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Abstract

This paper examines two aspects of spot FX volatility. Using intra-daily quo-
tation data on the DeutscheMark/Dollar we simultaneously estimate the de-
terministic intra-daily seasonal pattern inherent in volatility and the effects
of U.S. macroeconomic announcements. The empirical specification and esti-
mation technique is based on the Stochastic Volatility methodology contained
in Harvey, Ruiz, and Shephard (1994). Results conform with previous work,
in that ‘news’ effects are strong and persistent, being felt for over one hour
after the initial release time. Inclusion of an explicit seasonal is shown to be
essential for the accurate estimation of other volatility components. Further
estimations allow us to examine which particular pieces of U.S. data move
the markets. These results show that the most important statistics are those

associated with the Employment and Mercantile Trade reports.
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1 Introduction

In recent times it has become a well established fact that intra-day volatility in
financial markets is subject to pronounced deterministic seasonality. Volatility effects
around market closures, over weekends and within lunch hours have all been shown
to be subject their own specific patterns. Works in this area include French and Roll
(1986) for the NYSE, Barclay, Litzenberger, and Warner (1990) for the Tokyo Stock
Exchange and the series of papers emanating from Olsen and Associates (Zurich)

which concentrate on the X market.

Perhaps the most striking examination of seasonality comes from Andersen and
Bollerslev (1994). They examine two series of intra-daily financial market returns,
the first from the foreign exchange market and the second from the Standard and
Poors 500. As the figures at the end of their paper indicate, both markets display
pronounced seasonality in volatility; the familiar U-shaped pattern is apparent for
the Standard and Poor data, whilst a much less regular seasonal is estimated for
the FX data. The authors go on to pre-filter the data for deterministic seasonal-
ity, using a Flexible Fourier Form, before estimating GARCH specifications for both
series over varying observation frequencies. Results demonstrate that removing the
seasonal component gives estimated GARCH parameters which conform much more

closely with the predictions of theory as data are aggregated over time.

Over the same period of time, a second strand of literature has begun to examine
the effects of scheduled news announcements on financial market volatility. The
work of Goodhart, Hall, Henry, and Pesaran (1993) concentrates on the FX market,
taking two specific announcements and investigating their effects on both the level
and variance of exchange rates. Ederington and Lee (1993) and Ederington and Lee
(1995) examine the impact of regular, scheduled US announcements on the volatility
of T-bond, Eurodollar and Deutsche Mark futures prices. Both conclude that there
is a significant impact from these announcements, both at the announcement instant

and for an extended length of time afterwards.

The focus of this paper is to combine the above. We too seek to examine and estimate
intra-day seasonality in volatility, but do so in conjunction with the estimation of
announcement effects for certain US macroeconomic news. Our empirical model is
an extension of the Stochastic Volatility models presented in, for example, Harvey,
Ruiz, and Shephard (1994) and Taylor (1994). The model incorporates an unobserved
AR(1) component, (designed to pick up volatility clustering effects,) deterministic
seasonal effects and deterministic news dummies. The data employed are quotations

for the DeutscheMark/Dollar exchange rate, recorded continuously over the period



from October 1992 to September 1993.!

The main objective of the work is to provide an accurate assessment of the importance
of each of these three volatility components. Firstly, we aim to confirm the conjec-
ture contained in Ederington and Lee (1993), that the response of spot FX rates to
news should be similar to the behaviour they demonstrate for the DM futures con-
tract. However, as the work of Andersen and Bollerslev (1994) shows, modelling the
seasonal component is essential for an accurate analysis of intraday volatility. The
covariation of the seasonal with short-run volatility elements, such as news effects, is
likely to imply that ignoring the seasonal will bias estimated news effects. Therefore
we estimate a model containing both seasonality and announcement effects. This
further allows us to confirm the findings of Anderson and Bollerslev, also provid-
ing a simple alternative method of intra-daily seasonal estimation. We compare the
estimated parameters of various models combining various different volatility com-
ponents, demonstrating how the omission of one component or another may lead to

mis-estimation of those components which remain in the specification.

In a final set of empirical estimations we examine the impact which individual an-
nouncements have on volatility. Using both announcement specific dummies and the
median forecast errors associated with particular releases we construct a ranking of

the U.S. macroeconomic data based on their estimated effect on quote variation.

The remainder of the paper is set out as follows. Section 2 provides background
information and a review of existing studies on both seasonality and announcement
effects. Our empirical model is set out in Section 3 and the results presented and

discussed in Section 4. Section 5 concludes.

!The data were provided by Olsen and Associates (Zurich), to whom the author is most grateful.



2 Background: News and Seasonality

In this section we review the established facts regarding the components of, and
the changes in, intra-daily volatility, focussing on market activity and scheduled
announcements. With regard to the impact of news, we seek to define clearly the
relationship of the announcement data to news and go on to present a discussion of

the possible impacts before, at and after announcement

2.1 News and Announcements

In this sub-section we describe the composition of our announcement data and our
hypotheses regarding the behaviour of volatility around announcement times. Before
doing so, we present a summary of some of the previous work regarding news and
volatility, and go on to attempt to clarify the relationship between announcements

and news.

One of the pioneering studies on the impact of news on FX volatility was performed
by Goodhart, Hall, Henry, and Pesaran (1993). In this work the authors employ a
tick-by-tick data set of Dollar/Pound quotations, spanning a calendar time interval
of eight weeks, and examine how two specific events affect volatility.? Employing a
GARCH-M framework, they find that a system without news effects indicates that the
level of the exchange rate has a unit root and also that the conditional variance is very
nearly integrated. This latter conclusion alters dramatically when news effects are
incorporated; the persistence of the conditional variance equation drops dramatically,
and large and highly significant announcement effects are indicated. The authors
model the announcement effects via dummy variables in the conditional variance
equation, an approach we broadly follow in our empirical specifications. A further
point to note regarding this study is that their usage of tick-by-tick data renders their

results incomparable to those we present in the following sections.

Another work which examines this issue is Ederington and Lee (1993). They, however,
do not examine the spot FX market, rather the reaction of the prices of three nearby
futures contracts, the Deutsche Mark/Dollar exchange rate, T-bond and Eurodollar.
Using a news data set of scheduled US macroeconomic (and survey) releases, they
investigate how both volatility and price-adjustment behave. As our focus is on
the spot FX market, we discuss only their results on the volatility of the nearby
Deutsche Mark contract. The authors construct a set of five-minute transaction

price returns from their tick-by-tick data and take the standard deviation of returns

?These events are the unexpectedly good US Trade figures announced on 17/5/89 and a 1% rise
in UK base rates revealed on 24/5/89.



for each interval across all the days in their sample. This clearly demonstrates that
that the interval from 8:30 to 8:35 EST, the interval which is immediately after most
of the announcements, is by far the most volatile of the day. The authors further
show that this spike in volatility is only apparent for days on which announcements
occur. As regards the persistence of this abnormal volatility, they show that the
immediate impact of announcements is to increase volatility by five times, this drops
to twice normal volatility over the next ten minutes and finally decays over the next
few hours. Significantly higher volatility is felt up to 40 minutes after the initial
impact. The authors also analyse which announcements are most influential for the
DM future. Results suggest that those which matter are the Employment report,
Mercantile Trade, Retail Sales, GNP, PPI and Durable Goods orders, in declining

order of significance.

