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Abstract

A point process is a set of points randomly located in a space, such as time or abstract

spaces. Point process models have found numerous applications in epidemiology,

ecology, geophysics, social networks and many other areas.

The Poisson process is the most widely known point process. Poisson inten-

sity estimation is a vital task in various applications including medical imaging,

astrophysics and network traffic analysis. A Bayesian Additive Regression Trees

(BART) scheme for estimating the intensity of inhomogeneous Poisson processes

is introduced. The new approach enables full posterior inference of the intensity

in a non-parametric regression setting. The performance of the novel scheme is

demonstrated through simulation studies on synthetic and real datasets up to five

dimensions, and the new scheme is compared with alternative approaches. A draw-

back of the proposed algorithm is its axis-alignment nature. We discuss this problem

and suggest alternative approaches to remedy the drawback.

The novel coronavirus disease (COVID-19) has been declared a Global Health

Emergency of International Concern with over 557 million cases and 6.36 million

deaths as of 3 August 2022 according to the World Health Organization. Under-

standing the spread of COVID-19 has been the subject of numerous studies, high-

lighting the significance of reliable epidemic models. We introduce a novel epidemic

model using a latent Hawkes process with temporal covariates for modelling the in-

fections. Unlike other Hawkes models, we model the reported cases via a probability

distribution driven by the underlying Hawkes process. Modelling the infections via

a Hawkes process allows us to estimate by whom an infected individual was infected.

We propose a Kernel Density Particle Filter (KDPF) for inference of both latent

cases and reproduction number and for predicting new cases in the near future. The

computational effort is proportional to the number of infections making it possible

to use particle filter-type algorithms, such as the KDPF. We demonstrate the per-

formance of the proposed algorithm on synthetic data sets and COVID-19 reported

cases in various local authorities in the UK, and benchmark our model to alternative

approaches.
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We extend the unstructured homogeneously mixing epidemic model considering

a finite population stratified by age bands. We model the actual unobserved infec-

tions using a latent marked Hawkes process and the reported aggregated infections

as random quantities driven by the underlying Hawkes process. We apply a Kernel

Density Particle Filter (KDPF) to infer the marked counting process, the instanta-

neous reproduction number for each age group and forecast the epidemic’s future

trajectory in the near future. We demonstrate the performance of the proposed

inference algorithm on synthetic data sets and COVID-19 reported cases in various

local authorities in the UK. Taking into account the individual heterogeneity in age

provides a real-time measurement of interventions and behavioural changes.
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Chapter 1

Introduction

1.1 Motivation and contributions

The thesis is concerned with the analysis of point processes, with a particular em-
phasis on the data that has arisen from the COVID-19 pandemic. A point process
is a set of points randomly located in a space such as time or abstract spaces.
Point process models have found numerous applications in epidemiology, ecology,
geophysics, social networks and many other areas. An event can be, for example, an
infection time in epidemiology; an observed species location in ecology; a buy or sell
transaction of a stock in finance. The statistical properties and inference for point
processes have been widely investigated in the literature [Daley and Vere-Jones,
2003; Cox and Isham, 1980; Baddeley et al., 2015].

The Poisson process is the most widely known point process. The question of
estimating the intensity of Poisson processes has a long history, including both fre-
quentist and Bayesian methods. Frequentist methods include fixed-bandwidth and
adaptive bandwidth kernel estimators with edge correction [Diggle et al., 2003],
and wavelet-based methods (e.g. Fryzlewicz and Nason [2004], Patil et al. [2004]).
Bayesian methods include using a sigmoidal Gaussian Cox process model for inten-
sity inference [Adams et al., 2009], variational Bayesian intensity inference [Lloyd
et al., 2015], and non-parametric Bayesian estimations of the intensity via piecewise
functions with either random or fixed partitions of constant intensity [Arjas and
Gasbarra, 1994; Heikkinen and Arjas, 1998; Gugushvili et al., 2018].

In Chapter 2, we introduce a novel Bayesian Additive Regression Tree (BART)
scheme for estimating the intensity of inhomogeneous Poisson processes that is pub-
lished in the Journal Computational Statistics and Data Analysis [Lamprinakou
et al., 2023a]. The effectiveness of BART has been demonstrated in a variety of con-
texts including non parametric regression and classification. We demonstrate the
performance of the scheme through simulation studies on synthetic and real datasets
up to five dimensions, and compare the approach to alternative approaches. The
simulation studies demonstrate that our algorithm is competitive with the Haar-Fisz
algorithm in one dimension, kernel smoothing in two dimensions, and outperforms
the kernel approach for multidimensional intensities. The simulation analysis also
demonstrates that our proposed algorithm is competitive with the inference via
spatial log-Gaussian Cox processes
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A drawback of the proposed algorithm is its axis-alignment nature. A simulation
study shows that points close to jumps are estimated with less reliability, which is
expected due to that drawback. Recently, many Bayesian and non-Bayesian stud-
ies including [Ge et al., 2019; Fan et al., 2016; Tomita et al., 2020; Rainforth and
Wood, 2015; Rodriguez et al., 2006; Blaser and Fryzlewicz, 2021, 2016] have pro-
posed methods for dealing with the axis-alignment effects. Chapter 4 discusses this
problem and proposes alternative approaches to remedy the drawback.

In Chapter 5, we move to developing epidemic models with applications using
data from COVID-19, an infectious disease which has declared as a Global Health
Emergency of International Concern with over 557 million cases and 6.36 million
deaths as of 3 August 2022 according to the World Health Organization. In the
absence of vaccines, countries initially followed mitigation strategies to prevent the
rapid spread of COVID-19, such as social distancing, quarantine, mask wearing, and
city lock-downs.

Understanding the spread of COVID-19 has been the subject of numerous stud-
ies, highlighting the significance of reliable epidemic models. A large number of stud-
ies have been carried out to understand the spread of COVID-19, forecast new cases
and when the peak of the pandemic will occur, and investigate "what-if-scenarios".
A report of Imperial [Ferguson et al., 2020] presented the results of epidemiological
modelling looking at a variety of nonpharmaceutical interventions. Several compart-
mental models [Zou et al., 2020; Chen et al., 2020; Wangping et al., 2020; Roques
et al., 2020] using ordinary differential questions (ODE) have been proposed for
modelling the spread of COVID-19. Various models using Hawkes processes [Garetto
et al., 2021; Kresin et al.; Escobar, 2020; Chiang et al., 2021; Browning et al., 2021;
Koyama et al., 2021; Bertozzi et al., 2020], widely used to model contagion patterns,
have been introduced as an alternative to ODE models. Others have used Poisson
autoregression model for the daily new observed cases [Agosto and Giudici, 2020]
and a Bayesian model linking the infection cycle to observed deaths [Flaxman et al.,
2020].

In Chapter 5, we introduce a novel epidemic model using a latent Hawkes process
with temporal covariates for modelling the infections. Unlike other Hawkes models,
we model the reported cases via a probability distribution driven by the underlying
Hawkes process. Modelling the infections via a Hawkes process allows us to estimate
by whom an infected individual was infected. We propose a Kernel Density Particle
Filter (KDPF) [Sheinson et al., 2014; Liu and West, 2001] for inference of both
latent cases and reproduction number and for predicting the new cases in the near
future. The computational effort is proportional to the number of infections making
it possible to use particle filter type algorithms, such as the KDPF. We demonstrate
the performance of the proposed algorithm on synthetic data sets and COVID-19
reported cases in various local authorities in the UK, and benchmark the model to
alternative approaches. The simulation analysis shows that the proposed algorithm
provides comparable estimates of observed case fluctuations compared with those of
Koyama et al. [2021]. The method of Koyama et al. [2021] and EpiEstim provide
similar estimates of the reproduction number as the proposed algorithm. The model
is published in the journal PLOS ONE [Lamprinakou et al., 2023b].

In Chapter 6, we extend the unstructured homogeneously mixing epidemic model
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introduced in Chapter 5 considering a finite population stratified by age bands. We
model the actual unobserved infections using a latent marked Hawkes process and
the reported aggregated infections as random quantities driven by the underlying
Hawkes process. Following the inference approach of Chapter 5, we apply a KDPF to
infer the marked counting process, the instantaneous reproduction number for each
age group and forecast the epidemic’s future trajectory over short time horizons.
We demonstrate the performance of the proposed inference algorithm on synthetic
data sets and COVID-19 reported cases in various local authorities in the UK. We
illustrate that taking into account the individual heterogeneity in age decreases
the uncertainty of estimates and provides a real-time measurement of interventions
and behavioural changes; that conclusion is under investigation by increasing the
number of particles, proposing alternative inference methods and priors. The model
is available on arXiv [Lamprinakou and Gandy, 2022].

The above research was conducted during the first, second and fourth years of
this PhD. In the second term of the 2nd year, an extensive literature review of the
community detection research area was conducted and possible applications of the
BART scheme in that area were investigated. A novel application of BART could
be detection communities and inference edges on directed or undirected graphs.
According to Handcock et al. [2007], many social networks exhibit clustering beyond
what can be explained by transitivity (the property of being connected with the
friend of my friend is far more likely than with some randomly chosen member of
the population) and homophily by metadata (the tendency to associate with others
whom they share common metadata). To tackle this difficulty, they assume that each
node has an unobserved position in a d-dimensional Euclidean latent social space,
and nodes belonging to the same community are not too far apart in the unobserved
latent space of characteristics. Their model considers transitivity via latent space,
homophily on metadata and clustering. They employ a logistic regression model with
covariates the metadata and the distance of latent positions for inferring an edge
between two vertices. Alternatively, the BART model can be applied for inferring
the existence of an edge by modelling it as a Poisson random variable in line with
Newman and Reinert [2016]; Riolo et al. [2017] with mean a regression function of
metadata, group memberships and locations.

1.2 Publications and working projects

This thesis includes research that either is accepted for publication or has been in
review for publication at the time of writing. Specifically, the work in Chapter 3 is
published in the Journal of Computational Statistics and Data Analysis [Lampri-
nakou et al., 2023a]. The model presented in Chapter 5 is published in the Journal
PLOS ONE [Lamprinakou et al., 2023b]. The model presented in Chapter 6 is un-
der revision, and available as preprint under the title "Age-stratified epidemic model
using a marked latent Hawkes process" [Lamprinakou and Gandy, 2022].

The thesis also introduces research that is in progress. This includes the appli-
cation of the BART model to community detection problems introduced earlier in
this Chapter, and the methods to address the axis-alignment effect of the BART
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model discussed in Chapter 4.
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Chapter 2

Background

This chapter introduces the necessary theory on the fundamental aspects of the
thesis, including point processes (Section 2.1), branching processes (Section 2.2),
Markov Chain Monte Carlo Methods (Section 2.4), Particle Filters (Section 2.5)
and Bayesian Additive Regression Trees (Section 2.7).

2.1 Point process
A point process (temporal or spatial) is a stochastic model of a collection of points
that is typically interpreted as a sample from (or a realization of) the point pro-
cess. Fundamental introductions to the theory of point processes include Cox and
Isham [1980], Daley and Vere-Jones [2003, 2007], Van Lieshout [2000], Møller and
Waagepetersen [2003], Baddeley et al. [2007] and Illian et al. [2008]. The theoretical
framework presented here is mainly based on Illian et al. [2008] and Baddeley et al.
[2007].

A point process in one dimension (“time”), usually called a temporal process,
is a stochastic model of random event times. For example, a 1-dimensional point
process can be used for modelling the emergency calls received by a hospital. One
way to formulate a temporal point process is in terms of a counting process. The
following definition is from Ross [1995].

Definition 1. A stochastic process {N(t), t ≥ 0} is said to be a counting process if
N(t) represents the total number of events that have occurred up to time t. Hence,
a counting process N(t) must satisfy

1. N(t) ≥ 0.

2. N(t) is integer valued.

3. If s < t, then N(s) ≤ N(t).

4. For s < t, N(t)−N(s) equals the number of events that have occurred in the
interval (s, t].

A spatial point process is a stochastic model of a random pattern of points in
d-dimensional space, where d ≥ 2. For example, a 3-dimensional point process can
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be used for modelling the locations and the times of emergency calls received by the
hospital.

The points of a point process might be labelled with extra information called
marks. For example, emergency calls might carry their duration.

Definition 2. A marked point process on a space S with marks in a space M com-
posed of a point process X with associate marks in M is a locally finite counting
process Y on the Cartesian product S×M , that is, the number of points of Y falling
into K ×M is finite, for all K ⊂ S.

A common approach to building the joint model for the marks and point process
intensity is

φ(x,m) = λ(x)h(m|x)
where λ(·) is the intensity of the point process X and h(m|x) denotes the conditional
mark density at point x ∈ S with m ∈ M .

2.1.1 Poisson process

The archetypal point processes are Poisson processes.

Definition 3. A non-homogeneous Poisson process on a d-dimensional domain S ⊂
Rd, d ≥ 1, with intensity λ : S → R+ and

∫
S
λ(x)dx < ∞ is a point process on S

with the following properties.

1. For every compact set B ⊂ S, the number of points falling into B, denoted by
N(B), has a Poisson distribution with mean

∫
B
λ(x)dx.

2. If B1, . . . , Bm are disjoints sets, then N(B1), . . . , N(Bm) are independent.

Hence, the number of points in a region of S is Poisson distributed, and the
numbers of points are independent of each other. A homogeneous Poisson process
is a special case with intensity λ(x) = λ0, ∀x ∈ S.

In the next chapters, we apply an extension of the widely-used thinning technique
to generate realizations of Poisson processes. Thinning [Lewis and Shedler, 1979]
requires determining a constant λ∗ such that λ∗ ≥ λ(x) for all x ∈ S. Each point
x ∈ S of a homogeneous Poisson process with intensity λ∗ is retained, independent
of all other points, with probability λ(x)/λ∗. To generate a realization of a Poisson
process with intensity λ∗ in S, we first generate a random variable M with a Poisson
distribution with mean λ∗|S|, where |S| denotes the volume of the region S. Given
M = m, we then generate m uniform points in S.

2.1.2 Hawkes process

The Hawkes process [Hawkes, 1971a,b, 2018; Laub et al., 2021] is a well-known self-
exciting process based on a counting process in which the intensity depends on the
history of the process. The Hawkes process has been applied for modelling a wide
range of fields: earthquakes and aftershocks, dynamics of crime, epidemic dynamics,
finance and many others.
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Definition 4. Consider (N(t) : t ≥ 0) a counting process with associate history
Ht = {ti : ti < t} being the times of events prior to time t, that satisfies

P (N(t+ h)−N(t) = m|Ht) =

⎧⎪⎨⎪⎩
1− λ(t)h+ o(h) , m=0
λ(t)h+ o(h) , m=1
o(h) , m>1

Suppose the process’ conditional intensity function of the form

λ(t) = v +
∑
ti∈Ht

μ(t− ti)

for some v > 0 and μ : R+ → R+ which are called the background intensity and
excitation function, respectively. Such a process N is a (linear) Hawkes process.

Common choices for the excitation function are the exponential function and the
power-law function. Hawkes [1971a] used the exponential function for the theoretical
derivations. In this case, the Hawkes conditional intensity takes the form

λ(t) = v +
∑
ti∈Ht

ae−β(t−ti)

where a, β > 0. Each new event increases the intensity by a, and over time this
event’s influence decays exponentially at rate β.

The power-law function was popularized by the geological model, called Omori’s
law [Ogata, 1999], and was used to predict the rate of aftershocks caused by an
earthquake. In this case, the Hawkes conditional intensity takes the form

λ(t) = v +
∑
ti<t

k

(c+ (t− ti))
p

where c, k, p > 0.
Various extensions of the (linear) Hawkes process have been proposed, such as the

non-linear Hawkes process [Brémaud and Massoulié, 1996] and the neural Hawkes
process [Mei and Eisner, 2017]. A simple extension of the Hawkes process is the
mutually exciting Hawkes process, which is a collection of one-dimensional Hawkes
processes which excite themselves and each other.

Definition 5. Consider a collection of m counting processes {N1(), · · · , Nm()} de-
noted by N. Say {Ti,j : i ∈ {1, . . . ,m}, j ∈ N} are the random arrival times for each
counting process (and ti,j for observed arrivals). If for each i = 1, . . . ,m, Ni() has
a conditional intensity of the form

λi(t) = vi +
m∑
j=1

∑
tj,k<t

μi,j(t− tj,k)

for some vi > 0 and μi,j : R+ → R+ then N is called a mutually exciting Hawkes
process.

21



Various methods, including thinning and superposition of Poisson processes, have
been proposed to generate Hawkes process realizations [Laub et al., 2021]. In Chap-
ters 5 and 6, we have applied the Hawkes process and the mutually exciting Hawkes
process for modelling the spread of an epidemic. We have generated realizations
of Hawkes processes using the method of superpositions of Poisson processes on
multiple subintervals; the union of them give the finite horizon under consideration.

Marked Hawkes process A common approach to model the intensity of a marked
Hawkes process is

λ(t) = v +
∑
ti<t

φmi
(t− ti)

where mi is the mark of event at time ti and φmi
(·) an excitation kernel dependent

on the mark of event at ti.

2.1.3 Log-Gaussian Cox process

Log-Gaussian Cox process (LGCP) is an inhomogeneous Poisson process with stochas-
tic intensity, Λ where log Λ is a Gaussian process. LGCP is commonly used to model
spatial point pattern data like tree locations and lightning data. Consider a point
pattern with locations (s1, . . . , sl) within the domain S ⊂ R2. A common approach
for estimating the intensity is to partition the domain into n disjoint subregions
{B1, . . . , Bn} and their associated centroids {c1, . . . , cn}. We count the observed
points per subregion via

Yi =
l∑

j=1

�{si ∈ Bi}

for i = 1, .., n, where �{·} is the indicator function. Let X(ci) be a (p+1)-dimensional
vector of an intercept and covariates constant within the ith subregion. The LGCP
model for the point pattern {s1, . . . , sn} is

Yi|λ ∼ Poisson (|Bi|λ(ci))
λ(ci) = exp (X(ci)β + Z(ci))

(Z(c1), . . . , Z(cn)) ∼ GP(0,Σ)

where λ(·) is an intensity function that is constant within subregion, β is a (p+ 1)-
dimensional vector of coefficients and Σ a covariance matrix. Various methods have
been proposed for fitting LGCP (e.g.,Brix and Diggle [2001], Diggle et al. [2005],
Illian et al. [2012], Gelsinger et al. [2022]).

2.1.4 p-thinning

p-thinning [Illian et al., 2008] is the simplest form of thinning a counting process Nb;
each point of Nb is deleted with probability 1− p independent of the other points of
Nb. If λb(·) is the intensity function of the process Nb, the intensity function of the
thinned process is λ(x) = pλb(x).
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2.2 Branching process
The study of branching processes grew out of Watson and Galton’s collaboration to
give a solution to the problem of the survival of family names. Branching processes
[Harris, 1963; Dobrow, 2016] are a class of Markov chains that model the growth of
populations and are widely used in biology and epidemiology to study the spread
of infectious diseases and epidemics [Bartoszynski, 1967; Jacob, 2010]. The basic
branching process is named after Galton and Watson, and described here.

We consider a population of individuals, each of which independently produces
a random number of children according to the offspring distribution. Let Zn be the
number of individuals (size) of the nth generation. Assume Z0 = 1, as the population
starts with one individual. The sequence Z0, Z1, . . . is a branching process.

Mean Generation Size The size of the nth generation is given by

Zn =

Zn−1∑
i=1

Xi,

where Xi denotes the number of offspring of the ith individual belonging to the
(n − 1)th generation. To find the mean size of the nth generation E(Zn), we apply
the law of total expectation.

E(Zn) =
∞∑
k=0

E (Zn|Zn−1 = k)P (Zn−1 = k) =
∞∑
k=0

E

(
Zn−1∑
i=1

Xi|Zn−1 = k

)
P (Zn−1 = k)

=
∞∑
k=0

E

(
k∑

i=1

Xi

)
P (Zn−1 = k) = μE(Zn−1),

where μ = E(Xi). Iterating the recurrence relation gives

E(Zn) = μE(Zn−1) = μ2E(Zn−2) = . . . = μnE(Z0) = μn, n ≥ 0.

The long-term expected generation size is

lim
n→∞

E(Zn) = limμn =

⎧⎪⎨⎪⎩
0 , μ < 1

1 , μ = 1

∞ , μ > 1.

A branching process is said to be subcritical if μ < 1, critical if μ = 1 and
supercritical if μ > 1.

Extinction Probability

Theorem 2.2.1. Given a branching process, let G be the probability generating
function of the offspring distribution. Then, the probability of eventual extinction
is the smallest positive root of the equation s = G(s). If μ ≤ 1, that is, in the
subcritical and critical cases, the extinction probability is equal to 1.
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The theorem gives that the population becomes extinct with probability 1 in the
subcritical and critical cases (μ ≤ 1), while there is a positive probability of the
population’s extinction in the supercritical case.

2.3 Frequentist methods for estimating the inten-
sity of a Poisson process

Popular frequentist methods for estimating the intensity of an inhomogeneous Pois-
son process are fixed-bandwidth and adaptive-bandwidth kernel estimators with
edge corrections [Diggle et al., 2003], and wavelet-based methods [e.g. Fryzlewicz
and Nason, 2004; Patil et al., 2004] given a realization of the process. In Chapters
3 and 4, we apply the Haar-Fisz algorithm and kernel methods for estimating the
intensity of one-dimensional and multidimensional Poisson processes, respectively.

Haar-Fisz algorithm The Haar-Fisz algorithm [Fryzlewicz and Nason, 2004] is
a wavelet-based method applied to counts of points falling into consecutive subinter-
vals and derives a deterministic discretized version of the intensity for one-dimensional
Poisson processes. The R package haarfisz [Fryzlewicz, 2010] is a software to per-
form the Haar-Fisz algorithm.

Kernel estimators The kernel-based intensity estimators are non-parametric meth-
ods that estimate the intensity at each point x of the domain via a sum of kernels
centred at x. The kernels are spatial probability density functions weighing the
influence of the process’ realization on x. The bandwidth of the kernel function
determines the collection of realization’ points considered in estimating the inten-
sity at x. There is a trade-off between sensitivity to noise for small bandwidth and
over-smoothing for large bandwidth. A problem with kernel estimators arises when
points of interest are close to the boundary of the domain. Edge-corrected kernel
estimators (e.g. [Zheng et al., 2004] ) have been proposed. A non-edge corrected
kernel estimator takes the form

λ̂(x) =
∑
si

K

(
x− si
h

)
,

where s = (s1, .., sn) is a realization of the process, and K(·) the kernel function
with bandwidth h.

2.4 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a powerful framework that allows sampling
from a large class of distributions. The key to Markov Chain simulation is to create
a Markov process whose stationary distribution is the target distribution p(θ|y) and
to run the simulations long enough that the drawn values of the parameter θ are
samples from p(θ|y), where y is the data. Two widely used MCMC algorithms are
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the Metropolis-Hastings algorithm and Gibbs sampling [Gelman et al., 2013; Robert
and Casella, 1999].

2.4.1 Metropolis-Hastings algorithm

The algorithm proceeds as follows

1. Draw a starting value θ(0) from a starting distribution p0(θ).

2. For t=1,2,. . .

• Sample a proposal θ∗ from the distribution q(θ|θ(t−1)) where θ(t−1) is the
value of the parameter at iteration t− 1.

• Calculate the Hastings-ratio, r = p(θ∗|y)q(θ(t−1)|θ∗)
p(θ(t−1)|y)q(θ∗|θ(t−1))

.

• Set θ(t) =

{
θ∗ , with probability min(r, 1)

θ(t−1) , otherwise.

The sequence of iterations θ(1), θ(2), . . . converges to the target distribution. The con-
vergence to the target requires conditions, and we recommend the books of Gelman
et al. [2013] and Robert and Casella [1999] for more details.

2.4.2 Gibbs sampling

Suppose the parameter vector θ has been divided into d components or subvectors,
θ = (θ1, . . . , θd). Gibbs sampler is a special case of the Metropolis-Hastings al-
gorithm. At each iteration t, each θ

(t)
j is sampled from the conditional distribution

given all other components of θ, p
(
θj|θ(t−1)

−j , y
)
, where θ(t−1)

−j =
(
θ
(t)
1 , . . . , θ

(t)
j−1, θ

(t−1)
j+1 , . . . , θ

(t−1)
d

)
.

Each step of the Gibbs sampler updates one of the subvectors by drawing its con-
ditional distribution conditioned to the latest values of the other components of
θ.

2.4.3 Difficulties of inference from MCMC

Iterative simulation adds three challenges to inference. First, the within-sequence
correlation of draws can cause less precise inference than the same number of inde-
pendent draws. The second difficulty is that early iterations will reflect the influence
of the starting values, even when the chain has converged to the target distribution.
To diminish the influence of starting approximations, we discard the early iterations.
A conservative choice is to discard the first half of iterations and treat the second
half as a sample from the target distribution. The third difficulty is assessing con-
vergence, as it is impractical to run MCMC for an infinite number of iterations. Two
widely used MCMC convergence diagnostic tools are the Gelman-Rubin diagnostic
and the trace plot [Gelman et al., 2013], which we apply in Chapters 3 and 4 to
monitor the convergence of chains.
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Trace plot A trace plot illustrates the sampled values per chain throughout iter-
ations. The trace plot is a useful tool to assess the convergence and mixing of the
chains.

Gelman-Rubin diagnostic Let m be the number of chains with length n and
ψ be the quantity of interest. We label its simulations as ψij, i = 1, . . . , n and
j = 1, . . . ,m, after having discarded the first halves of chains. The between- and
within- sequence variances are

B =
n

m− 1

m∑
j=1

(
ψ̄.j − ψ̄..

)2
, where ψ̄.j =

1

n

n∑
i=1

ψij, ψ̄.. =
1

m

m∑
j=1

ψ̄.j

W =
1

m

m∑
j=1

s2j , s2j =
1

n− 1

n∑
i=1

(
ψij − ψ̄.j

)2
.

The marginal posterior variance of ψ is estimated by a weighted average of W
and B,

v̂ar(ψ|y) = n− 1

n
W +

1

n
B.

The Gelman-Rubin diagnostic is defined by

R̂ =

√
v̂ar(ψ|y)

W
.

Once all chains converge, the between-chain variance should be close to 0. If
n → ∞ and B → 0, R̂ approaches to 1, indicating that we should run the chains
until the diagnostic is close to 1 (usually less than or equal to 1.1) [Gelman et al.,
2013; Robert and Casella, 2010]. We should diagnose convergence for each scalar
quantity of interest.

2.5 Particle algorithms for estimating parameters
of state-space models

We assume a discrete time Markov process {Xn}n≥1 such that

X1 ∼ μ(x1) and Xn|Xn−1 ∼ f(xn|xn−1),

where μ(x) is a probability density function and f(xn|xn−1) the transition density of
moving from xn to xn−1. We also assume that the observations {Yn} are independent
given {Xn}.

A state-space model consists of a latent process {Xn} and an observation process
{Yn}. A particle algorithm [Kantas et al., 2015; Doucet et al., 2009] approximates
sequentially a sequence of posteriors pθ(x1:n|Y1:n) employing Importance Sampling
(IS), as follows

p̂θ(x1:n|Y1:n) =
N∑
k=1

W k
n δXk

1:n
(x1:n),
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where zi:j denotes the components (zi, zi+1, . . . , zj) of a sequence {zn}. The distri-
bution pθ(x1:n|Y1:n) is approximated by using a set of N weighted particles drawn
from the chosen importance distribution. Each particle Xk

1:n has an associated nor-
malized weight W k

n that takes into account the discrepancy between the target and
importance distribution.

To have N equally weighted particles from pθ(x1:n|Y1:n), we sample N times
from its approximation p̂θ(x1:n|Y1:n) ; that is, we select Xk

1:n with probability the
weight W k

n . This operation is called multinomial resampling. The resampling step
approximates p̂θ(x1:n|Y1:n) by the resampled empirical measure

p̄θ(x1:n|Y1:n) =
N∑
k=1

Nk
n

N
δXk

1:n
(x1:n),

where Nk
n is the number of times we see the particle Xk

1:n in the set of equally
weighted particles and E

(
Nk

n |{W k
n}Nk=1

)
= NW k

n . We note that p̄θ(x1:n|Y1:n) is an
unbiased approximation of p̂θ(x1:n|Y1:n). Improved unbiased resampling steps, in-
cluding systematic resampling, with var

(
Nk

n |{W k
n}Nk=1

)
being smaller than that ob-

tained via the multinomial resampling have been proposed in the literature [Doucet
et al., 2009; Douc and Cappe, 2005].

Particle algorithms (e.g., Auxiliary Particle Filter (APF) [Pitt and Shephard,
1999; Kantas et al., 2015; Doucet et al., 2009], Bootstrap Filter (BF) [Doucet
et al., 2009; Kantas et al., 2015], Kernel Density Particle Filter (KDPF) [Sheinson
et al., 2014; Liu and West, 2001]) are a combination of sequential IS and resam-
pling. At step 1, we sample N times from the importance distribution q(x1|Y1),
i.e., X i

1 ∼ q(x1|Y1), i = 1, . . . , N , and form a weighted collection of particles
{W i

1, X
i
1}. Then, we apply the resampling step to form N equally weighted par-

ticles, denoted by {X̄ i
1}Ni=1, as a set of samples approximately distributed accord-

ing to pθ(x1|Y1). At step 2, we approximate the posterior pθ (x1:2|Y1:2). It holds
that pθ (x1:2|Y1:2) ∝ pθ (x2|x1, Y2) pθ (x1, Y1). Thus, a sensible approach is to extend
each of the particles {X̄ i

1}Ni=1 by sampling X i
2 ∼ q(x2|x1, Y2), giving a collection

{W i
2,
(
X̄ i

1, X
i
2

)
}, approximately distributed according to qθ (x2|x1, Y2) pθ (x1|Y1). We

apply the resampling step to form N equally weighted particles, denoted by {X̄ i
1:2},

approximately distributed according to pθ (x1:2|Y1:2). We proceed until the final step.
We focus here on BF and APF and introduce KDPF in Chapter 5.

Bootstrap Filter BF (Algorithm 1) uses the transition density as importance
distribution,
q (xn|xn−1, Yn) = f (xn|xn−1). The unnormalized importance weights are given by

w̃n =
pθ (x1:n, Y1:n)

f(xn|xn−1)pθ(x1:n−1, Y1:n−1)
= pθ (Yn|xn) .

Auxiliary Particle Filter BF employs an importance distribution at each step
n which does not consider the associated observation Yn. APF (Algorithm 2) gives a
solution to this problem by considering the observation Yn+1 in the resampling step
n via the predictive likelihood. The target distribution for APF is pθ (x1:n|Y1:n+1).
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Algorithm 1 Bootstrap filter
1: Sample N particles {Xj

1}
N
j=1 :

for j in 1 : N do

X
j
1 ∼ μ(x1)

end for

2: Find the weights, w̃1 = {w̃j
1}

N
j=1:

for j in 1 : N do

w̃
j
1 = pθ(Y1|xj

1)
end for

3: Normalize the weights, W1 = {W j
1 }Nj=1:

for j in 1 : N do

W
j
1 =

w̃
j
1

N∑
j=1

w̃
j
1

end for

4: Estimate P (Y1) : P̂ (Y1) = 1
N

N∑
j=1

w̃
j
1

5: for n = 2, .., k do

6: Resample and form N equally weighted particles, X̄1:n−1 = {X̄i
1:n−1}Ni=1:

for j in 1 : N do

(i) sample index ij from a multinomial distribution with probabilities Wn−1

(ii) X̄
j
1:n−1 = X

ij
1:n−1

(iii) W
j
n−1 = 1

end for

7: Using X̄1:n−1 propagate:
for j in 1 : N do

Xj
n ∼ f(xn|xj

n−1)

Set X
j
1:n =

(
X̄

j
1:n−1, X

j
n

)
end for

8: Find the weights, w̃n = {w̃j
n}Nj=1:

for j in 1 : N do

w̃j
n = W

j
n−1pθ(Yn|xj

n)

end for

9: Normalize the weights, Wn = {W j
n}Nj=1:

for j in 1 : N do

Wj,n =
w̃

j
n

N∑
j=1

w̃
j
n

end for

10: Estimate P (Yn|Y1:n−1) : P̂ (Yn|Y1:n−1) = 1
N

N∑
j=1

w̃j
n.

11: end for

12: Resample and form N equally weighted particles, X̄1:k = {X̄i
1:k}

N
i=1:

for j in 1 : N do

(i) sample index ij from a multinomial distribution with probabilities Wk

(ii) X̄
j
1:k

= X
ij
1:k

(iii) W
j
k

= 1
end for

13: Estimate the marginal likelihood P (Y1:k): P̂ (Y1:k) = P̂ (Y1)
k∏

n=2
P̂ (Yn|Y1:n−1).

The unnormalized auxiliary importance weights are given by

g̃n =
pθ (Yn+1|xn) pθ (x1:n, Y1:n)

f(xn|xn−1)pθ (Yn|xn−1) pθ(x1:n−1, Y1:n−1)
=

pθ (Yn|xn)

pθ (Yn|xn−1)
pθ (Yn+1|xn) ,

and the unnormalized weights for the approximation of pθ (x1:n|Y1:n) given by

w̃n =
pθ (x1:n, Y1:n)

f(xn|xn−1)pθ (Yn|xn−1) pθ(x1:n−1, Y1:n−1)
=

pθ (Yn|xn)

pθ (Yn|xn−1)
.

2.6 Particle Marginal Metropolis-Hastings sampler
The Particle Marginal Metropolis-Hastings (PMMH) sampler is a particle MCMC
method that uses the output of a particle algorithm to form the proposal density
for a Metropolis-Hastings update [Andrieu et al., 2010]. The PMMH is as shown in
Algorithm 3. The PMMH update leaves p (θ, x1:T |Y1:T ) invariant.

28



Algorithm 2 Auxiliary particle filter
1: Sample N particles {Xj

1}
N
j=1 :

for j in 1 : N do

X
j
1 ∼ μ(x1)

end for

2: Find the weights, w̃1 = {w̃j
1}

N
j=1:

for j in 1 : N do

w̃
j
1 = pθ(Y1|xj

1)
end for

3: Normalize the weights, W1 = {W j
1 }Nj=1:

for j in 1 : N do

W
j
1 =

w̃
j
1

N∑
j=1

w̃
j
1

end for

4: Estimate P (Y1) : P̂ (Y1) = 1
N

N∑
j=1

w̃
j
1

5: for n = 1, .., k do

6: For each particle j, we calculate an estimate of X
j
n+1 called X̃

j
n+1 by drawing a sample from f(xn+1|xn):

for j in 1 : N do

X̃
j
n+1 ∼ f(xn+1|xj

n)

end for

7: Find the auxiliary weights, g̃n+1 = {g̃jn+1}
N
j=1:

for j in 1 : N do

g̃
j
n+1 = gjnW j

npθ

(
Yn+1|x̃j

n+1

)
end for

8: Normalize the auxiliary weights, gn+1 = {gjn+1}
N
j=1:

for j in 1 : N do

g
j
n+1 =

g̃
j
n+1

N∑
j=1

g̃
j
n+1

end for

9: Resample and form N equally weighted particles, X̄1:n = {X̄i
1:n}Ni=1:

for j in 1 : N do

(i) sample index ij from a multinomial distribution with probabilities gn+1

(ii) X̄
j
1:n = X

ij
1:n

(iii) g
j
n+1 = 1

end for

10: Using X̄1:n propagate:
for j in 1 : N do

X
j
n+1 ∼ f(xn+1|xj

n)

Set X
j
1:n+1 =

(
X̄

j
1:n, X

j
n+1

)
end for

11: Find the weights, w̃n+1 = {w̃j
n+1}

N
j=1:

for j in 1 : N do

w̃
j
n+1 =

pθ

(
Yn+1|xj

n+1

)

pθ

(
Yn+1|x̃ij

n+1

)

end for

12: Normalize the weights, Wn+1 = {W j
n+1}

N
j=1:

for j in 1 : N do

W
j
n+1 =

w̃
j
n+1

N∑
j=1

w̃
j
n+1

end for

13: Estimate P (Yn+1|Y1:n) : P̂ (Yn+1|Y1:n) =
( N∑

i=1
W i

npθ(Yn+1|x̃i
n+1)

)(
1
N

N∑
i=1

w̃i
n+1

)
.

