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Abstract: Personalized genome sequencing has revealed millions of genetic differences between 
individuals, but our understanding of their clinical relevance remains largely incomplete.  To 
systematically decipher the effects of human genetic variants, we obtained whole genome 
sequencing data for 809 individuals from 233 primate species, and identified 4.3 million 
common protein-altering variants with orthologs in human.  We show that these variants can be 5 
inferred to have non-deleterious effects in human based on their presence at high allele 
frequencies in other primate populations.  We use this resource to classify 6% of all possible 
human protein-altering variants as likely benign and impute the pathogenicity of the remaining 
94% of variants with deep learning, achieving state-of-the-art accuracy for diagnosing 
pathogenic variants in patients with genetic diseases. 10 

 
One Sentence Summary: Deep learning classifier trained on 4.3 million common primate 
missense variants predicts variant pathogenicity in humans. 
 

 15 
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Main Text:  
A scalable approach for interpreting the effects of human genetic variants and their impact on 
disease risk is urgently needed to realize the promise of personalized genomic medicine (1-3).  
Out of more than 70 million possible protein-altering variants in the human genome, only ~0.1% 
are annotated in clinical variant databases such as ClinVar (4), with the remainder being variants 5 
of uncertain clinical significance (5, 6).  Despite collaborative efforts by the scientific 
community, the rarity of most human genetic variants has meant that progress towards 
deciphering personal genomes has been incremental (7, 8).  Consequently, clinical sequencing 
tests frequently return without definitive diagnoses, a frustrating outcome for both patients and 
clinicians (9, 10).  In certain cases, patients have needed to be recontacted and diagnoses 10 
reversed when the presumed pathogenic variant was later found to be a common variant in 
previously understudied human populations (11-13).  Common variants can often be ruled out as 
the cause of penetrant genetic disease, since their high frequency in the population indicates that 
they are tolerated by natural selection, aside from rare exceptions due to founder effects and 
balancing selection (14-16). 15 

 
An emerging strategy for solving clinical variant interpretation on a genome-wide scale is the use 
of information from closely related primate species to infer the pathogenicity of orthologous 
human variants (17).  Because chimpanzees and humans share 99.4% protein sequence identity 
(18), a protein-altering variant present in one species can be expected to produce similar effects 20 
on the protein in the other species.  By conducting population sequencing studies in closely 
related non-human primate species, it is feasible to systematically catalog common variants and 
rule these out as pathogenic in human, analogous to how sequencing more diverse human 
populations has helped to advance clinical variant interpretation (8, 17). Nonetheless, earlier 
work (17) was limited by the very small primate population sequencing datasets available, which 25 
bounded the number of common variants discovered, and the scale of machine learning 
classifiers that could be trained.  

 
 
 30 

RESULTS 
 
A database of 4.3 million benign missense variants across the primate lineage 

 
To expand upon this strategy, we sequenced 703 individuals from 211 primate species (19), and 35 
aggregated these with data from previous studies (19-26), yielding a total of 809 individuals 
from 233 species.  We identified 4.3 million unique missense (protein-altering) variants and 6.7 
million unique synonymous (non-protein altering) variants (Fig. 1A), after excluding variants at 
positions that lacked unambiguous 1:1 mapping with human, or which resulted in non-
concordant amino acid translation outcomes because of changes at neighboring nucleotides (fig. 40 
S1).  The species selected for sequencing represent close to half of the 521 extant primate species 
on Earth (27) and cover all major primate families, from Old World monkeys and New World 
monkeys to lemurs and tarsiers. We targeted a small number of individuals per species (3.5 on 
average) to ensure that we primarily sampled common variants that have been filtered by natural 
selection rather than rare mutations (fig. S2). 45 

 
Compared to the genome Aggregation Database (gnomAD) cohort of 141,456 human individuals 
from diverse populations (28, 29), the primate sequencing cohort contained ~20% more exome 
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variants despite sequencing 1/175th the number of individuals (Fig. 1A and fig. S3), attesting to 
the remarkable genetic diversity present in non-human primate species (19, 30), many of which 
are critically endangered (31). The overlap of primate variants with gnomAD was low, consistent 
with independent mutational origins in each species (fig. S3). Out of the 22 million possible 
synonymous variants in the human genome, 30% were observed in the primate cohort, compared 5 
to just 6% of possible missense mutations (Fig. 1B). Because de novo mutations would have laid 
down unbiased proportions of missense and synonymous variants, the observed depletion of 
missense mutations in the primate cohort is consistent with the majority of newly-arising human 
missense mutations being removed by natural selection due to their deleteriousness (8, 32-34).  
The surviving missense variants are seen at high frequencies in primate populations, and 10 
represent a subset of missense variants that have tolerated filtering by natural selection and are 
unlikely to be pathogenic (35). 

 
Missense variants from the primate cohort are strongly enriched for benign consequence in the 
ClinVar clinical variant database (Fig. 1C).  Amongst ClinVar variants with higher review levels 15 
(2-star and above, indicating consensus by multiple submitters) (4), missense variants found in at 
least one non-human primate species were Benign or Likely Benign ~99% of the time, compared 
to 63% for ClinVar missense variants in general, and 80% for missense variants seen in gnomAD 
(Fig. 1C). The high fraction of pathogenic variants in gnomAD is consistent with the majority of 
these variants having arisen recently.  Indeed, recent exponential human population growth 20 
introduced large numbers of rare variants through random de novo mutations (95% of variants in 
the gnomAD cohort are at < 0.01% population allele frequency), without sufficient time for 
selection to purge deleterious variants from the population (36-40).  Consequently, the gnomAD 
cohort provides a comparatively unfiltered look at variation caused by random mutations, 
whereas primate common variants represent the subset of random mutations that have survived.  25 
 
The regions of human disease genes that were most densely populated by ClinVar pathogenic 
variants were also strongly depleted for primate common variants, with examples shown for 
CACNA1A (Fig. 1D) and CREBBP (fig. S4), genes responsible for familial epilepsy (41, 42) and 
Rubinstein-Taybi syndrome (43, 44).  Missense variants in the gnomAD cohort were partially 30 
depleted within these same critical regions (Fig. 1D and fig. S4), indicating that humans and 
primates experience similar selective pressures. However, deleterious variants were incompletely 
removed in humans, consistent with the shorter amount of time they were exposed to natural 
selection. 

 35 
Prior to using primate data as an indicator of benign consequence in a diagnostic setting, it is 
vital to understand why a handful of human pathogenic ClinVar variants appear as tolerated 
common variants in primates.  Our clinical laboratory independently reviewed evidence for each 
of the 36 ClinVar pathogenic variants that appeared in the primate cohort, according to ACMG 
guidelines (14). Among these 36 variants, 8 were reclassified as variants of uncertain 40 
significance based on insufficient evidence of pathogenicity in the literature and an additional 9 
were hypomorphic or mild clinical variants (table S1). The remaining 19 variants appear to be 
truly pathogenic in human, and are presumably tolerated in primate because of primate-human 
differences, such as interactions with changes in the neighboring sequence context (45, 46).  In 
one such example, a compensatory synonymous sequence change at an adjacent nucleotide 45 
explains why the variant is benign in primate, but creates a pathogenic splice defect in human 
(Fig. 1E). We also expect that some of the variants identified among primates are rare pathogenic 
variants by chance, despite the small number of individuals sequenced within each species. By 
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expanding our cohort to sequence a large number of individuals per species, we would 
definitively exclude rare variation from our catalogue of primate variation, as well as grow the 
database of benign variants to improve clinical variant interpretation.  
 
As evolutionary distance from human increases, cases where the surrounding sequence context 5 
has changed sufficiently to alter the effect of the variant should also increase, until common 
variants in more distant species could no longer be reliably counted on as benign in human.  We 
examined variation in each major branch of the primate tree, as well as variation from mammals 
(mouse, rat, cow, dog), chicken, and zebrafish, and evaluated their pathogenicity in ClinVar (Fig. 
1F).  Common variants from species throughout the primate lineage, including more distant 10 
branches such as lemurs and tarsiers, varied from 98.6% to 99% benign in the human ClinVar 
database, but this dropped to 87% for placental mammals, and 71% for chicken.  The high 
fraction of variants that are pathogenic in human, yet tolerated as common variants in more 
distant vertebrates, indicates that selection on orthologous variants diverges substantially in 
distantly-related species, as a consequence of changes in the surrounding sequence context and 15 
other differences in the species’ biology (fig. S5). 

 
We have made the primate population variant database, which contains over 4.3 million likely 
benign missense variants, publicly available at https://primad.basespace.illumina.com as a 
reference for the genomics community.  Overall, this resource is over 50 times larger than 20 
ClinVar in terms of number of annotated missense variants, and consists almost entirely of 
variants of previously unknown significance.  Most primate variants are rare or absent in the 
human population, with 98% of these variants at allele frequency < 0.01% (fig. S6). This makes 
it challenging to establish their pathogenicity through other means, since even the largest 
sequencing laboratories would be unlikely to observe any given variant in more than one 25 
unrelated patient.  Despite their rarity, the subset of human variants that appear in primates have 
a low missense : synonymous ratio consistent with being depleted of deleterious missense 
variants (Fig. 1G).  This contrasts with the high missense : synonymous ratio for rare human 
variants in the overall gnomAD cohort, which approaches the 2.2:1 ratio expected for random de 
novo mutations in the absence of selective constraint (47).  At higher allele frequencies, natural 30 
selection has had more time to purge deleterious missense variants, allowing the human 
missense : synonymous ratio to start to converge toward the ratio observed for the subset of 
human variants that are present in other primates.  
 

 35 
Gene-level selective constraint in humans versus non-human primates 

 
The primate variant resource makes it possible to compare natural selection acting on individual 
genes across the primate lineage and identify human-specific evolutionary differences.  Since the 
current primate cohort only contains an average of 3-4 individuals per species, we focused on 40 
comparing selective constraint in human genes versus primates as a whole. We found that the 
missense : synonymous ratios of individual genes were well-correlated between human and 
primates (Spearman r =  0.637) (Fig. 2A), indicating that genes which were depleted for 
deleterious missense mutations in human were also consistently depleted throughout the primate 
lineage.  Moreover, the missense : synonymous ratios of both human and primate genes 45 
correlated similarly well with the probability of genes being loss of function intolerant (pLI)  
(Spearman correlation -0.534 and -0.489, respectively) (28).  Had there been substantial 
divergence between human and primate, pLI, an independent metric derived from human 
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protein-truncating variation, would have been expected to show much clearer agreement with 
human missense : synonymous ratios than primate. 

 
To measure the selective constraint on each gene, we calculated the observed versus expected 
number of variants per gene, using trinucleotide mutation rates to model the expected probability 5 
of observing each variant (fig. S7) (28, 29).  We modeled each primate species separately to 
account for differences in genetic diversity and the number of individuals sampled per species.  
The expected and observed counts of synonymous variants were highly correlated in both the 
gnomAD and primate cohorts, indicating that our model accurately captured the background 
distribution of neutral mutations (Fig. 2B; Spearman correlation 0.933 and 0.949, respectively).  10 
In contrast, for missense variants the expected and observed counts per gene diverged 
substantially (Spearman correlation 0.896 and 0.561 for human and primate, respectively), due to 
depletion of deleterious missense variants by natural selection in highly constrained genes (for 
example, high pLI genes).  The most highly constrained genes were almost completely scrubbed 
of common missense variants in the primate cohort, whereas rare missense variants in the 15 
gnomAD cohort were depleted to a more modest extent due to the large sample size of gnomAD 
(Fig. 2C).  

 
We next aimed to identify genes whose selective constraint was different in human compared to 
the rest of the primate lineage, a task made difficult by differences in diversity, allele frequency, 20 
and sample size between the human and primate cohorts (34, 48, 49).  To this end, we developed 
two orthogonal strategies, and took the intersection of genes identified under both approaches.  
First, we used population genetic modeling (34, 50, 51) to estimate the average selection 
coefficient, s, ranging from 0 (benign) to 1 (severely pathogenic), of missense mutations in each 
gene, using a model of recent human population growth (figs. S7 and S8).  We fit a single value 25 
of s per gene across non-human primate species, and identified genes that differed between 
sprimate and shuman using a likelihood ratio test, which we validated using population simulations 
(fig. S9).  In a second approach, we fit a curve approximating the relationship between human 
and primate missense : synonymous ratios using a Poisson generalized linear mixed model (52), 
and identified genes where the observed human missense : synonymous ratio deviated from what 30 
would have been expected given the gene’s missense : synonymous ratio in primates (fig. S10).  
We also adjusted for gene length to account for shorter genes having more variability in their 
missense : synonymous ratio measurements than longer genes.  The two methods were broadly 
concordant, with a Spearman correlation of 0.80 between the genes’ effect sizes in the two tests. 
Estimates of selection coefficients and observed and expected counts for each gene in human and 35 
primate are provided in table S2.  

 
In total, we found 39 genes where selective constraint differed significantly between human and 
other primates under both methods (Benjamini-Hochberg FDR < 0.05 (53); Fig. 2D).  The top 
three genes where shuman decreased the most relative to sprimate were CFTR, GJB2, and CD36, 40 
autosomal recessive disease genes for cystic fibrosis (54), hereditary deafness (55), and platelet 
glycoprotein deficiency (56), respectively.  All three genes are known for deleterious mutations 
that are unusually common in local geographic human populations (57-60), suggesting that they 
may be experiencing reduced selection due to heterozygote advantage that protects against 
specific environmental pathogens (60-64).  On the other end of the spectrum, TERT, known for 45 
its role in maintaining telomere length (65, 66), was among the top genes where shuman increased 
the most relative to sprimate.  Humans have adapted to a much longer lifespan compared with other 
primate species, which have a median lifespan of 20-30 years, suggesting that increased selection 
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on TERT may have occurred as part of human adaption towards extended longevity.  We note 
that with the current size of the primate cohort, it is not possible to distinguish whether the 
increased selection on TERT occurred only in humans, or if it is part of a gradual trend towards 
extended longevity that began earlier in the great ape lineage, which also have longer lifespans 
relative to other primates (~40 years).  Expanding the primate cohort by sequencing more 5 
individuals per species would improve detection of additional species-specific and lineage-
specific evolutionary adaptation, and shed light on the evolutionary path that led to the present 
human condition.  

 
 10 

PrimateAI-3D, a deep learning network for classifying protein-altering variants 
 

We constructed PrimateAI-3D, a semi-supervised 3D-convolutional neural network for variant 
pathogenicity prediction, which we trained using 4.5 million common missense variants with 
likely benign consequence (Fig. 3A).  In a departure from prior deep learning architectures that 15 
operated on linear sequence (17, 67), we voxelized the 3D structure of the protein at 2 Angstrom 
resolution (figs. S11 and S12) and used 3D-convolutions to enable the network to recognize key 
structural regions that may not be apparent from sequence alone (Fig. 3A).  As an example, we 
show PrimateAI-3D predictions for STK11 (Fig. 3B), the tumor suppressor gene responsible for 
Peutz-Jeghers hereditary polyposis syndrome (68-71), with each amino acid position colored by 20 
the average PrimateAI-3D score at that position.  Common primate variants used for training and 
annotated ClinVar pathogenic variants from separate parts of the linear sequence form distinct 
clusters in 3D space.  Although ClinVar variants are shown for illustration, it is important to note 
that the network was not trained on either human-engineered features or annotated variants from 
clinical variant databases, thereby avoiding potential human biases in variant annotation.  Rather, 25 
it learns to infer pathogenicity based on the local enrichment or depletion of common primate 
variants, taking only the protein’s multiple sequence alignment and 3D structure as inputs. 

 
PrimateAI-3D can utilize protein structures from either experimental sources or computational 
prediction (72-76); we used AlphaFold DB (72, 73) and HHpred (74) predicted structures for the 30 
broadest coverage across human genes.  For training data, we incorporated all common missense 
variants from the 233 non-human primate species (17), and common human missense variants 
(allele frequency > 0.1% across populations)  in gnomAD (28, 29), TOPMed (77, 78), and UK 
Biobank (79, 80), resulting in a total of 4.5 million unique missense variants of likely benign 
consequence.  This dataset covers 6.34% of all possible human missense variants, and is over 50-35 
fold larger than the current ClinVar database (79,381 missense variants after excluding variants 
of uncertain significance and those with conflicting annotations), greatly enlarging the training 
dataset available for machine learning approaches.  Because the training dataset consists only of 
variants labeled as benign, we created a control set of randomly selected variants that were 
matched to the common variants by trinucleotide mutation rate, and trained PrimateAI-3D to 40 
separate common variants from matched controls as a semi-supervised learning task. 

 
In parallel with the variant classification task, we generated amino acid substitution probabilities 
for each position in the protein by masking the residue and using the sequence context to predict 
the missing amino acid, borrowing from language model architectures that are trained to predict 45 
missing words in sentences (81, 82).  We trained both a 3D convolutional “fill-in-the-blank” 
model, which tasked the network with predicting the missing amino acid in a gap in the 
voxelized 3D protein structure, and separately, a language model utilizing the transformer 
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architecture to predict the missing amino acid using the surrounding multiple sequence alignment 
as context (83). We implemented these models as additional loss functions to further refine the 
PrimateAI-3D predictions (fig. S13).  We also trained a variational autoencoder (67) on multiple 
sequence alignments and found that it performed comparably to our transformer architecture (fig. 
S14). Hence, we incorporated the average of their predictions in the loss function, which 5 
performed better than either alone.   
 
We evaluated PrimateAI-3D and 15 other published machine learning methods (67, 84) on their 
ability to distinguish between benign and pathogenic variants along six different axes (Fig. 3C, 
3D, and fig. S15):  predicting the effects of rare missense variants on quantitative clinical 10 
phenotypes in a cohort of 200,643 individuals from the UK Biobank  (UKBB);  distinguishing de 
novo missense mutations (DNM) seen in 31,058 patients with neurodevelopmental disorders (85-
87) (DDD) from de novo missense mutations in 2,555 healthy controls (88-93); distinguishing de 
novo missense mutations seen in 4,295 patients with autism spectrum disorders (88-94) (ASD) 
from de novo missense mutations in the shared set of 2,555 healthy controls;  distinguishing de 15 
novo missense mutations seen in 2,871 patients with congenital heart disease (95) (CHD) from 
de novo missense mutations in the shared set of 2,555 healthy controls;  separating annotated 
ClinVar benign and pathogenic variants (ClinVar) (4);  and average correlation with in vitro deep 
mutational scan experimental assays across 9 genes (96-105) (DMS assays). Our set of clinical 
benchmarks is the most comprehensive to date, and has a particular focus on rigorously testing 20 
the performance of classifiers on large patient cohorts across a diverse range of real world 
clinical settings (table S3). 

