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Abstract

The spatio-temporally varying turbulent energy cascade dynamics in forced homoge-
neous/periodic turbulence is investigated with direct numerical simulations (DNS) and
Helmholtz decompositions. The local in space and time cascade dynamics vastly differs
from its spatio-temporal average manifestation. At scales larger than the Taylor scale,
the solenoidal interscale transfer at most locations at most times increases or decreases
the energy at the given scale in the frame moving with larger scales, i.e. Lagrangian
transport. The solenoidal interscale transfer derives from the non-local in space vortex
stretching/compression and tilting effects of its spatial vicinity. The irrotational cascade
dynamics reduces to an exact balance between irrotational transport, irrotational inter-
scale transfer and pressure-velocity. The typical fluctuations of these processes vastly
exceed their spatio-temporal average values and the typical dissipation fluctuations.

At scales below the Taylor scale, viscous effects increase in importance in the solenoidal
dynamics. At the Kolmogorov scale solenoidal interscale transfer, Lagrangian transport
and viscous effects are all important. In regions of low and moderate small-scale energy,
and to a somewhat lesser extent in regions of high small-scale energy, there is rarely a
local balance between interscale transfer and viscous effects. Lagrangian transport acts
as a non-local in time and space link between interscale transfer and viscous effects.

The spatially-averaged manifestation of the local cascade dynamics is an unsteady and
approximately unidirectional energy cascade, which can be approximated with a hypoth-
esis connecting the present interscale transfer with the future dissipation. The hypothesis
can be used to develop non-equilibrium corrections to the low-pass filtered dynamics and
second-order structure function scaling consistent with DNSs. We use the phenomenol-
ogy of a time-lagged energy cascade to motivate a new redistributive dissipation scaling.
The non-equilibrium dissipation scaling typically reduces to the redistributive dissipation
scaling at low and moderate Reynolds numbers.
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Nomenclature

Acronyms

CFL Courant-Friedrichs-Lewy

DNS Direct Numerical Simulation

FFT Fast Fourier Transform

K41 Kolmogorov’s original theory of turbulence

K62 Kolmogorov’s refined theory of turbulence

KH Kármán-Howarth equation (see equation (1.3))

KHMH Kármán-Howarth-Monin-Hill equation (see equation (3.19))

LES Large-Eddy Simulation

LHS Left-hand side

NS Incompressible Navier-Stokes equations (see equation (1.1))

NSD Navier-Stokes Difference equations (see equation (3.14))

PDF Probability Density Function

RANS Reynolds-Averaged Navier-Stokes equations

RHS Right-hand side

Greek Letters

ω Fluid vorticity ∇x × u

δij Kronecker delta

ϵ Viscous (pseudo-)dissipation rate ν(∂ui/∂xj)2

ϵ0 Characteristic large-scale input/global dissipation scale

ϵijk Levi-Civita tensor
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η Kolmogorov scale ⟨ϵ⟩−1/4
x ν3/4

λ Taylor scale 15(νu2/⟨ϵ⟩x)1/2

ϵ∗ KHMH two-point viscous pseudo-dissipation (see equation (3.20))

Π KHMH interscale transfer (see equation (3.20))

ΠH KHMH homogeneity interscale transfer (see equation (3.29))

ΠI KHMH inhomogeneity interscale transfer (see equation (3.29))

ν Fluid kinematic viscosity

Π KHMH equilibrium interscale transfer −CΠ ⟨ϵ∗⟩x

τ Interscale transfer and dissipation scale-dependent time delay

ρ Fluid density

τ Interscale transfer and dissipation time delay (see equation (5.11))

τ ∗ Interscale transfer and dissipation "local" time delay (see equation (5.31))

˜︁Π KHMH non-equilibrium interscale transfer ⟨Π ⟩ax − Π

Operators

ξ(ϕ|ζ) Operator ξ (e.g. σ) acting on ϕ conditioned on condition ζ

qI Irrotational part of NS term q

qS Solenoidal part of NS term q

qI Irrotational part in centroid space of NSD term q

qS Solenoidal part in centroid space of NSD term q

δϕ ϕ difference ϕ+ − ϕ−

⟨ϕ⟩ Spatio-temporal average of ϕ

⟨ϕ⟩E Ensemble average of ϕ

⟨ϕ⟩t Time average of ϕ

⟨ϕ⟩x Space average of ϕ

Q” Q temporal/ensemble fluctuation ⟨Q⟩x − ⟨Q⟩

Q′ Q spatio-temporal fluctuation Q− ⟨Q⟩
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QI Irrotational (centroid space) part of KHMH term Q with NSD analogue q given
by 2δu · qI

QS Solenoidal (centroid space) part of KHMH term Q with NSD analogue q given by
2δu · qS

QS Solenoidal (physical space) part of KHMH term Q with NSD analogue δq given
by 2δu · δqS