14: end for

15: Estimate the marginal likelihood P (Y1:k): P̂ (Y1:k) = P̂ (Y1)
k∏

n=2
P̂ (Yn|Y1:n−1).



Algorithm 3 Particle marginal Metropolis-Hastings sampler
1: Step 1: Initialization,i = 0,

(a) set θ(0) arbitrarily
(b) - run a particle algorithm targetting pθ(0)(x1:T |Y1:T )

-Sample X1:T (0) ∼ p̂θ(0)(·|Y1:T )
-Let p̂θ(0)(Y1:T ) denote the marginal likelihood estimate.

2: Step 2: for iteration i ≥ 1
(a) Sample θ∗ ∼ q

(
·|θ(i−1)

)
(b) - run a SMC algorithm targetting pθ∗(x1:T |Y1:T )

-Sample X∗
1:T ∼ p̂θ∗(·|Y1:T )

-Let p̂θ∗(Y1:T ) denote the marginal likelihood estimate.
(c) with probability min

(
1, p̂θ∗ (Y1:T )

p̂
θ(i−1) (Y1:T )

p(θ∗)
p(θ(i−1))

q(θ(i−1)|θ∗)
q(θ∗|θ(i−1))

)
.

set θ(i) = θ∗, X(i)
1:n = X∗

1:n, p̂θ(i)(Y1:T ) = p̂θ∗(Y1:T ). Otherwise,
θ(i) = θ(i−1), X(i)

1:n = X
(i−1)
1:n , p̂θ(i)(Y1:T ) = p̂θ(i−1)(Y1:T ).

2.7 Bayesian Additive Regression Trees

The Bayesian Additive Regression Trees (BART) model, introduced by Chipman
et al. [2010], uses a sum of trees to model the conditional mean of a response Y
given a p-dimensional covariate x, E(Y |x).

Let Tj denote a binary tree that partitions the predictor space into bj sub-
regions denoted Tj = {Ωjt}bjt=1, each associated with a leaf parameter μjt. Let
Mj =

(
μj1, μj2, . . . , μjbj

)
denote the collection of leaf parameters of tree Tj. We

denote the set of all trees except Tj as T(j) = {Tk}mk=1,k �=j and their leaf parameters
as M(j) = {Mk}mk=1,k �=j. Chipman et al. [2010] scale the response to lie between -0.5
and 0.5, and model E(Y |x) as follows

Y =
m∑
j=1

bj∑
t=1

μjt� (x ∈ Ωjt)

Tj ∼ heterogeneous Galton-Watson process

μjt|Tj
iid∼ N(0, σ2

μ), σμ = 0.5/2
√
m

σ2 ∼ Inverse Chi-square distribution

Chipman et al. [2010] recommend k = 2 and m = 200 as automatic default choices.

Regularization prior The parameters of the model are the tree components
(Λ, T ) = {(Tj,Λj)}mj=1, and variance σ2. Chipman et al. [2010] assume that the
tree components are independent of each other and of σ2, and that the leaf param-
eters of every tree are independent of each other, so that the prior can be factorized
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as

P (Λ, T, σ) =

(
m∏
j=1

P (Λj|Tj)P (Tj)

)
P (σ) =

⎛⎝ m∏
j=1

bj∏
t=1

P (λjt|Tj)P (Tj)

⎞⎠P (σ).

The imposed prior on trees is a Galton-Watson process in which each node has
either zero or two offspring, and a node η splits with probability

psplit(η) =
α

(1 + d(η))β
α ∈ (0, 1), β ∈ [0,∞),

where d(η) is the depth of node η. The default prior specification is α = 0.95 and
β = 2. The imposed prior on leaf parameters and σ2 are the conjugate priors; that
is, the normal distribution and the inverse chi-square distribution, respectively.

Inference Method Chipman et al. [2010] employ a Gibbs sampler to sample
from P ((T1,M1), (T2,M2), . . . , (Tm,Mm), σ|Y ). The sampler requires m successive
draws from (Tj,Mj)|T(j),M(j), σ, Y followed by a draw from σ|T1,M1, . . . , Tm,Mm, Y
where Rj is the partial residual based on a fit that excludes the jth tree, given by
Rj = Y −∑k �=j

∑bk
t=1 μkt� (x ∈ Ωkt). A draw from (Tj,Mj)|Rj, σ can be achieved in

(bj + 1) successive steps as

• sampling Tj|Rj, σ using a Metropolis-Hastings algorithm and

• sampling μjt|Tj, Rj, σ from a normal distribution for t = 1, . . . , bj.

The transition kernel q of the proposed Metropolis-Hastings is chosen from four
proposals: GROW, PRUNE, CHANGE and SWAP. The GROW proposal randomly
picks a terminal node, splits it into two new nodes, and assigns a decision rule to
it. The PRUNE proposal randomly picks a parent of two terminal nodes and turns
it into a terminal node by collapsing the nodes below it. The CHANGE proposal
randomly picks an internal node and reassigns to it a splitting rule. The SWAP
proposal randomly picks a parent-child pair that are both internal nodes, and swaps
their splitting rules.

Simulation Analysis Chipman et al. [2010] compared BART with boosting, neu-
ral nets and random forests on 42 different real data sets. They created 20 inde-
pendent train/test splits for each of the data sets. The analysis illustrated similar
performance between BART and the other alternative algorithms when they used
the default values of BART hyperparameters. BART performance was better than
the alternatives when they applied cross-validation to define BART hyperparame-
ters.

Various extensions of BART have been proposed. Here, we focus on log-linear
BART for count and categorical data introduced by Murray [2021].
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2.7.1 Log-linear BART for count data

The original BART model assumes Gaussian data and has been applied in a wide
range of applications. Murray [2021] adapted BART to count data Y via a log-linear
transformation. Let Λj =

(
λj1, λj2, . . . , λjbj

)
denote the collection of leaf parameters

of tree Tj. Murray [2021] models E(Y |x) as follows

E(Y |x) =
m∏
j=1

bj∏
t=1

λ
�(x∈Ωjt)
jt

Tj ∼ heterogeneous Galton-Watson process

λjt|Tj
iid∼ mixture of generalized inverse Gaussian distributions

Murray [2021] applies an efficient block Gibbs sampler to sample from
P ((T1,Λ1), (T2,Λ2), . . . , (Tm,Λm)|Y ) . The sampler requires m successive draws from
(Tj,Λj)|T(j),Λ(j), Y.
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Chapter 3

BART-based inference for Poisson
processes

The Bayesian Additive Regression Trees (BART) model is a Bayesian framework,
which uses a sum of trees to predict the posterior distribution of a response y given
a p-dimensional covariate X and priors on the function relating the covariates to
the response.

Chipman et al. [2010] proposed an inference procedure using Metropolis Hastings
within a Gibbs Sampler, whereas Lakshminarayanan et al. [2015] used a Particle
Gibbs Sampler to increase mixing when the true posterior consists of deep trees or
when the dimensionality of the data is high. Several theoretical studies of BART
models [Ročková and van der Pas, 2020; Ročková and Saha, 2019; Linero and Yang,
2018] have recently established optimal posterior convergence rates.

The BART model has been applied in various contexts including non-parametric
mean regression [Chipman et al., 2010], classification [Chipman et al., 2010; Zhang
and Härdle, 2010; Kindo et al., 2016], variable selection[Chipman et al., 2010; Ble-
ich et al., 2014; Linero, 2018], estimation of monotone functions [Chipman et al.,
2021], causal inference [Hill, 2011], survival analysis [Sparapani et al., 2016], and
heteroscedasticity [Bleich and Kapelner, 2014; Pratola et al., 2016].

Linero and Yang [2018] illustrated how the BART model suffers from a lack of
smoothness and the curse of dimensionality, and overcome both potential short-
comings by considering a sparsity assumption similar to [Linero, 2018] and treating
decisions at branches probabilistically.

The original BART model [Chipman et al., 2010] assume that the response has
a Gaussian distribution and the majority of applications have used this framework.
Murray [2021] adapted the BART model to count data and categorical data via a log-
linear transformation, and provided an efficient MCMC sampler. Our focus here is
on extending this methodology to estimate the intensity function of inhomogeneous
Poisson processes.

The question of estimating the intensity of Poisson processes has a long his-
tory, including both frequentist and Bayesian methods. Frequentist methods in-
clude fixed-bandwidth and adaptive bandwidth kernel estimators with edge correc-
tion [Diggle et al., 2003], and wavelet-based methods [e.g. Fryzlewicz and Nason,
2004; Patil et al., 2004]. Bayesian methods include using a sigmoidal Gaussian Cox
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process model for intensity inference [Adams et al., 2009], a Markov random field
(MRF) with Laplace prior [Sardy and Tseng, 2004], variational Bayesian intensity
inference [Lloyd et al., 2015], and non-parametric Bayesian estimations of the in-
tensity via piecewise functions with either random or fixed partitions of constant
intensity [Arjas and Gasbarra, 1994; Heikkinen and Arjas, 1998; Gugushvili et al.,
2018].

In this chapter, we introduce an extension of the BART model [Chipman et al.,
2010] for Poisson processes whose intensity at each point is estimated via an ensem-
ble of trees. Specifically, the logarithm of the intensity at each point is modelled via
a sum of trees (and hence the intensity is a product of trees). This approach enables
full posterior inference of the intensity in a non-parametric regression setting. Our
main contribution is a novel BART scheme for estimating the intensity of an inho-
mogeneous Poisson process. The simulation studies demonstrate that our algorithm
is competitive with the Haar-Fisz algorithm in one dimension, kernel smoothing
in two dimensions, and outperforms the kernel approach for multidimensional in-
tensities. The simulation analysis also demonstrates that our proposed algorithm
is competitive with the inference via spatial log-Gaussian Cox processes. We also
demonstrate its ability to track varying intensity in synthetic and real data.

The outline of the chapter is as follows. Section 3.1 introduces our approach
for estimating the intensity of a Poisson process through the BART model, and
Section 3.2 presents the proposed inference algorithm. Sections 3.3 and 3.4 present
the application of the algorithm to synthetic data and real data sets, respectively.
Section 3.5 provides our conclusions.

3.1 The BART Model for Poisson processes

Consider an inhomogeneous Poisson process defined on a d-dimensional domain
S ⊂ R

d, d ≥ 1, with intensity λ : S → R
+. For such a process, the number of points

within a subregion B ⊂ S has a Poisson distribution with mean λB =
∫
B
λ(s) ds, and

the number of points in disjoint subregions are independent [Daley and Vere-Jones,
2003]. The homogeneous Poisson process is a special case with constant intensity
λ(s) = λ0, ∀s ∈ S.

To estimate the intensity of the inhomogeneous Poisson process, we use m parti-
tions of the domain S, each associated with a tree Th, h = 1, . . . ,m. The partitions
are denoted Th = {Ωht}bht=1, where bh is the number of terminal nodes in the corre-
sponding tree Th, and each leaf node t corresponds to one of the subregions Ωht of the
partition Th. Being a partition, every tree covers the full domain, i.e. S = ∪bh

t=1Ωht

for every h. Each subregion Ωht has an associated parameter λht, and hence each
tree Th has an associated vector of leaf intensities Λh = (λh1, λh2, .., λhbh).
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We model the intensity of s ∈ S as:

log(λ(s)) =
m∑

h=1

bh∑
t=1

log (λht) I(s ∈ Ωht) (3.1)

Th ∼ heterogeneous Galton-Watson process for a partition of S (3.2)

λht|Th
iid∼ Gamma(α, β) (3.3)

where I(·) denotes the indicator function. Equivalently, (3.1) can be expressed as

λ(s) =
m∏

h=1

bh∏
t=1

λ
I(s∈Ωht)
ht . (3.4)

Given a fixed number of trees, m, the parameters of the model are thus the
regression trees T = {Th}mh=1 and their corresponding intensities Λ = {Λh}mh=1.
Following Chipman et al. [2010], we assume that the tree components (Th,Λh) are
independent of each other, and that the terminal node parameters of every tree are
independent, so that the prior can be factorized as:

P (Λ, T ) =
m∏

h=1

P (Λh, Th) =
m∏

h=1

P (Λh|Th)P (Th) =
m∏

h=1

[
bh∏
t=1

P (λht|Th)

]
P (Th). (3.5)

Prior on the trees The trees Th of the BART model are stochastic regression
trees generated through a heterogeneous Galton-Watson (GW) process [Harris, 1963;
Ročková and Saha, 2019]. The GW process is the simplest branching process con-
cerning the evolution of a population in discrete time. Individuals (tree nodes) of a
generation (tree depth) give birth to a random number of individuals (tree nodes),
called offspring, mutually independent and all with the same offspring distribution
that may vary from generation (depth) to generation (depth). In our case, we use
the prior introduced by Chipman et al. [1998], that is a GW process in which each
node has either zero or two offspring and the probability of a node splitting depends
on its depth in the tree. Specifically, a node η ∈ Th splits into two offspring with
probability

psplit(η) =
γ

(1 + d(η))δ
, (3.6)

where d(η) is the depth of the node η in the tree, and γ ∈ (0, 1) and δ ≥ 0 are
parameters of the model. Classic results from the theory of branching processes
show that γ ≤ 0.5 guarantees that the expected depth of the tree is finite. In
our construction, each tree Th is associated with a partition of S. Namely, if node
η splits, we select uniformly at random one of the d dimensions of the space of
the Poisson process, followed by uniform selection from the available split values
associated with that dimension respecting the splitting rules higher in the tree.
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Prior on the leaf intensities Our choice of a Gamma prior for the leaf pa-
rameters λht builds upon previous work by Murray [2021], who used a mixture of
Generalized Inverse Gaussian (GIG) distributions as the prior on leaf parameters
in a BART model for count regression. Here we impose a Gamma prior (a spe-
cial case of GIG) on the leaf parameters, which simplifies the model and leads to a
closed form of the conditional integrated likelihood below (see Section 3.2) as the
Gamma distribution is the conjugate prior for the Poisson likelihood. We discuss
the selection of it hyperparameters α and β in Section 3.2.1.

3.2 The Inference Algorithm
Given a finite realization of an inhomogeneous Poisson process with n sample points
s = s1, . . . , sn ∈ S ⊂ R

d, we seek to infer the parameters of the model (Λ, T ) by
sampling from the posterior P (Λ, T |s).

Before presenting the sampling algorithm, we summarize a preliminary result.
To simplify our notation, let us define

g(si;Th,Λh) =

bh∏
t=1

λ
I(si∈Ωht)
ht ,

so that Eq. (3.4) becomes λ(si) =
∏m

h=1 g(si;Th,Λh).
Let us choose any arbitrary tree Th in our ensemble T , and let us denote the

set with the rest of the trees as T(h) = {Tj}mj=1,j �=h and their leaf parameters as
Λ(h) = {Λj}mj=1,j �=h. The intersection of all the partitions associated with the trees

in T(h) gives us a global partition {Ω(h)

k }K(T(h))

k=1 with K(T(h)) subregions [Rockova and
Pas, 2017].

Then we have the following result.

Remark 1. (i) The conditional likelihood of the realization is given by

P (s|Λ, T ) = ch

bh∏
t=1

λnht
ht e−λhtcht , (3.7)

with ch =
n∏

i=1

m∏
j=1,j �=h

g(si;Tj,Λj),

cht =

K(T(h))∑
k=1

λ
(h)

k |Ω(h)

k ∩ Ωht|,

where λ
(h)

k =
∏m

t=1,t �=h

∏bt
l=1 λ

I(Ωtl∩Ω
(h)
k �=0)

tl , nht is the cardinality of the set {i :
si ∈ Ωht}, and |Ω(h)

k ∩ Ωht| is the volume of the region Ω
(h)

k ∩ Ωht.

(ii) For a tree h, the conditional integrated likelihood obtained by integrating out
Λh is

P (s|Th, T(h),Λ(h)) = ch

(
βα

Γ(α)

)bh bh∏
t=1

Γ(nht + α)

(cht + β)nht+α
. (3.8)
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Proof. Let us consider a finite realization of an inhomogeneous Poisson process with
n points s. Given the tree components (T,Λ), and approximating the intensity of a
point si ∈ S by a product of m trees λ(si) =

∏m
j=1 g(si;Tj,Λj), the likelihood is:

P (s|Λ, T ) =
n∏

i=1

λ(si) exp

(
−
∫
S

λ(s)ds

)

=
n∏

i=1

m∏
j=1

g(si;Tj,Λj) exp

(
−
∫
S

m∏
j=1

g(s;Tj,Λj)ds

)
. (3.9)

The first term of the above equation can be written as follows
n∏

i=1

m∏
j=1

g(si;Tj,Λj) =
n∏

i=1

m∏
j=1,j �=h

g(si;Tj,Λj)g(si;Th,Λh)

=
n∏

i=1

m∏
j=1,j �=h

g(si;Tj,Λj)

(
n∏

i=1

g(si;Th,Λh)

)
= ch

bh∏
t=1

λnht
ht

where ch =
∏n

i=1

∏m
j=1,j �=h g(si;Tj,Λj) and nht is the cardinality of the set {i : si ∈

Ωht}.
The exponential term of (3.9) can be expressed as:

exp

(
−
∫
S

m∏
j=1

g(s;Tj,Λj)ds

)
= exp

(
−
∫
S

m∏
j=1,j �=h

g(s;Tj,Λj)g(s;Th,Λh)ds

)

= exp

(
−
∫
S

m∏
j=1,j �=h

g(s;Tj,Λj)

(
bh∑
t=1

λhtI(s ∈ Ωht)

)
ds

)

= exp

(
−
∫
S

bh∑
t=1

λht

m∏
j=1,j �=h

g(s;Tj,Λj)I(s ∈ Ωht)ds

)
Tonelli’s theorem allows the change of order between summation and integral.

exp

(
−
∫
S

m∏
j=1

g(s;Tj,Λj)ds

)
= exp

(
−

bh∑
t=1

λht

∫
S

m∏
j=1,j �=h

g(s;Tj,Λj)I(s ∈ Ωht)ds

)

= exp

(
−

bh∑
t=1

λhtcht

)
where

cht =

∫
S

(
m∏

j=1,j �=h

g(s;Tj,Λj)

)
I(s ∈ Ωht)ds.

Let T(h) = {Tj}mj=1,j �=h be an ensemble of trees not including the tree Th that

defines the global partition {Ω(h)

k }K(T(h))

k=1 by merging all cuts in {Tj}mj=1,j �=h. Giving,

m∏
j=1,j �=h

g(s;Tj,Λj) =

K(Th)∑
k=1

λ
(h)

k I(s ∈ Ω
(h)

k )
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where

λ
(h)

k =
m∏

t=1,t �=h

bt∏
l=1

λ
I(Ωtl∩Ω

(h)
k �=∅)

tl ,

leading to the following expression for cht,

cht =

∫
S

(
m∏

j=1,j �=h

g(s, Tj,Λj)

)
I(s ∈ Ωht)ds =

∫
S

⎛⎝K(T(h))∑
k=1

λ
(h)

k I(s ∈ Ω
(h)

k )

⎞⎠ I(s ∈ Ωht)ds

=

K(T(h))∑
k=1

λ
(h)

k

∫
S

I(s ∈ Ω
(h)

k ∩ Ωht)ds =

K(T(h))∑
k=1

λ
(h)

k |Ω(h)

k ∩ Ωht|,

where |Ω(h)

k ∩ Ωht| is the volume of the region Ω
(h)
k ∩ Ωht. Hence the conditional

likelihood can be written as follows

P (s|Λ, T ) = ch

bh∏
t=1

λnht
ht e

−λhtcht .

The conditional integrated likelihood is given by

P (s|Th, T(h),Λ(h)) =

∫ ∞

0

P (s,Λh|Th, T(h),Λ(h))dΛh

=

∫ ∞

0

P (s|Λ, T )P (Λh|Th, T(h),Λ(h))dΛh

= ch

∫ ∞

0

. . .

∫ ∞

0

bh∏
t=1

λnht
ht e

−λhtcht

bh∏
t=1

βα

Γ(α)
e−βλhtλα−1

ht dλh1 . . . dλhbh

= ch

(
βα

Γ(α)

)bh bh∏
t=1

∫ ∞

0

λnht+α−1
ht e−(cht+β)λhtdλht

= ch

(
βα

Γ(α)

)bh bh∏
t=1

Γ(nht + α)

(cht + β)nht+α

We now summarize our sampling algorithm. To sample from P (Λ, T |s), we
implement a Metropolis-Hastings within block Gibbs sampler (Algorithm 4), which
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requires m successive draws from (Th,Λh)|T(h),Λ(h), s. Note that

P (Th,Λh|T(h),Λ(h), s) = P (Th|T(h),Λ(h), s)P (Λh|Th, T(h),Λ(h), s)

∝ P (Th|T(h),Λ(h), s)P (s|Λ, T )P (Λh|Th)

= P (Th|T(h),Λ(h), s)P (s|Λ, T )
bh∏
t=1

P (λht|Th)

= P (Th|T(h),Λ(h), s) ch

bh∏
t=1

λnht
ht e−λhtcht

bh∏
t=1

βα

Γ(α)
λα−1
ht e−βλht

∝ P (Th|T(h),Λ(h), s)

bh∏
t=1

λnht+α−1
ht e−(cht+β)λht (3.10)

which follows directly from Bayes’ rule and Eqs. (3.5) and (3.3).
From (3.10), it is clear that a draw from (Th,Λh)|T(h),Λ(h), s can be achieved in

(bh+1) successive steps consisting of:

• sampling Th|T(h),Λ(h), s using Metropolis-Hastings (Algorithm 5)

• sampling λht|Th, T(h),Λ(h), s from a Gamma distribution with shape nht + α
and rate cht + β for t = 1, .., bh.

These steps are implemented through Metropolis-Hastings in Algorithm 4. Note
also that

P (Th|T(h),Λ(h), s) ∝ P (s|Th, T(h),Λ(h))P (Th),

so that the conditional integrated likelihood (3.8) is required to compute the Hastings
ratio.

Algorithm 4 Metropolis-Hastings within Gibbs sampler
for v = 1, 2, 3, .. do

for h = 1 to m do
Sample T

(v+1)
h |s, {T (v+1)

j }h−1
j=1 , {T

(v)
j }mj=h+1, {Λ

(v+1)
j }h−1

j=1 , {Λ
(v)
j }mj=h+1

using Algorithm 5
for t = 1 to bh do

Sample λ
(v+1)
ht |s, {T (v+1)

j }hj=1, {T
(v)
j }mj=h+1, {Λ

(v+1)
j }h−1

j=1 , {Λ
(v)
j }mj=h+1

from Gamma(nht + α, cht + β)
end for

end for
end for
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Algorithm 5 Metropolis-Hastings Algorithm for sampling from the posterior
P (Tj|s, T(j),Λ(j))

Generate a candidate value T ∗
j with probability q(T ∗

j |T
(v)
j ).

Set T
(v+1)
j = T ∗

j with probability

α(T
(v)
j , T ∗

j ) = min

{
1,

q(T
(v)
j |T ∗

j )

q(T ∗
j |T

(v)
j )

P (s|T ∗
j , T(j),Λ(j))

P (s|T (v)
j , T(j),Λ(j))

P (T ∗
j )

P (T
(v)
j )

}

Otherwise, set T
(v+1)
j = T

(v)
j .

The transition kernel q in Algorithm 5 is chosen from the three proposals:
GROW, PRUNE, CHANGE [Chipman et al., 2010; Kapelner and Bleich, 2016].
The GROW proposal randomly picks a terminal node, splits the chosen terminal
into two new nodes and assigns a decision rule to it. The PRUNE proposal ran-
domly picks a parent of two terminal nodes and turns it into a terminal node by
collapsing the nodes below it. The CHANGE proposal randomly picks an internal
node and randomly reassigns to it a splitting rule. We describe the implementation
of the proposals in Subsection 3.2.2.

For completeness, in Appendix A.1, we present the full development of the al-
gorithm for inference of the intensity of inhomogeneous Poisson processes via only
one tree.

3.2.1 Fixing the hyperparameters of the model

Hyperparameters of the Gamma distribution for the leaf intensities We
use a simple data-informed approach to fix the hyperparameters α and β of the
Gamma distribution (3.3). We discretize the domain into NG subregions of equal
volume (NG = (�1001/d�)d works well in practice up to 5 dimensions) and count
the number of samples si per subregion. We thus obtain the empirical densities in
each of the subregions: ξi, i = 1, . . . , NG. Given the form of the intensity (3.4) as
a product of m trees, we consider the m-th roots Ξ = {ξ1/mi }NG

i=1 as candidates for
the intensity of each tree. Taking the sample mean μ̂Ξ and sample variance σ̂2

Ξ, we
choose the model hyperparameters α and β to correspond to those of a Gamma
distribution with the same mean and variance, i.e., α = μ̂2

Ξ/σ̂
2
Ξ and β = μ̂Ξ/σ̂

2
Ξ,

although fixing β = 1 can also give good estimates of the intensity. Although setting
NG = (�1001/d�)d leads to convergence and good estimates of the intensity in our
simulation studies below, there are other possibilities. Alternatively, we can bin the
data based on a criterion that takes into account the number of samples, n, and the
number of dimensions, d. For example, the number of bins per dimension, nb, can
be computed as [Scott, 2015; Wand, 1997]: (i) nb = �n1/(d+1)�, (ii) nb = �n1/(d+2)�,
or (iii) nb = maxk∈{1,2,..,d}[�DRk · n1/(d+2)/(2 · IQR({si,k})�], where IQR denotes the
interquartile range of the sample, DRk is the range of the domain in dimension k
(here we scale the initial domain to a unit hypercube so that DRk = 1, ∀k), and by
extension NG = nb

d. In our simulation scenarios below, all these approaches lead to
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comparable convergence times and estimates of the intensity.

Hyperparameters of the stochastic ensemble of regression trees The GW
stochastic process that generates our tree ensemble has several hyperparameters.
The parameters (γ, δ) control the shape of trees. The parameter γ > 0 controls the
probability that the root of a tree will split into two offspring, while the parameter
δ > 0 penalizes against deep trees. As noted in [Chipman et al., 2010], for a sum-of-
trees model, we want to keep the depth of the tree small whilst ensuring non-trivial
trees, hence, in our simulation study we fix γ = 0.98 and δ = 2. Second, each of the
d dimensions has to be assigned a grid of split values, from which the subregions of
the partition are randomly chosen, yet always respecting the consistency of the an-
cestors in the tree (that is respecting the splitting rules higher in the tree). Here, we
use a simple uniform grid for each of the d-dimensions [Pratola et al., 2016]: we nor-
malize each dimension of the space from (0,1) and discretize each dimension into Nd

segments. (Nd = 100 works well in practice and is used throughout our examples.)
More sophisticated, data-informed grids are also possible, although using, e.g., the
sample points as split values does not improve noticeably the performance in our
examples. Finally, the number of trees m also needs to be fixed as in Chipman et al.
[2010]. In our examples below, we have checked the performance of our algorithm
with varying number of trees m between 2 and 50. We find that good performance
can be achieved with a moderate number of trees, m, between 3 and 10 depending
on the particular example.

3.2.2 Metropolis Hastings Proposals

We describe here the proposals of Algorithm 5. The Hastings ratio can be expressed
as the product of three terms [Kapelner and Bleich, 2016]:

• Transition Ratio:

TR =
q(T

(t)
j |T ∗

j )

q(T ∗
j |T

(t)
j )

• Likelihood Ratio:

LR =
P (s|T ∗

j , T(j),Λ(j))

P (s|T (t)
j , T(j),Λ(j))

• Tree Structure Ratio:

TSR =
P (T ∗

j )

P (T
(t)
j )

3.2.2.1 GROW Proposal

This proposal randomly picks a terminal node, splits the chosen terminal into two
new nodes and assigns a decision rule to it.

Let η be the randomly picked terminal node in tree T
(t)
j . We denote the new

nodes as ηL and ηR. We now derive the expressions for the transition ratio (TR),
tree structure ratio (TSR) and likelihood ratio (LR).
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Transition Ratio It holds that:

(i) q(T ∗
j |T

(t)
j ) = P(GROW)

× P(selecting a leaf η to grow from)
× P(selecting an available dimension j to split on)
× P(selecting the slitting value given the chosen dimension to split

on)
= P(GROW) 1

bj

1
card(kη)

1
card(τη)

where bj is the number of terminal nodes in the tree T
(t)
j , kh the set of all

available dimensions to split the node η, τη the set of all available splitting
values given the chosen dimension for splitting the node η and card(S) the
cardinality of a set S.

(ii) q(T
(t)
j |T ∗

j ) = P(PRUNE)
× P(selecting a node η having two terminal nodes to prune from)

= P(PRUNE) 1
w∗

where w∗ is the number of internal nodes with two terminal nodes as children
in the tree T ∗

j .

Hence the transition ratio is given by

TR =
P (PRUNE) 1

w∗

P (GROW) 1
bj

1
card(kη)

1
card(τη)

.

Tree Structure Ratio: The difference between the structures of the proposed
tree T

(t)
j and the tree T ∗

j is the two offsprings ηL and ηR. Thus the tree structure
ratio is:

TSR =
P (T ∗

j )

P (T
(t)
j )

=
(1− pSPLIT(ηL)) (1− pSPLIT(ηR)) pSPLIT(η) pRULE(η)

(1− pSPLIT(η))

=

(
1− γ

(1+d(ηL))δ

)(
1− γ

(1+d(ηR))δ

)
γ

(1+d(η))δ
1

card(kη)
1

card(τη)

1− γ
(1+d(η))δ

,

where pSPLIT(η) is the splitting probability for a node η and pRULE(η) the distribution
of decision rule associated to node η.

Likelihood Ratio The likelihood ratio is an application of equation 3.8 twice, that
is once considering the proposed tree, T ∗

j (numerator) and the other considering the
tree of the current iteration t, T (t)

j (denominator), which can be simplified as follows

LR =
βα

Γ(α)

Γ(njηL
+α)

(cjηL+β)
njηL

+α

Γ(njηR
+α)

(cjηR+β)
njηR

+α

Γ(njη+α)

(cjη+β)njη+α

=
βα

Γ(α)

Γ(njηL + α)Γ(njηR + α)

Γ(njη + α)

(cjη + β)njη+α

(cjηL + β)njηL
+α(cjηR + β)njηR

+α
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3.2.2.2 PRUNE Proposal

This proposal randomly picks a parent of two terminal nodes and turns it into a
terminal node by collapsing the nodes below it.

Let η be the picked parent of two terminal nodes, y and c the dimension and
splitting value of the rule linked to the node η.

Transition Ratio It holds that:

(i) q(T ∗
j |T

(t)
j ) = P(PRUNE)

× P(selecting a parent of two terminal nodes to prune from)
= P(PRUNE) 1

w

where w is the number of nodes with two terminal nodes as children in the
tree T

(t)
j .

(ii) q(T
(t)
j |T ∗

j ) = P(GROW)
× P(selecting the node η to grow from)
× P(selecting the dimension y)
× P(selecting the slitting value c given the chosen dimension y)

= P(GROW) 1
w∗

1
card(kη)

1
card(τη)

where w∗ is the number of terminal nodes in the tree T ∗
j , kh the set of all

available dimensions to split the node η and τη the set of all available splitting
values given the chosen dimension y for splitting the node η.

Hence the transition ratio is given by

TR =
P (GROW) 1

w∗
1

card(kη)
1

card(τη)

P (PRUNE) 1
w

.

Tree Structure Ratio The proposed tree differs by not having the two children
nodes ηL and ηR. Thus the tree structure ratio is:

TSR =
P (T ∗

j )

P (T
(t)
j )

=
(1− pSPLIT(η))

(1− pSPLIT(ηL)) (1− pSPLIT(ηR)) pSPLIT(η) pRULE(η)

=
1− γ

(1+d(η))δ(
1− γ

(1+d(ηL))δ

)(
1− γ

(1+d(ηR))δ

)
γ

(1+d(η))δ
1

card(kη)
1

card(τη)

Likelihood Ratio Similar to the GROW proposal, the likelihood ratio can be
written as follows

LR =

(
βα

Γ(α)

)−1
Γ(njη+α)

(cjη+β)njη+α

Γ(njηL
+α)

(cjηL+β)
njηL

+α

Γ(njηR
+α)

(cjηR+β)
njηR

+α

=

(
βα

Γ(α)

)−1
Γ(njη + α)

Γ(njηL + α)Γ(njηR + α)

(cjηL + β)njηL
+α(cjηR + β)njηR

+α

(cjη + β)njη+α
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3.2.2.3 CHANGE Proposal

This proposal randomly picks an internal node and randomly reassigns to it a split-
ting rule.

Let η be the picked internal node having rule y < c and children denoted as ηR
and ηL. We assume that ỹ < c̃ is its new assigned rule in the proposed tree, T ∗

j .
Following Kapelner and Bleich [2016], for simplicity we are restricted to picking an
internal node having two terminal nodes as children.

Transition Ratio It holds that:

(i) q(T ∗
j |T

(t)
j ) = P(CHANGE)

× P(selecting an internal node η to change)
× P(selecting the new available dimension ỹ to split on)
× P(selecting the new splitting value c̃ given the chosen dimension

ỹ)

(ii) q(T
(t)
j |T ∗

j ) = P(CHANGE)
× P(selecting the node η to change)
× P(selecting the dimension y to split on)
× P(selecting the splitting value c given the chosen dimension y)

Thus the Transition Ratio is

TR =
P (selecting c to split on given the chosen dimension y)

P (selecting c̃ to split on given the chosen dimension ỹ)

Tree Structure Ratio The two trees differ in the splitting rule at node η. Thus
we have that

TSR =
P (T ∗

j )

P (T
(t)
j )

=
pSPLIT(η) pRULE(η|T ∗

j )

pSPLIT(η) pRULE(η|T (t)
j )

=
P (selecting ỹ)P (selecting c̃ given ỹ)
P (selecting y)P (selecting c given y)

=
P (selecting c̃ given ỹ)
P (selecting c given y)

.

It then follows that TR ·TSR = 1, and hence only the likelihood ratio needs to be
found to obtain the Hastings ratio.

Likelihood Ratio Let n∗
L = n

(T ∗
j )

jηL
, n∗

R = n
(T ∗

j )

jηR
, c∗L = c

(T ∗
j )

jηL
, c∗R = c

(T ∗
j )

jηR
, n

(t)
L =

n
(T

(t)
j )

jηL
, n(t)

R = n
(T

(t)
j )

jηR
, c(t)L = c

(T
(t)
j )

jηL
and c

(t)
R = c

(T
(t)
j )

jηR
, where (T ∗

j ) and (T
(t)
j ) indicate

that the corresponding quantities are related to the tree T ∗
j and T

(t)
J respectively.

Following the previous proposals, the likelihood ratio is

LR =

Γ(n∗
L+α)

(c∗L+β)
n∗
L
+α

Γ(n∗
R+α)

(c∗R+β)
n∗
R

+α

Γ(n
(t)
L +α)

(c
(t)
L +β)

n
(t)
L

+α

Γ(n
(t)
R +α)

(c
(t)
R +β)

n
(t)
R

+α

=
(c

(t)
L + β)n

(t)
L +α (c

(t)
R + β)n

(t)
R +α

(c∗L + β)n
∗
L+α (c∗R + β)n

∗
R+α

Γ(n∗
L + α) Γ(n∗

R + α)

Γ(n
(t)
L + α) Γ(n

(t)
R + α)

.
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3.3 Simulation Study on Synthetic Data
We carried out a simulation study on synthetic data to illustrate the performance of
Algorithm 4 to estimate first the intensity of one dimensional and two dimensional
inhomogeneous Poisson processes and finally the intensity of multidimensional Pois-
son processes.

We simulate realizations of Poisson processes on the domain [0, 1)d for d ∈
{1, 2, 3, 4, 5} via thinning [Lewis and Shedler, 1979]. The hyperparameters of the
model (for the trees and the leaf intensities) are fixed as described in Section 3.2.1.
We initially randomly generate m trees of zero depth. The probabilities of the pro-
posals in Algorithm 5 are set to: P (GROW) = P (PRUNE) = 0.4 and P (CHANGE) =
0.2. A set {zi} is defined by uniformly sampling points in the domain [0, 1)d.