Along the same lines, Harvey and Huang (1991) analyse the volatility patterns of cur-
rency futures traded on IMM and LIFFE. They show that the first hour of Thursday
and Friday mornings are exceptionally volatile, a consequence which they assert is
due to the release of US macroeconomic data of the type Ederington and Lee study,

rather than any private information concentration at the market open.

A more recent study, and one which employs the same data period as this, is De-
Gennaro and Shrieves (1995). This work utilises hourly quotation returns on the
Yen/Dollar exchange rate, investigating how three types of news impact the market.
These categories are scheduled macroeconomic announcements, unscheduled policy
news and unscheduled interest rate reports. Results for the scheduled macroeconomic
reports suggest that volatility is significantly higher in the hour prior to release, is in-
significantly greater in the hour of release, before rising once more and then decaying

gently over time.

A relevant issue, for all the above studies, is the relationship between announcements
and news. Until now we have used these terms interchangeably, although their inter-
pretations are quite different. All of the ‘news’ data used in the following empirical
analysis, and mostly used in those papers above, are US macroeconomic and survey
statistics whose precise release date and time are known in advance. This allows mar-
ket participants to form expectations over their content. Clearly then, there is not an
identity between announcements and news, announcements only being newsworthy
to the extent that they are unexpected. Further, each announcement is likely to differ
in the amount of information it carries, some having been largely predictable whilst
others contain entirely unexpected results. Best practice in this situation is to create
a news measure from the announcements by employing the consensus expectation of
the market. This approach has been employed in the investigation of news effects on

the level of exchange rates by, for example, Hakkio and Pearce (1985). A further con-



sideration is touched on in Ederington and Lee (1993). It is most likely that certain
announcements are more important for certain assets e.g. the Trade figures being
vitally important for FX rates but, apparently, for little else. Ederington and Lee’s
demonstration of the influential items shows that if one were to construct the type of
news metric mentioned above, not only would the size of the unexpected element be
important, but also the type of announcement itself. We address both these points in
our final set of estimations. There we examine the effect of individual announcement
series on volatility, utilising both a dummy variable specification and a more precise
‘news’ measure derived from the difference between actual announced figures and the
consensus expectations of the market. Finally, changing market sentiment will be
important here also. Over time, the market’s belief as to which series are important
alters. At a certain point markets may believe unemployment figures are the key in-
dicator of economic performance, although a year further down the road their focus
may have shifted to the Producer Price Index. Hence it must be recognised that the
impact of an individual announcement series is likely to be time-varying, as market

sentiments shift.

Nevertheless, all the papers mentioned above show that a prominent role is played
by announcement effects in short run volatility determination. Here we hope to
demonstrate the same kind of impact which Ederington and Lee show, but for the spot
FX rate. We depart from previous work on the spot market by employing a very fine,
calendar time sampling frequency and explicitly modelling the seasonal component
of volatility, which is discussed in the sub-section below. A relative disadvantage
of focussing on the spot market is that transaction prices, over a time period long
enough to examine the issues addressed, are unavailable. In what follows we employ

quotation returns as a proxy for transaction returns.

Our hypotheses about the effects of ‘news’ on volatility in the pre- and post- an-
nouncement periods are as follows. We believe in the periods immediately preceding
announcements there are two possible effects. Firstly there is the possibility that
volatility is abnormally high. This in turn could have at least two sources. The first,
a channel stressed by DeGennaro and Shrieves, is that the details of the announce-
ment are uncovered by some market participants. This creates an informational
asymmetry between agents, the informed proceeding by trading on their information
and gradually disseminating it to the rest of the market. This will engender high, pre-
release volatility. The second possibility is based more on an inventory control idea.
Dealers, knowing that an information event will occur at a precise point in the future
may desire to trade out of exposed positions towards an equilibrium inventory. This
generates a spate of inventory rebalancing trades just prior to the announcement,

again causing higher than normal volatility.



It is also possible that in the periods immediately before announcements, volatility
will be abnormally low. Again this is based on the fact that the dealers know a news
release is occuring shortly and effectively cease all activities whilst they wait to see
what the information content of the release is. Hence, pre-announcement volatility
could possibly be lower or higher than normal. Which effect predominates is clearly
an empirical issue. Note that the interval containing the actual announcement should
strictly be treated as a pre-announcement period. This is due to the fact that all
the news data examined are released on the hour, the quarter-hour or the half-hour,

hence each announcement occurs precisely at the end of an interval.

In the post-announcement period we would expect to observe a surge in volatil-
ity as the information contained in the release is incorporated into quotations and
dealers trade towards their new desired positions. What is interesting in the post-
announcement period is the length of time over which this process takes place. How
quickly do markets react to information? Again this is an empirical issue. Edering-
ton and Lee (1993) stress that persistent increased volatility after announcement can
come from two sources: firstly the price formation process can be inherently slow,
quotations taking time to reach their equilibrium level, or secondly the information
contained in announcements is only disseminated slowly, such that the market is
reacting to a flow of information which is instantaneously incorporated into quotes.
Which of these effects dominates will dictate whether ‘news’ opens the possibility
of profitable trading opportunities, although from a volatility perspective they are
indistinguishable.

High post-release volatility could also be propagated through an inventory control
channel. After an announcement it is likely that some traders will update their beliefs
over the fundamental value of the asset, engendering a change in desired inventory
holdings. If the transactions which restore each trader’s inventory to equilibrium
are not worked through immediately then one will again notice persistently high,
post-release volatility. One way to distinguish between the effects of information
revelation in the FX market and impacts from inventory trading to give persistently
high volatility after a release is to examine simultaneously the impact of ‘news’ both
on the level and volatility of exchange rates. In this work, this question is left

unaddressed although we hope to examine it in the near future.

The above discussion defines our empirical hypotheses. In the pre-announcement
period, the effect of news on volatility is, a priori, indeterminant, whereas in the
post-release period one should expect an increase in volatility as long as there is
an information content to the announcement. As indicated above, the focus in the

post-release period is the persistence of the volatility surge.

Before moving on to an examination of seasonality in volatility we present the an-



nouncement data actually employed in estimations. All are monthly, US, macroeco-
nomic or survey statistics, the list being: the Unemployment rate, Merchandise Trade
Deficit, Producer Price Index, Consumer Price Index, Retail Sales, Consumer Confi-
dence Index, Leading Indicators, Durable Goods Orders, Industrial Production and
Capacity Utilisation® and finally the NAPM survey. All but four of these announce-
ments are made at 8.30 EST. The Industrial Production and Capacity Utilisation
(IP/CU) figures are announced together at 9.15 EST whilst the NAPM survey and
Consumer Confidence figures are released at 10.00 EST. Market participants know
both the time of announcement and the date on which the release will occur in

advance.

2.2 Seasonality

The major movements of intra-daily return volatility can be attributed to the passage
of market activity around the globe and it is this which underlies the seasonals we
observe. One can regard the global X market as being composed of three major
regional centres, the Far East, Europe and North America, all of which have their own
activity pattern. To begin to interpret the seasonal one needs a feel for the openings
and closures of the three components. Roughly one can say that the Far East is
open from 21:00 GMT to 7:00 GMT, Europe trades between 6:00 GMT and 16:00
GMT, whilst trading occurs in North America from 14:00 GMT to 21:00 GMT. The
accumulation of activity in open markets gives the level of the seasonal at any point
over the day, hence interpretation of the seasonal pattern is performed by appealing

to the conditions in these open markets.