ϕa Orientation averaged ϕ (see equation (2.31))

ϕ+ ϕ evaluated at x+ = x+ 1/2r

ϕ− ϕ evaluated at x− = x− 1/2r

ϕ< Low-pass filtered (in time) ϕ

σ(ϕ), σϕ Standard deviation of ϕ

corr(ϕ1, ϕ2) Pearson correlation coefficient of ϕ1 and ϕ2

RMS(ϕ) Root-mean-square
√︁

⟨ϕ2⟩t

ˆ︁ϕ(k) Fourier coefficient of ϕ at wavenumber k

Roman Letters

a NS total acceleration al + ac

ac NS convective acceleration u · ∇xu

al NS local acceleration ∂u/∂t

ap NS pressure gradient −1/ρ∇xp

aT NSD interspace transport (u+ + u−)/2 · ∇xδu

aΠ NSD interscale transfer δu · ∇rδu

aν NS viscous term ν∇2
xu

f NS forcing term

k Wavenumber vector

r Separation vector x+ − x−

u Fluid velocity field

x Physical space or centroid location (x+ + x−)/2
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Ac KHMH non-linear term T + Π (see equation (3.20))

At KHMH time derivative term (see equation (3.20))

D KHMH viscous effects Dr,ν +Dx,ν − ϵ∗

Dr,ν KHMH viscous diffusion in scale space (see equation (3.20))

Dx,ν KHMH viscous diffusion in centroid space (see equation (3.20))

I KHMH energy input rate (see equation (3.20))

T KHMH turbulent transport (see equation (3.20))

Tp KHMH pressure-velocity (see equation (3.20))

CK Kolmogorov constant (see equation (1.9))

CΠ Formalised time-lag hypothesis prefactor (see equation (5.9))

Cτ Local delay scaling prefactor (see equation (5.31))

E u power spectrum (see equation (2.20))

K Spatially-averaged turbulent kinetic energy ⟨uiui⟩x/2

k Wavenumber magnitude |k|

kmax Maximum resolved wavenumber
√
2/3N

L The integral length scale (see equation (2.22))

L0 Characteristic large-scale input/global length scale

N DNS simulation size with N3 total wavenumber modes

p Fluid pressure field

r, rd Length scale given by the separation magnitude |r|

Reλ Taylor scale Reynolds number uλ/ν

T Integral time scale ⟨L⟩t/⟨u⟩t

Tϵ Time scale of change of ⟨ϵ⟩x (see equation (5.15))

u Velocity root-mean-square
√︁
2/3K

u0 Characteristic large-scale input/global velocity scale
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1. Introduction

Fluid flows appearing in nature and engineering are typically turbulent. Even as turbu-
lence is easy to observe, and the equations governing the motion of fluids became available
in the 19th century, a deep understanding of turbulence is yet to be obtained. Funda-
mental aspects of turbulence must be clearly understood to improve turbulence models
and subsequent engineering predictions and designs (Tsinober, 2009).

Arguably the most successful turbulence description to date is the Kolmogorov 1941
theory (abbreviated K41) (Kolmogorov, 1941a,b,c). In K41 turbulence is viewed as a
wide range of dynamically interacting scales. The largest inviscid scales are dependent
on flow-specific phenomena and the smallest scales are affected by viscosity. Under the
hypotheses of statistical homogeneity and isotropy (i.e. the turbulence statistical prop-
erties are invariant under translations in space and rotations) and local equilibrium at
intermediate scales (i.e. the energy transfer rate to smaller scales is equal to the rate at
which energy is being converted to heat), K41 obtains predictions for the energy distri-
bution at an intermediate range of scales. This prediction has been observed in a vast
range of turbulent flow regions, both in flow regions where the hypotheses are plausibly
satisfied and where they are not (Kraichnan, 1974; Alves Portela et al., 2017)

Notwithstanding its successes, the K41 theory has limitations. The K41 assumption
of local equilibrium is not applicable in a wide range of scales (Goto and Vassilicos,
2015, 2016b). This effect of cascade unsteadiness remains to be accounted for in the
description of the turbulent energy cascade. Moreover, the K41 mean-field description
is not necessarily applicable locally in space and time. Such a hypothesis of equilibrium
locally in space-time is the basis for the refined theory of Kolmogorov (1962) and later
extensions, culminating in the multifractal formalism (Parisi and Frisch, 1985; Frisch,
1995). Recent investigations have shown that locally the cascade dynamics vastly differ
from a local balance between interscale energy transfer and viscous dissipation (Yasuda
and Vassilicos, 2018). The local cascade behaviour is central to large-eddy-simulation
(LES) models of turbulence and the question of the smallest length scales in turbulent
flows (Frisch and Vergassola, 1991).

