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Abstract: There is demand for safer and bio-based solvents, brought on by legislation and sustainability
objectives. The prediction of physical properties is highly desirable to help design new molecules.
Here we present an in silico approach to obtain calculated Kamlet–Abboud–Taft solvatochromic
parameters using virtual experiments. The tautomerisation equilibrium of methyl acetoacetate
and dimedone was calculated in different solvents with COSMO-RS theory and converted into
estimates of solvent dipolarity and hydrogen bond accepting ability, respectively. Hydrogen bond
donating ability was calculated as a function of the electron deficient surface area on protic solvents.
These polarity descriptors correlate with rate constants and equilibria, and so ability of calculated
Kamlet–Abboud–Taft solvatochromic parameters to recreate experimental free energy relationships
was tested with sixteen case studies taken from the literature. The accuracy of the calculated
parameters was also satisfactory for solvent selection, as demonstrated with a 1,4-addition reaction
and a multicomponent heterocycle synthesis.

Keywords: solvent effects; solvatochromism; polarity; kinetics; COSMO-RS

1. Introduction

The rate of a reaction [1,2], and product selectivity [3–5], can be favourably tuned by the astute
application of the most appropriate solvent. Unlike a catalyst, a solvent also modifies equilibrium
positions [6,7]. Furthermore, the solubility of substances is crucial, be it for reaction, formulation,
extraction, precipitation, or liquid chromatography. Following decades of research into catalyst
optimisation [8,9], solvent selection and even the design of bespoke solvents for greater reaction
performance has only recently reached prominence [10–13].

Novel solvents are being commercialised and promoted in response to new regulatory
restrictions on conventional solvents [14,15]. To accelerate the discovery of safer alternative solvents,
reliable estimations of application performance are needed so that solvent design can be conducted
in a logical way instead of arriving at acceptable replacements by trial and error. Simple and
computationally fast group contribution methods are available to predict the physical properties of
solvents (boiling point, density, viscosity, etc.). None of these properties reliably correlate with reaction
kinetics, thermodynamics, or product yields, which ultimately determines the suitability of a solvent
(assuming it is safe to use).

Here, we report a computationally inexpensive method of predicting the Kamlet–Abboud–Taft
(KAT) solvatochromic parameters of solvents [16]. The KAT parameters represent dipolarity (π*) [17],
hydrogen bond accepting ability (β) [18], and hydrogen bond donating ability (α) [19]. All three
are traditionally obtained from the normalised UV spectra of solvatochromic dyes. The KAT
parameters correlate linearly with the logarithmic function of reaction rates and equilibria. For example,
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the tautomerisation of methyl acetoacetate (1) is a function of π*, and the tautomerisation of dimedone
(2) is proportional to β [20] (Figure 1). To obtain calculated KAT parameters, the commercial
software COSMOtherm was used to create a description of the surface charges on solvents
(σ-surface) [21]. Utilising polarisation charge densities from the COSMO solvation model prior
to statistical thermodynamic calculations (COSMO-RS) [22,23], an accurate representation of the type
and strength of molecular interactions a solvent is capable of is provided. This is the origin of solvent
polarity on a molecular scale. The aforementioned tautomerisation reactions were recreated in silico in
the solvents modelled with COSMOtherm, and the calculated equilibrium constants equated to the
responsible KAT parameter (π* or β) by means of a virtual free energy relationship.
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Figure 1. The solvent effect on the tautomerisation of acyclic and cyclic 1,3-dicarbonyl compounds. 
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bond accepting solvents. 

We could not find a suitable molecular equilibrium that is dictated only by α. Instead, we 
modified the previous work of Palomar et al. that interpreted solvent polarity directly from molecular 
surface charges (provided in COSMOtherm as a histogram known as the σ-profile) [24]. By isolating 
the portion of a molecule that is capable of accepting electrons, it is possible to derive its α value. The 
π* and β parameters were not able to be calculated in this manner. 

COSMO-RS theory has previously been used to deduce the Abraham parameters [25], and the 
solvatochromic response of Reichardt’s dye [24], but neither are as versatile as the KAT parameters 
in predicting so many types of chemical phenomena [16]. Diorazio et al. predicted KAT parameters 
from density functional calculations using Gaussian 09 [26]. With a similar approach Waghorne et al. 

