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A B S T R A C T   

We present an integrated methodology for optimal short-term planning of integrated refinery-petrochemical 
complexes (IRPCs) and demonstrate it on a full-scale industrial case study under four realistic planning sce
narios. The large-scale mixed-integer quadratically constrained optimization models are amenable to a spatial 
Lagrangean decomposition through dividing the IRPC into multiple subsections, which comprise crude man
agement, refinery, fuel blending, and petrochemical production. The decomposition algorithm creates virtual 
markets for trading crude blends and intermediate petrochemical streams within the IRPC and seeks an optimal 
tradeoff in such markets, with the Lagrange multipliers acting as transfer prices. The best results are obtained for 
decompositions with two or three subsections, achieving optimality gaps below 4% in all four planning scenarios. 
The Lagrangean decomposition provides tighter primal and dual bounds than the global solvers BARON and 
ANTIGONE, and it also improves the dual bounds computed using piecewise linear relaxation strategies.   

1. Introduction 

Integrated operations of petrochemical plants and crude oil re
fineries are more resilient to fluctuations in the hydrocarbons market 
compared to independent businesses for petrochemical commodities 
and fuels production. By-products or intermediate streams from the re
finery can be transformed into added-value products at the petro
chemical plant, while by-products from the petrochemical processes can 
improve fuel quality at the refinery side in return. The refinery can 
furthermore provide some of the natural gas required by steam crackers, 
while the petrochemical side can supply some of the hydrogen required 
by hydrotreatment units (Al-Qahtani and Elkamel, 2010, 2009, 2008; 
Ketabchi et al., 2019; Leiras et al., 2010). However, the planning of such 
integrated refinery-petrochemical complexes (IRPC) is challenging due 
to conflicting production targets for the various fuels and petrochemi
cals. Consequently, crude unloading and blending, crude separation 
trains and conversion processes, fuel blending, and petrochemical pro
duction need to be coordinated for maximizing the overall benefit of an 
IRPC instead of optimizing these operations separately (Jia and 

Ierapetritou, 2004; Méndez et al., 2006; Nasr et al., 2011). 
The formulation of nonlinear models for parts of, or the whole, 

process network can enhance the prediction of yields and outlet stream 
properties from refining and petrochemical units. Pooling equations 
representing mixing operations with bilinear and trilinear terms as well 
as nonlinear blending rules to compute fuel specifications improve the 
predictive capability (Guerra et al., 2010). Models of crude distillation 
units (CDUs) also have a large impact on the predictive capability of the 
planning model, since CDUs provide all the intermediate streams for 
further processing in the downstream units and fuel blending. CDUs may 
be modeled by swing-cuts and micro-cuts, based on the true boiling 
point distribution (Kelly et al., 2014; Menezes et al., 2013; Wenkai et al., 
2007; Zhang et al., 2001), surrogate models (López et al., 2013, 2012) 
and short-cut methods (Alattas et al., 2011). 

Moro et al. (1998) formulated a nonlinear programming (NLP) 
model for a simplified refinery producing three grades of diesel. Non
linearities in their model arose from modeling diesel hydrotreating, 
delay coking, fluid catalytic cracking (FCC), and diesel blending. 
Empirical correlations for the CDU and FCC were integrated into a 
small-scale refinery planning problem by Li et al. (2005). Later, Guerra 
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and Le Roux (2011a) optimized the same process network using surro
gate models. Alhajri et al. (2008) addressed a more complex process 
topology, formulating polynomial surrogates for the catalytic reformer, 
FCC, hydrotreating and hydrocracking units. Although these modeling 
frameworks are able to represent complex process networks, their 
formulation leads to large-scale mixed-integer nonlinear programming 
(MINLP) models that are challenging to solve (Neiro and Pinto, 2004). 

NLP models of industrial-sized refinery planning problems have been 
solved using local search methods such as successive linear program
ming (SLP) or successive quadratic programming (SQP) (ASPEN Tech
nology Inc, 2010; Baker and Lasdon, 1985; Bonner and Moore, 1979; 
Haverly, 2015; Kutz et al., 2014), but even finding a feasible solution can 
prove challenging. A multi-start strategy (MSS) can sometimes over
come such feasibility and local optimality issues (Guerra et al., 2010; 
Guerra and Le Roux, 2011b), but it does not compute a dual bound, or 
offer mathematical guarantees of reaching a global optimum. Andrade 
et al. (2016) applied MSS to bilinear programming models and 

computed a dual bound by solving a linear programming (LP) relaxation 
based on the McCormick envelopes (McCormick, 1976), yet no pro
cedure was implemented to refine this dual bound. 

Siamizade (2019) formulated nonlinear process models with oper
ating conditions such as reaction temperatures and severities as 
continuous decision variables based on commercial empirical correla
tions (Baird, 1987). The CDU was modeled with the Geddes 
fractionation-index method (Geddes, 1958; Gilbert et al., 1966), using 
binary variables to determine whether a component is in the stripping or 
rectifying section. The resulting MINLP model was solved by the 
state-of-the-art global optimizer BARON (Sahinidis, 2004), although the 
optimality gaps at termination were not reported. Li et al. (2016) pre
sented a data-driven approach to optimize an IRPC using second-order 
polynomial correlations to predict yields and stream properties. The 
resulting mixed-integer quadratically constrained quadratic program 
(MIQCQP) was solved to global optimality using ANTIGONE (Misener 
and Floudas, 2014). A multiperiod extension to this problem was 

Nomenclature 

Acronyms 
BCS base case scenario 
CDU atmospheric crude distillation unit 
CL clustering decomposition 
CM crude management 
DRS demand reduction scenario 
FB fuel blending 
FCC fluid catalytic cracking 
HT hydrotreating 
HVGO heavy vacuum gas oil 
IRPC integrated refinery-petrochemical complex 
LB lower bound on the optimal solution value 
LD Lagrangean decomposition 
LCO light cycle oil 
LDS logistic disruption scenario 
LP linear programming 
MILP mixed-integer linear programming 
MINLP mixed-integer nonlinear programming 
MIQCQP mixed-integer quadratically constrained quadratic 

program 
MSS multi-start strategy 
NLP nonlinear programming 
S total number of subproblems in each spatial Lagrangean 

decomposition scheme 
OBBT optimality-based bound tightening 
PTQ petrochemical 
QCQP quadratically constrained quadratic program 
RB refinery and fuel blending 
REF refinery 
RPB refinery petrochemical and fuel blending 
SLP successive linear programming 
SQP sequential quadratic programming 
TAN total acid number 
UB upper bound on the optimal solution value 
WRPS without integration refinery-petrochemical scenario 

Sets 
DC domestic crude oils produced by different oil fields in 

Colombia 
IC imported crudes fed to the studied Colombian IRPC 
ECB crude blends produced by crude management section 
PCB crude blends volumetric composition or bulk properties 

(specific gravity, sulfur content, TAN) 

ERP intermediate refined streams from REF to PTQ 
PRP properties of the intermediate refined streams from REF to 

PTQ 
EPR intermediate streams from PTQ to RB 
PPR properties of the intermediate streams from PTQ to REF 
ERB intermediate refined streams from REF to FB 
PRB properties of the intermediate streams from REF to FB 
EPB intermediate streams from PTQ to FB 
PPB properties of the intermediate streams from PTQ to FB 
Xij index of the complicating variables shared by subproblems 

i and j > i 
Vi complicating variables of subproblem i 

Parameters 
xL,xU lower and upper bounds for variable x 
αij

v maximal step-size for linking variables v of the 
subproblems i and j > i 

λL,λU lower and upper bounds for Lagrange multiplier λ 
Δij

v trust-region radius for linking variables v of the 
subproblems i and j > i 

Binary variables 
y binary variable indicating the selection of operating 

conditions 
yi binary variable belonging to subproblem i 

Continuous variables 
x flowrates and stream properties 
xi flowrates and streams properties belonging to subproblem 

i 
vi relaxation of the bilinear terms 
xi

v linking variables v of subproblem i (e.g. QFi
e,PFi

e,p) 