We run 3 parallel chains of the same length. We discard their first halves treat-
ing the second halves as a sample from the target distribution. We assess chain
convergence using the Gelman-Rubin convergence diagnostic [Gelman and Rubin,
1992] applied to the estimated intensity for each point of the set {zi} , as well as
trace plots and autocorrelation plots for some points of the testing set.

At each state t of a simulated chain we estimate the intensity for each point zi
by a product of trees denoted as

λ̂(t)(zi) =
m∏
j=1

g(zi;T
(t)
j ,Λ

(t)
j ).

The induced sequence {λ̂(t)(·)}∞t=1 for the sequence of draws {(T (t)
1 ,Λ

(t)
1 ), .., (T

(t)
m ,Λ

(t)
m )}∞t=1

converges to P (λ̂|s). We estimate the posterior mean E[λ̂(·)|s1, ..sn], the posterior
median of λ̂(·), and the highest density interval (hdi) using the function hdi provided
by the R package bayestestR [Makowski et al., 2019]. To assess the performance
of our algorithm, we compute the Average Absolute Error (AAE) of the computed
estimate:

AAE(λ̂) =
1

Nz

Nz∑
i=1

|λ̂(zi)− λ(zi)| (3.11)

and the Root Integrated Square Error (RISE):

RISE(λ̂) =

(
1

Nz

Nz∑
i=1

(λ̂(zi)− λ(zi))
2

)1/2

(3.12)

where Nz is the number of test points.
In the spirit of Akaike information criterion (AIC) [Loader, 1999], we also intro-

duce two diagnostics targetting the likelihood function to evaluate if increasing the
number of trees leads to better intensity estimation:

Dg = 2 (logP (s1, .., sn)− kg) ,

and
Dl = 2 (logP (s1, .., sn)− kl) ,
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where kg is the number of global cells, and kl is the overall number of leaves
in the ensemble. We estimate both diagnostics using the sequence of the draws(
T (w),Λ(w)

)
=
{(

T
(w)
1 ,Λ

(w)
1

)
, . . . ,

(
T

(w)
m ,Λ

(w)
m

)}Nw

w=1
after the burn-in period as

Dg ≈ 2
1

Nw

∑
w

(
logP

(
s1, .., sn|

(
T (w),Λ(w)

))
− k(w)

g

)
,

and
Dl ≈ 2

1

Nw

∑
w

(
logP

(
s1, .., sn|

(
T (w),Λ(w)

))
− k

(w)
l

)
,

where k
(w)
g and k

(w)
l are the number of global cells and the overall number of leaves

in the ensemble associated to the wth draw, respectively.
AIC has been shown to be asymptotically equal to leave-one-out cross validation

(LOO-CV) [Stone, 1977; Gelman et al., 2014]. According to Leininger and Gelfand
[2017], the computational burden required for leave-one-out cross validation con-
sidering a point pattern data is impractical. We introduce a leave-partition-out
(LPO) method, assuming that the initial process N(s) is obtained by combining
independent processes {Ni(s)}Np

i=1, as follows

DLPO =

NP∑
i=1

logP (Ni(s)|N(s)− {Ni(s)}) (3.13)

where P (Ni(s)|N(s)− {Ni(s)}) is the leave-partition-out predictive intensity given
the process N(s) without the ith partition, Ni(s). We can evaluate 3.13 as follows,

DLPO =

NP∑
i=1

log

(
1

Nw

∑
w

P
(
Ni(s)|

(
T (w,i),Λ(w,i)

)))

where (T (w,i),Λ(w,i)) is the sequence of draws
{(

T
(w,i)
1 ,Λ

(w,i)
1

)
, . . . ,

(
T

(w,i)
m ,Λ

(w,i)
m

)}
after the burn-in period leaving out the partition Ni(s). We assume that each
event of N(s) is coming from Ni(s) with probability pi. The bias of the method
is introduced by randomly splitting the process into individual processes. We can
get the LOO-CV by LPO, defining appropriately the parameter Np. As higher the
number Np is, as less biased the method is. In the simulation scenarios, we consider
that pi = 0.1, i = 1, . . . , Np and Np = 10 for computational reasons. The diagnostics
show that tiny ensembles of trees provide good estimates in our simulation scenarios.

To confirm the proposed diagnostics, we use p-thinning [Illian et al., 2008, Chap-
ter 6] with p = 0.8 to create training and test datasets in two of the simulation
scenarios. We employ Root Mean Chi-Square statistic (RMCS) and Rank Proba-
bility Score (RPS) [Gneiting and Raftery, 2007] with the test data set comparing
observed counts in disjoint equal volume subregions {Si}Ns

i=1 as follows:

RMCS(N̂) =

(
1

Ns

Ns∑
i=1

(N̂(Si)−N(Si))
2

N̂(Si)

)1/2

(3.14)
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and

RPS(N(Sj)) =

N(Sj)−1∑
u=0

F (u)2 +
∞∑

u=N(Sj)

(F (u)− 1)2 , (3.15)

where F is the Poisson cumulative distribution with parameter m =
∫
Sj
λ̂(s)ds,

N(Si) the actual number of testing points in Si and N̂(Si) the estimated number of
testing points in Si given by

N̂(Si) =

∫
Si

1− p

p
λ̂(s)ds � 1− p

p

1

N i
z

∑
zj∈Si

λ̂(zj)|Si| (3.16)

with N i
z being the number of points {zj} falling in Si and estimating the intensity

at each points s , λ̂(s), via the posterior mean E[λ̂(·)|s1, ..sn].
For one dimensional processes, we compare the results of Algorithm 4 to the

Haar-Fisz algorithm [Fryzlewicz and Nason, 2004], a wavelet based method for es-
timating the intensity of one dimensional Poisson processes that outperforms well
known competitors. We apply the Haar-Fisz algorithm to the counts of points falling
into 256 consecutive intervals using the R package haarfisz [Fryzlewicz, 2010]. Our
algorithm is competitive with the Haar algorithm for smooth intensity functions
and is not strongly out-performed by the Haar-Fisz algorithm when the underlying
intensity is a stepwise function.

For two-dimensional processes, we compare the results of our algorithm with
fixed-bandwidth estimators and log-Gaussian Cox process (LGCP) with intensity
λ(s) = exp (a+ u(s)) where u is a Gaussian process with exponential covariance
function. We used a discretization version of the LGCP model defined on a regular
grid over space, which we implemented using Stan-code [Gelman et al., 2015]. As
noted in Davies and Baddeley [2018], the choice of the kernel is not of primary
importance, we choose a Gaussian kernel for its wide applicability. In our tables of
results, the smoothing bandwidth, sigma, selected using likelihood cross-validation
[Loader, 1999] denoted by (LCV), and we have also included other values of sigma
to demonstrate the sensitivity to bandwidth choice. The kernel estimators, and
the bandwidth value given by likelihood cross-validation, were computed using the
R package spatstat [Baddeley and Turner, 2005]. Our algorithm outperforms the
maximum likelihood approach using linear conditional intensity, as expected. Our
algorithm outperforms kernel smoothing and LGCP for stepwise functions and is
competitive with them for a smooth intensity.

Finally, we examine the performance of our algorithm for multidimensional in-
tensities by generating realizations of Poisson processes on the domain [0, 1)d for
d ∈ {3, 5} via thinning. Future work includes the study of intensities in higher
dimensions (d > 5). We compare our intensity estimates with kernel smoothing es-
timators having isotropic standard deviation matrices with diagonal elements equal
to h and the methodology for applying maximum likelihood to point process mod-
els with linear conditional intensity [Peng, 2003]. We select the bandwidth h using
likelihood cross-validation [Loader, 1999] denoted by (LCV).
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3.3.1 One dimensional Poisson process with stepwise inten-
sity

Our first example is a one dimensional Poisson process with piecewise constant
intensity with several steps (Fig. 3.1). We run 3 parallel chains of the same length
for 200000 iterations for 2-10 trees, 100000 for 12 trees, 50000 iterations for 15 trees
and 30000 iterations for 20 trees. The convergence criteria indicate convergence of
the simulated chains for the majority of points (see Appendix A.5).

Our algorithm detects the change points and provides good estimates of the
intensity and is competitive in terms of AAE with the Haar-Fisz algorithm, but
does not perform as well in terms of RISE (see Fig. 3.1 and Tables 3.3-3.6). We
have found the metrics and convergence diagnostics in a set of uniformly chosen
points without excluding the points close to jumps. Due to inferring the intensity
via a product of stepwise functions, it is expected that the proposed algorithm will
provide estimates with higher variability close to jumps. The proposed algorithm
outperforms the Haar-Fisz algorithm without considering the points close to jumps.
Tables 3.4-3.5 show the metrics for various number of trees without considering the
points in a distance ±0.02 from the jumps.

The diagnostics Dg, Dl and DLPO obtain their highest values for 7, 4 and 8 trees,
respectively. The analysis demonstrates only small differences between log-likelihood
values as the number of trees increases, supporting results found in previous BART
studies that the method is robust to the choice of m. The average RMCS and
RPS on testing points over 7 different splits of the original data set (Tables 3.1-3.2)
provide evidence that ensembles with more than seven trees do not improve the fit
of the proposed algorithm.

Proposed BART Algorithm
Number of
trees

Ns = 1 Ns = 10 Ns = 25 Ns =
50

Ns =
75

Ns =
75

3 17.12 5.25 3.11 2.08 1.65 1.43
4 16.98 5.28 3.09 2.07 1.64 1.42
5 16.94 5.26 3.04 2.06 1.63 1.41
7 17.01 5.22 3.00 2.04 1.62 1.40
8 17.09 5.20 2.99 2.03 1.62 1.40
9 17.07 5.20 2.98 2.02 1.61 1.39
10 20.10 5.78 3.12 2.12 1.63 1.43
12 17.74 5.37 2.99 2.06 1.63 1.39
15 17.03 5.15 2.94 2.01 1.60 1.38
20 17.08 5.16 2.93 2.00 1.60 1.38

Table 3.1: The average RPS on testing points over 7 different splits of the original
data set in Fig. 3.1.
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Proposed BART Algorithm
Number
of trees

Ns = 1 Ns = 10 Ns = 25 Ns = 50 Ns = 75 Ns = 75

2 0.95 1.13 1.06 1.02 0.99 1.00
3 0.95 1.13 1.06 1.02 0.98 0.99
4 0.95 1.14 1.06 1.02 0.98 0.98
5 0.94 1.13 1.04 1.02 0.98 0.98
7 0.95 1.13 1.04 1.01 0.97 0.97
8 0.95 1.12 1.03 1.01 0.97 0.96
9 0.95 1.13 1.03 1.01 0.97 0.97
10 1.10 1.20 1.06 1.04 0.98 0.98
12 0.98 1.18 1.04 1.02 0.98 0.96
15 0.95 1.12 1.02 1.00 0.97 0.96
20 0.95 1.12 1.02 1.00 0.97 0.96

Table 3.2: The average RMCS on testing points over 7 different splits of the original
data set in Fig. 3.1.
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Figure 3.1: The original intensity (blue curve), the posterior mean (red curve), the posterior
median (black curve), the 95% hdi interval of the estimated intensity illustrated by the
dotted green lines and the Haar-Fisz estimator (cyan curve). The rug plot on the bottom
displays the 3590 event times.
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Proposed BART Algorithm
Number
of trees

AAE for
Posterior
Mean

AAE for
Posterior
Median

RISE for
Posterior
Mean

RISE for
Posterior
Median

Dg Dl DLPO

3 308.87 320.84 603.54 633.48 54095.1 54090 -339.7
4 287.89 283.03 580.69 587.08 54096.5 54090 -368
5 289.27 281.13 580.55 586.24 54098 54088.4 -352.5
7 281.59 274.88 588.7 592.11 54098 54082.7 -263.5
8 280.62 274.07 588.73 591.29 54097.9 54079.5 -261.5
9 282.78 276.99 593.93 595.23 54096.9 54075.2 -327.9
10 283.79 279.07 593.95 595.41 54095.6 54071.6 -322.6
20 297.21 287.86 599.77 595.04 54082.9 54029.7 -436

Table 3.3: Average Absolute Error and Root Integrated Square Error for various
number of trees for the data in Fig. 3.1.

Proposed BART Algorithm
Number of
trees

AAE for
Posterior
Mean

AAE for
Posterior
Median

RISE for
Posterior
Mean

RISE for
Posterior
Median

4 144.48 139.58 181.21 174.82
5 144.55 139.02 180.74 176.19
7 124.53 123.2 175.74 172.4

Table 3.4: Average Absolute Error and Root Integrated Square Error for the data
in Fig. 3.1 without considering points close to steps.

Haar-Fisz Algorithm
AAE RISE
141.95 192.6

Table 3.5: Average Absolute Error and Root Integrated Square Error for Haar-Fisz
estimator for the data in Fig. 3.1 without considering points close to steps.

Haar-Fisz Algorithm
AAE RISE
272.3 476.9

Table 3.6: Average Absolute Error and Root Integrated Square Error for Haar-Fisz
estimator for the data in Fig. 3.1.
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3.3.2 Two-dimensional Poisson process with stepwise inten-
sity function

To demonstrate the applicability of our algorithm in a two-dimensional setting,
Figures 3.2-3.3 and Tables 3.7-3.9 reveal that our algorithm outperforms kernel
smoothing and inference with spatial log-Gaussian Cox processes for stepwise inten-
sity functions. We run 3 parallel chains of the same length for 100000 iterations for
3-6 trees. The convergence criteria indicate convergence of the simulated chains for
the majority of points. As may be expected, the simulation study shows that points
close to jumps are estimated with less reliability. The algorithm converges less well
at these points, as demonstrated by the Gelman-Rubin diagnostic (see Appendix
A.5). The diagnostics Dg, Dl and DLPO obtain their highest values for three trees,
respectively. The diagnostics indicate that small ensembles of trees can provide a
good estimate of the intensity.
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(b) Realization of Process consisting of 5579 points

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

1000

3000

5000

7000

9000

11000
PMean

(c) Posterior Mean

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

1000

3000

5000

7000

9000

11000
PMedian

(d) Posterior Median

Figure 3.2: Original Intensity, posterior mean and posterior median for 4 trees.
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Figure 3.3: Kernel estimator and inference with spatial log-Gaussian Cox processes.

Proposed BART Algorithm
Number of
trees

AAE for
Posterior
Mean

AAE for
Posterior
Median

RISE for
Posterior
Mean

RISE for
Posterior
Median

Dg Dl DLPO

3 224.1 230.3 419.2 453.7 87227.2 87232.3 505.1
4 208.7 213 410.2 447.9 87223.7 87230.5 491.2
5 216.8 212.9 389.5 410.9 87211.6 87220.6 406
6 228.9 221.9 395.8 412.8 87197.5 87214.7 463.9

Table 3.7: Average Absolute Error, Root Integrated Square Error and diagnostics
for various trees for the data in Figure 3.2.

Kernel Smoothing
Bandwidth (sigma) AAE RISE
0.027 763.8 1041.3
0.038 662.7 956.8
0.039 (LCV) 655.9 954.7
0.047 636.7 960.6
0.067 672.8 1042.5

Table 3.8: Average Absolute Error and Root Integrated Square Error for fixed band-
width estimators for the data in Figure 3.2.

Inference with spatial log-Gaussian Cox processes
grid AAE RISE
10× 10 568.4 750.9
20× 20 678 953

Table 3.9: Average Absolute Error and Root Integrated Square Error with LGCP
for the data in Figure 3.2.
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3.3.3 Inhomogeneous three-dimensional Poisson process with
Gaussian intensity

Our first example for multidimensional intensities is a three-dimensional Poisson
process with intensity λ(x) = 500exT x for x ∈ [0, 1)3. We generated a realization of
1616 points via thinning. We run 3 parallel chains of the same length for 100000
iterations for 3-10 trees and 30000 iterations for 12 trees. Tables 3.10 and 3.11
illustrate the statistics of our algorithm and kernel smoothing. Figures 3.4 and 3.5
show our estimators and the kernel estimator with h=0.073 for 8 Trees and 10 Trees
with fixed third dimension (x[3]) at 0.4 and 0.8, respectively.

The AIC diagnostics Dg, Dl and DLPO get their highest values with 4 trees,
respectively. We observe that the diagnostic Dl slightly differs between 4 and 8
trees. The diagnostic Dg is similar between 4 and 5 trees. The estimate of the
average logarithm of Poisson process likelihood does not change significantly from 4
trees to 12 trees. Specifically, we observe its maximum equal to 10536.3 at 12 trees,
while its minimum to 10531.9 at 4 trees. In addition, the estimated average number
of leaves in a tree of an ensemble is about 3 for 4 − 12 trees. That explains why
we observe higher values of diagnostics for a small number of trees. The metrics
AAE and RISE are optimised with 12 trees. However, it should be noted that only
small variations in the metrics are seen between 4 and 12 trees. The diagnostics
provide evidence that increasing the number of trees does not improve the fit of the
proposed model.

Proposed BART Algorithm
Number
of
trees

AAE for
Mean

AAE for
Median

RISE for
Mean

RISE for
Median

Dg Dl DLPO

4 247.6 254.9 360.7 376.3 20993.7 21040.6 -1409
5 250.2 258.3 364.3 380.4 20992.1 21039.8 -1492
6 247.6 254.7 360.8 375.4 20979.5 21038.6 -1529
8 234.8 239.4 341 352.4 20938.6 21032.8 -1515
10 226.8 229.4 330.5 338.5 20883 21026.9 -1539
12 221.6 222.3 320.6 326.4 20810.4 21020.7 -1609

Table 3.10: Average Absolute Error, Root Integrated Square Error and diagnostics
for various number of trees.
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Kernel Smoothing
h AAE RISE
0.02 1483.3 2105.1
0.053 480.8 667.5
0.073 (LCV) 415.86 645.16
0.08 417.7 661.4
0.085 423.2 676.2
0.1 450.3 727.6
0.3 890.4 1236

Table 3.11: Average Absolute Error and Root Integrated Square Error for various
isotropic variance matrices.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

500
1000
1500
2000
2500
3000
3500
4000

Lambda

(a) Original Intensity

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x[1]

x[
2]

100
600
1100
1600
2100
2600
3100

kernel

(b) Kernel Estimator with h=0.073

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

500
1000
1500
2000
2500
3000
3500
4000

PMedian

(c) Posterior Median for 8 Trees

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

500
1000
1500
2000
2500
3000
3500
4000

PMedian

(d) Posterior Median for 10 Trees

Figure 3.4: Kernel estimator and Posterior Median for 8 and 10 Trees with x[3] = 0.4.
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Figure 3.5: Kernel Estimator and Posterior Median for 8 and 10 Trees with x[3] = 0.8.

3.3.4 Inhomogeneous five dimensional Poisson process with
sparsity assumption

Here, we demonstrate the performance of our algorithm to detect the dimensions
that contribute most in the intensity of s ∈ S in a noisy environment. Consider
a five dimensional inhomogeneous Poisson process with intensity function of x =
(x1, x2, x3, x4, x5) ∈ [0, 1)5 depending on 3 of 5 dimensions:

λ(x) = (2� (x1 < 0.2) + 10� (x1 ≥ 0.2)) ∗ (3� (x2 < 0.5) + 15� (x2 ≥ 0.5))

∗ (3� (x3 < 0.8) + 30� (x3 ≥ 0.8))

We generate a realization of 669 points via thinning. We run 3 parallel chains of
the same length for 100000 iterations for 4-8 trees, 50000 iterations for 10 trees,
30000 iterations for 12 trees and 10000 iterations for 15 trees. The convergence
criterion is smaller than 1.1 for the majority of testing points over all numbers of
trees considered.

Table 3.12 shows the metrics and diagnostics Dg and Dl of the estimated intensity
over various numbers of trees. The diagnostics Dg and Dl obtain their highest values
with 4 trees, and the diagnostic Dl shows only small differences between 4 and 5
trees. We note that (i) the average number of leaves in a tree of the ensemble is
about 2.2 for 4-5 trees, and (ii) the estimated logarithm of Poisson process likelihood
for 4 and 5 trees are 4271.5 and 4271.8, respectively. The diagnostic DLPO gets its
highest value with 5 trees. The p-thinning approach confirms the diagnostics, and
indicates that increasing the number of trees does not improve the fit of the proposed
model to the data.
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Table 3.16 demonstrates the frequency of times we meet each dimension in the
decision rules of a tree. Table 3.15 shows how likely each dimension is to be involved
in the root’s decision rule. The results illustrate that the important covariates x1,
x2 and x3 are more likely to be involved in the decision rules of a tree than the
noisy dimensions x4 and x5. That indicates the algorithm prioritizes the dimensions
that contribute most to the intensity. Figure 3.6 shows that the mean of the poste-
rior marginal intensities are similar to the expected marginal intensities given that
{xi}5i=1 are uniform independent covariates.

Tables 3.12, 3.13 and 3.14 show that our algorithm outperforms kernel smoothing
and the maximum likelihood approach considering linear conditional intensity as
expected. The ability of our method to identify important features demonstrates an
important advantage over other procedures.

Proposed BART Algorithm
Number
of trees

AAE for
Mean

AAE for
Median

RISE for
Mean

RISE for
Median

Dg Dl DLPO

4 48.36 45.47 159.95 170.35 8510.1 8525.4 -485.9
5 49.18 44.54 158.82 169.07 8486.1 8520.9 -467.1
6 50.59 45.05 161.36 170.61 8462.1 8519 -477.4
8 56.06 47.94 162.56 164.46 8349 8511.8 -490.8
10 61.55 52.23 169.72 166.62 8141.8 8505.5 -503.1
12 67.01 57.06 180.53 175.23 7774.7 8499.8 -522.2
15 75 65.06 192.88 181.03 6813.1 8490 -500.2

Table 3.12: Average Absolute Error, Root Integrated Square Error and diagnostics
for various number of trees in the case of Inhomogeneous five dimensional Poisson
process with sparsity assumption.

Kernel Smoothing
Bandwidth (sigma) AAE RISE
0.121 (LCV) 407.1 888.1

Table 3.13: Average Absolute Error and Root Integrated Square Error for fixed
bandwidth estimators in the case of Inhomogeneous five dimensional Poisson process
with sparsity assumption.

Linear conditional intensity
AAE RISE
654.2 1076.5

Table 3.14: Average Absolute Error and Root Integrated Square Error for linear
conditional intensity in the case of Inhomogeneous five dimensional Poisson process
with sparsity assumption.
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(a) The posterior mean of λ(x1) (red line; 95% CI
(green line)) and the true expected value of λ(x1)
(black line).
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(b) The posterior mean of λ(x2) (red line; 95% CI
(green line)) and the true expected value of λ(x2)
(black line).

0.0 0.2 0.4 0.6 0.8 1.0

50
0

10
00

15
00

20
00

25
00

(c) The posterior mean of λ(x3) (red line; 95% CI
(green line)) and the true expected value of λ(x3)
(black line).
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(d) The posterior mean of λ(x4) (red line; 95% CI
(green line)) and the true expected value of λ(x4)
(black line).
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(e) The posterior mean of λ(x5) (red line; 95% CI
(green line)) and the true expected value of λ(x5)
(black line).

Figure 3.6: Posterior marginal intensities considering 4 trees.



Proposed BART Algorithm
Number of
trees

x1 x2 x3 x4 x5

4 0.31 0.29 0.34 0.03 0.03
5 0.35 0.29 0.26 0.05 0.06

Table 3.15: How likely each dimension is to be involved in the root’s decision rule.

Proposed BART Algorithm
Number of
trees

x1 x2 x3 x4 x5

4 0.35 0.36 0.37 0.06 0.07
5 0.39 0.34 0.37 0.09 0.10

Table 3.16: The frequency of times we meet each dimension in the decision rules of
a tree.

Proposed BART Algorithm
Number of
trees

Ns = 1 Ns = 32 Ns = 243

4 5.40 0.99 0.71
5 5.40 1 0.71
6 5.42 1 0.71
8 5.42 1 0.71
10 5.42 1 0.71
15 5.43 1 0.71

Table 3.17: The average RPS on testing points over 7 different splits of the original
data set in the case of Inhomogeneous five dimensional Poisson process with sparsity
assumption.

Proposed BART Algorithm
Number of
trees

Ns = 1 Ns = 32 Ns = 243

4 0.64 0.95 1
5 0.64 0.95 1
6 0.65 0.95 1
8 0.65 0.96 1.01
10 0.65 0.96 1.01
15 0.65 0.96 1.01

Table 3.18: The average RMCS on testing points over 7 different splits of the original
data set in the case of Inhomogeneous five dimensional Poisson process with sparsity
assumption.
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3.4 Intensity estimation for Real Data
In this section, we first apply our algorithm to real data sets when modelled as
realizations of inhomogeneous Poisson processes in one and two dimensions. To
assess the performance of our algorithm, we break the domain [0, 1)d into equal
volume subareas {Si}NS

i=1 and consider a set {zi} by uniformly sampling points in
the domain [0, 1)d. We compute the AAE of the estimated expected number of
points falling into each of the subareas :

AAE(N̂) =
1

NS

NS∑
i=1

|N̂(Si)−N(Si)| (3.17)

and Root Integrated Square Error (RISE):

RISE(N̂) =

(
1

NS

NS∑
i=1

(N̂(Si)−N(Si))
2

)1/2

, (3.18)

where N(Si) is the actual number of points in Si and

N̂(Si) =

∫
Si

λ̂(s)ds � 1

NSi

∑
zj∈Si

|Si|λ̂(zj) (3.19)

with NSi
being the number of testing points {zj} falling in Si. We apply the metrics

AAE and RISE to compare our intensity estimates of one dimensional processes with
those obtained by applying the Haar-Fisz algorithm for one dimensional data; and
with kernel estimators for two-dimensional data. We observe that our algorithm, the
Haar-Fisz algorithm and the kernel smoothing lead to similar results. As expected,
the reconstructions of the intensity function are less smooth than those derived with
kernel smoothing. The kernel estimator, as well as the bandwidth value given by
likelihood cross-validation were computed using the R package spatstat [Baddeley
and Turner, 2005]. We provide more simulation results in Appendix A.3.

3.4.1 Earthquakes Data

This data set is available online from the Earthquake Hazards Program [Murray and
Svarc, 2017] and consists of the times of 1088 earthquakes from 2-3-2020 to 1-4-2020.
We consider the period from 27-2-2020 to 5-4-2020 to avoid edges. We run 3 parallel
chains of the same length for 100000 iterations for 3-10 trees. The convergence
criteria included in the supplementary material indicate that the considered chains
have converged.

Figure 3.7 presents the Posterior Mean and the Posterior Median for 5 Trees, as
well as the intensity estimate of the Haar-Fisz algorithm applied to the counts in
128 consecutive intervals of equal length. The deterministic discretized intensity of
the R package haarfisz is divided by the duration of an interval. The differences
between both algorithms are due to different assumptions; the Haar-Fisz algorithm
considers the aggregated counts into disjoint subintervals of the domain, while the
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proposed algorithm the times of individual events. The most noticeable difference
is observed between 2020.212 and 2020.213 (69th interval) where we see a jump in
earthquakes from 5 to 33 and again to 7. The Haar-Fisz algorithm detects that peak
as we feed it with that information, while the proposed algorithm does not indicate
a sharp rise in the intensity in that period, treating it as an outlier. The intensity
estimate of the Haar-Fisz algorithm applied in 64 consecutive intervals is closer to
the proposed algorithm (see Figure 3.8), as expected. Similar to coarser binning, the
proposed algorithm is less prone to overfitting to spikes in the data, which get filtered
out. The estimated AAE and RISE demonstrate good performance compared to the
Haar-Fisz method. The simulation results illustrate that our algorithm can track
the varying intensity of earthquakes.

The diagnostics Dg, Dl and DLPO obtain their highest values at 9, 3 and 8 trees,
respectively. The AIC diagnostics values between 3 and 9 trees show only small
variations, we choose 5 trees for the analysis, noting that the results will not vary
significantly for other choices of m in this region.
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(a) Aggregated Earthquakes in 128 consecutive in-
tervals

2020.16 2020.18 2020.20 2020.22 2020.24 2020.26

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

35
00
0

(b) 5 Trees and Haar-Fisz Algorithm

Figure 3.7: Earthquakes Data: The posterior mean (red curve), the posterior median (black
curve), the 95% hdi interval of the estimated intensity illustrated by the dotted green lines
and the intensity estimator of the Haar-Fisz Algorithm illustrated by the blue line. The
rug plot on the bottom displays the event times.
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Figure 3.8: Earthquakes Data: The posterior mean (red curve), the posterior median (black
curve), the 95% hdi interval of the estimated intensity illustrated by the dotted green lines
and the intensity estimator of the Haar-Fisz Algorithm illustrated by the blue line. The
rug plot on the bottom displays the event times.

Proposed BART Algorithm
Number
of trees AAE for Pos-

terior Mean
AAE for
Posterior
Median

RISE
for Pos-
terior
Mean

RISE
for Pos-
terior
Median

Dg Dl DLPO

3 93.8 94.1 106.9 107.1 13570.1 13565.4 -1194.7
4 94 94.1 106.8 107 13570.6 13563.6 -1163.8
5 93.6 94 106.7 107 13570.1 13560.7 -1150.5
6 93.8 94 106.9 107 13571.6 13559.6 -1169.7
8 93.5 94 106.6 107.1 13571.8 13554.9 -1140.2
9 93.4 94 106.7 107.3 13572.1 13552.6 -1192.5
10 93.4 94 106.8 107.3 13571.9 13549.8 -1184.4

Table 3.19: Average Absolute Error, Root Integrated Square Error and diagnostics
for the data in Fig. 3.7.

Haar-Fisz Algorithm
Subintervals AAE RMSE
128 94.1 107.8
64 94 107

Table 3.20: Average Absolute Error and Root Mean Square Error for Haar-Fisz
estimator for the data in Fig. 3.7
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3.4.2 Lansing Data

The lansing data set included in the R package spatstat describes the locations
of different types of trees in the Lansing woods forest. Our attention is restricted
to the locations of 514 maples that are presented with dots in Figures 3.9-3.10.
We run 3 parallel chains of the same length for 200000 iterations for 3-10 trees and
100000 iterations for 12 trees. The diagnostic criteria included in the supplementary
material indicate that the considered chains have converged for the majority of
testing points.

We compare our algorithm to a fixed bandwidth estimator using a Gaussian ker-
nel. Our algorithm and the kernel estimator are consistent in the overall structure.
The differences are due to the different nature of the methods. Given the tree lo-
cations, our algorithm recovers the spatial pattern of trees as rectangular regions of
different intensities (Fig. 3.9), whereas the kernel method produces a continuum with
more localized peaks in space. As expected, the kernel estimator presented in Fig-
ure 3.10 consists of smoother subregions with various intensities. Tables 3.21-3.23
show that our algorithm is competitive to kernel smoothing with fixed bandwidth
chosen with likelihood cross-validation. In contrast to our method, kernel methods
are highly sensitive to parameter (bandwidth) choice.

The diagnostics Dg and Dl obtain their highest values at 3 and 4 trees, respec-
tively.
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Figure 3.9: Posterior Mean and Posterior Median for 5 and 10 Trees
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Figure 3.10: Fixed-bandwidth chosen using likelihood cross-validation.

Proposed BART Algorithm
Number of
trees

AAE for
Posterior
Mean

AAE for
Posterior
Median

RMSE for
Posterior
Mean

RMSE for
Posterior
Median

Dg Dl

3 1.3 1.2 1.7 1.8 5686.5 5705.3
4 1.2 1.2 1.7 1.8 5683.8 5709.5
5 1.2 1.2 1.7 1.7 5672.4 5705.4
7 1.2 1.2 1.7 1.71 5643.5 5702
8 1.2 1.2 1.7 1.7 5634 5707.2
9 1.2 1.2 1.7 1.7 5614.3 5698.1
10 1.2 1.2 1.6 1.7 5596.6 5699.8
12 1.2 1.2 1.7 1.7 5558.2 5692.5

Table 3.21: Average Absolute Error, Root Integrated Square Error with NS = 225
and diagnostics for the data in Fig. 3.9.

Proposed BART Algorithm
Number of
trees

AAE for Pos-
terior Mean

AAE for
Posterior
Median

RMSE for
Posterior
Mean

RMSE for
Posterior
Median

3 0.9 0.9 1.3 1.3
4 0.9 0.9 1.2 1.3
5 0.9 0.9 1.2 1.3
7 0.9 0.9 1.2 1.2
8 0.9 0.9 1.2 1.2
9 0.9 0.9 1.2 1.2
10 0.9 0.9 1.2 1.2
12 0.9 0.9 1.2 1.2

Table 3.22: Average Absolute Error and Root Integrated Square Error with NS =
400 for the data in Fig. 3.9.
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Kernel Smoothing
Bandwidth (sigma) AAE RISE
0.05 (LCV) for NS =
225

1.03 1.42

0.05 (LCV) for NS =
400

0.82 1.13

Table 3.23: Average Absolute Error and Root Integrated Square Error for fixed
bandwidth estimators for data in Fig. 3.10.

3.5 Discussion
In this chapter, we have studied how the Bayesian Additive Regression Trees (BART)
model can be applied to estimating the intensity of Poisson processes. The BART
framework provides a flexible non-parametric approach to capturing non-linear and
additive effects in the underlying functional form of the intensity. Our numerical
experiments show that our algorithm provides good approximations of the intensity
with ensembles of less than 10 trees. This enables our algorithm to detect the
dimensions contributing most to the intensity. The ability of our method to identify
important features demonstrates an important advantage over other procedures.

Our approach enables full posterior inference of the intensity in a non-parametric
regression setting. In addition, the method extends easily to higher dimensional set-
tings. The simulation study on synthetic data sets show that our algorithm can
detect change points and provides good estimates of the intensity via either the
posterior mean or the posterior median. Our algorithm is competitive with the
Haar-Fisz algorithm and kernel methods in one and two dimensions and inference
using spatial log-Gaussian Cox processes. The strength of our method is its per-
formance in higher dimensions, and we demonstrate that it outperforms the kernel
approach for multidimensional intensities. We also demonstrate that our inference
for the intensity is consistent with the variability of the rate of events in real and
synthetic data. The convergence criteria included in Appendices A.3-A.6 indicate
good convergence of the considered chains. We ran each chain for at least 100000
iterations to increase our confidence in the results. However, our algorithm works
well with considerably fewer iterations (around 10000).

The BART model assumes independence of the underlying tree structure. The
alternative method of [Sardy and Tseng, 2004] makes use of a locally dependent
Markov Random Field, and one way of extending our model in this direction is to
consider neighbouring intensities following Chipman et al. [2021].

Our method has only considered the standard priors commonly used in BART
procedures, an interesting avenue of future research would be to implement different
prior assumptions. In addition, we have fixed the parameters for the Galton-Watson
prior on the trees, and further work on sensitivities to hyperparameter selection and
alternative methods for inference of the hyperparameters is of interest. Currently,
our model is limited to non-homogeneous Poisson process and we believe the flexi-
bility of the BART approach could be extended to more general point processes.
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Chapter 4

Axis-alignment effect

In Chapter 3, we have proposed a Metropolis-Hastings within block Gibbs sampler
(Algorithm 4) for inferring the parameters {Λh, Th}mh=1, given a finite realization
of an inhomogeneous Poisson process. A drawback of our proposed algorithm is
its axis-alignment nature; the imposed prior on the trees is a stochastic process
that considers axis-aligned cuts, resulting in partitioning the domain into hyper-
rectangular regions. The simulation studies showed that points close to jumps are
estimated with less reliability, which is expected due to the axis-alignment effect. Ge
et al. [2019]; Fan et al. [2016] emphasize that the axis-aligned nature of the decision
boundaries restricts the model’s flexibility, which may affect the ability to capture
interdimensional dependencies in the domain. Recently, many studies including
[Ge et al., 2019; Fan et al., 2016; Tomita et al., 2020; Rainforth and Wood, 2015;
Rodriguez et al., 2006; Blaser and Fryzlewicz, 2021, 2016] have emerged proposing
methods for dealing with the axis-alignment effects.