Section 1.1 provides an overview of classical turbulence theory with a focus on the
K41 theory. We discuss some shortcomings of the K41 theory in section 1.2 before listing
the thesis objectives and outline in section 1.3.
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1.1 An Overview of Classical Turbulence Theory

The equations governing incompressible Newtonian fluids are the (incompressible) Navier-
Stokes equations (Batchelor, 1967)

∂ui
∂xi

= 0, (1.1a)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (1.1b)

where ui is the fluid velocity components and p is the pressure at location x at time
t, and ρ and ν are the density and kinematic viscosity of the fluid. If U and d denote
characteristic velocity and length scales of u, the flow becomes turbulent at sufficiently
high Reynolds numbers

Red =
Ud

ν
, (1.2)

where the non-linear term dominates the viscous term at scale d (Reynolds, 1883; David-
son et al., 2011). At such Reynolds numbers the fields u and p can be thought of in terms
of their mean and fluctuating parts (Reynolds, 1895). At first these turbulent fluctuations
might seem random, but they are governed by a deterministic set of equations (1.1).

One possible organising principle of turbulent flows is the idea of a turbulent energy
cascade first introduced by Richardson (1922); kinetic energy enters the flow at the largest
scales, it is cascaded by inviscid processes to gradually smaller scales and at the smallest
scales viscous dissipation is effective such that the energy is converted into heat. This
picture emphasises the role of viscous dissipation at the end of a sequence of processes,
and it represents a turbulent flow as a hierarchy of eddies ranging from the size of the
largest energy-containing scales to the smallest scales allowed by dissipation.

An essential stepping stone in the further development of a cascade theory was the
statistical theory of turbulence of G. I. Taylor (Taylor, 1935, 1938a,b). Taylor introduced
the notions of statistically homogeneous and isotropic turbulence, where the average
properties of the motion are independent of the position in the fluid and the direction
of the axes of reference. The relative mathematical simplicity of isotropic turbulence led
Kármán and Howarth (1938) to derive the Kármán-Howarth (KH) equation from the
Navier-Stokes equations. This equation connects the evolution of mean values of the
product of two and three components of the velocity field u at two locations in terms
of only two unknown scale-dependent scalar functions. This equation can be written in
terms of velocity structure functions (see e.g. Landau and Lifshitz (1987)) as

∂⟨δu2r⟩E
∂t

+
1

3r4
∂

∂r

(︁
r4⟨δu3r⟩E

)︁
=

2ν

r4
∂

∂r

(︁
r4
∂⟨δu2r⟩E
∂r

)︁
− 4

3
⟨ϵ⟩E, (1.3)

where ⟨·⟩E denotes an ensemble average, ⟨δu2r⟩E(r, t) and ⟨δu3r⟩E(r, t) are the second and
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third order longitudinal velocity structure functions with

δur(x, r, t) =
(︁
u(x+

1

2
r, t)− u(x− 1

2
r, t)

)︁
· r
r
, (1.4)

r = |r| is the separation distance or scale and ϵ is the viscous (pseudo-)dissipation rate

ϵ = ν
∂ui
∂xj

∂ui
∂xj

. (1.5)

Equation (1.3) is an exact equation in homogeneous and isotropic turbulence which relates
the second- and third-order velocity structure functions. This equation is interesting
physically as it is an evolution equation for ⟨δu2r⟩E(r, t). This quantity represents, roughly
speaking, the energy contained in eddies of characteristic size r or less (see Townsend
(1976); Frisch (1995); Davidson and Pearson (2005)). Moving from left to right in (1.3),
the first term is an unsteadiness term, the second term is an interscale transfer term, the
third term is a scale space viscous diffusion term and the final term is viscous dissipation.

The seminal contribution Kolmogorov (1941a) starts from the KH equation written
in the form (1.3). It can be argued from the idea of an energy cascade that ⟨δu2r⟩E
regardless of r evolves on a time scale similar to the overall turbulent kinetic energy
evolution (∼ L/u, where u and L are large-scale turbulent velocity and length scales)
(see e.g. chapter 6 of Batchelor (1953)). If the local time scale of the energy evolution at
scales r ≪ L is much smaller than the time scale of the overall turbulent kinetic energy
evolution, the local turbulence can be viewed as in approximate local equilibrium

1

3r4
∂

∂r

(︁
r4⟨δu3r⟩E

)︁
≈ 2ν

r4
∂

∂r

(︁
r4
∂⟨δu2r⟩E
∂r

)︁
− 4

3
⟨ϵ⟩E, (1.6)

This local equilibrium assumption is an approximation which becomes increasingly accu-
rate at smaller scales r with decreasing local time scales. If we imagine a flow at a very
high Reynolds number with a range of scales with scales small enough for local equilib-
rium to be valid while large enough for the viscous diffusion term in (1.6) to be negligible
(denoted the inertial range of scales), we obtain in this range of scales

