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ABSTRACT

Context. Precision radial velocity (RV) measurements continue to be a key tool for detecting and characterising extrasolar planets.
While instrumental precision keeps improving, stellar activity remains a barrier to obtaining reliable measurements below 1–2 m s−1

accuracy.
Aims. Using simulations and real data, we investigate the capabilities of a deep neural network approach to producing activity-free
Doppler measurements of stars.
Methods. As case studies we used observations of two known stars, ϵ Eridani and AU Microscopii, both of which have clear signals of
activity-induced Doppler variability. Synthetic observations using the starsim code were generated for the observables (inputs) and
the resulting Doppler signal (labels), and then they were used to train a deep neural network algorithm to predict Doppler corrections.
We identified a relatively simple architecture, consisting of convolutional layers followed by fully connected layers, that is adequate for
the task. The indices investigated are mean line-profile parameters (width, bisector, and contrast) and multi-band photometry.
Results. We demonstrate that the RV-independent approach can drastically reduce spurious Doppler variability from known physical
effects, such as spots, rotation, and convective blueshift. We identify the combinations of activity indices with the most predictive
power. When applied to real observations, we observe a good match of the correction with the observed variability, but we also find
that the noise reduction is not as good as in the simulations, probably due to a lack of detail in the simulated physics.
Conclusions. We demonstrate that a model-driven machine learning approach is sufficient to clean Doppler signals from activity-
induced variability for well-known physical effects. There are dozens of known activity-related observables whose inversion power
remains unexplored, indicating that the use of additional indicators, more complete models, and more observations with optimised
sampling strategies can lead to significant improvements in our detrending capabilities for new and existing datasets.

Key words. planetary systems – techniques: radial velocities – methods: data analysis – stars: activity – stars: chromospheres

1. Introduction

The majority of exoplanet discoveries in the last two decades
have been thanks to two methods. One is the transit method,
monitoring tens of thousands of stars simultaneously; it is most
effectively done from space with instruments such as Kepler
(Borucki et al. 2010) and the Transiting Exoplanet Survey Satel-
lite (TESS; Ricker et al. 2015). The other is the Doppler tech-
nique, which is conducted using high-resolution spectrographs
such as the HIgh Resolution Échelle Spectrograph (HIRES;
Vogt et al. 1994), the High Accuracy Radial velocity Planet
Searcher (HARPS; Mayor et al. 2003), HARPS-N (Cosentino
et al. 2012), the Calar Alto high-Resolution search for M dwarfs
with Exoearths with Near-infrared and optical Échelle Spectro-
graph (CARMENES; Quirrenbach et al. 2020), and the Échelle
SPectrograph for Rocky Exoplanets and Stable Spectroscopic
Observations (ESPRESSO; Pepe et al. 2021). While the field of

exoplanet science is now progressing from the mere discovery of
planetary companions to the analysis of atmospheres of already
known transiting planets, these surveys are still collecting new
data and providing complementary insight into planet forma-
tion and evolution. Significant challenges remain in the detection
of small terrestrial planets around Sun-like stars, mainly due to
spurious effects caused by stellar variability.

There are large datasets, collected from both photometric and
spectroscopic observations, that may have the precision to detect
objects of high interest but remain unexploited. In particular,
radial velocities (RVs) are extracted from high-resolution spectra
by measuring the wavelength shift of the different lines present
in the spectra compared to a laboratory reference standard or to
a template created from the stellar spectra themselves. Shifts can
be caused by the motion of the stellar centre of mass caused by
a planet, or they can be induced by the stellar activity. Various
effects influence these measurements. Dumusque et al. (2012)

A118, page 1 of 16
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

https://www.aanda.org
https://doi.org/10.1051/0004-6361/202245092
https://orcid.org/0000-0001-7098-0372
mailto:perger@ice.cat
https://www.edpsciences.org/en/
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org


A&A 672, A118 (2023)

give a comprehensive overview of the topic. The effects intro-
duced by stellar surface phenomena, such as dark spots or bright
faculae, induce apparent RV wobbles with typical timescales
of rotation periods of stars, active region lifetimes, and stellar
activity cycles, making it extremely difficult to disentangle such
effects from true Doppler signals from planets, which tend to
have comparable orbital periods. Most effective inversion strate-
gies involve the joint fit of the so-called activity indices with the
RVs using a handful of shared parameters in Gaussian processes
(GPs), as discussed in Suárez Mascareño et al. (2015), which still
has the drawback of reducing the information content of the time
series, and potentially filtering out potential signals of interest.

Currently RV precisions of 1 m s−1 are regularly achieved.
But this precision rarely translates into accurate measurements
of true stellar motion due to the effects of stellar activity. This
spurious variability is estimated to be about 2–4 m s−1 (Perger
et al. 2017) for quiet old stars and as high as hundreds of
m s−1 for young and active stars. To account for these effects,
many empirical techniques have been proposed and applied, but
with limited success. This includes: a simple fit of one or two
sinusoids that account for the stellar activity (often called pre-
whitening; Suárez Mascareño et al. 2015); in-depth analysis of
additional activity indices, photometry, and their correlations
with observed RV signals; and the application of more sophisti-
cated noise models in Bayesian frameworks, such as GPs (Perger
et al. 2019, 2021). Currently, as for many fields in astrophysics
and science in general, machine learning techniques are being
considered to solve similar problems. Shallue & Vanderburg
(2018) and Dattilo et al. (2019) developed and applied a method
for classifying potential planet signals using machine learning
algorithms in the Kepler/K2 data. de Beurs et al. (2022), on
the other hand, used cross-correlation functions (CCFs) cre-
ated by the binary-mask technique used to extract the RVs from
HARPS-N spectra of the Sun (Collier Cameron et al. 2019)
and from ‘Spot Oscillation And Planet’ (SOAP) 2.0 (Dumusque
et al. 2014) synthetic data and then trained a neural network
(NN) algorithm to distinguish Doppler shifts due to compan-
ions from activity-induced shifts based on the information in the
cross-correlation profile.

In this article, we investigate whether a machine learning
framework trained using synthetic (but realistic and complex)
observables is able to produce usable RV corrections without
using the information about the Doppler shifts themselves. We
present the setup and assumptions of our study in Sect. 2, includ-
ing the different activity indices studied, two stars used as study
cases, the models and software used to generate synthetic time
series (starsim), and the methodologies and machine learning
framework that we have developed to address the problem. The
results and discussions are given in Sect. 3, and we provide the
conclusions from our study in Sect. 4.

2. Setup

2.1. Tracers for stellar activity

In the Doppler technique, the stellar spectrum is measured
with high spectral resolution (R > 50 000). The Doppler shift
of the spectrum is then obtained by cross-correlating the
observed spectrum with a mask (cross-correlation technique as
in Cosentino et al. 2012; Lafarga et al. 2020) or a template built
from the same observations (Anglada-Escudé & Butler 2012;
Zechmeister et al. 2018). The high resolution of the spectra
also allows for simultaneous measurement of spectral character-
istics other than the RV. In addition to this, contemporaneous

photometric observations can be used to infer the coverage of
spots on the star, putting constraints on the expected RV vari-
ability. When possible, this photometric monitoring is done in
various filter bands (or colours) in order to determine not only
the spot coverage but also properties of the spots such as their
effective temperatures (Rosich et al. 2020).

The process of measuring precision Doppler shifts with the
cross-correlation method consists of consolidating the infor-
mation of hundreds (thousands) of spectral lines in a cross-
correlation profile obtained by performing the correlation of
the observed spectra with a predefined weighted mask (list of
wavelengths where spectral lines should appear at zero Doppler
shift). The resulting CCF profile is equivalent to the mean
shape of the spectral lines for each observation. The compu-
tation of this CCF profile is typically produced by instrument
pipelines such as the data reduction systems (DRS) of the instru-
ments HARPS, HARPS-N, and ESPRESSO, and the raccoon
code (Radial velocities and Activity indicators from Cross-
COrrelatiON with masks; Lafarga et al. 2020) developed in
the context of the CARMENES project. In this study we use
raccoon to obtain Doppler shifts and precision measurements
of the shape parameters of the CCF.