Free variables 
z* optimal solution value for monolithic problem P 
zLR

λ optimal solution value for the Lagrangean relaxation LRλ 

zi,LD
λ optimal solution value for the subproblem i corresponding 

to LDi
λ 

zDP,K optimal solution value for the Lagrangean dual problem 
DPK 

λij
v Lagrange multiplier for linking variable v between 

subproblems i and j 
η auxiliary cost variable in Lagrangean dual problem DPK  
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recently addressed by Demirhan et al. (2020). 
Castillo Castillo et al. (2017, 2018) also considered a MIQCQP 

formulation for refinery profit maximization and solved it to global 
optimality via a two-stage solution strategy that proved competitive 
with BARON and ANTIGONE. In the first stage, a mixed-integer linear 
programming (MILP) relaxation of the MIQCQP model was derived from 
piecewise McCormick envelopes (Castro, 2015; Castro et al., 2021; 
Gounaris et al., 2009; Karuppiah and Grossmann, 2006; Misener et al., 
2011; Wicaksono and Karimi, 2008) or from the multiparametric 
disaggregation technique (Andrade et al., 2018; Castro, 2016; Castro 
and Grossmann, 2014; Kolodziej et al., 2013; Teles et al., 2013). A QCQP 
model obtained by fixing the binary variables of the MIQCQP model to 
the values from the solution of the MILP relaxation, was then solved to 
local optimality in the second stage. In cases where fixing the binaries 
did not compromise feasibility, this decomposition procedure could find 
solutions close to the global optimum. The iterative procedure for 
reducing the optimality gap worked by increasing the number of in
tervals in the partition for one of the variables in every bilinear term. 
The algorithm also employed optimality-based bound tightening 
(OBBT) (Castro and Grossmann, 2014; Puranik and Sahinidis, 2017) for 
reducing the domain of nonlinearly appearing variables. A drawback 
with this approach was that the first-stage MILP relaxation could already 
be computationally demanding to solve with just a few intervals in the 
partition, leading to high optimality gaps and poor initial points for the 
second-stage QCQP model. 

1.1. Lagrangean decomposition in refinery planning 

Neiro and Pinto (2004) proposed a general framework for modeling 
petroleum supply chains, where process units, tanks and pipelines are 
linked through intermediate streams coming from mixers and splitters. 
This formulation exhibits a block structure, which is amenable to a 
decomposition technique such as Lagrangean decomposition (LD) 
(Guignard and Kim, 1987). LD replaces the solution of a large optimi
zation model by a series of smaller subproblems and updates the 
Lagrange multipliers connecting theses subproblems iteratively. In 
multi-plant, multiperiod production planning problems, both spatial 
and temporal decompositions may be developed. The former entails 
dualizing the mass balances around plants and markets, while the latter 
dualizes the inventory equations that connect variables in consecutive 
time periods. Jackson and Grossmann (2003) showed that the choice of 
complicating constraints to dualize can have a significant impact on 
computational performance and observed that temporal LD tends to 
provide tighter bounds. Neiro and Pinto (2006) applied temporal LD to 
solve a multiperiod single-refinery MINLP planning problem under un
certainty. Each realization of the uncertainty was given by a set of 
discrete scenarios comprising the crude oil procurement costs, product 
selling prices and demands. Then, a series of subproblems representing 
the combination of each time period and uncertainty scenario were 
solved iteratively and the Lagrange multipliers were updated using a 
subgradient method (Fisher, 1981). Zhao et al. (2017) presented a LD 
approach to solve a multiperiod MINLP planning problem for a petro
leum refinery coupled with an ethylene plant, where the refinery sends 
fuel gas, ethane, propylene, naphtha, atmospheric gas oil and heavy gas 
oil to the ethylene plant, which provides hydrogen, residual fuel oil, and 
pyrolysis gasoline to the refinery in return. The decomposition strategy 
consisted of duplicating the variables of the material streams connecting 
the refinery and ethylene plant and dualizing the constraints equating 
both sets of variables. This resulted in a MILP subproblem for the re
finery and a MINLP subproblem for the ethylene plant, which although 
simpler than the original model, remained challenging to solve to global 
optimality. The Lagrange multipliers were updated following the hybrid 
approach proposed by Mouret et al. (2011), which combines sub
gradient (Fisher, 1981), cutting planes (Cheney and Goldstein, 1959; 
Kelley, 1960) and trust-region (Marsten et al., 1975) methods. 

Lagrangean decomposition has also been applied to integrate crude 

oil scheduling operations and refinery planning. Mouret et al. (2011) 
selected the CDU feedstock as the linking variable between the sched
uling operations (MINLP subproblem) and refinery planning (NLP sub
problem). For a given crude oil price, each subproblem could be solved 
independently to global optimality, making the spatial Lagrangean 
decomposition computationally tractable. Recently, Yang et al. (2020) 
proposed a multi-scale approach for the integration of a continuous-time 
MINLP model for crude oil scheduling and a discrete-time NLP for re
finery planning, again using the hybrid approaches of Mouret et al. 
(2011) and Oliveira et al. (2013) to solve the dual subproblems. 

1.2. Research gap and contribution 

This paper presents a spatial Lagrangean-decomposition algorithm 
for the short-term planning of an industrial-scale IRPC. This algorithm is 
benchmarked against other solution strategies on an industrial case 
study that is more challenging and realistic than previous studies for the 
following reasons:  

• A large variety of crude oils are considered, characterized by 
different volumes, qualities, and costs. These crudes are transported 
by pipeline or river fleet, depending on their geographic location, 
and can be blended to meet CDUs volume and quality specifications.  

• Demands are defined on a large variety of fuel and petrochemical 
products, including five different grades of gasoline.  

• Process units can operate in exclusive or non-exclusive campaigns. 
Specifically, the FCC units are constrained to a single operating mode 
during the whole planning horizon (to be decided by the optimiza
tion), while the CDUs can alternate between the maximization of 
medium distillates, paraffins or lubes, which represent different 
campaigns.  

• The process network presents a high connectivity between units and 
intermediate streams. For instance, virgin naphtha can either be 
routed to gasoline blending, be a petrochemical feedstock, or be sold 
as an intermediate refined product. 

All these features lead to a large-scale MIQCQP model with many 
nonconvex terms. It was recently tackled with a deterministic global 
optimization algorithm based on clustering decomposition (CL) (Uri
be-Rodriguez et al., 2020) for a better performance than global solvers 
BARON and ANTIGONE. Still, the optimality gaps for several scenarios 
were above 10%, motivating the implementation of a spatial Lagrangean 
decomposition algorithm. To the best of our knowledge, this paper is the 
first to apply spatial LD to such a large-scale model. The novelty lies in 
formulating the decompositions for an industrial IRPC so that the opti
mality gaps can be reduced further. 

The rest of the paper is organized as follows. Section 2 gives a brief 
description of the industrial case study. Section 3 details the three 
decomposition strategies, which consider the four separate IRPC sec
tions: crude management, refinery, petrochemical production, and fuel 
blending; or three or two larger sections resulting first from the aggre
gation of refinery and fuel blending, and then from merging petro
chemical production. Section 4 describes the Lagrangean decomposition 
algorithm, and the coordination between the sections subproblems, 
which involves iterating over the multipliers to generate a solution to 
the original problem. Section 5 presents the computational results for 
the different scenarios and decomposition strategies. Finally, Section 6 
concludes the paper and discusses next research steps. 

2. Industrial case study 

The integrated refinery-petrochemical complex (IRPC) under 
consideration corresponds to one of the main facilities operating in the 
Colombian refining industry. It is composed of 60 industrial plants, 
represented by 125 models, and a tank farm for crude mixing and fuel 
blending consisting of 30 additional units. The IRPC is divided into four 
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sections: crude management, refinery, petrochemical production, and 
fuel blending. A brief description of each section is provided below. 
Further details can be found in Uribe-Rodriguez et al. (2020). 

