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Computing the GW quasiparticle band structure and Bethe-Salpeter equation (BSE) absorption spectra for
materials with spin-orbit coupling have commonly been done by treating GW corrections and spin-orbit coupling
(SOC) as separate perturbations to density-functional theory. However, accurate treatment of materials with
strong spin-orbit coupling (such as many topological materials of recent interest, and thermoelectrics) often
requires a nonperturbative approach using spinor wave functions in the Kohn-Sham equation and GW /BSE. Such
calculations have only recently become available, in particular for the BSE. We have implemented this approach
in the plane-wave pseudopotential GW /BSE code BerkeleyGW, which is highly parallelized and widely used
in the electronic-structure community. We present reference results for quasiparticle band structures and optical
absorption spectra of solids with different strengths of spin-orbit coupling, including Si, Ge, GaAs, GaSb, CdSe,
Au, and Bi2Se3. The calculated quasiparticle band gaps of these systems are found to agree with experiment to
within a few tens of meV. SOC splittings are found to be generally in better agreement with experiment, including
quasiparticle corrections to band energies. The absorption spectrum of GaAs is not significantly impacted by the
inclusion of spin-orbit coupling due to its relatively small value (0.2 eV) in the � direction, while the absorption
spectrum of GaSb calculated with the spinor GW /BSE captures the large spin-orbit splitting of peaks in the
spectrum. For the prototypical topological insulator Bi2Se3, we find a drastic change in the low-energy band
structure compared to that of DFT, with the spinorial treatment of the GW approximation correctly capturing the
parabolic nature of the valence and conduction bands after including off-diagonal self-energy matrix elements.
We present the detailed methodology, approach to spatial symmetries for spinors, comparison against other
codes, and performance compared to spinless GW /BSE calculations and perturbative approaches to SOC. This
work aims to spur further development of spinor GW /BSE methodology in excited-state research software and
enables a more accurate and detailed exploration of electronic and optical properties of materials containing
elements with large atomic numbers.
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I. INTRODUCTION

Solid state physics and materials research is increasingly
focusing its attention on materials containing heavy elements.
Such materials have large spin-orbit coupling, often exceeding
1 eV for atoms from the fifth and sixth rows of the peri-
odic table. These materials are important as thermoelectrics
[1–8] and also can be topological insulators [9–17] and Weyl
semimetals [18–21], among other novel topological phases
[22–24]. Hybrid organic metal halide perovskite materials are
also of great interest for photovoltaics, and contain heavy ele-
ments such as Pb, I [25], and/or Bi [26], and spin-orbit effects
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like Rashba splitting can play a role in their optical properties
[27]. The standard approach to investigating the ground state
electronic structure of these materials is density functional
theory (DFT) [28,29]. Despite its widespread use to compute
band structures, it is important to note that the Kohn-Sham
eigenvalues of DFT do not have a rigorous physical meaning
apart from the energy of the highest occupied molecular or-
bital, resulting in the well-known band gap problem of DFT.
To compute excited-state properties such as band structures
and absorption spectra, one must go beyond DFT and use
many-body perturbation theory approaches, such as the GW
[30,31] and GW /BSE methods [32].

The Dirac equation gives the relativistic quantum me-
chanical description of a fermionic wave function and yields
four-component bispinor solutions. However, an expansion
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of the Dirac equation to first order in c−2 yields the usual
Schrödinger equation plus three additional terms [33]. For
a system with N ions and n electrons, within the Born-
Oppenheimer approximation, these terms are

H rel = −
n,N∑
i,I

1

8m2
ec2

∇2
i VI(ri ) −

n∑
i

∇4
i

8m3
ec2

−
n,N∑
i,I

e2

2m2
ec2

S · pi × ∇i(VI(ri )), (1)

the Darwin, relativistic mass correction, and spin-orbit cou-
pling terms, respectively. We use VI(ri ) to denote the potential
from ion “I” for electron “i.” For valence electrons in nonhy-
drogenic atoms, SOC scales as Z2 [34,35].

One should use such a “fully relativistic” treatment for ma-
terials with sufficiently large Z , starting with the calculation of
the two-component spinor Kohn-Sham states and then using
these states to calculate excited-state properties, such as the
quasiparticle band structure and the absorption spectrum. This
first-principles method also allows for capturing the effect of
the renormalization of the spin-orbit coupling strength [36],
along with improved band gaps. The use of the term “fully
relativistic” is inherited from the terminology associated with
pseudopotentials used in such DFT calculations [37] which
indeed use the Dirac equation for the core atomic states—we
do not use four-component Dirac-Kohn-Sham [38,39] DFT
in this work. Likewise, calculations that begin with pseu-
dopotentials that ignore spin-orbit coupling, but do include
the relativistic mass correction and Darwin terms are called
“scalar relativistic.”

For materials with weak spin-orbit coupling, quasiparticle
band structures incorporating spin-orbit coupling can be com-
puted by separately calculating the additional contribution to
the energy eigenvalues from spin-orbit coupling via conven-
tional perturbation theory. First, wave functions |nk〉0 and
energies EQP

nk, 0 are computed from Dyson’s Equation while
neglecting spin-orbit coupling [30,31]:[

− h̄2∇2

2me
+ Vion + VH + �

(
EQP

nk, 0

)]|nk〉0 = EQP
nk, 0|nk〉0. (2)

Corrections to the quasiparticle energies to include SOC are
computed from diagonalizing the Hamiltonian [40,41]

Hn1,k,α;n2,k,β = 〈n1k|0 〈α| EQP
n1k, 0 δn1n2δαβ + HSOC

αβ |β〉 |n2k〉0,

(3)

where EQP
nk is the quasiparticle energy for band n at k point

k, HSOC
αβ is the spin-orbit coupling Hamiltonian, terms with

the subscript “0” denote quantities that neglect spin, and
|α〉 and |β〉 are spinor basis states, | ↑〉 = (1, 0)T or | ↓
〉 = (0, 1)T . This approach, “GW +SOC,” has been suc-
cessfully used in ab initio calculations of diamond- and
zinc-blende-structure semiconductors [42], metals such as Au
[43], and topological insulators Bi2Se3 [44] and Bi2Te3 [45],
among other systems. When the Kohn-Sham band structure
neglecting spin-orbit coupling is qualitatively similar to the
quasiparticle band structure that includes it, the GW +SOC
approach is generally sufficient. Despite the success of per-

turbation theory in computing the changes of eigenvalues for
materials with weak spin-orbit coupling, there is a clear need
for a nonperturbative first-principles treatment of materials
with strong spin-orbit coupling. In particular, some materials
containing heavy elements, such as Bi2Se3 [46] and β-HgS
[47,48], have DFT band structures that change significantly
when spin-orbit coupling is included. In cases such as these,
the perturbative GW +SOC approach is quantitatively or even
qualitatively inaccurate.

Due to the doubled number of bands and doubled size of
the wave functions compared to spinless calculations, there is
a significant increase in the already substantial computational
expense of many-body perturbation theory calculations, not to
mention a significant increase in the complexity of the com-
puter code. As a result, two-component spinor calculations
with GW have only recently become available, and used in the
literature. The all-electron FLAPW code SPEX’s implemen-
tation [49] was later followed by pseudopotential and PAW
codes (WEST [50], YAMBO [51], FHIAIMS [52], GPAW [53], and
VASP [54]). There are yet fewer spinor BSE codes available; to
date, only YAMBO [55] and BerkeleyGW have the capability to
solve the Bethe-Salpeter equation with two-component spinor
wave functions. While plane-wave DFT codes have become
highly comparable in recent years due to increasing consensus
on the best algorithms to use, and great efforts to determine
the source of any discrepancies [56], there is a significant
variation in the approaches used in GW /BSE codes, including
not only basis sets and pseudopotentials, but also plasmon
pole models, frequency integration, interpolation schemes,
handling of the dielectric matrix, acceleration of sums over
empty states, solution of Dyson’s equation, and other numeri-
cal tricks and details. Such details are only sometimes spelled
out comprehensively for a given code [57]. Benchmarking
projects for GW codes—and especially for BSE—are still in
their infancy. A notable example is the GW100 project which
studied a set of molecules with different codes, each of which
had its own distinct approaches to the GW problem [58].