1

3r4
∂

∂r

(︁
r4⟨δu3r⟩E

)︁
≈ −4

3
⟨ϵ⟩E. (1.7)

If we multiply this equation with r4 and integrate across separations from 0 to r, we
attain the so-called Kolmogorov "4/5-law"

⟨δu3r⟩E(r)
r

≈ −4

5
⟨ϵ⟩E. (1.8)

This equation can be interpreted in terms of a self-similar equilibrium cascade at an
intermediate range of scales, where there is an average energy cascade from larger to
smaller scales which is proportional to the average viscous dissipation rate.
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Kolmogorov (1941a) combined (1.8) with an assumption of a Reynolds number inde-
pendent δur skewness factor ⟨δu3r⟩E/⟨δu2r⟩3/2E at inertial scales such that

⟨δu2r⟩E(r) = CK⟨ϵ⟩2/3E r2/3, (1.9)

which is denoted the Kolmogorov "2/3-law" and CK is the Kolmogorov constant, a uni-
versal constant of order unity. This relation describes a self-similar manner in which
energy is distributed at intermediate scales r. Note that the earlier Kolmogorov paper
Kolmogorov (1941c) arrived at a r2/3-scaling of ⟨δu2r⟩E(r) for more general conditions than
statistical homogeneity and isotropy (i.e. local homogeneity and local isotropy) with no
assumption of δur constant skewness. However, this result is strictly from dimensional
considerations and not the Navier-Stokes equations. As a final ingredient to the K41
theory, we note that Kolmogorov (1941b) assumed that (1.9) can be extended to scales
r ∼ L such that

⟨ϵ⟩E ∼ u3

L
. (1.10)

The scaling (1.10) was first introduced by Taylor (1935) from dimensional arguments.
This scaling can also be derived by extending the 4/5-law (1.8) to scales r ∼ L, but
this is problematic as it hypothesises local equilibrium at scales where unsteadiness is
presumably important. The above developments can also be performed in Fourier space
in terms of the Lin equation (Lin, 1949) with a resulting balance between interscale energy
transfer and dissipation and a k−5/3 scaling of the u power spectrum at intermediate
wavenumbers k (Obukhov, 1941) (i.e. the Fourier space analogue to the 2/3-law).

Modern developments have relaxed the assumptions of homogeneity and isotropy re-
quired to arrive at the 4/5-law (1.8). These efforts culminated in the works of Hill (Hill,
1997, 2002) (see also Nie and Tanveer (1999)), who generalised the KH equation to arbi-
trary incompressible fluid flows in the form of the Kármán-Howarth-Monin-Hill (KHMH)
equation (we introduce this equation in chapter 3). It can be derived from this equation
in anisotropic and locally homogeneous flow regions at intermediate scales r the relation

⟨δuj
∂δuiδui
∂rj

⟩E(r) ≈ −4⟨ϵ⟩E, (1.11)

where δui(x, r, t) = ui(x+1/2r, t)−ui(x−1/2r, t). As the LHS of (1.11) can be viewed
as the average interscale transfer rate at scale r, we have a self-similar balance between
interscale transfer and viscous dissipation at an intermediate range of scales. Even though
the homogeneity and isotropy assumptions have been relaxed in (1.11), it is still required
to assume local equilibrium, i.e. the local rate of change of δuiδui = |δu|2 moving with
approximately ui is negligibly small/evolves slowly compared to the local turbulence
evolution (i.e. the interscale transfer and viscous dissipation terms) (Vassilicos, 2015)

⟨∂|δu|
2

∂t
+ ui

∂|δu|2
∂xi

⟩E(r) ≪ ⟨δuj
∂|δu|2
∂rj

⟩E(r). (1.12)
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1.2 Real Turbulence Compared to K41 Turbulence

The K41 theory has achieved an "embarrassment of success" (Kraichnan, 1974) with
the −5/3 scaling of the energy spectrum observed in numerous flows, even where its
assumptions are invalid (see Alves Portela et al. (2017) and references therein). This
apparent success of the theory has made the K41 predictions implemented in widely used
one-point (RANS) (Leschziner, 2016) and two-point (LES) (Sagaut, 2006) turbulent flow
prediction methods.

Concerning the underlying assumptions of the K41 theory, the memory-losing prop-
erty of the energy cascade in terms of local-in-scale energy transfers has largely been con-
firmed in direct numerical simulations (DNS) of homogeneous turbulence (Domaradzki
and Carati, 2007; Goto et al., 2017; Doan et al., 2018). Energy at a scale r is typically
cascaded to scales r′ , which are similar to and smaller than r, due to interactions at scales
similar to r. However, the local equilibrium assumption has repeatedly been shown to
be invalid in a wide range of scales in freely decaying and forced homogeneous/periodic
turbulence and grid-generated turbulence with the unsteadiness term in the KH equation
(1.3) non-negligible (Goto and Vassilicos, 2015, 2016a; Obligado and Vassilicos, 2019). It
follows that we cannot have a Taylor dissipation scaling (1.10) for K41 reasons.

