, Mayor of London implemented a Low Emission Zone for Non-Road Mobile Machinery (NRMM) - all construction site engines with a power rating between 37 kW and 560 kW must meet specified local air pollution emissions standards

Source: https://commons.wikimedia.org/wiki/File:In%C3%ADcio_das_obras_da_Ponte _sobre_o_rio_Tiet%C3%AA_da_SP-147_(37712307585).jpg

Source: https://commons.wikimedia.org/wiki/File:ALRO_Heavy_equipment_2.jp

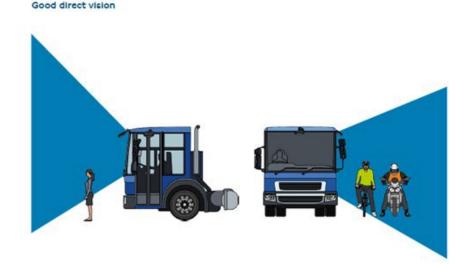
Source: https://commons.wikimedia.org/wiki/Category:Loaders#/media/File:HZM_XC3 0.jpg

Goods vehicle issues – Alternative fuel options for construction vehicles

SANY Group: hydrogen fuel cell powered dump and mixer truck

Komatsu: hydrogen fuel cell powered dump truck

Volvo Trucks: battery electric mixer and FMX with hooklift truck



CAT Trolley Assist: diesel –electric overhead catenary mining trucks

Source: Corporate websites

Vehicle design: Direct Vision Standards in London

- Construction vehicles over-represented in fatalities with cyclists in London
- Driver visibility from construction vehicle cabs (high-up) found to be poor

Poor direct vision

<complex-block>

Category	Description	
A	Zero star eye point	
в	One star eye point	
с	Three star eye point	
D	Five star eye point	

HGV star rating boundaries

Source: Transport for London, 2019

Traffic Marshalls at construction sites

- Employed at large construction sites and roadworks to help ensure safety for workers and general public
- Three types of Traffic Marshall and duties (Davies, 2020):
 - those at interface between construction site and public road network, controlling and managing vehicles entering and leaving site
 - those within construction site to ensure the safe movement of plant and vehicles
 - those who manage traffic at temporary streetworks and roadworks

Providing drivers with site & delivery information

- Make drivers aware of construction site and its delivery and unloading arrangements in advance
- Can include details of approach to site and footage of gate / entry point, one way systems, holding areas, and pedestrian crossing locations
- Various forms of media used:
 - Printed booklets
 - Videos
 - Digital information
 - Training session
 - Site induction

Delivery Management Systems (DMS)

- DMS used to plan and manage vehicles making deliveries to construction site
- Notifies contractors of vehicle arrival and help control and coordinate on-site activity
- Help ensure vehicles operate safety at site
- Most basic form of DMS could be paper- or spreadsheet-based
- For larger sites, usually internet-based, fullycomputerised software allowing all contractors and suppliers remote access containing:
 - delivery booking diary with delivery dates, times, locations and arrangements,
 - vehicle tracking and tracing to and from site as well as on-site
 - can be used in conjunction with off-street holding areas and on-street waiting areas
 - software contains planned and historical data

Traffic management schemes for goods vehicles

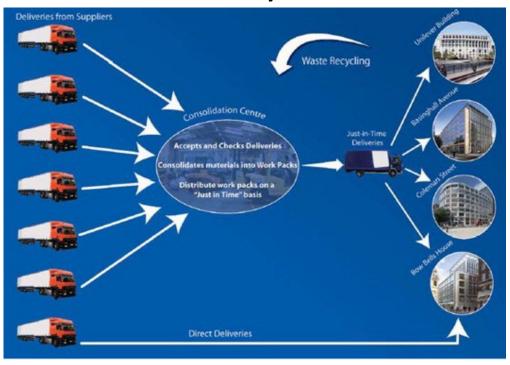
Unmanaged vehicle arrivals

- Problematic as can cause:
 - vehicles queuing on-street
 - vehicles circulating in the area while awaiting entry to site
 - vehicles reversing and turning

On-street waiting area

- If construction site road has capacity (more than one lane and enough width):
 - May be possible to use nearside lane for vehicle waiting
 - Waiting lane managed by personnel from construction site