We have implemented the spinor GW /BSE approach in
BerkeleyGW in order to provide an independent imple-
mentation of this method for the general improvement of
methodology in this area. This work also allows calcu-
lations in BerkeleyGW which is a widely used and well
established code in the community, with extensive testing.
BerkeleyGW also has particular advantages for GW /BSE
with respect to massively parallel performance [59], Coulomb
truncation and interpolation [57], and sampling schemes for
reduced-dimensional systems [60]. In this paper, we present
the results of this long-running implementation effort [61],
with a detailed exposition of the formalism and in particular
the handling of the effect of symmetries on spinors, which
has not been explicitly addressed in previous literature on
spinor GW /BSE. We also make careful comparisons to other
codes, with their somewhat different technical details, to es-
tablish the level of agreement achieved among spinor GW
calculations, and demonstrate the performance of spinor GW
versus “scalar-relativistic” (“SR”) GW calculations, in which
only relativistic mass and Darwin terms are included in the
construction of pseudopotentials, with SOC then included
perturbatively. While we make several direct comparisons
for quasiparticle energy gaps and spin-orbit splittings for
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various conventional test systems such as group IV and III–V
semiconductors with BerkeleyGW and other two-component
spinor GW codes, the best comparison that is available for
two-component spinor GW /BSE calculations for GaAs and
GaSb is with empirical pseudopotential method calculations
incorporating spin-orbit coupling perturbatively [62].

The ability to use two-component spinors in GW and
GW /BSE scientific software allows for the study of magnetic
phenomena in materials, beyond the usual single-axis spin-
polarized calculations of self-energy corrections for majority
and minority spin channels in materials such as bulk Fe and
NiO2 [63–66]. While spin susceptibilities have been approxi-
mated within the usual spin-polarized GW method [67–69],
Ref. [70] derives results from many-body perturbation the-
ory for susceptibilities describing spin-spin and spin-charge
interactions. Spin susceptibilities [71] may then be used to
calculate electron-magnon contributions to quasiparticle en-
ergies, as in the recent work in Ref. [72]. Other codes do
not seem to have this functionality implemented. To assist
in noncollinear or antiferromagnetic calculations, magnetic
symmetry groups have been exploited in the code YAMBO to
reduce the necessary size of magnetic systems to the primitive
chemical unit cell [73]. While BerkeleyGW can treat mag-
netic systems within the supercell approach, the inclusion of
spin susceptibilities, as well as the use of magnetic symmetry
groups, is an ongoing work. We consider test systems with no
magnetization in the present work.

This paper is structured as follows. In Sec. II, we review the
theory of one-particle and two-particle excited states within
many-body perturbation theory in the GW approximation, and
how such calculations are performed in a plane-wave basis
with wave functions that have two spinor components, and we
discuss the appropriate treatment of crystal symmetries with
spinorial wave functions, via quaternions, in a plane-wave
basis set. In Sec. III, we demonstrate the accuracy of our
implementation in the BerkeleyGW software package with
calculations of the quasiparticle band structures and absorp-
tion spectra of materials containing small, moderate, and large
spin-orbit coupling strength, where spin-orbit band splittings
in conventional solids (all but Bi2Se3 in this work) are found
to be equal within tens of meV whether computed from DFT
or GW , while band gaps are generally improved with respect
to experimental values from FR-GW compared to the pertur-
bative treatment of spin-orbit coupling, by 100–200 meV. In
Sec. IV, we compare to available results from other spinor
GW codes [49–54,74,75], finding agreement within 10 meV
for energy gaps compared to results from other codes—with
the exception of Bi2Se3, a difficult case needing a more so-
phisticated treatment. In Sec. V, we discuss the additional
expense of computations that use spinor wave functions. In
Sec. VI, we conclude and give an outlook for future develop-
ment in spinor GW /BSE.

II. SPINOR WAVE FUNCTIONS IN MANY-BODY
PERTURBATION THEORY

We begin by quickly summarizing the changes in quan-
tities involved in the GW/BSE approach with spinor wave
functions. The derivation of the basic framework of Hedin’s
equations and the Bethe-Salpeter equation is presented in

Ref. [76]. Similar derivations in the literature include Ref. [70]
for Hedin’s equations, Ref. [36] for computing quasiparticle
energies within GW , and Ref. [55] for the Bethe-Salpeter
Equation. Derivations including magnetic perturbations, not
considered in this work, are performed in Ref. [77].

To begin, a mean-field solution (typically from Kohn-Sham
DFT) is computed with fully relativistic pseudopotentials
[78], in which spin is not a quantum number of the state (as
in a spin-polarized or collinear calculation) but rather another
argument of the wave function alongside r. The Kohn-Sham
wave function φKS

nk (r) = ∑
α=↑,↓ φKS

nkα (r)|α〉, with |φKS
nk↑|2 +

|φKS
nk↓|2 = 1, has the Kohn-Sham eigenvalue εKS

nk :

∑
α,β

∫
dr

(
φKS

nkα (r)
)†

HKS
α,β φKS

nkβ (r) = εKS
nk . (4)

Then, the matrix elements (Eq. (9) in Ref. [57]) are re-
quired for the computation in a plane-wave basis set of the
RPA polarizability [79,80], matrix elements of the self-energy
operator, matrix elements of the BSE kernel, and matrix ele-
ments of the velocity operator. These matrix elements

Mnn′ (k, q, G) =
∑

α

〈n, k + q, α|ei(q+G)·r|n′, k, α〉 (5)

may be computed for all G by multiplying the Fourier trans-
forms of the wave functions, for a spin component α common
to both wave functions; computing the inverse Fourier trans-
form of this product [57,81]; and then summing over spin
index:

Mnn′ (k, q, {G}) =
∑

α

FFT−1(φ∗
nk+qα (r)φn′kα (r)). (6)

Since the (nonmagnetic [82]) polarizability has its physical
origin from density fluctuations arising from the spin-
independent Coulomb interaction, the form of the polarizabil-
ity is identical to the case in which spin-orbit is neglected,
apart from the sums over the spin index in the computation
of the matrix elements in Eq. (6), the doubled number of both
valence and conduction wave functions within the summation
over basis states, and any differences in eigenfunctions and
eigenvalues. In many cases, these differences are sufficiently
small such that one may calculate the polarizability using
the Kohn-Sham eigenfunctions and eigenvalues from a scalar-
relativistic DFT calculation [36,83]. However, in this work,
we use the Kohn-Sham eigenfunctions and eigenvalues from
fully relativistic DFT calculations (“FR-DFT”).

To calculate the optical absorption spectrum, we may first
try to evaluate the imaginary part of the macroscopic dielectric
function within the independent-particle approximation. We
may readily determine, using the usual expression [84,85], the
imaginary part of the dielectricfunction to be

ε2(ω) = 8π2e2

ω2

∑
vck

∣∣∣∣∣λ ·
∑
αβ

〈v, k, α|vαβ |c, k, β〉
∣∣∣∣∣
2

× δ(ω − (Eck − Evk )),

where λ is the direction of light polarization. The velocity op-
erator v = i[H, r] now has a spin-dependence inherited from
the Hamiltonian. However, it can be transformed just as in
the spin-independent case (explained in Ref. [57], containing
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TABLE I. The kinetic energy cutoffs Ecut, calculated lattice parameters, experimental lattice parameters, Brillouin zone sampling, screened
Coulomb cutoff εcut, and number of empty states used in the sums for both the polarizability (“Chi”) and the Coulomb-hole (“COH”) term in
the self-energy. The pseudopotentials for Ge, Sb, Cd, and Au contain the full shell of the semicore states (e.g., 4s24p64d10 for Sb) [99]. The
experimental lattice parameters are from Ref. [95]. For Si, Ge, GaP, GaAs, and GaSb, we use the same parameters as Ref. [42], and for Au,
Ref. [106]. GaP results are discussed in Sec. IV.