Some recent DNS investigations of forced homogeneous turbulence have investigated
the unsteadiness of the turbulent energy cascade in detail. The Lin equation integrated
from wavenumbers k to ∞ reads (Batchelor, 1953)

∂K>(k, t)

∂t
= Π(k, t)− ϵ>(k, t), (1.13)

where the scale- and time-varying terms in the equation are defined in terms of the
three-dimensional energy spectrum E(k, t) (see equation 2.20 in the next chapter):

K>(k, t) =

∫︂ ∞

k

E(k, t)dk, (1.14a)

ϵ>(k, t) =

∫︂ ∞

k

k2E(k, t)dk, (1.14b)

where K>(k, t) and ϵ>(k, t) are the kinetic energy and energy dissipation at wavenum-
bers larger than k (and we have only considered wavenumbers k larger than those affected
directly by the large-scale forcing). Π(k, t) is the interscale transfer rate of kinetic en-
ergy from wavenumbers smaller than k to wavenumbers larger than k. This equation
governs the evolution of turbulent kinetic energy across scales k−1 and time t. In DNSs
of forced homogeneous turbulence the unsteadiness term in (1.13) is (instantaneously)
non-negligible at scales k−1 similar to the integral length scale L (Goto and Vassilicos,
2015, 2016a). Moreover, there is a significant time-lag between the interscale transfer
rate Π(k, t) and the dissipation rate ϵ>(k, t) at such wavenumbers, which decreases with
decreasing scale k−1 (Goto and Vassilicos, 2016a). This behaviour is consistent with a
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step-by-step energy cascade where each cascade step takes some finite time. As this time-
lag is significant relative to the time scale at which ϵ>(k, t) evolves, there are imbalances
between Π(k, t) and ϵ>(k, t) with resulting unsteadiness at such scales (i.e. non-K41 be-
haviour). Note that this time-lagged cascade behaviour emerges only when we lift the
typical time-averaging operation ⟨. . .⟩t applied to the integrated Lin equation (1.13) for
forced homogeneous turbulence as ⟨Π⟩t(k) = −⟨ϵ>⟩t(k) from statistical stationarity.

Cascade theories based on the KH/Lin equations, with effects of unsteadiness included
or neglected (e.g. K41), are limited by their mean-field description of the turbulent energy
cascade. The K41 theory considers only the spatially-averaged energy cascade (i.e. the
turbulence evolution across scales k−1 and time t). Turbulence exhibits significant spatial
inhomogeneity instantaneously such that the 4/5-law (1.8), or similar predictions which
take into account unsteadiness effects, might not be representative locally in space. This
turbulence feature of spatial inhomogeneity/intermittency was first discovered in the grid
turbulence experiments of Batchelor et al. (1949), which showed that the viscous dissipa-
tion rate is very intermittent. This discovery and Landau’s objection to the universality
of CK (Landau and Lifshitz, 1987; Frisch, 1995) led to Kolmogorov’s revised theory K62
(Kolmogorov, 1962). In K62 the velocity structure functions at scale r are hypothesised
to be dependent on the local-in-space volume-averaged dissipation rate at scale r. K62
has since been eclipsed by the multifractal formalism (Parisi and Frisch, 1985; Frisch,
1995), but common for these phenomenological theories is a localisation in space of the
4/5-law (i.e. the interscale transfer and dissipation are hypothesised to be phenomeno-
logically related locally in space and time). In contrast to the 4/5-law, these theories
have not been derived from the NS equations and the multifractal formalism has a large
set of parameters that can be fitted to experimental data (Gotoh and Kraichnan, 2004;
Tsinober, 2009).