Bayesian non-parametric methods have been developed to allow more flexible
non-axis aligned partitioning. Fan et al. [2016] introduced a non-self-consistent
stochastic partition process, named the Ostomachion process (OP), which produces
polygonal partitions on the unit square. To address missing properties, Fan et al.
[2018] introduced a stochastic partition on an arbitrary two-dimensional convex
polygon, named a Binary Space Partitioning (BSP) Tree process. The BSP-Forest,
which is an extension of the BSP-Trees procedure to a higher dimensional space with
all but two cutting hyperplanes parallel to dimensions, was introduced by Fan et al.
[2019]. The Random Tessellation Process (RTP), which considers non-axis-aligned
cuts and divides the space into polytopes, was proposed by Ge et al. [2019]. Ge et al.
[2019] also proposed a random forest of RTPs, named Random Tessellation Forests
(RTFs), by training RTPs independent of each other. Recently, Maia et al. [2022]
considered non-axis aligned cuts of two-dimensional spaces by introducing two new
moves for learning the structure of trees in the standard BART algorithm [Chipman
et al., 2010].

Alternative non-Bayesian methods considering feature rotations from structured
([Rodriguez et al., 2006]) to unstructured ([Blaser and Fryzlewicz, 2021, 2016]) be-
fore building the tree ensemble improved classification performance. Blaser and
Fryzlewicz [2021] emphasize that the majority of rotations do not enhance the per-
formance of the out-of-sample classifier. To construct simple and compact base
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learners for a particular classification task, Blaser and Fryzlewicz [2021] proposed a
technique that favours the most helpful rotations.

Following Blaser and Fryzlewicz [2016], we run the proposed algorithm in Chap-
ter 3 using various rotated versions of a finite realization of an inhomogeneous Pois-
son process to remedy the axis-alignment nature of the proposed algorithm. Specif-
ically, we estimate the intensity at each point as the average mean of the estimates
given by tiny ensembles of trees using the rotations with the higher estimated log-
likelihood, which we name helpful rotations in line with Blaser and Fryzlewicz [2016].
The simulation analysis in two dimensions demonstrates the advantages of consider-
ing helpful rotations in intensities with non-axis-aligned boundaries. Complement-
ing the algorithm using random rotations can outperform the kernel approach for
two-dimensional intensities.

The outline of the chapter is as follows. Section 4.1 introduces our approach for
investigating the advantages of considering various rotated versions of the domain.
Section 4.2 describes an ad-hoc method for estimating the intensity. Sections 4.3
and 4.4 present the application of the new approach to synthetic data and real data
sets, respectively. Section 4.5 provides our conclusions and future work.

4.1 Model

Consider an inhomogeneous Poisson process defined on a d-dimensional domain
S ⊂ R

d, d > 1, with intensity λ : S → R
+. We extend the model 3.1-3.3 introduced

in Chapter 3 by considering a rotated version of the domain S.
To estimate the intensity of the inhomogeneous Poisson process, we use an ensem-

ble of m trees, T = {Th}mh=1. Each tree Th = {Ωht}bht=1 is generated on the randomly
rotated domain SRT independent of the other trees and associated with the rotation
matrix R uniformly sampled over all feasible rotations of Rd, where bh is the number
of terminal nodes in the corresponding tree Th. Each leaf node t corresponds to one
of the subregions of Th, Ωht, which has an associated parameter λht, and hence each
tree Th has an associated vector of leaf intensities Λh = (λh1, λh2, . . . , λhbh).

We model the intensity of s ∈ S as follows,

R ∈ R
d×d ∼ uniformly sampled over all feasible rotations R

d , (4.1)

λ(s) =
m∏

h=1

bh∏
t=1

λ
I(Rs∈Ωht)
ht , (4.2)

Th ∼ heterogeneous Galton-Watson process for a partition of the rotated domain
(4.3)

λht|Th
iid∼ Gamma(α, β), t = 1, . . . , bh, h = 1, . . . ,m (4.4)

Given a fixed number of trees, m, the parameters of the model are thus the
regression trees T = {Th}mh=1, and their corresponding intensities Λ = {Λh}mh=1 and
the rotation matrix R.
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4.2 Ad-hoc Inference Algorithm using helpful rota-
tions

Given a finite realization of an inhomogeneous Poisson process s ∈ S ⊂ R
d, we

introduce an ad-hoc method for estimating the intensity.
Following Blaser and Fryzlewicz [2016], we run Algorithm 4 introduced in Chap-

ter 3 using M various rotated versions of s (see Algorithm 6) with normalized each
dimension of the rotated domain from (0, 1). We use the index r to indicate the
multiple rotations with r = 1, . . . ,M . We estimate the log-likelihod associated to
the rotation matrix Rr, as follows,

l̂r = log

(
1

Nw

Nw∑
w=1

P
(
s|
(
T (w)
r ,Λ(w)

r

)))

where (T
(w)
r ,Λ

(w)
r ) is the sequence of draws after the burn-in period with T

(w)
r =

{T (w)
rh }brhh=1 and Λ

(w)
r = {{λ(w)

rht}brht=1}mh=1.
Let v1, v2, .., vM be a permutation of {1, ..,M} s.t. l̂v1 ≥ l̂v2 ≥ . . . ≥ l̂vM . We

estimate the intensity at each point s as the average mean of the estimates over the
higher ranked rotations in estimated log-likelihood, named helpful rotations,

λ(s) =
1

|SH |
∑
r∈SH

λr(s)

where

λr(s) =
1

Nw

Nw∑
w=1

m∏
h=1

brh∏
t=1

λ
(w)
rht

�

(
Rrs∈Ω(w)

rht

)
(4.5)

and SH = {v1, .., vk} is the set of k helpful rotations.

Algorithm 6 Ad-hoc Method
for r = 1, ..,M do
Rr ∼ uniformly sampled over all feasible rotations
Sample

(
T

(w)
r ,Λ

(w)
r

)
∼ P (Tr,Λr|s,Rr) applying Algorithm 4

Estimate the log-likelihood, l̂r, applying Equation 4.5
end for

4.3 Simulation Analysis

We carried out a simulation study on synthetic data to illustrate the performance of
using helpful rotations to estimate the intensity of two-dimensional inhomogeneous
Poisson processes. To assess the performance of our algorithm, we apply the metrics
AAE and RISE defined in Section 3.3. We compare the results of our algorithm
with fixed-bandwidth estimators by choosing a Gaussian kernel and finding the
bandwidth via likelihood cross-validation (LCV).
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RISE AAE
kernel (LCV) 108.1 80.5
unrotated 119.6 90.8
20 helpful rotations 97.2 69.9
5 helpful rotations 88.1 58.9
1 helpful rotation 89.7 58.1

Table 4.1: Average Absolute Error and Root Integrated Square Error for our esti-
mated intensity with and without (unrotated) helpful rotations, and fixed bandwidth
estimators for the scenario of Inhomogeneous Poisson process in a disk with one di-
agonal boundary illustrated in Fig. 4.1

RISE AAE
kernel (LCV) 167.8 104.7
unrotated 208.2 129.5
20 helpful rotations 148.7 86.4
5 helpful rotations 141.6 79.8
1 helpful rotation 155.1 74.3

Table 4.2: Average Absolute Error and Root Integrated Square Error for our esti-
mated intensity with (rotated) and without (unrotated) helpful rotations, and fixed
bandwidth estimators for the scenario of Inhomogeneous Poisson process in a disk
with two diagonal boundaries illustrated in Fig. 4.2

4.3.1 Inhomogeneous Poisson processes in a disk

In the simulation scenarios, we consider that the under consideration domain is a
disk with the centre located at (0.5, 0.5) and a radius equal to 0.5. We rotate the
point patterns around the centre of the disk. The rotation matrix is defined by

R =

[
cos θ − sin θ
sin θ cos θ

]

with θ being uniformly sampled between 0 and 2π. The testing points are a set {zi}
defined by uniformly sampling points in the disk.

We run Algorithm 6 using 150 random rotations for inhomogeneous Poisson
processes, illustrated in Figures 4.1-4.2. We run 3 parallel chains of the same length
for 20000 iterations for 5 trees for each rotation. The criterion indicates convergence
of the simulating chains for all randomly chosen rotations for both scenarios.

Figures 4.3-4.4 illustrate the twenty helpful rotations in both scenarios. As we
expected, the rotations with the higher estimated log-likelihood are those that align
segments of intensity boundaries with the axes. Figures 4.1-4.2 illustrate that com-
plementing Algorithm 4 with helpful rotations captures the diagonal nature of in-
tensity boundaries with ensembles of just five trees. Considering helpful rotations
improves the metrics and outperforms the kernel estimator (see Tables 4.1-4.2).
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Figure 4.1: Original and estimated intensity for 5 Trees with and without (unrotated)
helpful rotations for the scenario of Inhomogeneous Poisson process in a disk with one
diagonal boundary.
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Figure 4.2: Original and estimated intensity for 5 Trees with and without (unrotated)
helpful rotations for the scenario of Inhomogeneous Poisson process in a disk with two
diagonal boundaries.
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Figure 4.3: The twenty helpful rotations of the point pattern of Inhomogeneous Poisson
process in a disk with one diagonal boundary illustrated in Figure 4.1. The top left is the
best rotation, and the bottom right is the 20th.
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Figure 4.4: The twenty helpful rotations of the point pattern of Inhomogeneous Poisson
process in a disk with two diagonal boundaries illustrated in Figure 4.2. The top left is
the best rotation, and the bottom right is the 20th.



RISE AAE
kernel (LCV) 166.2 111.4
unrotated 186.6 117.1
20 helpful rotations 165.5 112
5 helpful rotations 150.7 96.6
1 helpful rotation 153.9 95.3

Table 4.3: Average Absolute Error and Root Integrated Square Error for our es-
timated intensity with and without (unrotated) helpful rotations using ensembles
of 5 trees, and fixed bandwidth estimators for Inhomogeneous Poisson process in a
square illustrated in Fig. 4.5

RISE AAE
kernel (LCV) 166.2 111.4
unrotated 190.6 123.3
20 helpful rotations 164.3 111.2
5 helpful rotations 151.4 96.1
1 helpful rotation 156.1 100.7

Table 4.4: Average Absolute Error and Root Integrated Square Error for our es-
timated intensity with and without (unrotated) helpful rotations using ensembles
of 7 trees, and fixed bandwidth estimators for Inhomogeneous Poisson process in a
square illustrated in Fig. 4.6

4.3.2 Inhomogeneous Poisson process in a square

We run Algorithm 6 using 100 random rotations for a two-dimensional Poisson
process in a unit square, illustrated in Figure 4.6, considering ensembles of five and
seven trees. We run three parallel chains of the same length for 20000 iterations for
each rotation. The testing points are a set of uniformly sampling 10000 points in
the unit square. The convergence criterion indicates convergence of the simulation
chains for more than 60% and 75% of testing points for all rotations for five and
seven trees, respectively. We observe that increasing the number of trees improves
the convergence of chains for the rotated domains, which is under investigation.

We illustrate the twenty helpful rotations in Figures 4.7-4.8 for ensembles of
five and seven trees, respectively. The rotations that line up intensity boundary
segments with the axes are those with the highest calculated log-likelihood. Using
helpful rotations captures the diagonal nature of intensity boundaries, improves the
metrics, and wins kernel smoothing with edge correction (See Figures 4.5-4.6 and
Tables 4.3-4.4).

4.4 Intensity estimation for Real Data

We apply the rotation approach considering 100 random rotations to the locations
of 514 maples introduced in Subsection 3.4.2, and presented with dots in Figure 4.9.
We run three parallel chains of the same length for 20000 iterations for five trees.
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(h) 1 helpful rotation with 7 trees

Figure 4.5: Estimated intensity of Inhomogeneous Poisson process in a square with diagonal
boundaries for 5 and 7 Trees with and without (unrotated) helpful rotations.
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Figure 4.6: Original intensity of Inhomogeneous Poisson process in a square and kerrnel
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Figure 4.7: The twenty helpful rotations of the point pattern of Inhomogeneous Poisson
process in a square illustrated in Figure 4.6, using ensembles of 5 trees. The top left is the
best rotation, and the bottom right is the 20th best rotation.
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Figure 4.8: The twenty helpful rotations of the point pattern of Inhomogeneous Poisson
process in a square illustrated in Figure 4.6, using ensembles of 7 trees. The top left is the
best rotation, and the bottom right is the 20th best rotation.



RMSE AAE
kernel (LCV) 1.41 1.03
unrotated 1.7 1.24
20 helpful rotations 1.64 1.2
5 helpful rotations 1.66 1.24
10 helpful rotation 1.65 1.21

Table 4.5: Average Absolute Error and Root Integrated Square Error for our esti-
mated intensity with and without (unrotated) helpful rotations using ensembles of
5 trees, and fixed bandwidth estimators with NS = 225 for maples illustrated in
Fig. 4.9

RMSE AAE
kernel (LCV) 1.13 0.82
unrotated 1.24 0.9
20 helpful rotations 1.22 0.88
5 helpful rotations 1.23 0.88
10 helpful rotation 1.23 0.88

Table 4.6: Average Absolute Error and Root Integrated Square Error for our esti-
mated intensity with and without (unrotated) helpful rotations using ensembles of
5 trees, and fixed bandwidth estimators with NS = 400 for maples illustrated in
Fig. 4.9

The diagnostic criteria indicate convergence of the chains for the majority of testing
points.

We compare our intensity estimates with kernel estimators applying a residual
analysis with metrics AAE and RMSE, following the process described in Section 3.4.
Figure 4.9 and Tables 4.5-4.6 show that complementing Algorithm 4 with helpful
rotations derives estimators with smoother boundaries competitive to kernel fixed-
bandwidth estimator and slightly improves the metrics. The point pattern does not
indicate a natural rotation that aligns all the cuts with the axes.

4.5 Discussion

This chapter introduced a novel method to remedy the axis-alignment effect. We
illustrate the effectiveness of the method in training Algorithm 4 using randomly
rotated versions of finite realizations of two-dimensional inhomogeneous Poisson
processes. The simulation analysis on synthetic data illustrates that using up to 20
helpful rotations captures the diagonal nature of boundaries, improves the metrics,
and outperforms the kernel estimators. The simulation analysis using the Lansing
data set demonstrates the random approach makes also smoother the boundaries and
derives estimates similar to kernel smoothing. Future work includes investigating
the rotation approach into higher-dimensional intensities.

Further work in two dimensions includes the Bayesian inference of the rotation
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Figure 4.9: Estimate intensity with and without (unrotated) helpful rotations, and kernel
estimator for maples.



matrix
R =

[
cos θ − sin θ
sin θ cos θ

]
.

That is, to infer the parameters of the model (Λ, T,R) by sampling from the poste-
rior P (Λ, T,R|s). To do that, we implement a Metropolis-Hastings within a block
Gibbs sampler, which requires m successive draws from Th,Λh|T(h),Λ(h),R, s and one
from R|T,Λ, s, where T(h) = {Tj}mj=1,j �=h and Λ(h) = {Λj}mj=1,j �=h. To sample from
P (R|T,Λ, s), we implement a Metropolis-Hastings Algorithm (Algorithm 7). The
transition kernel randomly selects the angle θ, such that θ ∼ U

(
θ(v) − δ, θ(v) + δ

)
,

with θ(v) being the angle associated to the current state v of the chain and δ a tuning
factor, and then rotates the realization s. Further work also includes allowing trees
of the ensemble to be associated with different rotation matrices and investigating
the approach into higher-dimensional intensities.

Barr and Schoenberg [2010] estimated the intensity of an inhomogeneous planar
Poisson process constructing the Voronoi tessellation of a point pattern. They com-
pared the performance of the Voronoi estimator to kernel estimators demonstrating
the advantages of using Voronoi tessellations in some circumstances. Further work
includes considering adaptations of Voronoi tessellation as imposing prior on trees.

Algorithm 7 Metropolis-Hastings Algorithm for sampling from the posterior
P (R|T,Λ, s)

Sample θ∗ ∼ U
(
θ(v) − δ, θ(v) + δ

)
Set θ(v+1) = θ∗ with probability

α(θ(v), θ∗) = min

{
1,

P (θ(v)|θ∗)
P (θ∗|θ(v))

P (s|θ∗, T,Λ)
P (s|θ(v), T,Λ)

}
Otherwise, set θ(v+1) = θ(v).
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Chapter 5

Using a latent Hawkes process for
epidemiological modelling

The novel coronavirus disease (COVID-19) has been declared a Global Health Emer-
gency of International Concern with over 557 million cases and 6.36 million deaths
as of 3 August 2022 according to the World Health Organization. In the absence
of vaccines, countries followed mitigation strategies or countermeasures to prevent
the rapid spread of COVID-19, such as social distancing, quarantine, mask wearing,
and lock-downs.

A large number of studies have been carried out to understand the spread of
COVID-19, forecast new cases and when the peak of the pandemic will occur, and
investigate “what-if-scenarios”. For example, [Ferguson et al., 2020] presented the
results of epidemiological modelling looking at a variety of nonpharmaceutical in-
terventions. Several compartmental models [Zou et al., 2020; Chen et al., 2020;
Wangping et al., 2020; Roques et al., 2020] using ordinary differential equations
(ODE) have been proposed for modelling the spread of COVID-19. Various models
using Hawkes processes [Garetto et al., 2021; Kresin et al.; Escobar, 2020; Chiang
et al., 2021; Browning et al., 2021; Koyama et al., 2021; Bertozzi et al., 2020], widely
used to model contagion patterns, have been introduced as an alternative to ODE
models. Others have used a Poisson autoregression model of the daily new observed
cases [Agosto and Giudici, 2020] and a Bayesian model linking the infection cycle
to observed deaths[Flaxman et al., 2020].

We introduce a novel epidemic model using a latent Hawkes process [Laub et al.,
2015] with temporal covariates for modelling the infections. Unlike other Hawkes
models, we model the reported cases via a probability distribution with a mean
driven by the underlying Hawkes process.

The outline of the chapter is as follows. Section 5.1 introduces the related work,
and Section 5.2 our approach for modelling the spread of an epidemic and estimat-
ing the intensity and the reproduction number. Section 5.3 presents the proposed
inference algorithm for the latent cases and the reproduction number. Sections 5.4
and 5.5 are applications of our proposed algorithm to synthetic and real data sets.
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5.1 Related work

The Hawkes process is a well known self-exciting process in which the intensity
function depends on all previous events assuming infinite population that allow for
parametric or nonparametric estimation of the reproduction number (that is the
expected number of infections triggered per infected individual). Hawkes processes
have been widely used in numerous applications such as social media, criminology
and earthquake modelling. In this section, we present the application of the Hawkes
processes in the modelling of COVID-19.

First, we briefly review basic compartmental models and their connection with
Hawkes process and COVID. The Susceptible-Infected-Recovered (SIR) and Susceptible-
Exposed-Infected-Recovered (SEIR) models are the two basic compartmental epi-
demic models for modelling the spread of infectious disease [Jones, 2007; Zou et al.,
2020]. The SIR model defines three classes of individuals: those susceptible to in-
fection (S), those currently infected (I) and those recovered (R). The SEIR model
involves an additional compartment (E) that models the exposed individuals with-
out having obvious symptoms. For many diseases, including COVID-19, there is an
incubation period during which exposed individuals to the virus may not be as con-
tagious as the infectious individuals. A variant of the SEIR model called SuEIR was
introduced by Zou et al. [2020] for modelling and forecasting the spread of COVID.
The SuEIR compared to SEIR has an additional compartment (u) that models the
unreported cases. Estimates based on compartmental models can be unreliable as
they are highly sensitive to initial conditions and parameters such as transmission
and recovery rates Escobar [2020].

A stochastic formulation of SIR called Stochastic SIR [Allen, 2008] is a point
process having events that are either the recovery times or the infection times of
individuals with exponentially distributed recovery times. Rizoiu et al. [2018] intro-
duced the SIR-Hawkes process (also known as HawkesN), which is a generalization of
the Hawkes process concerning finite population. They showed that the conditional
intensity of the SIR-Hawkes process with no background events and exponential
infectious period distribution is identical to the expected conditional intensity of
Stochastic SIR with respect to the recovery period distribution. The Hawkes pro-
cess with gamma infectious period distribution can approximate stage compartment
models if the average waiting times in the compartments are independent exponen-
tial distributed [Lloyd, 2001; Chiang et al., 2021].

Kresin et al. claim that although the SEIR model is mostly used for COVID
modelling compared to the Hawkes process, a Hawkes model offers more accurate
forecasts. Specifically, they suggest a SEIR-Hawkes model in which the intensity
of newly exposed cases is a function of infection times and size of the population.
Chiang et al. [2021] introduced a Hawkes process model of COVID-19 that estimates
the intensity of cases and the reproduction number. The reported cases are modelled
via a Hawkes process. The reproduction number is estimated via a Poisson regres-
sion with spatial-temporal covariates including mobility indices and demographic
features. Based on the branching nature of the Hawkes process, Escobar [2020] de-
rived a simple expression for the intensities of reported and unreported COVID-19
cases. The key to this model is that at the beginning of a generation the infectious
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will either (1) be registered, (2) not be registered but continue being contagious,
or (3) recover with fixed probabilities. However, we believe that the probability
of remaining contagious and not being registered infectious should be a decreasing
function of time and not fixed.

Garetto et al. [2021] proposed a modulated marked Hawkes process for modelling
the spread of COVID-19 under the impact of countermeasures. Each mark corre-
sponds to a different class of infectious individuals with specific kernel functions.
Three classes of infectious are considered: symptomatic, asymptomatic and super-
spreader, for obtaining the average intensity function and the average total number
of points up to a specific time. Symptomatic people are those who will develop ev-
ident symptoms and by extension they will be quarantined. Asymptomatic people
are those who will not develop strong enough symptoms to be quarantined. Super-
spreaders are individuals who exert a high infection rate but do not get quarantined.
The model estimates the reproduction number taking into account the amount of
recourses employed by the health service to discover the infected population, the
countermeasures, as well as the stages that all infectious go through: random in-
cubation time, presymptomatic period, random disease period and random residual
phase.

Koyama et al. [2021] developed a discrete-time Hawkes model for estimating the
temporally changing reproduction number, and hence detecting the change points
via assuming a negative binomial distribution for the daily cases. Some analysis
such as [Browning et al., 2021; Triambak and Mahapatra, 2021] examined the daily
death data to avoid the issues raised from the reported cases. Browning et al. [2021]
modelled the reported daily deaths using a discrete-time Hawkes process, where the
cases are assumed Poisson distributed. They considered one fixed change point that
breaks the period of analysis into two phases: the initial period where the virus is
spreading rapidly and the period after the introduction of preventative measures.
The model provides accurate predictions for short-time intervals.

In this chapter, we introduce a novel epidemic model using a latent Hawkes
process [Laub et al., 2015] with temporal covariates for modelling the infections.
We model the reported cases via a probability distribution with a mean driven
by the underlying Hawkes process. We propose a Kernel Density Particle Filter
(KDPF) [Sheinson et al., 2014; Liu and West, 2001] for inference of both latent
cases and reproduction number and predicting the new cases in the near future.
It is feasible to employ particle filter type algorithms, like the KDPF, because the
computational effort is linear to the number of infections. Modelling the infections
via a Hawkes process allows us to estimate by whom an infected individual was
infected. We demonstrate the performance of the proposed algorithm on synthetic
data and COVID-19 reported cases in various local authorities in the UK.

5.2 Model

We introduce a novel epidemic model using a latent Hawkes process of unobserved
infections that then trigger a process of reported infection cases.

We focus on an infinite homogeneous population and restrict our attention to
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an epidemic process over a horizon [T0, T ), T0 < T , in which we assume immunity
to re-infection that is a reasonable assumption over the time scales we consider.
We break the horizon [T0, T ) into k subintervals Tj = [Tj−1, Tj) for j = 1, .., k with
Tk = T . We assume that the epidemic is triggered by a set of infectious individuals
at the beginning of the process, the times of their infections denoted by a finite set
H0.

The epidemic process is seen as a counting process N(t) with a set of jump times
T N = {t0 < t1 < t2 < . . .} and intensity given by

λN(t) =
∑
ti∈h0

t

R(t)h(t− ti)

for t > 0 with h0
t = {ti|ti < t}∪H0 [Laub et al., 2015; Shelton et al., 2018] being the

set of all infection events prior to time t. The kernel h(t− ti) represents the relative
infectiousness at time t of an infection at time ti. Under the assumption that the
transition kernel h is a probability density function with non-negative real-valued

support: h : [0,∞) → [0,∞) and
∞∫
0

h(s)ds = 1, R(t) represents the instantaneous

reproduction number that is the average number of newly infected people that each
infected individual would infect if the conditions, such as interventions and control
measures for restriction of epidemic, remained as they were at time t [Cori et al.,
2013].

It is natural to see the reported infections as a counting process M(t) with a set
of jump times T M = {τ1 < τ2 < . . . < τm} and intensity of observed cases at time
τ as a function of the times of infection up to time τ , namely

λM(τ) =
∑
ti∈h0

τ

βg(τ − ti) (5.1)

for τ > 0, where β is the expected number of observed cases at each time τ (also
known as ascertainment rate). The transition kernel g(τ − ti) represents the relative
delay between the infection at time ti and the onset of symptoms at τ . Similar to
the transition kernel of latent cases h, we specify the transition kernel of observed
cases g to be a probability density function with non-negative real-valued support.

Given that the reported cases are usually given on a weekly or daily basis, we
model the observed cases falling in Tn, denoted by Yn, via a distribution G having
mean μn equal to the expected observed cases in Tn given by

μn = β
∑

tw∈[0,Tn)

Tn∫
max(tw,Tn−1)

g(s− tw)ds.

The usual options of G are Negative Binomial (NB) [Koyama et al., 2021; Stocks
et al., 2020] and Poisson distribution [Browning et al., 2021; Cori et al., 2013]. We
model the reproduction number R(t) as a stepwise function having as many weights
as the number of subintervals, that is,

R(t) =
k∏

n=1

R�(t∈Tn)
n ,
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where {Rn} is assumed to be a Markov process. Usually, a random walk on a
logarithmic scale [Storvik et al., 2022] or a normal scale [Koyama et al., 2021] is
imposed as a prior on the weights {Rn}.

The model is described by the equations:

λN(t) = R(t)
∑
ti∈h0

t

h(t− ti), t ∈ [T0, T ) (5.2)

Yn ∼ G with mean E(Yn) = μn, n = 1, .., k (5.3)

R(t) =
k∏

n=1

R�{t∈Tn}
n , t ∈ [T0, T ) (5.4)

{Rn}kn=1 is a Markov process (5.5)

μn = β
∑

tw∈[0,Tn)

Tn∫
max(tw,Tn−1)

g(s− tw)ds, n = 1, .., k . (5.6)

5.3 Inference algorithm
Given a set of observed infections, we seek to infer the counting process N(t) and
the reproduction number R(t).

The proposed epidemic model described by the equations 5.2-5.6 is seen as a
state-space model with a latent state process {Xn : 1 ≤ n ≤ k} and an observed
process {Yn : 1 ≤ n ≤ k}. Each hidden state Xn consists of the weight Rn associated
to Tn and the set of latent cases SN

n falling into Tn. The time-constant parameters
are the parameters associated with the distribution G and the prior imposed on the
weights {Rn}kn=1. We apply a KDPF for inferring the counting process N(t), the
weights {Rn}kn=1, and the time-constant parameters.

We focus on illustrating the performance of our model on COVID-19. As the
COVID-19 reported cases are subject to erroneous observation and for the data we
observe the sample variance is larger than the sample mean, we model the observed
cases Yn via a negative binomial distribution (NB) with mean μn and dispersion
v > 0. We use the following form of the negative binomial distribution

P (Yn|μn, v) =
Γ(Yn + v−1)

Yn!Γ(v−1)

(
1

1 + vμn

) 1
v
(

vμn

vμn + 1

)Yn

with mean E(Yn) = μn and variance var(Yn) = μn(1 + vμn). Before we discuss the
KDPF, we define the transition kernels of the observed and latent cases and the
prior on weights {Rn}kn=1 for the COVID-19. We also suggest a simple method to
initialize H0.

Transition Kernels The dynamics of latent and observed cases are determined by
the generation interval (GI) and incubation period (IP) [Fine, 2003]. The generation
interval is the time interval between the time of infection of the infector (the primary
case) and that of the infectee (the secondary case generated by the primary case).
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The incubation period is the time interval between the infection and the onset of
symptoms in a specific case. Zhao et al. [2021] assume that the GI and IP follow a
gamma distribution. They infer that the mean and SD of GI are equal at 6.7 days
and 1.8 days and those of IP at 6.8 and 4.1 days by using a maximum likelihood
estimation approach and contact tracing data of COVID-19 cases. We follow the
same assumption for the GI (namely, the transition kernel of latent cases is a gamma
density with a mean at 6.7 days and SD of 1.8 days). We model the time interval
between the observed time and actual time of infection as a gamma density with
a mean at 8.8 days and SD of 4.1 days (that is, the transition kernel of observed
cases is a gamma density having mean equal at 8.8 days and SD of 4.1 days). For
the transition kernel of the observed events, we adopt the values inferred by Zhao
et al. [2021] for IP with a slightly increased mean to consider the necessary time for
conducting a test against COVID-19. Figure 5.1 illustrates the transition kernels.
These kernels are a sensible choice to approximately replicate wait times with the
aforementioned expectations and variances.
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Figure 5.1: The generation interval (GI) (black curve) and the period between observed
and actual infection times (red curve).

Set of infectious at the beginning of the process, H0 We adopt a heuristic
approach to initialize H0. The transition kernel of latent cases illustrated in Figure
5.1 shows that a latent case at tw can influence the latent intensity at t if tw has
occurred at most 21 days before t. Otherwise, the influence of tw is negligible.
Therefore, as the history of the process, we consider the latent cases of 21 days/3
weeks before the beginning of the process. The transition kernel of observed cases
shown in Figure 5.1 demonstrates that an event is most likely to be observed seven
days after the actual infection time. Considering the observed cases are daily, we
initialize the history of latent case, H0 by uniformly spreading on the day −i the
number of cases occurred on the day (−i+7) times 1/β. In simulation analysis, we
propose initialization of H0 when we deal with weekly reported cases.

Imposed prior on weights {Rn}kn=1 A geometric random walk (RW) is imposed
as prior on weights {Rn}kn=1 :

logRn = logRn−1 + log εn, εn ∼ Gamma(d, d), n = 2, .., k

R1 ∼ Uniform(α, b).
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We assume that the noise of RW εn has a gamma distribution with equal shape
and rate at d. This induces that the weight Rn is gamma distributed with a mean
equal to Rn−1 and standard deviation Rn−1/

√
d. The stronger fluctuations in the

observed data, the more flexible modelling we need. Smaller values of d have higher
standard deviation and lead to a wider range of possible values of Rn increasing the
flexibility of the model.

5.3.1 Kernel Density Particle Filter

We apply a KDPF (Algorithm 9) for inferring the counting process N(t), the weights
{Rn}kn=1, and the time-constant parameters. The time-constant parameters for mod-
elling COVID-19 infections are the shape d of the noise εn and the dispersion pa-
rameter v.

The KDPF builds on the auxiliary particle filter (APF) [Pitt and Shephard,
1999; Kantas et al., 2015; Doucet et al., 2009] by adding small random perturba-
tions to all the parameter particles to reduce the sample degeneracy by modelling
the time-constant parameters as random quantities and their posterior via a mixture
of normal distributions. We assume independence among the time-constant param-
eters, and, following Sheinson et al. [2014], we use logarithms for the time-constant
parameters, as they have positive support:

p(log dn+1, log vn+1|Y1:(n+1)) = p(log dn+1|Y1:(n+1))p(log vn+1|Y1:(n+1)).

The posteriors p(log dn+1|Y1:(n+1)) and p(log vn+1|Y1:(n+1)) are smoothly approxi-
mated via a mixture of normal distributions weighted by the sample weights wjn

given by

p(log dn+1|Y1:(n+1)) ≈
N∑
j=1

ωjnN (log dn+1|m(L)
j,dn, h

2V
(L)
nd )

p(log vn+1|Y1:(n+1)) ≈
N∑
j=1

ωjnN (log vn+1|m(L)
j,vn, h

2V (L)
nv ),

where N (μ, σ2) is a Gaussian pdf with mean μ and variance σ2. The KDPF uses
a tuning parameter Δ ∈ (0, 1] and two quantities as a function of that parameter:
h2 = 1 − ((3Δ − 1)/(2/Δ))2 and a2 = 1 − h2. The parameter Δ is typically taken
to be between 0.95 and 0.99 for reducing the chance of degeneracy [Sheinson et al.,
2014; West, 1993].

The mean values and the variances of the posteriors of time-constant parameters
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are defined as follows[West, 1993; Sheinson et al., 2014]:

m
(L)
j,dn = a log djn + (1− a)d̄Ln, d̄Ln =

N∑
j=1

wjn log djn

m
(L)
j,vn = a log vjn + (1− a)v̄Ln, v̄Ln =

N∑
j=1

wjn log vjn

V (L)
nv =

V1

V 2
1 − V2

N∑
j=1

ωjn(log vjn − v̄Ln)
2

V
(L)
nd =

V1

V 2
1 − V2

N∑
j=1

ωjn(log djn − d̄Ln)
2,

with V1 =
N∑
j=1

wjn and V2 =
N∑
j=1

w2
jn.

Following Sheinson et al. [2014], we define the initial densities of parameters d
and v to be log-normal:

log d ∼ N (μd, σ
2
d), μd =

log(dmax) + log(dmin)

2
, σd =

log(dmax)− log(dmin)

8

log v ∼ N (μv, σ
2
v), μv =

log(vmax) + log(vmin)

2
, σv =

log(vmax)− log(vmin)

8

considering that dmin ≤ d ≤ dmax and vmin ≤ v ≤ vmax . The transition densities of
the time-constant parameters are given by

p(log dn+1| log dn) ∼ N (log dn+1|a log dn + (1− a)d̄Ln, h
2V

(L)
nd )

p(log vn+1| log vn) ∼ N (log vn+1|a log vn + (1− a)v̄Ln, h
2V (L)

nv ).

The initial density of the hidden process is given by

f(x1|H0) = U (R1;α, b)P (SN
1 |R1,H0),

while the transition density is given by

f(xn|x1:(n−1),H0, d, v) = P (SN
n |Rn, S

N
1:(n−1),H0)P (Rn|Rn−1, d).

U(R1;α, b) denotes that R1 is uniformly distributed within the interval [α, b].

Sampling the latent cases We sample the latent cases SN
n falling into the subin-

terval Tn by applying Algorithm 8, which is a simulation procedure based on the
branching structure of the Hawkes process [Laub et al., 2015]. The proposed algo-
rithm is a superposition of Poisson processes in the interval Tn; the descendants of
each latent event at ti form an inhomogeneous Poisson process with intensity

λi(t) = Rnh(t− ti)

for t > ti and t ∈ [Tn−1, Tn). This induces that:
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Algorithm 8 Sample SN
n |SN

1:(n−1), H0, Rn

1: Input: SN
1:(n−1), H0, Rn

2: Initialize an empty queue: Qt.
3: Qt = {SN

v }n−1
v=n−η with η being the number of former subintervals we consider

(the value of η is determined by the transition kernel of latent cases).
4: while Qt is not empty do
5: Remove the first element ti from Qt.
6: Draw the number of events ni triggered by an event at ti from a Poisson

distribution with parameter λ = Rn

Tn∫
max(ti,Tn−1)

h(s− ti)ds that is the average

number of offsprings generated by an event at ti in Tn.
7: Generate ni events from the truncated distribution h(t) in [max(ti, Tn−1), Tn),

and add the new elements to SN
n and the back of queue Qt.

8: end while
9: Return SN

n .

• The number of events ni triggered by an event at ti in the interval Tn is Poisson
distributed with parameter

λ = Rn

Tn∫
max(ti,Tn−1)

h(s− ti)ds.

• The arrival times of the ni descendants are ti + Ei with Ei being iid random
variables with pdf the truncated distribution h(t) in [max(ti, Tn−1), Tn).