Ecut (Ry) arelaxed
0 (Å) aexp.

0 (Å) k grid εcut (Ry) Empty states

Si 120 5.48 5.47 8 × 8 × 8 20 800
Ge 120 5.63 5.66 8 × 8 × 8 25 600 Chi, 1000 COH
GaP 350 5.45 5.45 8 × 8 × 8 40 800 Chi, 1000 COH
GaAs 350 5.61 5.65 8 × 8 × 8 20 1002
GaSb 350 6.09 6.10 8 × 8 × 8 20 1002
CdSe 200 4.30 4.30 6 × 6 × 4 20 996
Au 72 4.08 4.08 8 × 8 × 8 50 2018

a few additional details or corrections compared to Ref. [57])
into

〈v, k|v|c, k〉 = −i(Eck − Evk )〈v, k|r|c, k〉 (7)

containing now a spin-independent dipole operator. We eval-
uate in practice:

ε2(ω) = 8π2e2
∑
vck

∣∣∣∣∣λ ·
∑

α

〈v, k, α|r|c, k, α〉
∣∣∣∣∣
2

× δ(ω − (Eck − Evk )),

where the dipole matrix element is calculated via a q → 0
limit. The momentum operator −i∇ can be used to approxi-
mate v to avoid needing a set of wave functions on a shifted
k grid, but this is a worse approximation than in the spinless
case, as the fully relativistic Hamiltonian contains additional
nonlocal terms, not only the spin-orbit coupling but also both
of the scalar relativistic terms [86].

When we use the BSE with interacting two-component
spinor electron and hole wave functions, the absorption spec-
trum is then computed from

ε2(ω) = 8π2e2
∑

S

∣∣∣∣∣
∑
vck

AS
vck λ ·

∑
α

〈 k, α|r|c, k, α〉
∣∣∣∣∣
2

× δ
(
ω − �S

)
,

using the excitonic version of Eq. (7) [57]. We take the Tamm-
Dancoff approximation (“TDA”) for the BSE Hamiltonian
[87] in this equation for the imaginary part of the dielectric
function, though some systems require consideration of the
full BSE Hamiltonian [88]. Calculations beyond the TDA for
BSE with BerkeleyGW [89] are also compatible with spinor

TABLE II. The values of the Brillouin zone sampling of the fine
grid, the number of valence and conduction bands used as the basis
for the BSE, and the Gaussian broadening of the delta function.

kfine grid Nv Nc Broadening (meV)

GaAs 12 × 12 × 12 6 8 150
GaSb 12 × 12 × 12 6 8 100
Au 12 × 12 × 12 6 4 150

wave functions, though this feature is not considered in this
work.

We also note that in the presence of spin-orbit coupling,
spin is generally no longer a good quantum number, so it is
no longer possible to refactor the Bethe-Salpeter Hamiltonian
into spin-singlet and -triplet block-diagonal submatrices [32].
Further, the number of valence and conduction bands both
double, relative to spinless calculations. This makes explicit
diagonalization of the BSE Hamiltonian, which scales as
N3

basis = (NvNc)3, more expensive by a factor of 64 for solids,
as the basis has quadrupled. However, the time spent perform-
ing this diagonalization and computation of the absorption
spectraremains a relatively rapid calculation, compared to cal-
culation of the screened interaction and the self-energy (see
Sec. V).

The most formidable computational challenge with the
inclusion of two-component spinor wave functions is the
increase in the number of charge-density matrix elements
[Eq. (6), which must be calculated for the polarizability,
self-energy, and BSE kernel]. Compared to a calculation per-
formed on the same system without spin, the number of both
valence and conduction states double. Taking the ratio of the
scaling of the charge-density matrix element calculation with
system size N [57], we find an increase in computation time
by

(2N )2 2 ln(2N )

N2 ln N
= 8(1 + logN 2), (8)

where the additional factor of 2 in the numerator comes
from having to compute the inverse-FFT for each of the of
two-component spinor wave functions. Since, at best, we are
increasing the cost of matrix element calculations by more
than a factor of 8, we should make use of symmetries of
the Brillouin zone to allow for converged calculations within
reasonable computational cost. (Detailed discussion about the
performance of the major sections of the BerkeleyGW code is
included in Sec. V.)

1. Symmetries, with spinor wave functions

Finally, we summarize results regarding the use of sym-
metries with spinor wave functions, since BerkeleyGW
constructs Kohn-Sham wave functions in the full Brillouin
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TABLE III. The band gap and spin-orbit splitting for Si, computed at the FR-LDA and FR-GW levels, compared to experiment. The
fundamental band gap from experiment is reported with zero-point renormalization corrections.

FR-LDA FR-GW GW +SOC [42] Experiment

Eg (eV) 0.45 1.22 1.27 1.22 [114], 1.23 [115]
E (6c ) − E (8v ) (eV) 2.46 3.22 3.28 3.34 [116]
�SOC(, v) (eV) 0.05 0.05 0.05 0.044 [95]
�SOC(, c) (eV) 0.03 0.04 0.04 0.030–0.040 [95]
�SOC(L, v) (eV) 0.03 0.03 0.03 0.030 [95]
�SOC(L, c) (eV) 0.01 0.01 0.02 –

zone from those calculated in an irreducible wedge [57]. More
details are included in Ref. [76].

Spinor Bloch functions are written

ψnk(r) = unk↑(r)eik·rχ↑ + unk↓(r)eik·rχ↓ (9)

and χα represents a spinor. The periodic functions unk↑ and
unk↓ are spatial and thus transform according to the usual
treatment of symmetries. However, the spinor itself rotates
according to the rules oftransformation for elements of the
group SU(2):

P{R|τ}ψnk(r) = ũnRk↑(r) exp (iRk · r) exp (i n̂ · 
σ θ/2)χ↑
+ ũnRk↓(r) exp (iRk · r) exp (−i n̂ · 
σ θ/2)χ↓,

(10)

where n̂ and θ are the unit-axis and angle (about the axis n̂)
that recreates the rotational action of the symmetry operation
R.

By calculating from the rotation matrix R a quaternion q
that is guaranteed to be nonsingular [90–92], we evaluate the
rotation angle θ from

θ = 2 arctan

(
q2

1 + q2
2 + q2

3

q4

)
, (11)

where arctan is a function with all real numbers as its domain,
and evaluate the i’th component of the axis of rotation ni from

ni = qi√
q2

1 + q2
2 + q2

3

. (12)

The set of rotation matrices R for a crystalline system are
usually stored in the basis of lattice vectors in ab initio codes,
as it allows these matrices (up to 48 in number) to be written
with nine integers. In this case, we must transform the rotation
matrices in the lattice basis, Rlat, to the rotation matrix in

TABLE IV. The band gap and spin-orbit splittings for Ge, com-
puted at the FR-LDA and FR-GW levels, compared to experiment.
Experimental data are from Ref. [95] unless otherwise specified.

FR-LDA FR-GW GW +SOC [42] Experiment

Eg (eV) 0.13 0.74 0.54 0.79
E (7c ) − E (8v ) (eV) 0.15 0.96 0.38 0.90
�SOC(, v) (eV) 0.31 0.30 0.32 0.297
�SOC(, c) (eV) 0.22 0.21 0.24 0.200
�SOC(L, v) (eV) 0.19 0.19 0.20 0.228
�SOC(L, c) (eV) 0.10 0.08 0.12 –

the Cartesian basis. If we form a matrix A out of the lattice
vectors, this transformation is

Rcart = ARlatA−1. (13)

If instead we decide to use the reciprocal lattice vectors b1,
b2, b3 to construct the matrix B in a fashion as in the above,
we make use of the identity BTA = 2π I to write

Rcart = (BT)−1RlatBT. (14)

This latter choice is beneficial if the matrices A and B are in
fact stored as their transposes, as some codes do.