First we give a brief presentation of the data. As indicated in the Introduction
the data employed are observations on the DM /Dollar exchange rate over the period
1/10/92 t0 30/9/93. The data are essentially a filtered transcription of the activity on
Reuters FXFX pages; the original form of the data is tick-by-tick quotation inputs
from the banks which participate on the system. We convert these data into a
calendar time-series by imposing a five-minute observation grid, an observation being
taken at the end of each interval.* A modification to this structure is the omission of
weekends (defined as 21:00 GMT on Friday to 21:00 GMT on Sunday,) as these are
periods of little or no activity. The five minute observation window implies that a day

spans 288 observations and the omission of weekends leaves us with 261 trading days.

3These two announcements are paired here as they are always annnounced simultancously.

*This sampling interval was chosen on the following basis. First, as earlier work shows, there
are prominent intra-hourly effects from macroeconomic releases, necessitating a short observation
window. Second, the computational tractability of the problem decreases very quickly with the
sampling interval. Our five minute window was chosen to balance these two effects.



This leads to a time-series of 75168 observations.®. The basic statistical features of

both the quotation and returns series are given in Table 1 and analysed in Section 4

We show in Figure 1 the pattern of our volatility measure, the logarithm of squared

6 averaged over the 261 trading days in our sample, for the 288 five minute

returns
intervals of the day. The seasonal pattern which emerges for this measure is more-
or-less identical to that demonstrated for average absolute returns in Andersen and
Bollerslev (1994) and that shown in Dacorogna, Miiller, Nagler, Olsen, and Pictet
(1993). Further evidence of the daily seasonal structure shows up in the autocorrela-
tion function of our volatility proxy. In Figure 2 we show the autocorrelation function
for log(r?) over a span of 288 lags i.e. over one full trading day. What is notable is
the peak in the representation at precisely the daily frequency, demonstrating that
the memory of volatility is most closely attuned with what occurred precisely one

day ago rather than at any point between now and then.

We also present the average pattern and autocorrelation of our volatility proxy over
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the pattern evident over different days. A point which the weekly autocorrelatlon
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function demonstrates is that there seems to be some seasonal structure at the weekly
frequency. This can be seen through the local maximum at a lag of precisely 5 trading
days (lag 1440) dominating those maxima attributable to lags of two, three and four
trading days. However, in what follows we ignore this weekly structure, concentrating

solely on the daily pattern.

Using the discussion of market openings and closures presented at the beginning of

this subsection we can break down the volatility seasonal as follows.

The first interval of the day corresponds to the five minutes between 0:00 and 0:05
GMT, a time when the Far Fastern market has already been trading for around 3
hours and market activity is high. From this point till about 3:20 GMT (interval
40) volatility and activity levels remain high. At this point we come across the most
prominent feature of the series, lunchtime in Tokyo. Volatility drops sharply, flooring
at near zero levels and only regaining its former value at about 5:00 GMT. The next
market to open is Europe, generally beginning to contribute to activity at around 6:30
GMT as the Far Eastern market begins to wane. This gives a small peak in volatility
between intervals 80 and 120, before activity and volatility both experience a slight

%At various points in the series, no quote is entered in a 5 minute interval. These data holes were

filled by linear interpolation between the nearest preceding and succeeding quote.

S0Our choice of log(r?) as a volatility proxy is motivated by the empirical model in Section (3).
The pattern demonstrated in Figure 1 1s robust to the use of alternative volatility measures such as

absolute returns and squared returns.



lull during European lunch hours. The most active period of the day is clearly the
interval when both the European and North American markets are open (intervals
160-180), after which volatility starts to decline as first the European, and then the
US markets, wind down. Finally at around 21:00, the Pacific market begins to trade
again and the daily cycle is repeated after midnight.

Daylight Saving Time also has an effect on the seasonal pattern. In summer months,
both North America and Europe lose one hour relative to GMT. This implies that,
as the Far Eastern local time remains unchanged, the seasonal pattern alters in
composition (rather than simply shifting laterally relative to the GMT hour of the
day.) In estimation this phenomenon is handled by the introduction of two seasonal
regimes, one relating to the winter months and the second for summer, parameterised
using a simple dummy variable formulation.” A comparison of the average daily
log(r?) pattern in summer and winter, showing precisely the effect which DST has

on the seasonal, is presented graphically in Figure 5.

Hence the seasonal pattern which emerges seems fully explicable. What is less ob-
vious, however, is the way in which the omission of this component in estimation
might impinge upon examination of other volatility components. As long as these
components are not fully orthogonal it is likely that mis-specifying the model, by
omitting the intra-daily seasonal for example, will lead to biased estimation of the

parameters in other components.

The works mentioned in the previous subsection dealt with the seasonal as follows.
Ederington and Lee (1993) base their results on a comparison of announcement and
non-announcement days, implicitly filtering the seasonal by examining the announce-
ment to non-announcement volatility ratio. Further, volatility in the futures markets
they treat may be far less seasonal than that in the spot FX market. DeGennaro and
Shrieves (1995) treat the seasonal explicitly. In certain of their specifications they
add opening and closure dummies to account for weekend effects and employ a quota-
tion frequency variable as a proxy for the seasonal pattern. This proxy is, in general,
very good. However, one might expect quotation frequency to rise deterministically
around ‘news’ announcements also. If this is the case, then their seasonal proxy will
absorb part of the news effects which they are attempting to estimate, biasing the
‘news’ coefficients downwards. Finally, Goodhart, Hall, Henry, and Pesaran (1993)
include no seasonal effects whatsoever, although, as they use tick-by-tick data, the

effects of this omission are likely to be less severe.

Some other studies which examine the seasonal patterns in the intra-day FX market

“In the strictest sense there are actually four regimes here, as North America and Europe alter
their times about one week apart, but we ignore these short periods; subsuming them into one of
the major regimes.



are as follows. Baillie and Bollerslev (1991) presented one of the pioneering examina-
tions of this phenomenon in their analysis of four spot FX rates. Employing hourly re-
turns on the Dollar/Sterling, DM /Dollar, Swiss Franc/Dollar and Yen/Dollar they es-
timate seasonal GARCH models of volatility, the seasonality captured with a dummy
variable specification. Results demonstrate very similar seasonals across currencies
and, clearly, the dummy specification for seasonality works well in this context. For
the data set we employ, however, a dummy variable formulation would require the

estimation of 287 parameters, an obvious drawback.

Andersen and Bollerslev (1994), as already mentioned, use a flexible Fourier form to
pre-filter the data for seasonality. The implication of this technique is that seasonality
is treated as a nuisance component in the data which simply obscures the behaviour of
underlying volatility. If, however, one also wishes to examine announcement effects,
which are periodic too, then pre-filtering volatility will necessarily pre-filter a portion
of the ‘news’ impact. Also neither this study nor Baillie and Bollerslev (1991) address
the effect of DST in their estimations, implying that their estimated seasonal is

‘blurred’ i.e. a linear combination of the seasonals apparent in two distinct regimes.