2.1. Crude management 

Crude management involves procurement, transportation and 
blending of crude oils to produce streams with suitable bulk properties 
for feeding into the CDUs, such as sulfur content, API gravity and total 
acid number (TAN) (Guyonnet et al., 2009; Oddsdottir et al., 2013; 
Zhang et al., 2012). Crude oil characterization provides insight into 
potential economic and operational benefits. The gravity and sulfur 
content determine the market price, as crudes with low gravity and high 
sulfur content are cheaper than their high-density and low-sulfur 
counterparts. Thus, the crude oil management problem involves a 
tradeoff between the cost and quality of the blends. 

Accounting for transportation enables a more realistic crude manage
ment operation. The logistics involves delivering batches of crude oil by 
pipeline and multimodal transport from oil fields, transport stations, and 
import ports to the refineries. As seen in Fig. 1, supply is given by domestic 
production of 17 different types of crude oil (DC = {DC1, …, DC17}) 
geographically distributed across 8 regions in the country (R = {R1,…,

R8}). Domestic crude production ranges between 10 and 100 kbbl/day, for 
a total national production of 297 kbbl/day. A total of 7 imported crudes 
(IC ={IC1,…,IC7}), up to a maximum of 15 kbbl/day per crude, complete 
the market availability. Domestic and imported crudes are delivered in 
batches through pipelines (PL = {PL3,…,PL8}). Then, at the refinery, the 
24 qualities of crude are combined into 9 crude blends (ECB = {CB1,…,

CB9}); see Table 1 for the specifics. For instance, CB7 is obtained from 
domestic crudes DC1,DC4,DC7−DC9,DC12,DC16−DC17 and imported 
crudes IC1− IC7. Note that crude blend CB9 was excluded from Table 1, as 
it is produced from crude blends CB1− CB7. 

2.2. Refinery 

The refinery has a total capacity of 248 kbbl/day, distributed over 6 

crude distillation units (RCDU = {RCDU1,…,RCDU6}) that can operate 
in different campaigns during the planning horizon. Each campaign is 
represented by a logical unit (CDU), leading to 13 such logical CDUs 
(CDU = {CDU1, …, CDU13}), each described by a specific set of con
straints. As an example, RCDU1 has a processing capacity of 38 kbbl/day 
and can operate in 4 campaigns (CDU1,…,CDU4), see Table 2. 

The CDUs produce intermediate streams such as light ends (C1– C3), 
light and heavy naphtha, jet fuel, light and heavy diesel, atmospheric gas 
oil and reduced crude, which are either processed by refining downstream 
units or routed to fuel blending. Commodities IR = {Alkylate,GasOil} can 
be imported as feedstock to certain refining units. The refinery also pro
duces natural gas, ethane, olefins, virgin naphtha, and precursor materials 
for petrochemical production. 

2.3. Petrochemical production 

The petrochemical plant transforms ethane, olefins, and virgin 
naphtha to obtain added-value products such as polyethylene, propyl
ene, benzene, and toluene. Several intermediate streams can be sold to 
the refinery for improving gasoline quality and specialty solvents pro
duction or supplying hydrogen to hydrotreating units. Relevant prop
erties for these streams include their specific gravity, sulfur content, 
octane, Reid vapor pressure, and aromatics content. 

2.4. Fuel blending 

To produce fuels with the required quality, blenders can buy inter
mediate process streams from refinery and petrochemical production, 
complemented with refined products from domestic and international 
markets. Overall, 88 refined streams produce up to 22 fuel grades, with 
different quality specifications for each grade. A total of 25 streams are 
blended into 6 grades of medium distillates, which must comply with 
quality constraints on specific gravity, sulfur content, and cetane num
ber. Two grades of jet fuel and four grades of diesel are produced as 
illustrated in Fig. 2. Diesel components from the CDUs provide one grade 
of diesel (Diesel4), while jet fuel components provide two grades of jet 

Fig. 1. Crude oil production and pipeline transportation network.  
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fuel (Jet1 & Jet2). Jet fuel components are also routed to the diesel pre- 
mix tank (Diesel pool). This tank also receives imported diesel, and other 
refinery streams such as hydrotreated diesel from the hydrotreating of 
heavy gas oil (HVGO HT), gas oil and heavy diesel pools. A second diesel 
grade with ultra-low sulfur (Diesel1) is obtained from hydrotreated 
diesel and diesel pre-mix blends. A fraction of the hydrotreated diesel is 
blended with heavy diesel from upstream refinery processes and light 
cycle oil (LCO) from FCC to produce two more diesel grades (Diesel2 & 
Diesel3). 

3. IRPC decomposition 

A monolithic model of the IRPC is too complex to be solved to global 
optimality using state-of-the-art solvers (Uribe-Rodriguez et al., 2020). 
Instead, the IRPC may be broken down into a number of sections in order 
to apply a Lagrangean decomposition approach. How to best decompose 
an IRPC is scenario-specific and remains an open question in general. 
Therefore, three different decompositions have been investigated in this 
work. Details about the mathematical formulations for each subprob
lem, information regarding availability, costs, and specifications for 
raw-materials and linking-streams, as well as the specifications and 
demands for the petrochemical and fuel products are provided in Sec
tions 1–5 of the Electronic Supplementary Information. 

3.1. Two sections: CM-RPB 

The simplest decomposition entails a split between crude manage
ment (CM) on the one hand, and a merged section of refinery (REF), 
petrochemical (PTQ) and fuel blending (FB) on the other hand, denoted 
as RPB. Solving each of the two subproblems independently creates an 
imbalance between the flowrates, compositions and bulk properties of 
the crudes leaving the crude blend tanks and those reaching the CDU 
charge tanks (Fig. 3). In effect, the CM subproblem seeks to maximize 
profit by buying cheap crude oil from the market, minimizing the 
transportation cost to the refinery and selling crude blends at the highest 
price, regardless of the operational performance of the RPB section. 
Inversely, the RPB subproblem seeks to maximize profit by buying 
enough quantity of good-quality crude blends from CM at a cheap price, 
regardless of the costs incurred on the CM section by procuring and 
delivering the crudes. 

Denoting by e ∈ ECB := {CB1,…,CB8} the process streams connect
ing CM to RPB, the linking variables consist of the flowrate QFi

e and 
properties PFi

e,p, with i ∈ {CM,RPB} and index p representing either a 
bulk property (specific gravity, sulfur content, total acid number) or 
volumetric composition of the crude blend. The revenue of the CM 
section and cost of the RPB section associated to the linking streams can 
be computed as: 

Table 1 
Bulk properties and prices of domestic and imported crudes, and their incorporation into crude blends.  

Crude Oil Crude Blends Bulk properties Supply 
CB1 CB2 CB3 CB4 CB5 CB6 CB7 CB8 API Sulfur (%wt) TAN (mg KOH/g crude) Price*(USD/bbl) Availability (kbbl/day) 

DC1       x  24 1.218 1.135 39.50 2.1 
DC2 x        29 0.515 0.097 49.70 31.1 
DC3        x 32 0.812 0.168 49.68 3.4 
DC4       x  20 1.934 0.528 35.43 2.2 
DC5    x     28 0.642 1.494 45.27 5.6 
DC6     x    23 0.929 2.139 41.26 24.2 
DC7       x  22 1.008 2.300 40.28 12.6 
DC8       x  19 0.957 3.126 38.50 5.8 
DC9       x  20 1.129 3.341 34.57 71.7 
DC10      x   26 1.223 1.680 42.49 3.3 
DC11      x   23 1.239 2.642 40.13 3.7 
DC12       x  19 1.848 0.122 40.86 32.0 
DC13  x       44 0.306 0.093 52.00 24.1 
DC14   x      45 0.048 0.070 52.11 26.7 
DC15      x   24 0.984 0.468 42.78 13.5 
DC16       x  18 1.140 0.137 30.77 16.5 
DC17       x  20 1.139 2.381 35.08 18.9 
IC1      x x  39 0.156 0.629 52.23 15.0 
IC2      x x  39 0.921 0.060 52.30 15.0 
IC3      x x  29 0.246 0.590 49.28 15.0 
IC4      x x  29 0.690 1.266 49.17 15.0 
IC5      x x  29 0.605 0.470 49.15 15.0 
IC6      x x  40 0.482 0.043 52.37 15.0 
IC7      x x  34 0.158 0.605 50.64 15.0  

* Pre-Covid-19 pandemic scenario with low crude oil prices. 