Finally, we note that in the presence of inversion sym-
metries, “improper rotations” S must be considered. While
improper rotations are often considered to be the composition
of a rotation and a mirror reflection about the plane perpen-
dicular to the axis of the rotation, instead we can consider
the improper rotation S to be (in general, a different) rotation
R followed by inversion N , S = NR [93]. However, if both
spatial inversion and time-reversal operations commute with
the Hamiltonian under consideration, the (spinor) wave func-
tion is a simultaneous eigenstate of both symmetries. Thus
in the presence of only time-reversal symmetric terms in the
Hamiltonian, the wave functions are unaffected by inversion,
apart from perhaps an overall phase factor. We identify im-
proper rotations by the property det(S) = −1, and if detected,
use only the rotation part R of S to transform the spinor
components of the wave function.

III. TEST SYSTEMS

We present results for seven different materials with a wide
range of spin-orbit coupling (SOC) strengths. The diamond
and zincblende semiconductors Si, Ge, and GaAs are tech-
nologically important materials with weak SOC. GaSb has a
spin-orbit splitting of its valence bands of similar magnitude
as its band gap. CdSe has a wurtzite structure and a significant
SOC (429 meV [94], over 25 times larger than that of wurtzite
GaN, 16.8 meV [95]). Au is a prototypical metal with strong
SOC. Finally, Bi2Se3 has a nontrivial topological nature due
to the bandinversion induced by its strong SOC, and is a par-
ticularly challenging case to explore which has been studied
in much previous literature.

A. Computational details

We compute mean-field wave functions and eigen-
values from density functional theory [28,29]. For the
exchange-correlation energy, we employ the Perdew-Zunger
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TABLE V. The band gap and spin-orbit splitting for GaAs, com-
puted at the FR-LDA and FR-GW levels, compared to experiment.
Experimental data are from Ref. [95] unless otherwise specified.

FR-LDA FR-GW GW +SOC [42] Experiment

Eg (eV) 0.55 1.49 1.31 1.57 [117]
�SOC(, v) (eV) 0.32 0.34 0.35 0.340
�SOC(, c) (eV) 0.19 0.17 0.20 0.171
�SOC(L, v) (eV) 0.20 0.21 0.22 0.22
�SOC(L, c) (eV) 0.08 0.07 0.09 0.05

parametrization of the LDA [96]. We generate fully rela-
tivistic pseudopotentials using the optimized norm-conserving
Vanderbilt pseudopotential (ONCVPSP) scheme [97] with
parameters from the pseudo-Dojo pseudopotential database
[98]. The pseudopotentials for Au, Bi, Cd, Ga, Ge, and Sb
contain the full shell of the semicore states (e.g., 5s25p65d10

for Bi) for accurate calculation of the bare exchange [99]. All
DFT calculations are carried out with the QUANTUM ESPRESSO

software package [100].
We first determine the equilibrium lattice constants and

atom positions. Table I shows that all relaxed lattice constants
are in very good agreement with experimental measurements.
We instead use the experimental lattice parameters and atomic
coordinates for Bi2Se3 due to the sensitivity of its DFT band
structure with respect to its geometry [101].

Next, the quasiparticle energies are computed with the
one-shot “G0W0” approach, using the Hybertsen-Louie gener-
alized plasmon pole model [31,102] for the inverse dielectric
matrix. For the case of bulk Au, we also calculated the quasi-
particle band structure in the Godby-Needs plasmon pole
model [103] and found differences of 50 meV or smaller in
the quasiparticle energies, in the range 6 eV above and below
the Fermi energy [76]. For the test systems Si, Ge, and GaAs,
the difference in computed band gaps when using the
Hybertsen-Louie and Godby-Needs plasmon pole models is
tens of meV [104], and the difference between the Godby-
Needs plasmon pole model and the Hybertsen-Louie plasmon
pole model results for the band gap of Bi2Se3 is presumed
to be similar in magnitude to the difference between the
Hybertsen-Louie GPP and full-frequency results, also tens of
meV. The difference in computed band gaps can be an order
of magnitude larger for systems with localized electrons such
as transition metal oxides [104].

Table I summarizes our parameters for the empty state
summations, the k-point sampling, and the plane-wave cut-
offs for the dielectric matrices. We use the static remainder
method to improve convergence with the number of empty
states in the Coulomb-hole summation [105]. We verified that
G0W0 evaluation of the self energy in the band-diagonal ap-
proximation yields quantitatively accurate band structures for
these test systems. Deviations from this methodology in the
computation of the band structure for Bi2Se3 are enumerated
in Sec. III D.

The k-point sampling and number of bands used in
constructing the GW /BSE Hamiltonian are summarized in
Table II. All excited-state calculations are carried out with the
BerkeleyGW software package.

TABLE VI. The band gap and spin-orbit splittings for GaSb,
computed at the FR-LDA and FR-GW levels, compared to experi-
ment. Experimental data are from Ref. [95].

FR-LDA FR-GW GW +SOC [42] Experiment

E (6c ) − E (8v ) (eV) 0.14 0.82 0.70 0.822
E (L6c ) − E (8v ) (eV) 0.25 0.78 0.85 0.907
�SOC(, v) (eV) 0.74 0.73 0.73 0.756
�SOC(, c) (eV) 0.23 0.20 0.21 0.213
�SOC(L, v) (eV) 0.42 0.42 0.42 0.430
�SOC(L, c) (eV) 0.12 0.09 0.12 0.13

B. Summary of band structure for Si, Ge, GaAs,
GaSb, CdSe, and Au

Since the band structures for Si, Ge, GaAs, GaSb, CdSe,
and Au are well-known and differ little when either includ-
ing or disregarding spin-orbit coupling, we briefly summarize
the different approaches to their calculation and the results.
Figures for these band structures are included in Ref. [76].

In Tables III, IV, V, and VI we compare values of in-
terband gaps labeled according to irreducible representation,
with c for conduction band and v for valence band, as well as
spin-orbit split bands, labeled by high-symmetry point in the
Brillouin zone, for the valence and conduction bands nearest
in energy to the band gap that exhibit spin-orbit splitting.
We compare values as computed from FR-LDA, FR-GW ,
and GW +SOC, with the latter from Ref. [42], along with
experimental values.

These diamond/zincblende semiconductors with small to
moderate spin-orbit coupling have spin-orbit splitting values
that are consistent within few tens of meV or better, regardless
of the calculation method. The band gaps are of course un-
derestimated within FR-LDA, while FR-GW and GW +SOC
values differ by as much as 0.2 eV for all but Si. In the case of
Ge, we attribute the underestimated band gaps from Ref. [42]
from the use of a Ge pseudopotential that freezes the n = 3
semicore states in the core, rather than to inherent limitations
of the perturbative approach.

Additionally, these standard Group IV or III–V semicon-
ductors may have their band gaps estimated by an approach
that combines more easily computed quantities, the band gap
ESR-GW

g from SR-GW and the valence band spin-orbit splitting
�SOC

LDA(, v) from FR-LDA. The valence-band maximum is
taken to be purely atomic (cationic, for compound semicon-
ductors) p states, which split due to spin-orbit coupling as
in a free atom, with p3/2 states shifting upward in energy
by 1

3�SOC and p1/2 downward by 2
3�SOC [107]. Within this

“atomic perturbation theory” approach,

EGW +SOC
g ≈ ESR-GW

g − 1
3�SOC

LDA(, v). (15)

The “atomic SOC perturbation” estimates for the band gaps
of Ge (0.95 eV), GaAs (1.49 eV), and GaSb (0.82 eV) agree
with the FR-GW values within 10 meV.

Wurtzite CdSe has fewer comparable calculations in the
literature, so we report the FR-LDA and FR-GW values com-
puted for the band gap, spin orbit splitting of the valence
band maximum, and the crystal field splitting of the 6 and
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TABLE VII. The band gap and spin-orbit splitting for CdSe,
computed at the FR-LDA and FR-GW levels, compared to experi-
ment. The spin-orbit (SOC) and crystal field (CF) splitting refers to
the states at the top of the valence band at . Experimental data are
from Ref. [94].

FR-LDA FR-GW Experiment

Eg (eV) 0.58 1.85 1.84
�SOC(, v) (eV) 0.372 0.405 0.429
�CF(, v) (eV) 0.036 0.026 0.026

1 valence bands in Table VII. FR-GW values agree with
experimental values within a few meV.

