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Abstract: The widespread penetration of distributed energy sources and the
use of load response programs, especially in a microgrid, have caused many
power system issues, such as control and operation of these networks, to
be affected. The control and operation of many small-distributed generation
units with different performance characteristics create another challenge for
the safe and efficient operation of the microgrid. In this paper, the optimum
operation of distributed generation resources and heat and power storage in
a microgrid, was performed based on real-time pricing through the proposed
gray wolf optimization (GWO) algorithm to reduce the energy supply cost
with the microgrid. Distributed generation resources such as solar panels,
diesel generators with battery storage, and boiler thermal resources with
thermal storage were used in the studied microgrid. Also, a combined heat
and power (CHP) unit was used to produce thermal and electrical energy
simultaneously. In the simulations, in addition to the gray wolf algorithm,
some optimization algorithms have also been used. Then the results of 20
runs for each algorithm confirmed the high accuracy of the proposed GWO
algorithm. The results of the simulations indicated that the CHP energy
resources must be managed to have a minimum cost of energy supply in the
microgrid, considering the demand response program.
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1 Introduction

Along with developing thermal and electrical energy resources as distributed generation resources
in microgrids, several methods with different purposes have been proposed to integrate these resources.
Using energy management leads to consumption reduction over periods, and consequently, in addition
to the appropriate load curve, it reduces the operation and planning cost [1,2]. The purpose of the
Energy Management System (EMS) is to realize the best use of units to produce electric and heat power
in the microgrid, the best program for the scheduling storage system and proper demand management
and proper purchase and sale from the electric grid. There are several methods to establish the most
suitable demand management program.

It has been shown in [3] that using energy management and reducing energy consumption in
different time intervals, in addition to modifying the load curve, has caused a reduction in the cost
of operation and planning. The primary purpose of the above reference is to realize the best use of
distributed generation resources to generate power and heat in the microgrid. Intelligent algorithms
were used in [4], to determine the best storage system schedule, proper demand management and
accurate purchase and sale from the power grid. The results indicated that the use of algorithms
and energy management of resources had a significant effect on cost reduction. To execute energy
management in demand response programs have been used [5]. Demand response programs in the
short-term lead to a decrease in peak demand, and are provided for a short period. In [6], demand
response programs are based on encouragement and time-based programs, and the effect of each
method in reducing the cost of operation is evaluated. In [7], price-based decentralized control is used
for EMS. In decentralized control, each microgrid is controlled by a controller. Decentralized control
is a possible solution for many controls and energy management problems in microgrids. It has been
proved in [8] that, since the price of electricity varies depending on various times and places, receiving
the electricity price at a fixed rate from the customers puts the electricity companies at risk, since
they face a variable electricity price in the wholesale market. The authors in [9] believe that applying
the actual price of electricity to consumers will increase efficiency. Therefore, the initial idea of this
dynamic pricing was to apply the actual price of electricity to the consumers. On the hand, applying
the time-varying tariffs, whether in the restructured power system or the traditional systems, improves
the load consumption curve and reduces the load during periods of high demand. In [10], time-of-
use response programs were used for microgrid energy management. This method encourages the
customers to improve their electricity consumption patterns (consumption in periods of low demand,
and reducing consumption in periods of high demand) through the change in electricity prices at
different times of the day. Most customers do not have enough time and equipment to respond to
these instantaneous changes. Therefore, it seems more logical to use several time intervals a day to
apply different electricity tariffs to this group of consumers. The electricity tariff is determined in [11],
as different prices for different time intervals of a day. The tariff is usually considered as the average
cost of power generation and transmission in each time interval.

In this paper, the optimum operation of distributed generation resources in a microgrid has been
performed through GWO to reduce operating costs. The algorithm should choose the most suitable
capacity for energy generation by the resources according to the amount of electrical and thermal
energy requested by subscribers at every hour and the energy price for that hour, so that the cost is
minimized in the system.
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2 The Studied System

The studied microgrid consisted of distributed thermal and electrical generation resources as well
as storage which was connected to the national electricity network and could exchange electrical energy
with it. A scheme of the studied grid is shown in Fig. 1.

Figure 1: The studied microgrid

In the studied microgrid, distributed electrical generation resources such as solar panels and diesel
generators with battery storage and boiler thermal resources with thermal storage were used. Also,
in this microgrid, the CHP unit is used for the combined generation of thermal and electric energy.
Electric energy transmission trajectories are plotted with black lines, and thermal transfer trajectories
are plotted with red ones. In addition, the information transfer between the resources and the control
center is plotted with a blue dashed line. The amount of solar radiation is shown in Fig. 2.

Figure 2: Intensity of solar radiation [12]

The amount of electrical and thermal energy demanded by subscribers in the 24-hour study is
shown in Fig. 3.