Table 2 
Set of logical units associated to each distillation column and corresponding processed crude blends.   

RCDU1 RCDU2 RCDU3 RCDU4 RCDU5 RCDU6 
Blend/CDU 1 2 3 4 5 6 7 8 9 10 11 12 13 

CB1 x      x x  x x  x 
CB2 x   x   x x x x x x x 
CB3  x x x   x  x x  x x 
CB4 x  x    x x  x x   
CB5 x  x    x x     x 
CB6 x      x x   x   
CB7 x      x x   x   
CB8 x  x    x x  x x   
CB9     x x        
Capacity (kbbl/day) 38 52 27 39 55 37  
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revenueCM =
∑

e∈ECB

λCM,RPB
e ⋅QFCM

e +
∑

e∈ECB

∑

p∈PCB

λCM,RPB
e,p ⋅PFCM

e,p (1)  

costRPB =
∑

e∈ECB

λCM,RPB
e ⋅QFRPB

e +
∑

e∈ECB

∑

p∈PCB

λCM,RPB
e,p ⋅PFRPB

e,p (2)  

where the multipliers λCM,RPB
e and λCM,RPB

e,p act as the marginal prices for 
the availability and properties of a crude blend, respectively. 

3.2. Three sections: CM-RB-PTQ 

The next decomposition level entails three subproblems, crude 
management (CM), refinery (REF) merged with fuel blending (FB), 
denoted as RB, and petrochemicals (PTQ). The connecting streams be

tween CM and RB are identical to those of the previous decomposition 
(Section 3.1 and Fig. 3). A second bidirectional market is created be
tween RB, which sells materials for petrochemical production, and PTQ, 
which provides hydrogen to hydrotreating processes, raffinate for spe
cialty solvent production, and components to improve gasoline quality 
(Fig. 4). The intermediate refined streams from RB to PTQ are e ∈ ERP :

= {CH4,VirginNaphtha,Olefins,Ethylene} and from PTQ to RB are e’ ∈
EPR := {H2,GasolineComponents,Raffinate}. Since, RB also buys crude 
blends from CM, the profit from RB is maximized when buying cheap 
precursor materials and selling their products at the highest possible 
price. In the same way, PTQ should buy natural gas, ethylene, olefins 
and virgin naphtha at the lowest possible cost, and it should sell 
hydrogen, raffinate and gasoline components at the highest possible 
price. The commodities QFRB

e and QFPTQ
e are traded at the price λRB,PTQ

e , 

Fig. 2. Medium distillate blending.  

Fig. 3. Two-level decomposition between CM and RPB sections.  
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whereas QFRB
e′ and QFPTQ

e′ are negotiated at the price λPTQ,RB
e′ . There are 

also the penalty costs λRB,PTQ
e,p and λPTQ,RB

e′ ,p′ associated with the commodity 

qualities PFRB
e,p , PFPTQ

e,p , PFRB
e′ ,p′ and PFPTQ

e′ ,p′ for either the refinery properties 
p ∈ PRP or the petrochemical properties p′

∈ PPR. Since the exchange 
between RB and PTQ is bidirectional, and recalling that RB also trades 
crude blends with CM, the revenues and costs can be computed as 
follows: 

revenueCM =
∑

e∈ECB

λCM,RB
e ⋅QFCM

e +
∑

e∈ECB

∑

p∈PCB

λCM,RB
e,p ⋅PFCM

e,p (3)  

revenueRB =
∑

e∈ERP

λRB,PTQ
e ⋅QFRB

e +
∑

e∈ERP

∑

p∈PRP

λRB,PTQ
e,p ⋅PFRB

e,p (4)  

costPTQ =
∑

e∈ERP

λRB,PTQ
e ⋅QFPTQ

e +
∑

e∈ERP

∑

p∈PRP

λRB,PTQ
e,p ⋅PFPTQ

e,p (5)  

costRB = costCM,RB + costPTQ,RB (6)  

costCM,RB =
∑

e∈ECB

λCM,RB
e ⋅QFRB

e +
∑

e∈ECB

∑

p∈PCB

λCM,RB
e,p ⋅PFRB

e,p (7)  

costPTQ,RB =
∑

e’∈EPR

λPTQ,RB
e’ ⋅QFRB

e’ +
∑

e’∈EPR

∑

p’∈EPR

λPTQ,RB
e,p’ ⋅PFRB

e,p’ (8)  

revenuePTQ =
∑

e′ ∈EPR

λPTQ,RB
e′ ⋅QFPTQ

e′ +
∑

e′∈EPR

∑

p′∈ERP

λPTQ,RB
e,p′ ⋅PFPTQ

e,p′ (9)  

3.3. Four sections: CM-REF-PTQ-FB 

The final decomposition level additionally separates fuel blending 
(FB) from refining (REF), leading to four sections. REF can provide in
termediate streams to FB, such as naphtha (inaphtha), jet (ijet), diesel 
(idiesel), and fuel (ifuel) generated from crude and vacuum distillation 
columns, catalytic processes such as hydrotreating and fluid catalytic 
cracking, thermal processes (e.g., visbreaking), and solvent extraction 
processes such as deasphalting, among others. The intermediate refined 
streams between REF and FB are e ∈ ERB := {inaphtha, ijet, idiesel, ifuel}
with properties p ∈ PRB := {SPG, viscosity, sulfur, RON, MON, cetane}. 
The commodities QFREF

e and QFFB
e are traded at the prices λREF,FB

e , 
with penalty costs λREF,FB

e,p associated with the commodity qualities 

PFREF
e,p and PFFB

e,p. In addition, FB receives gasoline components 
(e’∈EPB :={GasolineComponents}, p’∈PPB :={SPG,sulfur,RON,MON})

from PTQ (Fig. 5). The commodities QFPTQ
e′ and QFFB

e′ are traded at 
the prices λPTQ,FB

e′ , with penalty costs λPTQ,FB
e,p′ associated with the 

commodity qualities PFPTQ
e,p′ and PFFB

e,p′ . 
The profit out of the PTQ section can be maximized by buying cheap 

natural gas, ethylene, olefins, and virgin naphtha from the refinery, 
while selling hydrogen, raffinate and gasoline components at a high 
price. The FB section receives gasoline components from PTQ and in
termediate refined streams from REF. It can also operate as an import 
terminal, satisfying fuel demand regardless of REF and PTQ operations. 
Optimizing each section separately for given prices λij

e of the traded 
commodities between sections i, j ∈ {CM,REF,PTQ,FB}, with i ∕= j, cre
ates an imbalance between the flowrates QFi

e and QFj
e and the properties 

PFi
e,p and PFj

e,p as illustrated with the yellow circles in Fig. 6. 
REF trades intermediate streams with CM, PTQ and FB, thereby 

making a profit by selling intermediate streams to PTQ (revenueREF,PTQ) 
and FB (revenueREF,FB). On the other hand, REF supports the costs of any 
crude blends traded with CM (costCM,REF) and of any intermediate 
streams received from PTQ (costPTQ,REF). The revenue for CM consists of 
the crude blends sold to REF. 

revenueREF = revenueREF,PTQ + revenueREF,FB (10)  

revenueREF,PTQ =
∑

e∈ERP

λREF,PTQ
e ⋅QFREF

e +
∑

e∈ERP

∑

p∈PRP

λREF,PTQ
e,p ⋅PFREF

e,p (11)  

revenueREF,FB =
∑

e∈ERB

λREF,FB
e ⋅QFREF

e +
∑

e∈ERB

∑

p∈PRB

λREF,FB
e,p ⋅PFRB

e,p (12)  

costREF = costCM,REF + costPTQ,REF (13)  

costCM,REF =
∑

e∈ECB

λCM,REF
e ⋅QFREF

e +
∑

e∈ECB

∑

p∈PCB

λCM,REF
e,p ⋅PFREF

e,p (14)  

costPTQ,REF =
∑

e’∈EPR

λPTQ,REF
e’ ⋅QFREF

e’ +
∑

e’∈EPR

∑

p’∈PPR

λPTQ,REF
e,p’ ⋅PFREF

e,p’ (15)  

revenueCM =
∑

e∈ECB

λCM,REF
e ⋅QFREF

e +
∑

e∈ECB

∑

p∈PCB

λCM,REF
e,p ⋅PFREF

e,p (16) 

Fig. 4. Three-level decomposition between CM, RB and PTQ sections.  
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PTQ exchanges materials with REF and FB. The former entails a 
bidirectional trading between PTQ and REF, while PTQ sells compo
nents for the gasoline blending to FB in the latter. Thus, the revenue for 
PTQ results from trading gasoline components with FB (revenuePTQ,FB) 
and from selling other streams to REF (revenuePTQ,REF). On the other 
hand, the cost of PTQ (costPTQ) is incurred by the procurement of in
termediate product streams from REF. 

revenuePTQ = revenuePTQ,REF + revenuePTQ,FB (17)  

revenuePTQ,REF =
∑

e′∈EPR

λPTQ,REF
e′ ⋅QFPTQ

e′ +
∑

e′∈EPR

∑

p′∈PPR

λPTQ,REF
e,p′ ⋅PFPTQ

e,p′ (18)  

Fig. 5. Four-level decomposition between CM, REF, PTQ and FB sections.  