For Au, Table VIII shows that the quasiparticle energies are
generally improved with FR-GW compared to FR-LDA, espe-
cially near the Fermi level. The FR-GW quasiparticle energies
are in good agreement with a quasiparticle self-consistent GW
(“QSGW ”) calculation in which SOC is added perturbatively,
from Ref. [43], indicating that the perturbative treatment of
SOC for the band structure is sufficient. The Fermi level for
FR-GW and SR-GW is recalculated using the the Blöchl tetra-
hedron method [108] with the quasiparticle energies, from
the CMS-PY PYTHON library [109]. The quasiparticle energies
are largely similar whether using the Hybertsen-Louie or the
Godby-Needs GPP model, within an energy range of 6 eV
above or below the Fermi level [76].

C. Absorption spectra for GaAs, GaSb, and Au

For GaAs, the absorption spectrum differs little when com-
puted from SR-GW /BSE or FR-GW /BSE, as the spin-orbit

TABLE VIII. The FR-LDA and FR-GW band energies in eV for
Au relative to the Fermi energy, as compared to QSGW +SOC and
experiment. Bands at high-symmetry k points are labeled according
to their double-group irreducible representation (see Ref. [43]).

FR-LDA FR-GW QSGW +SOC [43] Experiment

+
6 −10.17 −10.22 −10.39 −−

+
8 −5.69 −6.05 −6.02 −5.09a, −6b, −6.01c

+
7 −4.58 −4.89 −4.85 −4.45a, −4.6b, −4.68c

+
8 −3.29 −3.67 −3.67 −3.55a, −3.65b, −3.71c

−
7 13.91 14.46 15.36 16c, 15.9d

−
6 17.26 17.81 17.97 18.8c

L+
6 −7.84 −8.11 −8.01 −7.8b

L+
4,5 −5.80 −6.21 −6.16 −6.23b, −6.2c

L+
6 −4.69 −5.08 −4.97 −4.88b, −5c

L+
6 −2.56 −2.87 −2.95 −3.2c

L+
4,5 −1.90 −2.19 −2.24 −2.3c, −2.5e

L−
6 −1.32 −1.26 −1.63 −1e, −1f, −1.01g, −1.1h

L+
6 3.09 3.44 3.19 3.6e, 3.65f, 3.56g, 3.4h

aReference [119].
bReference [120].
cReference [121].
dReference [122].
eReference [123].
fReference [124].
gReference [125].
hReference [126].

FIG. 1. The absorption spectra of GaSb, calculated at the SR-
GW -RPA (cyan), SR-GW /BSE (blue), FR-GW -RPA (magenta), and
FR-GW /BSE (red) levels. RPA spectra are included to assess any
renormalization of SOC by the electron-hole interaction. Experimen-
tal results are from Ref. [110].

split “E1” and “E1 + �” pair of peaks is split by 200 meV,
which is on the order of the resolution of the calculation
(150 meV) with the given fine-grid k-point sampling of 12 ×
12 × 12 and is thus obscured. The GaAs spectra is included
in Ref. [76].

Figure 1 shows the absorption spectrum for GaSb cal-
culated with the SR-GW /BSE and FR-GW /BSE methods,
as well as the noninteracting “RPA” method, in which the
electron-hole kernel in the Bethe-Salpeter Equation is disre-
garded, as well as a comparison with experiment [110]. The
RPA spectra are included to assess any differences in the
spin-orbit split peaks E1 and E1 + � due to renormalization
of SOC from the electron-hole interaction.

The absorption spectrum of GaSb has significant differ-
ences when including SOC. First, the absorption onset is
shifted by 190 meV due to the large difference in the quasi-
particle band gap when including (0.82 eV) or neglecting
SOC (1.07 eV). Also, we can clearly resolve the 2.3 eV peak
splitting into the E1 and E1 + � peaks with the inclusion
of SOC. The E1 and E1 + � peak placements at 2.18 and
2.54 eV agree well with the experimental [110] spectrum
peak placements of 2.18 and 2.62 eV, respectively, and the
EPM+SOC peak placements of 2.22 and 2.86 eV [62]. These
results, as well as the energies of the E0 and E2 peaks, are
included in Table IX. The absorption spectra computed within
RPA are qualitatively similar to that of the BSE, with the E1

TABLE IX. Absorption peak energies for GaSb, in eV. The E0 +
� does not appear in Ref. [62] or Ref. [118].

FR-GW /BSE EPM+SOC [62] Experiment [118]

E0 + � 1.19 – –
E1 2.18 2.22 2.184
E1 + � 2.54 2.86 2.618
E2 4.06 4.37 4.286
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FIG. 2. The absorption spectrum of Au due to interband tran-
sitions, calculated at the GW /BSE level. Spin orbit is included
(neglected) in the red (blue) curve. The experimental spectrum is
from Ref. [112].

and E1 + � peak splitting agreeing with that of the BSE under
10 meV, indicating no significant renormalization effects of
SOC from the electron-hole interaction.

The calculated interband absorption spectrum for Au
shown in Fig. 2 shows a redshift in the onset of absorption
with the inclusion of spin-orbit coupling, and an additional
absorption peak at 1.6 eV, with the absorption spectra having
minor qualitative changes when including the electron-hole
interaction (“BSE”) or not (“RPA”). The optical properties
of Au are well-known to be impacted by relativistic effects
[111], and the inclusion of only scalar relativistic effects is
insufficient for a description of its absorption of visible light
[111]. The redshift of the absorption onset compared to the ex-
perimental data from Ref. [112] is understood from the LDA
starting point leading to an underestimation of the energy rela-
tive to the Fermi level for the lowest-energy unoccupied band
at the X point. The use of orbital-dependent functionals in
DFT ameliorates this underestimation [113], and presumably
some level of self-consistency in GW beyond one-shot G0W0

would also correct the underestimation. The absorption spec-
trum was calculated with a 12 × 12 × 12 k-point sampling,
six valence bands, and four conduction bands.

D. Bi2Se3

While the previous test systems confirm the sufficiency of
treating SOC as a perturbation, the GW +SOC approach for
the band structure of Bi2Se3 has shown mixed results [44,83].
The large spin-orbit splitting of the Bi 6p electrons inverts
the positive and negative parity p-like states (from the Bi 6p
and Se 4p orbitals) near the band gap, creating a nontrivial
value of the Z2 topological index [46]. The “inverted” band
gap is caused by the level repulsion of the inverted states at the
 point, mixing the character of the conduction and valence
states within a neighborhood of  [44]. The strength of this
level repulsion depends on the size of the band gap, which is
underestimated in DFT. As a consequence, the band structure

FIG. 3. The electronic band structure of Bi2Se3 along the (a) 

to L and (b)  to Z directions, including spin-orbit coupling, but only
Hamiltonian matrix elements that are diagonal at the FR-GW level:
fully relativistic (“FR”) LDA and GW in dashed green and solid red
lines, respectively.

computed from DFT and GW differ significantly when SOC
is included, so the perturbative treatment may be insufficient.

Due to the sensitivity of this system to the DFT functional
and the atomic geometry [101], in our study of the bulk band
gap of Bi2Se3 as computed within FR-GW , we use the ex-
perimental geometry [95]. For consistency with the majority
of previous calculations in the literature [44,83,127,128], we
use the LDA functional. We use a Brillouin zone sampling
of 8 × 8 × 8 for constructing the charge density as well as
the dielectric function. We use a 160 Ry cutoff for the plane-
wave basis for the wave functions and a 25 Ry cutoff for
the dielectric function. The polarizability (“Chi”) summation
uses 1000 unoccupied bands, and the Coulomb-hole (“COH”)
summation uses 1254 bands. The quasiparticle energies are
estimated to be converged within about 30 meV [76].