Lastly, a fairly large literature has arisen which concentrates on the concept of time-
deformation in order to explain and estimate the seasonality patterns apparent. The
motivation behind these models can be found in Stock (1988) and it is, essentially,
that markets work on a time scale which differs from simple clock time. Relevant
variables evolve in market time and their behaviour in clock time is derived by ap-
plying a non-linear transformation between the two time scales. An application of
this approach can be found in Ghysels, Gouriéroux, and Jasiak (1995) who estimate
a time-deformed SV model. In related work, Dacorogna, Miller, Nagler, Olsen, and
Pictet (1993) model intra-daily seasonality by introducing a market activity variable,
the integral of which defines a market time-scale. Examination of a regularly spaced
price change series in this market time-scale demonstrates the removal of the seasonal

in volatility.
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3 The Empirical Methodology

3.1 The Basic SV Model

The starting point for our empirical model can be found in Harvey, Ruiz, and Shep-
hard (1994). The basis of their model is a representation of asset returns as shown

in equations (1) and (2) below,

ry = Uﬁteht/za € ™~ N(O, 1) (1)

he = dheoy + 14, v ~ N(Ovaf) (2)

Here, r; is the return on the asset in question, ¢ is a volatility scale parameter, ¢
is a white noise term and h; is a time varying volatility component. As equation
(2) demonstrates, h; is assumed to follow a first order autoregressive process, a spec-
ification chosen to parallel the volatility clustering motivation behind the GARCH

literature. The disturbance term in this equation is also assumed white noise, with

2

., and independent of ¢;.

given variance, o

The return process is clearly stationary if the process generating h; is stationary,
a situation which occurs when ¢ < 1. Using this approach, h; is treated as an
unobserved component which is retrieved via the estimation and smoothing associated
with the Kalman Filter. In order to apply the filter to the above specification, the
measurement equation, equation (1), must be linearized in the state (h;). This is

achieved by transforming the return equation into that shown below.

log(r}) = log(0?) + hy 4 log(¢}) (3)

Given the standard normal distribution posited for €;, the transformed error term is
known to have a mean of -1.27 (and a variance of 72/2,) such that creating a term,

& =log(e?) 4+ 1.27, gives the following specification,

log(rf) =—1.27+ log(az) +hi + & (4)

in which the new disturbance term has zero mean. Combining equations (2) and (4)
gives a time-invariant state-space form whose parameters can be estimated via the
Kalman Filter. If estimation demonstrates that ¢ is approximately unity, a situation

which parallels the IGARCH specification, then a unit root can be imposed upon the

11



transition equation. In order to pre-test for the presence of a unit root in log(r?)
one can employ an ADF test, although, as mentioned in Harvey, Ruiz, and Shephard
(1994), the power of this test in this situation may be questionable due to the possible

near non-invertibility of the volatility representation.

3.2 Modifications

We generalise the above model as follows. The first modification is the addition of a
set of deterministic trigonometric components used to model the seasonality inherent

in volatility. These terms are constructed as shown below,

s/2

vy = Z(’yj cos A\t + ’y; sin Ajt),  Aj =2mj/s (5)

i=1

with s = 288, as described in Section 2. If each of the seasonal frequencies were to
be included this would lead to the estimation of 287 parameters for the seasonal, the
same number of parameters that one would expend on a dummy variable seasonal
specification. However, as the seasonal is likely to change fairly smoothly, subject
to the qualification below, some of the high frequency components may be omitted

without sacrificing a great deal of accuracy in estimation.

In order to gauge which of the components are most important, in Section 4 we
examine the seasonal periodogram for the returns series. The periodogram simply
plots the amplitude of each Fourier component against it’s frequency, with each

amplitude constructed as shown below,

9 T T
P; = T (Z recos A\;t)? + (Z resin \jt)? (6)
t=1 t=1

Examination of the periodogram then indicates which of the frequencies are domi-

nant, allowing one to trim the number of harmonics used in estimation.

An addition to the seasonal specification is made to cope with the sharp drop in
volatility around lunch in the Far East. The smooth seasonal generated from the
dominant Fourier terms is unlikely to cope well with this discontinuity, in all likeli-
hood the drop will be largely underestimated. We therefore employ a set of dummy
variables to cope with this phenomenon. Also, as mentioned earlier, daylight saving
time in North America and Europe will engender an alteration in the form of the
seasonal. Hence we estimate two seasonal regimes (indexed by m) over which the
parameters of the trigonometric terms are allowed to alter. Note that, as there is

no Daylight Saving Time in the Far East, we can leave the lunch dummy unchanged

12



across the two regimes. This gives the final form for the seasonal which is presented

below,
s/2 k
Yyt = Z(’ymj cos Ajt + v, sin Ajt) + Z/,Lilt_i, A =2mg/s, m=1,2 (7)
7=1 1=0

where k is the number of intervals which lunch encompasses and [; is a variable defined
to be unity only in the first interval of the Japanese lunch hour. By adding lagged
values of [; to the specification we allow the dummy coefficients in each interval
of lunch to differ. In the most general case the coefficients on the dummies are
unconstrained, although a fixed lunchtime effect can be imposed by setting p; = p

for all 1.

If desired, the seasonal can also be made stochastic, allowing the parameters v,,; and
Yo; to evolve over time (see Harvey (1989),) but this route is not followed in the
current work as it seems that the pattern observed is quite stable. An alternative to
the trigonometric formulation presented above would be to model the seasonal using a
periodic spline formulation, a la Harvey and Koopman (1993) and Harvey, Koopman,

and Riani (1995), a formulation which can also be deterministic or stochastic.

The second extension of the basic model is centered around the addition of a further
dummy variable, d;. This indicator is unity for only those five minute intervals
which contain one of the news announcements in our data set. In practice, as all the
included announcements occur either on the hour, the quarter-hour or the half-hour,
this implies that the instant of release is precisely at the end of a period. We allow
for the possibility of news effects prior to, at the time of, and post-announcement
by including leads of, the contemporaneous value of and lags of the news dummy in
our specification. Appropriate trimming of the lead and lag specifications gives us
the approximate impact intervals before and after announcement. Hence the final

specification for volatility is as below,

q
log(rf) = —1.27 + 10g(02) + ht + @Z)mt + Z aidt—i + 5757 p,q 2 07 m = 17 2 (8)

i=—p

where ¢, is as specified as above, ¢+ is as in equation (7) and d;_; is the indicator of

an announcement at lag ¢.%

8The effect of news on volatility before announcement is represented by ¢ taking the requisite
negative value.

13



Combining equations (2) and (8) gives our final specification. As noted earlier, it in-
volves elements which allow for volatility clustering, a smooth, deterministic seasonal

pattern and an extended impact of announcements on volatility.

3.3 Individual Announcements

A last set of empirical exercises examines whether the volatility responses differ across
announcement types. This is done by splitting our announcement data into 10 dis-
tinct variables, one for each announcement type. We then estimate a restricted
version of the final model for each announcement type. The restrictions embodied
in estimation are as follows. First, we impose a geometric decay on the post-release
volatility response. In terms of the parameters of equation (8) we allow a; and as to
vary freely but restrict all subsequent impacts to decay at rate p, i.e. a; = a;—1(1—p),
for ¢ > 3.