Off-street holding area



- Where space is available:
 - off-street 'holdings areas' close to / at construction site/s where vehicles wait
 - drivers can take rest breaks and be provided with refreshments
 - then called to travel to site when space is available and site staff ready
- As suitable space is limited, can be shared by several construction sites

Construction consolidation centres (CCCs)

- Goods delivered to CCCs instead of direct to construction site
- Then delivered on to site as required in well-loaded, planned vehicle trips
- Objectives:
- Reduces total distance travelled by poorly-loaded goods vehicles making deliveries to construction sites in urban areas
- Reduces vehicle queuing and traffic impacts at/near site
- Packaging and waste can be collected from site
- Storage location for materials and equipment: frees up space on site and reduces theft and waste
- Offers opportunity to operate cleaner goods vehicles for this short-distance delivery from CCC to site

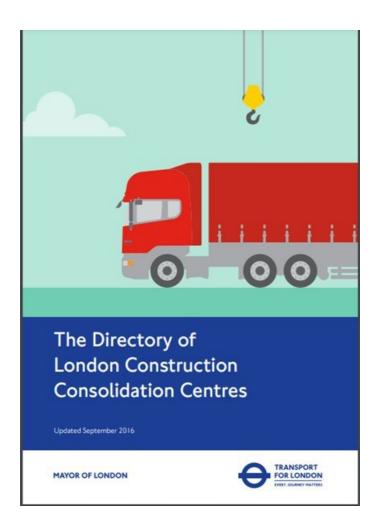
London CCC operation to four construction sites in city centre

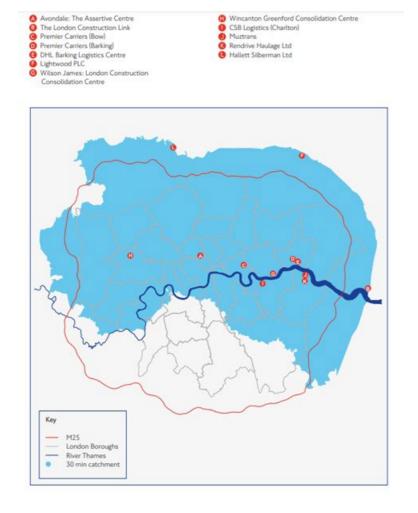
- Trial from 2005-2007
- 5,000 sq. m. facility located 5 km from sites
- 10 days of storage space
- Fleet of 6 rigid goods vehicles

London CCC results

Target	Achieved
40%	60-70% of journeys via LCCC 40% of journeys to construction site
30-60 minutes	120 minutes
97%	97%
	40% 30-60 minutes

Plus, labour force productivity on construction sites increased by up to 25 minutes per person-day


Source: Transport for London, 2008


Hammarby construction site and CCC in Stockholm

- 8000 new apartments in busy location
- CCC close to construction site
- 3,500 sq. m. of storage indoors and a further 4,000 sq. m. outside *Source: Ottoson, 2005*

- Results:
 - reduced vehicle activity to site (down by 60%)
 - reduced vehicle queuing times at site (down by 90%)
 - vehicle load factors to site increased from 50% to 85%
 - helped on-time completion of project
 - reduced theft and waste