We obtain the band structure in the neighborhood of the 

point by obtaining quasiparticle energies at the  point and
at particular points along the -to-L and the -to-Z high-
symmetry lines, shown in Fig. 3. Ordinarily, band structures
are determined from the set of quasiparticle energies com-
puted on coarse, regularly spaced k-point grid and a set of
overlap coefficients computed for the wave functions on the
coarse grid and DFT-computed wave functions that densely
sample high-symmetry lines in the Brillouin zone [57]. This
approach does not work well, however, in cases such as
Bi2Se3, especially near the  point where the DFT band struc-
ture and the quasiparticle band structure disagree significantly.
Instead, we directly compute quasiparticle energies along the
-to-L direction at 1

16 L, 1
8 L, 3

16 L, and 1
4 L, and along the -to-Z

direction at 1
16 Z , 1

8 Z , 3
16 Z , 1

4 Z , 1
2 Z , and Z . The whole -to-Z

line is represented as it is a much shorter path in the Brillouin
zone than the -to-L line. We then plot spline-interpolated
curves as estimates to the quasiparticle band structure. The
LDA band structure interpolated in a similar fashion shows
good agreement with the band structure calculated explicitly
at each k point [76]. The (band-diagonal) FR-GW band struc-

115127-8



SPINOR GW /BETHE-SALPETER CALCULATIONS IN … PHYSICAL REVIEW B 106, 115127 (2022)

ture along the -to-Z line suggests that the band-diagonal
approximation is not generally sufficient, as is apparent from
the appearance of small, spurious [83,127,129] bumps in both
the conduction and valence bands in a very narrow region
about  (Fig. 3). These bumps are also seen in Ref. [130] for
Bi2Te3 in the F --L k-point path, but are small along that path
for both Bi2Se3 and Sb2Te3.

We find a direct bulk band gap of 0.38 eV in the band-
diagonal approximation, which is in good agreement with
values obtained from angle-resolved photoemission spec-
troscopy (ARPES) [127] (0.332 eV) as well as scanning
tunneling spectroscopy (STS) [131] (0.3 eV). Optical mea-
surements of the gap, however, report a smaller value of
0.2 eV [129] and also confirm a direct band gap at .

To improve the quasiparticle band structure, we investigate
the effect of including band-off-diagonals in the calculation of
the self-energy matrix elements:

Enk = Eig(εlkδlm + 〈l, k, α|�αβ (Epk ) − V xcδαβ |m, k, β〉),
(16)

where “Eig” denotes the eigenvalues of the matrix constructed
from the self-energy in the Kohn-Sham orbital basis, the band
n is a member of the set of wave functions spanned by all
choices for the indices l and m, and the energy Epk at which
the self-energy operator is evaluated is chosen from either the
row (Elk) or column (Emk), as the difference in eigenvalues
from this choice and an explicitly constructed Hermitian ma-
trix for the self-energy correction,

1
2 (〈l, k, α|�αβ (Elk ) − V xcδαβ |m, k, β〉 + 〈l, k, α|�αβ (Emk )

− V xcδαβ |m, k, β〉), (17)

as used for quasiparticle self-consistent GW [132,133]
(QSGW ), is found to be under 1 meV. The QSGW approach
involves reevaluating sums over empty states in both the di-
electric screening and the self-energy to arrive at converged
quasiparticle wave functions, whereas single diagonalization
is a first correction to the “one-shot” G0W0, which supposes
Kohn-Sham wave functions as close enough to the quasiparti-
cle wave functions.

We find that the choice of the four valence wave functions
and two conduction wave functions near the Fermi energy
is sufficient to correct the deficiencies in the band structure
when using the LDA eigenfunctions as the quasiparticle wave
functions [76]. The band structure computed in this fashion
is shown in Fig. 4. The band gap computed at first iteration
is 0.33 eV, though we rigidly shift the gap to match that of
the diagonal approximation, 0.38 eV, which is justified in the
discussion after Eq. (20).

The necessity of calculating a matrix for the self-energy
can be seen by noting that the strength of the level repulsion—
and therefore the character of the wave functions – depends
on the band gap value [44]. When changing the gap, as in
a GW calculation, the wave functions in the region where
the character is inverted necessarily change along with the
extent of the region in the band structure with inverted orbital
character. In Ref. [130], the authors analyze the atomic or-
bital contributions to bands featuring bumps when computing
the band structure of Bi2Te3 and find that, for bands with
avoided crossings due to spin-orbit coupling, these bands in

FIG. 4. The electronic band structure of Bi2Se3 along the (a)  to
L and (b)  to Z directions, including spin-orbit coupling: the quasi-
particle band structure computed from FR-GW with off-diagonal
entries in the Hamiltonian (solid black), and the quasiparticle band
structure without off-diagonals (solid, thinner red) and arbitrarily
shifted downward by 0.05 eV for clarity.

the LDA basis have a very narrow region in which band
inversion occurs, leading to sharp spikes. The updated off-
diagonal basis however has a more extended region of band
inversion, allowing for a smoother band structure, consistent
with the update in the band gap from LDA to GW . The
use of the LDA basis, then, is not adequate for an accurate
band structure in this region, nor are self-consistent schemes
such as eigenvalue self-consistent GW that do not update the
quasiparticle basis set. QSGW would update the LDA basis,
along with updating estimates of the screening and self-energy
[132]. However, QSGW schemes that do not explicitly include
vertex corrections beyond the usual GW approximation can
often overestimate band gaps in solids by as much as 20%
[134,135]. Instead, this first-iteration approach to update the
basis set provides us an efficient means of correcting the basis
set without having to carry through a full self-consistent cy-
cle that would require an additional contribution from vertex
corrections.

In the usual band-diagonal approximation to the self-
energy operator two energies are calculated [57]. First, the
self-energy operator is evaluated at the mean-field eigenval-
ues, giving the first of these energies:

E0
nk = εDFT

nk + 〈nk|�(
εDFT

nk

) − V xc|nk〉. (18)

� is evaluated (within default settings in BerkeleyGW) at
εDFT

nk and εDFT
nk + 1 eV, from which the derivative d�nk

dE and the
renormalization factor

Znk = 1

1 − d�nk
dE

(19)

are computed. The quasiparticle energy EQP
nk can then be de-

termined from Newton’s method and written as

EQP
nk = ZnkE0

nk + (1 − Znk )εDFT
nk . (20)

However, in band-of-fdiagonal calculations, the renormaliza-
tion factors Z cannot be computed in this way and thus the

115127-9



BRADFORD A. BARKER et al. PHYSICAL REVIEW B 106, 115127 (2022)

Newton’s method approach to determining the quasiparticle
energy cannot be performed. The self-energy operator is a
function of energy, and a solution to Dyson’s equation is
found when this input energy is the same as the eigenvalue of
the Hamiltonian in Eq. (16). Initially, the Kohn-Sham energy
eigenvalues are used as input for the self-energy, and the basis
set is taken to be the Kohn-Sham wave functions. After diago-
nalization, a new set of energy eigenvalues and wave functions
(expressed as a linear combination of the Kohn-Sham wave
functions) are used to construct a new Hamiltonian, which is
then diagonalized. This process is repeated until the energy
eigenvalues do not substantially change from one iteration
step to another—only at that final iteration are the energy
eigenvalues the quasiparticle energies.

After a first diagonalization of the Hamiltonian constructed
with Kohn-Sham energies and bands, the difference between
valence band maximum and conduction band minimum at
the  point is 0.33 eV. This energy is analogous to the E0

nk
energies in Eq. (18). However, since all off-diagonal terms for
the self-energy at the  point for Bi2Se3 are found to be zero
within numerical precision, the self-consistently calculated
quasiparticle energies must match exactly at the  point. We
use this fact to rigidly shift the conduction band from the
off-diagonal calculation to match the quasiparticle band gap
computed when neglecting off-diagonal components, 0.38 eV:
EQP

ck ≈ Eoff-diag
ck + (EQP, diag

c,k= − Eoff-diag
c,k= ). This is expected to be

acceptable when the off-diagonal matrix elements of the self-
energy for the states away from the  point are sufficiently
weakly sensitive to corrections to the Kohn-Sham eigenval-
ues.