 
For the UK Biobank benchmark, we analyzed 200,643 individuals with both exome sequencing 
data and broad clinical phenotyping, and identified 42 genes where the presence of rare missense 25 
variants was associated with changes in a quantitative clinical phenotype controlling for 
confounders such as population stratification, age, sex, and medications (table S4).  These gene-
phenotype associations included diverse clinical lab measurements such as low-density 
lipoprotein (LDL) cholesterol (increased by rare missense variants in LDLR, decreased by 
variants in PCSK9), blood glucose (increased by variants in GCK), and platelet count (increased 30 
by variants in JAK2, decreased by variants in GP1BB), as well as other quantitative phenotypes 
such as standing height (increased by variants in ZFAT) (table S4).  To test each classifier’s 
ability to distinguish between pathogenic and benign missense variants, we measured the 
correlation between pathogenicity prediction score and quantitative phenotype for patients 
carrying rare missense variants in each of these genes.  We report the average correlation across 35 
all gene-phenotype pairs for each classifier, taking the absolute value of the correlation, since 
these genes may be associated with either increase or decrease in the quantitative clinical 
phenotype. 

 
The neurodevelopmental disorders cohort (DDD), autism spectrum disorders cohort (ASD), and 40 
congenital heart disease cohort (CHD) are among the largest published trio-sequencing studies to 
date, and consist of thousands of families with a child with rare genetic disease and their 
unaffected parents.  In each cohort, we cataloged de novo missense mutations that appeared in 
affected probands but were absent in their parents, as well as de novo missense mutations that 
appeared in a set of shared healthy controls.  We evaluated the ability of each classifier to 45 
separate the de novo missense mutations that appear in cases versus controls on the basis of their 
prediction scores, using the Mann-Whitney U test to measure performance. 
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PrimateAI-3D outperformed all other classifiers at distinguishing pathogenic from benign 
variants in the four patient cohorts we tested (UKBB, DDD, ASD, CHD); it was also the top 
performer at separating pathogenic from benign variants in the ClinVar annotation database, and 
had the highest average correlation with the deep mutational scan assays (Fig. 3D and fig. S15).  
After PrimateAI-3D, there was no clear runner-up, with second place occupied by six different 5 
classifiers in the six different benchmarks.  We observed a moderate correlation between the 
performance of different classifiers in UKBB and DDD (Spearman r = 0.556; Fig. 3C), which are 
the two largest clinical cohorts and therefore likely the most robust for benchmarking (with 
200,643 and 33,613 patients, respectively), but outside of PrimateAI-3D, strong performance of 
a classifier on one task had limited generalizability to other tasks.  Our results underscore the 10 
importance of validating machine learning classifiers along multiple dimensions, particularly in 
large real-world cohorts, to avoid overgeneralizing a classifier’s performance based upon an 
impressive showing along a single axis. 

 
PrimateAI-3D’s top-ranked performance at separating benign and pathogenic missense variants 15 
in ClinVar was unexpected, since the other machine learning classifiers (with the exception of 
EVE) were trained either directly on ClinVar, or on other variant annotation databases with a 
high degree of content overlap.  Because they are primarily based on variants described in the 
literature, clinical variant databases are subject to ascertainment bias (12, 106, 107), which may 
have contributed to supervised classifiers picking up on tendencies of human variant annotation 20 
that are unrelated to the task of separating benign from pathogenic variants (figs. S16, S17, and 
S18). Given the challenges with human annotation, we also investigated whether PrimateAI-3D 
could assist in revising incorrectly labeled ClinVar variants, by comparing annotations in the 
current ClinVar database and those from a September 2017 snapshot. Disagreement between 
PrimateAI-3D and the 2017 version of ClinVar was highly predictive of future revision and the 25 
odds of revision increased with PrimateAI-3D confidence (fig. S19). Among variants with the 
10% most confident PrimateAI-3D predictions, the odds of revision were 10-fold elevated if 
PrimateAI-3D was in disagreement with the ClinVar label (P < 10-14). 
 
The performance of PrimateAI-3D on clinical variant benchmarks scaled directly with training 30 
dataset size, indicating that additional primate sequencing data will be the key to unlocking 
further gains (Fig. 4 and fig. S20).  The current primate cohort already covers 30% of all possible 
synonymous variants in the human genome, despite containing only 809 individuals from 233 
species (Fig. 4B).  By increasing the number of species and the number of individuals sequenced 
per species, we expect to saturate the majority of the remaining tolerated substitutions in the 35 
human genome (fig. S21), including both coding and noncoding variation, leaving the remaining 
deleterious variants to be deduced by process of elimination. 
 
Discovery of candidate disease genes for neurodevelopmental disorders 
 40 
We applied PrimateAI-3D to improve statistical power for discovering candidate disease genes 
that are enriched for pathogenic de novo mutations in the neurodevelopmental disorders cohort 
(fig. S22).  De novo missense mutations from affected individuals in the DDD cohort (87) were 
enriched 1.36-fold above expectation, based on estimates of background mutation rate using 
trinucleotide context (47). We selected a PrimateAI-3D classification threshold of 0.821, which 45 
called an equal number of pathogenic missense mutations (n=7,238) as the excess of de novo 
missense mutations in the cohort (Fig. 5A). Stratifying missense mutations by this threshold 
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increased enrichment of pathogenic de novo missense mutations to 2.0-fold, substantially 
increasing statistical power for disease gene discovery in the cohort (Fig. 5B). 

 
By applying PrimateAI-3D to prioritize pathogenic missense variants, we identified 290 genes 
associated with intellectual disability at genome-wide significance (P < 6.4x10-7) (Table 1), of 5 
which 272 were previously discovered genes that either appeared in the Genomics England 
intellectual disability gene panel (108), or were already identified in the prior study (109) 
without stratifying missense variants (table S5).  We excluded two genes, BMPR2 and RYR1 as 
borderline significant genes that already had well-annotated non-neurological 
phenotypes.  Further clinical studies are needed to independently validate this list of candidate 10 
genes and understand their range of phenotypic effects. 

 
 

Discussion 
 15 

Our results demonstrate the successful pairing of primate population sequencing with state-of-
the-art deep learning models to make meaningful progress towards solving variants of uncertain 
significance.  Primate population sequencing and large-scale human sequencing are likely to fill 
complementary roles in advancing clinical understanding of human genetic variants.  From the 
perspective of acquiring additional benign variants to train PrimateAI-3D, humans are not 20 
suitable, as the discovery of common human variants (>0.1% allele frequency) plateaus at 
roughly ~100,000 missense variants after only a few hundred individuals (17), and further 
population sequencing into the millions mainly contributes rare variants which cannot be ruled 
out for deleterious consequence.  On the other hand, these rare human variants, because they 
have not been thoroughly filtered by natural selection, preserve the potential to exert highly 25 
penetrant phenotypic effects, making them indispensable for discovering new gene-phenotype 
relationships in large population sequencing and biobank studies.  Fittingly, classifiers trained on 
common primate variants may accelerate these target discovery efforts, by helping to 
differentiate between benign and pathogenic rare variation. 

 30 
The genetic diversity found in the 520 known non-human primate species is the result of ongoing 
natural experiments on genetic variation that have been running uninterrupted for millions of 
years.  Today, over 60% of primate species on Earth are threatened with extinction in the next 
decade due to man-made factors (31).  We must decide whether to act now to preserve these 
irreplaceable species, which act as a mirror for understanding our genomes and ourselves, and 35 
are each valuable in their own right, or bear witness to the conclusion of many of these 
experiments. 
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Materials and Methods 
Primate polymorphism data 
We aggregated high-coverage whole genomes of 809 primate individuals across 233 primate 
species, including 703 newly sequenced samples and 106 previously sequenced samples from the 
Great Ape Genome project (19). Samples that passed quality evaluation were then aligned to 32 5 
high-quality primate reference genomes (110) and mapped to the GRCh38 human genome build.  
 
We developed a random forest (RF) classifier to identify false positive variant calls and errors 
resulting from ambiguity in the species mapping.  In addition, we removed variants that fell in 
primate codons that did not match the human codon at that position, as well as those residing in 10 
primate transcripts with likely annotation errors. We also devised quality metrics based on the 
distribution of RF scores and Hardy-Weinberg equilibrium, and developed a unique mapping 
filter to exclude variants in regions of non-unique mapping between primate species. 
 
Identifying differential selection between humans and primates via population modeling 15 
We first established a neutral background distribution of mutation rates per gene for each primate 
species by fitting the Poisson Random Field (PRF) model to the segregating synonymous 
variants in each species. The observed number of segregating synonymous sites is a Poisson 
random variable, with the mean determined by mutation rate, demography, and sample size (34). 
For simplicity, we assumed an equilibrium (i.e. constant) demography for all species besides 20 
human; for human, we used Moments (51) to find a best fitting demographic history based on the 
folded site frequency spectrum of synonymous sites. We adopted a Gamma distributed prior on 
mutation rates, which also accounts for the impact of GC content on mutation rate. We optimized 
the prior parameters via maximum likelihood and computed the posterior distribution of the 
mutation rate per gene. 25 
 
The number of segregating nonsynonymous sites is modeled as a Poisson random variable 
similar to synonymous sites with additional selection parameters. We assumed that every 
nonsynonymous mutation in a gene shares the same population scaled selection coefficient γ!". 
To explicitly estimate selection coefficient of each gene per species, we devised a two-step 30 
procedure analogous to an EM algorithm to control for differences in population size across 
species.  
 
To identify genes where human constraint is different from non-human primate selection, we 
developed a likelihood ratio test to test whether population scaled selection coefficients are 35 
significantly different between human and other primates. We then assessed whether our 
population genetic modeling improved the correlation of selection estimates of our primate data 
with previous gene-constraint metrics in humans, including pLI (28) and s_het (111). To validate 
the performance of our model, we performed population genetic simulations. 
 40 
Poisson generalized linear mixed modeling of selection between humans and primates 
In addition to population genetics model described above, we also applied an orthogonal 
approach to detect differences in selection between humans and primates based on missense-to-
synonymous ratio (MSR).  We fit a Poisson generalized linear mixed model (GLMM) to the 
pooled polymorphic synonymous and missense mutations across all primates to estimate the 45 
depletion of missense variants in each gene. Then, we fit a second Poisson GLMM to the human 
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data, controlling for the primate depletion estimates, and compared the pooled primate MSR to 
the human MSR for each gene. 
 
PrimateAI-3D Model 
PrimateAI-3D is a 3D convolutional neural network that uses protein structures and multiple 5 
sequence alignments (MSA) to predict the pathogenicity of human missense variants. To 
generate the input for a 3D convolutional neural network, we voxelized the protein structure and 
evolutionary conservation in the region surrounding the missense variant. The network was 
trained to optimize three objectives: distinction between benign and unknown human variants; 
prediction of a masked amino acid at the variant site; per-gene variant ranks based on protein 10 
language models. 
 
Protein structures and multiple sequence alignments 
For 341 species, we used vertebrate and mammal MSAs from UCSC Multiz100 (112, 113) and 
Zoonomia (114). Another 251 species appeared in Uniprot for least 75% of all human proteins 15 
(115). For each protein, alignments from all 341+251=592 species were merged. Human protein 
structures were taken from AlphaFold DB (June 2021) (73). Proteins that did not sequence-
match exactly to our hg38 proteins (2590; 13.5%) were homology modeled using HHpred (74) 
and Modeller (116). 
 20 
Protein voxelization and voxel features 
A regular sized 3D grid of 7x7x7 voxels, each spanning 2Åx2Åx2Å, was centered at the Cα 
atom of the residue containing the target variant (Fig. S11). For each voxel, we provided a vector 
of distances between its center and the nearest Cα and Cb atoms of each amino acid type (Fig. 
S11; details in Supplementary Text section 1). We also provided additional voxel features 25 
including the pLDDT confidence metric from AlphaFold DB (Fig. S12), and the evolutionary 
profile, consisting of each amino acid’s frequency at the corresponding position in the 592 
species alignment.  
 
Model architecture  30 
The first layers of the PrimateAI-3D model reduce the voxel tensor to a 64-vector through 
repeated valid-padded 3D convolutions with a kernel size of 3x3x3. A final hidden dense layer 
transforms this 64-length vector into a 20-length vector, corresponding to one output unit per 
amino acid at that position. The model was trained simultaneously using multiple loss functions 
to optimize the following complementary aspects of pathogenicity: 35 
 
Benign primate variants 
Using 4.5 million benign missense variants from primates, we sampled the same number of 
unknown variants from the set of all possible human missense variants, with the distribution of 
mutational probabilities matching the benign set, based on a trinucleotide mutation rate model. 40 
Variants for the same protein position were combined in a 20-length vector (benign: 0, unknown: 
1) which was the target label for the network. We used mean squared error (MSE) as the loss 
function for non-missing labels and ignored missing labels.  
 
3D fill-in-the-blank 45 
We removed all atoms of a target residue before voxelization, discarding any information about 
the residue from the input tensor to the network. The network was then trained to predict a 20-
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length vector, labeled 0 (benign) for amino acids that occur at the target site in any of the 592 
species and 1 (pathogenic) otherwise. All human protein positions with at least one possible 
missense variant were included in this dataset. 
 
Variant ranks from language models 5 
For each gene, we took the average pathogenicity ranking from two protein language models, 
PrimateAI LM, a MSA transformer (described below) and our reimplementation of the EVE 
variational autoencoder algorithm which we extended to all human proteins (EVE*) (67).  We 
calculated the pairwise logistic rank loss as described in Pasumarthi et al.(117). 
 10 
PrimateAI Language Model 
The PrimateAI language model (PrimateAI LM) is a MSA transformer (83) for fill-in-the-blank 
residue classification, which is trained end-to-end on MSAs of UniRef-50 proteins (118, 119)  to 
minimize an unsupervised masked language modelling (MLM) objective (81). Our model requires 
~50x less computation for training than previous MSA transformers due to several improvements 15 
in architecture and training (Fig. S9).  
 
Model training procedure 
Each batch had the same number of samples from each of the three variant datasets (~33 with a 
batch size of 100). For the language model ranks dataset, all 33 samples had to come from the 20 
same protein. The number of times a protein was chosen for a batch was proportional to the 
length of the protein. In order to make our model robust against protein orientations, we 
randomly rotated the protein atomic coordinates in 3D before voxelizing a variant.  
 
Model Evaluation  25 
We compared performance of our model and other models (84) on variants for which all models 
had scores. Deep mutational scanning assays were available for 9 human genes: Amyloid-beta 
(102), YAP1 (96), MSH2 (120), SYUA (101), VKOR1 (121), PTEN (99, 100), BRCA1 (122), 
TP53 (123), and ADRB2 (124). For each assay and prediction model, we calculated the absolute 
Spearman rank correlation between prediction and assay scores. The UK Biobank dataset (79, 30 
80) contains 42 gene-phenotype pairs which were significantly associated by rare variant burden 
testing using all rare missense variants, without applying missense pathogenicity prioritization. 
The evaluation was the same as with DMS assays, except that correlations were calculated from 
the quantitative phenotypes of individuals carrying the variant, instead of the assay score for the 
variant.  For ClinVar (4), we filtered to high-quality 2-star variants and evaluated model 35 
performance by calculating per-gene area under the receiver operating characteristic curve 
(AUC). For the rare disease cohorts, we collected de novo missense mutations from patients with 
developmental disorders (85-87), autism spectrum disorders (88-94) or congenital heart disorders 
(95). For all three datasets, we compared against DNM variants from healthy controls (88-93). 
We applied the Mann-Whitney U test to measure how well each model’s prediction scores could 40 
distinguish patient variants from control variants. 
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Figures 
 
Fig. 1. Common primate variants are largely benign in human. (A) Counts of missense (solid 
green) and synonymous (shaded grey) variants from primates compared to the gnomAD 
database.  Missense : synonymous counts and ratios are displayed above each bar. (B) Fractions 5 
of all possible human synonymous (grey) and missense variants (green) observed in primates. 
(C) Counts of benign (grey) and pathogenic (red) missense variants with two-star review status 
or above in the overall ClinVar database (left pie chart), compared to ClinVar variants observed 
in gnomAD (middle), and compared to ClinVar variants observed in primates (right). Conflicting 
benign and pathogenic annotations and variants interpreted only with uncertain significance were 10 
excluded. (D) Observed gnomAD (green) or primate (blue) missense variants in each amino acid 
position in the CACNA1A gene. Red circles represent the positions of annotated ClinVar 
pathogenic missense variants. Bottom scatterplot shows PrimateAI-3D predicted pathogenicity 
scores for all possible missense substitutions along the gene. (E) Multiple sequence alignment 
showing the ClinVar pathogenic variant chr11:77181548 G>A (red arrow) creating a cryptic 15 
splice site in human sequence (extended splice motif, blue).  This variant is tolerated in Cebus 
Albifrons and other species with a G>C synonymous change in the adjacent nucleotide that stops 
the splice motif from forming. (F) Pie charts showing the fraction of benign (grey) and 
pathogenic (red) missense variants with ClinVar two-star review status or above in great apes, 
old world monkeys, new world monkeys, lemurs/tarsiers, mammals, chicken, and zebrafish. (G) 20 
Missense : synonymous ratios (MSR) across the human allele frequency spectrum, with MSR of 
human variants seen in primates shown for comparison. The blue dashed line represents the 
expected missense : synonymous ratio of de novo variants. Colors and legend are the same as 
(A). 

 25 
Fig. 2. Selective constraint of primate genes compared to human. (A) Scatter plot of 
missense : synonymous ratios between primate and human genes.  Each gene is colored by its 
pLI score, with darker points showing haploinsufficient genes. (B) Observed and expected 
counts of synonymous (top) and missense (bottom) variants per gene in gnomAD (left) and 
primates (right). Genes are colored by their pLI scores. (C) Distributions of observed/expected 30 
ratios of synonymous (dashed lines) and missense (solid lines) variants for all genes.  Results for 
primate genes (orange) and gnomAD genes (blue) are shown. (D) Scatter plot of missense : 
synonymous ratios between primate and human genes.  Highlighted points are genes that are 
under significantly stronger (blue) or weaker (red) constraint in humans compared to non-human 
primates under both methods (Benjamini-Hochberg FDR < 0.05), while grey points show non-35 
significant genes. The top 10 genes with the largest effect sizes in either direction are labeled. 
 