The energy price in the market in the 24-h study is shown in Fig. 4. The maximum and minimum
energy price in this microgrid are about 13 cents/kWh and 6 cents/kWh, respectively. In periods of high
demand, the energy price is increased in periods of low demand, the energy price has a minimum price,
so subscribers are encouraged to reduce consumption in periods of high demand and postpone their
consumption to periods of low demand.
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(a) (b)

Figure 3: Amount of demanded electrical (a) and thermal energy (b) [12]

Figure 4: Electricity price in the market [12]

3 Objective Function and Restrictions

The proposed function to have an optimum operation is expressed in Eq. (1). The objective
function indicates the operating costs that should be minimized during the planning process. Based
on this equation, the operating costs are equal to the total cost of generation (including total variable
cost and startup cost) and the cost of implementing demand response programs [13].

Objective Function =
24∑

t=1

(
G∑

i=1

(
Ci,t

LDG + SCi,t
LDG

) + Pi,t
L × ρ t

L +
n∑

j=1

Cj,t
CHP + Ct

SPL

)
(1)

where t is the time operator, Ci,t
LDG and SCi,t

LDG are the cost of electric energy generation and the cost
of turning off/on the distributed generation, respectively and Pi,t

L is the amount of contributed electric
power of demands in the demand response program, and ρ t

L is the reward paid due to consumption
reduction. Cj,t

CHP, and Ct
SPL are the cost of electric energy generation of combined heat and power (CHP)
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and the cost of energy generation of solar parking lots (SPL), respectively. The restrictions of the
problem are:

Power balance restriction: the total power of generation units must meet the demand.

In a grid-connected state, the amount of purchased and sold power is added to the generation
units to supply the demand [13].

PDemand
e (t) + PCharge

e (t) = PNet
e (t) +

N DG∑
i=1

PDG
e (i, t) + Pdcharge

e (t) , (2)

PDemand
th (t) + Pcharge

th (t) =
N DG∑

i=1

PDG
th (i, t) + Pdcharge

th (t) (3)

Minimum and maximum generation restriction: The generation unit in the microgrid has its
operating limitations.

PMin
e (i) ≤ PDG

e (i, t) ≤ PMax
e (i) , (4)

PMin
th (j) ≤ PDG

th (j, t) ≤ PMax
th (j) (5)

4 GWO Algorithm

Gray wolves are usually social animals, living and hunting in packs of 5–12. The pack leaders,
also known as alpha, are an alpha male and an alpha female. Alpha is mainly responsible for deciding
about how to hunt, where to sleep, when to wake up, etc. Decisions of alpha are ordered to the pack.
The second in command in the gray wolf pack hierarchy is beta. Beta is an obedient wolf who helps
the alpha in decision-making or other pack tasks. The beta wolf must respect the alpha, but it gives
orders to the lower-ranking wolves. The lowest ranking is related to the gray wolf or omega. The main
hunting phase of the gray wolf is divided into three parts: searching, running, and approaching the
prey, chasing, encircling, exhausting the prey until it stops moving, and finally attacking the prey.

To mathematically model the encircling behavior, the following equations are proposed [14]:
→
D =

∣∣∣→
C.

→
X p (t) − →

X (t)
∣∣∣ (6)

→
X (t + 1) = →

X p (t) − →
A.

→
D (7)

where t is the current iteration,
→
A and

→
C are the coefficient vectors,

→
X p is the position vector of the

prey, and
→
X is the position vector of the gray wolf. The vectors

→
A and

→
C are calculated as follows:

→
A = 2

→
a.

→
r 1 − →

a (8)
→
C = 2.

→
r 2 (9)

where components
→
α of {\displaystyle {\vec {a}}} are linearly decreased from 2 to 0 throughout, for

iterations and
→
r 1 {\displaystyle r_{1}}, →

r 2 {\displaystyle r_{2}} are random vectors in [0, 1]. The hunt
is guided by the alpha. The beta and delta might also participate in hunting occasionally. Therefore,
we save the first three best solutions obtained so far and oblige the other search agents (including the
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omegas) to update their positions according to the position of the best search agent. The following
formulas are proposed in this regard [14–18]:
→
Dα =

∣∣∣→
C1.

→
X α − →

X
∣∣∣ ,

→
Dβ =

∣∣∣→
C2.

→
X β − →

X
∣∣∣ (10)

→
Dδ =

∣∣∣→
C3.

→
X δ − →

X
∣∣∣

→
X 1 = →

X α − →
A1.

(→
Dα

)
,

→
X 2 = →

X β − →
A2.