Fig. 6. Imbalances between the flows and properties from different sections in the four-level decomposition.  
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revenuePTQ,FB =
∑

e′∈EPB

λPTQ,FB
e′ ⋅QFPTQ

e′ +
∑

e′∈EPB

∑

p′∈PPB

λPTQ,FB
e′ ,p′ ⋅PFPTQ

e′ ,p′ (19)  

costPTQ =
∑

e∈ERP

λREF,PTQ
e ⋅QFPTQ

e +
∑

e∈ERP

∑

p∈PRP

λREF,PTQ
e,p ⋅PFPTQ

e,p (20) 

Finally, FB buys streams for fuel blending from both REF (costREF,FB) 
and PTQ (costPTQ,FB). 

costFB = costREF,FB + costPTQ,FB (21)  

costREF,FB =
∑

e∈ERB

λREF,FB
e ⋅QFFB

e +
∑

e∈ERB

∑

p∈PRB

λREF,FB
e,p ⋅PFFB

e,p (22)  

costPTQ,FB =
∑

e’∈EPB

λPTQ,FB
e’ ⋅QFFB

e’ +
∑

e’∈EPB

∑

p’∈PPB

λPTQ,FB
e’,p’ ⋅PFFB

e’,p’ (23)  

4. Mathematical framework 

Short-term planning optimization of an IRPC can be cast as the 
following MIQCQP: 

z* := max f0(x, y)
s.t. fm(x, y) ≤ 0 ∀m ∈ {1,⋯,M}

x ∈ [xL, xU] ⊆ Rp
+, y ∈ {0, 1}q

(P)  

where z* is the maximum profit, x is a p-dimensional vector of non- 
negative continuous variables (flows and properties of streams) con
strained between lower xL and upper xU bounds, and y is a q-dimen
sional vector of binary variables used to select process operating 
conditions such as high, medium, and low severity in fluid catalytic 
process. The functions fm : Rp × Rq→R in the objective function and 
constraints of P are quadratic in x and linear in y: 

fm(x, y) :=
∑

(r,s)∈BLm

arsmxrxs + Bmx + Cmy + dm∀m ∈ {0,⋯,M},

where BLm is an index set of participating bilinear terms, arsm and dm are 
scalars, and Bm and Cm are row vectors. 

4.1. Lagrangean decomposition and relaxation 

The reformulation P′ of problem P for a set of S > 1 subproblems 
entails duplicating the continuous variables describing the connecting 
streams between sections and assigning them to different sets of con
straints (Grossmann, 2021; Guignard and Kim, 1987). A few of these 
duplicated variables are displayed next to the mass balance checkpoints 
represented as yellow circles in Fig. 6 (e.g., the flowrates QFREF

e and QFFB
e 

of every stream e linking the refinery and fuel blending section). 
Formally, problem P′ is made equivalent to P by adding the constraint xi

v 

= xj
v ∀i, j > i, v ∈ Xij, where Xij is the index set of the complicating var

iables (flowrates and properties) of all streams linking subproblems i and 
j. 

z* := max f0(x, y)
s.t. f i

mi

(
xi, yi) ≤ 0 ∀i ∈ {1,⋯, S},mi ∈ {1,⋯,M}

xi
v − xj

v = 0 ∀i, j ∈ {1,⋯, S}, i < j, v ∈ Xij

x ∈ [xL, xU] ⊆ Rp
+, y ∈ {0, 1}q

(P′) 

Each of the M constraints is allocated to a given subproblem, and the 
objective function is summing the objective terms of all the sub
problems, with xi and yi denoting the vectors of continuous and binary 
variables that participate in subproblem i, respectively. The problem 
reformulation P′ makes it possible to apply a solution strategy based on 
Lagrangean decomposition. In particular, a Lagrangean relaxation 
(Guignard, 2003; Guignard and Kim, 1987) LRλ of problem P′ can be 
obtained by transferring into the objective function the complicating 

constraints xi
v = xj

v multiplied by their Lagrange multipliers λij
v , which 

can either take positive or negative values: 

zLR
λ := max

∑s

i=1
f i
0

(
xi, yi)+

∑S−1

i=1

∑S−1

j=i+1

∑

v∈Xij

λij
v

(
xi

v − xj
v

)

s.t. f i
mi

(
xi, yi) ≤ 0 ∀i ∈ {1,⋯, S},mi ∈ {1,⋯,M}

x ∈ [xL, xU] ⊆ Rp
+, y ∈ {0, 1}q

(LRλ) 

For fixed values of the multipliers λij
v , problem LRλ can be decom

posed into S parametric optimization problems, which are solved inde
pendently from one another: 

zi,LD
λ := max f i

0

(
xi, yi)+

∑S

j=i+1

∑

v∈Xij

λij
v xi

v −
∑i−1

j=1

∑

v∈Xji

λji
v xi

v

s.t. f i
mi

(
xi, yi) ≤ 0 ∀mi ∈ {1,⋯,M}

xi ∈
[
xL, xU] ⊆ Rp

+, y ∈ {0, 1}q

(LDi
λ) 

Therefore, zLD
λ :=

∑S
i=1zi,LD

λ provides an upper bound on the optimal 
value z* of problem P. 

4.2. Dual problem 

A standard practice is to solve a Lagrangean dual problem for 
determining values of the multipliers λij

v that minimize the upper bound 
zLD

λ from Lagrangean relaxation (Grossmann, 2021). Grossmann and 
co-workers (Mouret et al., 2011; Oliveira et al., 2013; Yang et al., 2020) 
developed a hybrid method for updating the Lagrange multipliers by 
combining a subgradient method (Held et al., 1974; Held and Karp, 
1971) with a cutting plane approach (Cheney and Goldstein, 1959), 
trust-region method (Marsten et al., 1975) and volume algorithm (Bar
ahona and Anbil, 2000). Specifically, at a given iteration K > 0 the 
following LP is solved to update the Lagrange multipliers λij,K

v that feed 
into subproblem LDλ

i at the next iteration (K+ 1): 

zDP
K :=min η

s.t. η≥ f̄ k
(
λij,k

v

)
∀k∈{1,⋯,K}

⃒
⃒λij,K

v −λij,K−1
v

⃒
⃒≤Δij

v ,λ
ij,K
v ∈

[
λL,λU]∀i, j∈{1,⋯,S}, i< j, v∈Xij

(DPK )  

where the main decision variables are the Lagrange multipliers λij,K
v 

within the range [λL, λU], λij,K−1
v are the values of the Lagrangean multi

pliers computed at the previous iteration K− 1, and the augmented 
objective function f̄ k is given by: 

f̄ k
(
λij,k

v

)
:=

∑S

i=1

[

f i
0

(
xi,k, yi,k)+

∑S

j=i+1

∑

v∈Xij

λij,k
v xi,k

v −
∑i−1

j=1

∑

v∈Xji

λji,k
v xi,k

v

]

(24)  

with xi,k and yi,k taking the optimal solution of subproblem LDλ
i at iter

ation k. 
In practice, the variability of zLD

λ between iterations may be reduced 
by adjusting the trust-region radius Δij

v of the Lagrange multipliers λij,K
v 

around λij,K−1
v , before solving DPK (Oliveira et al., 2013; Barahona and 

Anbil, 2000). The procedure used herein consists of determining an 
average deviation between the optimal values xi,K

v of the complicating 
variables in subproblem LDλ

i at iteration K and the best feasible solution 
xi,K*

v of problem P up to iteration K, scaling the step-size αij
v in [0,1] (Eq. 