The computational cost of Algorithm 8 is linear to the number of infections

falling into (η + 1) consecutive subintervals, that is O

(
n∑

v=n−η

|SN
v |
)

, with η being

the number of former subintervals that influence the latent cases falling into Tn

determined by the transition kernel of latent cases. The O-notation denotes the
asymptotic upper bound [Cormen et al., 2022]

Who infected whom The Hawkes process is an excellent option for modelling
the evolution of an epidemic due to its mutually exciting nature, making it feasible to
estimate by whom an infected individual was infected. Bertozzi et al. [2020] describe
how we can infer the primary infection i that triggered a secondary infection j using
a self-exciting branching process. The parent of each infection j falling into Tz is
assumed to be sampled from a multinomial distribution parameterized by πj, where
πj = {πji}i∈hj

with

πji =
h(tj − ti)∑

tw∈h0

tP
j

h(tj − tw)

being the probability of secondary infection j having been caused by primary in-
fection i, where hP

j = {i : ti|ti ∈ ∪z
v=z−ηTv, ti < tj}, hj = {i : ti ∈ hP

j } and
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η the number of former subintervals that influence the latent cases falling into Tz

determined by the transmission kernel of latent cases (η = 21 days for COVID-19).
Alternatively, by recording the parent of each latent infection at step 7 of Algorithm
8, the proposed model can show the branching structure of the process. This ap-
proach increases the computational complexity of the algorithm, as more memory
units will be required.

Computational complexity The computational cost of each propagation step
(steps 7 and 12 of Algorithm 9) at state (interval) n is equal to the cost of Al-

gorithm 8 times the number of particles (N), that is O

(
N

n∑
v=n−η

|SN
v |
)

. The cost

of finding weights (steps 8 and 13 of Algorithm 9) at state (interval) n is also

O

(
N

n∑
v=n−η

|SN
v |
)

. Hence, the computational cost of Algorithm 9 over all states

(intervals) is O
(
Nη|T N |

)
. SN

n is the set of latent cases falling into subinterval Tn

and T N = ∪nS
N
n . The algorithm is easily parallelized over N .

Model complexity The set of parameters for inference includes the two time-
constant parameters, d governing the variability of the noise in the reproduction
number and v the dispersion parameter of the observed counts, the latent process,
{SN

n }kn=1, and the steps of instantaneous reproduction number, {Rn}kn=1. There is a
set of model parameters, including the ascertainment rate β, the transition kernels
of latent and observed cases, which we consider as given. The set of infectious
at the beginning of the process, H0, is initialized applying the heuristic approach
described above. We rely on the Bayesian paradigm for regularizing the parameters
for inference.

Fixed-lag smoothing densities Resampling results in replicating samples, and
in the long run results in a lack of diversity called particle degeneracy [Endo et al.,
2019]. As the resampling step leads to path degeneracy, it is difficult to obtain
a good approximation of the smoothing density p(x1:T |y1:T ) for large T via SMC.
Therefore, we use SMC to sample from the fixed-lag smoothing densities with lag L
that is a reasonable approach as the reported cases after n+28 days do not bring any
additional information about the infections of the day n. We apply the multinomial
resampling step when the Effective Sample Size (ESS) is less than the 80% of the
number of particles, to avoid unnecessary resampling steps.

5.4 Simulation Analysis

We carried out a simulation study on synthetic data to illustrate the performance of
the KDPF (Algorithm 9) for inferring the intensity of latent cases, the reproduction
number and the time-constant parameters.

Two different scenarios illustrated in Figure 5.2 were simulated as follows:

87



Algorithm 9 Kernel density particle filter
1: Initialize the parameters {θj1}Nj=1, θj1 = (dj1, vj1) with dmin ≤ d ≤ dmax and vmin ≤ v ≤ vmax:

for j in 1 : N do

log dj1 = N (μd, σ
2
d) with μd =

log dmax+log dmin
2

and σd =
log dmax−log dmin

8

log vj1 = N (μv, σ
2
v) with μv =

log vmax+log vmin
2

and σv =
log vmax−log vmin

8
end for

2: Sample N particles {Xj1}Nj=1, Xj1 =
(
Rj1, SN

j1

)
:

for j in 1 : N do

Rj1 ∼ Uniform(α, b)

SN
j1 ∼ P

(
SN
1 |Rj1,H0

)
using Algorithm 8

end for

3: Find the weights, w̃1 = {w̃j1}Nj=1:
for j in 1 : N do

w̃j1 = P
(
Y1|SN

j1, β,H0, vj1

)
end for

4: Normalize the weights, w1 = {wj1}Nj=1:
for j in 1 : N do

wj1 =
w̃j1

N∑
j=1

w̃j1

end for

5: for n = 1, .., k do

6: for j in 1 : N do

m
(L)
j,dn

= a log djn + (1 − a)d̄Ln, d̄Ln =
N∑

j=1
wjn log djn

m
(L)
j,vn = a log vjn + (1 − a)v̄Ln, v̄Ln =

N∑
j=1

wjn log vjn

mj,dn = adjn + (1 − a)d̄n, d̄n =
N∑

j=1
wjndjn

mj,vn = avjn + (1 − a)v̄n, v̄n =
N∑

j=1
wjnvjn

end for

7: For each particle j, we calculate an estimate of Xj,n+1 called X̃j,n+1 by drawing a sample from P (Xn+1|Xn,H0):
for j in 1 : N do

R̃j,n+1 ∼ P
(
Rn+1|Rjn,mj,dn

)
S̃N
j,n+1 ∼ P

(
SN
n+1|SN

j,1:n, R̃j,n+1,H0

)
using Algorithm 8

end for

8: Find the auxiliary weights, g̃n+1 = {g̃j,n+1}Nj=1:
for j in 1 : N do

g̃j,n+1 = gjnwjnP
(
Yn+1|SN

j,1:n, S̃N
j,n+1, β,H0,mj,vn

)
end for

9: Normalize the auxiliary weights, gn+1 = {gj,n+1}Nj=1:
for j in 1 : N do

gj,n+1 =
g̃j,n+1

N∑
j=1

g̃j,n+1

end for

10: if

(
ESS(gn+1) = 1/

N∑
j=1

g2j,n+1 < 0.8N
)

then resample and form N equally weighted particles, X̄1:n = {X̄i
1:n}Ni=1:

for j in 1 : N do

(i) sample index ij from a multinomial distribution with probabilities gn+1

(ii) X̄
j
1:n = Xij ,1:n

(iii) gj,n+1 = 1
end for

end if

11: Regenerate the fixed parameters:
for j in 1 : N do

log vj,n+1 ∼ N (m
(L)
ij ,vn, h2V

(L)
nv )

log dj,n+1 ∼ N (m
(L)
ij ,dn

, h2V
(L)
nd

)

end for

where V
(L)
nv is the weighted variance of {log vjn}Nn=1 and V

(L)
nd

the weighted variance of {log djn}Nn=1.
12: Using X̄1:n propagate:

for j in 1 : N do

Rj,n+1 ∼ P (Rn+1|Rjn, dj,n+1)

SN
j,n+1 ∼ P

(
SN
n+1|SN

j,1:n, Rj,n+1,H0

)
using Algorithm 8

Set Xj,1:n+1 = (X̄
j
1:n,

(
Rj,n+1, S

N
j,n+1)

)
end for

13: Find the weights, w̃n+1 = {w̃j,n+1}Nj=1:
for j in 1 : N do

w̃j,n+1 =
P

(
Yn+1|SN

j,1:n+1,β,H0,vj,n+1

)

P

(
Yn+1|SN

j,1:n
,S̃N

ij,n+1
,β,H0,mij,vn

)

end for

14: Normalize the weights, wn+1 = {wj,n+1}Nj=1:
for j in 1 : N do

wj,n+1 =
w̃j,n+1

N∑
j=1

w̃j,n+1

end for

15: To draw a sample from P
(
X1:n+1|Y1:n+1

)
. We do resampling with weights {wj,n+1}Nj=1} if resampling was performed at

step 10. Otherwise, we do resampling with weights kj,n+1 ∝ w̃j,n+1gj,n+1.
16: end for



• Scenario A: The process is triggered by 1745 infectious and the times of their
infections, H0 , are uniformly allocated in 3 weeks ([0, 21)) with a day being
the time unit. We generate weekly latent and observed cases according to
the model equations 5.2-5.6 for weeks 1-20 ([21, 161)) given H0, v = 0.014,
d = 14.44, β = 0.5 and R1 = 1.79. We are interested in inferring the latent
cases in weeks 4 − 19 with H0 being the set of times of latent infections in
weeks 1-3. Using the generated observed cases in weeks 2-4, we estimate the
latent infections in weeks 1-3 as follows: The latent cases in the week i are
equal to the number of observed events in the week (i+1) times 1/β, and are
spread uniformly in [(i−1)×7+21, i×7+21) for 1 ≤ i ≤ 3. We assume α = 1,
b = 2, dmin = 10, dmax = 20, vmin = 0.0001 and vmax = 0.5. The ground truth
is characterized by H0 consisting of 4855 seeds, while the estimated seeds are
4228. The observed cases in weeks 4-20 are 17540 (see Figure 5.2).

• Scenario B: The process is triggered by 1176 seeds and generated as described
above. We assume d = 15.28, v = 0.001, β = 0.5, R1 = 1.51, dmin = 10,
dmax = 20, vmin = 0.001, vmax = 0.5, α = 1 and b = 2. The observed cases in
weeks 4-20 are 15448 (see Figure 5.2).

Appendix B contains a third scenario, in which we consider daily latent and re-
ported infections. Here, we focus on Scenarios A and B.
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Figure 5.2: Weekly Observed Data (Scenario A (black line); Scenario B (red line)) plotted
against time.

We deal with 16 hidden states {Xn}16n=1. Each state Xn is associated with the
latent cases falling during the week Tn and the parameter Rn associated with that
week. We infer the latent intensity λN(t) and the weights {Rn}16n=1 as well as the
weekly latent cases via the particle sample derived by drawing samples from the
smoothing density with lag equal to 4.

Figures 5.3 - 5.4 illustrate the estimated latent intensity, the estimated weekly
hidden cases and the estimated weights of the reproduction number for both sce-
narios using 40000 particles. We note that the 99% Credible Intervals (CIs) of
the time-constant parameters include the actual values of the parameters (see Fig-
ure 5.5). Figure 5.6 shows the Effective Sample Size (ESS) for both scenarios using
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40000 particles. The simulation analysis shows that the KDPF approaches well the
ground truth.
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(b) Weekly latent cases.
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(c) Intensity of latent cases.

Figure 5.3: The true (black line) and the estimated weighs {Rn}16n=1, weekly latent cases
and latent intensity (with estimated seeds (posterior median (brown line) ; 99% CI (cyan
line)), and true seeds (posterior median (red line) ; 99% CI (green line))) for Scenario A
plotted against time. The vertical dotted lines show the beginning of each week in the
period we examine.

To confirm the convergence of posterior estimates of weights and weekly hidden
cases concerning the number of particles (N), we find the associated Monte Carlo
Standard Errors (MCSEs) that give a sense of the variability of particle mean per
state. The MCSEs of the average of posterior means of weights and weekly latent
cases are given by

MCSE(R) =
1

16

16∑
i=1

(
var(Ri)

N

)1/2

and

MCSE(Y ) =
1

16

16∑
i=1

(
var(Yi)

N

)1/2

where var(z) is the variance of z and Yi the aggregate latent cases in ith week.
The MCSE verifies the convergence of posterior estimates concerning the number of
particles (see Tables 5.1 - 5.2).

Finally, we compare the performance of the KDPF (Algorithm 9), APF (Algo-
rithm 10), bootstrap filter (BF) (Algorithm 11) and particle marginal Metropolis-
Hastings (PMMH) (Algorithm 12) [Andrieu et al., 2010] for inferring the latent
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Figure 5.4: The true (black line) and the estimated weighs {Rn}16n=1, weekly latent cases
and latent intensity (with estimated seeds (posterior median (brown line) ; 99% CI (cyan
line)), and true seeds (posterior median (red line) ; 99% CI (green line))) for Scenario B
plotted against time. The vertical dotted lines show the beginning of each week in the
period we examine.

intensity λN(t) and the reproduction number R(t) illustrated in a new simulation
scenario C (see Figure 5.7). Scenario C concerns a process triggered by 661 infec-
tious and generated similar to scenario A assuming that α = 0.5, b = 2, d = 15.11,
v = 0.01, R1 = 1.57, dmin = 10, dmax = 20, vmin = 0.0001 and vmax = 0.5. The
time-constant parameters d and v are known for BF and APF. We used 10000 itera-
tions of the PMMH sampler with a burn-in of 5000 iterations. We use APF using 50
particles as an SMC sampler. The average acceptance ratio is about 0.1844 resulting
in a Markov chain that mixes well. For the KDPF, Δ was set to 0.99.

Convergence of the posterior estimates
MCSE N = 20000 N = 30000 N = 40000
R 0.000626 0.000662 0.000668
Y 1.617828 1.554482 1.529521

Table 5.1: MCSEs of posterior means of weights and weekly hidden cases in Scenario
A.
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(d) v for Scenario B.

Figure 5.5: The 99% CIs of time-constant parameters for both scenarios plotted against
subintervals.
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Figure 5.6: The Effective Sample Size (ESS) for both scenarios plotted against subintervals.

We find the Average Absolute Error (AAE) of the computed estimates:

AAE(λ̂N) =
1

Nt

Nt∑
i=1

|λ̂N(xi)− λN(xi)|

AAE(R̂) =
1

16

16∑
i=1

|R̂i −Ri|
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Convergence of the posterior estimates
MCSE N = 20000 N = 30000 N = 40000
R 0.000637 0.000655 0.000629
Y 0.997832 0.993364 0.978517

Table 5.2: MCSEs of posterior means of weights and weekly hidden cases in Scenario
B.

Scenario C
Filter AAE(R̂) RMSE(R̂) AAE(λ̂N) RMSE(λ̂N)
KDPF 0.16 0.22 25.19 73.04
APF 0.16 0.21 24.79 71.56
BF 0.15 0.21 24.7 71.43
PMMH 0.16 0.22 24.87 71.55

Table 5.3: Average Absolute Error and Root Mean Square Error for the reproduction
number and latent intensity in scenario C.

and the Root Mean Square Error (RMSE):

RMSE(λ̂N) =

√√√√ 1

Nt

Nt∑
i=1

(
λ̂N(xi)− λN(xi)

)2

RMSE(R̂) =

√√√√ 1

16

16∑
i=1

(R̂i −Ri)2,

where Nt is the number of test time points xi randomly chosen in the time-horizon we
consider, λ̂N(xi) and λN(xi) the estimated via posterior median and true intensity
at time xi, R̂i and Ri the estimated via posterior median and true reproduction
number in the ith week.

Table 5.3 shows the errors related to KDPF, APF, BF and PMMH for scenario
C. The errors associated with KDPF are comparable to those obtained using BF and
APF for which the time-constant parameters are known. The performance of KDPF
compares well with PMMH, having the advantage that it is a more computationally
efficient algorithm than PMMH.

5.5 Real Data
We apply the KDPF (Algorithm 9) to real cases in the local authorities: Leicester
(4/9/2021 - 24/12/2021) [GOV.UK, 2022d], Kingston upon Thames (11/12/2021 -
8/4/2022) [GOV.UK, 2022c] and Ashford (19/12/2021 - 9/4/2022) GOV.UK [2022a].
Figure 5.8 illustrates the daily and weekly observed cases in the local authorities.
We deal with 16 hidden states {Xn}16n=1 and 16 subintervals {Tn}16n=1; each subin-
terval corresponds to the duration of one week. We infer the latent intensity λN(t),
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(d) The estimated weekly hidden cases.

Figure 5.7: The weekly observed cases, the estimated intensity, the estimated reproduction
number, the estimated weekly hidden cases using KDPF( median (red line) ; 99% CI (cyan
line)), using APF (median (brown line); 99% CI (green dashed lines)), using PMMH
(median (aquamarine line); 99% CI (grey dashed lines)), using BF ( median (blue line);
99% CI (pink dashed lines)) and the true values (black line) in scenario C plotted against
time.



Algorithm 10 Auxiliary particle filter
1: Sample N particles {Xj1}Nj=1, Xj1 = (Rj1, S

N
j1):

for j in 1 : N do

Rj1 ∼ μ(R1)

SN
j1 ∼ P (SN

1 |Rj1,H0)

end for

2: Find the weights, w̃1 = {w̃j1}Nj=1:
for j in 1 : N do

w̃j1 = P (Y1|SN
j1, β,H0, v)

end for

3: Normalize the weights, w1 = {wj1}Nj=1:
for j in 1 : N do

wj1 =
w̃j1

N∑
j=1

w̃j1

end for

4: Estimate P (Y1) : P̂ (Y1) = 1
N

N∑
j=1

w̃j1

5: for n = 1, .., k do

6: For each particle j, we calculate an estimate of Xj,n+1 called X̃j,n+1 by drawing a sample from P (Xn+1|Xn,H0, d):
for j in 1 : N do

R̃j,n+1 ∼ P (Rn+1|Rjn, d)

S̃N
j,n+1 ∼ P (SN

n+1|SN
j,1:n, R̃j,n+1,H0)

end for

7: Find the auxiliary weights, g̃n+1 = {g̃j,n+1}Nj=1:
for j in 1 : N do

g̃j,n+1 = gjnwjnP (Yn+1|SN
j,1:n, S̃N

j,n+1, β,H0, v)

end for

8: Normalize the auxiliary weights, gn+1 = {gj,n+1}Nj=1:
for j in 1 : N do

gj,n+1 =
g̃j,n+1

N∑
j=1

g̃j,n+1

end for

9: Resample and form N equally weighted particles, X̄1:n = {X̄i
1:n}Ni=1:

for j in 1 : N do

(i) sample index ij from a multinomial distribution with probabilities gn+1

(ii) X̄
j
1:n = Xij ,1:n

(iii) gj,n+1 = 1
end for

end if

10: Using X̄1:n propagate:
for j in 1 : N do

Rj,n+1 ∼ P (Rn+1|Rjn, d)

SN
j,n+1 ∼ P (SN

n+1|SN
j,1:n, Rj,n+1,H0)

Set Xj,1:n+1 = (X̄
j
1:n, (Rj,n+1, S

N
j,n+1))

end for

11: Find the weights, w̃n+1 = {w̃j,n+1}Nj=1:
for j in 1 : N do

w̃j,n+1 =
P (Yn+1|SN

j,1:n+1,β,H0,v)

P (Yn+1|SN
ij,1:n

,S̃N
ij,n+1

,β,H0,v)

end for

12: Normalize the weights, wn+1 = {wj,n+1}Nj=1:
for j in 1 : N do

wj,n+1 =
w̃j,n+1

N∑
j=1

w̃j,n+1

end for

13: Estimate P (Yn+1|Y1:n) : P̂ (Yn+1|Y1:n) =
( N∑

i=1
wi,nP (Yn+1|SN

i,1:n, S̃N
i,n+1, β,H0, v)

)(
1
N

N∑
i=1

w̃i,n+1

)
.

14: end for

15: Estimate the marginal likelihood P (Y1:k): P̂ (Y1:k) = P̂ (Y1)
k∏

n=2
P̂ (Yn|Y1:n−1).



Algorithm 11 Bootstrap filter
1: Sample N particles {Xj1}Nj=1, Xj1 = (Rj1, S

N
j1):

for j in 1 : N do

Rj1 ∼ μ(R1)

SN
j1 ∼ P (SN

1 |Rj1,H0)

end for

2: Find the weights, w̃1 = {w̃j1}Nj=1:
for j in 1 : N do

w̃j1 = P (Y1|SN
j1, β,H0, v)

end for

3: Normalize the weights, w1 = {wj1}Nj=1:
for j in 1 : N do

wj1 =
w̃j1

N∑
j=1

w̃j1

end for

4: Estimate P (Y1) : P̂ (Y1) = 1
N

N∑
j=1

w̃j1

5: for n = 2, .., k do

6: Resample and form N equally weighted particles, X̄1:n−1 = {X̄i
1:n−1}Ni=1:

for j in 1 : N do

(i) sample index ij from a multinomial distribution with probabilities wn−1

(ii) X̄
j
1:n−1 = Xij ,1:n−1

(iii) wj,n−1 = 1
end for

end if

7: Using X̄1:n−1 propagate:
for j in 1 : N do

Rj,n ∼ P (Rn|Rj,n−1, d)

SN
j,n ∼ P (SN

n |SN
j,1:n−1, Rj,n,H0)

Set Xj,1:n = (X̄
j
1:n−1, (Rj,n, SN

j,n))

end for

8: Find the weights, w̃n = {w̃j,n}Nj=1:
for j in 1 : N do

w̃j,n = wj,n−1P (Yn|SN
j,1:n, β,H0, v)

end for

9: Normalize the weights, wn = {wj,n}Nj=1:
for j in 1 : N do

wj,n =
w̃j,n

N∑
j=1

w̃j,n

end for

10: Estimate P (Yn|Y1:n−1) : P̂ (Yn|Y1:n−1) = 1
N

N∑
j=1

w̃j,n.

11: end for

12: Resample and form N equally weighted particles, X̄k = {X̄i
k}

N
i=1:

for j in 1 : N do

(i) sample index ij from a multinomial distribution with probabilities wk

(ii) X̄
j
k

= Xij ,k

(iii) wj,k = 1
end for

end if

13: Estimate the marginal likelihood P (Y1:k): P̂ (Y1:k) = P̂ (Y1)
k∏

n=2
P̂ (Yn|Y1:n−1).



Algorithm 12 Particle marginal Metropolis-Hastings sampler
1: Step 1: Initialization,i = 0,

(a) log d0 ∼ N (μd, σ
2
d), log v0 ∼ N (μv, σ

2
v)

(b) - run a SMC algorithm targetting P (x1:n|Y1:n, β,H0, d0, v0)
-Sample X1:n(0) ∼ P̂ (·|Y1:n, β,H0, d0, v0)
-Let P̂ (Y1:n|d0, v0) denote the marginal likelihood estimate.

2: Step 2: for iteration i ≥ 1
(a) log d∗ ∼ N (log di−1, σd∗), σd∗ =

| log di−1−log dmin|
4 ,

log v∗ ∼ N (log vi−1, σv∗), σv∗ =
| log vi−1−log vmin|

4
(b) - run a SMC algorithm targetting P (x1:n|Y1:n, β,H0, d

∗, v∗)
-Sample X∗

1:n ∼ P̂ (·|Y1:n, β,H0, d
∗, v∗)

-Let P̂ (Y1:n|d∗, v∗) denote the marginal likelihood estimate.
(c) wp min

(
1, P̂ (Y1:n|d∗,v∗)

P̂ (Y1:n|di−1,vi−1)

P (d∗)
P (di−1)

P (v∗)
P (vi−1)

P (di−1|d∗)
P (d∗|di−1)

P (vi−1|v∗)
P (v∗|vi−1)

)
set di = d∗, vi = v∗, X1:n(i) = X∗

1:n, P̂ (Y1:n|di, vi) = P̂ (Y1:n|d∗, v∗). Otherwise,
di = di−1, vi = vi−1, X1:n(i) = X1:n(i− 1), P̂ (Y1:n|di, vi) = P̂ (Y1:n|di−1, vi−1).

the reproduction number R(t), and the weekly and daily latent cases via the parti-
cle sample derived by drawing samples from the smoothing density with lag equal
to 4. We demonstrate that the proposed model can be applied to predict the new
observed cases in near future.

We assume that the initial reproduction number during the first week is uniformly
distributed over the interval from 0.5 to 2. Our initialization takes into account
the 90% Confidence Interval published from the government in the UK: 0.9-1.1 on
4/9/2021 and 11/12/2021, 1-1.2 on 19/12/2021 [GOV.UK, 2022b]. We also assume
dmin = 1, dmax = 10, vmin = 0.0001 and vmax = 0.5.

Figures 5.9 - 5.12 show the estimated latent and observed intensity, the es-
timated weekly and daily hidden cases, the estimated reproduction number, the
time-constant parameters, and the ESS in the local authorities. We illustrate the
intensity of observed cases, approximating via equation 5.1. We note that the esti-
mated latent intensity and the estimated weekly latent cases are in agreement with
the weekly observed cases. According to the analysis, the instantaneous reproduc-
tion number R(t) depicts the pandemic’s development and capture alterations. For
the COVID-19 pandemic, there is a maximum delay of 21 days between the reported
and actual infection times, which provides information regarding the progression of
the epidemic. As a result, estimates have become more uncertain towards the end
of the horizon.

To assess the performance of our algorithm, we compute the mean absolute
percentage error (MAPE) of the computed estimate of weekly observed cases (see
Algorithm 13) :

MAPE(Ŷ ) =
1

16

16∑
i=1

|Ŷi − Yi|
Yi

,

where Yi and Ŷi are the true and estimated weekly observed cases via the posterior
median in week i, respectively. The metric is 1.46%, 1.08% and 2.09% for Ashford,
Leicester and Kingston upon Thames. Figure 5.13 shows the estimated weekly ob-
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Algorithm 13 Estimating the weekly observed cases
1: for n = 1, .., 16 do

2: for j = 1, .., N do

3: Calculate the mean of observed cases in the interval Tn denoted by μj,n.
4: Yj,n ∼ NB(μj,n, vjn).
5: end for

6: Use the sample {Yj,n}Nj=1 to find the posterior median and the 95% CI of the estimated observed cases in Tn.
7: end for

served cases for the local authorities. The analysis demonstrates that our algorithm
provides a good approximation of the weekly reported cases.

We compare the proposed algorithm with two methods of estimating the repro-
duction number. The method suggested by Cori et al. [2013] (EpiEstim) estimates
the reproduction number from incidence time series using a Bayesian framework
with a gamma distributed prior imposed on the reproduction number. An alterna-
tive method suggested by Koyama et al. [2021] is a state-space method for estimat-
ing the daily reproduction number from a time series of reported infections using
a random walk prior to the reproduction number and log-normal distribution as
the distribution of the serial interval (SI). We assume that the mean and standard
deviation of the SI distribution is at 6.9 days and 5.6 days following Zhao et al.
[2021]. We apply EpiEstim by using the gamma and log-normal distribution as the
distribution of SI. Both choices lead to identical results.

Figure 5.14 shows the weekly average of daily estimates of the reproduction
number via posterior median derived by the method of Koyama et al. [2021] and the
posterior medians of R(t) given by EpiEstim and the proposed algorithm following
the course of the pandemic. The method of Koyama et al. [2021] and EpiEstim
provide similar estimates to those of Algorithm 9 most of the time. Koyama et al.
[2021] and EpiEstim do not build a delay between reported and actual infection time
in their models, which is why there are variations in their estimations compared to
our algorithm. Therefore, the reproduction number given by EpiEstim responds
later to changes compared to our estimation. Koyama et al. [2021] shows a bit less
of a time lag, which we conjecture to be due to it working with daily reproduction
numbers and cases (which are being shown averaged in Figure 5.14). In the first
week, the estimates of Koyama et al. [2021] and EpiEstim have essential higher
values than one of the proposed algorithm due to different assumptions about the
initialization of the epidemic.

We also compare the estimated rate of latent cases λN(t) and observed cases
λM(t) with the estimated daily number of events derived by Koyama et al. [2021].
Figure 5.15 shows that the expected daily number of events is almost identical to
λM(t) and in agreement with λN(t) after the end of the 3rd week. The differences
in the first three weeks are due to different initializations of the methods.

Forecasting Using the proposed model, it is also possible to predict the number
of new observed cases in the near future, by fitting the model with data up to week
Tk and forecasting cases for the week Tk+1 using Algorithm 14. To analyse the
performance of this algorithm, we conduct a rolling-window analysis and predict
the observed cases in weeks T11−T17. Table 5.4 shows the estimated numbers in the
local authorities by applying Algorithm 14 and the method introduced by Koyama
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(f) The daily observed cases in Leicester.

Figure 5.8: The daily and weekly observed infections in local authorities plotted against
time.
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(a) The estimated weekly latent cases (poste-
rior median (black line) ; 99% CI (ribbon)),
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(b) The estimated daily latent cases (posterior
median (black line) ; 99% CI (ribbon)), and
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(d) The estimated intensity of latent cases
(posterior median (blue line) ; 99% CI (rib-
bon)) and the estimated intensity of observed
cases (posterior median (red line) ; 99% CI
(ribbon)).
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Figure 5.9: The weekly and daily latent cases, the reproduction number, the latent and
observed intensity and the 99% CIs of time-constant parameters in Ashford plotted against
time. The time interval between two successive pink vertical dashed lines corresponds to
a week.

et al. [2021], assuming that the reproduction number remains at the value obtained
for the last day. Table 5.5 shows the metrics MAPE and AAE of the estimated cases
via posterior median. The empirical coverage probability of our 80% CIs is about
86%. Our estimates are similar to those given by Koyama et al. [2021] most of the
time.
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Authority Week Mean Median 80% CIs True Koyama et al.
Ashford T11 334 301 (149, 452) 612 355

T12 902 748 (266, 1196) 1192 899
T13 2568 2317 (821,3548) 1540 1959
T14 1934 1711 (756, 2650) 1349 1228
T15 1018 917 (465, 1351) 955 1018
T16 626 563 (287, 835) 606 600
T17 375 337 (164, 502) 408 419

Leicester T11 1551 1347 (527, 2171) 1376 1488
T12 1437 1264 (585, 1950) 1256 1393
T13 1095 1000 (508,1480) 1313 1153
T14 1682 1551 (653, 2339) 1403 1333
T15 1505 1356 (606, 2022) 2174 1461
T16 3478 3094 (1253, 4834) 3708 3563
T17 6641 6134 (2699, 9233) 5794 1692

Kingston T11 478 424 (164, 661) 699 624
T12 638 571 (253, 868) 863 504
T13 1148 1046 (441,1586) 1352 1151
T14 2102 1865 (719, 2895) 1765 1959
T15 2298 2001 (871, 3082) 1751 2095
T16 1643 1472 (707,2265) 1165 1530
T17 693 624 (320, 931) 667 722

Table 5.4: The true number of infections in T11 − T17, the posterior median, the
posterior mean and the 80% CIs of the new infections projected by Algorithm 14,
and the predicted infections given by the method of Koyama et al. [2021] using a
rolling-window analysis in local authorities.

Authority MAPE(Alg. 14) AAE(Alg. 14) MAPE(Koyama) AAE(Koyama)
Kingston 0.21 224.7 0.20 227.6
Leicester 0.14 324.3 0.21 777
Ashford 0.28 292.3 0.1 167.1

Table 5.5: The MAPE and AAE of estimated observed cases over next week pro-
jected by Algorithm 14 and the method of Koyama et al. [2021] using a rolling-
window analysis in local authorities .

Algorithm 14 Predicting the new observed cases in week Tk+1

1: for j = 1, .., N do

2: Rj,k+1 ∼ P (Rk+1|Rj,k, djk)

3: SN
j,k+1 ∼ P (SN

k+1|S
N
j,1:k, Rj,k+1,H0)

4: Calculate the mean of observed cases in the interval denoted by μj,k+1.
5: Yj,k+1 ∼ NB(μj,k+1, vjk).
6: end for

7: Use the sample {Yj,k+1}Nj=1 to find the posterior mean, the posterior median and the 80% CI of the estimated observed cases in
Tk+1.
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(b) The estimated daily latent cases (posterior
median (black line) ; 99% CI (ribbon)), and
the daily observed cases (cyan line).
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Figure 5.10: The weekly and daily latent cases, the reproduction number, the latent and
observed intensity and the 99% CIs of time-constant parameters in Kingston upon Thames
plotted against time. The time interval between two successive pink vertical dashed lines
corresponds to a week.

5.6 Discussion

In this chapter, we introduce a novel epidemic model using a latent Hawkes process
with temporal covariates. Unlike other Hawkes models, we model the infections via
a Hawkes process and the aggregated reported cases via a probability distribution G
with a mean driven by the underlying Hawkes process. The usual options of G are
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Figure 5.11: The weekly and daily latent cases, the reproduction number, the latent and
observed intensity and the 99% CIs of time-constant parameters in Leicester plotted against
time. The time interval between two successive pink vertical dashed lines corresponds to
a week.

Negative Binomial and Poisson distribution. We propose a KDPF for inferring the
latent cases and the instantaneous reproduction number and for predicting the new
observed cases in the near future. We demonstrate the performance of the proposed
algorithm on COVID-19.

The analysis of synthetic data shows that KDPF compares well with PMMH,
having the advantage that it is a more computationally efficient algorithm than
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Figure 5.12: The Effective Sample Size (ESS) in local authorities plotted against subinter-
vals.
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Figure 5.13: The estimated weekly observed cases (posterior median (red line) ; 99% CI
(ribbon)) and the actual cases (black line) plotted against time.
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Figure 5.14: The weekly average of daily estimates of the reproduction number via posterior
median derived by the method of Koyama et al. [2021] (blue line) and the posterior medians
of R(t) given by EpiEstim (brown line) and our proposed algorithm (red line) plotted
against time.
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Figure 5.15: The estimated daily number of events derived by the method of Koyama et al.
[2021] (brown line), the estimated latent intensity (posterior median (blue line) ; 99% CI
(ribbon)) and the estimated intensity of observed cases (posterior median (red line) ; 99%
CI (ribbon)) plotted against time.



PMMH. We also demonstrate that our predicted new cases, and our inference for the
latent intensity, the daily and weekly hidden cases are consistent with the observed
cases in various local authorities in the UK. The simulation analysis shows that the
proposed algorithm provides comparable estimates of the observed case fluctuations
compared to the method introduced by Koyama et al. [2021]. The method of Koyama
et al. [2021] and EpiEstim provide similar estimates of the reproduction number to
the proposed algorithm.

The simulation analysis shows that working with daily reported infections leads
to better ESS using a smaller number of particles, as the data spikes are reduced.
According to Cori et al. [2013], the estimates of the instantaneous reproduction
number are expected to be affected by the selection of the time window size. Large
sizes result in more smoothing and reductions in statistical noise, whereas small
sizes result in faster detection of transmission changes and more statistical noise.
Cori et al. [2013] suggests an appropriate way of choosing the time window size. We
have selected a weekly time window to analyse the real data in line with Cori et al.
[2013].

Uncovering disease dynamics and tracing how and by whom an infected individ-
ual was infected is challenging due to unobservable transmission routes [Yang and
Zha, 2013; Kim et al., 2019]. Modelling the infections via a Hawkes process allows
us to model infection dynamics.

Isham and Medley [1996]; Wallinga et al. [1999]; Farrington et al. [2001] contend
that it is necessary to account for individual heterogeneities while modelling the
transmission of an infectious disease. Individuals vary in their tendency to interact
with others; personal hygiene is a key factor in the propagation of diseases; individ-
uals’ community structure and location might be significant in spreading epidemics.
The simplest assumption of individual heterogeneity is that individual sociability
varies with the age.

The proposed epidemic model can be viewed as a new approach in deriving
epidemic models that consider individual heterogeneities and provide insight into
underlying dynamics. In the next chapter, we extend the proposed model by taking
into account a finite population and the individual heterogeneity in age groups and
using a multidimensional Hawkes process for modelling the infection cases.
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Chapter 6

Age-stratified epidemic model using
a marked latent Hawkes process

Modelling the spread of an infectious disease must take into account the mechanism
of its transmission, the individual heterogeneities, and the nature and duration of
interactions among the population [Isham and Medley, 1996; Wallinga et al., 1999;
Farrington et al., 2001].

Cevik and Baral [2021] emphasize the importance of considering individual and
network heterogeneity in modelling and setting specific mitigation strategies for
respiratory pandemics. The Public Health England group [PHE-Group, 2020], Cevik
et al. [2021]; Lemieux et al. [2021] indicate the connection of COVID-19 risk with
socioeconomic inequalities, including occupation, crowded housing, job insecurity
and poverty. Long-term-care facilities such as nursing homes and homeless shelters
saw an increased infection rate [Cevik et al., 2021; Lemieux et al., 2021]. People
working in public-facing occupations classified as social workers, people working in
hospitality and people facing the greatest socioeconomic deprivation had a higher
risk of getting infected [Cevik et al., 2021; PHE-Group, 2020].