Secondly, these estimations are run with the seasonal pre-filtered. We subtract the
seasonal estimated from the final specification (i.e. equations (8) and (2),) from our
log r? series in order to form the dependent variable in the measurement equation.
This procedure should minimize any systematic bias in the estimation of the impacts
for each announcement as the seasonal employed was originally estimated in the

presence of a full complement of ‘news’ dummies.

We run these estimations using both a simple dummy specification for announcements
(i.e. a variable taking the value unity at the point when a specific announcement oc-
curs only) and using the forecast errors associated with announcements. The forecast
errors are created as the difference between the actual announced figure and a me-
dian survey expectation.” By using both the above measures, we can get the general
impact of a certain announcement from the first estimation and a more precise eco-
nomic impact, e.g. the impact of an unexpected 1% rise in unemployment on FX

volatility, from the latter.

Hence, from these results, we can examine which announcements really move the
market. Are all pieces of macroeconomic data equally important for the determina-
tion of the DM/Dollar rate, or do some announcements dominate? Note, however,
that for each announcement we only have 12 observations within our one year span
of data. Moreover, given the possibility of markets altering their opinion on the most
important indicator of economic performance, these results may not generalise to

other time periods.

9The survey medians employed were obtained from MMS International, who survey around 40
major market watchers for their forecasts on the Friday previous to the release of each piece of
information.
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3.4 Estimation

As previously mentioned, the basis for estimation of the class of models examined
above is the Kalman Filter. The final specification for log(r?) in equation (8) serves
as the measurement equation, whilst equation (2) provides the transition equation.
The unobserved component in our model is h;, a measure which one might refer
to as ‘underlying’ market volatility. This method is by no means the only way in
which to estimate SV models. Scott (1987), Chesney and Scott (1989) and Melino
and Turnbull (1990) use GMM type estimations whilst others advocate Bayesian
estimation methods, e.g. Jacquier, Polson, and Rossi (1994), pointing to the increased
efficiency these methods bring. In our case however, with such a large data set,
efficiency losses are likely to be minimised and, further, these alternative estimation

techniques become computationally intractable.

The problem in using the Kalman Filter in this case is the non-normality of &. This
implies that the filter delivers only MMSLE’s, such that the approach must be treated
as a QMLE estimation, i.e. working as if & was distributed normally, with mean zero
and variance 7%/2. The filter is initialised using the unconditional distribution of
h, except in the case where h; is constrained to be a random walk, when the initial
observation is used. From then on, the quasi-likelihood function is built observation
by observation. The quasi-likelihood is maximised over the parameter space using
the optimisation algorithm of Broyden, Fletcher, Goldfarb and Shanno. Standard
errors for the hyperparameters, ¢ and o2, are calculated using the results presented

in Ruiz (1994).

Once the parameters have been estimated, the smoothing algorithm of Koopman
(1993) is employed in order to retrieve the within-sample values of the state, h;. This
allows one to examine, after accounting for the seasonal and announcement impacts,
the time-series volatility of the FX market, from where a clarified picture of the

volatility profile, and perhaps its determinants, can be drawn.

15



4 Results

Before presenting the empirical estimations of the models outlined in the previous
section we briefly introduce the variables used in estimation, examining their basic

statistical behaviour. Summary statistics for these variables are presented in Table

1.

Examining first the behaviour of the return series, two facts are immediately appar-
ent. First of all the series displays pronounced excess kurtosis, confirming the findings
of many previous studies which demonstrate that the distribution of financial market
returns tend to have very thick tails. A second point is that the Box-Ljung statistic
demonstrates that there is serial dependence in the returns series. This motivates
our examination of the second series, a set of residual returns constructed after the
removal of a first order moving average from the original return series. One can note
that the dependence in this series is substantially lower than that of the raw returns
(although still statistically significant) and again excess kurtosis is apparent. The
real series of interest, however, is our volatility proxy. This is constructed as the
logarithm of squared residual returns. It is clearly apparent from a comparison of
BL statistics that it is in volatility that the real temporal dependence lies. The BL
statistic for log(r?) is over 250 times that of raw returns and it is this phenomenon

which we seek to address and explain in the estimations below.

4.1 Non-seasonal SV models

Our first empirical application consists of fitting the basic SV model '°, demonstrated
in equations (2) and (4). As described in Section 3.4 the model is estimated by
Quasi-ML via the Kalman Filter, the procedure containing the restrictions that ¢ be
between zero and one and o2 be positive. Results of this specification are shown in

Table 2.

The estimate of ¢ conforms with the results of many other volatility studies (mainly
of GARCH form,) which demonstrate that, at this fine, calendar time sampling fre-
quency, the variance process is approximately integrated. In particular, our estimate
of ¢ is 0.96, a value which is almost on the boundary of the parameter space. As
previously indicated, to test for the presence of a unit root in volatility we employ an
ADF test for log(r?), (the ADF specification embodying 20 lags of the difference of
log(r?).) The outcome of the test demonstrates that one can reject the hypothesised

10Before the estimation of all specifications, the scale factor in the measurement equation, log(a?),
is removed.

16



unit root, although the difference between the test statistic and the critical value is

quite small.1t

Because of this very marginal test result, we go on to impose the restriction that
¢ = 1, the results being shown in Panel 2 of Table 2. The variance of h; can be seen
to drop quite sharply, as does the maximised Quasi-Log Likelihood, and due to this
latter fact, in all further specifications, we drop the unit root imposition, allowing ¢

to take any value between zero and one.

The behaviour of the derived standard deviation!? in the unrestricted model is shown
in Figure 6, alongside the behaviour of absolute residual returns. From the figure
it is apparent that h; tracks the underlying volatility of returns very well, but this
observation masks a weakness of the specification. As outlined in previous sections,
probably the most distinctive feature of the intra-daily volatility process is it’s sea-
sonality. In this basic specification there is no explicit treatment of that seasonal.
Hence, when we examine the average behaviour of h; over the intervals of one day, it
becomes clear that all seasonal variation is picked up by the state variable. The com-
parison of the rescaled behaviour of h, and that of log(r?) is demonstrated in Figure
7. This has mixed effects: on the positive side it implies that the bias to parameters
in the ‘news’ specification is likely to be reduced, but negatively, the state variable,
h¢, now indicates little about the volatility clustering behaviour which the data may
exhibit.

Despite this, and to provide a comparison later in the paper, we next estimate a
non-seasonal SV specification which incorporates ‘news’ effects. The system consists
of equation (2) and a version of equation (8), in which all seasonal parameters are

set to zero.

The results of the SV /News specification are given in Table 3. First note that there
is little change in the basic SV parameters, ¢ and o2. Both are at almost precisely
their level from the original model, ¢ is highly significant and still very close to unity.
Of more interest are the ‘news’ coefficients. In the pre-announcement period the
coefficients show that a significantly reduced measure of volatility in the period 15-30
minutes before announcement is followed by a positive significant impact in the 15
minutes immediately prior to release. The post-announcement period is characterised
by an immediate large spike in volatility which dies away, non-monotonically, over
at least the next hour. All of the estimated coefficients are highly significant. A

graphical exposition of these announcement effects can be found in Figure 8.