DNS evidence since the early 1990s has shown a limited tendency of the intermediate-
scale interscale transfer and dissipation to balance locally (Piomelli et al., 1991; Aoyama
et al., 2005; Yasuda and Vassilicos, 2018). The local (in time and space) interscale trans-
fer rate exhibits violent fluctuations with interscale transfers from larger to smaller scales
and interscale transfers from smaller to larger scales. A balance between interscale trans-
fer and dissipation is unable to explain such inverse energy transfer events (i.e. ϵ ≥ 0).
This begs the question: which physical processes balance with the interscale transfer rate
locally? Beyond its importance in accurately characterising the turbulent energy cas-
cade, this question is of practical relevance for LES modelling. To yield correct coherent
structures and kinetic energy distributions in the resolved scales, LES models need to
replicate the dynamics locally (Vela-Martín, 2022a). Local in space and time cascade
dynamics are also of relevance at the smallest scales of turbulence. Kolmogorov deduced
from phenomenological arguments that the smallest average length scale in turbulent
flows equals η = (ν3/⟨ϵ⟩E)1/4 (i.e. the Kolmogorov scale) (Kolmogorov, 1941c). Frisch
and Vergassola (1991) combines a local balance between viscous effects and interscale
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transfer and the multifractal formalism to derive an expression for the smallest length
scales of turbulent flows (see also Dubrulle (2019)). These estimates are smaller than
η and can be used to assess DNS/experiment resolution requirements. Similar scaling
arguments based on Onsager’s prediction of non-viscous dissipation (Onsager, 1949) in
turbulent flows are also used to probe weak Euler solutions of the NS equations (see e.g.
Eyink (2018)). A local balance between viscous effects and interscale transfer has been
used to investigate potential singularities of the NS equations (Dubrulle and Gibbon,
2021). These predictions have limited experimental support. However, they suggest that
an accurate description of the local small-scale dynamics can answer important questions
on small-scale resolution requirements, NS non-viscous dissipation and NS singularities.

1.3 Thesis Objectives and Outline

The K41 theory and the 4/5-law only concern the average energy cascade at intermedi-
ate scales and do not necessarily hold locally in space and time across scales. Numerous
studies have shown that this assumption is misguided with no or limited local balance (in
space and time) between the interscale transfer rate and the dissipation rate. It remains
to develop a thorough characterisation of the local cascade dynamics rather than repre-
senting it in terms of an inaccurate average cascade picture. The first part of this thesis
studies the spatio-temporally varying energy cascade dynamics in forced statistically sta-
tionary homogeneous/periodic turbulence. We perform scale-by-scale analysis locally in
space and time of DNSs of forced homogeneous/periodic turbulence to provide a more
accurate description of the local cascade dynamics. Our investigations are facilitated by
a subdivision of the cascade dynamics using Helmholtz decompositions of the dynamical
equations (see Tsinober et al. (2001)). This topic is primarily interesting on a fundamen-
tal level, but we will also relate our findings to LES modelling and small-scale resolution
requirements in DNS.

Having tentatively characterised the local (in space and time) turbulent energy cas-
cade in the first part of the thesis, in the second and final part of the thesis we consider
its spatially-averaged manifestation. We connect the local cascade dynamics, unsteady
spatially-averaged cascade dynamics and the popular cascade time-lag concept (see e.g.
Lumley (1992)) with the novel "formalised time-lag hypothesis". This hypothesis relates
the spatially-averaged interscale transfer rate and the spatially-averaged viscous dissipa-
tion rate, where the former increasingly precedes the latter with increasing scale. We
use the formalised time-lag hypothesis as a starting point to predict the energy cascade
dynamics and energy scaling at scales where the local equilibrium hypothesis is inappli-
cable. We also use the phenomenology of a time-lagged energy cascade to motivate a
new redistributive dissipation scaling law which is approximately identical to the success-
ful non-equilibrium dissipation scaling (Goto and Vassilicos, 2015) for low to moderate
Reynolds number DNSs of forced homogeneous/periodic turbulence.
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All in all, the overarching thesis objective common for the two thesis parts is to con-
tribute to uncovering the basic/conceptual physical mechanisms of the turbulent energy
cascade. This is required to narrow the gap between turbulence theories (and their associ-
ated prediction methods) and experimental/DNS observations. We pursue this objective
with a "bottom-up" approach going from the local to the average cascade behaviour
rather than the more conventional "top-down" approach going from the average to the
local cascade behaviour.

The numerical methodology used in this thesis is described in chapter 2. We detail
the key parameters of the DNS datasets and how they relate to established criteria for
appropriately resolved DNSs of forced homogeneous/periodic turbulence. We also detail
and verify the DNS post-processing methodology. Chapter 3 studies the local energy
cascade dynamics at intermediate and large scales with various Kármán-Howarth-Monin-
Hill (KHMH) equations. We employ the Helmholtz decomposition to derive new KHMH
equations to describe the local dynamics. This approach simplifies the dynamics consid-
erably and allows for a novel characterisation of the local intermediate- and large-scale
cascade dynamics. We extend this characterisation of the local cascade dynamics to small
scales with KHMH analysis of a well-resolved DNS simulation in chapter 4. In chapter
5 we study the spatially-averaged energy cascade. We motivate and test our formalised
time-lag hypothesis and develop and test corrections to local equilibrium under appro-
priate conditions at our Reynolds numbers. We use the phenomenology of a time-lagged
energy cascade to justify a new dissipation scaling law applicable in low to moderate
Reynolds number DNSs of forced homogeneous/periodic turbulence. In chapter 6 we
conclude with the main results presented in the thesis and we suggest how they may be
used in future studies of the turbulent energy cascade and turbulence modelling.
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2. Numerical Methodology

Direct numerical simulations of the Navier-Stokes equations resolve all the scales of tur-
bulent flows. This yields a wealth of detailed results which can be used to discover new
turbulence phenomena and validate turbulence theories and models. This contrasts with
coarse-grained approaches to turbulence (e.g. LES (Sagaut, 2006) or RANS methods
(Leschziner, 2016)), where the solution is highly dependent on the various turbulence
modelling assumptions.