 
 
Fig. 3. PrimateAI-3D architecture and variant classification performance. (A) PrimateAI-40 
3D workflow. Human protein structures and multiple sequence alignments are voxelized (left) as 
input to a 3D convolutional neural network that predicts pathogenicity of all possible point 
mutations of a target residue (middle). The network is trained using a loss function with three 
components (right): common human and primate variants; fill-in-the-blank of a protein structure; 
score ranks from language models. (B) Protein structure of the STK11 gene, colored by 45 
PrimateAI-3D pathogenicity prediction scores (blue: benign; red: pathogenic). Spheres indicate 
residues with common human and primate variants (left) or residues with pathogenic mutations 
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from ClinVar (right). For spheres, the color corresponds to the pathogenicity score of only the 
variant. For other residues, pathogenicity scores are averaged over all variants at that site. (C) 
Scatterplot shows performance of methods that predict missense variant pathogenicity in two 
clinical benchmarks (DDD and UKBB). Datasets are a subset of variants for which all methods 
have predictions. (D) Six barplots show method performance for six testing datasets (DMS 5 
assays, UKBB, ClinVar, DDD, ASD, and CHD). 
 

Fig. 4. Impact of training dataset size on classification accuracy. (A) Improved performance 
of PrimateAI-3D with increasing number of common human and primate variants in the training 
dataset (x-axis). Performance of each dataset (y-axis) was divided by the maximum performance 10 
observed across all training dataset sizes. (B) Cumulative fractions of all possible human 
synonymous (grey) and missense (green) variants observed as common variants in 234 primate 
species, including human (allele frequency > 0.1%). Each point shows the average of ten 
permutations, calculated with a different random ordering of the list of primate species each 
time. 15 
 
Fig. 5. Enrichment of de novo mutations in the neurodevelopmental disorder cohort over 
expectation. (A) Enrichment of DNMs from Kaplanis et al. (87) across all genes. Enrichment 
ratios are given for synonymous, all missense, and protein-truncating variants (PTV), along with 
missense split by PrimateAI-3D score into benign (<0.821) and pathogenic (>0.821). (B) 20 
Enrichment of benign and pathogenic missense above expectation at varying PrimateAI-3D 
thresholds for classifying pathogenic missense. 
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    Missense P value 
HGNC 
symbol 

Protein-truncating 
variants 

PrimateAI-3D 
score ≥ 0.821 

All 
missense 

PrimateAI-3D 
score ≥ 0.821 

All 
missense 

AP1G1 2 4 5 4.1 ×10-7 5.9×10-5 
ATP2B2 1 9 11 2.1×10-7 1.4×10-3 
CELF2 2 4 4 1.2×10-7 6.7×10-5 
MAP4K4 2 6 7 3.9×10-7 5.0×10-4 
MED13 3 6 9 6.6×10-8 3.5×10-5 
MFN2 0 6 8 3.4×10-7 1.0×10-5 
NR4A2 2 4 5 3.7×10-7 3.3×10-5 
PIP5K1C 0 8 9 2.8×10-8 4.9×10-4 
RAB5C 2 4 5 8.6×10-8 1.5×10-5 
SPOP 1 4 6 4.1×10-7 1.7×10-6 
SPTBN2 1 10 16 3.9×10-7 4.5×10-3 
XPO1 1 7 7 5.0×10-7 7.2×10-4 
EIF4A2 2 4 4 1.7×10-7 2.1×10-4 
LMBRD2 0 3 4 6.0×10-7 1.3×10-4 
MARK2 4 3 5 2.3×10-7 3.8×10-5 
NOTCH1 4 6 17 4.1×10-7 1.3×10-6 

Table 1. Additional genes discovered in intellectual disability. Genes achieving the genome-
wide significance (p < 6.4x10-7) are shown when considering only missense de novo mutations 
(DNMs) with PrimateAI-3D scores ≥0.821. Counts of protein truncating and missense DNMs are 5 
provided. P values for gene enrichment are shown when the statistical test was run only with 
missense mutations with PrimateAI-3D score ≥ 0.821, and when it was repeated for all missense 
mutations.  
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Materials and Methods 
 
Data generation 
Generation of canonical gene set 
All coordinates used in the paper refer to human genome build UCSC hg38 / GRCh38, including 5 
the coordinates for variants in other species. Protein-coding DNA sequences and multiple 
sequence alignments of 99 vertebrate genomes with human were downloaded from the UCSC 
genome browser for the hg38 build. 
(http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/alignments/knownCanonical.ex
onNuc.fa.gz) (112, 113). For genes with multiple canonical gene annotations, the coding 10 
transcript with the highest conservation score across the MSA was selected. In total, 19,158 
transcripts were selected to represent the canonical gene sets used for all the analyses in this 
paper. 
 
Human polymorphism data 15 
We downloaded human polymorphism data from genome Aggregation Database v2.1.1, which 
collected the whole-exome sequencing data of 125,748 individuals 
(gnomad.exomes.r2.1.1.sites.vcf.bgz file) and the whole-genome sequencing of 71,702 
individuals from gnomAD v3.0 (http://gnomad.broadinstitute.org/) (28, 29, 125). For the 
subsequent analyses using gnomAD dataset, we used a merged variant set between gnomAD 20 
WES and WGS. We also collected variants from 65K TOPMed WGS (77, 78) and 200K UK 
Biobank WGS (79, 80) and merged those with gnomAD (after removing 2,404 TOPMed 
samples from gnomAD). We excluded variants that failed the default quality control filters as 
annotated in VCF files or fell outside canonical coding regions. To avoid effects due to balancing 
selection, we also excluded variants from the extended MHC region (chr6: 28,510,120 – 25 
33,480,577) for the subsequent analyses. In total, we obtained 126,873 unique common 
missense variants (allele frequency > 0.1%) and 7,306,297 unique rare missenses (allele 
frequency < 0.1%), which were included in the benign set for training of primateAI-3D. We also 
performed mutation rate correction on gnomAD variants following our previous paper (17) for 
missense : synonymous ratio analyses. 30 
 
Primate sequencing data 
We sequenced and aggregated the whole genomes of 809 primate samples across 233 primate 
species, which included samples from Great Ape Genome project (19) and other previous studies 
(20-26, 126). Among these, 783 samples passed quality evaluation and 26 samples failed QC. 35 
The major challenge of variant calling of these samples is that fewer than 60 primate species 
have genome builds available and the majority of samples are lack of reference genomes. 
Therefore, variant calling is performed using reference genomes from the closest species of 
primate samples. We aligned the sequencing data to 32 high-quality genome references (110), 
most of which are derived from long-read sequencing technologies. We adopted multiple hard 40 
filtering steps to remove low quality variants (110). As variants that are identity-by-state with 
human are of primary interest, we derived lift-over chain files between hg38 and each primate 
reference species from the multiple species alignment of 50 primate species and 8 mammal 
species (110) and lifted over the variants of primate samples to hg38. We examined the quality 
of coding variants by evaluating several QC metrics, including the number of stop-gained 45 
variants called per sample, the missense : synonymous ratios and the number of indels per 
sample.  
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Machine learning classifiers of variants 
Due to the lack of reference genomes for the majority of primate species, we conducted a 
synthetic experiment to evaluate the impact of mapping to reference genomes of closely-related 
species on variant calling. We took a gorilla sample and mapped it to both hg38 and the gorilla 5 
genome (110). Mapping to gorilla and lifting-over to hg38 produced 6.6M variants after hard-
filtering; while mapping to hg38 resulted in 45.4M variants. After hard filtering of low-quality 
variants and removing 38M fixed substitutions between hg38 and the gorilla genome, we 
observed 4.9M variants were shared between the two sets and 801.3K variants were called 
against hg38 but not called against gorilla. These variants are mostly false positives due to 10 
sequencing reads that were mapped to an incorrect region of the human genome or to regions of 
the human genome that are duplicated compared to the gorilla genome. It is essential to reduce 
these false positive variants substantially.  
 
We developed machine learning classifiers to distinguish these false positive variants from the 15 
high quality variants for each primate sample. To train the classifiers, we used multiple sequence 
features per variant: GC content, GC skewness and local composition complexity within +/- 
100bp of variants (127). In addition, we extracted variant features directly from VCF files, such 
as allelic count, mapping quality, the p-value of Fisher's exact test to detect strand bias, variant 
quality by depth, the symmetric odds ratio to detect strand bias, and genotype quality. We 20 
included the read depth (DP) of the variant normalized by the mean coverage of the primate 
sample and the fraction of alternative allele read depth out of the variant coverage. We observed 
that existence of indels nearby substantially influences the quality of variants called, thus we 
indicated indels within +/- 5bp and 10bp of variants. We also considered variant context features, 
including the mean coverage of the flanking regions around the variant normalized by the mean 25 
coverage of the primate sample, e.g., within +/- 100bp or +/- 500bp of the variant. Additionally, 
we observed that false positive variants often reside in poorly-mapped regions, which tend to 
accumulate overcalled variants. We counted the number of heterozygote SNPs within the 
flanking regions of variants (within +/- 100bp or +/- 500bp), which are normalized by the 
median counts of variants within the same length regions of the sample. Likewise, we included 30 
the normalized counts of alternative homozygote variants within the flanking regions of variants.  
 
We labelled the 801.3K false positives as poor-quality variants and the remaining 44.6M variants 
as good-quality, including the 38M fixed substitutions. We randomly sampled 80% of the variant 
set for training and the rest 20% for testing.  Various classification methods were evaluated, 35 
including random forest (RF), logistic regression, and multi-layer perceptron network. Random 
forest classifiers outperformed other methods with higher area under receiver operating 
characteristic (ROC) curve. We then independently trained six random forest classifiers using six 
gorilla samples by repeating the steps above and generated predicted scores for each variant 
using the six classifiers. The averaged predicted scores are denoted as the RF score of the 40 
variant. We chose a stringent cut-off of <0.05 for RF scores to minimize the effect of poor-
quality variant calling on the ClinVar and other analyses. 
 
We next evaluated the impact of applying the trained RF classifiers to other gorilla samples, 
which also showed comparable area under ROC curve. We then assessed whether the trained RF 45 
classifiers can be applied to other species pairs. Because reference genomes are unavailable for 
the majority of our species, we cannot directly assess the number of false positives when 
mapping to the close species. Instead, we designed several experiments to evaluate the accuracy 
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of the gorilla-trained classifier that make use of the reference genomes we had in hand. First, we 
mapped a gorilla sample to the chimpanzee genome and applied the classifiers previously trained 
between gorilla and human. Second, we chose another pair of primates, rhesus macaque and 
baboon, to test the performance of the same classifiers.  Last, we took human samples from an 
independent data set, Platinum Genomes project (128) and mapped those to chimpanzee and 5 
gorilla genomes. We also trained a second random forest classifier using the human and 
chimpanzee pairs and tested the performance of trained classifiers on human and gorilla pairs. 
All the results show the classifiers trained on one pair of closely-related species are generally 
applicable to another pair of closely-related species with comparable area under ROC. 

 10 
Cascaded variant filtering 
In addition to random forest filtering, we performed extra variant filtering steps. First, because 
we are interested in learning about pathogenicity of coding variants in humans, we removed 
variants that fell in codons where neither the reference nor the alternative allele resulted in a 
codon that matched the human codon at that position. Interestingly, this codon-match indicator 15 
also naturally reflects the clustering of these primate reference species into four major groups, 
great apes, Old World monkeys, New World monkeys and lemurs / tarsiers, as shown in the 
heatmap of Fig. S1A. Requiring codon match between primate and human genomes eliminated 
more than 50% of stop-gained variants in our primate dataset. 
 20 
Next, we applied a series of gene-specific filtering steps to reduce the poor-quality primate 
variants in samples of each primate reference species. We excluded variants falling in primate 
transcripts carrying annotation errors compared with human transcripts, such as those with 
incorrect start codons or splicing donor and acceptor sites, which implies that transferring the 
human annotation directly to primates may have been problematic for these transcripts. We also 25 
removed variants in primate transcripts carrying in the middle of the sequence stop-gained 
variants that were not observed in the list of gnomAD protein-truncating variants.  
 
We compared the distribution of variant random forest scores of a gene with the exome-wide 
distribution of variant RF scores and removed all variants in genes with a skewed distribution 30 
(Wilcoxon rank sum test p-value < 1e-20). We also merged the variants from all the samples 
mapped to a specific reference species and performed the Hardy-Weinberg equilibrium test for 
variants in primate reference species with at least seven samples. We then removed variants in 
the genes that carry any variants with excessive heterozygosity which also deviate from the 
Hardy-Weinberg proportions with p-value < 0.05. 35 
 
In order to identify and exclude duplicated regions in primate genomes, we developed a unique 
mapping filter. First, we removed low quality sequencing reads of primate samples by filtering 
out reads with mapping quality < 20 from sample BAM files; then, we mapped the remaining 
reads to both hg38 and the relevant primate reference genome. We divided all reference genomes 40 
into 1kb bins and identified the best-mapped region in primate genomes as where the largest 
fraction of reads from one hg38 1kb bin are mapped (if reads from one hg38 1kb bin are mapped 
to two consecutive primate 1kb bins, the two bins are merged into one region). The fraction of 
reads from the hg38 bin that fall into the best-mapped region of the primate genome is the unique 
mapping score for that bin for each sample. By averaging the unique mapping scores across all 45 
the samples mapped to a specific reference species, we generated the unique-mapper (UM) score 
which applies to all the variants of the reference species that fall in the specific 1kb hg38 bin. For 
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ClinVar analyses, we chose a stringent cut-off of >90% for this score to ensure the one-to-one 
mapping between human and primate genomes. 
 
These variant filters effectively reduced the number of stop-gained variants per primate sample 
to be close to the average number of stop-gained variants of human samples from Platinum 5 
Genomes project (128) (shown in Fig. S1B). The missense : synonymous ratios (MSR) gradually 
decreased after applying each of these filtering steps (Fig. S1C). In contrast, the missense : 
synonymous ratios of those excluded variants tend to be well above 1.0, implying they are either 
potentially deleterious or unreliably called. In addition, low-quality indels have also been 
substantially reduced (Fig. S1D). 10 

 
Mammal polymorphisms 
For mammal polymorphisms, we inherited the dbSNP variants of orangutan, rhesus, marmoset, 
cow, pig, mouse, goat, chicken and zebrafish from our previous paper (17) and lifted those over 
to hg38. We then excluded variants that failed codon-match requirement between hg38 and other 15 
species genomes. 109,732 unique missenses among the good quality variants of orangutan, 
rhesus, and marmoset were included in the training data set of PrimateAI-3D. 
 
For each of primate, mammal and other vertebrate species, we computed a depletion metric 
following our previous paper (17), which measures the decrease of MSR of gnomAD common 20 
variants which are identical-by-state with other species, compared to the MSR of orthologous 
rare variants (Fig. S5). 
 
Evaluation of fraction of common variants in primate polymorphisms 
Due to that the averaged sample size per primate species is 2.5, we investigated the impact of 25 
small sample size on the fraction of common variants (allele frequency > 0.1% in each primate 
species) in the primate polymorphisms. 
 
We then used the gnomAD allele frequencies of human common variants to simulate allele 
frequency spectra of primates at various sample sizes. For each primate species, we sampled 30 
genotypes according to gnomAD allele frequencies assuming the sample size is identical to that 
of the primate species. The fraction of gnomAD common variants discovered was averaged 
across 100 simulations for that specific sample size. We pooled the variants across the 233 
simulated primate species and estimated the fractions of common variants for missense and 
synonymous variants separately, which are shown as allele frequency spectra in Fig. S2. 35 
According to this simulation, it is estimated that 95.1% of observed variants (>95.1%) are 
common variants (>0.1%), ~ 3% of synonymous variants in primates are rare (allele frequency < 
0.1%) while ~ 94% of primate missense variants are common. Since the human allele frequency 
spectrum would be expected to have a larger fraction of rare variants than most other primate 
species due to the recent exponential expansion of human population size, the actual proportion 40 
of primate variants that are common (>0.1%) may be substantially higher than the 95.1% we 
estimated from simulations with gnomAD data.   
 
From this simulation, we also obtained the average numbers of common synonymous variants at 
various sample size levels, which are used in the saturation analysis. 45 
 
Generation of training variant set for PrimateAI-3D 



Submitted Manuscript: Confidential 
Template revised February 2021 

36 
 

For the benign variant set, we first included 126,873 unique common missense variants from 
human population data. To generate the primate polymorphism benign set, we relaxed our 
filtering criteria as deep learning algorithms naturally tolerate noise and benefit more from larger 
amounts of training data. We still removed variants falling in poor-quality genes or genes with 
poor annotations. However, we relaxed the unique mapper score cut-off to > 60% and the 5 
random forest score to < 0.17 and obtained 4,315,321 unique missense variants from primate 
sequencing. After merging human and primate missenses with missenses from dbSNP primates 
and variants from study on chimpanzee and bonobos (129), we obtained 4,514,581 unique 
missenses for the benign set in total. 
 10 
All possible missense variants were generated from each base position of canonical coding 
regions by substituting the nucleotide at the position to the other three nucleotides. We excluded 
variants falling in start or stop codons, resulting in 71,166,190 all possible missense variants. 
After removing 4,514,581 benign variants and 6,207,640 human rare variants, 60,443,969 
variants with unknown significance were left. 15 
 
ClinVar analysis of polymorphism data for human, primates, mammals, and other 
vertebrates 
To examine the clinical impact of variants that are identical-by-state with primate species, we 
downloaded the release variant summary for the ClinVar database 20 
(ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/variant_20210328.vcf.gz released on 28-
March-2021) (4). The database contained 872,942 variants on the hg38 genome build, of which 
753,511 were single nucleotide variants. Synonymous and stop-gained variants in the ClinVar 
database were excluded. Next, we required variants to have two-star review status or above, 
which includes “criteria provided, multiple submitters, no conflicts” and “reviewed by expert 25 
panel”.  We then removed those with unknown significance or conflicting interpretations of 
pathogenicity. We merged variants with Benign or Likely Benign annotations into a single 
category, as well merging variants with Pathogenic or Likely Pathogenic annotations. After these 
filtering steps, there were a total of 7,017 variants in the pathogenic category and 12,229 variants 
in the benign category (Fig. 1C). 30 
 
We analyzed ClinVar variants that were identical-by-state with variation in primates, mammals 
and other vertebrates and compared to those present in human population, such as gnomAD 
database. A summary of the numbers of benign and pathogenic ClinVar variants that were 
present in great apes, Old World monkeys, New World monkeys, lemurs and tarsiers, more 35 
distant mammals, birds and fish is shown in Fig. 1F. 