Figure 1. The solvent effect on the tautomerisation of acyclic and cyclic 1,3-dicarbonyl compounds.
(a) The tautomerisation of 1, with σ-surfaces superimposed over the lowest energy conformation of
both tautomers; (b) The tautomerisation of 1 is inversely proportional to π* due to the smaller dipole
moment of the enol-tautomer; (c) The tautomerisation of 2; (d) The free energy relationship between
the tautomerisation of 2 and β showing stabilisation of the enol-tautomer is provided by hydrogen
bond accepting solvents.

We could not find a suitable molecular equilibrium that is dictated only by α. Instead, we modified
the previous work of Palomar et al. that interpreted solvent polarity directly from molecular surface
charges (provided in COSMOtherm as a histogram known as the σ-profile) [24]. By isolating the
portion of a molecule that is capable of accepting electrons, it is possible to derive its α value. The π*
and β parameters were not able to be calculated in this manner.

COSMO-RS theory has previously been used to deduce the Abraham parameters [25], and the
solvatochromic response of Reichardt’s dye [24], but neither are as versatile as the KAT parameters
in predicting so many types of chemical phenomena [16]. Diorazio et al. predicted KAT parameters
from density functional calculations using Gaussian 09 [26]. With a similar approach Waghorne et al.
predicted values of β correlating to experiment with a Pearson correlation coefficient (r) of 0.92 (after
removing bases from the dataset) [27]. Our new predictive methodology serves the same purpose as
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the prior art by permitting the rationalisation of solvent effects, as validated in sixteen examples from
the literature. Furthermore, we have conducted two new case studies for the purpose of finding a
superior solvent, which was then demonstrated experimentally. With the greater predictive accuracy of
our method, it was also possible to design a bespoke solvent to improve the synthesis of a substituted
tetrahydropyridine compound.

2. Results and Discussion

2.1. Virtual Isomerisation Experiments

Experimental data for nine solvents were used to validate the accuracy of the calculated equilibrium
constants for the tautomerisation of 1 and 2. Linear relationships were achieved, despite the
overestimation of ln(KT) values. This systematic error is shared with other computational methods
of predicting rate constants [28]. This being the case, it is convenient to normalise the equilibrium
constants to assist data visualisation and interpretation. The proportionality achieved between
experimental and calculated equilibrium constants (shown in Figure 2) means the latter also correlate
with π* or β. Figure 2 is also annotated with how calculated π* or β values are obtained, whereby a
normalised calculated equilibrium constant corresponds to solvent polarity via the virtual free energy
relationship equation.
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Figure 2. Model training datasets to establish the relationship between experimental and virtual
equilibrium constants. (a) The π* calculation, annotated with the most accurate prediction
(1,2-dichloroethane) and the least accurate (toluene). Acetic acid deviated from the trend; (b) The
β calculation, annotated with the most accurate prediction (chloroform) and the least accurate
(1,4-dioxane).

A noteworthy observation was the in silico recreation of the experimental deviation of acidic
solvents from the free energy relationship describing the tautomerisation of 1 (Figure 2a). A greater
proportion of the diketo-tautomer exists in an acetic acid solution than anticipated from just the
dipolarity (π*) of the solvent. This is due to the protonation of 1, increasing the stabilisation of the
diketo-tautomer compared to the enol [20]. This behaviour was validated by an additional virtual
experiment in propionic acid (see Supplementary Material).

2.2. Dataset of Calculated Kamlet–Abboud–Taft Solvatochromic Parameters

A dataset of 175 solvents was taken from the work of Marcus [29]. This is the most complete
collection of KAT parameters obtained under the same experimental conditions. Estimations of π*
(Figure 3a) and β (Figure 3b) were derived from normalised virtual ln(KT) values using the relationship
established by the training datasets (Figure 2). The dipolarity of acidic solvents could not be described
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for the reason already provided. This includes carboxylic acids, phenols, and fluoroalcohols. The π*
values of water and perfluorinated alkanes were also overestimated. The accuracy of calculated
β values was satisfactory except for amines and other highly basic (β > 0.80) solvents, at which
point the model was unrepresentative. In experiment, the enol:diketo ratio of 2 in ethanol (β = 0.75)
is >99%. Solvents can have a considerably higher hydrogen bond accepting ability but will only
minimally increase enol tautomer concentration. By contrast, the experimental proportion of 1 in its
enol form only reaches ca. 50% in low polarity hydrocarbons. It might appear that an experimental
limitation is again mirrored by its virtual equivalent. However, the same issue affected the separate
approaches developed by Diorazio and Waghorne (discussed in the Supplementary Material) [26,27].
This indicates it is not necessarily the use of the dimedone tautomerisation that restricts the valid range
of β predictions, but perhaps a more fundamental problem of acid-base behaviour interfering with
hydrogen bonding models.
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Figure 3. Calculated Kamlet–Abboud–Taft (KAT) parameters correlated to experimental data,
accompanied by an error analysis and reference to literature methods [26]. (a) π* calculations,
primary dataset; (b) β calculations, primary dataset; (c) π* calculations, secondary dataset, and ionic
liquids; (d) β calculations, secondary dataset and ionic liquids.