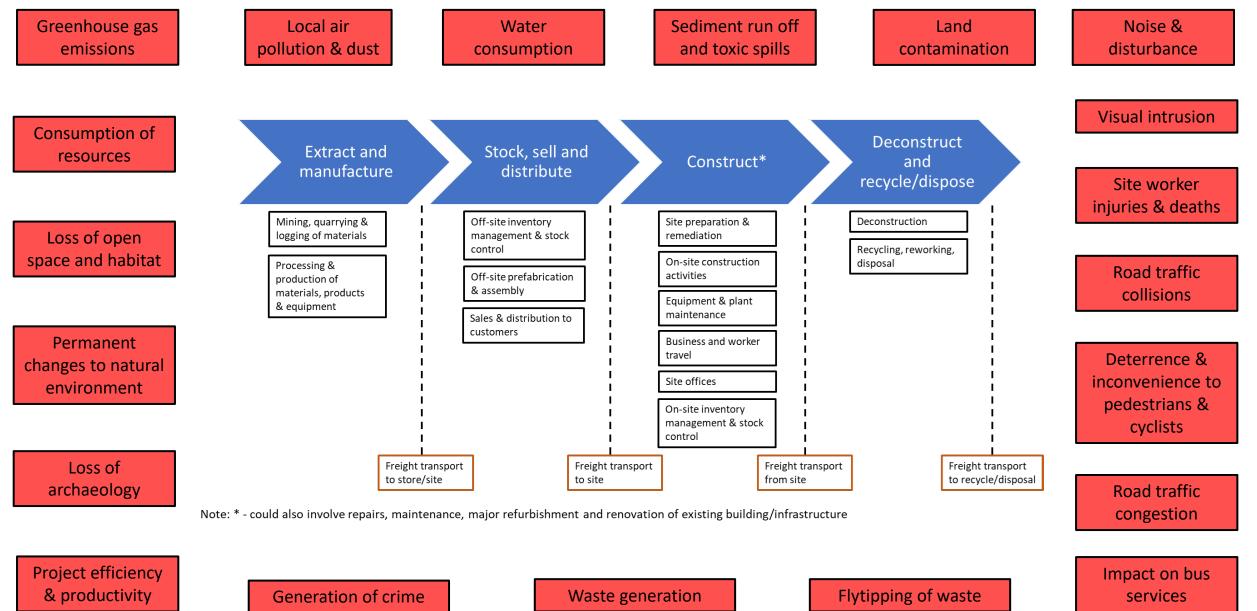
Directory of London CCCs

Planning conditions for site logistics

- Depending on size of construction project, various documents required by planning authorities as part of planning application that relate to transport and logistics arrangements for site
- Construction Logistics Plans (CLPs) logistics impacts and how these will be minimised:
 - site opening times and entry and exit points
 - details of quantity of construction traffic that will be generated
 - routes these vehicles will use to avoid sensitive areas
 - goods vehicle booking and scheduling arrangements
 - traffic management and road safety approaches to be used
 - details of the use of more sustainable, non-road modes where feasible

Non-road modes to/from construction site

- Non-road transport modes have been extensively used on some large public sector construction projects where site are rail- or water-connected
- Rail freight:
 - Olympic Park in London for 2012 Games (aggregates and tiles)
 - HS2 rail line 10 million tonnes of aggregates to construction sites
- Water:
 - Spoil from the tunnelling work for Crossrail (5 million tonnes) and the Northern Line extension at Battersea (850,000 tonnes)
 - Thames Tideway sewer project 5 million tonnes of spoil plus inbound materials
- Research indicates lack of transport infrastructure and logistics operations barriers greatest, followed by financial barriers (steer davis gleave, 2017)
- Lack of awareness and information of non-road mode potential


Source: https://commons.wikimedia.org/wiki/File:59_201_%26_66_009_Acton_Yard.jp

Source: https://commons.wikimedia.org/wiki/File:An_afternoon_at_Stenson_Junction _-_8807208219.jpg

Supply chain activities for a construction project that can result in economic, social and environmental impacts

Categories of construction logistics sustainability measures and their potential impacts

Categories of measures		Impacts										
	GHG emissions	Road vehicle kms travelled	Goods vehicle journeys to/from construction sites	Deaths and injuries	Disruption and fear for road/pavement users	AQ & other local environmental impacts	Noise, disturbance and other social impacts	Site productivity/efficiency & construction cost				
Materials and supply chain / logistics related measures												
Building materials production technology to reduce CO ₂ emissions	✓					\checkmark		✓				
Off-site manufacturing	✓	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark				
Supply chain working practices	✓	\checkmark	✓	\checkmark		\checkmark	✓	\checkmark				
Site layout and logistics management	~	\checkmark	✓	\checkmark	\checkmark	~	\checkmark	\checkmark				
Plant & equipment used on site	✓			\checkmark	~	\checkmark	\checkmark	✓				
On-site dust and pollutant management						\checkmark						
Waste management	\checkmark	\checkmark	✓			✓		\checkmark				
Freight transport related measures												
Vehicle fuel source / engine standards	✓					\checkmark	\checkmark					
Vehicle design	✓			✓	\checkmark	✓	✓					
Vehicle maintenance	✓			\checkmark		~	\checkmark					
Vehicle carrying capacity	~	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	\checkmark				
Vehicle utilisation on journeys	✓	\checkmark	~			✓		✓				
Driver training and fleet management	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				