 
Saturation of all possible human synonymous mutations with increasing number of primate 
populations sequenced  
We performed simulations to investigate the expected saturation of all ~22M possible human 40 
synonymous mutations by sampling common variants present in the 521 extant primate species. 
We considered various sample sizes for primates, including 10, 20, 50, 100, 200, 500 and 1000. 
In the previous section, we estimated the numbers of common synonymous variants observed in 
different sample sizes of humans via simulation.  
 45 
For each primate species with each sample size, we simulated two times the number of common 
synonymous variants observed in human (allele frequency > 0.1%), because humans appear to 
have roughly half the number of variants per individual as other primate species (130).  We 
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assigned simulated variants based on the observed distribution of human common synonymous 
variants in the 192 trinucleotide contexts.  For example, if 2% of human common synonymous 
variants were from the TAG>TCG trinucleotide context, we would require that 2% of the 
simulated variants were randomly sampled TAG>TCG mutations.  This has the effect of 
controlling for the effects of mutational rate, genetic drift, and gene conversion bias, using 5 
trinucleotide context. The curves in Fig. S21 show the effects of varying the number of species, 
and the number of individuals per species on the saturation of the ~22 all possible human 
synonymous variants in the genome.  With a small sample size of 10, more than 50% of human 
synonymous variants will be present in the 521 primate species.  As the sample size per primate 
species increases to 1000, about 80% of human synonymous mutations will be covered if we can 10 
sequence all the extant primate species. With 521 primate species, all CpG transitions (100.0%) 
and non-CpG transitions (96.6%) would be observed, but only 62.3% of transversions would be 
covered, due to their much lower mutation rates. We note that this analysis assumes each species 
is a homogeneous population, which would underestimate the amount of variation due to 
subpopulation and subspecies structure; hence, saturating all transversions may still be likely 15 
within the 521 extant primate species.    
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Derivation of primate mutation rates and observed/expected ratios per gene 
We estimated primate mutation rates using intronic sequences 50-200bp away from exons, where 
the impact of selection and other factors is minimal. We slid a window of 3 nucleotides along the 
intronic sequence in steps of one nucleotide and for each primate reference genome counted the 
number of each of the 64 possible trinucleotides. Next, we counted the number of variants with 5 
each of the 192 trinucleotide mutation contexts that were observed in all samples mapped to that 
reference genome. The ratio of the observed occurrences of each trinucleotide mutation context 
to the number of possible trinucleotides across the reference genome served as our estimate of 
the mutation rate.  
 10 
Using these mutation rates, we computed the expected number of synonymous variants per gene 
for each primate reference species. We normalized our mutation rates to ensure that we expect 
the same total number of synonymous variants as are observed across the genome, although they 
may be distributed in different genes than are observed. To do this, we summed up the intronic 
mutation rates across the 192 trinucleotide contexts along the sequence of each gene and 15 
normalized this value by the total mutation rate of the whole exome. Multiplying the normalized 
mutation rate per gene with the total number of observed synonymous variants in that same gene, 
we generated the expected number of synonymous variants per gene. We then assessed the 
quality of primate mutation rates by computing the Spearman correlation between the observed 
and expected numbers of synonymous variants. The Spearman correlations vary from 0.295 to 20 
0.925 among primate reference species due to the numbers of samples mapped to reference 
species range from 1 to 169.  
 
Next, we evaluated multiple approaches to aggregating those mutation rates across primate 
reference species. First, we took the median of mutation rates across all the 31 non-human 25 
primate reference species. Second, as the mutation rate of one species is in practice interpreted as 
the probability of observing one mutation at a base position with one specific trinucleotide 
context, we computed the probability of observing at least one mutation across 31 reference 
species via a Binomial model for a specific base position with a trinucleotide context. Third, we 
calculated the same probability as the second approach except that at the base position that failed 30 
codon-match requirement, the mutation rate was assigned to zero. Last, we selected nine primate 
reference species with more than 20 samples and the Spearman correlation between the observed 
and expected numbers of synonymous variants > 0.75, including Aotus nancymaae, Ateles 
fusciceps, Cebus albifrons, Cercopithecus mitis, Lemur catta, Macaca mulatta, Pithecia pithecia, 
Rhinopithecus roxellana, and Papio anubis.  We took the median of mutation rates generated 35 
from these nine species to represent the primate mutation rates. 
 
For each set of aggregated mutation rates, we generated the expected numbers of synonymous 
variants per gene across all the primate samples and took the ratio between the observed and 
expected numbers of synonymous variants to produce the observed/expected (O/E) ratio of 40 
synonymous for each gene. We multiplied each type of aggregated primate mutation rates with 
their specific O/E ratios of synonymous variants of genes to produce a new set of mutational 
probabilities of variants. Next, we evaluated the four sets of aggregated mutation rates and these 
four sets of adjusted mutational probabilities using the Spearman correlation between the 
mutational probability of a variant and the indicator of its presence in primate variants or not 45 
across all possible synonymous variants in the exome. The median mutation rates of nine primate 
species adjusted by the O/E ratios of genes achieved the highest Spearman correlation of 0.414.  
These adjusted primate mutation rates also outperform directly applying gnomAD mutation rates 
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(29, 47) with the Spearman correlation of 0.367, implying that primates have different mutational 
preference from humans. 
 
Likewise, we computed the expected number of missense variants per gene across all primate 
species using this optimal set of primate mutation rates, which was normalized using the 5 
identical correction factor of synonymous variants (Fig. 2B). We computed the O/E ratios for 
missenses per gene (Fig. 2C). We then multiplied this best set of primate mutation rates by the 
O/E ratios of synonymous to generate mutational probabilities for each of all possible missense 
variants, which are used to select the matched set of variants with unknown significance for the 
PrimateAI-3D training. 10 
 
In comparison with human data, we adopted the gnomAD mutation rates (29, 47) and variants, 
and computed the observed and expected numbers of synonymous and missense variants using 
the similar approach, as well as the O/E ratios of genes for synonymous and missense variants, 
respectively, shown in Fig. 2B and 2C. 15 
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Identifying differential selection between humans and primates 
We sought to develop a model to 1) quantify the broad-scale similarity of natural selection 
between humans and primates and 2) identify genes evolving subject to significantly different 
selective pressure in humans compared to primates. Because our strategy of mapping to 
divergent reference genomes means that some observed variants within a primate species are 5 
actually fixed differences between that species and the reference to which it was mapped, we 
based our estimates of selection on the number of segregating missense variants in each gene per 
primate species (i.e., we excluded variants that were carried on all chromosomes sampled from a 
given species). This ensures that we do not underestimate selection in the primate samples, 
because fixed variants are more neutral than segregating variants. Nonetheless, the number of 10 
segregating missense variants is shaped in complex ways by both sampling and demographic 
forces, we took a two-pronged approach to tackling this question. First, we built an explicit 
population genetic model to model selection across primates. Second, we developed a Poisson 
Generalized Linear Model to robustly detect genes that are differentially selected between 
humans and primates. 15 
 
Explicit population genetic model of selection 
Our explicit population genetic model proceeds through two phases: first, we model the counts 
of synonymous segregating sites to learn a neutral background distribution of mutation rates per 
gene per species. Then, we apply that neutral background distribution to estimate the average 20 
selection per gene across species.  
 
General modelling framework 
We first established a neutral baseline for each species by fitting a model to the segregating 
synonymous variants in each species. We employed the Poisson Random Field model, under 25 
which the observed number of segregating sites is a Poisson random variable, with the mean 
determined by mutation, demography, selection, and sample size (34). For simplicity, we 
assumed an equilibrium (i.e. constant) demography for all species besides human; for human, we 
used Moments (51) to find a best fitting demographic history based on the folded site frequency 
spectrum of synonymous sites. 30 
 
With a best fitting demographic model in hand, we let 𝑋!"# be the number of mutations of type 𝑘 
(𝑘	 = 	0 is synonymous, 𝑘	 = 1 is missense) in gene 𝑔 of species 𝑖, θ!" = 4𝑁!µ" be the per site 
population scaled mutation rate, and 𝐿"# be the number of sites of type 𝑘 in gene 𝑔. We then use 
dadi (50) to compute 𝑝!0γ$%1 which can be interpreted by noting that θ!"𝑝!(γ) is approximately 35 
the probability that a site in gene 𝑔 with population scaled selection coefficient γ$% = 2N$s% is 
segregating in a sample from species 𝑖. 
 
Then, the distribution of 𝑋!&# is Poisson with mean θ!"𝐿"#𝑝!0γ!"1, i.e. 

P0X$%' = x:θ!"1 =
;θ$%L%'p$0γ$%1>

(

x! e)*!"+"#,!-.$%/. 40 
 
Background neutral model to estimate per gene mutation rates 
We anticipated that due to a combination of true variation in mutation rate and data quality 
across the genome, different genes would have a different effective per base-pair mutation rate. 
Although we could have used the estimated mutation rates from earlier work, we wanted to 45 
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create a robust estimate with very few parameters per species. To accommodate this, we adopted 
a Gamma distributed prior on θ!", and applied it to synonymous sites (i.e., 𝑘	 = 	0, γ!" = 0) and 
integrated over it to result in a scaled negative-binomial distribution. 

P0𝑋!"0 = 𝑥01 = C D
;θ$%L%0p$(0)>

(&

x0!
e)*!"+"&,!(0)EF

β3

Γ(α) θ$%
3)4𝑒)5*!"K𝑑θ$%

6

0

=
𝐿"0𝑝!(0)
𝑥0!

β3

Γ(α)
Γ(α + 𝑥)

;β + 𝐿"0𝑝!(0)>
378& 5 

 
To account for the impact of GC content on mutation rate, we parameterized the gamma 
distribution mean as a log-linear function of GC content, 

𝑙𝑜𝑔0µ%1 = 𝑚0 +𝑚9:𝐺𝐶", 
𝑙𝑜𝑔(σ) = 𝑠𝑑0. 10 

from which we can compute gene-specific α and β parameters, 

α" =
µ";

σ; 	

β" =
µ"
σ; . 

We then optimized the parameters 𝑚0, 𝑚9: , and 𝑠𝑑0 by maximum likelihood in each species to 
learn the background distribution of mutation rates.  15 
 
Given our optimized parameters, we can compute a posterior distribution on the mutation rate 
per gene, 

P0θ!":𝑋!"0 = 𝑥01 =
;β" + 𝐿"0𝑝!(0)>

3%78&

Γ(α + 𝑥0)
θ$%
3"7(&)4e)<5"7+"&,!(0)=*!" 

 20 
which is simply a gamma distribution with parameters α%> = α% + 𝑥0 and β%

> = β% + 𝐿"0𝑝!(0). 
 
Fig. S7A shows a histogram of the average population scaled mutation rate across species.  
 
Modelling selection across species 25 
With the parameters 𝑚0, 𝑚9: , and 𝑠𝑑0 in hand, we can parameterize the distribution of the 
number of segregating nonsynonymous sites given a selection coefficient. To generate the 
expected number of segregating sites given a selection coefficient, we used dadi (50) to generate 
𝑝!(γ) across a grid of population scaled selection coefficients, from 2Ns = 0 to 2Ns = 10000. We 
assumed further that every nonsynonymous mutation in a gene shares the same population scaled 30 
selection coefficient, γ!". 
 
We then took the posterior distribution of θ!" estimated from the synonymous sites as the 
distribution of mutation rates for nonsynonymous sites to obtain 
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P0X$%4  =  x4|γ!"1 

=  C D
;θ!"𝐿"4𝑝!0γ!"1>

8'

𝑥4!
𝑒)*$%?%'@$-.$%/ E

6

0
D
;𝛽" + 𝐿"0𝑝!(0)>

A%78&
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;β" + 𝐿"4𝑝!(0)>
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Γ(α + 𝑥0)
Γ0α" + 𝑥0 + 𝑥41

;β" + 𝐿"0𝑝!(0) + 𝐿"4𝑝!0γ!"1>
3%78&78' . 

 
Finding average selection coefficients via an EM-like procedure 5 
Noting that from population genomic data, the only thing that can be explicitly determined is the 
population-scaled selection coefficient, γ$% = 2𝑁!𝑠!", we devised a two-step procedure to control 
for demographic differences across species (i.e., differences in 𝑁!). In principle γ!" can be 
different across species due to differences in either 𝑁! or 𝑠!", but we assumed that for the 
majority of genes, 𝑠!" ≡ 𝑠" is identical across species, and the differences in γ!" are driven 10 
primarily by differences in 𝑁! . Our procedure can then be thought of as analogous to an EM 
algorithm, in which first we estimate γ!" separately for each species and gene, followed by 
estimating 𝑁! by assuming that 𝑠!" is identical across species, and finally using our estimated 𝑁! 
to produce estimates of 𝑠". 
 15 
First, we inferred γ$% for each gene and species separately. This resulted in some information 
loss, because in species with small sample sizes, there may be many genes with 0 segregating 
missense variants, and hence result in an inference of an MLE γ$% = −∞. Nonetheless, for each 
species we obtained thousands of genes with an estimate of γ$%. To control for some variation in 
estimated γ across species, we additionally restricted to genes with γ$% between 10 and 1000.  20 
 
We then assumed that for almost all remaining genes (1000-10000 depending on the species), the 
difference in estimated γ$% = 2𝑁!𝑠!" between species is due to the 𝑁_𝑖 being different, and that 
𝑠!" ≡ 𝑠" is identical across species for gene 𝑔. For each gene, we averaged estimated γ!" across 
species to obtain γ"___ ≈ 2𝑁a𝑠", the average population scaled selection coefficient for gene 𝑔. 25 
Then, we computed 𝑅!" = γ!"/γ"___, which is an estimator of 𝑁!/𝑁a because γ!"/γ"___ ≈
2𝑁!𝑠"/2𝑁a𝑠" = 𝑁!/𝑁a. To account for noise among the outliers and the fact that 𝑠" is not truly 
identical across species, we estimated a single 𝑅! value per species by taking the median of 𝑅!" 
across all genes in species 𝑖. 
 30 
Finally, we grouped species together to re-estimate γ%a  by substituting γ$% → 𝑅!γ%a , which 
provides an approximation of γ!" from γ"___ via 𝑅!γ%a ≈ N$/Na2Nas% = 2N$s%. Then, we maximized 
the likelihood 

𝐿0γ%a 1 =eP0X$%4:R$γ%a 1
$∈E

 

to find the maximum likelihood estimate of γ"___ across a group of species 𝐼. In the following, we 35 
take 𝐼 to be either the set  𝑃 of all non-human primates, or 𝐼 to be the singleton set 𝐻 containing 
just humans.  
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Fig. S7B shows our estimated γ"___ as a function of the pooled missense : synonymous ratio among 
primates. The strong negative correlation is expected, as genes with higher missense : 
synonymous ratios have smaller estimated selection. To convert our estimates of γ"___ to estimates 
of the selection coefficient, s, we divided by 2*10,000, which we take to be a typical effective 
population size among primates. 5 
 
Comparing human and primate selection 
Next, we compared human and primate constraint using this modelling approach. First, we 
computed a distribution of fitness effects (DFE) across genes in humans and primates by plotting 
a histogram of selection coefficients per gene in both our grouping of primates and our human 10 
data (Fig. S7C). We note that the much larger sample size of the human data compared to the 
primate data results in fewer outliers of strong selection, because almost every gene has missense 
variants in the human data, whereas in the primate data there are many genes observed with few 
to no primate missense variants.  
 15 
To identify genes where human constraint is different from non-human primate selection, we 
developed a likelihood ratio test to test whether 𝑠 is significantly different between human and 
other primates by testing if γ"___ is different between human and primate. Under the null model, 
γ"F = γ"___, so the likelihood is  

L40γ%a 1 = je𝑃0𝑋!"4; 𝑅!γ%a 1
!∈G

l × 𝑃0𝑋F𝑔1; 𝑅Fγ%a 1 20 

where 𝑃 is the set of non-human primates and the subscript ℎ indicates human data. Under the 
alternative hypothesis, γF" ≠ γ"___ so the likelihood is 

L;0γ%a , γF"1 = je𝑃0𝑋!; 𝑅!γ%a 1
!∈G

l × 𝑃0𝑋F; 𝑅FγH%1. 

 This then forms the likelihood ratio test statistic, 
Λ = 2(𝑙𝑜𝑔 𝐿; − 𝑙𝑜𝑔 𝐿4). 25 

Note that under the null hypothesis γF" = γ"___ we have that 𝐿4 = 𝐿; and hence this represents a 
nested hypothesis test. Thus, under the null hypothesis that γF = γ_, the test statistic follows a χ; 
distribution with one degree of freedom, Λ ∼ χ;(𝑑𝑓 = 1), by standard likelihood ratio theory.  
 
Intuitively, this test determines whether 𝑠F" is significantly different from 𝑠", because we already 30 
corrected for the effective population size of humans using 𝑅F. Specifically, 𝑅FγF" ≈
𝑁F/𝑁a2𝑁a𝑠F" = 2𝑁F𝑠F" while 𝑅Fγ"___ ≈ 𝑁F/𝑁a2𝑁a𝑠" = 2𝑁F𝑠", so that if γF" ≠ γ"___, then 𝑠F" ≠ 𝑠". 
 
Fig. S7D shows the relationship between γ"___ and γF", showing that there is a strong correlation. 
Colored points indicate genes that are significant according to the combined significance test 35 
described in the main text and subsequently. 
 
Comparison with alternative approaches 
We next assessed whether our population genetic modeling improved the correlation of selection 
estimates of our primate data with previous gene-constraint metrics in humans, including pLI 40 
(28) and s_het (111). We found that explicitly modeling the selection coefficient improves the 
correlation with these constraint metrics over the raw missense : synonymous ratio when using 
either primate data or human data (Fig. S8).  
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Testing the model via simulation 
To verify the performance of our model, we performed population genetic simulations.  
 
We generated data in line with our human and primate data by simulating data for 15000 genes. 
We used the number of synonymous and nonsynonymous mutations possible given the human 5 
reference genome for each gene, to create a realistic distribution of polymorphism in our 
simulations. For each gene, we drew the selection coefficient from a gamma distribution with 
mean 0.01 and standard deviation 0.01. We also drew the mutation rate per basepair for each 
gene from a gamma distribution with mean 5x10-8 and standard deviation 1x10-8. We then 
sampled from 213 species, with sample sizes matching those in our real primate data. For each 10 
species, we drew an effective population size from a gamma distribution with mean 10,000 and 
standard deviation 5,000. 
 