There are several proposed epidemic approaches built on basic compartmen-
tal models that take into account population heterogeneity usually focusing on a
population characteristic (e.g., age) and either dividing the population into several
constant-size groups (see, e.g., Gart [1968]) or considering the population as having
a continuous distribution (see, e.g., Novozhilov [2008]). Moreno et al. [2002] con-
sidered the susceptible-infected-recovered (SIR) model on complex heterogeneous
networks with predefined connectivity distribution to understand the epidemics in
complex networks; They showed that the large connectivity fluctuations strengthen
the incidence of epidemic outbreaks. Novozhilov [2008] formulated a SIR model
with an explicit form of a nonlinear transmission function modelling the heterogene-
ity. Gomes et al. [2022], considering the basic susceptible-exposed-infected-recovered
(SEIR) model and continuous distribution of individual susceptibility or exposure
to infection, showed that “individual variation in susceptibility and exposure can af-
fect basic metrics such as herd immunity threshold (HIT)”. Tkachenko et al. [2021]
adopted a generalized version of the heterogeneous well-mixed theory in the spirit
of Moreno et al. [2002], grouping individuals into subpopulations with similar social
and biological heterogeneity in their susceptibilities to infection, and suggested the
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significant role of heterogeneity in finding basic epidemic metrics, such as HIT, and
modelling the epidemic dynamics using data for the COVID-19.

Diseases are often spread via social contacts. This induces that the rate at
which a disease is spread is dependent on the number of contacts between infectious
and susceptibles. Empirical studies (e.g. Mossong et al. [2008]; Leung et al. [2017];
de Waroux et al. [2018]; Béraud et al. [2015]) quantified via matrices, known as
contact matrices, the contact patterns relevant for infections transmitted by the
respiratory or close-contact route in several countries.

Individuals vary in their tendency to interact with others; personal hygiene is
a key factor in the propagation of diseases; individuals’ community structure and
location might be significant in spreading epidemics. The simplest assumption of
individual heterogeneity is to consider that contact rates vary with only one char-
acteristic of an individual, such as age. Age as behavioural and physiological factor
is highly correlated to the risk of infection in many diseases like influenza-like dis-
eases [Eames et al., 2012; Apolloni et al., 2013; Luca et al., 2018; Worby et al.,
2015], pertussis [Rohani et al., 2010], tuberculosis [Arregui et al., 2018; Guzzetta
et al., 2011], varicella [Marangi et al., 2017] and COVID-19 [Davies et al., 2020].
Understanding the impact of age on the transmission of disease is critical for de-
termining and implementing social-distancing and interventions, especially closing
schools [Cauchemez et al., 2008; Hens et al., 2009; Davies et al., 2020].

Wallinga et al. [2006] showed that school-aged children and young adults are
more likely to get infected and contribute most to the spread of infection due to
their high number of contacts. The 65 study participants of Edmunds et al. [1997]
showed that the mean age of contacts increased with the age of participants, and
older participants (≥ 40 years) had more contacts with older adults and a larger
variability in the age of their contacts than younger participants (< 40 years).

Balabdaoui and Mohr [2020] have proposed a compartmental model to capture
the dynamic of highly age-sensitive epidemics and evaluate the effect of social contact
patterns on a load of hospitals and their intensive care units. Stocks et al. [2020] have
introduced a model selection process using transmission models, subdividing the
population into age classes. Pellis et al. [2020] have also suggested a mathematical
approach to select between age and household structure in designing a model for an
initial, rapid assessment of potential epidemic severity.

The epidemic model introduced in Chapter 5 can be viewed as an alternative
approach in deriving epidemic models that consider individual heterogeneities and
provide insight into underlying dynamics. Here, we extend that model by consid-
ering a finite population and the individual heterogeneity in age groups by using
a multidimensional Hawkes process for modelling the infections. The aggregated
reported cases per age group, in turn, have a probability distribution with a mean
driven by the underlying Hawkes process. We apply a KDPF for inferring the la-
tent infections and the instantaneous reproduction number for each age group and
for forecasting the epidemic’s trajectory in the near future. We demonstrate the
performance of the proposed model on COVID-19 data in several London boroughs
published by the government in the UK using the empirical contact matrix derived
from Jarvis et al. [2020] within the framework of the latent multidimensional Hawkes
process.
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The outline of the chapter is as follows. Section 6.1 introduces the novel age-
stratified epidemic model. Section 6.2 discusses the proposed inference algorithm.
Sections 6.3 and 6.4 are applications of the proposed algorithm on synthetic and
COVID-19 data.

6.1 Model

We introduce a novel age-stratified epidemic model by extending the epidemic model
5.2-5.6 considering a finite population stratified by a finite set of age bands, denoted
by A.

The epidemic process is seen as a marked counting process N(t) with a set of
jump times T N = {t0 < t1 < t2 < . . .} and a set of associated age groups, AN = {ai}
where ai ∈ A is the age group of infection at time ti. The intensity of latent infections
in age group a ∈ A at time t is given by

λN(t, a) =
St,a

Na

γ(t, a)
∑
ti∈h0

t

h(t− ti)maai

for t > T0 with St,a being the number of susceptibles in age group a at time t, γ(t, a)
being a process dependent on age group a, Na being the size of the population
of age group a and maai being the average number of contacts per unit time of a
person in age group a with people in age group ai. The process γ(t, a) conveys
information about the biological susceptibility of the age group a and offsets the
potential erroneous average number of contacts at time t.

Similar to Chapter 5, we model the observed cases of age a falling in Tn denoted
by Yna via a probability distribution G having mean μna equal to the expected
observed cases of age a in Tn given by

μna = β
∑

tw∈[T0,Tn),aw≡a

Tn∫
max(tw,Tn−1)

g(s− tw)ds.

We model γ(t, a) as a stepwise function having as many weights as the number
of subintervals, that is

γ(t, a) =
k∏

n=1

γ�(t∈Tn)na ,

where {γna}kn=1 is assumed to be a Markov process. The average number of sec-
ondary cases of age a′ ∈ A each infected individual of age a would infect is given
by

Raa′(t) =
St,a′

Na′
γ(t, a′)ma′a

if the conditions remained as they were at t. The instantaneous reproduction number
of age group a is

Ra(t) =
∑
a′

Raa′(t),
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which is the number of newly infected people that each infected individual aged a
would infect if the conditions remained as they were at t. We derive the instan-
taneous reproduction number R(t) as the infected population-weighted average of
Ra(t) at time t.

The age-stratified model is described by the equations:

λN(t, a) =
St,a

Na

γ(t, a)
∑
ti∈h0

t

h(t− ti)maai , t ∈ [T0,T), a ∈ A (6.1)

Yna ∼ G with mean E(Yna) = μna, n = 1, .., k, a ∈ A (6.2)

γ(t, a) =
k∏

n=1

γ�{t∈Tn}na , a ∈ A (6.3)

{γna}kn=1is a Markov process, a ∈ A (6.4)

μna = β
∑

tw∈[T0,Tn),aw≡a

Tn∫
max(tw,Tn−1)

g(s− tw)ds , n = 1, . . . , k, a ∈ A. (6.5)

6.2 Inference algorithm
Given a set of observed infections with their associated age groups, we seek to infer
the marked counting process N(t) and the processes {γ(t, a)}a.

Following the inference approach of Section 5.4, the proposed epidemic model
described by equations 6.1-6.5 is seen as a state-space model with a latent state
process {Xn : 1 ≤ n ≤ k} and an observed process {Yn = (Yna)a : 1 ≤ n ≤ k}.
Each hidden state Xn consists of the weights {γna}a associated to Tn and the set
of latent cases SN

n falling into Tn along with their associated age groups AN
n . The

time-constant parameters are the parameters associated with the distribution G and
the prior imposed on the weights {{γna}kn=1}a. We apply the KDPF (Algorithm 16)
for inferring the marked counting process N(t), the weights {{γna}kn=1}a, and the
time-constant parameters.

Similar to Chapter 5, we focus on illustrating the performance of the model on
COVID-19. We model the observed cases Yna via a negative binomial distribution
(NB) with mean μna and dispersion v > 0. The transition kernels are defined in
Section 5.3. Before we proceed with the simulation analysis, we define the prior on
weights {{γna}kn=1}a, an algorithm for sampling the latent cases, the complexity of
the Algorithm 16 and a crude initialization of H0.

Set of infectious at the beginning of the process, H0 We adopt a heuristic
approach to initialize H0. The transition kernel of latent cases illustrated in Figure
5.1 shows that a latent case at tw can influence the latent intensity at t if tw has
occurred at most 21 days before t. Otherwise, the influence of tw is negligible.
Therefore, as the history of the process, we consider the latent cases of 21 days/3
weeks before the beginning of the process. The transition kernel of observed cases
shown in Figure 5.1 demonstrates that an event is most likely to be observed seven
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days after the actual infection time. Considering the observed cases are daily, we
initialize the history of latent cases in age group a, H0a by uniformly spreading on
the day −i the number of cases of age a occurred on the day (−i+7) times 1/β. The
times of their infections at the beginning of the process, H0 is given by the union
of the sets H0a, that is, H0 = ∪aH0a. We denote by AN

0 the age groups associated
with the time infections in H0. In simulation analysis, we propose initialization of
H0 when we deal with weekly reported cases.

Imposed prior on weights {{γna}kn=1}a A geometric random walk (RW) is im-
posed as prior on the weights {{γna}kn=1}a :

log γna = log γn−1,a + log εna, εna ∼ Gamma(d, d), n = 2, .., k, a ∈ A
γ1a ∼ Uniform(α, b), a ∈ A.

We assume that the noise of RW εna has a gamma distribution with equal shape and
rate at d. This induces that the time-varying number γna is gamma distributed with
a mean equal to γn−1,a and standard deviation γn−1,a/

√
d. The stronger fluctuations

in the observed data, the more flexible modelling we need. Smaller values of d have
higher standard deviation and lead to a wider range of possible values of γn−1,a

increasing the flexibility of the model.

Sampling the latent cases and associated age groups We sample the latent
cases SN

n along with their associated age groups AN
n falling into the subinterval Tn

by applying Algorithm 15, which is a simulation procedure based on the branching
structure of the Hawkes process [Laub et al., 2015]. The proposed algorithm is a
superposition of Poisson processes in the interval Tn; the descendants of each latent
event at ti form an inhomogeneous Poisson process with intensity

λi(t) = h(t− ti)
∑
a

γna
St,a

Na

maai

for t > ti and t ∈ [Tn−1, Tn). This induces that:

• The number of events ni triggered by an event at ti in the interval Tn is Poisson
distributed with parameter

λ =

(∑
a

γnaSmax(Tn−1,ti),a

Na

maai

) Tn∫
max(ti,Tn−1)

h(s− ti)ds.

• The arrival times of the ni descendants are ti + Ei with Ei being iid random
variables with pdf the truncated distribution h(t) in [max(ti, Tn−1), Tn).

• Sample the associated age groups w.p. P (a) =

S
max(Tn−1,ti),a

Na
maai

∑
a

S
max(Tn−1,ti),a

Na
maai

, ∀a ∈ A.
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Algorithm 15 Sample SN
n , AN

n |SN
1:(n−1), H0, AN

0 , {γna}a
1: Input: SN

1:(n−1), A
N
1:(n−1), H0, AN

0 , {γna}a
2: Initialize two empty queues: Qt and Qa.
3: Qt = {SN

v }n−1
v=n−η and Qa = {AN

v }n−1
v=n−η with η being the number of former

subintervals we consider (the value of η is determined by the transition kernel
of latent cases).

4: while Qt is not empty do
5: Remove the first element ti from Qt and the first element ai from Qa.
6: Draw the number of events ni triggered by an event i from a Poisson distribu-

tion with parameter λ =

(∑
a

γnaSmax(Tn−1,ti),a

Na
maai

)
Tn∫

max(ti,Tn−1)

h(s− ti)ds that

is the average number of offsprings generated by an event at ti in Tn.
7: Generate ni events from the truncated distribution h(t) in [max(ti, Tn−1), Tn),

and add the new elements to SN
n and the back of queue Qt.

8: Sample the associated age groups w.p. P (a) =

S
max(Tn−1,ti),a

Na
maai

∑
a

S
max(Tn−1,ti),a

Na
maai

, and add

the asociated age groups to AN
n and the back of queue Qa.

9: For each age group a ∈ A, decrease the estimated number of susceptibles aged
a falling into interval Tn, Smax(Tn−1,ti),a, by the number of new infections aged
a generated by the infection event at ti in Tn.

10: end while
11: Return SN

n and AN
n .

The computational cost of Algorithm 15 is O

(
|A|

n∑
v=n−η

|SN
v |
)

with η being

the number of former subintervals that influence the latent cases falling into Tn

determined by the transition kernel of latent cases. Considering a finite population
stratified by age bands A, the cost of Algorithm 15 for sampling the latent cases
falling into the subinterval Tn increases compared to the cost of Algorithm 8, that

is equal to O

(
n∑

v=n−η

|SN
v |
)

, due to additional steps 8 and 9.

Accounting for an infinite population and each person’s age band, step 9 is not
required and the probabilities {P (a)}a∈A are calculated once over all states leading

to the computational cost O
(

n∑
v=n−η

|SN
v |
)

, which is also the cost of sampling latent

cases in an unstructured homogeneously mixing epidemic model (Algorithm 8).

Who infected whom The proposed model can capture the process’ branching
pattern by saving the parent of each latent infection at step 7 of Algorithm 15.
Alternatively, the parent of each infection j aged a falling into Tz is assumed to
be sampled from a multinomial distribution parameterized by πja, where πja =
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{πjia}i∈hj
with

πjia =
h(tj − ti)maai∑

tw∈hP
j
h(tj − tw)maaw

being the probability of secondary infection j aged a having been caused by primary
infection i, where hP

j = {ti|ti ∈ ∪z
v=z−ηTv, ti < tj} and hj = {i : ti ∈ hP

j }.

Computational complexity The computational cost of each propagation step
(steps 7 and 12 of Algorithm 16) at state (interval) n is equal to the cost of Al-

gorithm 15 times the number of particles (N), that is O

(
N |A|

n∑
v=n−η

|SN
v |
)

. The

cost of finding weights (steps 8 and 13 of Algorithm 16) at state (interval) n is

O

(
N

n∑
v=n−η

|SN
v |
)

. Hence, the computational cost of Algorithm 16 over all states

(intervals) is O
(
N |A|η|T N |

)
. SN

n is the set of latent cases falling into subinterval
Tn and T N = ∪nS

N
n . The algorithm is easily parallelized over N .

Accounting for an infinite population and each person’s age band, the computa-
tional cost is O

(
Nη|T N |

)
, which is also the cost of Algorithm 9 for an unstructured

homogeneously mixing epidemic model.

Model complexity The set of parameters for inference includes the two time-
constant parameters, d governing the variability of the noise in the processes γ(t, a),
∀a ∈ A and v the dispersion parameter of the observed counts, the latent infections,
{SN

n }kn=1, and their associated age groups, {AN
n }kn=1 and the steps of processes γ(t, a),

{{γna}kn=1}a∈A. There is a set of model parameters, including the ascertainment rate
β, the transition kernels of latent and observed cases, which we consider as given.
The set of infectious at the beginning of the process, H0, is described applying
the heuristic approach described above. We rely on the Bayesian paradigm for
regularizing the parameters for inference.

6.3 Simulation Analysis

We carried out a simulation study to illustrate the performance of the KDPF (Al-
gorithm 16) for inferring the weights {{γna}kn=1}a, the intensity of latent infections
λN(t, a) and the weekly hidden cases per age group a over various numbers of groups.

The performance of particle filter methods degrades as the model dimension rises
[Beskos et al., 2017; Li et al., 2005; Park and Ionides, 2020]. Particle filters can have
an exponential cost in the dimensionality of the hidden state to be stable [Beskos
et al., 2017]. Increasing the number of age groups raises the dimensionality of the
hidden state and, by extension, the computational resources required to keep the
uniform-in-time convergence results dependent on recent states [Kantas et al., 2015].
A simple approach to mitigate the dimensionality problem would be to consider the
process γ(t, a) = caq(t), where ca is a given constant associated with age group a and
q(t) a random process independent of age groups. However, that approach requires
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Algorithm 16 Kernel density particle filter
1: Initialize the parameters {θj1}Nj=1, θj1 = (dj1, vj1) with dmin ≤ d ≤ dmax and vmin ≤ v ≤ vmax:

for j in 1 : N do

log dj1 = N (μd, σ
2
d) with μd =

log dmax+log dmin
2

and σd =
log dmax−log dmin

8

log vj1 = N (μv, σ
2
v) with μv =

log vmax+log vmin
2

and σv =
log vmax−log vmin

8
end for

2: Sample N particles {Xj1}Nj=1, Xj1 =
(
{γj1a}a, SN

j1, AN
j1

)
:

for j in 1 : N do

γj1a ∼ Uniform(α, β) ∀ age group a(
SN
j1, AN

j1

)
∼ P

(
SN
1 , AN

1 |{γj1a}a,H0, A
N
0

)
using Algorithm 15

end for

3: Find the weights, w̃1 = {w̃j1}Nj=1:
for j in 1 : N do

w̃j1 = P
(
Y1|SN

j1, A
N
j1, β,H0, A

N
0 , vj1

)
=

∏
a P

(
Y1a|SN

j1a, β,H0, A
N
0 , vj1

)
end for

where SN
j1a is the set of latent cases of age a in T N

1 associated to particle j.

4: Normalize the weights, w1 = {wj1}Nj=1:
for j in 1 : N do

wj1 =
w̃j1

N∑
j=1

w̃j1

end for

5: for n = 1, .., k do

6: for j in 1 : N do

m
(L)
j,dn

= a log djn + (1 − a)d̄Ln, d̄Ln =
N∑

j=1
wjn log djn

m
(L)
j,vn = a log vjn + (1 − a)v̄Ln, v̄Ln =

N∑
j=1

wjn log vjn

mj,dn = adjn + (1 − a)d̄n, d̄n =
N∑

j=1
wjndjn

mj,vn = avjn + (1 − a)v̄n, v̄n =
N∑

j=1
wjnvjn

end for

7: For each particle j, we calculate an estimate of Xj,n+1 called X̃j,n+1 by drawing a sample from P (Xn+1|Xn,H0):
for j in 1 : N do

γ̃j,n+1,a ∼ P
(
γn+1,a|γjna,mj,dn

)
∀ age group a(

S̃N
j,n+1, Ã

N
j,n+1

)
∼ P

(
SN
n+1, A

N
n+1|SN

j,1:n, AN
j,1:n, γ̃j,n+1,a,H0, A

N
0

)
using Algorithm 15

end for

8: Find the auxiliary weights, g̃n+1 = {g̃j,n+1}Nj=1:
for j in 1 : N do

g̃j,n+1 = gjnwjnP
(
Yn+1|SN

j,1:n, AN
j,1:n, S̃N

j,n+1, Ã
N
j,n+1, β,H0, A

N
0 ,mj,vn

)

= gjnwjn
∏

a P
(
Yn+1,a|{Sjka}nk=1, β,H0, A

N
0 ,mj,vn

)
end for

where SN
jka is the set of latent cases of age a in Tk associated to particle j.

9: Normalize the auxiliary weights, gn+1 = {gj,n+1}Nj=1:
for j in 1 : N do

gj,n+1 =
g̃j,n+1

N∑
j=1

g̃j,n+1

end for

10: if

(
ESS(gn+1) = 1/

N∑
j=1

gj,n+1 < 0.8N
)

then resample and form N equally weighted particles, X̄1:n = {X̄i
1:n}Ni=1:

for j in 1 : N do

(i) sample index ij from a multinomial distribution with probabilities gn+1

(ii) X̄
j
1:n = Xij ,1:n

(iii) gj,n+1 = 1
end for

end if

11: Regenerate the fixed parameters:
for j in 1 : N do

log vj,n+1 ∼ N (m
(L)
ij ,vn, h2V

(L)
nv )

log dj,n+1 ∼ N (m
(L)
ij ,dn

, h2V
(L)
nd

)

end for

where V
(L)
nv is the weighted variance of {log vjn}Nn=1 and V

(L)
nd

the weighted variance of {log djn}Nn=1.
12: Using X̄1:n propagate:

for j in 1 : N do

γj,n+1,a ∼ P (γn+1,a|γjna, dj,n+1)(
SN
j,n+1, A

N
j,n+1

)
∼ P

(
SN
n+1, A

N
n+1|SN

j,1:n, AN
j,1:n, {γjna}a,H0, A

N
0

)
using Algorithm 15

Set Xj,1:n+1 = (X̄
j
1:n,

(
{γj,n+1,a}a, SN

j,n+1)
)

end for

13: Find the weights, w̃j,n+1 = {w̃j,n+1}Nj=1:
for j in 1 : N do

w̃j,n+1 =
P

(
Yn+1|SN

j,1:n+1,AN
j,1:n+1,β,H0,AN

0 ,vj,n+1

)

P

(
Yn+1|SN

j,1:n
,AN

j,1:n
,S̃N

ij,n+1
,ÃN

ij,n+1
β,H0,AN

0 ,mij,vn

)

end for

14: Normalize the weights, wn+1 = {wj,n+1}Nj=1:
for j in 1 : N do

wj,n+1 =
w̃j,n+1

N∑
j=1

w̃j,n+1

end for

15: To draw a sample from P
(
X1:n+1, dn+1, vn+1|Y1:n+1

)
. We do resampling with weights {wj,n+1}Nj=1} if resampling was

performed at step 10. Otherwise, we do resampling with weights kj,n+a ∝ w̃j,n+1gj,n+1.
16: end for



methods for estimating the constants {ca}a determining the biological susceptibil-
ities of age groups. An alternative method would be to see {ca} as time-constant
parameters and infer them via the KDPF. Appendix C includes simulation concepts
considering six and nine age groups with similar biological susceptibilities and in-
dependent processes {γ(t, a)}a on age groups, that is, γ(t, a) = q(t), ∀ age group
a ∈ A.

To confirm the convergence of posterior estimates of weights and weekly hidden
cases per age group concerning the number of particles, we find the associated Monte
Carlo Standard Errors (MCSEs) that give a sense of the average variability of particle
mean per state. The MCSEs of the average of posterior means of weights γa =
{γia}ki=1, denoted γa, and the average of weekly latent cases of age a, Ya = {Yia}ki=1,
denoted Ya are given by

MCSE(γa) =
1

k

k∑
i=1

(
var(γia)

N

)1/2

and

MCSE(Ya) =
1

k

k∑
i=1

(
var(Yia)

N

)1/2

where var(z) is the variance of z and Yia the aggregate latent cases of age a in ith
week.

In the simulation concepts, we adopt the demographic features in Leicester pub-
lished by the Office for National Statistics (ONS) [ONS, 2021]. We deal with 16
hidden states {Xn}16n=1 and 16 subintervals {Tn}16n=1; each subinterval corresponds
to the duration of one week. We infer the latent intensity λN(t, a), the weights
{γna}16n=1 and the weekly latent infections per age group a via the particle sample
derived by drawing samples from the smoothing density with lag equal to 4.

We illustrate a simulation study for 2 age groups. Appendix C.1 also includes a
simulation study for 4 age groups. The simulation analysis showed that the KDPF
(Algorithm 16) approaches well the ground truth. The reported infections carry
information about the progress of the epidemic with a maximum delay of 21 days
between the reported and actual infection time for the COVID-19 pandemic. For
this reason, the uncertainty of estimates increases in the last days. The MCSEs
verified the convergence of posterior estimates concerning the number of particles.

6.3.1 Two age groups

ONS shows that 83.1% of the population is aged under 60 years (hereafter 0-59)
and 16.9% aged 60 years and over (60+). We coarse the age groups of the contact
matrix for reopening schools [Jarvis et al., 2020] and get the matrix:

m =

[
6.81 0.66
2.14 1.27

]
.

The process is triggered by 4963 infectious uniformly allocated in 21 days before the
beginning of the process ([0, 21)) with a day being the time unit.
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We generate weekly latent infections and observed cases according to the model
equations (6.1)-(6.5) for weeks -2−17 ([0, 161)) given v = 0.004, d = 15.22, β = 0.5,
γ−2,0−59 = 0.2 and γ−2,60+ = 0.17. We consider that about 70% of the population is
susceptible at the beginning of week -2 ; 249073 susceptibles (0−59 : 206969, 60+ :
42104).

We are interested in inferring the latent infections in weeks 1−16. That induces,
that H0 is the set of times of latent infections in weeks -2− 0. Using the generated
observed cases in weeks -1− 1 as described above, we estimate the latent infections
with their associated age groups in weeks -2− 0 as follows: The latent infections of
age group av on the week i is equal to the number of events in age av reported on the
week (i+1) times 1/β, and are spread uniformly in [(i+2) ∗ 7+ 21, (i+3) ∗ 7+ 21)
for −2 ≤ i ≤ 0. We assume α = 0, b = 0.5, dmin = 10, dmax = 20, vmin = 0.0001
and vmax = 0.5.

The ground truth is characterized by H0 consisting of 6644 infections (0 − 59 :
4974, 60+ : 1670), and, 242429 susceptibles (0 − 59 : 201995, 60+ : 40434)
at the beginning of week 1. The estimated H0 consists of 6624 infectious’ times
(0 − 59 : 5018, 60+ : 1606), and the estimated susceptibles are 242449 (0 − 59 :
201951, 60+ : 40498), respectively. The observed cases in weeks 1− 17 are, 13560
(0− 59 : 11650, 60+ : 1910) (Figure 6.1).

Figure 6.2 shows the estimated latent intensities and weekly latent infections for
30000 particles. Figure 6.3 illustrates the estimated weights {{γna}16n=1}a and the
instantaneous reproduction number per age group a. The Credible Intervals (CIs)
widen in the last weeks, as we infer the associated random quantities without being
aware of the reported cases three weeks ahead. Figure 6.4 illustrates the ESS. The
MCSEs show that increasing the number of particles does not have an essential
impact on the average variability of the particle mean per state (see Table 6.1). The
95% CIs of the time-constant parameters include the actual values of the parameters.

Most of the time, the estimated weekly latent infections and latent infection in-
tensities are close to the ground truth. The 95% CIs do not cover the ground truth of
the weekly latent infections and intensity of latent infections aged 60+ correspond-
ing to the 16th week. This might be observed due to the shortage of information
for inferring the latent infections aged 60+ during the last week. We note that the
95% CIs cover the actual values of intensity of latent infections and weekly latent
infections concerning all age groups over all states. The simulation analysis demon-
strates that the algorithm achieves more accurate estimations concerning all age
groups. The analysis also illustrates that the estimated reproduction number per
age group a and weights {{γna}16n=1}a approaches well the ground truth the majority
of the time.

6.4 Real Data

We apply the KDPF (Algorithm 16) to real cases among individuals aged 0 to
29 (0 − 29), 30 to 49 (30 − 49), 50 to 69 (50 − 69) and 70+ years in the local
authorities: Leicester (10/9/2021 -24/12/2021) [GOV.UK, 2022d], Kinston upon
the Thames (11/12/2021 -1/4/2022) [GOV.UK, 2022c] and Ashford (19/12/2021 -
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Figure 6.1: The weekly observed cases aged 0-59 (red line) and 60+ (blue line).
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(d) The aggregate estimated weekly hidden cases.
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(f) The estimated weekly infected cases aged 60+.

Figure 6.2: The ground truth (black line), and the estimated intensities of latent infections
and weekly latent infections for the synthetic scenario using 2 age groups (posterior median
(red line) ; 95% CI (red dashed line)). The vertical dotted lines show the beginning of each
week in the period we examine.
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Figure 6.3: The estimated weights {γna}a and instantaneous reproduction numbers {Ra}a
(posterior median (red line); 95% CI (red dashed line)) and the true values (black line) for
the synthetic scenario using 2 groups plotted against subintervals and time, respectively.
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Figure 6.4: The ESS for the synthetic scenario using 2 age groups.

Convergence of the posterior estimates
MCSE N = 10000 N = 20000 N = 30000
γ1 0.000173 0.000189 0.000182
γ2 0.000123 0.000119 0.000118
Y1 1.05305 1.114323 1.077618
Y2 0.193806 0.191016 0.193658

Table 6.1: MCSEs of the average of weights and weekly hidden infections, estimated
by the posterior means for the synthetic scenario using 2 age groups.



9/4/2022) [GOV.UK, 2022a] (see Figure 6.5). Estimates of the local authorities’
population are available from ONS [ONS, 2021]. We deal with 16 hidden states
{Xn}16n=1 and 16 subintervals {Tn}16n=1; each subinterval corresponds to the duration
of one week. We infer the latent intensity λN(t, a) and the instantaneous reproduc-
tion number, Ra(t) per age group a and the weights, {γna}a as well as the weekly
and daily latent cases via the particle sample derived by drawing samples from the
smoothing density with lag equal to 4. We also infer the instantaneous reproduction
number, R(t) as the infected population-weighted average of Ra(t). Appendix C.3
includes the simulation study for the local authorities: Leicester and Ashford.

We assume that the weights {γ1a}a are uniformly distributed over the interval

from 2
(∑

ai

∑
a

St,a

Na
maai

)−1

to 8
(∑

ai

∑
a

St,a

Na
maai

)−1

by assuming that the average
number of secondary cases an individual would infect at the beginning of the first
week is uniformly distributed over [0.5, 2]. Our initialization is based on the pub-
lished reproduction number in England from the government in the UK (see section
5.5). We also assume that 50% of the infections are reported (β = 0.5), dmin = 1,
dmax = 10, vmin = 0.0001 and vmax = 0.5. We coarse the age groups of the contact
matrix for reopening schools [Jarvis et al., 2020] to find the matrix m.

We use the percentage of the population aged a with levels of antibodies against
SARS-CoV-2 at or above a threshold of 179 nanograms per millilitre (ng/ml), de-
noted by pa, estimated by the lower 95% credible interval available from ONS [2022],
to initialize the number of susceptibles aged a at the beginning of the first week.
The percentage of people 0-15 having antibodies at or above the threshold is not
available. We assume the percentage is the same as that of 16-24. Following this
methodology, (1 − pa)Na gives the susceptible population aged a at the start of
the first week. However, the estimated susceptible population is less than the total
number of reported infections in Ashford and Kingston for some age bands. The
antibodies might not fully protect against infection in December 2021; this could be
due to declining immunity or immune escape (new variants being different from old
variants and thus the previous infection being less protective against a new one).
For this reason, we assume that a smaller percentage of the population aged a, given
by pa − z with 0 < z < mina pa, has enough antibodies against a new infection in
December 2021. We choose the minimum value of z so that the susceptible popula-
tion is at least twice as large as the reported cases for each age group to maintain
consistency with our assumption that we see 50% of the infections. Summarizing
the number of susceptibles aged a at the beginning of the first week in Leicester
(4/9/2021), Kingston upon Thames (11/12/2021) and Ashford (19/12/2021) are
given by (1− pa)Na, (1− pa + 0.2)Na and (1− pa + 0.2)Na, respectively. Appendix
C.4 includes an alternative method to initialize the size of susceptible population
per age group at the beginning of the process.

Figures 6.6-6.9, C.18- C.32 show the estimated intensity, the estimated weekly
and daily hidden cases, the estimated susceptibles, the estimated instantaneous
reproduction number and the estimated weights {γna}16n=1 per age group a, the 95%
CIs of time-constant parameters, and the ESS using 40000 particles. We observe
that the estimated latent intensity and the estimated weekly latent cases of age a
are consistent with the weekly observed cases of age a. The analysis demonstrates
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that the instantaneous reproduction numbers {Ra(t)}a and R(t) reflect the progress
of the pandemic and capture the changes. As expected, the estimates of last days
are more uncertain.

Comparing the age-stratified model (model A) with the unstructured
homogeneously mixing model (model U) introduced in Chapter 5. Model
A includes model U. Following Pellis et al. [2020], we assume model A reflects better
the reality and measures the other model’s deviation from it.

We run model U (Algorithm 9) considering all reported infections and separately
for each age band to estimate the aggregated and per age group latent intensity, the
aggregated and per age group weekly and daily hidden cases, and the instantaneous
reproduction number. We assume that dmin = 1, dmax = 10, (α, b) = (0.5, 3) for
Ashford, (α, b) = (0.1, 3.5) for Kingston upon Thames and (α, b) = (0.1, 3) for
Leicester. Inspired by Pei et al. [2020], we evaluate the goodness of fit of model
U using the weighted mean absolute percentage error (wMAPE) of the forecast of
model U in relation to that of model A

wMAPE =

∑k
i=1 |Ai − Ui|∑k

i=1 Ai

,

where Ai and Ui are the estimations of models A and U via posterior median asso-
ciated with the interval Ti. Table 6.2 illustrates the goodness fit of the model using
the metric wMAPE.

The instantaneous reproduction number’s posterior medians of both models fol-
low the same pattern in general lines (see Figures C.26, 6.13, C.36). The estimated
aggregated and per age group latent intensity, weekly and daily hidden cases via
posterior median given by model A are similar to the ones of model U (see Figures
C.23-C.25, 6.10-6.12, C.33-C.35). Model U derives similar estimates to those of
model A, as the latent intensity and cases per age band are strongly dependent on
the infections of the associated age group and independent of the other age groups’
infections. The simulation analysis shows that considering the individual inhomo-
geneity in age and finite population, the width of CIs decreases.

The comparison between models A and U demonstrates that model U provides
estimates close to the reality for the latent intensity, weekly and daily hidden cases,
and a rough approximation of the instantaneous reproduction number. The possible
noticeable differences in both models’ estimates during the first three weeks are due
to different initializations. Table 6.2 illustrates that the metric is higher than 0.1
when models’ medians present differences in the first weeks. We suggest running
both models considering the former η days of the horizon we are interested in,
where η is the delay in which the transition kernel of latent cases is negligible;
η = 21 days or 3 weeks for COVID-19 data. The analysis also shows that model
A decreases the uncertainty of estimates and infers the reproduction number per
age group. Model U cannot be applied to infer the reproduction number per age
group number and investigate the age groups’ behaviours in an epidemic indicating
the importance of model A. The instantaneous reproduction numbers per age group
provide a real-time measurement of interventions and behavioural changes.
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Figure 6.5: The weekly and observed cases in age groups 0-29 (red line), 30-49 (blue line),
50-69 (pink line) and 70+ (brown line) in the local authorities plotted against time.
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(h) The estimated susceptibles aged 70+.

Figure 6.6: The estimated latent intensity and susceptibles (posterior median (blue line)
; 95% CI (ribbon)) and the daily observed cases (cyan line) in Kingston plotted against
time. The vertical dotted lines show the beginning of each week in the period we examine.
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Figure 6.7: The estimated weekly latent cases (black line; 95% CI (ribbon)) and the weekly
observed cases (cyan line) in Kingston plotted against time.
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(a) The estimated aggregated daily hidden cases.
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(b) The estimated daily hidden cases aged 0-29.
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(c) The estimated daily hidden cases aged 30-49.
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Figure 6.8: The estimated daily latent cases (posterior median (black line); 95% CI (rib-
bon)) and the daily observed cases (cyan line) in Kingston plotted against time. The
vertical dotted lines show the beginning of each week in the period we examine.
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Figure 6.9: The posterior median estimate of instantaneous reproduction number per age
group (0-29 (red line), 30-49 (blue line), 50-69 (green line) and 70+ (brown line)), the
posterior median estimate of weights {{γna}16n=1}a (red line) and the 95% CIs (ribbon) for
Kingston plotted against time.
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Figure 6.10: The posterior median estimate of weekly hidden cases of model A (black line)
and model U (red line), and the 95% CIs (ribbon) in Kingston plotted against time.
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(a) Aggregated daily hidden cases.
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Figure 6.11: The posterior median estimate of daily hidden cases of model A (black line)
and model U (red line), and the 95% CIs (ribbon) in Kingston plotted against time. The
vertical dotted lines show the beginning of each week in the period we examine.
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(a) Aggregated latent intensity.
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Figure 6.12: The posterior median estimate of latent intensity of model A (blue line) and
model U (red line), and the 95% CIs (ribbon) in Kingston plotted against time. The
vertical dotted lines show the beginning of each week in the period we examine.
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Figure 6.13: The posterior median estimate of instantaneous reproduction number of model
A (black line) and model U (blue line), and the 95% CIs (ribbon) in Kingston plotted
against time.