DNSs of homogeneous/periodic turbulence obtain the highest Reynolds numbers achiev-
able with DNS (Davidson, 2015) and thus the highest separation of length scales. This
makes DNSs of homogeneous/periodic turbulence ideal to pursue the thesis objectives,
and to investigate the turbulent energy cascade per se, without any further complicating
physical processes (e.g. from interactions between a mean flow and the turbulent fluctu-
ations). However, it can be argued that homogeneous turbulence is not found in nature
and that it might be of limited aid in understanding naturally occurring turbulent flows
(Moffatt, 2002). On the other hand, many features of DNSs of homogeneous turbulence
are also found in naturally occurring flows (see e.g. the comparison of homogeneous
turbulence and a field experiment in Gulitski et al. (2007)).

The numerical resolution in DNSs must be fine enough not to affect the solution, and
in particular the flow statistics of interest. These resolution requirements limit DNSs
to relatively low/moderate Reynolds numbers and simple flow configurations. The case
of homogeneous/periodic turbulence, which is the focus of this thesis, is a particularly
simple flow configuration. This problem allows for the use of efficient and highly ac-
curate pseudospectral methods. These methods were pioneered in the 1970s (Patterson
and Orszag, 1971, 1972) and are still the workhorses of DNSs of homogeneous/periodic
turbulence.

Section 2.1 describes the methodology of the solver for our DNSs of
homogeneous/periodic turbulence. This DNS code was originally developed by Prof.
Susumu Goto of Osaka University and it has been used in numerous peer-reviewed ar-
ticles on homogeneous/periodic turbulence (see e.g. Goto (2008); Yasuda et al. (2014);
Goto and Vassilicos (2016b); Goto et al. (2017); Tsuruhashi et al. (2022)). We also detail
the large-scale forcings, initial field generation and in-situ processing used for the DNS
datasets. We motivate and describe the numerical setup of our DNSs in section 2.2 and
our KHMH post-processing methodology in section 2.3.
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2.1 Solver Description

We use a pseudospectral DNS code that solves the incompressible vorticity equations

∂ω

∂t
= ∇x × (u× ω) + ν∇2

xω +∇x × f , (2.1a)

∇x · u = 0, (2.1b)

where ω(x, t) = ∇x × u is the vorticity field and f(x, t) is the body force. The compu-
tational domain is [0, 2π]3 and the boundary conditions are triply periodic

u(x1, x2, x3) = u(x1 + 2π, x2, x3) = u(x1, x2 + 2π, x3) = u(x1, x2, x3 + 2π). (2.2)

The code is written in FORTRAN 90 and the FFTW library (Frigo and Johnson, 2005)
is used for fast Fourier transforms (FFTs).

2.1.1 A Pseudospectral Method for the Vorticity Equation

To compute the evolution of the vorticity field, we employ a Fourier decomposition similar
to Canuto et al. (1987). Let the fields in (2.1) be defined on points of the discrete
equidistant grid N ×N ×N with positions x = 2πn/N with 0 ≤ nj ≤ N − 1 for integer
nj and j = 1, 2, 3. The Fourier coefficients of the velocity ˆ︁u(k, t), pressure ˆ︁p(k, t), forcingˆ︁f(k, t) and vorticity ˆ︁ω(k, t) fields are defined on the grid −N/2 ≤ kj < N/2 − 1. E.g.
the Fourier transform pair of ω reads (i is the imaginary unit)

ω(x, t) =
∑︂
k

ˆ︁ω(k, t)eik·x, (2.3a)

ˆ︁ω(k, t) =
1

N3

∑︂
x

ω(x, t)e−ik·x. (2.3b)

To derive an evolution equation for the Fourier modes ˆ︁ω(k, t), one inserts the trun-
cated Fourier series (2.3a) into the vorticity equation (2.1a), applies the discrete Fourier
transform and uses the orthogonality relation between discrete Fourier modes (Canuto
et al., 1987) to obtain a set of coupled ordinary differential equations: e.g. the time
derivative term transformed to Fourier space reads

⟨∂ω
∂t

⟩k =
1

N3

∑︂
x

∂ω

∂t
e−ik·x, (2.4a)

=
∂

∂t

∑︂
k′

ˆ︁ω(k
′
, t)

1

N3

∑︂
x

ei(−k+k
′
)·x, (2.4b)