To generate data for each species, we sampled from the Poisson random field model. 
Specifically, given an effective population size, mutation rate, sample size, and selection 15 
coefficient, the counts of sites from each gene in each species are sampled from a Poisson 
distribution as in the previous section. We then ran the inference pipeline inference on the 
simulated data, and Fig S9A shows that our inferred selection coefficients are very strongly 
correlated with the simulated selection coefficients, although they are somewhat upwardly biased 
for very weak selection of roughly s ~ 1/10000, which is expected based on the fact that the 20 
population scaled selection coefficient would be less than 1 on average, and thus have only 
minimal effects on segregating polymorphism. This shows that our model infers selection 
precisely from genome-scale data. 
 
We then tested the power and calibration of the likelihood ratio test by simulating 2000 of the 25 
15000 genes as having a different selection coefficient in humans compared to the rest of 
primates. To simulate the change in selection coefficient, we drew a random factor with a log-
uniform distribution between 0.01 and 100 and multiplied the primate selection coefficient by 
that factor for each of the 2000 genes. We then performed the inference pipeline followed by the 
likelihood ratio test, with p-values corrected for multiple testing by the Benjamini-Hochberg 30 
procedure, as in the main text. Fig S9B shows that we obtain good control of the false discovery 
rate for genes with no change in selection between humans and primates, while obtaining greater 
power for larger shifts between human and primate. 
 
 35 
Poisson generalized linear mixed model 
 
Our population genetic model successfully modelled the similarity of selection between primates 
and humans, which we wanted to confirm with a less explicit model. To do so, we used a 
Poisson generalized linear mixed model (GLMM), inspired by the model used in SnIPRE (131). 40 
We pooled polymorphic synonymous and missense mutations across all primates, and compared 
the pooled MSR to the MSR of human variants. Because these two quantities are related in a 
non-linear way, we used a two-step process. First, we fit a Poisson GLMM to the pooled primate 
data to estimate the depletion of missense variation at each gene. Then, we fit a second Poisson 
GLMM to the human data, controlling for the primate depletion estimates. This allowed us to 45 
estimate how much more or less depleted for missense variation each human gene is compared to 
what is expected based on primate genes. To control for noisily estimated missense : 
synonymous ratios, we only fit the Poisson GLMM to genes that had an average unique mapper 
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score > 0.9 across all primate species and for which we had at least 100 synonymous variants 
pooled across primates. 
 
Primate GLMM 
To model primate variation, we set up a simple model in which there is a background mutation 5 
rate and the impact of GC content as fixed effects, and random effects accounting for gene-
specific mutation rates and the depletion of nonsynonymous variation. Recalling from the 
population genetic model that 𝑋!"# is the number of mutations of type 𝑘 (𝑘	 = 	0 is synonymous, 
𝑘	 = 1 is missense) in gene 𝑔 of species 𝑖, we summed over all non-human primates to get the 
total number of variants of type 𝑘 in gene 𝑔 across non-human primates, 10 

𝑋"#
(G) =t𝑋!"#

!∈G

 

where P is the set of non-human primates, and the superscript (𝑃) indicates that the value is over 
non-human primates and is not an exponent. Then, we modeled 𝑋"#

(G) as a Poisson GLMM, 
 

𝑋"#
(G) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛;µ"#

(G)> 15 
where 

𝑙𝑜𝑔0µ"#1 = β0
(G) + β4

(I)GC% + δ"
(G) + ϵ"k + 𝑙𝑜𝑔0𝐿"#1 

with β0
(G) being a fixed effect corresponding to background mutation rate, β4

(G) being a fixed 
effect that corresponds to the impact of GC content, δ"

(G) a random effect corresponding to the 
discrepancy between the mutation rate of gene 𝑔 and the genome-wide background, ϵ" a random 20 
effect corresponding to the deficit of missense variation, k is an indicator of mutation type, and 
𝐿"# the number of sites of type 𝑘 in gene 𝑔. Note that k here serves as an indicator of whether a 
site is a synonymous or a missense mutation. 
 
We fit this model using the R package glmer (52). 25 
 
Human GLMM 
With the estimates of ϵ" in hand, we built a model for the human data 𝑋"#

(J) ≡ 𝑋F"#, with 

𝑋"#
(J) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛;µ"#

(J)> 
Where 30 

𝑙𝑜𝑔;µ"#
(J)> = β0

(J) + β4
(J)𝐺𝐶" + β;ϵ"𝑘 + βKϵ";𝑘 + βLϵ"K𝑘 + δ"

(J) + η"𝑘 + 𝑙𝑜𝑔0𝐿"#1 
 
Here, β4

(J), β;
(J), δ"

(J), and 𝐿"# have the same interpretation as the primate model, just applied to 
human data. However, we now have additional fixed effects β;, βK, and βL that model a 
nonlinear relationship between the missense depletion in primates and the missense depletion in 35 
humans. Thus, our remaining random effect, η" can be thought of as the deviation of the 
observed depletion of missense variants in humans compared to what would be expected based 
on the primate depletion. In particular, η" < 0 indicates that a gene has even fewer missense 
variants than would be expected based on primates, and is thus suggestive of stronger constraint 
in humans than in primates, while η" > 0 indicates an excess of missense variants compared to 40 
expected based on primates, implying relaxed constraint in humans compared to primates. 
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To see if the model is able to capture the nonlinear relationship of human and primate MSR, Fig. 
S10 shows the log-scaled MSRs of both human and primate, along with the function β;𝑥 +
βK𝑥; + βL𝑥K which models the relationship of primate MSR to human MSR. It is able to capture 
the nonlinearity near the edges of the MSR distribution much better than a linear fit.  
 5 
GLMM p-values 
To determine which η" values were significantly different from 0, and hence indicative of 
human having less or more constraint than non-human primates, we developed an approach to 
controlling for gene length by binning genes by gene length and creating Z-scores based on the 
η" within each bin. Intuitively, shorter genes are likely to have a large magnitude of η" by 10 
chance. Moreover, because we don’t actually expect that selection is identical between humans 
and primates, we anticipate identifying genes for which η" significantly deviates from a 
background distribution.  
 
Our procedure was to first bin genes into quantiles by the number of amino acids in the human 15 
reference genome, each bin consisting of 100 genes. We then computed a Z-score by bin by 
computing the mean and standard deviation of η" within each bin and standardizing each η" by 
bin-wise mean and standard deviation. We then computed p-values assuming that the Z-score 
follows the standard normal distribution  𝑍 ∼ 𝑁(0,1). 

 20 
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PrimateAI-3D Model 
We developed a comprehensive deep learning algorithm called “PrimateAI-3D”. It takes as input 
protein structures and fixed-species multiple sequence alignments. A method called voxelization 
captures the protein structure surrounding a target variant and the conservation of its amino acids 
across evolution. A 3D convolutional neural network takes this voxelized structure as input and 5 
converts it into predictions of pathogenicity. PrimateAI-3D is trained to integrate three diverse 
objectives: distinction between human and primate common variants and unknown human 
variants; prediction of acceptable alternative amino acids at a protein site after removing all 
atoms of the original amino acid (“fill-in-the-blank in 3D”); ranking of scores that follows the 
ranking produced by the PrimateAI language model and the variational autoencoder from EVE. 10 
 
Training data preparation 
Protein structures 
We downloaded predicted human protein structures from the AlphaFold DB (June 2021) (73). 
16,568 protein sequences in that database matched exactly to one of our 19,158 hg38 proteins. 15 
For the rest, we performed homology modelling: we created a BLAST (132) database from the 
sequences in AlphaFold DB and searched against it with the remaining 2,590 proteins. For 2,167 
proteins, we found a sequence match with >80% sequence identity, >80% target sequence 
coverage and <75 residues not covered (for 1,073 of those 2,590 proteins, both sequence identity 
and target coverage were >99%). We applied homology modelling software Modeller (116) 20 
using the AlphaFold structures as templates to calculate structures that exactly matched the 
sequences of our target proteins. For the remaining 423 proteins with more than 75 residues not 
covered by an AlphaFold DB structure, we used HHpred (74) to predict a structure for the entire 
protein. Then we used both the AlphaFold DB and HHpred structures as templates in Modeller. 
This procedure covered another 384 proteins with structure, leaving 39 proteins that failed in 25 
HHpred or Modeller. All these 39 proteins were several thousand amino acids long and were 
excluded from our training dataset.  
 
Multiple sequence alignments 
PrimateAI-3D took in the multiz100 alignment from the UCSC database (112, 113) to calculate 30 
the evolutionary conservation of each human protein residue in a set of 100 vertebrate species, 
similar to PrimateAI (17). In addition, we also included the protein sequences derived from the 
recently released Zoonomia study which consists of whole-genome alignments of 241 
mammalian species (114). Finally, we obtained alignments of 251 species that covered at least 
75% of all human proteins in the human Jackhmmer alignments (133) that we generated to 35 
replicate EVE (67); section “Model evaluation”). We aligned the amino acid sequences of the 
three sets of species to produce an alignment of human proteome across 592 species by filling 
any missing parts with gaps.  
 
Protein voxelization and voxel features generation 40 
Protein voxelization is the process of converting sets of protein atomic coordinates into tensors 
that have the same shape for all sets of coordinates and that can then be used in a traditional 
machine learning device. A regular sized 3D grid of cubes (“voxels”) is centered at the Cα atom 
of the residue with the target variant (Fig. S11) and each voxel captures its atomic and 
evolutionary environment. We evaluated different combinations of grid sizes of voxels and voxel 45 
sizes and selected a grid size of 7x7x7 voxels with a voxel size 2Åx2Åx2Å, which achieves the 
best performance. 
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For each voxel, we computed a vector composed of diverse features, which is explained in detail 
below. 
 
Atomic distance profile 5 
For each voxel, we recorded the shortest distance between the Cα of one type of residuals (e.g., 
Alanine residue in Fig. S11) and the center of the voxel. We repeated this procedure for other 
amino acids and obtained the shortest distance of the voxel center to each of 21 amino acid types 
(20 standard amino acids plus one amino acid representing all non-standard amino acids). We 
then recorded the shortest distance for Cβ instead of Cα atoms, resulting in 2*21=42 distance 10 
values for each voxel (Fig. S11), which is referred to as the atomic distance profile of a variant. 
Detailed procedure is explained in Supplementary Text section 1.  
 
Structure quality features 
Several features measure the confidence of the structure around each voxel, including an 15 
indicator whether the protein structure is present in AlphaFold DB as-is (i.e., with a perfect 
sequence match to one of our protein sequences) and an indicator whether we used Modeller 
with AlphaFold DB structures as templates (in case the match was not perfect). We also included 
residue-specific quality features such as the pLDDT from AlphaFold DB (Fig. S12). 
 20 
Species-differentiable evolutionary profiles 
In PrimateAI (17), the evolutionary profile of a target residue is the frequency of each amino 
acid in the multiz100 alignment. This implies that all species have the same contribution to the 
amino acid frequency profile, regardless of the genetic distance of a species to human or to other 
species, thus it is an unrealistic scenario.  Therefore, in PrimateAI-3D, we assigned a different 25 
weight to each species of the 592-way whole proteome alignments. We initialized each weight to 
be 1/592 at the beginning of training, but let each weight be differentiable. This means 
PrimateAI-3D learns by itself how important each of the 592 species in the MSA is in terms of 
contribution to human pathogenicity. In Supplementary Text section 3, we implemented this 
procedure in a convolutional layer 𝐶𝑜𝑛𝑣M′that, for any target residue, takes a fixed-species 30 
multiple sequence alignment as input and outputs an evolutionary profile with 210 features. In 
order to merge this evolutionary profile with voxels, we obtained a mapping from each voxel to 
the sequence position of the residue that is closest to the voxel center across all protein atoms in 
the structure (the nearest neighbor; function defined in Supplementary Text; Fig. S12).  
 35 
Other protein-specific features 
We included the reference amino acid in every voxel as a 1-hot encoded vector with 21 features 
(Fig. S12). The reference amino acid is the amino acid at the target site in the human reference 
proteome. Furthermore, we added two binary indicators to every voxel that signal whether the 
atoms of the target residue had been removed before voxelization or not (section “Model 40 
training”; Supplementary Text for details). 
 
Model Architecture  
The first layer of the network performs unpadded 3D convolutions in the voxel feature 
dimension with a kernel size of 1x1x1 and 128 filters, followed by ReLU activation and batch 45 
normalization. This creates an output tensor of shape 7x7x7x128. We then repeatedly applied 3D 
convolutions with a kernel size of 3x3x3, valid padding, and 64 filters until the output tensor’s 
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shape becomes 1x1x1x64, again each time followed by ReLU activation and batch 
normalization. In each such layer, the first three dimensions of the output are reduced by 2 
(because of the valid padding). Then we flattened the tensor and added a final hidden dense layer 
with 64 hidden units (ReLU activation, batch normalization). The output layer consists of 20 
units (one for each standard amino acid) and uses a sigmoid activation function. 5 
 
Model training 
PrimateAI-3D was trained to perform multiple tasks simultaneously (multi-task learning), which 
are described in detail below. Each task captures an alternative and unique aspect of 
pathogenicity. We experimented with multiple combination techniques, including transfer 10 
learning, but found that simultaneous optimization gives the best generalization performance, 
which is in line with the current trend in structure prediction models (e.g., AlphaFold2 (72) and 
RoseTTAFold (134) to combine various evolutionary and physical aspects of predicted 
structures in their loss functions). 
 15 
Human and primate variants 
We obtained 4.5 million benign missense variants from human and primate data. We sampled a 
matched set randomly from the genome, requiring the distribution of mutational probabilities of 
unknown variants to be identical to that of benign variants. Another difference from PrimateAI 
(17) was that we used a single label vector to represent all the variants at the same amino acid 20 
site. This means we predicted the pathogenicity of all alternative amino acids at a site in one 
forward pass, instead of only a single variant. Note that a single nucleotide substitution cannot 
generate all 20 amino acids and that the label vector for a residue always contains missing 
values. We therefore masked missing labels during loss calculations so that they never directly 
contribut to the gradient. Benign variants have a label value 0 and pathogenic variants have a 25 
value 1. We used mean squared error as the loss function for non-missing labels. 
 
Variants from fill-in-the-blank in 3D 
The generation of this variant set was inspired by the typical training procedure of language 
models (81). During voxelization, the voxel grid is centered on the Cα atom of a target residue 30 
and the distance profile is calculated using all atoms within the scanning radius of a voxel center. 
For fill-in-the-blank in 3D, we performed the same procedure, except that we removed all atoms 
of the target residue before calculating the distance profile or nearest neighbor mapping. In 
effect, all features specific to the target residue were removed from the input tensor to the 
network. Then we trained the network to pick the amino acid which may be acceptable at the 35 
target site. These acceptable / unacceptable amino acids from the multiple sequence alignments 
formed a second training set. Any amino acid that occurs in the MSA at the target site was 
considered acceptable (label 0), all others unacceptable (label 1).  
 
Variant ranks from language models 40 
Language models, such as EVE and PrimateAI language model, perform competitively on data 
sets evaluated on a per-gene basis, such as saturation mutagenesis assays. However, directly 
using prediction scores from these models as additional features to PrimateAI-3D failed to 
improve performance. This is due to that the major fraction of the variance in variant 
pathogenicity across the human proteome can be attributed to the variation of proteins or protein 45 
domains. For example, in the human and primate variant set, the ratios between the numbers of 
common and unknown variants are lower for more pathogenic genes. Similarly, in fill-in-the-
blank training, we observed fewer species tend to carry mutations in more pathogenic genes, 
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assuming a fixed set of species across the proteome. Language model scores, however, have not 
been calibrated well for this inter-protein (or protein domain) variation, thus are ignored by 
gradients from the previous two datasets with dominant effect on variance.  Instead, we 
hypothesized that using language model scores as an additional target output could be helpful: 
first, neither of the two datasets capture epistatic patterns (unknown human variants can contain 5 
both pathogenic and benign variants; fill-in-the-blank labels are taken only from single protein 
positions in limited species without considering sequence context). Secondly, voxelized 
structures may be expressive enough to capture epistatic patterns by themselves. For example, 
epistatic interactions usually indicate residue-residue interactions in structure (135).  
 10 
We used a rank loss function to incorporate language model scores as a third training dataset, 
and only computed it on variants from the same protein. More specifically, we first converted the 
scores from language models to ranks, separately for each protein. This means the ranks for each 
protein are within range (1,…,N), where N is the length of the protein. These ranks are the truth 
ranks, i.e. PrimateAI-3D is trained to produce scores that have the same ranks. The pairwise 15 
logistic loss from Pasumarthi et al.(117) measures the distance between two sets of ranks and 
produces a gradient that ultimately updates the model to predict scores that better match the truth 
ranks.  
 
Training procedure 20 
The dataset of human and primate variants covers 5.6M of 10.8M possible amino acid positions 
in human proteome. For each of the other two datasets (fill-in-the-blank in 3D and language 
model ranks), we sampled equally as many amino acid positions. This is primarily due to 
practical reasons. First, this allows each batch to have the same number of samples from each 
dataset (~33 with a batch size of 100), leading to more stable training in each dataset 25 
individually.  Second, it controls the influence of each dataset solely via the sample weight in the 
loss function, instead of training sample size as an additional free parameter. Third, it keeps 
training and epoch times at reasonable levels. Last, there was no obvious performance benefit 
from allowing more samples.  
 30 
For the language model ranks dataset, we additionally required that all 33 samples in a batch 
come from the same protein. This allows calculating rank losses not only for the same protein 
position, but across all samples from the same batch. The number of times that a protein was 
chosen for a batch was proportional to the length of the protein. In order to make our model 
robust against protein orientations, we randomly rotated the protein atomic coordinates in 3D 35 
before voxelizing a variant.  
 
Model optimization was performed using Adam (136) from Keras 2.2.0 with default parameters 
and a learning rate of 0.001. From each of the three datasets, we sampled 20,000 hold-out protein 
positions for model validation. For each alternative model and epoch, we predicted these hold-40 
out validation datasets, together with variants from BRCA1 and TP53 assays. This produced two 
area under ROC (AUC) metrics (human and primate variants and fill-in-the-blank in 3D 
variants) and three Spearman rank correlation values (language model ranks and BRCA1 and 
TP53 assay ranks) for each epoch in each alternative model. We calculated the rank of each 
metric across all alternative models, e.g., we converted human and primate AUC values from 9 45 
alternative models in a range (0.6, …, 1.0) to ranks (1, …, 9). Then, for each model, we averaged 
the ranks of the 5 datasets, and only kept the model with the highest average rank. Furthermore, 
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we used this procedure to optimize the weights of each dataset in the loss function (0.5 for fill-in-
the-blank in 3D, 1.0 for language model ranks, 2.0 for human and primate variants). 
 