The RV is measured by fitting a Gaussian function and mea-
suring its mean. Other useful measurements can be obtained
from the fitted Gaussian profile, such as the full width at half
maximum (FWHM; in m s−1) and the relative depth – or contrast
– relative to the continuum (CON; in %). As an indicator of pos-
sible changes in the symmetry of the CCF profile, the bisector
inverse slope (BIS; in m s−1) is usually measured. As abundantly
discussed in the literature, all these indices (FWHM, CON, and
BIS, among others) are known to be affected by the presence
of spots and other physical effects that are also responsible for
the observed spurious Doppler shifts. Therefore, the informa-
tion needed to produce a clean RV measurement could be, in
principle, available in the same observation through the indices.
This production of clean RVs from other spectroscopic indices
(‘inversion’ hereafter) has been the topic of many research efforts
during the last decade, which have achieved only partial success.

2.2. Observational data

In order to base our experiments with synthetic data on real-
istic observations, we use measurements of two well-studied
and representative stars: the very nearby K2-dwarf εEridani
(Gliese 144; εEri hereafter), and the very young M1-dwarf
AU Microscopii (Gliese 803; AU Mic hereafter). They are both
quite active and show strong stellar contributions to the RVs as
well as to all CCF indices. In Table 1, we provide the parame-
ters of these test stars as found in the literature. Both datasets
were chosen for having high signal to noise spectra (so observa-
tions would not be limited by photon noise), and their observing
cadence was quite regular over a relatively short time interval
(2–3 months).

The star εEri is young, nearby, and has a rotation period of
about 11.2 days (Fröhlich 2007). It has a debris disk inclined by
30 ◦ (Quillen & Thorndike 2002) with respect to the sky plane,
and at least one planetary companion of at least 0.7 MJup in a 7-yr
period orbit (Campbell et al. 1988) causing a Doppler signal with
a RV semi-amplitude of about 11 m s−1. For this study, we use
204 publicly available spectra obtained with HARPS (3750 Å <
λ < 6900 Å, R = 115 000) obtained on 66 quasi-consecutive
nights between 5 October 2019 (BJD = 2458762 days) and
1 January 2020 (BJD = 2458850 days) with a total baseline
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Table 1. Literature and starsim parameters for εEridani, and AU Microscopii, and their planetary companions.

Parameter Unit εEridani AU Microscopii

Literature value Ref. starsim Literature value Ref. starsim

Right ascension RA h:m:s 03:32:55.84±0.12 (1) ... 20:45:09.532±0.017 (1) ...
Declination Dec ◦:′:′′ −09:27:29.739±0.093 (1) ... −31:20:27.238±0.011 (1) ...
Age Myr 400–800 (2) ... 22±3 (4) ...
Distance pc 3.216±0.002 (1) ... 39.714±0.002 (1) ...
µα mas a−1 −974.76±0.16 (1) ... 281.319±0.022 (1) ...
µδ mas a−1 20.88±0.12 (1) ... −360.148±0.019 (1) ...
v sin i km s−1 2.4±0.5 (3) ... 9.3±1.2 (5) ...
Magnitude G mag 3.4658±0.0031 (1) ... 7.8434±0.0029 (1) ...

Spectral type SpT ... K2.0V (6) HARPS K5 mask M1.0V (16) CARMENES M1.5 mask
Stellar mass M∗v M⊙ 0.82±0.05 (7) 0.8–0.9 0.50±0.03 (4) 0.45–0.55

0.847±0.042 (8)
Stellar radius R∗ R⊙ 0.74±0.01 (7) 0.65–0.75 0.75±0.03 (4) 0.7–0.8

0.702±0.035 (8)
Effective temperature Teff K 5076±30 (9) 4900–5300 3700±100 (4) 3550–3850
Surface gravity log g dex 4.30±0.08 (10) 4.5 (fixed) 4.39±0.03 (1) 4.5 (fixed)
Metallicity [Fe/H] ... −0.13±0.04 (11) 0.0 (fixed) −0.12±0.11 (17) 0.0 (fixed)
Inclination i ◦ 60 (12) 30–90 90 (18) 60–90
Rotation period Prot day 11.2 (3) 11–12.5 4.863±0.010 (19) 4.8–4.9
Convective blueshift CB(∗) CB⊙ ∼0.3 (14,15) 0.0–0.5 ∼0.0 (14,15) 0.0–0.5
Differential rotation dΩ(∗∗) dΩ⊙ 1.3 (3) 0.1–4 3.0 (20) 0.5–5
Spot temperature difference ∆T K 1080±670 (13) 250–1000 660±570 (13) 250–1000

Minimum mass M sin i M⊕ 210 (21) ... 20; 11 (22) ...
Orbital period day 2671 (21) ... 8.46; 18.86 (22) ...
RV semi-amplitude m s−1 ∼11 ... ... ∼6; ∼8 ... ...

Notes. (∗)In units of the solar convective blueshift CB⊙ ∼ −325 m s−1 (e.g. Löhner-Böttcher et al. 2018; Stief et al. 2019), (∗∗)in units of the solar
differential rotation dΩ⊙ = 3.15 ◦ day−1, assuming P⊙,min ∼ 24.47 d, P⊙,max ∼ 31.14 days, and dΩ⊙ = 360 ◦ (P−1

⊙,min − P−1
⊙,max) (Beck 2000).

References. (1)Gaia Collaboration (2020), (2)Janson et al. (2015), (3)Fröhlich (2007), (4)Plavchan et al. (2020), (5)Torres et al. (2006), (6)Keenan &
McNeil (1989), (7)Baines & Armstrong (2012), (8)Kervella et al. (2019), (9)Heiter et al. (2015), (10)Gonzalez et al. (2010), (11)Santos et al. (2004),
(12)Quillen & Thorndike (2002) (13)following Herbst et al. (2021), (14)Liebing et al. (2021), (15)Meunier et al. (2016), (16)Keenan & McNeil (1989),
(17)Gaidos et al. (2014), (18)Kalas et al. (2005) (19)Krist et al. (2005), (20)Klein et al. (2021), (21)Llop-Sayson et al. (2021), (22)Zicher et al. (2022).

of 88 days1. All observations within a night were consolidated
in night average values to produce the 66 epochs that we use
throughout the paper.

AU Mic, on the other hand, is a young star located at a dis-
tance of 9.71 pc (Plavchan et al. 2020). It rotates with a period of
4.9 days (Krist et al. 2005) and shows strong evidence of differ-
ential rotation (dΩ = 9.57 ± 0.52 ◦ day−1; Klein et al. 2021). Its
debris disk is seen edge-on (Kalas et al. 2005). Since planets are
supposed to form in such disks, it could host transiting planets
as well. Indeed, Plavchan et al. (2020) and follow-up publica-
tions reported the detection of (at least) two transiting planetary
companions with orbital periods of 8.5 days, and 18.9 days, and
minimum masses of about 20 and 11 M⊕, respectively, induc-
ing possible RV semi-amplitudes of 6 and 8 m s−1. In this study
we use 75 CARMENES VIS spectra (5 200 Å < λ < 9 600 Å,
R = 94 600) obtained for this star (available from CARMENES
DR1, Ribas et al. 2023), which were observed quite regularly on
37 nights from 14 July 2019 (BJD = 2458679 d) to 9 October
2019 (BJD = 2458766 d) with a total baseline of 87 days. After

1 Programme IDs: 0104.C-0863, 072.C-0488, 072.C-0513,
073.C-0784, 074.C-0012, 076.C-0878, 077.C-0530, 078.C-0833,
079.C-0681, 192.C-0852, 60.A-9036 secured as part of the Red Dots
ESO programme.

consolidating the data in night averages, we reach an average
time spacing of 2.5 days between consecutive observations.

Our early experiments were run using DRS instrument
pipeline data-products for the real data, and raccoon gener-
ated measurements on synthetic data. The mismatches were very
obvious in all cases and no correction close to what was observed
could be obtained from them. This indicated that a high level of
consistency was needed in all the algorithms producing observ-
ables in the simulations and the real data-products. In order to
be fully consistent, we use the raccoon code to retrieve RV,
FWHM, BIS, and CON from the CCF using the binary masks
as indicated in Table 1, and then adapted the codes in starsim
to be fully consistent with them.

For the analyses that follow, it is important to separate what
we consider random errors (photon noise, instrumental and other
effects generating uncorrelated errors) from activity-induced
variability (which has timescales of days, due to the rotation
period and its harmonics), especially for the real datasets. To
obtain an estimate of the random errors for all the real time
series (RVs, but also the activity indices), we performed a
pre-whitening procedure using sequential fitting of sinusoids
using generalised Lomb–Scargle periodograms (Zechmeister &
Kürster 2009). When there is no signal left below a 1% false
alarm probability (FAP), we assumed that the remaining vari-
ability are these random errors, although they might contain
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Table 2. Time-series data characteristics of 66 nightly binned data points of εEri using HARPS (top) and of 37 nightly binned data points from
AU Mic using CARMENES VIS (bottom), both extracted by raccoon.