(25)), and finally obtaining the trust-region radius Δij
v (Eq. (26)). The 

larger the deviation of the linking variables, the greater the corre
sponding trust-region radius. 

αij
v :=

(⃒
⃒xi,K*

v − xi,K
v

⃒
⃒+

⃒
⃒xj,K*

v − xj,K
v

⃒
⃒
)

∑S
i’=1, j’>i’

(⃒
⃒xi’ ,K*

v − xi’ ,K
v

⃒
⃒+

⃒
⃒xj’ ,K*

v − xj’ ,K
v

⃒
⃒
) (25) 
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Δij
v := αij

v

⃒
⃒
⃒
⃒
UB − LB
xi,K

v − xj,K
v

⃒
⃒
⃒
⃒ (26)  

where UB is the tightest upper bound zLD
λ found at iteration K from the 

Lagrangean relaxation of P′, and LB is the best known solution to the 
MIQCQP at iteration K, as explained next. 

4.3. Lower bounding problem 

The original problem P features binary variables and bilinear terms 
between continuous variables in the objective function and constraints. 
The classical approach to determining a lower bound on the optimal 
solution value of P entails fixing the values of the binary variables and 
solving the resulting QCQP subproblem to local optimality with a suit
able initialization. Any feasible solution of this subproblem yields a 
lower bound zPF on P. In practice, one may set the binary variables and 
initialize the continuous variables at the solution point of a MILP 
relaxation of P, constructed for instance from linear or piecewise-linear 
relaxations of the bilinear terms. This procedure has been successfully 
applied to a variety of scheduling and planning problems dealing with 
petroleum refineries (Castro, 2016; Mouret et al., 2011; Uribe-Ro
driguez et al., 2020; Zhang et al., 2022, 2021). Nevertheless, if the 
bounds on the variables participating in bilinear terms are wide, the 
MILP relaxation may be weak and provide poor initial points for solving 
the QCQP subproblem as a result. 

To formulate a stronger convex relaxation, the decomposable 
structure of P into S subproblems can be exploited. By construction, the 
global solution value zi,LD*

λ of each subproblem LDλ
i may be used to 

tighten the MILP relaxation of P (Karuppiah and Grossmann, 2008). It is 
applied herein by taking advantage of the Lagrangean dual problem 
solution to strengthen the piecewise-linear relaxations. Incidentally, the 
solution value zR of any such MILP relaxation also provides an upper 
bound on P. 

4.4. Lagrangean decomposition algorithm and numerical solution 

The main steps of the Lagrangean decomposition algorithm for 
solving the MIQCQP problem P are summarized below:  

Step 1: Specify the tuning parameters, including total maximal runtime 
(TotalMaxRunTime), maximal runtime (MaxRunTime) for solving each 
subproblem, relative optimality tolerance ϵ for the Lagrangean decomposition 
algorithm, relative optimality tolerance ϵrel for each Lagrangean relaxation 
subproblem, and maximum number of iterations Kmax. Set the lower bound LB = −

∞, the upper bound UB = + ∞, the initial values for the Lagrange multipliers λij,0
v =

0, and the iteration counter K = 1. 
Step 2: Search for a feasible solution z* (primal bound) of problem P. If successful, set 

LB←z*. 
Step 3: Solve the S subproblems LDλ

i with the current Lagrange multipliers λij,K
v to 

global optimality with relative tolerance ϵrel and maximal runtime MaxRunTime. 
Set each zi,LD

λ to the best-possible solution (dual bound) of LDλ
i at termination. If zLD

λ 

=
∑S

i=1zi,LD
λ < UB, update UB←zR. 

Step 4: Append a new cut from the solution zi,LD*
λ of the Lagrangean dual problems LDλ

i 

to the MILP relaxation of problem P and solve it by passing the optimal values for the 
continuous variables xi and the discrete variables yi from the S subproblems LDλ

i as 
hint (choosing values from one of the subproblems for the duplicated variables). If 
zR < UB, update UB←zR. 

Step 5: Solve problem P to local optimality, by fixing the binary variables and 
initializing the continuous variables at the solution of the MILP relaxation in Step 4. 
If successful and zPF > LB, update LB←zPF. 

Step 6: If (UB − LB)/UB ≤ ϵ, terminate. 
Step 7: Update the trust-region radius Δij

v using Eqs. (25)-(26). 
Step 8: Solve problem DPK to determine the next Lagrange multipliers λij,K

v . 
Step 9: If TotalMaxRunTime is exceeded or K = Kmax, terminate. Otherwise, set K = K 
+1 and return to Step 3.  

The Lagrangean decomposition algorithm was implemented in the 
modeling environment GAMS (ver. 33.2), setting a relative optimality 

tolerance ϵ = 0.05 and allowing for a maximal runtime 
TotalMaxRunTime of 36,000 s. Step 2 of the algorithm relies on the local 
solver DICOPT (Viswanathan and Grossmann, 1990) to find a feasible 
solution to problem P. In step 3, the S subproblems are solved with either 
of the global solvers ANTIGONE (ver. 1.1) or BARON (ver. 20.10.16), or 
using the process clustering decomposition approach by Uribe-Ro
driguez et al. (2020), with an optimality gap ϵrel = 0.1 and a maximal 
runtime MaxRunTime of 1000 s. In step 4, the MILP relaxations are 
solved using CPLEX (ver. 12.8) running in parallel deterministic mode, 
with a relative tolerance of 10−4; the initialization values for the subset 
of complicating variables xi are taken from the last Lagrangean relaxa
tion subproblem LDλ

i solved. In step 5, the QCQP solver used to deter
mine locally optimal solutions to problem P is CONOPT 3 (ver. 3.17 L) 
with an optimality tolerance of 10−7. 

All the computations were conducted on a 64-bit desktop virtual 
azure machine with an Intel Xeon platinum 8272 CL CPU @2.60 GHz, 16 
cores, 32 logical processors, with 64 GB of RAM, running Windows 7. 

5. Computational results 

The performance of the Lagrangean decomposition algorithm to 
solve the short-term planning problem of one representative IRPC in 
Colombia is assessed on four realistic scenarios and benchmarked 
against the process clustering decomposition approach (CL) by Uri
be-Rodriguez et al. (2020) and the commercial deterministic global 
solvers BARON and ANTIGONE. It is noteworthy that local solvers such 
as SBB and DICOPT are unable to solve this IRPC planning problem 
reliably. Even finding a feasible solution is heavily reliant upon sup
plying suitable starting values for the operating conditions, flowrates 
and stream properties—refer to Section 6 of the Electronic Supplemen
tary Information for further discussions. 

5.1. Scenario definition 

The base-case scenario (BCS) considers: hydrocarbon market re
quirements for LPG, gasoline, medium distillate, fuel oil and asphalt of 
15, 183, 149, 80 and 7.2 kbbl/day, respectively; combined demand for 
liquid petrochemicals, industrial solvents, waxes and propylene of 
13.90 kbbl/day; polyethylene demand equal to 0.96 kton/day. The 
corresponding MIQCQP model comprises 6975 equations, 35,104 
bilinear terms, 9592 continuous variables, and 279 discrete variables. 

The second scenario (WRPS) omits the petrochemical processes, by 
setting the demands for petrochemicals, industrial solvents and waxes to 
zero. 

The third scenario (LDS) analyzes the impact of a disruption in the 
domestic crude supply, by halving the capacity of pipeline system PL3, 
responsible for delivering up to 80% of the crude to the refinery. 