Categories of measures		Impacts										
	GHG emissions	Road vehicle kms travelled	Goods vehicle journeys to/from construction sites	Deaths and injuries	Deaths and injuries Disruption and fear for road/pavement users		Noise, disturbance and other social impacts	Site productivity/efficiency & construction cost				
Materials and supply chain / logistics related measures												
Vehicle routeing for journey co-ordination and arrival time	\checkmark	~	✓	~	~	✓	✓	✓				
Use of non-road modes	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
Use of non-motorised road vehicles (e.g. cargo cycles)	✓	✓	✓	~	✓	✓	✓	~				
Appreciating others' perspectives				\checkmark	\checkmark							
Traffic management schemes: goods vehicles	✓	~	~	~	~	~	~	~				
Traffic management schemes: cyclists & pedestrians				~	~							
Planning conditions for site traffic & logistics	\checkmark			~	~	✓	✓	✓				
Voluntary transport and logistics schemes – operation accreditation schemes: CLOCS & FORS	~			~	~	~	~					
Voluntary transport and logistics schemes- Good practice sharing: CCS and Safequarry.com	✓			~	~	~	√					
Road- and street works management	✓			✓	✓	✓	✓	✓				

Source: authors' own analysis from evidence review.

Categories of construction logistics measures and stakeholder(s) best placed to implement them

- Table shows stakeholders in construction supply chain best placed to take lead in implementation & requirements of construction logistics sustainability measures
- Actions available to national, international & local government & planning authorities fall into two categories: mandatory & advisory
- Mandatory actions include national & international regulatory requirements concerning goods vehicle engine emissions standards, national & local vehicle construction requirements to enhance safety, & local requirements concerning transport & traffic management arrangements (such as vehicle routes & times of operation) that must be put in place for construction site or quarry as part of planning conditions
- Advisory actions include encouraging construction companies to: join CLOCS, fleet operators joining FORS, adopt driver training & use telematics & fleet management systems, & use non-road modes where possible

Source: authors' own analysis from evidence review

Categories of measures	Stakeholders								
	Client / designer of construction project	Construction companies	Suppliers of materials/products	Freight and waste transport companies	National/international government	Local government / planning authority			
Materials and supply chain / logistics related measures									
Building materials production technology to reduce CO ₂ emissions	~	✓	✓		✓	✓			
Off-site manufacturing	✓	✓							
Supply chain working practices	✓	✓							
Site layout and logistics management	✓	✓							
Plant & equipment used on site	✓	\checkmark			\checkmark	\checkmark			
On-site dust and pollutant management	✓	\checkmark				\checkmark			
Waste management	✓	✓		✓	✓	\checkmark			
Freight transport related measures									
Vehicle fuel source / engine standards	✓	✓		✓	✓	✓			
Vehicle design	✓	✓		✓		✓			
Vehicle maintenance	✓	\checkmark		✓	✓				
Vehicle carrying capacity		✓		✓					
Vehicle utilisation on journeys	✓	\checkmark							
Vehicle routeing for journey co-ordination and arrival time		\checkmark		\checkmark					
Use of non-road modes	✓	\checkmark				✓			
Use of non-motorised road vehicles (e.g. cargo cycles)	✓	✓				✓			
Driver training and fleet management		\checkmark		\checkmark					
Appreciating others' perspectives		\checkmark		✓		\checkmark			
Traffic management schemes: goods vehicles	✓	\checkmark				✓			
Traffic management schemes: cyclists & pedestrians	✓	\checkmark				\checkmark			
Planning conditions for site traffic & logistics					✓	\checkmark			
Voluntary transport and logistics schemes – operation accreditation schemes: CLOCS & FORS	~	\checkmark		\checkmark		\checkmark			
Voluntary transport and logistics schemes- Good practice sharing: CCS and Safequarry.com	✓	✓	✓	~	✓	✓			
Road- and street works management		✓				✓			