Data Unit Mean RMS Uncertainty RRE Significant periods
(unit) (unit) (unit) (%) (days)

RV m s−1 16453.68 4.36 1.19 39 12.44; 5.56
BIS m s−1 32.48 5.56 2.44 17 12.06; 5.56; 10.60
FWHM m s−1 6463.83 12.01 5.72 23 11.81; 5.54; 175.43; 12.81; 10.32
CON % 40.739 0.058 0.029 25 12.18; 5.54; 175.43; 10.63; 12.62

RV m s−1 −5064.84 132.26 6.76 25 4.90; 2.59
BIS m s−1 −61.75 172.04 17.11 28 4.90; 37.72; 2.59; 5.74; 2.45
FWHM m s−1 12380.18 202.05 54.23 58 4.89; 4.19
CON(∗) % 10.013 0.204 0.035 71 2.58

Notes. The RRE is the ratio between the original RMS versus the resulting one obtained after applying pre-whitening (i.e. until no signal with
FAP< 1% is present in the data), (∗): statistics without outlier.

Fig. 1. Nightly binned time series (left panels) and their periodograms (right panels) of εEri extracted with raccoon. From top to bottom they
are RV, BIS, FWHM, and CON. Dashed blue horizontal lines indicate FAP levels of 0.1, 1, and 10%, and the vertical orange lines indicate the
frequency of the rotation period of 11.2 days and its second harmonic.

some correlated stellar jitter below the noise level. The standard
deviation of these random errors in all the series will later be
used to simulate synthetic datasets with realistic observational
noise. Table 2 shows the residual RMS from this procedure,
and the ratio between the original RMS and the residual RMS
after the pre-whitening process, expressed as a percentage. This
ratio between the residual RMS compared to the original RMS
expressed as a percentile is what we call the relative residual
error (RRE), and it will be used in many instances throughout
the paper for different time series. We used this value instead
because we compared our results to the relative RV change and
not to its absolute true value (which would be the accuracy). A
depiction of the time series (RV and spectroscopic indices) as
obtained from the observations is shown in Figs. 1 (εEri) and 2
(AU Mic). The data in the figures can be found in Tables B.1
and B.2.

The signal of the stellar rotation period is present in all
time series of εEri. Probably due to the differential rotation of

the star, the rotation period as given in the literature manifests
itself more strongly in its second harmonic at 5.6 days. By using
the pre-whitening procedure described earlier, we achieve RREs
between 17% and 25% in all indices.

For AU Mic we find the rotation period in all the datasets
except the CON series. As also discussed later, the measurement
of the CON series might not be useful for this kind of target
and study. For the other indices the achieved RRE is about 30%
to 60%.

Next we perform a quick analysis applying a GP using
the george package (Ambikasaran et al. 2015) and the quasi-
periodic and cosine kernel (Perger et al. 2021), and explor-
ing the parameter space with a Monte Carlo Markov chain
(MCMC) using emcee (Foreman-Mackey et al. 2013). We show
in Fig. 3 the posterior distributions for the period hyperparame-
ters PεEri = 11.50+0.30

−0.22 days and PAU Mic = 4.87 ± 0.01 days, and
λ = 44+19

−10 days and 130+41
−46 days, where λ is the characteristic

decay time of the correlations (related to the average time it
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Fig. 2. Nightly binned time series (left panels) and their periodograms (right panels) of AU Mic extracted with raccoon. From top to bottom they
are RV, BIS, FWHM, and CON. For the CON, one obvious outlier is not in this diagram. Dashed blue horizontal lines indicate FAP levels of 0.1,
1, and 10%, and the vertical orange lines indicate the frequency of the rotation period of 4.9 days and its second harmonic. The vertical green lines
mark the periods of the two planetary companions.

Fig. 3. Histogram of the MCMC posterior distributions for hyperpa-
rameters P (left panels) and λ (right panels) of GPs applied to εEri (top
panels) and AU Mic (bottom panels) RV data using the quasi-periodic
and cosine kernel.

takes for a spot to change substantially in size or location, or
even disappear) for the RVs of εEriand AU Mic, respectively.

2.3. Synthetic data

We used the starsim code (Herrero et al. 2016) to model time-
series data for a spotted rotating star with the characteristics of
our two tests stars, εEri and AU Mic. The current version of
starsim2 (Baroch et al., in prep.) is able to produce synthetic
photometry for a predefined filter from low-resolution model
spectra for our study, we produce light curves in the Johnson
V , R, and I filters. CCFs at each observation epoch are also
generated from high-resolution Phoenix spectra (Husser et al.
2013) of a predefined wavelength range, from which RVs, and the
CCF activity indices are then measured. The calculations make
use of important stellar parameters, geometric effects, and of
the distribution of magnetically active regions (spots hereafter)
on the surface of the star. One simulation consists of a list of
epochs and their corresponding RV, FWHM, BIS, CON, and V ,
B, and I photometric bands, all assumed to be simultaneous and
without errors.

Preliminary experiments (not described here for brevity)
showed that constraining the simulations to the known physical
parameters of the star is rather important to improve the inversion
capabilities of the algorithms used. This makes sense as NNs are
known to be good tools for interpolation as long as the training
set densely populates the region of the parameter space of inter-
est. The priors of the most important stellar variables as adopted
for the creation of the synthetic datasets of the two test stars are
shown in Table 1. For the mass, radius, effective temperature,
inclination of the rotation axes, and rotation period, we used
the published values in their error limits. In the case of εEri,
we adapted a range for the rotation period in order to include
the larger periodicities found by our pre-whitening, as shown in
Table 2. We chose further fixed values for metallicity and sur-
face gravity. In the algorithm, the convective blueshift is given in
units of the solar shift of −325 m s−1 (e.g. Löhner-Böttcher et al.
2018; Stief et al. 2019), and the differential rotation in units of

2 https://github.com/dbarochlopez/starsim
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the solar value dΩ⊙ = 3.15 ◦ day−1 (following Beck 2000). Fur-
thermore, the binary masks of the corresponding stellar type and
wavelength range were used to calculate the CCFs. In each simu-
lation, the physical properties of the star are randomly initialised
within these priors, thus implicitly accounting for the uncertainty
in the basic properties of the star at simulation level (training and
test sets).

With starsim, it is also required to specify the distribution
of the spots on the stellar surface (assumed circular) in what we
call a spot map. The contribution of a spot in a simulation is
taken into account when producing a CCF integrated over the
stellar disk (spots have a different CCF than the photosphere
because of lower temperature and different spectral features).
For the spots we also use Phoenix spectra of lower temperature
as given by the ∆T parameter in Table 1, and a modified bisec-
tor following what is observed on the Sun (Herrero et al. 2016).
The priors of these parameter are specified by following empir-
ical studies on a variety of stellar types in Herbst et al. (2021).
In the input spot map each spot is described by five parameters:
time of appearance, lifetime, longitude, co-latitude, and radius.
Taking into account that the contribution from stellar activity is
clearly visible in all sets at all times (no flat regions in the obser-
vational data), and to match both absolute value and variation of
each time series, we use randomly 25 to 40 dark spots to ensure
that at least one to two spots are visible at any observing time.
All spot map parameters are also generated randomly following
a uniform distribution: radii (2.5–4◦), lifetime τ (5–100 days),
time of appearance (t0 − τ to t0 + 100 days), co-latitude (0–180◦),
and longitude (0–360◦). The values adopted try to encompass
the intervals of the most likely values from these parameters
following the GP analysis from the previous section.

To investigate the importance of sampling in the ability to
correct for stellar activity, we generated simulations following
five different time samplings with starsim: (i) uniform, con-
sisting of 100 data points uniformly distributed over 100 days;
(ii) random1, consisting of 100 data points randomly distributed
over the same time baseline; (iii) gap1, consisting of 60 randomly
distributed data points from time 0 day to 50 days and 40 data
points from time 70 days to 100 days, thereby creating an artifi-
cial visibility gap as we often encounter it in actual astronomical
campaigns; (iv) random2, which uses 100 randomly chosen out
of the 300 data points in uniform, random1, and gap1; and (v)
gap2, which has 40 data points in the first 30 days, and 60 in
the last 45 days of the 300 data points, leaving open another
gap. The random2 and gap2 time samplings were generated from
subsets of the previous samplings to save simulation time (most
computationally intensive step as discussed later). The 100 days
time interval was chosen to cover the rotation period of both
test stars a sufficient number of times. We then generate 600 000
and 1 000 000 simulations for εEri and AU Mic, respectively, for
each of these time samplings.