As seen in Fig. 4 the conduction and valence bands are
now unambiguously parabolic after updating the basis set, so
we can readily compute the effective masses. We calculate
an effective mass of 0.19 me for the holes and 0.14 me for
the electrons, averaging over the directions plotted. This com-
pares favorably with the experimentally determined effective
masses, from magneto-optics, of 0.14 me for both the electrons
and holes [129]. We note that our determination of effective
masses agrees despite the discrepancy in the value of the band
gap.

To investigate the sensitivity of the band gap to the
treatment of dynamics in the self-energy operator, we also
calculate the band gap at the  point through the use of the
full-frequency treatment of the dielectric function, via the con-
tour deformation method [136] and a low rank approximation
[137–139]. We used 15 imaginary frequencies, 200 eigenvec-
tors in a reduced basis scheme, corresponding to roughly 10%
of the full spectrum, a frequency spacing of 0.25 Ry, with
frequencies calculated out to 10 Ry. We found a slightly larger
gap than in the Hybertsen-Louie GPP, with a value of 0.41 eV.
In conventional semiconductors, redistribution of the weight
of the screening from a single frequency typically results in a
lower gap; the increase of the gap for Bi2Se3 relative to the
GPP result is understood as a consequence of the inverted
nature of the band structure. The small change in the value
indicates that the use of a GPP model for the dynamics in the
self-energy is sufficiently accurate for quasiparticle energies.

We can compare our FR-GW calculations of the band
structure to a GW+SOC calculation[44] performed with

TABLE X. The spin-orbit splitting at the valence band maximum
and the change of band gap upon inclusion of spin-orbit coupling for
Si and GaAs, in comparison to results computed in the code WEST

[50].

�SOC(, v) (eV) EFR
g − ESR

g (eV) Eg (eV)

FR-LDA FR-GW DFT GW FR-GW

Si, present 0.047 0.049 −0.016 −0.016 1.22
Si, Ref. [50] 0.048 0.049 −0.016 −0.017 1.36
GaP, present 0.089 0.086 −0.027 −0.024 2.57
GaP, Ref. [50] 0.083 0.092 −0.028 −0.031 1.91
GaAs, present 0.320 0.340 −0.098 −0.109 1.49
GaAs, Ref. [50] 0.328 0.344 −0.136 −0.123 0.13

BerkeleyGW. The band gap in GW +SOC is found to be direct
at , with a value of 0.33 eV, with parabolic valence and
conduction bands. (See Table XI for computational details.)
In all FR-GW cases, the quasiparticle band gap is found to be
in a range between 0.38 to 0.41 eV, depending on the treatment
of the frequency-dependence of the self-energy operator, and
an update to the quasiparticle basis set is required to recover
parabolic bands for the valence band maximum and con-
duction band minimum. Unlike the perturbative GW +SOC
approach, FR-GW more readily allows for a quasiparticle
self-consistent approach to arrive at a quasiparticle basis set
in which the dependence on qualitatively inaccurate starting-
point mean-field bands is removed.

IV. COMPARISON WITH OTHER IMPLEMENTATIONS

Other excited-state GW codes have implemented compat-
ibility with spinor wave functions, including pseudopotential
plane-wave codes WEST [50] and YAMBO [51], pseudopotential
PAW codes VASP [54] and GPAW [53], and all-electron codes
FHIAIMS [52], QUESTAAL [75], TURBOMOLE [74], and SPEX

[36,49]. At present, only YAMBO [51,55] and BerkeleyGW
have BSE with spinor wave functions implemented. We com-
pare our present results with these other implementations, as
a first attempt at benchmarking spinorial GW and GW /BSE
calculations in the spirit of the GW100 set [58] and the com-
munity effort to examine reproducibility of G0W0 calculations
in solids [140]. For the standard semiconductors Si, GaP (pa-
rameters in Table I), and GaAs, we find good agreement (in
Table X) with the computed spin-orbit splitting at the valence
band maximum as computed in Ref. [50], despite that work’s
use of different pseudopotentials from the SG15 database
[141] with PBE exchange-correlation functionals [142]. The
differences between the present calculations and that of WEST

for GaAs are larger than that of Si and GaP due to the consid-
erable underestimation of the direct band gap for GaAs at the
SR-GW level computed in Ref. [50] using pseudopotentials
from the SG15 database (0.62 eV), compared to that from the
pseudo-Dojo database (1.26 eV), a discrepancy not present
in their results for Si and GaP. Also apparent in Table X is
agreement in the shifts of the band gaps upon inclusion of
spin-orbit coupling to tens of meV. Results were not found in
the literature for FR-GW /BSE calculations of these materials
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TABLE XI. Comparison between present FR-GW and other excited-state calculations from the literature for the bulk band gap for Bi2Se3.
PW = plane wave, PSP = pseudopotential, GPP = generalized plasmon pole, GN = Godby-Needs plasmon pole, and CD = contour
deformation.

Structure SOC Basis XC Grid, Grid, No. Empty Frequency Band
Treatment Set Functional Polarization Self-energy States Dependence Gap (eV)

present expt. FR-GW PW PSP LDA 8 × 8 × 8 8 × 8 × 8 1254 GPP 0.38
Ref. [44] expt. GW+SOC PW PSP LDA 6 × 6 × 6 6 × 6 × 6 ∼500 GPP 0.36
Ref. [144] relaxed FR-GW PW PSP PBE 6 × 6 × 6 6 × 6 × 6 3000 GN 0.36
Ref. [127] expt. FR-GW FLAPW LDA 4 × 4 × 4 4 × 4 × 4 300 CD 0.34
Ref. [83] expt. FR-GW FLAPW LDA 4 × 4 × 4 4 × 4 × 4 500 CD 0.20
Ref. [83] expt. GW+SOC FLAPW LDA 4 × 4 × 4 4 × 4 × 4 500 CD 0.01
Ref. [128] expt. FR-GW PW/Gaussian PSP LDA 8 × 8 × 8 nonuniforma 234 GN 0.20

a10 × 10 × 1 to 78 × 78×1.

as a comparison. YAMBO’s spin-orbit implementation paper
[73] shows results on 2D transition-metal dichalcogenides
only, and YAMBO results for GaSb are available only as an
unconverged tutorial example [143].

Several results have been reported in the literature for the
bulk quasiparticle band gap for Bi2Se3, from both GW +SOC
and FR-GW approaches. The GW implementation in YAMBO

[51,73], a plane-wave pseudopotential excited-state code that
computes the polarizability and self-energy with sums over
empty states, is most directly comparable to BerkeleyGW, and
we find good agreement for our computed FR-GW results for
the band gap in the diagonal approximation: 0.36 eV from
Ref. [144], and 0.38 eV, present work. The quasiparticle band
structure in Ref. [144] suggests a direct gap at , though the
resolution is not fine enough to determine if the bands have
a parabolic dispersion. The present calculation of the band
gap differs only by 20 meV from a prior calculation using
BerkeleyGW employing the “GW +SOC” approach [44], in
which spin-orbit coupling was added perturbatively after eval-
uating quasiparticle energies that neglected spin. The band
structure reported in Ref. [128] uses pseudopotentials without
semicore Bi orbitals, with both Gaussian orbital and plane-
wave basis sets in separate calculations. This band structure
is computed with a nonuniform sampling of the Brillouin
zone for evaluation of self-energy matrix elements, up to
78 × 78 × 1 near the zone center, featuring a direct gap of
0.20 eV and valence band maximum at the  point with a flat-
tened parabolic shape. FR-GW FLAPW calculations [83,127]
using the SPEX [36,49] code show a sensitivity to the band
gap to calculation parameters at both the DFT and GW levels.
Changing the number of local orbitals from 1 [127] to 2
[83], lmax for GW from 4 [127] to 5 [83], the plane-wave
cutoff for GW from 3.5 bohr−1 [127] to 2.9 bohr−1[83],
and number of empty states from 300 [83] to 500 [127]
changes the band gap from 0.34 to 0.20 eV. By contrast, a
perturbative GW +SOC calculation [83] with FLAPW found
a vanishing band gap, and the bands appeared to become
linear, unexpected for the bulk material. To conclude, different
descriptions of the wave functions for Bi2Se3 can give a direct
band gap from about 0.2 to 0.35 eV, with these values within
about 0.1 eV of experimental values [127,129,131]. Further
study regarding self-consistent updates to the quasiparticle
wave functions within the plane-wave pseudopotential FR-
GW approach can elucidate the features of the bands near the
Fermi energy responsible for this sensitivity, and more clarity

on the disagreement from ARPES [127] and transmissivity
measurements [129] is needed. A comparison between these
Bi2Se3 calculations is presented in Table XI.