The mean average error (MAE) of the calculated π*, β, and α values are 0.15, 0.07, and 0.06
respectively (after removing ineligible compounds). Particularly for the prediction ofπ* an improvement
in accuracy was sought. Previously, σ-moments generated by COSMOtherm have been used to estimate
the Abraham solute parameters [25]. The affinity of a solvent towards a solute (quantified as chemical
potential) can be described as a function of these σ-moments (Table 1) [30]. Although these parameters
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alone do not directly correlate with the KAT parameters (see Supplementary Material), they can be
used to correct estimations of π* and β. It was found that the π* calculation error was proportional to
the molecular surface area of the solvent. Similarly, the calculation of β was improved by accounting
for the asymmetry of the charge distribution on the surface of a solvent molecule. The correction is
sensitive to the chemical functionality of the solvent. Using acyclic ethers as an example, the error of a
calculated π* value is corrected with Equation (1) (Figure 4a), and the error of a calculated β value
is corrected according to Equation (2) (Figure 4b). Figure 3a,b compare uncorrected and corrected
calculated KAT parameters with experimental values for the entire Marcus dataset, with an increase in
predictive accuracy compared to previously described literature methods.

π*corrected = π*uncorrected − (−0.0029·Area + 0.4705), (1)

βcorrected = βuncorrected − (0.0032·sig3 − 0.0599), (2)

Table 1. Definitions of σ-moments.

σ-Moment Description

Area Molecular surface area.
sig1 Charge (zero for organic solvents).
sig2 The global electrostatic polarity of the molecule.
sig3 The asymmetry of the σ-profile, measured by skewness.

HBdon Hydrogen bond donor moment.
HBacc Hydrogen bond acceptor moment.
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σ-moments. (a) Calculated π* error correction; (b) Calculated β error correction.

Corrected calculated KAT parameters are not possible to obtain for all solvents. For instance, if the
number of solvents in the primary dataset with the same functionality was three or less no correction
was constructed (e.g., nitroalkanes, because only data for nitrobenzene and nitromethane are available).
Also, the solvent types with erroneous uncorrected calculated KAT parameters (e.g., basic solvents
such as amines) could not be transformed into valid estimations. A correction was applied to the
calculated α values by setting all values below 0.10 to zero, mirroring experimental practices (refer to
the Supplementary Material for discussion and the full KAT parameter dataset).

The KAT parameters for a secondary dataset of 23 new solvents were then obtained. The purpose
of this exercise was to verify that the correction factors are meaningful to solvents not used to define the
proportionality between σ-moments and the error of calculated π* and β values. Some of these solvents
were also needed for the subsequent case studies. The introduction of multifunctional compounds in
this second compound set increased the prediction difficulty, but the typical error remained acceptable
for uncorrected π* (Figure 3c) and β values (Figure 3d). After correction, a marginal improvement
to the MAE was achieved. There is an indication that the multifunctional nature of some of these
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additional solvents is not addressed by the correction factors. Specifically, the correction of β values
for this secondary dataset showed a bias not observed in the primary dataset, with relatively large
errors remaining large (but slightly reduced on average). The failure to correct large errors may be an
anomaly arising from the small dataset, or because the original representation of the solvent surface
charges on the more unusual solvent molecules is inaccurate. Assuming the latter, the adequacy of the
linear single variable correction factors presently used will be investigated in the future, with non-linear
multiparameter models sought.

Calculated α values were more erroneous on average because some solvents in the secondary
dataset are capable of intramolecular hydrogen bonds and thus appeared aprotic in their σ-profile.
One example is 2-methoxyethanol, which is calculated to form a hydrogen bond resulting in a
5-membered ring structure. This conformer no longer has the ability to donate a hydrogen bond.
Higher energy conformations of these solvents not featuring an intramolecular hydrogen bond could
be used to obtain a realistic prediction of α (see Supplementary Material).