We checked for possible linear relations between the syn-
thetic RVs and the activity indices. Applying those relations, we
reach RREs for V , I, BIS, FWHM, and CON indices of 99%,
99%, 79%, 98%, and 98% for εEri, and 99%, 99%, 73%, 86%,
and 95% for AU Mic, respectively. If we apply a linear fit to
all six datasets, we achieve RREs of 77% for εEri and 72% for
AU Mic, respectively, showing the importance of a more sophis-
ticated and RV-independent approach for our synthetic data.

2.4. Neural network architectures

Finding the right format for the inputs and defining an ade-
quate NN architecture are some of the major challenges when

applying NN approaches to new types of data. Neural networks
with several fully connected layers have a huge number of param-
eters, thus enabling a fit to almost anything. However, being so
general, they are slow to train (and may not even converge at all)
and often lead to over-fitting (i.e. the NN is able to reproduce
the training set, but performs poorly on a test sample). For an
NN to be able to make non-linear predictions, more than two
layers are needed. Since the data we are analysing contain strong
correlations between neighbouring points, and these correlations
encode the physics, we propose an NN composed of a small
number of convolutional layers first, followed by three dense
fully connected layers. This architecture is similar to those used
in pattern recognition in images, which also looks for patterns
in the spatial domain to identify features in an image. We use
the open-source python package PyTorch3. We also run experi-
ments with Keras/Tensorflow4, which is the other most popular
platform for NN development. Neither the results nor the per-
formance depended much on the choice of the framework, so
all results presented here were produced using PyTorch. In all
cases, we installed the ‘graphics processing unit’ (GPU-)enabled
versions of the libraries to take full advantage of our hard-
ware capabilities. The codes were developed in python. Both
the starsim simulations and the training of the NN were exe-
cuted on two identical dedicated machines (Intel Core i7-10700,
which contains eight ‘central processing unit’ (CPU) cores, and
equipped with a GPU-NVIDIA GeForce RTX 2060 SUPER
each).

An input sample consists of Ni time series of indices (or
channels) corresponding to the activity indices used for each
test. The target (also called label) of each input sample is the
corresponding RV time series of the corresponding simulation.
For example, for a synthetic set with 100 epochs, a NN net-
work trained to produce RVs from FWHM and BIS data, would
have two channels (FWHM and BIS) of 100 data points each
as input, and one output list with 100 RV data points. All time
series are mean subtracted and normalised by the full ensemble
standard deviation for that index (or label). Thereby we con-
serve the information of the relative strengths of the variations of
the indices.

The input layer is then an array of 1 × 100 × Ni neurons.
The first two layers are convolutional layers with small kernel
sizes (typically three elements only), and a rather large number
of channels (typically 32). This means that in the first convolu-
tional layer, the information of each point and neighbours will be
taken into account at the layer output. The second convolutional
layer repeats the same operation, meaning that, effectively, the
NN will take into account the value of each point and the ±2
closest neighbours. Tests using kernels with larger sizes or the
inclusion of more convolutional layers did not improve the per-
formance of the NN significantly. The outputs of all neurons of
the second convolutional layer are then arranged in a single list
(so-called flatten operation), and this is then fed to three fully
connected layers with 300 neurons each (also called dense lay-
ers). The output layer is a fully connected layer with 100 neurons.
Except for the output layer (which has a linear function as its
response), the response functions used in all other layers were
the so-called rectified linear unit (ReLU; f (x) = max(0, x)) plus
a constant offset (also called bias). We tested alternative func-
tions (such as sigmoids), finding similar performances but at the
cost of more training iterations and longer training time per iter-
ation. As a cost function, we use the standard deviation of the

3 PyTorch is a trademark of Facebook, Inc.
4 Maintained by Google.
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Input layer
Ni channels x 100 Convolutional layer 1

1 filter x 32 channels x 98 Convolutional layer 2
1 filter x32 channels x 96

Flatten 
layer
3072 neurons

Dense layer 1
300 fully 
connected

Dense layer 2
300 fully 
connected

Output 
layer
1 RV x 100

Fig. 4. Neural network architecture used throughout this study. The input layer consists of 100 measurements of Ni activity indicators, and the
output layer (or label) is the corresponding 100 RVs. The first two hidden layers are convolutional layers, each with 32 kernels applied onto the
three neighbouring neurons. After the second convolutional layer, all the outputs for all the neurons are organised in a linear vector of neurons, and
three subsequent, fully connected layers are used to transform this vector into the final RV prediction. The response functions of all the neurons
are the so-called ReLus, which clearly outperforms other non-linear functions in terms of convergence speed and lower computational time. As
discussed in the text, small modifications to this architecture do not significantly change the obtained results.

difference between the simulated RVs (label) and the RV pre-
dictions by the NN (output). Training a NN consists of finding
a combination of neuron parameters (weights and biases) that
minimises this cost function. The optimisation procedures and
algorithms are already included in the aforementioned libraries
(PyTorch and/or Tensorflow).

For training, we use 90% of the synthetic sets, and 10% of
the sets are reserved for testing and validation. On average, we
found that these architectures would reach reasonable conver-
gence (as measured by non-significant improvement of the cost
function after 5 iterations) with about 50 training epochs. As an
important check, we verified that the cost function applied to
the test sets would always be equal (or slightly worse) than on
the training sample, thus ensuring that we were not incurring in
over-fitting. We show a visual representation of the NN architec-
ture as described here in Fig. 4, as well as some computing-time
benchmark experiments in Table 3.

3. Results

In this section, we perform a series of experiments to benchmark
the inversion performance of different activity indicators. Each
experiment consists of taking a time sampling (uniform, random,
gap) and using a combination of activity indicators as the input
for the NN. Then, the RRE of the RVs is computed for the full
ensemble of outputs and used as a figure of merit of the proce-
dure. We first do it with simulated datasets without uncertainties
in the input nor the output RVs (Sect. 3.1), and then we replicate
all the experiments for the uniform time sampling adding real-
istic noise (using the error value from Table 2) to the inputs to
quantify the impact of uncertainties in the training set and the
overall performances (Sect. 3.2).

From the first experiments, it became clear that the most
computationally intensive part of this study was the simulation
of the synthetic datasets and not the training of the NN. With
our setup, simulating one dataset consisting of RV, FWHM, BIS,
CON, V , B, and I takes about one second per CPU. Assum-
ing 8 cores, it takes about 1.5 days to complete 106 simulations.

Table 3. Numerical performance tests as a function of batch size.

Batch Computer Number GPU CPU
size time per of usage usage

epoch [sec] batches [%] [%]

CPU only

32 120 28 125 0 90
64 82 14 063 0 90
128 81 7032 0 90
256 66 3516 0 92
512 60 1758 0 93

CPU + GPU

32 92 28 125 2 14
64 55 14 063 5 17
128 28 7032 5 17
256 13 3516 6 10
512 8 1758 5 10
1024 6 879 5 10
2048 5 440 5 10

Notes. For this experiment in particular, we generated one million syn-
thetic datasets following the time sampling of εEri(66 observations).
For each experiment we trained a convolutional NN (three convolu-
tional layers, followed by two fully connected ones). The input samples
consisted of three spectroscopic indices (FWHM, BIS, and CON).

These simulations can be easily parallelised, the total computing
time being proportional to the inverse of the number of CPUs
employed. For illustrative purposes, Table 3 shows the computer
time needed to perform one training iteration, showing that these
are relatively small (the 50 epoch values that we use to train each
NN can be reached within a few minutes). The table illustrates
the advantage of using GPU-enabled computers and choosing
a suitable size of a parameter called a batch size, which is the
number of samples used in a single optimisation step within one
training epoch. This is a key parameter to take full advantage of
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Table 4. Relative residual error of the RVs in percent after 50 training runs for the NNs using 540 000 starsimmodels for different time samplings
and for different kinds and numbers of activity indices as input for εEri.