V. PERFORMANCE

We give a comparison in the performance of BerkeleyGW
for the representative case of GaAs with and without spinor
wave functions. We see in Table XII that the calculation of
the wave functions for the self-energy matrix elements (“DFT
coarse”) takes four times longer, in accordance with expecta-
tion from having to double the number of bands and double
the size of each wave function, for the spin-up and spin-down
components. The calculation of the wave functions for the
basis of the BSE Hamiltonian (“DFT fine”) is more rapid,
since the bottleneck in generating these wave functions is the
number of k points and not the number of bands. Calculation
of the dielectric matrix (“EPSILON”) sees an increase in cost
of only 2.5, far less than the increase in cost of generating
the matrix elements alone, because the matrix inversion step
is a significant fraction of runtime, and it is unaffected by
spinors since the size of the dielectric matrix is the same when
including or disregarding spin. The calculation of quasipar-
ticle energies (“SIGMA”), however, is closer to the expected
increase in cost, at a factor of 4.1. The costs of constructing
the BSE kernel (“KERNEL”) and solving the eigenvectors and
eigenvalues (“ABSORPTION”) have the largest increases, at 6.4
and 15.0, respectively. The KERNEL code requires the calcu-
lation of three sets of matrix elements, an increase in cost
partially offset by time spent on the better-scaling routines
such as I/O. We discuss the ABSORPTION code performance
in more detail below.

The ABSORPTION code has four main routines: I/O, in-
terpolation of the quasiparticle energies, interpolation of the
kernel matrix elements, and diagonalization. We see the per-
formance of each when disregarding spin and when using
spinor wave functions in Table XIII. The I/O necessarily has
an increase in cost of a factor of 4, from the increase in the
size of the wave function files. Similarly, the interpolation of
the quasiparticle energies takes nearly 4 times longer, for the
same reason. The interpolation of the kernel matrix elements
increases cost by a factor of 10.1, less than an estimated
increase of 16, since the interpolation coefficients have been
calculated in the previous step, and the multiplication with the
kernel matrix elements is performed as an optimized matrix-
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TABLE XII. Comparison of performance of BerkeleyGW on GaAs, when disregarding spin and when using spinor wave functions.

Step No. CPUs CPU Hours (no spin) CPU Hours (spinor) Ratio

DFT coarse 1024 162 650 4.0
DFT fine 1728 173 490 2.8
EPSILON 864 864 2160 2.5
SIGMA 864 2760 11232 4.1
KERNEL 600 560 3600 6.4
ABSORPTION 600 48 720 15.0

matrix multiplication with the level 3 BLAS call ZGEMM
[57]. The diagonalization sees an increased cost by a factor
of 56.8, close to the expected factor of 64.

VI. CONCLUSION

Our implementation of spinor GW /BSE in the Berke-
leyGW excited-state software enables computation of the
quasiparticle energies and absorption spectra for materials
with large SOC. The use of DFT one-particle wave functions
with two spinor components necessarily increases the cost
of calculation, found in practice to be at best about three
times more expensive than when neglecting SOC, and with
the calculations necessary for calculating the optical absorp-
tion within the GW /BSE being much more expensive due to
the increase in basis set size. The careful use of symmetry
however can significantly reduce the cost in some systems.

We demonstrated our implementation on the test systems
Si, Ge, GaAs, GaSb, CdSe, and Au, which were readily calcu-
lated in the band-diagonal, one-shot G0W0 method. The band
gaps, spin-orbit splittings, and energy eigenvalues were shown
to be highly accurate across this range of different spin-orbit
coupling strengths. The band gaps were also shown to be
well-approximated when introducing SOC as a perturbation
to the valence band maxima computed while neglecting spin.
The topological insulator material Bi2Se3, however, needed
some correction to the LDA basis for the quasiparticle states.
While a fairly accurate band gap of 0.38 eV was computed
within band-diagonal G0W0, the band structure shows small
but unphysical features in a small neighborhood about the 

point. We demonstrated that correcting the LDA basis states
by diagonalizing the G0W0 Hamiltonian was able to remove
this unphysical feature, and provide effective masses in good
agreement with experiment.

We additionally performed fully relativistic Bethe-Salpeter
equation calculations of the absorption spectra for GaAs and
GaSb. We show that the absorption spectrum for GaAs is

TABLE XIII. Comparison of performance of ABSORPTION ex-
ecutable in BerkeleyGW when disregarding spin and when using
spinor wave functions, as seen in calculations of GaAs.

Step Wall time, no spin (s) Wall time, spinor (s) Ratio

I/O 138 560 4.0
Interp. WFN 57 240 4.2
Interp. Kernel 27 274 10.1
Diag. 53 3013 56.8

similar within both the SR-GW /BSE and FR-GW /BSE. For
GaSb, we are able to resolve the spin-orbit split E1 and E1 + �

peaks, with their placement within tens of meV of experiment.
The perturbative treatment of spin-orbit coupling for elec-

tronic structure, GW +SOC, shows high agreement with the
more costly nonperturbative FR-GW approach for many test
systems. Such systems, even with nominally strong spin-orbit
coupling as in GaSb and Au, have fully relativistic DFT band
structures that have high-qualitative agreement with that from
FR-GW . However, for materials such as Bi2Se3 that possess
both a narrow band gap and strong spin-orbit coupling, the
significant qualitative differences between the fully relativistic
DFT band structures and FR-GW motivate the use of the
FR-GW approach. GW+SOC approaches for Bi2Se3 have
shown conflicting qualitative descriptions of the bulk band
gap [44,83], while the FR-GW approaches [83,127,128,144]
have been consistent, within about 0.1 eV. Further, the use
of FR-GW allows for updating the quasiparticle wave func-
tions, which then gives good quantitative agreement with
the experimentally measured effective masses for electrons
(0.14 me, experiment [129] and computed and holes (0.14
me, experiment [129] and 0.19 me, computed) for Bi2Se3. The
use of FR-GW /BSE for the test systems of GaAs and GaSb
considered presently gives no significant advantage [62] over
the perturbative approach [145], and results on monolayer
transition metal dichalcogenides in the literature also show
agreement to a few 10 meV between the nonperturbative
and perturbative inclusion of SOC in the GW /BSE excitonic
binding energies [55]. However, it is reasonable to think that
in materials where SOC gives a qualitative difference in band
structure, like Bi2Se3, there may be stronger effects in BSE
not captured by a perturbative treatment.

The availability of spinor GW /BSE calculations in Berke-
leyGW opens the way to increased use of fully relativistic
quasiparticle and excitonic absorption calculations in the
electronic structure community, enabling more accurate and
detailed exploration of topological materials which have
garnered great recent research interest, as well as in ther-
moelectric and photovoltaic materials. BerkeleyGW has
particular strengths for large and reduced-dimensional sys-
tems, such as a defect in a 2D topological material [146].
Further developments include the use of magnetic group sym-
metries to facilitate the computation of noncollinear magnetic
systems without the requirement of large supercells [73], and
the calculation of noncollinear spin susceptibilities [72], as
well as more benchmarking FR-GW /BSE for materials with
large spin-orbit coupling and large exciton binding energies.
We find good agreement with other existing GW implemen-
tations, and believe that further detailed comparison can help
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to improve implementations of this methodology and ensure
accuracy.

This implementation of spinor GW /BSE in BerkeleyGW
was publicly released in BGW version 3.0, and a tutorial
example for performing GW /BSE calculations is available in
Ref. [147].
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