It was also possible to evaluate the polarity of ionic liquids. Alternative methods are available for
the calculation of β and α [31], but not π*. Although we can accurately calculate π* for the first time
(Figure 3c) and also β (Figure 3d), the prediction of α failed because the electron density of cations that
gives rise to an equivalent interaction to hydrogen bond donation in ionic liquids differs to neutral
molecular solvents and true hydrogen bonds (see Supplementary Material). The calculation of π*
and β is possible for mixtures of solvents including deep eutectic mixtures (data is provided in the
Supplementary Material), but it is not possible to simply combine the σ-profiles of each component to
determine α. Ionic liquid and deep eutectic mixture data were not subject to corrections.

2.3. Application of Calculated KAT Parameters to Free Energy Relationships

The most effective use of the KAT parameters is the construction of free energy relationships,
which can have two purposes. Firstly, in the tradition of physical organic chemistry, information about
the mechanism of the chemical process is revealed. Secondly, extrapolation of the free energy
relationship predicts the properties of the optimum solvent that will maximise the phenomenon being
measured. To establish whether calculated KAT parameters are accurate enough for this purpose,
sixteen case studies from the literature were found. This exercise necessitated the use of independently
chosen solvents, so it was not possible to avoid solvents with the least accurately calculated KAT
parameters. The variable described by each free energy relationship (e.g., ln(k), ∆G◦, etc.) was
correlated with both experimental and calculated KAT parameters. Typically, the weakest correlations
were obtained with uncorrected calculated KAT parameters. After correction, the calculated KAT
parameters generally approached the accuracy of the corresponding empirical free energy relationship
based on experimental KAT parameters. All the free energy relationships are explained in the
Supplementary Material.

To illustrate with one of the sixteen case studies, the kinetics of a Menschutkin reaction between
1,2-dimethylimidazole and benzyl bromide (conducted by Skrzypczak and Neta, Scheme 1) [32],
is accelerated by solvents with high π* values and decelerated by hydrogen bond donating solvents as
represented by the empirical free energy relationship in Equation (3).

ln(k) = −11.27 + −2.62α + 5.94π*, (3)

They found propylene carbonate provided increased rates of reaction over the conventional
solvent acetonitrile. The free energy relationship was computed using experimental (Figure 5a) and
calculated (Figure 5b) KAT parameters with Equation (3) to obtain calculated ln(k) values. The corrected
calculated KAT parameters, in particular, were able to replicate the solvent effect quantified by the
empirical free energy relationship. Screening the dataset of calculated KAT parameters now at our
disposal, the potentially most beneficial reaction solvents were found by solving the free energy
relationship. Out of 198 candidates (175 from the Marcus dataset and the 23 additional solvents),
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propylene carbonate provided the tenth largest predicted ln(k) and acetonitrile the 50th. Examining the
top ten solvent candidates and removing those that are either solid at the reaction temperature of 21 ◦C,
nucleophilic and thus reactive, or severely toxic, only dihydrolevoglucosenone (Cyrene™) and N-butyl
pyrrolidone remain alongside propylene carbonate (Figure 5c). This output is vindicated by existing
studies of the Menschutkin reaction (albeit under different reaction conditions), where Cyrene™ [33],
and N-butyl pyrrolidone [34], both considered greener alternatives to conventional dipolar aprotic
solvents [14], provided greater rates of reaction than acetonitrile (82% and 31% increase to rate constant
magnitude under their respective reaction conditions).
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Figure 5. A demonstration of solvent selection for a Menschutkin reaction. (a) Comparison of
experimental ln(k) and calculated ln(k) values (based on Equation (3) solved with experimental KAT
parameters). (b) Substitution with calculated KAT parameters for the prediction of ln(k) and compared to
experimental data. (c) The ten solvents with the highest predicted rate constants, annotated with practical
issues and molecular schemes. Cygnet 0.0 is spiro-6,8-dioxabicyclo[3.2.1]octane-4,2′-[1,3]dioxolane [35],
and Cyrene™ is dihydrolevoglucosenone [33].
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This success of this model can be compared to when density functional calculations have been
employed to predict the rate of the Menschutkin reaction and also identify an optimum solvent [28].
After normalising predicted rate constants using experimental data (a necessary step in common
with our approach), a 30% increase to the rate constant was predicted in nitromethane compared
to acetonitrile (40% observed experimentally). This result is consistent with Abraham’s earlier
experimental work on the Menschutkin reaction [36]. By limiting optimisation opportunities to
conventional solvents, substitution is effective from a reaction performance perspective but not
necessarily desirable with respect to human health. Nitromethane is a suspected carcinogen and
may exhibit reproductive toxicity. By contrast, Cyrene™ and N-butyl pyrrolidone have acceptable
toxicity hazards and accordingly are licensed for multi-tonne production (in accordance with EU
REACH regulation).