Input index uniform random1 gap1 random2 gap2 average with error

V 19.9 20.7 18.7 21.3 20.3 20.2±0.4 23.8
R 22.4 22.9 21.4 23.7 23.0 22.7±0.3 26.0
I 23.9 24.7 24.2 25.5 24.7 24.6±0.2 27.5
V-I 8.6 9.5 8.6 9.9 8.8 9.1±0.2 22.4
V-R-I 8.7 9.6 8.5 10.0 8.8 9.1±0.2 22.0
BIS 17.0 19.3 18.8 19.7 18.2 18.6±0.4 19.1
FWHM 23.1 29.1 27.0 28.5 24.9 26.5±1.0 27.1
CON 12.6 12.4 10.4 13.1 12.0 12.1±0.4 20.6
BIS-FWHM 11.9 13.9 13.4 14.0 13.0 13.2±0.3 14.5
BIS-CON 6.5 7.8 6.1 7.8 7.2 7.1±0.3 9.1
FWHM-CON 7.5 7.9 6.6 8.7 7.8 7.7±0.3 10.8
BIS-FWHM-CON 5.1 5.8 5.5 6.5 5.9 5.8±0.2 7.5
all 6 4.7 5.7 4.9 5.6 5.3 5.2±0.2 6.1
time-BIS 17.0 19.2 18.9 19.7 18.2 18.6±0.4 19.1

Notes. Column ‘average’ shows the average of all the values of the other time samplings and their standard deviation, ‘with error’ shows the RV
RRE of the ‘uniform’ time sampling, where the additional RREs (see Table 2) are added to each index of the NN input data.

Table 5. Relative residual error of the RVs in % after 50 training runs for the NNs using 900 000 starsimmodels for different time samplings and
for different kinds and numbers of activity indices as input for AU Mic.

uniform random1 gap1 random2 gap2 average with error

V 55.8 53.5 52.2 54.1 51.9 53.5±0.6 57.4
R 56.2 54.4 53.0 54.9 52.7 54.2±0.6 57.8
I 57.7 57.2 55.9 57.5 55.6 56.8±0.4 59.0
V-I 48.9 47.7 46.6 48.1 46.6 47.6±0.4 55.0
V-R-I 48.9 47.5 46.3 48.1 46.5 47.4±0.4 54.6
BIS 48.2 47.9 47.8 48.0 47.6 47.9±0.1 51.7
FWHM 19.2 16.0 14.9 16.6 15.0 16.3±0.7 44.0
CON 21.7 14.3 11.8 16.4 14.0 15.6±1.5 44.7
BIS-FWHM 4.7 4.6 4.4 4.7 4.2 4.5±0.1 10.4
BIS-CON 7.4 7.3 6.2 7.6 6.3 7.0±0.3 17.8
FWHM-CON 7.9 6.5 5.6 7.1 5.7 6.6±0.4 26.8
BIS-FWHM-CON 2.4 s 2.5 2.3 2.5 2.1 2.4±0.1 8.0
all 6 2.0 2.0 1.9 2.1 1.7 1.9±0.1 5.1

Notes. See notes on Table 4 for further details.

the parallel computing power of GPUs as abundantly discussed
in NN literature. A large batch size uses many samples to adjusts
all the parameters of an NN (sends a large number of samples
to the GPU to perform the back propagation adjustment of the
NN), but may smooth out subtle effects contained in the simu-
lations thus making it more difficult to converge to an optimal
solution. We found that an optimal batch size of 512 samples per
training step was sufficient to reproduce the convergence perfor-
mance of smaller batch sizes while keeping a the computing time
quite low.

3.1. Neural network training without observational errors

Tables 4 and 5 show the RRE for each exercise, that is to say, the
relative residual RV error. The combinations of activity indices
used in each exercise are shown in the left column. We show
further the values averaged over all time samplings (average),
and the results obtained for the uniform time sampling when
we inject realistic noise (see Table 2) to the input indices (see
Sect. 3.2). Figure 5 visually shows the same results. Additionally,

the RRE of the test sets as a function of the number of epochs
is shown in Figs. 6 and 7 for both stars. There, we used the NNs
trained with the uniform time sampling and without additional
errors, and applied it to the test sets without (left panels) and
with (right panels) the additional errors for the test input sets,
respectively.

As a further illustration, we show one random synthetic RV
test set from the uniform time sampling and the output of the
NNs with all the combinations of input data (i.e. index time
series) in the left panels of Fig. 8. From the top, we see in the
first panel the usage of only one index, then two indices, then the
three indices from photometry and from the CCF, and then all
six index time-series data. The model itself is shown by the black
dots and line. In the right panels, the difference between the RV
model and its corresponding prediction by the NN is shown.

In general, we find that even using a single index, there is
always a reduction in RRE. But even for data without uncertain-
ties, not all the activity-induced RV variability can be removed
from the observations. We note that this inversion error marks
the floor of what is possible given the information in the
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Fig. 5. RRE after the application of the trained NNs on the 540 000
and 900 000 starsim models in percentage for εEri (top) and AU Mic
(bottom), respectively. We mark the different activity-index combi-
nations used for the NN training. The average RV reduction for the
different time samplings average is given for εEri in red and for AU Mic
in blue. The yellow and green bars indicate the value, if the relative addi-
tional error from Table 2 was added to the input data.

Fig. 6. Evolution of the RRE of the 60 000 synthetic εEri test set RVs
for the 50 epochs for the NNs using all different combinations of input
data, i.e. activity index time series as indicated, the uniform time sam-
pling, and no additional error on the training input sets. The curves are
shown for the test sets without additional uncertainties as calculated by
starsim (left panel, dashed lines) and for the case where we included
the error value from Table 2 for each activity index into the test sets
(right panel, full drawn lines).

corresponding index (these are intrinsic model degeneracies)
and our NN implementation. Additional indices at the same
epochs (additional spectroscopic observables) and/or additional
non-simultaneous measurements (e.g. contemporaneous photo-
metric observations) could improve these floor values, but one

Fig. 7. Evolution of the RRE of the 100 000 synthetic AU Mic test set
RVs for the 50 epochs for the NNs using all different combinations of
input data. See Fig. 6 for more details.

should expect worse performances when applied to real, noisy
observations.

The most important take-home messages from these exper-
iments can be summarised as follows. First, the proposed NN
architecture is sufficient to produce high quality corrections to
RV data. The NNs converge after only a few training epochs
irrespective of the fine details of the NN algorithm (response
function, training strategy or other technical details). The conver-
gence and non-overfitting can be easily verified by checking that
the RRE of the test sample (which is the merit function also used
during training) is similar or slightly larger than the RRE of the
training sample, which is always the case in all the experiments.

Second, line-profile indices contain enough information to
successfully train the algorithms, and produce a significant cor-
rection of the activity signals in the RV time series. Despite
the existence of correlations between RV and indices has been
demonstrated in the past, this is the first time (to our knowledge)
where it is shown that there is enough information in them to
reproduce the RV activity signal.

Third, the best performing single index was found to be
CON, rather than BIS, which would have been expected accord-
ing to Lafarga et al. (2020). This indicates that data, model-
driven approaches rather than guesswork or theoretical expec-
tations are preferable in future activity and RV noise inves-
tigations. It is possible that other indices provide even better
performances than those discussed here.

Fourth, combining multiple indices is the most effective way
to achieve a higher RV reduction, given that these measurements
can be obtained from the same spectra used to obtain the RV
measurement. The actual reduction, and the most relevant index
is star dependent (as has been suspected for some time now) and,
in general, one should aim at using a combination of all possible
indices that show variability consistent with stellar activity. In
particular, using all the available CCF indices, the simulations
indicate that we can reach a RRE of 5.1, and 2.4% for εEri and
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Fig. 8. Illustration of the quality of the RV correction as a function of the input indices used (random synthetic set chosen) for the εEri data and the
uniform time sampling (black lines). The output predictions of the NNs with all the combinations of input data, i.e. index time series, are illustrated
with different colours. The outcome of using only one index is shown in the top panel, further down two indices, then combinations of three indices
(photometry and CCF), and then time-series data from all six indices. Radial velocities are shown as modelled by starsim. The legends contain
the RV RRE of this particular set for each combination of index inputs. The residuals (differences between RV predictions and the simulated RV)
are shown in the right panels.

AU Mic, respectively. This is better than half the value as for any
single index for εEri, but is remarkably lower (eight times) for
AU Mic.