(→
Dβ

)
(11)

→
X (t + 1) =

→
X 1 + →

X 2 + →
X 3

3
(12)

To mathematically model approaching the prey, we decrease the value of {\displaystyle {\vec {a}}}
→
a. The fluctuation range of {\displaystyle {\vec {A}}} →

A is also decreased by{\displaystyle {\vec {a}}}
→
a. In other words,

→
A {\displaystyle {\vec {A}}} is a random value in the interval [−a, a] where a is

decreased from 2 to 0 throughout, for iterations. When random values of {\displaystyle {\vec {A}}} →
A

are in [–1, 1], the next position of a search agent can be in any position between its current position
and the position of the prey. Gray wolves mostly search according to the position of the alpha, beta,
and delta. They diverge from each other to search for prey and converge to attack prey. {\displaystyle

{\vec {A}}} Another component of GWO that favors exploration is {\displaystyle {\vec {C}}} →
C which

contains random values in [0, 2]. This component provides random weights for prey to stochastically

emphasize (
→
C > 1) or de-emphasize (

→
C < 1) the effect of prey in defining the distance in Eq. (10).

This assists GWO to show more random behavior throughout optimization, favoring exploration

and local optima avoidance. It is worth mentioning here that
→
C is not linearly decreased in contrast

to
→
A. For iterations, alpha, beta, and delta wolves estimate the probable position of the prey. Each

candidate solution updates its distance from the prey. The parameter a is decreased from 2 to 0 to
emphasize exploration and exploitation, respectively. Candidate solutions tend to diverge from the

prey when {\displaystyle |{\vec {A}}| > 1}→
A > 1 and converge towards the prey when {\displaystyle

|{\vec {A}}| < 1}→
A < 1. Finally, the GWO algorithm is terminated by satisfying an end criterion

[19–42].

5 Simulation Results and Analysis

A suitable program for the optimal operation of distributed generation resources and electrical and
thermal storage in the microgrid, based on real-time pricing, has been presented. Energy management
of resources and electrical and thermal storage was performed using a cost-reduction approach. The
GWO algorithm was used for energy management in the microgrid. The algorithm found the optimal
variables in such a way that the cost was minimized in the microgrid. The parameters of the proposed
GWO are given in Table 1.

Table 1: Parameters of GWO algorithm

Population Course of iterations σ ρ ϕ

100 50 0.02 0.8 0.2
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Simulations have been performed in two scenarios. In the first one, the energy management
was just performed on resources and electrical storage. In contrast, the second scenario, energy
management of resources and the combined electrical and thermal storages was simultaneously
performed in the microgrid. To verify the results obtained from the simulation, a comparison has been
made between the GWO results, and the results obtained from Particle Swarm Optimization (PSO)
algorithm, Genetic Algorithm (GA), harmony search (HS), and Artificial Bee Colony (ABC).

5.1 First Scenario
In the first part of the simulations, the energy management of the resources and electrical storage

in the microgrid was done by considering the demand response program to reduce the operating cost
through the proposed GWO algorithm. Therefore, it was assumed that there was no control over the
thermal resources, the required thermal energy of the subscribers was supplied by the boiler without
any restrictions, and CHP only produced electrical energy. Also, there was no thermal energy storage
in the system. The convergence process of the GWO algorithm in the optimization process is shown
in Fig. 5.

Figure 5: Convergence of GWO algorithm in electrical resources management

The energy supply cost without considering the demand response program was $2673, while after
optimization through the proposed GWO algorithm, the amount of $1862 was obtained. The GWO
algorithm converged to its final value after 25 iterations. In Table 2, the values of the best, the worst,
and the average response, as well as the standard deviation for 20 iterations of running the PSO, GA,
HS, (ABC) as well as the proposed GWO, are given.

The best responses for the PSO, GA, HS, ABC, and GWO algorithms were obtained as $1908,
$1921, $1874, $1893, and $1862, respectively. On the other hand, the low value of standard deviation
for the proposed GWO algorithm indicated its higher efficiency, and because if the optimization
algorithm has immediate responses to each other in different iterations, then the standard deviation
would be at its minimum value. The power generated by the diesel generator, CHP, solar panel, and
battery storage in the 24-hour study is shown in Fig. 6 after optimization.
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Table 2: Optimization results through algorithms in the first scenario

Algorithm PSO GA HS ABC GWO

The best response 1908 1921 1874 1893 1862
The worst response 1936 1958 1891 1916 1873
Average 1919 1937 1881 1903 1667
Standard deviation 15.4 21.8 8.3 10.1 6.4

Figure 6: The transmitted electrical energy with the power grid

According to Fig. 6, most of the battery storage has been performed from 1:00 a.m. through 6:00
a.m., and most battery discharges occurred from 7:00 p.m. to 9:00 p.m. Batteries play a vital role in
supply shifting and reducing costs in demand response programs. The amount of electrical energy
transmitted to the nationwide electric network at the time of study is shown in Fig. 7. As illustrated
in Fig. 7, the presence of the distributed generation of electrical resources has caused the received
electrical energy from the grid to be negative in periods of high demand meaning that the electricity is
being sold to the network. Selling electrical energy in periods of high demand, has made a sufficient
profit for the microgrid operator, through which the energy supply costs in the microgrid become
minimum. For instance, at 10:00 a.m., a profit of about $48.3 was made due to selling electrical energy.