2.4. 2-Methyltetrahydrofuran Identified as a Rate Accelerating Solvent in Michael Addition Chemistry

The Menschutkin reaction is an uncomplicated reaction with many kinetic studies available in the
literature and a strong history of empirical and computational analysis that makes solvent substitution
reasonably straightforward. To provide a sterner test for this new methodology, a new experimental
dataset for a reaction with previously unassessed solvent effects was created and used to identify a
superior solvent. For this purpose, the kinetics of a Michael addition catalysed by potassium phosphate
was measured in six solvents (Scheme 2). 1,4-Addition reactions are widely used in drug discovery
and studied in the development of enantioselective catalysis [37]. It was found that the rate of the
reaction favoured high β values and small solvent molar volumes (VM) according to Equation (4).

ln(k) = −5.16 + 5.59β + −0.0385VM, (4)

In this reaction, a hydrogen bond accepting solvent may interact with the conjugate acid of the
catalyst to favour the deprotonation of 3 and consequently the formation of 4. The molar volume
term is indicative of a bimolecular reaction in which the cavity occupied by the reactants in solution is
reduced in size upon forming a single activated complex.
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Calculated KAT parameters and predicted molar volumes obtained in COSMOtherm were used
to calculate ln(k) from the free energy relationship in Equation (4), which correlated to experimental
values with sufficient accuracy to screen for potential new solvents (Figure 6). To increase the rate of
this reaction, the required combination of a strongly hydrogen bond accepting solvent that is also a
small molecule indicated 2-methyltetrahydrofuran (2-MeTHF) as a good candidate. It is bio-based and
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has become a popular replacement for traditional ethers in process chemistry [38]. By extrapolating the
empirical relationship in Equation (4), an accelerated rate of reaction was predicted in 2-MeTHF over
the previous best solvent (dimethyl carbonate) of 131%. When using the corrected calculated β value
of 2-MeTHF and its calculated molar volume, a rate enhancement of 150% is predicted. Experiment
found the actual rate constant to increase by 180%.
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2.5. Design of a Novel Solvent for the Synthesis of Tetrahydropyridines

The true value of the new method presented in this work is to identify the performance of a
solvent without experimental KAT parameters before it has even been synthesised. This significantly
reduces the time needed for solvent design and selection, which is critical given the regulation of
popular solvents is escalating in many global territories. With this goal in mind, a reaction complicated
by multiple solvent effects was chosen to demonstrate the capability of this method. The indium(III)
chloride catalysed reaction between benzaldehyde, p-anisidine, and 1 forms a highly substituted
tetrahydropyridine (5, Scheme 3). The product was isolated by filtration and then recrystallised.
Previous reports of this reaction favour acetonitrile and methanol as yield maximising solvents [39,40].Molecules 2019, 24, x 10 of 16 
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Product yields from equilibrium-controlled reactions can be modelled as a function of solvent
polarity [20]. To do so, an apparent equilibrium constant (K’) must be derived for the free energy
relationship, and so a judicious choice of reaction conditions was needed to eliminate kinetic effects
(provided in the Supplementary Material). Equation (5) is solved by dividing the moles of 5 (m)
isolated at time t (i.e., the conclusion of the reaction) by the molar amount of 1 (n) not incorporated
into the product (inferred by subtracting the molar yield from the initial quantity of yield-limiting 1).
After fitting ln(K’) to the empirical KAT parameters in the same manner as for other free energy
relationships, experiment showed the yield increased with greater solvent dipolarity (Equation (6) and
Figure 7a).

K’ = mt/(n0 −mt), (5)

ln(K’) = −0.44 + 1.44π*, (6)
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Figure 7. Solvent optimisation for a multicomponent reaction. (a) Calculation of ln(K’) from the free
energy relationship in Equation (6) using experimental KAT parameters, and compared to experimental
data. The trendline is calculated without levoglucosanol and extrapolated; (b) Calculation of ln(K’)
using calculated KAT parameters. Trendlines are calculated without levoglucosanol and extrapolated;
(c) Experimental reaction yields and predictions based on the empirical free energy relationship, and the
result of the same correlation with calculated π* values.
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For a successful reaction the diketo-tautomer of 1 is required to react with p-anisidine before a
Knoevenagel condensation and the final cycloaddition (Scheme 3) [41]. Therefore, polar solvents that
increase diketo-tautomer concentrations (Figure 1b) provide higher yields (Figure 7c). The chelation
of indium by the enol-tautomer can be considered as a competing and stoichiometric reaction given
the high catalyst loading. Equation (6) implies classical dipolar aprotic solvents such as dimethyl
sulphoxide (π* = 1.00) will provide the greatest reaction productivity. However, the product is soluble
in this category of solvents, allowing the final step of the reaction to become an equilibrium that
favours the intermediates (Scheme 3), otherwise avoided if the product precipitates. Furthermore,
solvents featuring a carbonyl functionality will be reactive in this case study (e.g., Cyrene™, which failed
to produce any product), as will strong nucleophiles.