Fifth, simultaneous photometric time series seem to contain
the least information of the tested indices, worsening for the
redder filters. Even when combined, they only match the perfor-
mance of a single CCF index as input. Especially for AU Mic, the
obtained RREs are only at the 55% level, which is a rather poor
performance. Using all the available filters, we can reach RREs
of 9 and 49% for εEri and AU Mic, respectively. This is likely
caused by intrinsic degeneracies when mapping photometric sig-
nals into putative spots (and corresponding RV signal), as often
happens in light curve-only inversion cases. For example, a small
equatorial spot can produce the same photometric signal than a
small polar one, but its RV counterpart can be rather different. In
any case, adding photometry always helps, and the putative use
of photometric time samplings denser than the RV sampling (as
often happens when using space-based photometry) remains to
be investigated.

Sixth, a larger number of data points seems to improve over-
all performance. Probably due to the smaller number of data
points (37 versus 66) and the later spectral type, the RRE of the
RVs across all input data combinations is more than double in
the AU Mic data compared to the εEri sets, and this is despite
the larger training data sample (540 000 versus 900 000).

Seventh, injecting noise in the test sets does not improve per-
formance when applied to noiseless sets. That is, when trained
with synthetic data without errors, the performance on test data
with errors we observed that the RV RRE is not as good, and
comparable to training without errors (as discussed in the next
section). This is illustrated in Figs. 6 and 7.

Eighth, the precise time sampling does not have a strong
influence on the outcome, even with seasonal gaps. We remark,

however, that all the test samplings used here cover the rota-
tion period of both stars quite well (several cycles, more than
one point per cycle). More tests would be needed to re-analyse
old survey data, which typically spans several years and with
observations clustered in seasons of a few months each year.

Finally, the time-tags of the observations were NOT used in
the experiments presented here (Tables 4 and 5). Experiments
ran with time-tags and all combinations of indices converged
much more slowly than those without them. This is something
we did not expect that requires further investigation. The out-
come of a test including the time tags as inputs together with the
BIS index for εEri is shown in Table 4.

3.2. Neural network training with realistic observational errors

Since noise is an intrinsic characteristic of real data that shall
also be learned, we considered whether we should train our NN
with noisy synthetic observations. In the following, we sum-
marise the three conclusions drawn by running tests with noisy
training sets, data from which are presented in Tables 4 and 5 and
Fig. 5.

First, the performance of CCF indices becomes quite affected
when using noisy input indices (and their combinations) when
their RRE exceeds 50% (FWHM and CON for AU Mic). Uncer-
tainties in activity indices are not as well understood as for RV
measurements, so this calls for a quick examination of possible
periodic signals in all the indices to be used before decid-
ing whether an index shall be used in the training and later
de-trending of real time series. A real case example is dis-
cussed later in the section devoted to AU Mic real observations
(Sect. 3.3.2), where we found that using the CON index (which
does not show the same periodicities as the other indices) makes
things worse.
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Second, and along the same line, uncertainties in the pho-
tometry at the few percent level (which are quite easy to obtain,
even from the ground) do not affect the inversion power of the
photometry as an input. To illustrate this in the tests presented
here, the precision of the photometric time series was arbitrarily
chosen to be at 10% level, which is rather high (see Table 2).
Despite this high value, this does not influence the outcome
very much confirming that the lesser inversion power of the
photometry comes from intrinsic physical degeneracies.

Finally, the RRE of an activity index should be 30–40%
smaller than the contribution to the RV RRE caused by stellar
activity variability. If larger (FWHM and CON for AU Mic), the
introduction of those errors degrades performances very much
(RV RREs form 16–44%, and 16–45% in these example cases).

3.3. Application to observational data

3.3.1. Results on εEridani

Before jumping into generating a final set of synthetic training
sets, we performed an exact inversion using the starsim code
to verify that the priors set in our simulations matched what
would be obtained if attempting a more classic full stellar fit-
ting approach. This process is explained in detail in Appendix A.
Most importantly, the starsim inversion resulted in differences
in the stellar parameters compared to the literature ones, espe-
cially the stellar radius. With this new parameters, we then
produce 100 000 starsim simulations of RV, BIS, FWHM, and
CON time series, each using the same original time sampling
consisting in 66 observations. For the spot map, we use the ran-
dom procedure as used in previous sections to avoid producing
simulations too specific to the data. To train the NN, we add
uncertainties and errors to the inputs and outputs as described
in previous sections since in the case for the real observational
data the NN performance is significantly enhanced. We then
trained our NNs again on 50 training epochs. We achieved an RV
RRE down to 10% on our 100 000 training sets, which is slightly
larger than, but comparable to, the experiments (7.5%) in the
previous section.

When applied to the real dataset, we obtain the correction
shown in Fig. 9. The black curve shows the observed RVs and the
red curve shows the outputs of a trained NN with inputs of BIS,
FWHM, and CON from the observations. The periodograms of
the real and predicted RVs are also shown in the panel below.
The corresponding RV RRE is 45% (from 4.4 m s−1 to 2.0 m s−1),
which is quite far from the nominal 10% inferred from the train-
ing and test samples. We argue that at the level below a few
m s−1, the physics of the activity-induced effects are not yet prop-
erly included in the simulations and, possibly, some instrumental
systematic errors are also affecting the result (e.g. uncertainty
in the wavelength solution of each night of observation). More
work on the models is needed to identify all possible sources
of such mismatches. In any case, the reduction of the RMS to
below 2 m s−1 already places εEri as a high quality target (simi-
lar ‘jitter’ as the Sun) for exoplanet searches (enough sensitivity
to detect close-in super-Earths).

3.3.2. Results on AU Microscopii

We applied the same procedure to the case of AU Mic, but with-
out performing the initial inversion with starsim. Instead, we
used the stellar parameters as introduced in Table 1, the original
time sampling containing 37 data points, and randomised spot
maps as introduced in Sect. 2.3.

Fig. 9. RVs (top panel) and periodogram (bottom panel) of observa-
tional εEri data in black. In red, we show the prediction produced by our
NN using BIS, FWHM, and CON indices as input. In green we show
the periodogram of the cleaned data, that is, the difference between the
observed and modelled RVs. The rotation period and its second har-
monic are indicated as vertical dashed grey lines. The level of RMS
reduction is about 45%.

For this experiment, we created 400 000 new starsim sim-
ulations calculating RV, BIS, and FWHM, and we include again
the observational errors (see Table 2) into the time series since
it has been shown that it results in lower RV RREs. We then
train our NN for 50 training epochs as before and reach an RV
RRE of 10% for the test set. This is essentially the same value as
in the previous test. We show the RV observations and the NN
output in the top panel of Fig. 10. In the bottom panel, we show
the periodograms of those two time series and add in green the
periodogram of the difference.

As opposed to the expectations from all previous experi-
ments, the inclusion of the CON index produced very poor per-
formances when applied to the real data. After a close examina-
tion of the CON measurements and corresponding periodograms
(see Fig. 2) it is clear that they do not contain the same charac-
teristic periodicities as the other indices, or the RV. We attribute
this to the fact that CON measurements from CARMENES are
affected by additional noise sources not included in the sim-
ulations, including instrumental and astrophysical effects. For
example, CON measurements are very sensitive to the contin-
uum determination (and corresponding line-depths of the lines).
Therefore, the source of this systematic error might be instru-
mental (e.g. change in the instrumental setup such as using
simultaneous calibration lamps, sky background contribution,
change in gain in the detector), but it could also be associated
with astrophysical phenomena causing changes in the spectral
continuum. For these reasons, we only use the BIS and FWHM
indices for the performance analysis on real observations of
AU Mic.

The correction obtained on the RVs is rather good, reach-
ing to a RV RRE down to 10%, the same as for the starsim
training sets. The cleaned RVs (subtraction of the computed cor-
rection to the observed ones), do not contain any trace of the
rotation period. Moreover, the resulting scatter is consistent with
the presence of the Doppler signals of the planets (although there
are not enough observations to confirm them with only these
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Fig. 10. Results for the AU Mic observations. Top panel: RVs from
AU Mic as observed (black) and as modelled by the trained NN using
BIS, and FWHM indices with their respective RREs. Bottom panel:
periodogram of the observed RVs (black), the NN output (red), and the
difference (green). Dashed black lines indicate the rotation period and
its second harmonic, and dashed blue lines indicate the orbits of the two
planetary companions of AU Mic. We reach RREs as low as 10%.