Goodness of fit of Model U
wMAPE Kingston Ashford Leicester
R 0.12 0.06 0.12
WHC aged 0-29 0.07 0.06 0.11
WHC aged 30-49 0.13 0.05 0.14
WHC aged 50-69 0.13 0.05 0.18
WHC aged 70+ 0.12 0.17 0.33
aggregated WHC 0.1 0.03 0.11
DHC aged 0-29 0.08 0.07 0.12
DHC aged 30-49 0.14 0.07 0.14
DHC aged 50-69 0.14 0.08 0.19
DHC aged 70+ 0.16 0.2 0.36
aggregated DHC 0.1 0.05 0.11
LI aged 0-29 0.08 0.09 0.11
LI aged 30-49 0.13 0.07 0.13
LI aged 50-69 0.14 0.07 0.16
LI aged 70+ 0.15 0.2 0.3
aggregated LI 0.1 0.06 0.1

Table 6.2: The goodness of fit of model U for instantaneous reproduction number
(R), weekly hidden cases (WHC), daily hidden cases (DHC) and latent intensity
(LI) using the metric wMAPE.

Future prediction Applying the steps outlined in Algorithm 17, it is also possible
to forecast with relative accuracy how many new infections would be reported during
the next week, T17 (see Tables 6.3,C.4, C.5). Our forecast is subject to similar levels
of uncertainty as last week’s estimates. However, the algorithm can be applied to
forecast the epidemic’s future trajectory-whether it will be upward, downward or
stable-using the posterior mean and median.

Proposed Method
Reported in-
fections

Posterior
Mean

Posterior Me-
dian

95% CIs True Number
(T17)

True Number
(T16)

aggregated 664 649 (427, 921) 667
aged 0-29 154 145 (64, 258) 139 292
aged 30-49 250 238 (112, 404) 246 428
aged 50-69 172 164 (77, 279) 187 295
aged 70+ 89 85 (39, 142) 95 150

Table 6.3: The true number of reported infections in T16 and T17, and the posterior
median, the posterior mean and the 95% CIs of the estimated infections in T17 in
Kingston.

130



Algorithm 17 Predicting the new aggregated and per age group observed cases in
near future
1: Let v̂ = 1

N

∑N
j=1 vj,16 and d̂ = 1

N

∑N
j=1 dj,16.

2: for j = 1, .., N do

3: γj,17,a ∼ P (γ17,a|γj,16,a, d̂), ∀ age group a

4:
(
SN
j,17, A

N
j,17

)
∼ P

(
SN
17, A

N
17|SN

j,1:16, A
N
j,1:16, {γj,17,a}a,H0, A

N
0

)
5: Calculate the mean of observed cases of age a in the interval denoted by μj,17,a, ∀ age group a.
6: Yj,17,a ∼ NB(μj,17,a, v̂), ∀ age group a.
7: end for

8: Use the sample {Yj,17,a}Nj=1 to find the posterior mean, the posterior median and the 95% CI of the estimated observed cases of
age a in T17.

6.5 Epidemic Dynamics
The KDPF (Algorithm 16) can also infer the number of directed links between age
groups a ∈ A and a′ ∈ A (hereafter a → a′) by capturing the process’ branching
structure. The underlying dynamics are revealed either by saving the parent of
each latent infection (Method A) or by sampling its parent from a multinomial
distribution (Method B) as described in Section 6.2. We employed 30 randomly
selected particles in Method B due to computational constraints.

Similar to Section 6.3, we use the ONS’ released demographic data for Leicester in
the simulation concepts. We work with 16 hidden states {Xn}16n=1 and 16 subintervals
{Tn}16n=1, where each subinterval has a week-long length. We coarse the age groups
of the contact matrix for reopening schools [Jarvis et al., 2020] to find {maa′}a,a′∈A.
We infer the number of directed links between age groups in weeks 1-16.

We illustrate the simulation study for 2 and 4 age groups:

• 2 age groups: We generated weekly latent and observed cases according to
the model equations 6.1-6.5 for weeks -2−17 ([21, 161)) given that the process
is triggered by 1630 infectious, 56% of the population is susceptible at the
beginning of week -2 (0 − 59 : 126629, 60+ : 25777), v = 0.003, d = 25.4,
β = 0.5, γ−2,0−59 = 0.35 and γ−2,60+ = 0.35. The observed cases in weeks
1− 17 are 9890 (0− 59 : 8157, 60+ : 1733) (Figure 6.14). We ran the KDPF
by assuming α = 0, b = 0.5, dmin = 20, dmax = 30, vmin = 0.0001, vmax = 0.5
and 30000 particles.

• 4 age groups: We generated weekly latent and observed cases according to
the model equations 6.1-6.5 for weeks -2−17 ([21, 161)) given that the process
is triggered by 564 infectious, 56% of the population is susceptible at the
beginning of week -2 (0−29 : 72426, 30−49 : 39018, 50−69 : 29034, 70+ :
12994), v = 0.005, d = 23.7, β = 0.5, γ−2,0−29 = 0.4, γ−2,30−49 = 0.47,
γ−2,50−69 = 0.36 and γ−2,70+ = 0.18. The observed cases in weeks 1 − 17 are
8769 (0 − 29 : 4861, 30 − 49 : 1849, 50 − 69 : 1869, 70+ : 190) (Figure
6.14). We ran the KDPF by assuming α = 0, b = 1, dmin = 20, dmax = 30,
vmin = 0.0001, vmax = 0.5 and 40000 particles.

Both scenarios are consistent with Edmunds et al. [1997], i.e., older participants have
more contacts with older people, and Wallinga et al. [2006], i.e., younger adults are
more likely to catch an infection and contribute more to its transmission due to their
high number of contacts. Tables 6.4-6.7 demonstrate that the proposed algorithm
approaches well the ground truth.
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Estimating the number of directed links ai → aj using Method A
ai → aj Posterior Median 99% CI True Number
a1 → a1 8527 (7635, 9580) 8774
a1 → a2 2543 (2271, 2831) 2654
a1 → a3 2289 (2039, 2543) 2515
a1 → a4 194 (146, 243) 217
a2 → a1 1071 (946, 1207) 1093
a2 → a2 686 (573, 805) 710
a2 → a3 639 (544, 735) 662
a2 → a4 90 (64, 119) 106
a3 → a1 563 (481, 647) 616
a3 → a2 357 (296, 424) 392
a3 → a3 729 (606, 854) 789
a3 → a4 95 (67, 123) 109
a4 → a1 13 (5, 23) 16
a4 → a2 13 (5, 23) 12
a4 → a3 24 (11, 37) 27
a4 → a4 11 (4, 22) 14

Table 6.4: The true number, the posterior median and the 99% CI of the number of
directed links between age groups (a1 : 0− 29, a2 : 30− 49, a3 : 50− 69, a4 : 70+).

Estimating the number of directed links ai → aj using Method B
ai → aj Posterior Median 99% CI True Number
a1 → a1 8438 (7934, 9100) 8774
a1 → a2 2539 (2339, 2681) 2654
a1 → a3 2285 (2122, 2445) 2515
a1 → a4 189 (156, 252) 217
a2 → a1 1077 (950, 1232) 1093
a2 → a2 623 (604, 787) 710
a2 → a3 632 (552, 721) 662
a2 → a4 91 (69, 116) 106
a3 → a1 572 (514, 628) 616
a3 → a2 361 (323, 397) 392
a3 → a3 736 (593, 875) 789
a3 → a4 94 (77, 111) 109
a4 → a1 14 (3, 20) 16
a4 → a2 12 (5, 24) 12
a4 → a3 25 (14, 43) 27
a4 → a4 12 (4, 19) 14

Table 6.5: The true number, the posterior median and the 99% CI of the number of
directed links between age groups (a1 : 0− 29, a2 : 30− 49, a3 : 50− 69, a4 : 70+).
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Figure 6.14: The weekly observed cases.

Estimating the number of directed links ai → aj using Method A
ai → aj Posterior Median 99% CI True Number
a1 → a1 15219 (14083,

16453))
15214

a1 → a2 2936 (2638, 3205) 3025
a2 → a1 297 (243, 350) 300
a2 → a2 389 (317, 461) 381

Table 6.6: The true number, the posterior median and the 99% CI of the number
of directed links between age groups (a1 : 0− 59, a2 : 60+).

Estimating the number of directed links ai → aj using Method B
ai → aj Posterior Median 99% CI True Number
a1 → a1 15214 (14478, 16294)) 15214
a1 → a2 2946 (2697, 3076) 3025
a2 → a1 298 (250, 339) 300
a2 → a2 391 (330, 472) 381

Table 6.7: The true number, the posterior median and the 99% CI of the number
of directed links between age groups (a1 : 0− 59, a2 : 60+).

6.6 Discussion

Isham and Medley [1996]; Wallinga et al. [1999]; Farrington et al. [2001] contend that
it is necessary to account for individual heterogeneities while modelling the trans-
mission of an infectious disease. The unstructured homogeneously mixing epidemic
model (Model U) introduced in Chapter 5 is a step toward developing epidemic
models considering individual heterogeneities and revealing underlying dynamics.
In this chapter, working in this direction, we suggest a novel age-stratified epidemic
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model considering a finite population (Model A). We propose a KDPF for infer-
ring the marked counting process and forecasting the epidemic’s future trajectory
in the near future. We demonstrate the performance of the proposed algorithm on
COVID-19.

The simulation analysis of synthetic data shows that the KDPF approaches well
the ground truth. We demonstrate that the estimated latent cases and the latent
intensity are consistent with the aggregated observed cases for each age group in
various local authorities in the UK. The analysis also reveals that each age group’s
instantaneous reproduction number reflects the pandemic’s progression and the
group’s evolving behavioural characteristics. The uncertainty of estimates increases
in the last states of the algorithm, as the reported infections carry information about
the progress of the epidemic by transferring the delay between the reported and the
actual infection time. We also show how the algorithm can be employed to project
the epidemic’s course over short time horizons. However, our forecast is subject to
similar levels of uncertainty as the last state’s estimates.

According to Cori et al. [2013], the size of the time window will impact the
estimations of the instantaneous reproduction number. Small sizes lead to faster
detection of transmission changes and higher statistical noise, whereas large sizes
lead to more smoothing and reductions in statistical noise. In accordance with Cori
et al. [2013], who suggest an appropriate way of choosing the time window size, we
have selected a weekly time window to analyse the real data.

Model A includes model U, and according to Pellis et al. [2020], model A reflects
better the spreading of the epidemic. The estimated aggregated and per age group
latent intensity, weekly and daily hidden cases via posterior median given by model
A are similar to the ones of model U. The instantaneous reproduction number’s
posterior medians of both models follow the same pattern in general lines. The
analysis shows that model A derives narrower CIs, indicating that considering the
individual inhomogeneity in age and finite population decreases the uncertainty
of estimates; that conclusion is under investigation by increasing the number of
particles, proposing alternative inference methods and priors. The instantaneous
reproduction numbers for each age group offer a real-time gauge for interventions and
behavioural changes. The inapplicability of model U to determine the reproduction
number per age group and give insight into each group’s behaviour also demonstrates
the necessity of model A.

When modelling the epidemic using a marked Hawkes process, it is straight-
forward to consider more individual inhomogeneities, such as community structure
(e.g. household) and location, immunization status against the disease, and medical
conditions. This type of modelling reveals the dynamics of the epidemic, including
who infected whom, which is challenging because of invisible transmission pathways
[Yang and Zha, 2013; Kim et al., 2019].
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Chapter 7

Conclusions and Further Work

In Chapter 3, we investigated the application of the Bayesian Additive Regression
Trees (BART) model to estimate the intensity of Poisson processes. The BART
framework offers a flexible non-parametric method for identifying additive and non-
linear effects in the intensity’s underlying functional form. With ensembles of fewer
than 10 trees, our numerical results demonstrate that our technique yields accurate
intensity approximations. This enables our method to capture the dimensions that
are most contributing to the intensity. The simulation analysis using synthetic data
sets demonstrates that our method is capable of identifying change points and can
produce accurate estimations of the intensity using either the posterior mean or
posterior median. In both one and two dimensions, the Haar-Fisz algorithm and
kernel approaches are competitive with the proposed algorithm. Our method ex-
cels in higher dimensions, and we show that it outperforms the kernel approach for
multidimensional intensities due to edge effects and is competitive with inference
using spatial log-Gaussian Cox process. We also show how the variability of the
rate of occurrences in both real and synthetic data is consistent with our estimated
intensity.

The axis-alignment nature of the introduced algorithm in Chapter 3 is a draw-
back; the imposed prior on the trees is a stochastic process that takes axis-aligned
cuts into account and results in partitioning the domain into hyper-rectangular re-
gions. The simulation analysis revealed that points close to jumps have less reliable
estimates, which is expected due to that drawback. In Chapter 4, we discuss this
problem and propose approaches to remedy it. We illustrate using helpful rota-
tions captures the diagonal nature of intensity boundaries, and outperforms kernel
smoothing with edge correction in two dimensions. Further work in two dimensions
includes the Bayesian inference of the rotation matrix and allowing trees of the en-
semble to be associated with different rotation matrices. Future work also includes
investigating the approach into higher-dimensional intensities.

In Chapter 5, we introduce a novel epidemic model that models the infections
via a Hawkes process and the aggregated reported cases via a probability distribu-
tion with a mean driven by the underlying Hawkes process. We apply a KDPF for
inferring the latent cases and the instantaneous reproduction number and for pre-
dicting the new observed cases in the near future. It is feasible to employ particle
filter type algorithms, like the KDPF, because the computational effort is linear
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to the number of infections. Modelling the infections via a Hawkes process allows
us to estimate by whom an infected individual was infected. We demonstrate the
performance of the proposed algorithm on COVID-19. We demonstrate that our
predicted new cases, and our inference for the latent intensity, the daily and weekly
hidden cases are consistent with the observed cases in various local authorities in the
UK. The simulation analysis shows that, in comparison to the approach introduced
by Koyama et al. [2021], the proposed algorithm offers comparable estimates of the
observed case fluctuations. Similar reproduction number estimations are given by
the EpiEstim, the method of Koyama et al. [2021] and the proposed model.

Isham and Medley [1996]; Wallinga et al. [1999]; Farrington et al. [2001] contend
that it is necessary to account for individual heterogeneities while modelling the
transmission of an infectious disease. Individuals vary in their tendency to interact
with others; personal hygiene is a key factor in the propagation of diseases; individ-
uals’ community structure and location might be significant in spreading epidemics.
The proposed epidemic model introduced in Chapter 5 can be seen as a new method
for constructing epidemic models that take individual heterogeneities into account
and reveal underlying dynamics.

The simplest assumption of individual heterogeneity is that individual sociability
varies with the age. In Chapter 6, we extend the unstructured homogeneously mixing
epidemic model introduced in Chapter 5 considering a finite population stratified
by age bands and modelling the epidemic process as a marked counting process.
We propose a KDPF for inferring the marked counting process and forecasting the
epidemic’s future trajectory in the near future. We demonstrate the performance
of the proposed algorithm on COVID-19. We show that the aggregated observed
cases for each age group in different local authorities in the UK are consistent with
the estimated latent cases and the latent intensity. The analysis also demonstrates
that the instantaneous reproduction rate for each age group corresponds to the
development of the epidemic and the group’s changing behavioural patterns. The
instantaneous reproduction numbers for each age group offer a real-time gauge for
interventions and behavioural changes. The inapplicability of the model introduced
in Chapter 5 to determine the reproduction number per age group and give insight
into each group’s behaviour also demonstrates the necessity of the age-stratified
epidemic model.

It is straightforward to take into account more individual inhomogeneities when
modelling the epidemic using a marked Hawkes process, such as community struc-
ture (for example, household) and location, immunisation status for the disease,
and medical issues. Such modelling also estimates the dynamics of the epidemic,
including who infected whom, which is difficult due to hidden transmission pathways
[Yang and Zha, 2013; Kim et al., 2019]. Future work considers alternative inference
methods and modelling of the processes γ(t, a), the inference of ascertainment rate,
using various transition kernels for modelling the latent and the reported infection
cases, as well as more sophisticated ways for initializing the set of infectious trig-
gering the epidemic process and the number of susceptibles at the beginning of the
process for each age group.
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Appendix A

Appendix of Chapter 3

In this appendix, we present more simulation results on synthetic and real data to
illustrate the performance of Algorithm 4 on estimating the intensity of inhomoge-
neous Poisson processes. We describe the model considering only one tree.

A.1 The model for the case of one tree
The proposed model for considering only one tree can be written as follows

λ(si) = g(si;T,Λ) =
b∑

k=1

λk I(si ∈ Ωk)

T ∼ heterogeneous Galton-Watson process for a partition of S
λk|T ∼ Gamma(α, β)

underpinned by a tree-shaped partition T = {Ωk}bk=1 where b is the number of
terminal nodes in the tree T . Each leaf node k associated to region Ωk is linked with
a parameter λk. All parameters λk are collected in the vector Λ = (λ1, λ2, .., λb).
The parameters of the model are

1. the regression tree T

2. the parameters Λ = (λ1, λ2, .., λb).

We assume that the leaf parameters are independent, i.e., P (Λ|T ) =∏b
k=1 P (λk|T ).

A.1.1 Poisson process conditional likelihood

The conditional likelihood of a finite realization of an inhomogeneous Poisson process
with n points s1, . . . , sn is derived by describing λ(s) using one tree (Λ, T ) as: λ(s) =
g(s;T,Λ).

P (s1, . . . , sn|Λ, T ) =
n∏

i=1

λ(si) exp

(
−
∫
S

λ(s)ds

)
=

n∏
i=1

g(si;T,Λ) exp

(
−
∫
S

g(s;T,Λ)ds

)
.

(A.1)
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The first term of the above equation can be written as follows

n∏
i=1

g(si;T,Λ) =
b∏

k=1

λnk
k

where nk is the cardinality of the set {i : si ∈ Ωk}.
The exponential term of (A.1) can be expressed as follows

exp

(
−
∫
S

g(s;T,Λ)ds

)
= exp

(
−
∫
S

b∑
k=1

λkI(s ∈ Ωk)ds

)

= exp

(
−

b∑
k=1

λk

∫
S

I(s ∈ Ωk)ds

)
= exp

(
−

b∑
k=1

λk|Ωk|
)

Hence the conditional likelihood can be written as

P (s1, . . . , sn|Λ, T ) =
b∏

k=1

λnk
k e−λk|Ωk|, (A.2)

where |Ωk| is the volume of the region Ωk.

A.1.2 Inference Algorithm

Inference on the model parameters (Λ, T ) induces sampling from the posterior
P (Λ, T |s1, . . . , sn). A Metropolis Hastings within Gibbs sampler (Algorithm 18)
is proposed for sampling from the posterior P (Λ, T |s1, . . . , sn). Noting that,

P (Λ, T |s1, . . . , sn) = P (Λ|T, s1, . . . , sn)P (T |s1, . . . , sn)

and

P (Λ|T, s1, . . . , sn) ∝ P (s1, . . . , sn|Λ, T )P (Λ|T ) ∝
b∏

k=1

λnk+α−1
k e−(|Ωk|+β)λk ,

a draw from (T,Λ)|s1, . . . , sn can be achieved in (b+1) successive steps:

• sample T |n, s1, . . . , sn through Metropolis-Hastings Algorithm summarized in
Algorithm 19

• sample λk|T, n, s1, . . . , sn from a Gamma distribution with shape equal to nk+
α and rate equal to |Ωk|+ β for k = 1, .., b.

Noting that
P (T |s1, . . . , sn) ∝ P (s1, . . . , sn|T )P (T )
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the integrated likelihood (integrating out the parameters Λ) is:

P (s1, . . . , sn|T ) =
∫

P (s1, . . . , sn,Λ|T )dΛ =

∫
P (s1, . . . , sn|Λ, T )P (Λ|T )dΛ

=

(
βα

Γ(a)

)b b∏
k=1

∫
λnk+α−1
k e−(|Ωk|+β)λkdλk

=

(
βα

Γ(a)

)b b∏
k=1

Γ(nk + α)

(β + |Ωk|)nk+α
. (A.3)

In the tree sampling Algorithm 19, the transition kernel q is chosen from the three
proposals: GROW, PRUNE, CHANGE [Chipman et al., 2010; Kapelner and Bleich,
2016], and Eq. (A.3) allows us to compute the Metropolis Hastings ratio to accept
or reject the proposal.

Algorithm 18 Proposed Algorithm: Metropolis Hastings within Gibbs sampler
for t = 1, 2, 3, .. do

Sample T (t+1)|s1, . . . , sn
for k = 1 to b do

Sample λ
(t+1)
k |s1, . . . , sn, T (t+1)

end for
end for

Algorithm 19 Metropolis Hastings Algorithm for sampling from the posterior
P (T |s1, . . . , sn)

Generate a candidate value T ∗ with probability q(T ∗|T (t)).
Set T (t+1) = T ∗ with probability

α(T (t), T ∗) = min

(
1,

q(T (t)|T ∗)

q(T ∗|T (t))

P (s1, . . . , sn|T ∗)

P (s1, . . . , sn|T (t))

P (T ∗)

P (T (t))

)
Otherwise, set T (t+1) = T (t).

A.2 Simulation results on synthetic data with vari-
ous number of sampling iterations

In this appendix we show that our algorithm works equally well for 10000 itera-
tions by running three parallel chains, examining their convergence and assessing
the performance of our algorithm via AAE and RMSE of computed estimates over
various number of iterations. We also check the convergence of chains using the
Gelman-Rubin criterion in all cases.
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A.2.1 One dimensional Poisson process with stepwise inten-
sity

Table A.1 shows that there are no significant difference in errors increasing the
number of iterations from 10000 to 200000. Figure A.1 reveals that the chains work
less well at points close to jumps for small number of iterations.

Proposed Algorithm
Number
of
trees

Number of
Iterations

AAE for
Posterior
Mean

AAE for
Posterior
Median

RMSE for
Posterior
Mean

RMSE for
Posterior
Median

5 10000 284.61 274.3 588.88 590.5
50000 289.11 284.56 575.11 579.17
200000 279.88 269.81 572.94 576.94

7 10000 265.22 257.49 572.33 576.58
50000 276.19 267.75 580.35 584.47
200000 278.37 269.78 582.82 584.1

Table A.1: Average Absolute Error and Root Mean Square Error for various number
of iterations and trees.
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(e) 5 Trees and 200000 iterations
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(f) 7 Trees and 200000 iterations

Figure A.1: The Gelman-Rubin Criterion for various number of iterations and trees.

A.2.2 One dimensional Poisson process with continuously vary-
ing intensity

Table A.2 shows that increasing the number of iterations does not change essentially
the error for the synthetic data presented in Section A.4.1. The convergence criterion
indicates that even for small number of iterations, the chains converge for 10 trees.
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Proposed Algorithm
Number
of
trees

Number of
Iterations

AAE for
Posterior
Mean

AAE for
Posterior
Median

RMSE for
Posterior
Mean

RMSE for
Posterior
Median

5 10000 6.27 6.71 9.83 10.62
50000 6.16 6.51 9.63 10.42
100000 6.14 6.38 9.52 10.17

7 10000 5.99 6.03 9.54 9.95
50000 6.04 6.1 9.49 9.88
100000 5.95 6.01 9.39 9.8

Table A.2: Average Absolute Error and Root Mean Square Error for various number
of iterations and trees.

Proposed Algorithm
Number
of
trees

Number of
Iterations

AAE for
Posterior
Mean

AAE for
Posterior
Median

RMSE for
Posterior
Mean

RMSE for
Posterior
Median

4 10000 241.82 240.1 464.99 489.93
50000 209.95 209.58 392.43 418.37
100000 208.74 213.04 410.19 447.86

Table A.3: Average Absolute Error and Root Mean Square Error for 4 Trees and
various number of iterations.

For 5 trees they converge for the majority of the range (Figure A.2).

A.2.3 Two dimensional Poisson process with stepwise inten-
sity function

Likewise, we do not observe significant improvement in AAE and RMSE beyond
10000 iterations (see Table A.3). Moreover, increasing the number of iterations does
not fix the convergence issues at points close to jumps (see Figure A.3).

A.2.4 Inhomogeneous two dimensional Poisson process with
Gaussian intensity

Similarly to all the above scenarios, the error with 10000 iterations are comparable
to those obtained with a larger number of iterations (see Table A.4). Figure A.4
shows that the chains converge for 10 Trees even if we consider a relatively small
number of iterations. The same holds for the majority of testing points for 8 Trees.
The algorithm only provides less accurate estimations for the testing points close to
the upper end of the domain for 8 Trees and relatively small number of iterations.
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(e) 5 Trees and 100000 iterations

0.0 0.2 0.4 0.6 0.8 1.0

1.
00

0
1.

00
5

1.
01

0
1.

01
5

t

G
el

m
an
−R

ub
in

 C
rit

er
io

n

(f) 10 Trees and 100000 iterations

Figure A.2: The Gelman-Rubin Criterion for various number of iterations and trees.
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Figure A.3: The Gelman-Rubin Criterion for 4 trees and various number of iterations.

Proposed Algorithm
Number
of
trees

Number of
Iterations

AAE for
Posterior
Mean

AAE for
Posterior
Median

RMSE for
Posterior
Mean

RMSE for
Posterior
Median

8 10000 173.02 175.61 247.5 255.81
50000 169.54 170.5 242.03 250.74
200000 177.44 175.62 255.23 258.88

10 10000 168.91 168.78 242.62 249.38
50000 177.72 173.93 254.67 256.32
200000 176.52 174.02 253.14 255.92

Table A.4: Average Absolute Error and Root Mean Square Error for various number
of iterations and trees.
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Figure A.4: The Gelman-Rubin Criterion for various number of iterations and trees.



A.3 Intensity estimation for real data

A.3.1 Coal Data

The first real data set under consideration is composed of the dates of 191 explosions
which caused at least 10 occurrences of death from March 22, 1962 until March 15,
1981. The data set is available in the R package boot [Canty and Ripley, 2019]
as coal. Figure A.5 illustrates the Posterior Mean and the Posterior Median for 8
and 10 Trees. We observe that our algorithm captures the fluctuations of the rate
of accidents in the period under consideration. The diagnostic criteria included in
Appendix A.6 indicate that the considered chains have converged. See Adams et al.
[2009], Gugushvili et al. [2018] and Lloyd et al. [2015] for alternative analyses.
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Figure A.5: Coal Data: The posterior mean (red curve), the posterior median (black curve),
the 95% hdi interval of the estimated intensity illustrated by the dotted green lines. The
rug plot on the bottom displays the event times.

A.3.2 Redwoodfull Data

Finally, we use a data set available in the R package spatstat describing the loca-
tions of 195 trees in a square sampling region shown with dots in the figures below.
Adams et al. [2009] analyzed the redwoodfull data using their recommended algo-
rithm. We present the posterior mean and the posterior median obtained with our
algorithm for different number of trees and the result of kernel estimators. Intensity
inference via posterior mean (Figure A.6c) or posterior median (Figure A.6d) for 10
Trees is similar to the fixed-bandwidth kernel estimator with edge correction and
bandwidth selected using likelihood cross-validation (Figure A.7a), and the inference
from Adams et al. [2009].
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(c) Posterior Mean for 10 Trees
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Figure A.6: Posterior Mean and Posterior Median for 3, 5 and 10 Trees
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Figure A.7: Fixed-bandwidth chosen using likelihood cross-validation and adaptive-
bandwidth kernel estimators.

A.4 Simulation study on synthetic data

A.4.1 One dimensional Poisson process with continuously vary-
ing intensity

We have applied our algorithm to samples of a one dimensional Poisson process
with intensity λ(x) = 20e−x/5(5 + 4 cos(x)) for x ∈ [0, 10]. Figure A.8 and Tables
A.5-A.6 show that the algorithm works well on a smoothy varying intensity with
fewer sample points and outperforms the Haar-Fisz Estimator for the majority the
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range. The convergence criteria indicate convergence of the simulated chains for 10
Trees and for the most testing points for 5 Trees (see supplementary material).
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Figure A.8: Scenario 2: The original intensity (blue curve), the posterior mean (red curve),
the posterior median (black curve), the 95% hdi interval of the estimated intensity illus-
trated by the dotted green lines and the Haar-Fisz estimator (pink curve). The rug plot
on the bottom displays the 440 event times.

Proposed Algorithm
Number of
trees

AAE for Pos-
terior Mean

AAE for
Posterior
Median

RISE for Pos-
terior Mean

RISE for Pos-
terior Median

5 6.14 6.38 9.52 10.17
10 5.95 6.01 9.39 9.8

Table A.5: Average Absolute Error and Root Integrated Square Error for various
number of trees for the data in Fig. A.8.

Haar-Fisz Algorithm
AAE RISE
7.16 11.67

Table A.6: Average Absolute Error and Root Integrated Square Error for Haar-Fisz
estimator for the data in Fig. A.8

A.4.2 Inhomogeneous two-dimensional Poisson process with
Gaussian intensity

We also considered a two dimensional Poisson process with intensity λ(x, y) =
1000 ex

2+y2 for x, y ∈ [0, 1). The outcomes of the algorithm, log-Gaussian Cox
processes (LGCP) and kernel smoothing are illustrated in Figures A.9-A.10 and Ta-
bles A.7-A.9. The results demonstrate that the proposed algorithm performs well
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in this setting, is competitive with the kernel method, and spatial log-Gaussian Cox
processes. In this scenario, the hyperparameter β has been set equal to 1. The con-
vergence criteria indicate convergence of the simulated chains (see Appendix A.5).
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Figure A.9: Posterior Mean and Posterior Median for 8, 10 and 15 Trees
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Figure A.10: Kernel estimator and inference with spatial log-Gaussian Cox processes.

Inference with spatial log-Gaussian Cox processes
grid AAE RISE
10× 10 195 263
20× 20 182 245

Table A.7: Average Absolute Error and Root Integrated Square Error with LGCP
for the data in Figure A.9.

Proposed Algorithm
Number of
trees

AAE for Pos-
terior Mean

AAE for
Posterior
Median

RISE for Pos-
terior Mean

RISE for Pos-
terior Median

8 177.44 175.62 255.23 258.88
10 176.52 174.02 253.14 255.92
15 177.48 172.62 254.22 251.96

Table A.8: Average Absolute Error and Root Integrated Square Error for various
number of trees for data in Fig. A.9.

Kernel Smoothing
Bandwidth (sigma) AAE RISE
0.03 360.11 463.1
0.04 277.89 353.82
0.087 (LCV) 167.74 227.85
0.095 166.51 230.27

Table A.9: Average Absolute Error and Root Integrated Square Error for fixed
bandwidth estimators for data in Fig. A.9.
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A.4.3 Inhomogeneous five dimensional Poisson process with
Gaussian intensity

Our next example is a five dimensional Poisson process with intensity λ(x) = 50ex
T x

for x ∈ [0, 1)5 and the generated process via thinning consists of 343 points. The
statistics are presented in Tables A.10 and A.11 for our algorithm and kernel smooth-
ing, respectively. We have checked that the Gelman-Rubin criterion indicates con-
vergence of chains.

Proposed Algorithm
Number
of
trees

AAE for
Mean

AAE for
Median

RISE for
Mean

RISE for
Median

8 65.99 66.68 104.24 106.19
10 66.94 67 106.09 106.36

Table A.10: Average Absolute Error and Root Integrated Square Error with different
number of trees.

Kernel Smoothing
h AAE RISE
0.03 631.1 5060.9
0.06 409.6 825.1
0.08 287.8 419.8
0.1 213.5 295.6
0.15 (LCV) 181.2 278.5
0.3 258.4 363
0.5 311.2 409.7

Table A.11: Average Absolute Error and Root Integrated Square Error for various
isotropic variance matrices.

A.5 Additional simulation results on synthetic data

We provide further simulation results including trace and autocorrelation plots, the
Gelman-Rubin Criterion in a variety of scenarios with established ground truth to
demonstrate the performance of Algorithm 4.
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A.5.1 One dimensional Poisson process with stepwise inten-
sity

Convergence Criterion (Rhat)
Number of Trees Rhat < 1.1
3 87%
4 98%
5 100%
7 100%
8 100%
9 100%
10 100%
20 100%

Table A.12: The percentage of testing points having convergence criterion smaller
than 1.1.

A.5.1.1 5 Trees

We run 3 parallel chains each for 200000 iterations keeping every 100th sample.
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Figure A.11: The Gelman-Rubin Criterion for 5 Trees
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Figure A.12: Trace plots for 5 Trees
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Figure A.13: Autocorrelation plots for 5 Trees
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Figure A.14: Average number of leaves at trees
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Figure A.15: Density of the estimated intensity for 5 Trees
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Figure A.16: Prior for 5 Trees

A.5.1.2 7 Trees

We run 3 parallel chains each for 200000 iterations keeping every 100th sample.
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Figure A.17: The Gelman-Rubin Criterion for 7 Trees
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Figure A.18: Trace plots for 7 Trees
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Figure A.19: Autocorrelation plots for 7 Trees
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Figure A.20: Average number of leaves at trees
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Figure A.21: Density of the estimated intensity for 7 Trees
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Figure A.22: Prior for 7 Trees

A.5.2 One dimensional Poisson process with with continu-
ously varying intensity

A.5.2.1 5 Trees

We run 3 parallel chains each for 100000 iterations keeping every 50th sample.
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Figure A.23: The Gelman-Rubin Criterion for 5 Trees
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Figure A.24: Trace plots for 5 Trees
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Figure A.25: Autocorrelation plots for 5 Trees

157



intensity at t=2.5

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

intensity at t=5

20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

intensity at t=8

0 10 20 30 40 50

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

intensity at t=6

20 40 60 80

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Figure A.26: Density of the estimated intensity for 5 Trees
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Figure A.27: Prior for 5 Trees

A.5.2.2 10 Trees

We run 3 parallel chains each for 100000 iterations keeping every 50th sample.
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Figure A.28: The Gelman-Rubin Criterion for 10 Trees
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Figure A.29: Trace plots for 10Trees
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Figure A.30: Autocorrelation plots for 10 Trees
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Figure A.31: Average number of leaves at trees
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Figure A.32: Density of the estimated intensity for 10 Trees
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Figure A.33: Prior for 10 Trees

A.5.3 Inhomogeneous two dimensional Poisson process with
Gaussian intensity

A.5.3.1 8 Trees

We run 3 parallel chains each for 200000 iterations keeping every 100th sample.
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Figure A.34: The Gelman-Rubin Criterion for 8 Trees
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Figure A.35: Trace plots for 8 Trees
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Figure A.36: Autocorrelation plots for 8 Trees
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Figure A.37: Average number of leaves at trees
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Figure A.39: Prior for 8 Trees

A.5.3.2 10 Trees

We run 3 parallel chains each for 200000 iterations keeping every 100th sample.
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Figure A.40: The Gelman-Rubin Criterion for 10 Trees
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Figure A.41: Trace plots for 10 Trees

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

autocorrelation at (0.989,0.04) over lag

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

autocorrelation at (0.777,0.04) over lag 

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

autocorrelation at (0.999,0.696) over lag

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

autocorrelation at (0.646,0.04) over lag

Figure A.42: Autocorrelation plots for 10 Trees
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Figure A.43: Average number of leaves at trees
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Figure A.45: Prior for 10 Trees
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A.5.4 Two dimensional Poisson process with stepwise inten-
sity function

Convergence Criterion (Rhat)
Number of Trees Rhat < 1.1
3 90%
4 99%
5 100%
6 100%

Table A.13: The percentage of testing points having convergence criterion smaller
than 1.1.

A.5.4.1 4 Trees

We run 3 parallel chains each for 100000 iterations keeping every 50th sample.
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Figure A.46: Gelman-Rubin Criterion
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Figure A.47: Trace plots for 4 Trees
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Figure A.48: Autocorrelation plots for 4 Trees

0 1000 2000 3000 4000 5000 6000

2
4

6
8

number of leaves at 1st tree

0 1000 2000 3000 4000 5000 6000

2
4

6
8

10

number of leaves at 2nd tree

0 1000 2000 3000 4000 5000 6000

2
4

6
8

10

number of leaves at 3rd tree

0 1000 2000 3000 4000 5000 6000

1
2

3
4

5
6

7
8

number of leaves at 4th tree

0 1000 2000 3000 4000 5000 6000

2
3

4
5

6

average number of leaves 

Figure A.49: Average number of leaves at trees
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Figure A.50: Density of the estimated intensity for 4 Trees
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A.6 Additional simulation results on real data

To further illustrate the performance of Algorithm 4, we present additional simula-
tion results in real data sets, such as trace and autocorrelation plots, as well as the
Gelman-Rubin Criterion.