Hence our preliminary results suggest that in the minutes immediately before an-

UThe ADF(20) test statistic is -2.609, compared with a one-tailed critical value of -1.95 at 5%

hif2

I2This is calculated as e as in equation (3.1).
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nouncement there may be either information leakage or closing-out trading, both of
which could generate the higher than normal volatility. However, in the period from
15 to 30 minutes before announcement, markets are significantly less active, reflecting
the possibility that traders slow their activity in anticipation of the upcoming news.
On balance, the dominant pre-release impact seems to be greater volatility, both in

terms of magnitudes and significance.

The response after release demonstrates the information contained in these data and
the importance the FX market places upon it. The fact that volatility is persistently
high for the hour post-announcement suggests that either the price formation pro-
cess is slow, or that the information contained in the release data is only gradually
extracted. Of course these results must be cautiously accepted, given the potential

bias in estimation which the lack of a seasonal component may bring about.

4.2 Seasonal SV Models

As indicated at the end of the previous sub-section there is a danger in taking the
results of the non-seasonal specifications at face value. We go on now to incorporate
explicit seasonal elements into the specification as described in Section 3.2. The
primary problem is the choice of which of the set of 144 Fourier terms to incorporate,
hence, as outlined previously, we examine the seasonal periodogram which is shown

in Figure 9.

As expected, the fundamental frequency is dominant, it’s amplitude dwarfing that of
any of the harmonics. The very high frequency elements add very little variation to
the seasonal, only the first fifteen or so components being at all visible on the chart.
We employ the six Fourier terms with the greatest associated amplitudes. These are
the first, third, fourth, fifth, ninth and tenth elements. As shown later on in this
section the inclusion of only these elements, along with the dummies for lunchtime

in Japan, gives a perfectly satisfactory estimated seasonal representation.

We can now progress to the estimation of the Seasonal SV models. The first results,
which are presented in Table 4, are for a model which incorporates the basic SV
structure plus the seasonal only. Examining first the estimated parameters from the
transition equation, there is little change in the autoregression coefficient; it rises
only very slightly and remains highly significant. There is, however, a significant
drop in the transition equation error variance. This is likely to be due to the removal
of seasonal effects from the time-varying volatility component, ;. All the coefficients
of the seasonal representation are significant, (a joint LR test of their significance
indicates that the hypothesis that all seasonal coefficients are identically zero can

be strongly rejected,) although their numerical interpretation is not straightforward.
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Hence we reconstruct the daily seasonal they represent, in both regimes, and both
are shown in Figure 10. In comparison to Figure 5, which shows the average value

of log(r?) over the 288 daily intervals for summer and winter, there seems little
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intra-daily patterns but they seem to pick up the general seasonal shape quite well.
Figure 5 also shows some interesting features. First, as expected, the summer and
winter seasonal coincide for the Far Fastern portion of activity, this being due to
the lack of DST in Asia. Next our representations pick up a small spike in activity
just after Japanese lunch. This may represent volatility engendered by trading on
information which has been revealed over the lunch hour closure. Finally, European
and North American trading activity can be seen to shift approximately 12 intervals

to the right during winter months, reflecting their time changes relative to GMT.

The adequacy of our seasonal representation is emphasised in the autocorrelation
function of the deseasonalised log(r?) series.'® Figure 11 plots this function and it
is immediately apparent that the decaying, repeated U-shaped structure which can
be seen in Figure 2 is almost completely removed. This compares favourably with
the plot of deseasonalised returns from Andersen and Bollerslev (1994), which shows
that their procedure does not completely remove the seasonal. One feature which
does become more apparent though, is the seasonal structure at the weekly period.
Also, there seems to be a very slow decline in the correlogram, although masked by
the weekly seasonal, an indication of long memory in volatility. An examination of

this property of the data is, however, beyond the scope of the current study.

It seems, therefore, that our trigonometric treatment of the seasonal is quite suc-
cessful. This conclusion is re-affirmed by the average intra-daily behaviour of the
state variable, h;, derived from this model. A graphical examination of the average
intra-daily behaviour of the state shows that the only distinctive feature of average

‘underlying’ volatility is a residual effect from Japanese lunch.

4.3 The Combined Model

We can now move on to the final, combined model of seasonality and news. This
consists of estimation of equations (2) and (8), allowing a maximum window for

‘news’ effects of 30 minutes pre- and 1 hour 15 minutes post-announcement. The

13Deseasonalised volatility is simply calculated as the values of log(r?) after filtering the deter-
ministic trigonometric and dummy variables.

14We exclude this graph in order to save space.
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results from this model are presented in Table 5.'°

As the seasonal coefficients directly tell us little about the seasonal pattern, and
their magnitudes and significances are little changed from those in the previous sub-
section, we treat only the transition equation and announcement dummy parameters
explicitly. A cursory examination of the former shows that little has changed here
also. Both the autoregressive parameter and the transition equation error variance
are very marginally reduced in magnitude from their levels in the previous estimation,

although the significance of the autoregressive parameter has risen.

A far more noticeable alteration is apparent in the estimated ‘news’ coefficients.
Earlier in the paper we referred to the potential bias to the announcement effects
which may occur due to the omission of seasonal effects from the specification. Here,
we see that this is precisely true. All news coefficients are now around 0.25 lower
than in the previous estimation.'® The downward change is exactly what we would
expect, although the magnitude of the bias is quite small. Again, as mentioned in
Section 4.1 this is likely to be due to the absorption of the seasonal by h; in the

models estimated without an explicit seasonal parameterisation.

Now, in the pre-announcement period our results of a distinctive quietening in the
market are re-inforced. In the period 10 to 30 minutes before announcement the
coefficients become more negative and significant, whereas there is a drop in both
magnitude and significance for the positive impacts in the 10 minute period before

release. Hence, the dominant impact is now one of reduced volatility pre-release.

In the post-announcement interval, there is again a general reduction in the mag-
nitude of the coefficients of the order of about 0.25. What is still true, however,
is that the positive volatility impact of announcements lasts for at least one hour,
in line with the results derived in Ederington and Lee (1993). In fact the volatility
effect is consistently positive until 1 hour 15 minutes after announcement when the
first negative coefficient is encountered. A plot of the new announcement coefficients,

alongside those derived from the non-seasonal news specification is shown in Figure

12.

Hence our results conform qualitatively with those of Ederington and Lee (1993).
The quantitative comparison is, however, not as close . As mentioned in Section 2,

their estimations demonstrate that the standard deviation of returns rises fivefold

15 Again for brevity, we do not report the estimated seasonal parameters from the combined
specification, both because they are little changed from the specification without ‘news’ effects and
because they are not directly interpretable. They are available upon request from the author.

16This 0.25 decline in the parameters gives an approximate 15% reduction in the impact on derived
standard deviation across the board.
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in the interval immediately after an announcement, dropping to double the normal
standard deviation in the following five minutes. Constructing the derived standard
deviation from the corresponding parameters in our estimations gives a different
picture. We predict an immediate post-announcement response of less than 3 times
normal standard deviation which drops to just under twice the baseline level after
ten minutes have elapsed. Hence, the impact of these announcements on the spot

FX market is less pronounced than for the currency futures market.