Ensemble training and inference 
Once we found the optimal model and model parameters, we repeated this training procedure 40 5 
times, each time with a different initial seed value. This generated 40 different models. In order 
to predict a variant, we calculated its pathogenicity score using all 40 models 10 times, each time 
with a different protein orientation. The average of these 400 scores was the final pathogenicity 
score for the variant.  
  10 
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PrimateAI Language Model 
PrimateAI language model (PrimateAI LM) is a multi-sequence alignment (MSA) transformer (83) 
for fill-in-the-blank residue classification, which was trained end-to-end on MSAs of UniRef-50 
proteins (118, 119)  to minimize an unsupervised masked language modelling (MLM) objective 
(81). It outputs classification scores for alternative and reference residues, which serve as inputs 5 
to the PrimateAI-3D rank loss.  
 
Traditionally, fill-in-the-blank MSA transformers simultaneously classify multiple masked 
locations in MSAs during training. Higher numbers of mask locations can add more MLM 
gradients that inform optimization, thereby enabling a higher learning rate and faster training. 10 
However, fill-in-the-blank pathogenicity prediction is fundamentally different from traditional 
MLM as classification at a mask location depends on predicted values of residues at other mask 
locations. The classification scores may often be the averages of conditional predictions over all 
possible combinations of residues at other mask locations. PrimateAI LM avoids this averaging by 
revealing tokens at other mask locations before making predictions. Our model achieves state-of-15 
the-art clinical performance and denoising accuracy whilst requiring 50x less computation for 
training than previous MSA transformers. 
 
Preparation of MSA datasets 
We created an MSA for each sequence in a UniRef-50 database (March 2018 version) (115, 118) 20 
by searching a UniClust30 (137) database (October 2017 version). Then an MSA dataset 
containing 26 million MSAs was created using the protein homology detection software HHblits 
version 3.1.0 (138). Default settings were used for HHblits except that we set the number of search 
iterations (-n) to 3. This replicates the approach to generating MSAs to train MSA transformer 
(139). In addition, we generated a set of MSAs for 19,071 human proteins using HHblits following 25 
the procedure above. 
 
Next, we excluded UniRef-50 MSAs whose query sequences carry rare amino acids, retaining 
those containing the 20 most abundant residues only.  To further simplify our data pipeline, we 
filtered non-query sequences in the MSA to those that only contain the 20 most common residues 30 
and gaps, which represent deletions relative to the query sequence. As input MSAs to PrimateAI 
LM have a fixed size of 1024 sequences, we randomly sampled up to 1023 non-query sequences 
from the filtered sequences if MSA depth is larger than 1024. If MSA depth is below 1024, we 
padded the MSA with zeros to fill the input. 
 35 
We then applied a periodic mask pattern with a stride of 16, which covers an amino acid position 
of interest in the query sequence, to MSAs. Using a fixed mask pattern ensures consistent 
computational requirements for mask revelation discussed below. The position of interest was 
randomly sampled from all positions in the query sequence during training or chosen by a user 
during inference. To maximize information about the position of interest, we tried to select a 40 
cropping window with a size of 256 residues where the position of interest is at the center. However, 
the cropping window may be shifted if the position of interest is near the edge of an MSA to avoid 
padding zeros and increase information about the position of interest. If the query sequence is 
shorter than the PrimateAI LM cropping window, zeros were padded to fill the window size. 
Illustration of cropping, masking, and padding of MSAs input to PrimateAI LM is shown in Fig. 45 
S23. 
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We followed AlphaFold 2 (72) to assign a smaller probability, 𝑝NOP,QR, to an MSA being sampled 
during training if the protein length, 𝐿, is shorter, 
 

𝑝NOP,QR ∝
max(min	(𝐿 , 512), 64)

512 	, 
 5 
to rebalance the distribution of lengths for UniRef-50 proteins used for training and human proteins, 
and to avoid computation being wasted on padding. We also adjusted the probability of sampling 
non-query sequences to be included in the first 32 sequences of an MSA, where the fixed mask 
pattern is applied, to penalize the occurrences of gaps in those sequences. The probability, 𝑝PON', 
of a non-query sequence being masked decreases with increasing number of gap tokens, 𝑁%O,,  10 
 

𝑝PON'	 ∝
0𝐿 − 𝑁%O,1

;

𝐿; 	. 
 
Down sampling of sequences with lots of gaps reduces the fraction of missing data in MSAs.  
 15 
Model Architecture 
MSA Embedding 
We first embedded MSA input for PrimateAI LM, shown in Fig. S24, and applied a fixed mask 
pattern to the first 32 sequences of MSAs. The MSA tokens were encoded by learned 96-channel 
embeddings, which were summed with learned 96-channel position embeddings for residue 20 
columns before layer normalization (140). To reduce computational requirements, embeddings for 
the 1024 sequences in MSAs were split into 32 chunks, each containing 32 sequences, at periodic 
intervals along the sequence axis. These chunks were then concatenated in the channel dimension 
and mixed by linear projection. 
 25 
MSA Transformer 
Embedded MSAs were propagated through 12 axial attention blocks shown in Fig. S13. Each axial 
attention block consists of residuals that add tied row-wise gated self-attention, column-wise gated 
self-attention, and a transition layer, shown in Fig. S13. The self-attention layer has 12 heads, each 
with 64 channels, totaling 768 channels, and transition layers project up to 3,072 channels for 30 
GELU activation (141). The adoption of axial gated self-attention was inspired by AlphaFold 2’s 
Evoformer (72). The main change is that we used tied attention (139) in PrimateAI LM axial 
attention layer, instead of triangle attention in AlphaFold 2. Tied attention is the sum of dot-product 
affinities, between keys and values, across non-padding rows, followed by division by the square 
root of the number of non-padding rows, which reduces computational burden substantially.  35 
 
Mask Revelation 
Mask revelation, shown in Fig. S26, reveals unknown values at other mask locations after the first 
12 axial attention blocks. It combines the updated 768-channel MSA representation with 96-
channel target token embeddings at locations indicated by a Boolean mask which labels positions 40 
of mask tokens. The Boolean mask, which is a fixed mask pattern with stride 16, is applied row-
wise to gather features from the MSA representation and target token embedding at mask token 
locations. Feature gathering reduces row length from 256 to 16, which drastically decreases the 
computational cost of attention blocks that follow mask revelation in Fig. S26. For each location 
in each row of the gathered MSA representation, we concatenated the row with a corresponding 45 
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row from the gathered target token embedding where that location is also masked in the target 
token embedding. The MSA representation and partially revealed target embedding are 
concatenated in the channel dimension and mixed by linear projection.  
 
After mask revelation, the now-informed MSA representation is propagated though residual row-5 
wise gated self-attention and transition layers shown in Fig. S13. The attention is only applied to 
features at mask locations as residues are known for other positions from the MSA input to 
PrimateAI LM. Thus, attention only needs to be applied at mask locations where there is new 
information from mask revelation. After interpretation of the mask revelations by self-attention, a 
masked gather operation collects features from the resulting MSA representation at positions 10 
where target token embeddings remained masked. The gathered MSA representation is translated 
to predictions for 21 candidates in the amino acid and gap token vocabulary by an output head 
shown in Fig. S27. 
 
Model Training 15 
 
Loss Function 
PrimateAI LM was trained end-to-end on MSAs for UniRef-50 proteins to minimize a weighted 
masked language modelling loss, 

𝐿T?T =	−𝑤QRU%VH𝑤PON' t log0p!&1
!,&∈T

 20 

 
where 𝑀 is the set of positions where MSA input tokens are masked, and probabilities, 𝑝!&, are 
computed from PrimateAI LM outputs by softmax normalization, 𝑝!& = 𝑠oftmax(𝑙!&), of logits, 
𝑙!&, output by PrimateAI LM. Softmax normalization over the amino acid vocabulary is applied 
independently per position, 𝑗, in each sequence, 𝑖. Since query sequences do not contain gap tokens, 25 
query sequence gap token logit values are changed to −10X. Loss weights are higher for longer 
proteins, thus we designed this weight, 
 

𝑤QRU%VH = min F𝐿
4
;, 64K	, 

 30 
to adjust for the effect of a small portion of longer proteins when taking a single fixed-sized crop 
from their MSAs. Weights are also higher for MSAs with a lower number of masked positions, 
𝑁PON', 
 

𝑤PON' = 𝑁PON'
)4; 	, 35 

 
to rebalance contributions from MSAs with various depths and padding. 
 
Optimizer 
PrimateAI LM was trained for four days on four A100 graphical processing units (GPUs). 40 
Optimizer steps are for a batch size of 80 MSAs, which is split over four gradient aggregations to 
fit batches into 40 GB of A100 memory. PrimateAI LM was trained with the LAMB optimizer 
(82) using the following parameters: 𝛽4 = 0.9, 𝛽; = 0.999, 𝜖 = 10)Y, and weight decay of 0.01. 
Gradients are pre-normalized by division by their global L2 norm before applying the LAMB 
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optimizer. Training was regularized by dropout (142) with probability 0.1, which was applied after 
activation and before residual connections, as shown in Fig. S25. Axial dropout (72) was applied 
in self-attention before residual connections: post-softmax spatial gating in column-wise attention 
is followed by column-wise dropout, and post-softmax spatial gating in row-wise attention is 
followed by row-wise dropout. 5 
 
PrimateAI LM was trained for 100,000 parameter updates. The learning rate is linearly increased 
over the first 5,000 steps from 𝜂 = 5 × 10)Y to a peak value of 𝜂 = 5	 × 10)L, and then linearly 
decayed to 𝜂 = 10)L. We applied automatic mixed precision (AMP) to cast suitable operations 
from 32-bit to 16-bit precision during training and inference (143), which increases throughput 10 
and reduces memory consumption without affecting performance. In addition, we used a Zero 
Redundancy Optimizer to reduce memory usage by distributing optimizer states across multiple 
GPUs (144). 
 
Ensemble 15 
An ensemble of six PrimateAI LM networks was trained with different random seeds for training 
data sampling and model parameter initialization. Their top-1 accuracies during training are shown 
in Fig. S28 for mask locations in the query sequence and all sequences in UniRef-50 MSAs. Top-
1 accuracy for the query sequence is much lower than for all sequences as the query sequence does 
not contain gap tokens, which are easier to predict than residues as they often form long and 20 
contiguous segments in MSAs created with HHblits. PrimateAI LM accuracy on query sequences 
was steadily improving at the end of training. However, PrimateAI LM was trained for no more 
than 10X iterations due to computational cost.  
 
Inference and pathogenicity score 25 
PrimateAI LM fill-in-the-blank predictions are provided for locations of interest at every site in 
19,071 human proteins, totaling predictions for 2,057,437,040 variants at 108,286,160 positions. 
Each prediction is made by our ensemble of six models, with each model contributing at least four 
inferences with different random seeds for sampling and ordering of sequences in human MSAs. 
Inferences logits were averaged by taking means of predictions grouped by random seed, and then 30 
taking the mean of the means. Each inference for 19,071 human proteins takes nearly 7 days on an 
A100 and, in total, inference by the ensemble takes nearly 200 A100 days.  
 
Pathogenicity prediction of a variant is traditionally evaluated according to the relative logit of 
the variant residue compared to the one of the reference amino acid, i.e., log	(𝑝Z[\) − log	(𝑝]^M), 35 
where 𝑝]^M and 𝑝Z[\ are the reference (ref) and alternative (alt) probabilities obtained from the 
ensembled logits. The probabilities are normalized over all possible residues disregarding the 
gap token, such that ∑ 𝑝]] = 1 with probability 𝑝] of the rth residue obtained from the ensembled 
logits. The log difference captures how unlikely the variant amino acid is compared to the 
reference amino acid. However, the score does not consider the prediction of the other 18 40 
possible amino acids, which contain information about the language models internal estimate of 
protein site conservation as well as convergence of the language model. We used the entropy 
evaluated over amino acid predictions 𝑆 = −∑ 𝑝]log	(𝑝])]  with probability 𝑝] of the rth residue 
to capture a variant agnostic site-dependent contribution to the pathogenicity score. Specifically, 
a score, 𝑠Z[\, for residue alt at a given site is given by the usual log difference of the alt and 45 
reference ref logit at that site minus the entropy over amino acids at the given site, i.e.  
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𝑠Z[\ = log	(𝑝Z[\) − log	(𝑝]^M) − 𝑆. 
 
The entropy term is small whenever the probability over all amino acids is dominated by a single 
term and large whenever the model is uncertain about the residues and assigns multiple residues 
high values. Physically, in this case the site is associated with little conservation and likely to 5 
mutate. This should lead to less pathogenic signal.  Adjusting the scores by entropy incorporates 
a model internal estimate of amino acid conservation. A given log difference between residue 
and reference will be considered as more pathogenic whenever it is associated with a highly 
conserved site. The score adjustment additionally incorporates the lack of convergence 
associated with a heavily undertrained model. 10 
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Model Evaluation  
 
Evaluation datasets 
Saturation mutagenesis assays  
We compared model performance using deep mutational scanning assays for the following 9 5 
genes: amyloid-beta (102), YAP1 (96), MSH2 (120), SYUA (101), VKOR1 (121), PTEN (99, 
100), BRCA1 (122), TP53 (123), and ADRB2 (124). We excluded from the evaluation analysis a 
few assays of the genes for which the predication scores of some classifiers are unavailable, 
including TPMT (99), RASH (145), CALM1 (146), UBE2I  (146), SUMO1 (146), TPK1 (146), 
and MAPK1 (147). We also excluded assays of KRAS (148) (due to different transcript 10 
sequence), SLCO1B1 (149) (only 137 variants), and amyloid-beta (150) (duplicate of  (102)). We 
evaluated model performance by computing the absolute Spearman rank correlation between 
model prediction scores and assay scores individually for each assay and then taking the mean 
across all assays. See Table S6 for per-assay rank correlations for each method.  
 15 
UK Biobank 
The UK Biobank dataset (79, 80) contains 61 phenotypes across 100 genes. Evaluating on 
common variants of all methods reduces the number to 41 phenotypes across 42 genes. We 
calculated the absolute Spearman rank correlation between the predicted pathogenicity scores 
and the quantitative phenotype scores for each pair of gene/phenotype. Only gene/phenotype 20 
pairs with at least 10 variants were included in the evaluation (14 phenotypes across 16 genes). 
We also confirmed that our evaluation is robust to this choice of threshold. 
 
ClinVar 
We benchmarked model performance in classifying clinical labels of ClinVar (downloaded from 25 
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz on September 19, 
2021) missense variants (4) as benign or pathogenic. Both “benign” and “likely benign” labelled 
variants were considered benign, the same for “pathogenic” and “likely pathogenic” labelled 
variants (both considered pathogenic). To ensure high-quality labels, we followed (67) and only 
included ClinVar variants with 1-star review status or above (including “criteria provided, single 30 
submitter”, "criteria provided, multiple submitters, no conflicts", "reviewed by expert panel", 
"practice guideline"). This reduced the number of variants from 36,705 to 22,165 for the 
pathogenic and from 41,986 to 39,560 for the benign class. Following EVE (67), we calculated 
the area under the receiver operating characteristic curve for each gene and then report the mean 
AUC across all genes.  35 
 
DDD / ASD / CHD de novo missense variants 
To evaluate the performance of the deep learning network in clinical settings, we obtained de 
novo mutations from published studies for intellectual disorders, including autism spectrum 
disorder (88-94) and developmental disorders (85-87). ASD contained 2,127 patients with at 40 
least one de novo missense mutation. Taken together, there were a total of 3,135 DNM 
mutations. This reduced to 517 patients with at least one DNM variant and a total of 808 DNM 
variants after requiring all methods had predictions for those variants. In DDD, 17,952 patients 
had at least one de novo missense variant (26,880 variants in total), reducing to 6,648 variants 
after requiring availability of predictions of all methods. We also obtained a set of DNM variants 45 
from patients with congenital heart disorders (95), consisting of 1,839 de novo missense variants 
from 1,342 patients (reducing to 564 variants after requiring availability of predictions of all 
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methods). For all the three datasets of de novo variants from affected patients, we used a shared 
set of DNM variants from healthy controls, which contains 1,823 DNM variants from 1,215 
healthy controls with at least one DNM variant and collected from multiple studies (88-93). It 
was reduced to 250 variants (235 patients) after requiring availability of variant prediction scores 
of all methods. For each disease set of DNMs, we applied Mann-Whitney U test to evaluate how 5 
well each classifier can distinguish the DNM set of patients from that of controls. 
 
Methods for comparison 
Predictions from other methods were evaluated using rank scores downloaded from the database 
for functional prediction dbNSFP4.2a (84). To avoid dramatic reductions in the number of 10 
common variants, we removed methods with incomplete sets of scores (methods with less than 
67 out of 71 million possible missense variants in hg38), except Polyphen2 (151) due to its 
widespread adoption. We included the following methods (method abbreviation) for comparison: 
BayesDel_noAF (BayesDel) (152), CADD_raw (CADD) (153),  DANN (154), DEOGEN2 
(155), LIST-S2 (156), M-CAP (157), MutationTaster_converted (MutationTaster) (158), 15 
PROVEAN_converted (PROVEAN) (159), Polyphen2_HVAR (Polyphen2; due to better 
performance then Polyphen2 HDIV) (151), PrimateAI (17), Revel (REVEL) (160), 
SIFT_converted (SIFT) (161), VEST4 (162),  fathmm-MKL_coding (fathmm-MKL; highest 
performance among the fathmm models for given benchmarks) (163).  
 20 
ESM1v model (164) was not released as part of dbNSFP4.2a (84). Due to unavailability of full 
mutation effect predictions of the human proteome for this model, we used the pre-trained 
ESM1v weights downloaded from GitHub (https://github.com/facebookresearch/esm) and 
evaluated on all human protein sequences using the published code without any modifications. 
 25 
Applying EVE to more proteins 
In the original publication, EVE (67) is only applied to a small set of disease-associated genes in 
ClinVar. To generate our language model-based training data set, it is essential to expand the 
predictions of EVE to as many proteins as possible. Due to unavailability of EVE source code, 
we therefore applied a similar method DeepSequence (165) and converted DeepSequence scores 30 
into EVE scores by fitting Gaussian mixture models. We used an up-to-date version of 
UniRef100 (115), but otherwise followed the alignment depth and sequence coverage filtering 
steps described in (67). We achieved at least 1 prediction in 18,920 proteins and a total of 50.2M 
predicted variants out of 71.2M possible missense variants. To validate our replication, we 
evaluated the replicated EVE models using published variants from (67). We found that scores 35 
from the replicated EVE model results in comparable performance to the published EVE 
software on all benchmarking datasets, e.g., both methods achieve 0.41 mean absolute 
correlation on Assays and 0.22 mean absolute correlation for UKBB.  
 