The fourth scenario (DRS) analyzes the effect of reducing gasoline 
demand by 25%, as a means of forcing the refinery to shift production 
towards other commodities since the main income in BCS is dominated 
by gasoline and medium distillate production. 

5.2. Comparison of Lagrangean decomposition with other solution 
strategies 

For each scenario, Table 3 summarizes the computational perfor
mance of the Lagrangean decomposition (LD) algorithm from Section 4, 
for the two- (CM-RPB), three- (CM-RB-PTQ) and four-section (CM-REF- 
PTQ-FB) decompositions that were described in Section 3. Results for 
BARON, ANTIGONE and the clustering decomposition approach by 
(Uribe-Rodriguez et al., 2020) using either 2 (CL2: crude management, 
RPB) or 6 clusters (CL6: crude management, crude distillation, vacuum 
and debutanizer, refining, petrochemical production, fuel blending) are 
also reported. 

The main benefits afforded by Lagrangean decomposition come from 
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considerably tighter dual bounds (UB) compared to the other algo
rithms, irrespective of the scenario considered. This translates into much 
smaller optimality gaps at termination: optimality gaps between 0.8 and 
7.2% with either two or three sections, compared to optimality gaps 
between 10 and 18.5% with CL2 and 7.5–12.7% with CL6. In particular, 
the ability to guarantee a feasible solution around 1% of the global 
optimum for the WRPS and LDS scenarios is a remarkable result for such 
large-scale problems. The two- and three-section decompositions are 
also found to outperform the one using four sections, for reasons that 
will be discussed later on. 

By contrast, none of the LD schemes can improve on the best feasible 
solutions (LB) found by the six-cluster decomposition (CL6). The best- 
found solutions from LD with two sections (CM-RPB) are comparable 
to those computed by the cluster decomposition with two clusters (CL2, 
maximal difference around 1% across all scenarios). Similarly, the best- 
found solutions from LD with 3 sections (CM-RB-PTQ) are comparable to 
those from CL6 (maximal difference around 1% across). This compari
son also reveals that the MILP relaxation from the cluster decomposition 
algorithm can provide better starting points to the local QCQP solver 
than its LD counterpart (step 4), thus suggesting that the spatial 
Lagrangean decomposition would benefit from a more effective search 
for high-quality feasible solutions. 

5.3. Analysis of Lagrangean decomposition strategies 

The tradeoff in decomposing the large-scale MIQCQP into S sub
problems (LDλ

i ) is that as the subproblems (either QCQP or MIQCQP) 
become smaller in size, they can usually be solved to global optimality 
more efficiently, but this comes at the cost of more iterations in the LD 
algorithms since a greater number of Lagrange multipliers need to be 
updated simultaneously. Here, the two-section decomposition (Fig. 3) 
involves a total of 57 Lagrange multipliers (8 flowrates, 24 bulk prop
erties, and 25 compositions); the disaggregation of the petrochemical 
plant from the refinery and fuel blending in the three-section decom
position (Fig. 4) adds 20 Lagrange multipliers (6 flowrates and 14 
properties), bringing the total to 77; and the disaggregation of the fuel 
blending from the refinery in the four-section decomposition (Fig. 5) 
adds another 239 Lagrange multipliers (88 flowrates and 151 proper
ties), leading to a grand total of 316. 

The ability to solve the corresponding Lagrangean relaxation sub
problems to global optimality within the 1000 s time-limit on the cur
rent platform is summarized in Table 4. The QCQP subproblem for the 
CM section can be globally optimized using BARON or ANTIGONE, and 
so can the QCQP subproblem for the FB section and the MIQCQP sub
problem for PTQ. By contrast, the large-scale MIQCQP subproblem for 
REF alone in the four-section decomposition remains intractable within 
the set time-limit, and those for the aggregated RPB and RB in the two- 
and three-section decompositions are intractable as well. In order to 

Table 3 
Results from spatial Lagrangean decomposition algorithm with two sections (CM-RPB), three sections (CM-RB-PTQ) and four sections (CM-REF-PTQ-FB), compared 
with the commercial deterministic global solvers BARON and ANTIGONE and with the process clustering decomposition approach by Uribe-Rodriguez et al. (2020) 
with two clusters (CL2) and six clusters (CL6). The tightest bounds and lowest gaps are indicated in bold.   

Base case scenario (BCS) 
LB [kUSD/day] UB [kUSD/day] Opt Gap [%] Runtime [h] 

CM-RPB 2911 2982 2.4% 0.19 
CM-RB-PTQ 2953 3181 7.2% 10.03 
CM-REF-PTQ-FB 2711 3379 18.8% 10.00 
ANTIGONE 2634 3898 32.4% 10.00 
BARON 2684 4505 40.4% 10.00 
CL2 2924 3458 15.4% 1.35 
CL6 2964 3205 7.5% 5.70   

Without refinery-petrochemical integration scenario (WRPS)  
LB [kUSD/day] UB [kUSD/day] Opt Gap [%] Runtime [h] 

CM-RPB 1943 2029 4.2% 9.40 
CM-RB-PTQ 2006 2022 0.8% 0.72 
CM-REF-PTQ-FB 1757 2615 32.8% 10.00 
ANTIGONE 1219 2926 58.3% 10.00 
BARON 1574 3536 55.5% 10.00 
CL2 1970 2310 14.7% 2.46 
CL6 2009 2233 10.0% 5.84   

Logistic disruption scenario (LDS)  
LB [kUSD/day] UB [kUSD/day] Opt Gap [%] Runtime [h] 

CM-RPB 2637 2668 1.2% 0.42 
CM-RB-PTQ 2661 2814 5.4% 10.08 
CM-REF-PTQ-FB 2457 2848 13.7% 10.00 
ANTIGONE 2156 3451 37.5% 10.00 
BARON 2473 3981 37.9% 10.00 
CL2 2625 3220 18.5% 0.86 
CL6 2664 3050 12.7% 3.68   

Demand reduction scenario (DRS)  
LB [kUSD/day] UB [kUSD/day] Opt Gap [%] Runtime [h] 

CM-RPB 2801 2998 6.6% 10.12 
CM-RB-PTQ 2804 2908 3.6% 5.84 
CM-REF-PTQ-FB 2464 2961 16.8% 10.00 
ANTIGONE 2186 3719 41.2% 10.00 
BARON 2478 4214 41.2% 10.00 
CL2 2820 3133 10.0% 2.54 
CL6 2833 3090 8.3% 5.80  
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increase the likelihood of finding a global optimum for the most chal
lenging MIQCQPs, a cluster-decomposition approach was applied as part 
of the LD algorithm, using five clusters (crude distillation, vacuum and 
debutanizer, refining, petrochemical production, fuel blending) in the 
two-section case, four clusters (crude distillation, vacuum and debu
tanizer, refining, fuel blending) in the three-section case, and three 
clusters (crude distillation, vacuum and debutanizer, refinery) in the 
four-section case; see Uribe-Rodriguez et al., 2020 for further details 
about these clusters. 

The performance of a Lagrangean decomposition with four sections 
(CM-REF-PTQ-FB) is illustrated on Fig. 7 (left plot) for the base-case 
scenario (BCS). While the best-found solution (LB) is about constant 
throughout the iterations, the dual bound (LD) from the Lagrangean 
decomposition and relaxation presents spurious variations. This is due to 
large variations in the Lagrange multiplier values, some even taking 
negative values (cf. right plot of Fig. 7), despite adapting the trust-region 
radius prior to solving the dual problem (DPK). Overall, the presence of 
over 300 linking variables between all four sections requires many 

iterations for the dual bound to progress, which overwhelms the benefit 
of having smaller, more tractable subproblems in the Lagrangean 
relaxation. Still, as discussed in Section 5.2, the final dual bound (UB) is 
considerably tighter than that from commercial solvers for all four 
scenarios (recall Table 3). From a practical viewpoint, these variations 
highlight the challenges of finding an optimal compromise between the 
four sections: FB seeks to meet the fuel demands with cheaper high- 
quality materials traded with REF, while buying as little as possible 
from PTQ; CM seeks to sell expensive or low-quality crude blends to REF; 
PTQ seeks to buy cheap natural gas, virgin naphtha, olefins and ethylene 
from REF; while REF acts as an adversary that seeks to maximize its 
revenue from selling intermediates to FB and PTQ and procuring crude 
blends from CM. Competing against CM, FB and PTQ makes it difficult 
for REF to raise its profit, thereby operating at the lowest level of charge 
(100 kbbl/day) . 