So, the conclusions from the combined specification are as follows. The pre-release
period seems to be characterised by overall volatility reduction, an effect which cor-
responds to dealers virtually shutting down activity in the face of the impending
announcement. In the post-announcement period, the conclusion is that there is a
prominent, immediate volatility impact which is eroded quite quickly over the fol-
lowing 10 minutes and from then on, dies out quite slowly. Again there is evidence
of persistent and important informational effects from these macroeconomic and sur-
vey releases. The most prominent effects of announcements are intra-hourly. The
study of DeGennaro and Shrieves (1995), employing an hourly observation window,
necessarily misses all of this structure. Also, as most announcements are on the
half-hour, their use of hourly observations implies that the observation containing a
news item will contain both pre- and post-announcement periods. Disentangling the
effects in these two periods seems, therefore, to be impossible. In order to exam-
ine announcement effects properly, an analysis at a very fine sampling frequency is

essential.

4.4 1Individual Announcements

Finally we present the volatility estimations in which the different announcements
are treated individually. Which of our macroeconomic releases has most effect on
the DM/Dollar spot rate? As previously noted, Ederington and Lee (1993) find
that, of the present set of announcements, the Employment report, Trade figures,
Retail Sales, Durable Goods and the PPI have the most prominent impact on the
DM future’s volatility in descending order. This also ties in with Harris (1995) who
comments that the Employment report has become increasingly viewed as the key
U.S. indicator by the markets.

Table 6 gives our results for the estimations where the news variable employed in
each case is a simple announcement-specific dummy. It presents, for each piece of
data, the volatility impacts 5 and 10 minutes post-release, the estimated persistence
parameter for this increased volatility over the following hour and finally the implied

percentage increase in return standard deviation for the five minutes immediately
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post-release (i.e. ¢¥1/2))

The Employment Report clearly has the greatest effect on volatility, the coefficient
a; being almost one half as great again as that for the next most important and
implying an instantaneous volatility jump of over 1000%. The report contains two
key figures: payroll employment and the unemployment rate and perhaps this one
large response incorporates two smaller impacts. Next come the Trade figures which
engender, on average, a rise in return standard deviation of over 500%. Again this
is unsurprising given the intuitive impact of exports and imports on the supply and
demand for currency. The persistence of volatility is greater than average for both of
the above announcements, possibly because both of these monthly documents contain

multiple statistics and are lengthy and time-consuming to digest.

The next most important pair of announcements are the Retail Sales figures and the
PPI report. Hence, the four most influential releases we derive from the spot FX
data are also represented in Ederington and Lee (1993) in their top five for the DM

future, demonstrating the similarity in importance across markets.

The Consumer Confidence figures, Durable Goods Orders and CPI figures then form
a medium impact sub-group. These data show very similar immediate impacts, a
standard deviation rise of around 300%, but the 10 minute response to the Durables
figures is much greater than for the other pair and the persistence stronger. This

announcement is the fifth of the group Ederington and Lee (1993) cite.

Finally there is a group of low impact announcements which comprises the Leading
Indicators figures, the NAPM survey and the Industrial Production/Capacity Util-
isation (IP/CU) results. It is clear that the IP/CU announcement has the smallest
volatility impact across all dimensions, with the Leading Indicator figures being fairly
important. The most surprising result of estimation is a ten minute impact for the
NAPM which is small and negative, coupled with a negative persistence parameter,

a result which implies damped oscillations in the NAPM volatility response!

Lastly, in Table 7, the results from the same individual specifications but using the
absolute announcement forecast errors as our news data are presented. Rather than
reporting the percentage standard deviation impact here, we include a different set
of figures, containing the estimated immediate impacts, ag, multiplied by the mean
absolute forecast error for each particular release over our 12 month period.!” Note
that we also have two extra pieces of data which can be analysed here. This is due
to the fact that we can split the Employment report into the unemployment rate and

the payroll employment figures via their forecast errors, and can similarly separate

17This rescaling gives us a basis for the direct comparison of the ‘news’ impacts across announce-

ments measured in differing units.
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the Industrial Production and Capacity Utilisation figures.

The impact ranking which emerges broadly corroborates our results from the pre-
viously reported dummy variable specifications. The two main components of the
Employment report are ranked first and second, although the difference between
either of these immediate impacts and the next highest ranked is considerably di-
minished from the dummy results. This is to be expected as it is the combination
of the unemployment rate and payroll figure volatility impacts which gives the total
Employment report effect. Again, the next most important effect on volatility comes

from the Mercantile Trade figures.

In comparison with the results of Ederington and Lee (1993) we again find that the
four highest ranked from this study are represented in their top five, these being the
unemployment rate, trade figures, durables and retail sales. The member of their
five highest ranked announcements which does not conform with the results of this
part of our study is the PPI release. In comparison to the dummy results, the scaled
PPI impact has plummeted in rank. This may be due to the dummy results being
dominated by a couple of very large price movements which are associated with large
forecast errors. In this case, the linear specification in forecast error deals well with

this variation in the data.

The NAPM, Leading Indicator and IP/CU figures are again towards the bottom end
of the spectrum. There are, however, some anomalous estimation results associated
with these releases. The leading indicator announcement now shows a negative per-
sistence figure, the NAPM has almost zero persistence whilst the IP figures have a

persistence parameter which is insignificantly different from unity.

So we can draw the following broad conclusions. The announcements which cause
greatest post-release volatility are those associated with the Employment report and
the Mercantile Trade report. Next in line come a group of releases including Retail
Sales, Durable Goods orders and Consumer Confidence, all of which have large im-
pacts on volatility also. Finally, the NAPM, Leading Indicators and IP/CU figures

have consistently the smallest post-release impact.
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5 Conclusions

In this work we have examined the importance of certain components of intra-daily
FX volatility. Using a SV framework, based on that contained in Harvey, Ruiz, and
Shephard (1994), we estimated seasonal patterns, announcement effects and an unob-
served autoregressive component. Our results corroborate those of previous studies
on seasonality, e.g. Andersen and Bollerslev (1994), which point to the prominence
of this phenomenon in this market and the necessity of its inclusion in any intra-day
volatility examination. The results from the announcement data show that these too
are an important element in volatility determination, confirming that the results of
Ederington and Lee (1993) carry over to the spot FX market in a qualitative sense,
although the impact here is quantitatively smaller. Our final specification shows that
markets seem to quieten down in anticipation of news releases, but that post-release
there is a pronounced and persistent volatility impact. If the seasonal is omitted
from the specification, then it is shown that the estimated ‘news’ parameters are

overstated in magnitude, as one would expect.