Benchmarking PrimateAI LM against other sequence-only models for pathogenicity 40 
predictions 
PrimateAI LM falls into a class of methods only trained to model proteins sequences but 
performing surprisingly well as pathogenicity predictors. Despite not achieving the overall best 
performance by themselves, they make crucial features or components in classifiers 
incorporating more diverse data. Fig. S14 summarizes the evaluation performance of the 45 
PrimateAI LM against other such sequence-only methods for pathogenicity prediction: ESM1v 
(164), EVE (67), LIST-S2 (42), and SIFT (48). Our language model outperforms another 
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language model ESM1v on all the testing datasets except assays using only 1/50th of the training 
time. This is particularly striking as PrimateAI LM does not rely on any fine-tuning on assays.  
 
Combining PrimateAI LM with EVE 
Language models are trained to model the entire universe of proteins. EVE (67) trains a separate 5 
model for each human protein and all similar sequences. This and the differences in model 
architecture and training algorithms suggest that the models extract distinct features from their 
input. Therefore, we expected that the scores from EVE and our language model to be 
complementary and that combining scores may result in improved performance. We found that 
simply taking the mean of their pathogenicity scores already performs better than any of the two 10 
methods alone. More elaborate combinations, e.g., using ridge regression, did not lead to any 
further improvements. The resulting performance is shown in Fig. S14, where the combined 
score leads to a performance gain of 6.6% (or 6.8%) in mean correlation on assays compared to 
the PrimateAI LM (or compared to replicated EVE), 1.4% (or 1.7%) improvement mean AUC 
on ClinVar and increases in P-value by 11% (29%) for DDD, 3% (26%) for ASD and 17% 15 
(23%) for CHD.  
 
Evaluations of PrimateAI-3D 
PrimateAI-3D performance is benchmarked against both supervised and unsupervised variant 
pathogenicity classifiers. We found that PrimateAI-3D consistently outperforms other classifiers 20 
on all evaluation datasets (Fig. 3D).  Summary statistics of model performance across all the six 
evaluation datasets are provided in Fig. S15 and Table S3.  When the results are averaged across 
benchmarks, PrimateAI-3D is far ahead of any competing classifier (Fig. S15). It appears the 
reason why other classifiers come close to PrimateAI-3D in individual benchmarks is because 
we evaluated nearly 30 other algorithms; akin to multiple hypothesis testing, by statistical chance 25 
the performance of an algorithm may be an outlier on one particular benchmark, but their lack of 
consistency in the other five benchmarks indicates regression back to the mean.  As we show in 
Fig. 3D, the second-place algorithm is different in each of the six benchmarks. A detailed 
breakdown of the performance of PrimateAI-3D for each of the 42 genes in UKBB is provided 
in Table S4. A detailed summary of performance of PrimateAI-3D and other benchmark 30 
classifiers on the 9 assays considered is given in Table S6.  
 
PrimateAI-3D sensitivity and specificity on ClinVar 
The ClinVar mean per-gene AUC metric (Fig. 3; also used in EVE (67)) implicitly corrects for 
different biases in ClinVar and enables a fairer comparison to methods directly trained on 35 
clinical annotations. A complication of directly measuring sensitivity and specificity in the 
ClinVar database is that human expert annotations are concentrated in a handful of disease genes 
that have been most heavily studied, with 50% of the total pathogenic missense variants in 
ClinVar coming from only 1.8% of the protein-coding genes in the genome (Fig. S16). This bias 
in annotation results in some genes having severe imbalance in their number of benign and 40 
pathogenic mutations, with >90% of labeled variants in the gene being either pathogenic or 
benign. Other machine learning classifiers that have been trained on human annotation databases 
have inadvertently learned the bias in annotation and take advantage of this property to assign 
higher scores to variants in genes with a high fraction of pathogenic variants in ClinVar (Fig. 
S17). To measure each classifier’s sensitivity and specificity without the influence of annotation 45 
bias, we rank-normalized classifier scores for variants within each gene, and excluded genes 
with >90% of variants being pathogenic or benign in ClinVar.  PrimateAI-3D achieved a 
sensitivity of 84.7% and specificity of 84.1% (percentile threshold: 57.7), and its AUC of 0.919 
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was the best performance among all classifiers (Fig. S18), which was notable given that the other 
classifiers (with the exception of EVE, PROVEAN, SIFT, LIST-S2) had been trained either on 
ClinVar or highly overlapping annotation databases such as HGMD (166, 167). 
 
Using PrimateAI-3D to improve ClinVar 5 
To assess the utility of PrimateAI-3D for revising ClinVar annotations, we compared a snapshot 
of the ClinVar database from September 2017 with the current database, and asked whether 
PrimateAI-3D scores were predictive of variants whose annotations had been revised in the 
interim.  We defined the most confident X% PrimateAI-3D predictions as the X/2% variants with 
the highest predicted pathogenicity merged together with the X/2% variants with the lowest 10 
predicted pathogenicity. This implicitly converts the continuous PrimateAI-3D score into a 
binary benign/pathogenic classification. We downloaded ClinVar September 2017, reduced it to 
benign or pathogenic missense variants and only kept variants from genes with at least 20 variant 
annotations (30,295 variants). Then we looked up the annotations of those variants in ClinVar 
2021. We found that 4,850 of the 30,295 variants (16%) had changed or lost their clinical 15 
annotation by 2021. Filtering the 30,295 variants to those that are also in the top 10% most 
confident PrimateAI-3D predictions, 2,905 variants remain. For 55/2,905 (2%) variants, ClinVar 
and PrimateAI-3D disagree. 29/55 (53%) variants changed ClinVar labels between 2017 and 
2021. This is a 5 times higher fraction than for variants that agree between PrimateAI-3D and 
ClinVar (273/2755, 10%; Fisher’s test P-value=10-24) and indicates that at least half of all 20 
annotations that disagree between high-confidence PrimateAI-3D and ClinVar will change 
annotation in ClinVar over time. We repeated this analysis with different confidence thresholds 
for PrimateAI-3D (Fig. S19). Among the variants that were annotated as pathogenic in 2017, the 
top 10% with the lowest (most benign) PrimateAI-3D scores were 4-fold more likely to have had 
their ClinVar annotation consequence changed in the interim (P < 10-3).  Conversely, among the 25 
variants annotated as benign in 2017, the top 10% with the highest (most pathogenic) PrimateAI-
3D scores were 6-fold more likely to have had their annotation changed (P < 10-18) (Fig. S19).  
Even using the top 75% of all PrimateAI-3D predictions, there remains a 2-fold increase of 
ClinVar label changes among variants that disagree between ClinVar and PrimateAI-3D. In 
summary, discordance between PrimateAI-3D and ClinVar indicates a significantly elevated 30 
chance of annotation error in ClinVar and can be used to increase confidence in ClinVar 
annotations. 
 
 
 35 
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Candidate gene discovery 
We tested enrichment of de novo mutations in genes by comparing the observed number of 
DNMs to the number expected under a null mutation model (47). We tested the de novo 
enrichment using twenty different missense pathogenicity predictors (see Methods for 
comparison section). We report genes that are identified as enriched when only counting 5 
missense DNMs with a PrimateAI-3D score ≥0.821. Some missense classifiers predicted scores 
in limited sets of genes, and we compensated for this by scaling the null mutation rates by the 
fraction of all missense sites with a pathogenicity score. For each missense predictor we 
estimated the excess missense DNMs without any missense classifier, and identified the 
pathogenicity threshold at which we captured that number of missense DNMs above that 10 
threshold. For two classifiers (DANN, LIST-S2) we found missense DNMs from healthy 
controls had skewed score distributions compared to the distribution of all scores genome-wide. 
We calculated per-threshold inflation factors via the ratio of the quantile from control DNMs to 
the quantile from all sites, at the same threshold. We identified an adjusted threshold as the 
highest threshold at which the excess corrected for the corresponding inflation factor exceeded 15 
the original excess. For example, for PrimateAI-3D the threshold was 0.821. We adjusted the 
genome-wide expectation for damaging missense DNMs by the fraction of missense variants that 
meet the threshold (roughly one-sixth of all possible missense mutations genome-wide). Each 
gene required four tests, one testing protein truncating enrichment and one testing enrichment of 
protein-altering DNMs, and both tested for just the DDD cohort and one where we excluded 20 
individuals with a protein-altering DNM in a gene previously identified with monoallelic or 
hemizygous inheritance for intellectual disability (ID). The genes with known links to ID were 
obtained from Genomics England PanelApp ID gene panels with confidence level of 3 (108), or 
found in Gene2Phenotype DDG2P subset where confidence was “definitive” (109). The 
enrichment of protein-altering DNMs was combined by Fisher’s method with a test of the 25 
clustering of missense DNMs within the coding sequence. The P value for each gene was taken 
from the minimum of the four tests, and genome-wide significance was determined as P < 6.41 × 
10−7 (α = 0.05; 19,500 genes with four tests).  We also excluded two genes, BMPR2 and RYR1 as 
borderline significant genes that already had well-annotated non-neurological phenotypes.  
 30 
Fig. S22 shows the number of candidate genes discovered for each classifier, and while 
PrimateAI-3D is among the best performing algorithms. Because the number of candidate 
disease genes discovered in DDD (< 300) is a very small number compared to the number of 
variants evaluated in the six clinical benchmarks (which typically contain on the order of tens of 
thousands of variants), it is too noisy to be used as a meaningful metric for evaluating classifier 35 
performance, as the differences between the algorithms are not statistically significant.    
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Supplementary Text 
 
1 Protein voxelization 
Protein voxelization is the process of converting sets of protein atomic coordinates into tensors 
that have the same shape for all sets of coordinates. We explain our voxelization method first 5 
using two-dimensional atomic coordinates, followed by a straightforward extension to three 
dimensions.  
 
To voxelize a variant, we first obtained the protein structure in which the variant occurs and 
determine the atomic coordinates of the Cα atom of the variant (Fig. S11A: blue point). Note that 10 
the protein structure either has the reference amino acid or no amino acid at all at the site of 
mutation (fill-in-the-blank in 3D; section "Model training"), but never an alternative amino acid. 
Next, we reduced the atoms of the protein to Cα atoms of alanine residues (Fig. S11A: red 
points). Then we defined a square of a certain size (Fig. S11B; imagine e.g. 6x6 Angstrom (Å)). 
We subdivided this square into smaller regular-sized squares called “voxels”, in this case 3x3 15 
voxels of size 2Åx2Å. We identified each voxel by its row and column index. For example, the 
voxel in the top right is referred to as 𝑉(4,4). Then we moved the center of the central voxel in the 
voxel grid (Fig. S11: 𝑉(;,;), in the middle of the grid) onto the Cα coordinate of the residue with 
the mutation so that both points have the same coordinates (Fig. S11C: blue point from Fig. 
S11A has the same coordinates as the center of voxel 𝑉(;,;) in Fig. S11B). Now we looped 20 
through all voxel centers in the grid, starting with 𝑉(4,4). We determined the Cα atom that is 
closest to the center of 𝑉(4,4) (i.e. the “nearest neighbour”; Fig. S11C: point NN) and still within 
the scan radius 𝑟 (Fig. S11C: red circle; typically 5Å). We calculated the Euclidean distance 𝑑 
between the two points (Fig. S11C). The closeness 𝑐 between 𝑉(4,4) and NN is then defined as 
 25 

Equation 1 
𝑐0𝑉(4,4), 𝐴, 𝐶𝛼1 = 1 − 𝑑/𝑟 

 
Finally, we repeated this procedure for all 21 amino acids (20 standard amino acids and one 
additional amino acid representing all non-standard amino acids), starting with the reduction to 30 
the Cα atoms of all cysteine residues, instead of alanine. This is followed by a repeat of the 
previous 21 iterations, but with Cβ atoms, instead of Cα (however, the Cα is kept for the variant 
with the mutation, i.e. the coordinates of the voxel grid center stay the same; Fig S11D). In the 
end, each voxel is associated with 42 closeness values, one for each amino acid and atom type 
combination (Figs. S11E-F). We refer to this set of values as the atomic distance profile of a 35 
variant. We also experimented with including more atom types, but only found diminishing 
returns. 
 
The atomic distance profile is the first of two outputs of the voxelization procedure. The second 
output is calculated with the following differences: we did not reduce to certain amino acids or 40 
atom types. The NN therefore becomes simply the closest atom to a voxel center, across all 
amino acid atoms in the protein. Then we looked up the position of the residue from which atom 
NN comes in the sequence of the target protein. Instead of calculating closeness 𝑐, we only 
defined a function 𝑠 that maps each voxel to the sequence position of this closest residue. For 
example, given a target variant at sequence position 11 in protein BRCA1, the atom closest to 45 
𝑉(4,4) may come from a glycine residue at sequence position 32. Hence, 𝑠(𝑉(4,4)) = 32.  
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Moving the algorithm above from two to three dimensions, we only needed to increase the 
dimensionality of the voxel grid by one dimension. For example, the first voxel 𝑉(4,4) becomes 
𝑉(4,4,4). Given a 3x3x3 voxel grid, the central voxel 𝑉(;,;) becomes 𝑉(;,;,;). 
 
Evaluating different voxel grid sizes (from 3x3x3 to 19x19x19) and voxel sizes (from 1Åx1ÅxÅ 5 
to 3Åx3Åx3Å), we found that grid sizes above 7x7x7 and voxel sizes below 2Åx2Åx2Å failed 
improve performance. Therefore, we chose a grid size 7x7x7 with 2Åx2Åx2Å voxels. Note that 
an atom does not actually need to be inside the voxel grid to contribute to both voxelization 
outputs 𝑐 and	𝑠. It suffices if the atom is within the scan radius 𝑟 of a voxel. Conversely, even if 
an atom is within a scan radius, it does not automatically imply that the atom will contribute to 𝑐 10 
and	𝑠. With our chosen parameters, on average the atoms of 41 (minimum 1, maximum 205) 
different residues are within the scan radius of a voxel in the grid. Of those, an average of 21 
different residues (minimum 1, maximum 67) are mapped to by 𝑠. 
 
  15 
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2 Details of structure quality features 
We included several features indicating the confidence in the structure surrounding each voxel. 
First, we defined four binary indicators: whether the protein structure is present in AlphaFold DB 
as-is (i.e., with a perfect sequence match to one of our protein sequences), whether we used 
Modeller with AlphaFold DB structures as templates (in case the match was not perfect), 5 
whether we used HHpred and AlphaFold DB structures as templates in Modeller (when large 
parts of a protein were missing in AlphaFold DB), or whether we used HHpred exclusively (in 
case there was no similar match in the AlphaFold DB). For the structures that involved HHpred, 
we added three features corresponding to the minimum, mean and maximum predicted TMscore 
(168) of the templates found by HHpred. We also included B-factors from both AlphaFold DB 10 
and Modeller (where available) using the mapping function, which maps each voxel center to the 
sequence position of the residue with the closest atom to that center. For example, if 𝑠0𝑉(4,4,4)1 =
31, then we looked up the AlphaFold DB B-factor of residue 31 and added it to the feature 
vector of voxel 𝑉(4,4,4). HHpred output contains a sequence alignment of up to 6 template 
proteins with known structure. For each residue in the target protein, we counted how often the 15 
other sequences in the alignment have non-gap amino acids at that position. This value indicates 
how many templates could be used at each position when a structure needs to be predicted with 
HHpred. We added this value to the feature vector of each voxel in the same way as for B-
factors. In total, there are 10 features describing the quality of the protein structure around a 
voxel (Fig. S12B). 20 
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3 Species-differentiable evolutionary profiles 
Let 𝛴 = {A,… ,W,−} be the set of all 20 amino acids A,… ,W plus a gap token denoted as “−". 
𝑀 is a |𝑆|-way multiple sequence alignment 𝑆 (|𝑆| = 592) and 𝑀!

_is the amino acid at protein 
position 𝑖 in alignment 𝑠 ∈ 𝑆. The evolutionary profile of amino acid 𝐴 at protein position	𝑖 is 
defined as 𝑓!` = ∑ 𝑤[𝑀!

_
_ = 𝐴], where [] is the Iverson bracket and 𝑤 = 4

|b|
 is a normalization 5 

constant. 𝑓 calculated only from the multiz100 alignments (|𝑆| = 100) is part of the input 
features for PrimateAI (17). We interpreted 𝑓 as a signal for human pathogenicity. A constant 𝑤 
implies that variants from all species and alignments are equally important contributors. For 
example, a variant in chimp (closely related to human) increases the frequency of an amino acid 
by the same amount as the same variant in zebrafish (distant from human). We argue that this 10 
should not be the case. For PrimateAI-3D, we therefore allowed each of the 592 whole proteome 
alignments to have a different weight. More precisely, we defined a new evolutionary profile 
𝑓′
!

`
= ∑ 𝑤_[𝑀!

_
_ = 𝐴], where 𝑤_ is the weight of each alignment. 

For example, assume that 𝑖 = 31, 𝑆 = {𝑆4, 𝑆;, 𝑆K} and 𝛴 = {𝐿, 𝑃} and that the two amino acids in 
the alignments at position 31 are 𝐿 for alignment 𝑆4 and 𝑃 for alignments 𝑆; and 𝑆K respectively. 15 
Assume further that 𝑤b' = 0.1, 𝑤b( = 0.05 and 𝑤b) = 0.2. The one-hot encodings of the amino 
acids at position 31 are < 1,0 >  (for 𝑆4), < 0,1 > (for 𝑆;) and < 0,1 > (for 𝑆K). It follows that 
𝑓′
K4

?
= 𝑤b' = 0.1 and  𝑓′

K4

G
= 𝑤b( +𝑤b) = 0.05 + 0.2 = 0.25. 

Instead of calculating each 𝑤_ from the alignments themselves (e.g. via similarity to other 
sequences, as often performed for Potts models of MSAs (169)), we initialized each 𝑤_ to 4

|b|
 20 

before training, and let the parameters be differentiable during training. This means PrimateAI-
3D learns itself how important each of the 592 species is as contributors to the pathogenicity 
signal of  𝑓′

!

`
.  