The coordination of either two (CM-RPB) and three (CM-RB-PTQ) 
sections in the Lagrangean decomposition also results in large variations 
of the dual bound (LD) and the Lagrange multipliers associated with the 
linking variables. However, in all the scenarios (BCS & LDS with 2 
sections, WPRS & DRS with 3 sections, cf. Table 3) the Lagrangean 
decomposition terminates upon reaching the 5% optimality tolerance 
after a few dozen iterations. This success is attributed to the much 
smaller number of multipliers compared to the four-section 
decomposition. 

For illustration, the performance of a Lagrangean decomposition 
with two sections is presented on Fig. 8 (left plot) for the base-case 
scenario. Recall that the Lagrange multipliers may be interpreted as 
transfer prices between the crude management (CM) and the integrated 
refinery-petrochemical complex (RPB). Important findings while 
searching for an optimal compromise are the following: 

Fig. 7. Performance of the Lagrangean decomposition with four sections (CM-REF-FB-PTQ) in the base-case scenario (BCS) up to a maximal runtime of 36,000 s (left) 
and corresponding evolution of the Lagrange multipliers for the crude blend flowrates (right). 

Fig. 8. Performance of the Lagrangean decomposition with two sections (CM-RPB) in the base-case scenario (BCS) up to a maximal runtime of 36,000 s (left) and 
corresponding evolution of the Lagrange multipliers for the crude blend flowrates (right). 

Table 4 
Subproblems for the spatial Lagrangean decomposition.  

S Subproblems Model 
type 

Solved to global 
optimality? * 

# Clusters in CL 
approach 

2 CM QCQP Yes – 
RPB MIQCQP No 5 

3 CM QCQP Yes – 
RB MIQCQP No 4 
PTQ MIQCQP Yes – 

4 CM QCQP Yes – 
REF MIQCQP No 3 
FB QCQP Yes – 
PTQ MIQCQP Yes –  

* By ANTIGONE and BARON. 

A. Uribe-Rodríguez et al.                                                                                                                                                                                                                      



Computers and Chemical Engineering 174 (2023) 108229

13

• At iteration 1 with all the multipliers set to zero, CM and RPB are 
essentially uncoordinated, and their mismatch does not incur any 
penalty on the other section. CM chooses to only provide 100 kbbl/ 
day (the minimal flow) of the crude blend CB7 (top-left plot of 
Fig. 9), which is comprised of 72% of domestic crude DC9, 16% of 
DC16, and 12% of DC17. It uses all available DC16 and DC17, which 
are the cheapest domestic crudes, neglecting importing crudes as 
they are more expensive (cf. Table 1), to achieve a minimal loss of 
3.46 MUSD/day. As a result, the crude oils are heavy, sour and acid, 
leading to a poor-quality crude blend (20 API, 1.13%wt. sulfur 
content, 2.7 TAN) that fails to comply with CDU specifications. By 
contrast, RPB chooses to process all possible crude blends in the 

basket, for a total refinery capacity of 203 kbbl/day (top-right plot of 
Fig. 9), and achieves a maximal profit of 11.43 MUSD/day. The 
blends CB6 and CB7 comprise a large amount of high-quality do
mestic and imported crudes, which are compliant with the CDUs 
maximum limits of 1.2%wt. and 2.0 TAN. This strategy is expected 
insofar as there is no premium for processing these higher-quality 
crude blends. Accordingly, the initial dual bound (UB) at iteration 
1 is highly conservative.  

• The Lagrange multiplier values are very volatile during the first few 
iterations, where a fast reduction in the dual bound (UB) is observed. 
Following this initial phase, the multipliers of the crude blends 
CB1 − CB7 stabilize between 30 and 60 USD/bbl, the lowest value 
corresponding to the medium crude CB7 and the highest value to the 
light crude CB2. The Lagrange multiplier for CB8 is by far the most 
volatile, remaining negative between iterations 11–26, mainly due to 
the low fraction of this blend in the crude basket.  

• At the final iteration 36, CM procures 202 kbbl/day of a basket of 
medium crude blends (26 API, 0.89%wt. sulfur and 1.87 TAN) that 
already meet the quality specifications of the CDUs (cf. bottom-left 
plot of Fig. 9). Meanwhile, RPB has a significantly lower 
throughput of 127 kbbl/day compared to iteration 1, consisting of a 
medium crude blend with 29 API, 0.81%wt sulfur and 0.67 TAN, 
which is of better quality than the crude blend provided by CM (cf. 
bottom-right plot of Fig. 9). With all the Lagrange multipliers – that 
is, trading prices – now being positive (cf. top section of Table 5), CM 
makes a profit of 0.73 MUSD/day, while the profit of RPB decreases 
to 2.25 MUSD/day (cf. middle & bottom sections of Table 5), which 
is within 0.6% of the best strategy found for BCS (cf. Table 3). 

Overall, these results establish that Lagrangean decomposition is 
effective at tightly bracketing the global solution value of large-scale 
IRPC planning problems. They also suggest a large potential for 
reducing the number of iterations through improving the Lagrange 
multiplier update in the dual problem. 

Fig. 9. Crude blend flowrates provided by CM (left) and processes by RPB (right) at iterations 1 (top) and 36 (bottom) of the Lagrangean decomposition algorithm in 
the base-case scenario (BCS). 

Table 5 
Update of Lagrange multipliers, profit and throughput for CM and RPB at iter
ations 1 and 36 of BCS.   

Lagrange Multiplier  

Iter#1 Iter#36 
CB1 – 47.11 
CB2 – 55.56 
CB3 – 53.50 
CB4 – 50.86 
CB5 – 41.45 
CB6 – 39.70 
CB7 – 38.41 
CB8 – 30.12  

Profit (MUSD/day)  

Iter#1 Iter#36 
CM −3.456 0.732 
RPB 11.425 2.249  

Capacity (kbbl/day)  

Iter#1 Iter#36 
CM 100 202 
RPB 203 127  
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6. Conclusions 

Through this paper, a spatial Lagrangean decomposition approach 
has been investigated to globally optimize large-scale MIQCQP problems 
arising in short-term planning of integrated refinery-petrochemical 
complexes. Such problems have not yet been addressed in their full 
complexity in the literature, remaining intractable to generic global 
optimization solvers. 

To obtain more manageable QCQP and MIQCQP subproblems, 
different Lagrangean decomposition strategies have been formulated, 
which subdivide the IRPC into two, three or four sections. Such 
Lagrangean decompositions are akin to creating a virtual market for 
trading the crude blends and other intermediate refined-petrochemical 
streams between the different sections. The marginal prices associated 
with the flows and properties of these connecting streams correspond to 
the Lagrange multipliers in the decomposition, thus enabling a clear 
interpretation of the results. 

A comparison on an IRPC arising from the Colombian petroleum 
industry for four real-life scenarios has shown that Lagrangean decom
position could reach optimality gaps between 0.8 and 7.2% with either 
two or three sections, even guaranteeing a near optimal solution (around 
1% gap) in two scenarios. This level of performance is unprecedented 
and a significant improvement over cluster-decomposition algorithms 
that rely on piecewise-linear relaxations. A trade-off could also be 
identified between the number of sections and the number of iterations 
required by the Lagrangean decomposition algorithm, which causes the 
four-section decomposition to be outperformed by its two- and three- 
section counterparts. 

Future work on the Lagrangean decomposition algorithm should 
focus on improving the dual problem formulation in order to handle a 
large number of Lagrange multipliers within a reasonable number of 
iterations. The algorithm would also benefit from a more effective 
search for feasibility or locally optimal solutions during the iterations. 
On the application side, a future research direction entails the integra
tion of refinery-petrochemical short-term planning with crude oil 
scheduling operations, another challenging problem for which effective 
global optimization algorithms still need to be developed. 
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