Examination of individual announcements points to the Employment report and
Trade figures being associated with extremely large volatility impacts. There are
also consistent, large responses to Consumer Confidence, Retail Sales and Durable
Goods order figures, whilst the NAPM, Leading Indicator and IP/CU releases have
the smallest effect.
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Table 1

Return | Residual | log(r?)
Mean 1.90E-06 0 -17.49
Variance || 2.40E-07 | 2.40E-07 8.887
Skew 0.344 0.36 -1.27
Kurtosis 16.09 16.32 2.15
Q(20) 544.18 207.02 | 153715.8
Table 2
Panel 1
Baseline SV Model
Coeft s.e. T-stat
o 0.9546 0.0132 72.32
o? 0.457 0.1051 4.35
LogL -179817
Panel 2
Restricted SV Model:  ¢=1
Coeft s.e. T-stat
¢ 1 : :
o? 0.278 0.0066 42.22
LogL -180486




Table 3

Estimates from SV /News Model

Coeft s.e. T-stat

0.954 | 0.0133 | 71.73
o? 0.456 | 0.1053 4.33
a_s -0.186 | 0.045 -4.16
a_y -0.273 | 0.047 -5.79
a_3 -0.262 | 0.073 -3.55
_g 0.019 | 0.004 5.04
a_q 0.415 | 0.078 5.29
g 0.493 | 0.078 6.32
aq 2.376 | 0.142 16.72
a2 1.533 | 0.173 8.86
as 1.390 | 0.219 6.36
N 1.184 | 0.052 22.59
as 1.004 | 0.157 6.38
ag 0.869 | 0.225 3.86
ar 0.730 | 0.133 5.49
as 0.979 | 0.146 6.72
ag 0.317 | 0.025 12.49
10 0.664 | 0.177 3.76
a1 0.345 | 0.012 28.05
ayo 0.355 | 0.068 5.22
13 0.804 | 0.099 8.13
14 0.371 | 0.046 8.01
ars -0.084 | 0.013 -6.45

Loglik -179704
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Table 4

Estimates from Seasonal SV Model

Panel 1: Trigonometric Parameters

Coeft s.e. T-stat Coeft s.e. T-stat
10 0.962 | 0.0122 | 78.86 o 1 0.309 | 0.0785 | 3.94
v || -0.846 | 0.118 | -7.18 || 721 0.1 0.025 | 4.05
7,3 || 0.520 | 0.026 | 20.33 || 423 | 0.039 | 0.009 | 4.39
7,4 || 0.133 | 0.007 | 19.34 || 724 | -0.082 | 0.023 | -3.61
Y || -0.012 | 0.001 | -9.18 | 725 |-0.003 | 0.001 | -2.79
7,9 || 0.137 | 0.009 | 15.19 || 72 | 0.005 | 0.001 5.32
Y0 || 0.139 | 0.003 | 49.66 || y2,10 | -0.006 | 0.001 | -7.33
Yia || 0213 | 0.011 | -19.05 || 45, | -0.156 | 0.015 | -10.58
Yia || -0-205 | 0.016 | -13.06 || 755 | 0.216 | 0.003 | 62.71
Y14 | 0.360 | 0.013 26.7 Y54 |-0.179 ] 0.011 | -15.51
Y5 | 0.196 | 0.032 6.1 Y55 | -0.05 | 0.007 | -6.92
Yo || -0-09 | 0.006 | -14.62 || v54 | 0.04 | 0.006 7.18
Y10 | 0-032 | 0.003 | 10.89 | 4540 | 0.013 | 0.003 3.6
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Table 4 (cont.)

Panel 2: Japanese Lunch Dummies

Coeff | s.e. T-stat

1 -0.905 | 0.121 -7.49

Lo -1.012 | 0.327 -3.12

13 -1.243 | 0.148 -8.41

pa | -1.430 [ 0.145 | -9.89

is -1.555 | 0.130 | -11.97

e -1.580 | 0.090 | -17.55

7 -1.429 | 0.109 -13.13

Is -1.206 | 0.139 -8.65

i -1.103 | 0.224 -4.92

10 -1.270 | 0.385 -3.30

H11 -0.834 | 0.052 | -16.05

12 -0.319 | 0.022 -14.37

ps | 0.949 | 0.110 | 8.61

pa || 1146 | 0.076 | 15.00

s 0.975 | 0.095 10.30

LogLik 179227.3
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Table 5

Announcement Effects from Combined Model

Coefl s.e. T-stat

0.962 | 0.0122 | 78.85
o 0.31 [0.0786 | 3.94
as | -0.29 | 0.050 | -5.78
ay | -0.406 | 0.027 | -14.96
a_s | -0.426 | 0.035 | -12.15
a, | -0.213 | 0.011 | -19.59
ay | 0192 | 0.038 | 5.12
ap || 0.269 | 0.054 | 4.95
ar || 2127 | 0.117 | 18.24
as || 1.270 | 0.10 | 12.22
as || 1127 | 0.112 | 10.05
a; || 0.916 | 0.085 | 10.78
as | 0.744 | 0.224 | 3.31
as || 0.598 | 0.046 | 12.90
ar || 0.459 | 0.201 2.28
as || 0.711 | 0.021 | 34.10
as || 0.056 | 0.006 | 9.59
aw | 0416 | 0.053 | 777
ay; || 0.121 | 0.027 | 4.43
a;, || 0.155 | 0.010 | 14.78
a3 || 0.622 | 0.101 6.09
ars || 0.210 | 0.008 | 26.51
ais || -0.205 | 0.015 | -14.06

LogLik 179174.6
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Table 6

Individual Announcement Impacts using Dummy Specification

Announcement || al a2 Persistence | % s.d. Response

Employment || 4.66 | 3.02 0.85 1000+
Trade 3.59 | 1.68 0.86 6004
Retail Sales 3.20 | 2.51 0.80 450+
PPI 3.04 | 1.95 0.76 450
Cons. Conf. 2.38 | 1.10 0.80 330
Durables 2.37 | 1.65 0.88 330
CPI 2.35 | 2.01" 0.74 325
Lead. Ind. 1.89 | 1.49 0.67 260
NAPM 1.86 | -0.49* -0.48 250
Ip/CU 0.72 | 0.71 0.9 140

Note : as more-or-less all coefficients are significant, only those insignificant at 5%

are indicated, with an asterisk.

Table 7

Individual Announcement Impacts using Absolute Forecast Errors

Announcement al a2 | Persistence | Scaled Impact
Unemp. Rate | 19.72 | 13.20 0.87 2.96
Payroll Emp. | 0.038 | 0.026 0.51 2.8

Trade 2.33 | 1.30 0.83 2.74
Retail Sales 447 | 2.93 0.88 1.75
PPI 5.83 | 4.42 0.79 1.262
Cons. Conf. 0.45 | 0.17 0.74 1.84
Durables 0.88 | 0.37 0.90 2.09
CPI 12.34 | 8.41 0.70 1.65
Lead. Ind. 7.26 | 4.13 -0.92 1.06
NAPM 0.794 | 0.08 0.02~ 1.56
Ind. Prod. 8.37 | 4.48 1.05 0.70
Cap. Util. 1.26 | 1.65 0.93 0.35

Note : as more-or-less all coefficients are significant, only those insignificant at 5%

are indicated, with an asterisk.
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Figure 1

Average Daily Log Squared Return Pattern
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Figure 2
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Figure 3

Average Weekly Log Squared Return Pattern
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Figure 4

Weekly Autocorrelation Function
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Figure 5

Average Daily Log Squared Return Pattern in Summer and Winter
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Figure 6

Comparison of Absolute Returns and Derived Volatility
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Figure 7

Average State Value from Non-seasonal Model and Log Squared Returns
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Figure 8

News Impacts from Non-Seasonal Model
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Figure 9

Seasonal Periodogram
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Figure 10

Estimated Seasonal in Volatility
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Figure 11

Weekly Autocorrelation Function for Deseasonalised Log Squared

Returns
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Figure 12

News Effects from Seasonal and Non-Seasonal SV Models
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