Fig. 11. Residual RVs of the 37 AU Mic observations after applying the
NN using BIS and FWHM indices (black dots). We further show the
curves introduced to the RVs by the two detected planets of AU Mic
(dashed red and green lines) and their combination (blue curve).

37 epochs). As opposed to εEri, most of the activity-induced
variability is clearly related to the dark spot effect on a fast rotat-
ing star (peak to peak variability over 100 m s−1), which is one
of the better understood RV noise phenomena. Although the rel-
ative improvement is rather good, we also note that the residual
RV variability is around 13 m s−1, which is substantially poorer
than the one from εEri. This is is again consistent with the mod-
els lacking relevant physical realism at the few m s−1 level. Using
other de-trending techniques and evidence of periodic transits
from photometric observations (Cale et al. 2021), the possible
amplitude of two low mass companions have been inferred at the
level of ∼10 m s−1, which could explain part of this variability
as well (Keplerian orbits have not been included in the train-
ing samples in any case). We show the residual RVs in Fig. 11,
and illustrate the possible contribution of the signals of the two
published planetary companions to the residual RV noise (red
and green dashed curves for the individual planets, and the blue
curve for their combination).

4. Conclusions

We have developed a model-driven machine learning approach
using convolutional deep NNs to produce corrections to RV time
series contaminated by stellar activity. It is model driven in the
sense that synthetic datasets were used to train the algorithms.
Stellar activity manifests itself in observables other than RVs,
and this additional information has already been used to mitigate
the influence of activity on the RVs. However, it was not entirely
clear whether the information contained in the individual and
combined observables was sufficient to invert the problem and
produce a correction in a more general and independent way, not
using the information contained in the RVs. This work applied to
the test datasets demonstrates that the inversion is possible and
that it is solvable, without requiring explicit expressions for all
the relations of the indices with the RV variability.

We identified NN architectures that are well suited to the task
(a few convolutional layers followed by a few dense layers) and
determined that they can be trained with quite modest compu-
tational resources. In fact, producing realistic simulations is the
most computer-intensive part of the processing.

We assessed the inversion power of the classic activity
indices used in exoplanet detection papers and find that com-
binations of them are sufficient to provide corrections below
the photon noise of state-of-the-art spectrometers when we con-
sider the effects of spots combined with rotation and convective
blueshift only (∼10 cm s−1, the goal of ESPRESSO). Photomet-
ric information obtained simultaneously with the observations
did not have that much inversion power, but on its own can still
produce a significant reduction in RV noise. Non-simultaneous
(space-based) multi-band photometry is likely to perform better,
but it will require additional work and, possibly, slightly different
NN architectural choices.

We applied our technique to two real datasets, achieving a
significant reduction in the activity-induced RV variability, but
the results are not yet at the level of the photon noise of the obser-
vations. This is likely caused by astrophysical phenomena yet to
be included in the simulations, and due to systematic (instru-
mental and algorithmic) errors in the measurements of both the
activity indicators and the RVs.

As a future step, we plan to test the machine learning frame-
work with more models that include additional activity phenom-
ena. In particular, models will have to include more complex
phenomena, such as non-uniform convective flows (granulation,
supergranulation, and meridional flows), magnetic distortion of
spectral lines (Zeeman splitting), different sensitivities of some
spectral lines to stellar activity, and the effect of bright and chro-
mospherically active regions to apparent Doppler shifts (plages,
faculae, or others).
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Appendix A: starsim data inversion for εEridani

With the current version of the starsim code, we calculated the
inversion of the algorithm, that is, using the observational time-
series data of εEri to fit for stellar parameters and an average
distribution of stellar spots. Differently from our initial approach,
we use a fixed number of 10 different dark spots up to 15 ◦ in
radius, appearing at any point of the calculated time interval ran-
domly and stellar parameters floating around the measurements
as given in Table 1. As a result, we achieve a best fit on obser-
vational RV, BIS, and FWHM time series, as shown in Fig. A.1.
This is achieved for the absolute offsets for the three datasets
as given in the top right of each panel. In Table A.1, we show
the differences for the stellar parameters from the literature and
from our best data inversion. Especially R∗ does differ signifi-
cantly. We note that ∆CB, i, and dΩ were fixed for the inversion
test. A histogram of the posterior distributions for all the inver-
sion iterations of the five parameters of the 10 spots are shown
in Fig. A.2. We can see a clear clustering around longitudes 50
to 150 and 275 to 325 ◦, as well as co-latitudes ranging between
20 and 40 ◦. Spots show mostly 2 to 4 ◦ radius resulting in abso-
lute spot filling factors of 2.5 to 3.5%. Spot lifetimes seem to be
mostly in between 40 to 60 d, coinciding thereby with the results
from the GP, as shown in Fig. 3.

Fig. A.1. Results of the starsim inversions for εEri using RV (top
panel), FWHM (middle panel), and BIS (bottom panel). Blue dots indi-
cate the measurements as extracted from raccoon from the observed
spectra. The black curve shows the average fit and the grey area the
uncertainty of the different solutions. The dashed red curve shows the
solution with the largest likelihood. On the top right, the offset for each
time series is indicated as well as its additional jitter, both of which show
the shortcomings of the modelling of time-series data with starsim.

Table A.1. Differences of important stellar parameters from the litera-
ture and from our data inversion with starsim

εEri inv. lit.
spot temperature difference ∆T [K] 500 1080
convective blueshift difference CB [CB⊙] 0 ∼0.3
rotation period Prot [day] 11.33 11.2
stellar radius R∗ [R⊙] 0.85 0.74
stellar mass M∗ [M⊙] 0.85 0.82
inclination i [deg] 90 60
differential rotation dΩ [dΩ⊙] 0 1.3

Notes. See Table 1 for details.

Fig. A.2. Histogram of the posterior distribution of the five parameters
of the spot maps containing ten spots of the starsim inversion applied
to observational εEri data RV, BIS, and FWHM.
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Appendix B: Tables of observational data

Table B.1. 66 nightly binned time-series data points extracted with raccoon from 204 HARPS spectra of εEri.

BJD (d) RV (m s−1) BIS (m s−1) FWHM (m s−1) CON (%)