A.6.1 Coal Data

A.6.1.1 8 Trees

We run 3 parallel chains each for 200000 iterations keeping every 100th sample.
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Figure A.51: The Gelman-Rubin Criterion for 8 Trees
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Figure A.52: Trace plots for 8 Trees
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Figure A.53: Autocorrelation plots for 8 Trees
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Figure A.54: Average number of leaves at trees
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Figure A.55: Density of the estimated intensity for 8 Trees
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Figure A.56: Prior for 8 Trees

A.6.1.2 10 Trees

We run 3 parallel chains each for 200000 iterations keeping every 100th sample.
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Figure A.57: The Gelman-Rubin Criterion for 10 Trees
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Figure A.58: Trace plots for 10 Trees
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Figure A.59: Autocorrelation plots for 10 Trees

0 1000 2000 3000 4000 5000 6000

1
2

3
4

5
6

number of leaves at 1st tree

0 1000 2000 3000 4000 5000 6000

1
2

3
4

5
6

7

number of leaves at 2nd tree

0 1000 2000 3000 4000 5000 6000

2
4

6
8

10

number of leaves at 3rd tree

0 1000 2000 3000 4000 5000 6000

1
2

3
4

5
6

7

number of leaves at 4th tree

0 1000 2000 3000 4000 5000 6000

1
2

3
4

5
6

7

number of leaves at 5th tree

0 1000 2000 3000 4000 5000 6000

1
2

3
4

5
6

7

number of leaves at 6th tree

0 1000 2000 3000 4000 5000 6000

2
4

6
8

10

number of leaves at 7th tree

0 1000 2000 3000 4000 5000 6000

1
2

3
4

5
6

7

number of leaves at 8th tree

0 1000 2000 3000 4000 5000 6000

1
2

3
4

5
6

7
8

number of leaves at 9th tree

0 1000 2000 3000 4000 5000 6000

1
2

3
4

5
6

7

number of leaves at 10th tree

0 1000 2000 3000 4000 5000 6000

1.
5

2.
0

2.
5

3.
0

3.
5

average number of leaves 

Figure A.60: Average number of leaves at trees
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Figure A.61: Density of the estimated intensity for 10 Trees
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Figure A.62: Prior for 10 Trees

A.6.2 Earthquakes Data

Convergence Criterion (Rhat)
Number of Trees Rhat < 1.1
3 100%
4 100%
5 100%
6 100%
8 100%
10 100%

Table A.14: The percentage of testing points having convergence criterion smaller
than 1.1.

A.6.2.1 10 Trees

We run 3 parallel chains each for 100000 iterations keeping every 50th sample.
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Figure A.63: The Gelman-Rubin Criterion for 10 Trees
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Figure A.64: Trace plots for 10 Trees
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Figure A.65: Autocorrelation plots for 10 Trees
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Figure A.66: Average number of leaves at trees
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Figure A.67: Density of the estimated intensity for 10 Trees
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Figure A.68: Prior for 10 Trees

A.6.3 Mapples

Convergence Criterion (Rhat)
Number of Trees Rhat < 1.1 Rhat < 1.2
3 75% 96%
4 88% 93%
5 95% 99%
7 99.7% 100%
8 95% 98%
9 100% 100%
10 97.4% 99.6%
12 99.6% 100%

Table A.15: The percentage of testing points having convergence criterion smaller
than 1.1 and 1.2, respectively.
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A.6.3.1 5Trees

We run 3 parallel chains each for 300000 iterations keeping every 150th sample.
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Figure A.69: The Gelman-Rubin Criterion for 5 Trees
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Figure A.70: Trace plots for 5 Trees

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

autocorrelation at (0.989,0.04) over lag

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

autocorrelation at (0.777,0.04) over lag 

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

autocorrelation at (0.999,0.696) over lag

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

autocorrelation at (0.646,0.04) over lag

Figure A.71: Autocorrelation plots for 5 Trees
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Figure A.72: Average number of leaves at trees
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Figure A.73: Density of the estimated intensity for 5 Trees
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Figure A.74: Prior for 5 Trees

A.6.3.2 10 Trees

We run 3 parallel chains each for 300000 iterations keeping every 150th sample.
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Figure A.75: The Gelman-Rubin Criterion for 10 Trees
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Figure A.76: Prior for 10 Trees

A.6.4 Redwood

A.6.4.1 5 Trees

We run 3 parallel chains each for 300000 iterations keeping every 150th sample.
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Figure A.77: The Gelman-Rubin Criterion for 5 Trees
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Figure A.78: Trace plots for 5 Trees
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Figure A.79: Autocorrelation plots for 5 Trees

0 1000 2000 3000 4000 5000 6000

2
4

6
8

10

number of leaves at 1st tree

0 1000 2000 3000 4000 5000 6000

2
4

6
8

10

number of leaves at 2nd tree

0 1000 2000 3000 4000 5000 6000

2
4

6
8

10

number of leaves at 3rd tree

0 1000 2000 3000 4000 5000 6000

2
4

6
8

10

number of leaves at 4th tree

0 1000 2000 3000 4000 5000 6000

2
4

6
8

10

number of leaves at 5th tree

0 1000 2000 3000 4000 5000 6000

2
3

4
5

average number of leaves 

Figure A.80: Average number of leaves at trees
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Figure A.81: Density of the estimated intensity for 5 Trees
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Figure A.82: Prior for 5 Trees

A.6.4.2 10 Trees

We run 3 parallel chains each for 300000 iterations keeping every 150th sample.
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Figure A.83: The Gelman-Rubin Criterion for 10 Trees
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Figure A.84: Prior for 10 Trees
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Appendix B

Appendix of Chapter 5

We illustrate here an additional scenario in which the process is triggered by 1023
infectious and the times of their infections, H0, are uniformly allocated in 21 days
([0, 21)) with a day being the time unit. We generate daily latent and observed cases
according to the model equations 5.2-5.6 for the next 133 days ([21, 154)) given H0,
v = 0.002, d = 53.6, β = 0.5 and R1 = 1.67. We are interested in inferring the latent
cases in [42, 154) with H0 being the set of times of latent infections in [21, 42). Using
the generated observed cases in [28, 49), we estimate the latent infections in [21, 42)
as follows: The latent cases on the day i are equal to the number of observed events
on the day (i + 1) times 1/β and are spread uniformly in [i, i + 1) for 21 ≤ i < 42.
We assume α = 0.5, b = 1.5, dmin = 50, dmax = 60, vmin = 0.0001 and vmax = 0.5.
The ground truth is characterized by H0 consisting of 1698 seeds, however, while
the estimated seeds are 1622. There are 14934 observed cases in [42, 154).

We deal with 112 hidden states {Xn}112n=1. Each state Xn is associated with the
latent cases falling during the day Tn and the parameter Rn associated with that
day. We infer the latent intensity λN(t) and the weights {Rn}112n=1 as well as the daily
latent cases via the particle sample derived by drawing samples from the smoothing
density with lag equal to 21.

Figure B.1 illustrate the estimated latent intensity, the estimated daily hidden
cases, the estimated reproduction number, and the 99% CIs and the ESS using 10000
particles. Table B.1 confirms the convergence of posterior estimates concerning the
number of particles.

Convergence of the posterior estimates
MCSE N = 10000 N = 15000 N = 20000
R 0.001548 0.001253 0.001091
Y 0.355208 0.284769 0.247152

Table B.1: MCSEs of posterior means of weights (R) and daily hidden cases (Y).
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Figure B.1: The latent intensity, the reproduction number, the daily latent cases, the 99%
CIs of time-constant parameters and the Effective Sample Size (ESS) plotted against time.



Appendix C

Appendix of Chapter 6

In this appendix, we present a simulation study for 4, 6 and 9 age groups on synthetic
data, and an additional simulation study for the local authorities: Leicester and
Ashford to illustrate the performance of the KDPF (Algorithm 16) for inferring
the weights {{γna}kn=1}a, the intensity of latent cases λN(t, a), the instantaneous
reproduction number, Ra(t) and the hidden cases per age group a over various
numbers of groups. We introduce an alternative method to initialize the size of the
susceptible population per age group at the beginning of the process.

C.1 Simulation Analysis

C.1.1 Four age groups

ONS shows that 47.19% of the population is aged under 30 years (hereafter 0-29),
25.42% aged 30 to 49 years (30-49), 18.92% aged 50 to 69 years (50-69), and 8.47%
aged 70 years and over (70+) in Leicester [ONS, 2021]. We coarse the age groups of
the contact matrix for reopening schools [Jarvis et al., 2020] and get the matrix:

m =

⎡⎢⎢⎣
5.82 1.93 1.05 0.24
2.75 1.60 1.00 0.36
1.54 1.09 1.27 0.43
0.60 0.71 0.76 0.87

⎤⎥⎥⎦ .

The process is triggered by 4963 infectious; Their infection times are uniformly
allocated in 21 days ([0, 21)).

We generate weekly latent infections and observed cases according to the model
equations for weeks -2−17 ([0, 161)) given v = 0.004, d = 25.57, β = 0.5, γ−2,0−29 =
0.49, γ−2,30−49 = 0.47, γ−2,50−69 = 0.10 and γ−2,70+ = 0.38. We consider that
about 36.46% of the population is susceptible at the beginning of week -2 ; 129073
susceptibles (0− 29 : 60893, 30− 49 : 32837, 50− 69 : 24414, 70+ : 10929).

We are interested in inferring the latent infections in weeks 1 − 16 with H0

being the set of latent infection times in weeks -2 − 0. We assume α = 0, b = 0.5,
dmin = 20, dmax = 30, vmin = 0.0001 and vmax = 0.5. Using the generated observed
cases in weeks -1−1 as described above, we estimate the latent infections with their
associated age groups in weeks -2− 0 as follows: The latent infections of age group
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Figure C.1: The weekly observed cases aged 0-29 (red line), 30-49 (blue line), 50-69 (brown
line) and 70+ (pink line).

av on the week i is equal to the number of reported events in age av occurred on the
week (i+1) times 1/β, and are spread uniformly in [(i+2) ∗ 7+ 21, (i+3) ∗ 7+ 21)
for −2 ≤ i ≤ 0.

The ground truth is characterized by H0 consisting of 7987 infectious (0 − 29 :
4539, 30− 49 : 2309, 50− 69 : 281, 70+ : 768), and 121176 susceptibles (0− 29 :
56354, 30− 49 : 30528, 50− 69 : 24133, 70+ : 10161) at the beginning of week 1.
The estimated H0 consists of 7754 infectious (0−29 : 4404, 30−49 : 2254, 50−69 :
392, 70+ : 704), and the estimated susceptibles are 121319 (0−29 : 56489, 30−49 :
30583, 50 − 69 : 24022, 70+ : 10225), respectively. The observed cases in weeks
1 − 17 are 33977 (0 − 29 : 22978, 30 − 49 : 7046, 50 − 69 : 1015, 70+ : 3118)
(Figure C.1).

Figures C.2-C.5 show the estimated intensities of latent infections and weekly
latent infections per age group, the estimated weights {{γna}16n=1}a and instantaneous
reproduction numbers {Ra}a, and the ESS for 30000 particles. The majority of the
time, the estimated weekly latent infections, intensities of latent infections, and
instantaneous reproduction number per age group approach well the ground truth.
The 95% CIs do not cover the ground truth of the weekly latent infections aged
50-69 corresponding to the 2nd and 7th week and those of 70+ corresponding to
the 1st week, the intensity of latent infections aged 70+ during 1st week and 50-
69 during 7th week, the weights γ1,0−29, γ7,50−69 and γ1,70+, and the instantaneous
reproduction number of age groups 0-29, 30-49 and 70+ during the 1st week, and
50-69 during the 8th week. Not covering the ground truth during the first weeks
might be observed because we have considered γ1,70+ ∼ Uniform(0, 0.5) while the
ground truth is higher than 0.5 as well as the heuristic approach to initialize the set
of infectious and susceptibles per age group at the beginning of the process. The
simulation analysis also shows that the algorithm achieves more accurate estimations
of aggregate weekly latent infections and intensity of latent infections concerning all
age groups. Table C.1 confirms the convergence of posterior estimates of weights
and weekly hidden cases per age group concerning the number of particles. The 95%
Credible Intervals (CIs) of the time-constant parameters include the actual values
of the parameters.
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Figure C.2: The ground truth (black line), and the estimated intensities of latent infections
for the synthetic scenario using 4 age groups (posterior median (red line) ; 95% CI (red
dashed line)) plotted against time. The vertical dotted lines show the beginning of each
week in the period we examine.
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Figure C.3: The ground truth (black line), and the weekly latent infections for the synthetic
scenario using 4 age groups (posterior median (red line) ; 95% CI (red dashed line)) plotted
against subintervals.
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Figure C.4: The estimated weights {γna}a and instantaneous reproduction numbers {Ra}a
(posterior median (red line); 95% CI (red dashed line)) and the true values (black line) for
the synthetic scenario using 4 groups plotted against subintervals and time, respectively.
The vertical dotted lines show the beginning of each week in the period we examine.
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Figure C.5: The ESS for the synthetic scenario using 4 age groups plotted against subin-
tervals.

Convergence of the posterior estimates
MCSE N = 10000 N = 20000 N = 30000 N = 40000
γ1 0.000741 0.000565 0.000438 0.000428
γ2 0.00043 0.0003 0.000243 0.000208
γ3 0.000101 0.000077 0.00006 0.000053
γ4 0.000811 0.00054 0.000444 0.000381
Y1 2.4775 1.83933 1.373194 1.415707
Y2 2.423559 2.119945 2.007936 1.897117
Y3 0.181335 0.127363 0.102718 0.094132
Y4 0.462724 0.302392 0.260452 0.213064

Table C.1: MCSEs of the average of weights and weekly hidden infections, estimated
by the posterior means for the synthetic scenario using 4 age groups.

C.2 Independent processes {γ(t, a)}a on age groups

Particle filters can have an exponential cost in the dimensionality of the hidden
state to be stable [Beskos et al., 2017]. Increasing the number of age groups raises
the dimensionality of the hidden state and, by extension, the computational re-
sources required to keep the uniform-in-time convergence results dependent on re-
cent states [Kantas et al., 2015]. A simple approach to mitigate the dimensionality
problem would be to consider the process γ(t, a) = caq(t), where ca is a given con-
stant associated with age group a and q(t) a random process independent of age
groups.

Here, we present a simulation analysis considering six age groups in Leices-
ter [ONS, 2021], and nine age groups adopting the demographic features in Ash-
ford [ONS, 2021] with independent processes {γ(t, a)}a on age groups, that is,
γ(t, a) = γ(t), ∀ age group a.

C.2.1 Six age groups

We coarse the age groups of the contact matrix for reopening schools [Jarvis et al.,
2020]. The process is triggered by 1630 infectious; Their infection times are uni-
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Figure C.6: The weekly observed cases aged 0-29 (red line), 30-39 (blue line), 40-49 (pink
line), 50-59 (brown line), 60-69 (yellow line) and 70+ (green line) considering weights
{{γna}16n=1}a independent on age groups a plotted against time.

formly allocated in 21 days ([0, 21)). We generate weekly latent infections and
observed cases according to the model equations for weeks -2 − 17 ([0, 161)) given
v = 0.003, d = 15.1, β = 0.5 and γ−2 = 0.4. We consider that about 71% of
the population is susceptible at the beginning of week -2 ; 252406 susceptibles
(0 − 29 : 119117, 30 − 39 : 35549, 40 − 49 : 28611, 50 − 59 : 26462, 60 − 69 :
21293, 70+ : 21374).

We are interested in inferring the latent infections in weeks 1−16 with H0 being
the set of latent infection times in weeks -2− 0 derived. We assume α = 0, b = 0.5,
dmin = 10, dmax = 20, vmin = 0.0001 and vmax = 0.5.

The ground truth is characterized by H0 consisting of 5513 infections (0 − 29 :
1870, 30−39 : 992, 40−49 : 1070, 50−59 : 765, 60−69 : 481, 70+ : 335), and,
246893 susceptibles (0− 29 : 117247, 30− 39 : 34557, 40− 49 : 27541, 50− 59 :
25697, 60 − 69 : 20310, 70+ : 21039) at the beginning of week 1. The estimated
H0 consists of 4880 infections (0 − 29 : 1739, 30 − 39 : 816, 40 − 49 : 890, 50 −
59 : 730, 60 − 69 : 414, 70+ : 294), and, the estimated susceptibles are 247526
(0 − 29 : 117381, 30 − 39 : 34773, 40 − 49 : 27721, 50 − 59 : 25732, 60 − 69 :
20879, 70+ : 21080), respectively. The observed cases in weeks 1 − 17 are 18555
(< 30 : 6473, 30−39 : 3374, 40−49 : 3254, 50−59 : 2493, 60−69 : 1720, 70+ :
1241) (Figure C.6).

Figures C.7-C.11 show the estimated intensities of latent infections, the esti-
mated weekly latent infections, the estimated weights {γn}16n=1 and the estimated
instantaneous reproduction numbers {Ra}a∈A for each age group and the ESS for
20000 particles. We observe that the 95% credible intervals do cover the ground
truth most of the time. Table C.2 confirms the convergence of posterior estimates of
weights and weekly latent infections per age group concerning the number of parti-
cles. The 95% Credible Intervals (CIs) of the time-constant parameters include the
actual values of the parameters.
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Figure C.7: The ground truth (black line), and the estimated intensities of latent infections
(posterior median (red line) ; 95% CI (red dashed line)) for the synthetic scenario using
6 age groups and weights {{γna}16n=1}a independent on age groups a plotted against time.
The vertical dotted lines show the beginning of each week in the period we examine.
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Figure C.8: The ground truth (black line), and the weekly latent infections (posterior
median (red line) ; 95% CI (red dashed line)) for the synthetic scenario using 6 age groups
and weights {{γna}16n=1}a independent on age groups a plotted against subintervals.
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Figure C.9: The ground truth (black line), and the instantaneous reproduction numbers
(posterior median (red line) ; 95% CI (red dashed line)) for the synthetic scenario using
6 age groups and weights independent on age groups a plotted against subintervals. The
vertical dotted lines show the beginning of each week in the period we examine.
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Figure C.10: The estimated weights {γn}16n=1 (posterior median (red line); 95% CI (red
dashed line)) and the true values (black line) for the synthetic scenario using 6 groups
plotted against subintervals.
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Figure C.11: The ESS for the synthetic scenario using 6 age groups and weights
{{γna}16n=1}a independent on age groups a plotted against subintervals.

Convergence of the posterior estimates
MCSE N = 10000 N = 20000 N = 30000
γ 0.0002 0.0001 0.0001
Y1 0.58 0.42 0.37
Y2 0.32 0.24 0.21
Y3 0.31 0.24 0.20
Y4 0.26 0.18 0.16
Y5 0.19 0.14 0.12
Y6 0.15 0.1 0.09

Table C.2: MCSEs of the average of weights and weekly hidden infections, estimated
by the posterior means for the synthetic scenario using 6 age groups and weights
{{γna}16n=1}a independent on age groups a.

C.2.2 Nine age groups

ONS shows that 6.69% of the population is aged under 5 years (0-4), 9.69% aged 5
to 11 years (5-11), 7.36% aged 12 to 17 years (12-17), 23.45% aged 18 to 29 years
(18-29), 14.09% aged 30 to 39 years (30-39), 11.33% aged 40 to 49 years (40-49),
10.48% aged 50 to 59 years (50-59), 8.44% aged 60 to 69 years (60-69) and 8.47%
over 70 years (70+) in Ashford [ONS, 2021]. We consider the matrix:

m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.56 2.21 1.86 0.97 1.77 1.05 0.51 0.28 0.14
1.51 4.39 2.97 0.63 1.19 1.18 0.58 0.24 0.15
1.61 3.7 3.95 1.33 0.97 1.53 1.22 0.34 0.21
0.38 0.36 0.60 1.21 0.74 0.58 0.60 0.40 0.31
0.75 0.73 0.47 0.80 0.92 0.68 0.53 0.40 0.30
0.48 0.78 0.81 0.68 0.74 0.85 0.70 0.37 0.44
0.22 0.36 0.61 0.71 0.54 0.66 0.78 0.47 0.35
0.15 0.19 0.21 0.55 0.51 0.43 0.59 0.72 0.53
0.06 0.09 0.10 0.34 0.30 0.40 0.34 0.41 0.87

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The process is triggered by 982 infectious; Their infection times are uniformly
allocated in 21 days ([0, 21)). We generate weekly latent infections and observed
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Figure C.12: The weekly observed cases aged 0-4 (red line), 5-11 (blue line), 12-17 (pink
line), 18-29 (brown line), 30-39 (yellow line), 40-49 (green line), 50-59 (cyan line), 60-69
(purple line) and 70+ (orange line) considering weights {{γna}16n=1}a independent on age
groups a plotted against time.

cases according to the model equations for weeks -2− 17 ([0, 161)) given v = 0.007
and d = 15.3. We consider that about 99% of the population is susceptible at the
beginning of week -2 ; 130036 susceptibles (0− 4 : 7716, 5− 11 : 12276, 12− 17 :
9892, 18− 29 : 16026, 30− 39 : 15514, 40− 49 : 16645, 50− 59 : 19075, 60− 69 :
13881, 70+ : 19011).

We are interested in inferring the latent infections in weeks 1−16 with H0 being
the set of latent infection times in weeks -2− 0 derived. We assume α = 0, b = 0.5,
dmin = 10, dmax = 20, vmin = 0.0001 and vmax = 0.5.

The ground truth is characterized by H0 consisting of 567 infections (0 − 4 :
95, 5− 11 : 127, 12− 17 : 143, 18− 29 : 39, 30− 39 : 43, 40− 49 : 37, 50− 59 :
33, 60 − 69 : 30, 70+ : 20), and, 129469 susceptibles (0 − 4 : 7621, 5 − 11 :
12149, 12− 17 : 9749, 18− 29 : 15987, 30− 39 : 15471, 40− 49 : 16608, 50− 59 :
19042, 60 − 69 : 13851, 70+ : 18991) at the beginning of week 1. The estimated
H0 consists of 588 infections (0 − 4 : 60, 5 − 11 : 106, 12 − 17 : 124, 18 − 29 :
52, 30 − 39 : 62, 40 − 49 : 50, 50 − 59 : 52, 60 − 69 : 46, 70+ : 36), and,
the estimated susceptibles are 129448 (0 − 4 : 7656, 5 − 11 : 12170, 12 − 17 :
9768, 18− 29 : 15974, 30− 39 : 15452, 40− 49 : 16595, 50− 59 : 19023, 60− 69 :
13835, 70+ : 18975), respectively. The observed cases in weeks 1 − 17 are 27470
(0−4 : 3358, 5−11 : 4970, 12−17 : 4102, 18−29 : 2843, 30−39 : 3232, 40−49 :
3148, 50− 59 : 2562, 60− 69 : 1871, 70+ : 1384) (Figure C.12).

Figures C.13-C.17 show the estimated intensities of latent infections, the esti-
mated weekly latent infections, the estimated weights {γn}16n=1 and the estimated
instantaneous reproduction numbers {Ra}a∈A for each age group and the ESS for
30000 particles. We observe that the 95% credible intervals do cover the ground
truth most of the time. Table C.3 confirms the convergence of posterior estimates of
weights and weekly latent infections per age group concerning the number of parti-
cles. The 95% Credible Intervals (CIs) of the time-constant parameters include the
actual values of the parameters.
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Figure C.13: The ground truth (black line), and the estimated intensities of latent infec-
tions (posterior median (red line) ; 95% CI (red dashed line)) for the synthetic scenario
using 9 age groups and weights independent on age groups a plotted against time.
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Figure C.14: The ground truth (black line), and the weekly latent infections (posterior
median (red line) ; 95% CI (red dashed line)) for the synthetic scenario using 6 age groups
and weights independent on age groups a plotted against subintervals.
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Figure C.15: The ground truth (black line), and the instantaneous reproduction numbers
(posterior median (red line) ; 95% CI (red dashed line)) for the synthetic scenario using 9
age groups and weights independent on age groups a plotted against subintervals.
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Figure C.16: The estimated weights {γn}16n=1 (posterior median (red line); 95% CI (red
dashed line)) and the true values (black line) for the synthetic scenario using 9 groups
plotted against subintervals.
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Figure C.17: The ESS for the synthetic scenario using 9 age groups and weights
{{γna}16n=1}a independent on age groups a plotted against subintervals.



Convergence of the posterior estimates
MCSE N = 10000 N = 20000 N = 30000
γ 0.0002 0.0001 0.0001
Y1 0.26 0.2 0.17
Y2 0.38 0.31 0.25
Y3 0.35 0.25 0.22
Y4 0.24 0.19 0.16
Y5 0.26 0.18 0.16
Y6 0.27 0.19 0.18
Y7 0.24 0.17 0.15
Y8 0.19 0.14 0.12
Y9 0.15 0.1 0.09

Table C.3: MCSEs of the average of weights and weekly hidden infections, estimated
by the posterior means for the synthetic scenario using 9 age groups and weights
{{γna}16n=1}a independent on age groups a.

C.3 Real Data

C.3.1 Ashford

Proposed Method
Reported in-
fections

Posterior
Mean

Posterior
Median

95% CIs True Number
(T17)

True Number
(T16)

aggregated 327 318 (195, 469) 408
aged 0-29 67 62 (22, 118) 85 133
aged 30-49 105 98 (40, 178) 107 197
aged 50-69 98 91 (34, 172) 134 180
aged 70+ 57 54 (20, 99) 82 96

Table C.4: The true number of reported infections in T16 and T17, and the posterior
median, the posterior mean and the 95% CIs of the estimated infections in T17 in
Ashford.
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Figure C.18: The estimated latent intensity and susceptibles (posterior median (blue line)
; 95% CI (ribbon)) and the daily observed cases (cyan line) in Ashford plotted against
time. The vertical dotted lines show the beginning of each week in the period we examine.
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(a) The estimated aggregated weekly hidden
cases.
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(b) The estimated weekly hidden cases aged 0-29.
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(e) The estimated weekly hidden cases aged 70+.

Figure C.19: The estimated weekly latent cases (black line; 95% CI (ribbon)) and the
weekly observed cases (cyan line) in Ashford plotted against time.
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(a) The estimated aggregated daily hidden cases.
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(b) The estimated daily hidden cases aged 0-29.
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(c) The estimated daily hidden cases aged 30-49.
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(e) The estimated daily hidden cases aged 70+.

Figure C.20: The estimated daily latent cases (posterior median (black line); 95% CI
(ribbon)) and the daily observed cases (cyan line) in Ashford plotted against time. The
vertical dotted lines show the beginning of each week in the period we examine.
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(a) The per age group instantaneous reproduction
numbers.
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(b) The estimated weights {γi,0−29}16i=1.
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(c) The estimated weights {γi,30−49}16i=1.
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(d) The estimated weights {γi,50−69}16i=1.
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(e) The estimated weights {γi,70+}16i=1.

Figure C.21: The posterior median estimate of instantaneous reproduction number per
age group (0-29 (red line), 30-49 (blue line), 50-69 (green line) and 70+ (brown line)), the
posterior median estimate of weights {{γna}16n=1}a (red line) and the 95% CIs (ribbon) for
Ashford plotted against time.
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Figure C.22: ESS and 95% CIs of time-constant parameters for Ashford plotted against
subintervals.
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(a) Aggregated weekly hidden cases.
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Figure C.23: The posterior median estimate of weekly hidden cases of model A (black line)
and model U (red line), and the 95% CIs (ribbon) in Ashford plotted against time.
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(a) Aggregated daily hidden cases.
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Figure C.24: The posterior median estimate of daily hidden cases of model A (black line)
and model U (red line), and the 95% CIs (ribbon) in Ashford plotted against time. The
vertical dotted lines show the beginning of each week in the period we examine.
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(a) Aggregated latent intensity.
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Figure C.25: The posterior median estimate of latent intensity of model A (blue line) and
model U (red line), and the 95% CIs (ribbon) in Ashford plotted against time. The vertical
dotted lines show the beginning of each week in the period we examine.
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Figure C.26: The posterior median estimate of instantaneous reproduction number of
model A (black line) and model U (blue line), and the 95% CIs (ribbon) in Ashford plotted
against time.



C.3.2 Kingston upon the Thames

0

10000

20000

30000

40000

4 8 12 16

(a) ESS.

2

3

4

5

6

7

4 8 12 16

(b) The 95% CIs of d.

0 . 2 . 0

24
22

24
26

24
28

24
21

24
25

(c) The 95% CIs of v.

Figure C.27: ESS and 95% CIs of time-constant parameters for Kingston upon the Thames
plotted against subintervals.

C.3.3 Leicester

Proposed Method
Reported
infections

Posterior
Mean

Posterior
Median

95% CIs True Num-
ber (T17)

True Num-
ber (T16)

aggregated 4969 4793 (2577, 7763) 5794
aged 0-29 2275 2090 (681, 4325) 2367 1844
aged 30-49 1659 1557 (554, 3013) 2054 1244
aged 50-69 881 819 (246, 1653) 1112 528
aged 70+ 154 142 (38, 290) 261 87

Table C.5: The true number of reported infections in T16 and T17, and the posterior
median, the posterior mean and the 95% CIs of the estimated infections in T17 in
Leicester.
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(a) The estimated intensity of latent cases aged 0-29.

20000

30000

40000

0 30 60 90

(b) The estimated susceptibles aged 0-29.

0

300

600

900

0 30 60 90

(c) The estimated intensity of latent cases aged 30-
49.

10000

15000

20000

25000

30000

0 30 60 90
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Figure C.28: The estimated latent intensity and susceptibles (posterior median (blue line)
; 95% CI (ribbon)) and the daily observed cases (cyan line) in Leicester plotted against
time. The vertical dotted lines show the beginning of each week in the period we examine.
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Figure C.29: The estimated weekly latent cases (black line; 95% CI (ribbon)) and the
weekly observed cases (cyan line) in Leicester plotted against time.
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(a) The estimated aggregated daily hidden cases.
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Figure C.30: The estimated daily latent cases (posterior median (black line); 95% CI
(ribbon)) and the daily observed cases (cyan line) in Leicester plotted against time. The
vertical dotted lines show the beginning of each week in the period we examine.
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Figure C.31: The posterior median estimate of instantaneous reproduction number per
age group (0-29 (red line), 30-49 (blue line), 50-69 (green line) and 70+ (brown line)), the
posterior median estimate of weights {{γna}16n=1}a (red line) and the 95% CIs (ribbon) for
Leicester plotted against time.
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Figure C.32: ESS and 95% CIs of time-constant parameters for Leicester plotted against
subintervals.

C.4 Alternative method of estimating the suscepti-
ble population in Ashford and Kingston upon
Thames

We use the percentage of the population aged a with levels of antibodies against
SARS-CoV-2 at or above a threshold of 179 nanograms per millilitre (ng/ml), de-
noted by pa, available from the ONS [ONS, 2022], to initialize the number of sus-
ceptibles aged a at the beginning of the first week. The percentage of people 0-15
having antibodies at or above the threshold is not available. We assume the per-
centage is the same as that of 16-24. Following this methodology, (1− pa)Na gives
the susceptible population aged a at the start of the first week. However, the esti-
mated susceptible population is less than the total number of reported infections in
Ashford and Kingston for some age bands. The antibodies might not fully protect
against infection in December 2021; this could be due to declining immunity or im-
mune escape (new variants being different from old variants and thus the previous
infection being less protective against a new one). For this reason, we assume that
a smaller percentage of the population aged a, given by kapa with 0 < ka < 1, has
enough antibodies against a new infection in December 2021. We run Algorithm 16
for different values of ka and select the one that results in a 95% CI for the pro-
jected reported instances in week 17 (T17) that is narrower. Tables C.6-C.13 show
the posterior mean, the posterior median and the 95% CI of the estimated reported
infections in T17 for both local authorities. We require the susceptible population
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Figure C.33: The posterior median estimate of weekly hidden cases of model A (black line)
and model U (red line), and the 95% CIs (ribbon) in Leicester plotted against time.
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(a) Aggregated daily hidden cases.
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Figure C.34: The posterior median estimate of daily hidden cases of model A (black line)
and model U (red line), and the 95% CIs (ribbon) in Leicester plotted against time. The
vertical dotted lines show the beginning of each week in the period we examine.
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Figure C.35: The posterior median estimate of latent intensity of model A (blue line)
and model U (red line), and the 95% CIs (ribbon) in Leicester plotted against time. The
vertical dotted lines show the beginning of each week in the period we examine.
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Figure C.36: The posterior median estimate of instantaneous reproduction number of
model A (black line) and model U (blue line), and the 95% CIs (ribbon) in Leicester
plotted against time.



to be at least twice as large as the reported cases for each age group to maintain
consistency with our assumption that we see 50% of the infections. Summarizing
the number of susceptibles aged a at the beginning of the first week in Leicester
(4/9/2021), Kingston upon Thames (11/12/2021) and Ashford (19/12/2021) are
given by (1− pa)Na, (1− 0.4pa)Na and (1− 0.5pa)Na, respectively.

Posterior estimates of the reported cases in T17.
True Mean Median 95% CI

Y0−29 85 70.3 63 (21,133)
Y30−49 107 115.38 106 (44,209)
Y50−69 134 101.59 94 (35,180)
Y70+ 82 61.07 56 (19,111)

Table C.6: The true value, the posterior mean, the posterior median and the 95%
CI of the reported cases per age group in T17 assuming ka = 0.4 in Ashford.

Posterior estimates of the reported cases in T17.
True Mean Median 95% CI

Y0−29 85 67 63 (25,114)
Y30−49 107 113 107 (49,186)
Y50−69 134 106 101 (49,176)
Y70+ 82 61.22 58 (22,103)

Table C.7: The true value, the posterior mean, the posterior median and the 95%
CI of the reported cases per age group in T17 assuming ka = 0.5 in Ashford.

Posterior estimates of the reported cases in T17.
True Mean Median 95% CI

Y0−29 85 85.36 67 (11,249)
Y30−49 107 110.39 102 (35,199)
Y50−69 134 101.58 93 (33,192)
Y70+ 82 59.19 55 (19,108)

Table C.8: The true value, the posterior mean, the posterior median and the 95%
CI of the reported cases per age group in T17 assuming ka = 0.6 in Ashford.

Posterior estimates of the reported cases in T17.
True Mean Median 95% CI

Y0−29 85 69.19 64 (22,123)
Y30−49 107 106.42 101 (43,178)
Y50−69 134 102.15 97 (41,175)
Y70+ 82 58.6 55 (21,101)

Table C.9: The true value, the posterior mean, the posterior median and the 95%
CI of the reported cases per age group in T17 assuming ka = 0.7 in Ashford.
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Posterior estimates of the reported cases in T17.
True Mean Median 95% CI

Y0−29 139 153.81 146 (70,248)
Y30−49 246 245.8 236 (124,383)
Y50−69 187 162.53 155 (79,255)
Y70+ 95 98.27 94 (44,158)

Table C.10: The true value, the posterior mean, the posterior median and the 95%
CI of the reported cases per age group in T17 assuming ka = 0.4 in Kingston.

Posterior estimates of the reported cases in T17.
True Mean Median 95% CI

Y0−29 139 147 138 (62,246)
Y30−49 246 241.28 229 (116,390)
Y50−69 187 164.13 156 (73,269)
Y70+ 95 95.64 91 (40,157)

Table C.11: The true value, the posterior mean, the posterior median and the 95%
CI of the reported cases per age group in T17 assuming ka = 0.5 in Kingston.

Posterior estimates of the reported cases in T17.
True Mean Median 95% CI

Y0−29 139 154.1 142 (52,277)
Y30−49 246 241.46 223 (94,427)
Y50−69 187 171.12 155 (56,322)
Y70+ 95 95.12 89 (36,167)

Table C.12: The true value, the posterior mean, the posterior median and the 95%
CI of the reported cases per age group in T17 assuming ka = 0.6 in Kingston.

Posterior estimates of the reported cases in T17.
True Mean Median 95% CI

Y0−29 139 146.13 131 (46,278)
Y30−49 246 222.5 203 (74,409)
Y50−69 187 157.8 144 (51,291)
Y70+ 95 89.56 82 (31,165)

Table C.13: The true value, the posterior mean, the posterior median and the 95%
CI of the reported cases per age group in T17 assuming ka = 0.7 in Kingston.
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