 
  25 



Submitted Manuscript: Confidential 
Template revised February 2021 

66 
 

4 Evolutionary profile features 
The evolutionary profile function 𝑓′! is equivalent to a 1D-convolutional layer without bias if we 
interpret the 21 amino acids (20 standard amino acids plus a gap token) as input samples and the 
number of alignments (|𝑆|) as features (considering only one amino acid, the 1-hot encoding of 
an amino acid is only a single value that is either 0 or 1). Denote this convolutional layer 𝐶𝑜𝑛𝑣M>. 5 
To make use of the typical parameters associated with a convolutional layer, we introduced a 
bias term, increased the number of filters to 10 and activated each output via the ReLU activation 
function (the latter enables modelling non-linear relationships between species). In the end, the 
input to 𝐶𝑜𝑛𝑣M> are the |𝑆| 1-hot encoded amino acids at a sequence position 𝑖 and the output is 
an evolutionary profile with 10*21=210 elements. In order to merge this evolutionary profile 10 
with voxels (above), we again make use of function 𝑠. For example, given 𝑠0𝑉(4,4,4)1 = 31, we 
extracted the |𝑆| amino acids at sequence position 31 from the alignments of the target protein 
and 1-hot encode and convolved them using 𝐶𝑜𝑛𝑣M>. The output is concatenated with the feature 
vector of 𝑉(4,4,4), extending it by 210 elements (Fig. S12C). Note that unlike for the other 
features, the gradient does not stop at these 210 elements, but is backpropagated and used to 15 
update the weight 𝑤_ of each alignment. 
 
 
 
  20 



Submitted Manuscript: Confidential 
Template revised February 2021 

67 
 

 Supplemental Figures 

 

 
Fig. S1. Variant filtering steps improve variant quality. (A) Heatmap of Spearman correlation 
of codon-match metrics among 31 primate reference species naturally clustering primates into 5 
four major groups, including great apes, Old World monkeys, New World monkeys, and lemurs / 
tarsiers. Codon-match indicates a specific codon of primate reference species matches human. 
Lighter colors represent higher correlation between two species. (B) Boxplots showing that the 
average number of stop-gained variants per sample of each primate reference species was 
gradually reduced to close to human level after a series of variant filtering steps, including 10 
requiring codon-match, removing SNPs in poorly-annotated genes or in genes with skewed 
random forest score distribution or deviating from Hardy Weinberg equilibrium (HWE), and 
removing SNPs with unique-mapper (UM) score <0.6 or RF score >0.17. Each dot represents the 
average number of stop-gained variants of each primate reference species. The black line shows 
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the average number of stop-gained variants of human samples from Platinum genome project. 
(C) Boxplots showing that missense / synonymous ratios (MSR) decreased after variant filtering 
steps. The pink box shows the MSR of variants that were filtered out. Each dot represents the 
MSR of each primate reference species. The black line represents MSR of human samples. (D) 
The average number of indels per sample of each primate reference species diminished after 5 
filtering steps. For all the boxplots, box lengths represent the interquartile of data points and the 
whiskers extend to 1.5 times the interquartile range from the box. 
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Fig. S2. Allele frequency spectra for simulated primate variants. Barplots show the fraction 
of primate missense (left panel) and synonymous (right panel) variants falling in each of the four 5 
allele frequency bins. The simulated primate variants were sampled according to the gnomAD 
allele frequencies, mimicking the sample sizes of primate species. 
 
 
 10 
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Fig. S3. Venn diagrams show small overlap between gnomAD (blue) and primates (orange) 5 
for both synonymous and missense variants. Large fractions of the transition variants 
occurring at CpG sites are shared between gnomAD and primates, particularly the synonymous 
variants. 
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Fig. S4. Observed gnomAD (green) or primate (purple) missense variants at each amino 
acid position in genes. (A-D) The distribution of gnomAD missense variants (green crosses) 
along the genes CREBBP (A), SCN2A (B), KCNQ1 (C), BRAF (D), and KMT2D (E). Blue 
crosses represent observed primate missense variants along the genes. Dark red circles represent 5 
observed ClinVar pathogenic missense variants along the genes. Blue dots of the bottom 



Submitted Manuscript: Confidential 
Template revised February 2021 

72 
 

scatterplots show the predicted pathogenicity scores of all possible missense substitutions, which 
are the PrimateAI-3D scores at each amino acid position.  
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Fig. S5. Scatter plot showing that natural selection purifies potentially deleterious missense 
variants across species. The x-axis shows the depletion of orthologous missense variants 
observed in primates, mammals, chicken and zebrafish at common human allele frequencies 5 
(>0.1%) from gnomAD. The y-axis shows the species’ genetic distance from human, measured 
by the fraction of nucleotides different from human. 
 
 
 10 
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Fig. S6. Pie chart showing fractions of primate missense variants observed at different 
allele frequencies (AF) in gnomAD databases. Blue represents variants either not observed in 
gnomAD or with rare allele frequencies (< 0.01%). Orange and green show the fraction of 5 
primate variants with 0.01% <AF < 0.1% or common allele frequencies (>0.1%), respectively. 
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Fig. S7. Population genetic model fitting to human and primate data. (A) The distribution of 
population-scaled mutation rates across all species. (B) The correlation between pooled primate 
missense: synonymous ratio and inferred selection. The x-axis shows the missense : synonymous 5 
ratio for each gene when pooled across all non-human primates. The y-axis shows the inferred 
2Ns for each gene. (C) The distribution of fitness effects across genes in humans and non-human 
primates. Histogram is over all genes that pass the filters to be used in the analysis. (D) The 
correlation between human selection and primate selection. The x-axis shows the strength of 
selection in humans, and y-axis shows the strength of selection in primates. Highlighted points 10 
are significant according to point the population genetic model and the MSR regression. 
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10−1

100
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100 102 104

Primate 2Ns

H
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 2

N
s class

●

●

●
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Fig. S8. Correlation of missense : synonymous ratios and selection coefficient estimates in 
humans and primates. (A-B) Barplots show the Spearman correlation of those two metrics with 5 
pLI (A) and s_het (B). Red bars represent correlation of missense : synonymous ratio of 
polymorphic variants with pLI or s_het. Blue bars show correlation of estimated selection 
coefficients. Bars are grouped by whether they are based on human data or pooled primate data. 
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Fig S9. Performance of Poisson random field model in simulations. (A) Inference of 
simulated selection coefficients is highly accurate. The x-axis shows the selection coefficient 
simulated, as described in the text, while the y-axis shows the inferred selection coefficient using 5 
the method described in the text. The solid black line indicates the line y = x, while the red line is 
a moving average. (B) The likelihood ratio test is well powered and has a low false positive rate. 
The x-axis shows the ratio between the simulated human selection coefficient and the simulated 
primate selection coefficient. The y-axis shows the number of positives at an FDR of 5% 
following the Benjamini-Hochberg procedure. Note that the middle point, 100 = 1 indicates no 10 
difference between human and primate selection.  



Submitted Manuscript: Confidential 
Template revised February 2021 

78 
 

 

 
Fig. S10: Relationship of human and primate missense : synonymous ratio based on 
Poisson generalized linear mixed modeling. The x-axis shows the log-scaled missense : 
synonymous ratio among polymorphic variants in primates compared. The y-axis shows the log-5 
scaled missense : synonymous ratio among polymorphic variants in humans. The red line 
represents the best-fit relationship as inferred by the model. 
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Fig. S11. Illustration of voxelization procedure in 2D projection. (A) Given a target site, the 
corresponding structure is reduced to 𝐂𝛂 atoms of a particular amino acid type (here: alanine; red), 
plus the target 𝐂𝛂 atom (blue). A voxel grid (B) is centred on the target 𝐂𝛂 (C). The 𝐂𝛂 atom (NN) 
closest to the first voxel (1,1) is determined. Their Euclidean distance d is divided by maximum 5 
scan radius r to obtain a relative distance. Subtracting that ratio from 1 turns the relative distance 
into a relative closeness. This procedure is repeated on various levels: for each voxel in the grid; 
for each amino acid type; for 𝐂𝛃 atoms instead of 𝐂𝛂 atoms. 
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Fig. S12. Associating voxels with features. (A) Each voxel is associated with its amino acid 
distance profile d. (B) The mapping of each voxel center to the closest residue is used to look up 
structure quality metrics q. (C) Similarly, the mapping is used to associate each voxel with its 
evolutionary profile p of the closest residue. (D) Other features that are associated with each voxel 5 
include the 1-hot encoding of the target amino acid before mutation and indicators whether the 
central residue has been removed (fill-in-the-blank in 3D; section "Model training") or not. (E) 
Feature vectors d, q, p and h are concatenated and used as input to a 3D convolutional neural 
network. 
 10 
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Fig. S13: PrimateAI language model architecture. (A) An initial MSA representation is created 
by learned embedding and stacking of MSA sequences. (B) Axial attention blocks develop the 
MSA representation. (C) Mask revelation gathers features aligned with mask sites. For each 5 
masked residue in a row, it reveals embedded target tokens at other masked locations in that row. 
(D) Attention is applied to gathered rows to interpret mask revelations. (E) MSA features are 
gathered from locations where target embeddings remained masked. (F) An output head, 
consisting of a transition and perceptron, maps the gathered MSA representation to predictions.  
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Fig. S14. Evaluation performance of the language modelling part of PrimateAI-3D 
(PrimateAI LM-only).  The performance of PrimateAI LM-only is compared to the replicated 
VAE part of EVE (labelled “EVE*”) model and their combined score (labelled “PrimateAI 5 
LM+EVE*-only”). It is further compared to a selection of competitive unsupervised methods 
(ESM1v, SIFT, LIST-S2). In clockwise direction starting from the top left, the individual panels 
correspond to evaluation on DDD vs UKBB, DMS assays, ClinVar, ASD, CHD, DDD and 
UKBB. For DMS assays and UKBB, the summary statistics are given in terms of absolute value 
(|corr|) of correlation between score and an experimental measure of pathogenicity, i.e., mean 10 
phenotype (UKBB) or assays score (DMS assays). For DDD/ASD/CHD, we calculated the P-
value of Mann-Whitney U test for control and case distributions over all datasets. For ClinVar, 
we measured the AUC averaged over all genes.  
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Fig. S15. Combining performance metrics from all evaluation datasets. (A) For each of the 
six evaluation datasets, the performance metric of each method was divided by the maximum 5 
performance achieved across all methods. The average of that percentage across datasets is the 
“Mean percentage of best method” for each method. (B) The rank of the performance metric of 
each method is determined separately for each dataset and then averaged to create one mean rank 
value for each method. 
  10 
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Fig. S16. Fractions of ClinVar variants covered by genes in ClinVar. The x-axis is the percentage of 
genes in ClinVar with at least one 1-star variant annotation. The y-axis is the percentage of ClinVar 1-star 
variants covered by genes in ClinVar. Each point in a line indicates the minimum percentage of genes 
required (x-axis) to cover a certain percentage of ClinVar variants (y-axis). For example, 50% of all 10 
pathogenic variants in ClinVar come from 1.8% of ClinVar genes. 
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 5 
Fig. S17. Dependency of pathogenicity scores on the per-gene ratio of benign to pathogenic variants 
in ClinVar. We calculated the ratios “#benign/(#benign+#pathogenic)” for ClinVar genes with at least one 
benign and pathogenic variant (x-axis). For each prediction method, we then calculated the mean score for 
each gene (y-axis). Fitting a separate regression line for each method, the slope of PrimateAI-3D (-0.31) is 
below the slopes of other methods (-0.428 to -0.484), indicating that other classifiers’ performance on 10 
ClinVar are affected by fitting to the per-gene ratio of benign to pathogenic variants in ClinVar, likely 
because they were trained directly on ClinVar or highly overlapping databases such as HGMD. 
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Fig. S18. Global ClinVar ROC curves. Other methods represent those classifiers used in Fig. 3. 
For PrimateAI-3D, the point that maximizes sensitivity+specificity is highlighted (sensitivity: 5 
84.7%; specificity: 84.1%; percentile threshold: 57.7). This sensitivity+specificity is also the 
maximum among all other methods. 
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Fig. S19. PrimateAI-3D detects low-confidence ClinVar annotations. We took different percentages of 
the most confident PrimateAI-3D predictions and measured their agreement with benign and pathogenic 5 
annotated missense variants found in the September 2017 version of ClinVar. We also distinguished 
between ClinVar variants whose annotations were changed or unchanged between September 2017 and 
September 2021. We determine the odds of annotation change in variants that agree between PrimateAI-
3D and ClinVar (left panel). We do the same for variants that disagree. The y-axis is the conditional 
maximum likelihood estimate of the ratio of the two odds. The x-axis indicates the fraction of top 10 
PrimateAI-3D variants. For example, a 20% fraction of variants means that we used the 10% most 
pathogenic and 10% most benign predicted variants. The x-axis of the right panel is the same as in the left 
panel and the y-axis indicates the Fisher’s exact test P-value of the corresponding odds ratio shown in the 
left panel. 
 15 
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Fig. S20. Impact of training dataset size on classification accuracy (extended). Performance 
of PrimateAI-3D increases with the number of common human and primate variants in the training 
dataset (x-axis). Performance of each dataset (y-axis) was divided by the maximum performance 
observed across all training dataset sizes. ASD and CHD are highlighted because they were 10 
excluded in Fig. 5A. 
  



Submitted Manuscript: Confidential 
Template revised February 2021 

90 
 

 
 
 
 
Fig. S21. Saturation of human synonymous variants by sampling common variants present 5 
in the 521 extant primate species. The line colors represent various sample sizes for the 
simulated primate species, including 10, 20, 50, 100, 200, 500 and 1000. 
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Fig. S22. Number of genome-wide significant genes by missense pathogenicity prediction 
methods, identified through enrichment of de novo mutations over expectation.  Note that 
due to the small number of genes discovered (< 300) the differences between the algorithms are 
not significant. 5 
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Fig. S23: Cropping, padding, and masking of MSAs for PrimateAI LM. A location of interest 
in the query sequence is indicated by an X, mask locations are black, padding is gray, and crop 
regions are indicated by a dashed line. In these examples, mask stride is 3 and cropping window 5 
width is 6 residues. (A) Away from MSA edges, a position of interest is at the right side of the 
center of the crop region. (B) A crop region is shifted to the right of the location of interest to avoid 
going over an MSA edge. (C) An MSA for a short protein is padded to fill a crop region. (D) A 
crop region is shifted to the right of a location of interest to minimize padding and the MSA is 
padded to fill the crop region. 10 
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Fig. S24. MSA masking, learned embedding, and chunk stacking. (A) Part of an MSA with a 
contiguous set of residues and a random set of non-query protein sequences is sampled. (B) A 
fixed mask pattern is applied to a chunk of sequences at the start of the MSA. In this example, the 5 
mask pattern is applied to the first 4 sequences and has a stride of 3. (C) Tokens are replaced with 
learned embeddings, which are summed with learned position embeddings for residue columns 
before layer normalization. The embedded tokens are divided into chunks, which (D) are 
concatenated in the channel dimension and then linearly projected to form an initial MSA 
representation. 10 
  



Submitted Manuscript: Confidential 
Template revised February 2021 

94 
 

 
Fig. S25. PrimateAI language model components. (A) Tied row-wise gated self-attention. (B) 
Row-wise gated self-attention. (C) Column-wise gated self-attention. (D) Transition. Dimensions 
are shown for sequences, 𝑠 = 32, residues, 𝑟 = 256, attention heads, ℎ = 12, and channels, 𝑐 =
64 and 𝑐cde = 768. 5 
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Fig. S26. Mask revelation. (A) A mask pattern is used to gather features, indicated with dots, 
from the updated MSA representation and embedded target tokens. (B) For each protein, for each 5 
masked residue in that protein, reveal embeddings for residues at other masked locations within 
that protein. The partially revealed target embeddings are concatenated with the MSA 
representation and (C) linearly projected, in preparation for interpretation by self-attention. 
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Fig. S27. Revelation output head. Dimensions are shown for channels, 𝑐cde = 768 , and 
vocabulary size, 𝑣 = 21. 
  5 
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Fig. S28. Top-1 training accuracy. Training accuracies are averaged over 10K iteration segments 
for six PrimateAI LM models used in our ensemble. The accuracies are lower for query sequences, 
which do not contain gap tokens. 

5 
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Supplemental tables 
 
Table S1. 36 pathogenic ClinVar variants present in primates curated by our clinical 
laboratory experts. A variant may occur in multiple species, shown in multiple rows. Curation 
evidence is provided along with extra information on each variant, including in silico tool 5 
predictions, penetrance, hypomorphic or not, recessive/dominant, etc. 
 
Table S2. Expected and observed counts, inferred selection coefficients, and missense : 
synonymous ratio deviation for 18,883 human genes. Expected and observed synonymous 
counts in humans are in columns exp_syn_h and obs_syn_h, respectively, and expected and 10 
observed missense counts in humans are exp_mis_h and obs_mis_h, respectively. Expected and 
observed synonymous counts in the primate cohort are exp_syn_p and obs_syn_p, respectively, 
and expected and observed missense counts in the primate cohort are obs_mis_p and exp_mis_p, 
respectively. Selection coefficients in human and primate are indicated by s_human and 
s_primate, respectively. Benjamini-Hochberg corrected p-values testing the null hypothesis that 15 
s_human = s_primate are provided under p.adj.popgen. MSR regression was only performed on 
12,738 genes passing cut offs. Genes that did not pass the cutoff have a low_quality flag set to 
TRUE. For genes in the MSR regression, the log-scaled deviation from expected MSR is given 
under MSR_deviation. Benjamini-Hochberg corrected p-values testing the null hypothesis 
MSR_deviation = 0 are provided under p.adj.MSR. 20 
 
Table S3. Performance of PrimateAI-3D and 16 other pathogenicity classifiers on six 
benchmarking datasets. Information about the six evaluation datasets (UKBB, DDD, ASD, 
CHD, ClinVar and DMS assays) is provided, including the number of patients and the number of 
variants, as well as evaluation methods. Performance metrics of PrimateAI-3D and 16 25 
pathogenicity classifiers are provided in the remaining columns. The average rank of 
performance across datasets of each method is provided in the last row, with 1 
corresponding to the best overall performing across all datasets and a rank of 17 
corresponding to the worst. 
 30 
Table S4. PrimateAI-3D performance on 42 genes with phenotype 
associations from UKBB. Column “Phenotype” provides 41 phenotypes and column 
“EnsembleID” provides 42 genes. For each of 78 gene-phenotype pairs, the number of common 
variants and evaluation metric of PrimateAI-3D (absolute value of Spearman correlation) are 
provided.  35 
 
Table S5. Enrichment of de novo mutations for all genes with >0 nonsynonymous de novo 
mutations. P-values are provided for two enrichment tests, one with missense mutations 
restricted to PrimateAI-3D scores ≥ 0.821, and the other including all missense mutations. 
 40 
Table S6. Performance of PrimateAI-3D and 16 other pathogenicity classifiers on 9 
saturation mutagenesis assays. Absolute value of Spearman correlation of prediction scores of 
17 classifiers (rows) with assay measurement across the 9 saturation mutagenesis assays 
(columns labelled by gene symbol) are provided.  
 45 
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