2458761.86 16458.65±0.87 30.9±1.9 6473.8±5.7 40.694±0.029
2458762.86 16451.20±0.79 35.4±1.8 6477.3±5.9 40.700±0.029
2458763.87 16447.57±0.89 38.0±1.9 6473.5±6.1 40.747±0.031
2458764.88 16444.59±0.87 36.5±1.8 6459.6±6.0 40.802±0.030
2458765.85 16450.26±1.97 34.5±4.1 6452.2±6.0 40.846±0.030
2458766.85 16453.40±0.90 30.5±1.7 6456.1±5.7 40.794±0.029
2458767.71 16451.34±1.48 30.4±3.7 6457.0±6.1 40.796±0.029
2458768.74 16448.66±1.47 34.7±3.0 6456.3±5.6 40.773±0.030
2458773.86 16459.30±1.01 29.8±1.9 6481.9±5.5 40.662±0.029
2458774.85 16450.86±0.90 36.3±2.4 6484.5±5.8 40.657±0.029
2458775.83 16447.62±1.35 41.3±2.6 6474.1±6.1 40.698±0.031
2458776.85 16449.16±1.71 38.4±3.3 6463.9±6.1 40.762±0.030
2458777.86 16451.50±1.20 35.2±2.6 6463.2±5.8 40.746±0.029
2458780.88 16445.40±3.00 34.0±6.2 6442.8±6.2 40.823±0.030
2458781.64 16450.38±0.99 30.6±1.9 6449.9±5.6 40.798±0.028
2458782.84 16453.43±1.32 27.8±3.4 6453.0±5.6 40.792±0.028
2458783.85 16459.83±1.04 24.6±1.8 6464.0±5.5 40.732±0.028
2458784.66 16462.15±1.18 23.5±2.4 6479.0±5.5 40.683±0.027
2458785.65 16458.54±1.45 28.3±3.1 6487.6±5.5 40.661±0.027
2458786.86 16453.31±1.36 36.6±2.6 6485.2±6.0 40.647±0.030
2458791.67 16448.99±1.12 39.9±2.3 6454.3±6.0 40.782±0.030
2458792.66 16452.07±1.19 34.0±2.5 6448.4±5.9 40.801±0.029
2458793.67 16453.47±1.50 28.2±3.0 6447.6±5.6 40.808±0.028
2458794.68 16455.97±1.52 25.0±3.2 6455.8±6.4 40.777±0.029
2458795.65 16460.26±1.50 25.6±3.1 6472.3±5.7 40.724±0.029
2458796.68 16458.50±1.41 29.0±2.7 6484.9±6.0 40.671±0.029
2458797.64 16458.26±1.37 30.8±3.3 6482.9±5.9 40.672±0.029
2458798.64 16460.87±1.50 29.1±3.0 6477.4±5.6 40.665±0.028
2458799.68 16460.42±1.65 30.4±3.0 6484.9±5.5 40.619±0.028
2458801.59 16447.92±0.98 46.8±2.0 6477.2±6.1 40.635±0.031
2458802.57 16447.56±0.97 45.4±1.8 6460.4±6.1 40.719±0.031
2458803.58 16450.37±1.04 38.6±2.3 6449.0±5.9 40.792±0.030
2458804.63 16453.41±1.23 34.2±2.8 6446.3±5.8 40.816±0.030
2458805.64 16455.08±0.96 28.0±1.7 6454.5±5.7 40.799±0.028
2458806.63 16457.23±1.02 25.8±2.3 6463.3±5.6 40.770±0.029
2458807.60 16456.94±0.81 28.2±1.6 6471.5±5.6 40.740±0.028
2458808.56 16452.57±1.35 32.1±2.7 6470.5±5.8 40.737±0.029
2458810.60 16464.52±1.33 22.6±2.4 6472.3±5.5 40.683±0.027
2458811.61 16459.12±1.16 31.3±2.4 6484.8±5.5 40.617±0.028
2458813.60 16447.59±1.12 46.6±2.3 6461.7±6.2 40.708±0.031
2458818.79 16452.10±0.82 28.7±1.6 6469.7±5.5 40.754±0.028
2458819.72 16450.28±0.96 31.8±1.8 6466.3±5.8 40.757±0.029
2458826.59 16448.45±0.72 39.8±1.7 6448.1±5.8 40.784±0.030
2458827.61 16455.48±1.24 31.0±2.3 6448.5±5.8 40.808±0.029
2458828.59 16456.04±1.56 27.9±2.8 6454.4±5.7 40.810±0.029
2458829.61 16455.77±1.15 29.3±2.6 6464.5±5.6 40.781±0.029
2458830.58 16453.45±0.91 30.7±1.8 6467.7±5.7 40.768±0.029
2458831.59 16455.78±1.06 26.5±1.8 6463.8±4.2 40.765±0.026
2458832.57 16458.44±1.26 23.7±2.5 6469.6±5.4 40.708±0.028
2458833.58 16459.41±1.07 26.1±2.3 6474.7±5.6 40.665±0.027
2458834.58 16458.73±1.02 32.6±2.2 6476.5±5.4 40.635±0.027
2458835.58 16453.54±0.78 40.8±1.7 6472.4±5.7 40.643±0.029
2458836.60 16450.49±1.14 43.2±2.1 6453.3±6.0 40.729±0.030
2458837.67 16452.31±1.09 35.2±2.5 6447.3±5.9 40.775±0.030
2458838.68 16453.60±1.39 31.1±2.7 6447.1±5.6 40.788±0.029
2458839.59 16455.40±0.93 31.3±1.8 6456.1±5.6 40.766±0.028
2458840.69 16451.39±0.83 34.2±1.7 6462.9±5.9 40.753±0.030
2458841.55 16449.60±1.25 36.0±2.7 6457.2±5.9 40.791±0.030
2458842.55 16448.93±1.35 33.4±2.7 6451.5±5.9 40.822±0.030
2458843.55 16451.20±1.34 28.9±2.6 6452.2±6.0 40.798±0.030
2458844.58 16453.62±0.84 25.2±1.7 6455.4±5.6 40.754±0.028
2458845.58 16457.42±1.40 27.6±2.9 6461.9±4.7 40.705±0.024
2458846.58 16455.45±0.95 35.1±2.0 6468.1±5.6 40.670±0.028
2458847.57 16451.02±1.11 38.5±2.1 6460.8±5.9 40.706±0.030
2458848.57 16450.93±1.14 35.5±1.7 6453.5±4.5 40.748±0.023
2458849.57 16455.84±0.90 30.9±2.1 6454.0±5.7 40.755±0.029
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Table B.2. 37 nightly binned time-series data points extracted with raccoon from 75 CARMENES VIS spectra for AU Microscopii.

BJD (d) RV (m s−1) BIS (m s−1) FWHM (m s−1) CON (%)

2458678.57 -5342.0±8.9 315.5±24.6 12687.3±55.4 10.092±0.035
2458679.54∗ -5003.1±6.2 -87.2±15.6 12175.3±43.6 7.370±0.021
2458680.54 -5046.2±4.6 -63.0±11.6 12285.4±39.7 9.843±0.025
2458684.57 -4889.9±12.0 -244.6±30.3 12253.9±37.4 10.254±0.025
2458686.55 -4899.8±5.8 -332.9±14.4 12385.5±44.7 10.124±0.029
2458687.58 -5168.7±8.7 -6.0±22.0 12638.0±46.1 10.068±0.029
2458688.58 -5209.1±8.4 187.5±21.8 12275.3±46.7 10.042±0.030
2458690.56 -4965.3±4.6 -201.1±11.3 12425.4±51.3 9.799±0.032
2458691.51 -4854.7±8.8 -380.8±21.6 12653.4±58.2 10.266±0.037
2458693.55 -5200.6±3.9 21.0±9.8 12264.1±54.0 9.895±0.035
2458694.60 -4865.5±4.9 -272.3±12.0 12334.8±55.4 10.209±0.036
2458695.54 -4994.6±12.0 -98.0±30.6 12471.0±54.3 10.247±0.035
2458696.52 -4935.8±5.7 -273.6±14.1 12794.4±72.0 9.978±0.044
2458699.00 -5043.8±3.4 -104.1±8.5 12240.9±43.4 10.005±0.028
2458700.48 -5015.3±6.0 -119.6±14.8 12303.3±54.1 10.211±0.036
2458702.50 -5220.2±16.9 67.3±42.6 12679.6±100.9 10.057±0.063
2458704.49 -4920.8±5.6 -189.4±14.0 12219.0±54.7 10.124±0.036
2458706.49 -5126.3±9.7 7.2±24.9 12618.9±101.1 9.729±0.062
2458706.50 -5145.3±9.0 -6.1±23.0 12638.4±104.0 9.672±0.063
2458711.45 -5214.7±4.7 171.6±12.5 12567.0±61.0 9.608±0.037
2458712.45 -5299.4±5.6 225.9±15.1 12481.2±63.8 9.888±0.040
2458714.98 -4939.9±4.1 -133.8±10.2 12037.4±29.1 10.195±0.020
2458718.45 -5087.8±5.6 86.4±14.1 12125.5±39.6 10.303±0.027
2458723.46 -5047.8±5.3 -41.7±13.2 12101.2±35.5 10.283±0.024
2458724.42 -5042.3±4.4 -151.8±10.9 12349.0±46.3 9.914±0.030
2458727.47 -5239.3±6.9 21.5±17.3 12432.7±67.3 9.721±0.042
2458742.39 -5215.3±3.8 111.3±9.9 12342.7±63.9 9.736±0.040
2458743.37 -4897.4±6.3 -267.0±15.4 12156.9±50.3 9.854±0.032
2458744.35 -5008.4±4.4 -13.0±11.3 12055.4±41.0 10.105±0.027
2458745.39 -5055.2±6.7 68.0±17.3 12758.8±60.9 9.828±0.037
2458755.40 -5119.0±7.0 -41.5±17.6 12372.5±56.2 9.948±0.036
2458757.38 -5110.3±11.5 116.6±29.7 12055.5±42.2 10.044±0.028
2458759.37 -4801.7±7.5 -477.6±18.4 12297.0±45.6 10.384±0.031
2458760.31 -5119.5±4.5 -92.3±11.2 12326.5±40.9 9.727±0.026
2458761.35 -5229.1±6.4 112.6±16.3 12412.7±45.4 10.218±0.030
2458763.34 -5031.1±5.2 -50.2±13.0 12372.9±49.9 10.100±0.032
2458765.33 -5094.2±5.0 -150.0±12.3 12478.2±51.0 9.990±0.032

Notes. An asterisk marks the obvious data outlier for the CON measurement.
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