Figure 7: Electrical energy transmitted to the nationwide electric network
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The thermal energy produced by the boiler is shown in Fig. 8.

Figure 8: Thermal energy generated by the boiler

It is worth mentioning that, due to a lack of thermal resources management, the produced thermal
energy profile by the boiler is precisely similar to the thermal energy needed by the consumers.

5.2 Second Scenario
To minimize the energy supply cost in the microgrids, it is required that the demand response

program (DRP) be performed considering thermal and electrical resources at the same time because
both terms are almost equally effective in the total cost of the microgrid. In the third scenario,
thermal and electrical energy management in the microgrid is simultaneously performed using the
GWO algorithm. Energy management of diesel generators, solar panels and battery storage as the
electrical resources, and boiler with thermal storage has been performed as the thermal distributed
generation resources. Finally, CHP has been carried out as the combined heat and power resources
in the microgrid. The convergence process of the GWO algorithm in the problem of optimum energy
management of thermal and electrical resources in the microgrid is shown in Fig. 9.

Figure 9: Convergence of GWO in thermal and electrical resources management

The cost of the microgrid after optimum management of the combined heat and power through
the GWO algorithm was determined as $1637. The GWO algorithm converged to its minimum value
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after 31 iterations. Like the two previous scenarios, optimization algorithms were performed for 20
runs, the results of which are given in Table 3.

Table 3: Optimization results by the algorithms in the second scenario

Algorithm PSO GA HS ABC GWO

Best response 1672 1684 1652 1662 1637
Worst response 1692 1704 1667 1686 1648
Average 1686 1692 1663 1677 1642
Standard deviation 15.7 19.3 8.2 9.3 6.6

The optimization results in the third scenario indicated that the best response in the case of
optimization through algorithms of PSO, GA, HS, ABC, and GWO had been calculated as $1672,
$1684, $1652, $1662, and $1637, respectively. The slight difference between the obtained responses
after 20 iterations of the GWO algorithm led to a standard deviation of 6.6, which is less than the value
obtained through other algorithms. In the continuation of the procedure of the performed simulations,
the amount of power generated by the electrical resources, and the amount of power generated by the
thermal resources during a day in the case of optimization through GWO are shown in Figs. 10 and
11, respectively.

Figure 10: Electrical resource contribution in supplying the required energy

Figure 11: Thermal resource contribution in supplying the required energy in microgrid
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Like the previous scenarios, to minimize the energy supply cost in the microgrid, energy storage
depends on the low price of electricity and the periods of low demand in the microgrid. During these
periods, the storage units store thermal and electrical energy at their maximum capacity, so that they
can respond to the demand during periods of high demand. Other electrical and thermal resources also
contribute to the energy required by the consumers, depending on the costs and price of the electricity
in each period of demand. The amount of electrical energy transmitted with the nationwide electric
network for the 24-hour study is shown in Fig. 12. Like the first scenario, electrical energy purchased
in the early hours of the day is just for charging the batteries, so that it can make a profit through
selling the stored electrical energy in the periods of high demand.

Figure 12: Transmitted electrical energy to the nationwide electric network

6 Conclusion

In this paper, based on real-time pricing and to reduce the energy supply cost in the microgrid
through the GWO algorithm, the optimal operation of distributed generation resources and combined
electrical and thermal storages in the microgrid was carried out. The studies were separately conducted
in two scenarios. In the first part of the simulations, the energy management of resources and electric
storage in the microgrid was done by considering the demand response program through the GWO
algorithm, and there was no control of the heat resources. The total energy cost, after performing opti-
mal energy management through the proposed GWO algorithm, in the first scenario, was decreased
by about 30% compared to the primary conditions. In the second part of the simulations, to minimize
the energy supply costs in the interested microgrids, the demand response program was carried out
considering thermal and electrical sources at the same time. The total energy cost, after performing
optimal energy management through the proposed GWO algorithm, in the second scenario, was
decreased by about 30% compared to the primary conditions. Therefore, to have the minimum cost
of energy supply in the microgrid, it is suitable to perform simultaneous management. On the other
hand, comparing the results of the proposed GWO algorithm with some other optimization algorithms
showed the high efficiency and accuracy of the GWO algorithm.
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