To design a stable and dipolar solvent that is unable to dissolve the product, the Hansen solubility
parameters of the tetrahydropyridine were calculated from experimental solubility data using the
HSPiP software (full data is provided in the Supplementary Material). The results suggested the product
is not soluble in aliphatic alcohols (found outside the Hansen sphere in Figure 8). The most dipolar
alcohol solvents include glycerol and other polyols, but experimental testing resulted in multiple
products caused by the acetalisation and ketalisation of the reactants. The reduction of Cyrene™
created an alternative, novel solvent. The predicted π* value of levoglucosanol is 0.83, corrected to
0.93, which is greater than solvents previously shown to produce high yields. This corresponds to a
predicted yield of 69% (using the uncorrected calculated π* value of levoglucosanol) or 72% (from the
corrected calculated π*). The synthesis of levoglucosanol from Cyrene™ using sodium borohydride in
water permitted the determination of an experimental π* value, which was 0.89. The empirical free
energy relationship suggested a reaction yield of 70% would be achieved experimentally. After isolation
and recrystallisation, 73% of the theoretical product yield was obtained, exceeding that observed from
any of the initial solvent set and in line with predictions (Figure 7).
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3. Materials and Methods

ArgusLab (version 4.0.1, Mark Thompson and Planaria Software LLC, 2004, Seattle, WA, USA)
was used to obtain approximate atomic coordinates of compounds. The conformations of the molecules
were calculated with COSMOconfX (version 4.0; COSMOlogic GmbH & Co. KG, Leverkusen, Germany,
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2015). COSMOthermX (version C30_1705; COSMOlogic GmbH & Co. KG, 2017, TZVP basis set
level) was used to provide molecular surface charges, σ-profiles, σ-moments, and execute the virtual
experiments. Specifically, tautomerisation equilibria of 1 and 2 were calculated using the ‘Reaction’
function of COSMOtherm in the chosen solvent. In each case, the diketo-tautomer was selected
as the reactant, and the enol-tautomer as the product. Equilibrium constants were calculated with
the assumption of infinite dilution at 25 ◦C. The calculation of α is described in the Supplementary
Material, as are screenshots of the different stages and outputs of the calculations. HSPiP (version
5.0.03, Abbott and Yamamoto, Ipswich, UK, 2015) was used to create the Hansen sphere.

4. Conclusions

A new method for the calculation of KAT parameters with diverse uses in describing chemical
phenomena has been developed. Our reliance on empirical free energy relationships remains, but now
it is possible to use a known relationship between a chemical phenomenon and the solvent to design
and select new solvents to maximise performance prior to making them or evaluating their polarity.
This process has been used to optimise the reaction rate of a Michael addition and improve the yield of a
multicomponent synthesis of tetrahydropyridines. Experimental results reported in the literature have
been recreated in silico to confirm the broad applicability of this approach (including the frequently
studied Menschutkin reaction), which can be adopted by other practitioners without specialised
expertise in computational chemistry. Some limitations remain, specifically, the inability to model
acids and bases and the need for correctional factors. COSMO-RS theory would need to be modified
to eliminate these restrictions. Additional experimental data would also help to refine the correction
factors, especially for multifunctional compounds. A more complex but general method of error
correction needs to be developed to enhance the model. As it stands, this method is an advantageous
development in the context of previous attempts to estimate KAT parameters. The ability demonstrated
here to accelerate the design of a new generation of solvents will be invaluable as the restriction of
toxic solvents continues to force solvent substitutions across the chemical sciences.

Supplementary Materials: The following are available online. Document: Full details of the calculations and
an explanation of solvatochromism and the COSMOtherm software [42–68]. Spreadsheet: List of experimental
and calculated KAT parameters, data for 16 additional case studies, and attempts to directly predict equilibrium
constants in COSMOtherm.
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