=
dˆ︁ω(k, t)

dt
, (2.4c)

where we use the notation ⟨ϕ⟩k ≡ ˆ︁ϕ(k). We move from (2.4a) to (2.4b) by inserting (2.3a)
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and (2.4c) follows from the orthogonality relation of the discrete Fourier modes (Canuto
et al., 1987). We have for the other linear terms ⟨ν∇2

xω⟩k = −νk2ˆ︁ω(k, t) where k = |k|
and ⟨∇x × f⟩k = ik × ˆ︁f(k, t). This yields the following ˆ︁ω(k, t) evolution equations

dˆ︁ω
dt

= −νk2ˆ︁ω + ik × ˆ︁f + ⟨∇x × (u× ω)⟩k, (2.5a)

k · ˆ︁u(k, t) = 0, (2.5b)

where (2.5b) is the incompressibility condition in Fourier space.
The rightmost term on the RHS of (2.5a), the non-linear term, poses the largest

difficulty in a spectral method. This term in physical space can be written as

[∇x × (u× ω)]q(x, t) = −ϵqjl
∂2

∂xj∂xm
(umul), (2.6)

where ϵqjl is the Levi-Civita tensor. Transforming this expression to Fourier space yields

[⟨∇x × (u× ω)⟩k]q = ϵqjlkjkm⟨umul⟩k, (2.7a)

= ϵqjlkjkm
∑︂

k=k′+k′′

ˆ︁um(k′
)ˆ︁ul(k′′

). (2.7b)

The term ⟨umul⟩k takes the form of a convolution sum where all wavenumbers k′
+k

′′
= k

contribute to the evolution of ˆ︁ω at wavenumber k. These triadic interactions arising from
the non-linear term couple the dynamics at different wavenumbers.

⟨umul⟩k evaluated directly has complexity O(N6). To avoid this expensive compu-
tation, this term can be calculated in physical space and then transformed to Fourier
space with efficient FFT algorithms with complexity O(N3log2N) (i.e. a pseudospectral
method) (Canuto et al., 1987). Let us consider a pseudospectral method where ˆ︁u is tran-
formed to physical space with an inverse FFT, the tensor umul is calculated in physical
space and then transformed back to Fourier space. This pseudospectral evaluation of
⟨umul⟩k yields

⟨umul⟩k =
1

N3

∑︂
x

umule
−ik·x, (2.8a)

=
∑︂
k′

∑︂
k′′

ˆ︁um(k′
)ˆ︁ul(k′′

)
1

N3

∑︂
x

ei(k
′
+k

′′−k)·x. (2.8b)

Contributions to the rightmost sum in (2.8b) are non-zero when k
′
j + k

′′
j − kj = Nej,

where ej ∈ {0,−1, 1} (Canuto et al., 1987). Hence, ⟨umul⟩k can be written as

⟨umul⟩k =
∑︂

k=k′+k′′

ˆ︁um(k′
)ˆ︁ul(k′′

) +
∑︂
e

e ̸=(0,0,0)
ej∈{0,−1,1}

∑︂
k+Ne=k′+k′′

ˆ︁um(k′
)ˆ︁ul(k′′

), (2.9)
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where the first term is the same as in (2.7b), while the second term consists of aliasing
errors which arise due to the discreteness of the grid (Patterson and Orszag, 1971). Thus,
a pseudospectral method can efficiently calculate the convolution sum but introduces
aliasing errors. To remove the aliasing errors, the solver uses a combined phase-shift
and truncation technique developed by Patterson and Orszag (1971). If we consider the
velocity fields shifted to x+ πe/N where e = (1, 1, 1) and we denote the shifted velocity
field as v, we have

v(x+ πe/N) =
∑︂
k

ˆ︁u(k)eik·(x+πe/N). (2.10)

If we transform the tensor vlvm to Fourier space, we obtain

⟨vmvl⟩k =
∑︂

k=k′+k′′

ˆ︁um(k′
)ˆ︁ul(k′′

) +
∑︂
e

e ̸=(0,0,0)
el∈{1,−1,0}

eiπe·e
∑︂

k+Ne=k′+k′′

ˆ︁um(k′
)ˆ︁ul(k′′

). (2.11)

The choice e = (1, 1, 1) makes eiπe·e = −1 for the singly and triply aliased contributions,
i.e. the aliasing errors with one or three e non-zero components. Thus, by averaging
⟨umul⟩k and ⟨vmvl⟩k, the singly and triply aliased contributions cancel with

1

2
[⟨umul⟩k + ⟨vmvl⟩k] =

∑︂
k=k′+k′′

ˆ︁um(k′
)ˆ︁ul(k′′

) +
∑︂
e′

∑︂
k+Ne=k′+k′′

ˆ︁um(k′
)ˆ︁ul(k′′

), (2.12)

where the summation over e′ is over vectors e with two non-zero components. The remain-
ing doubly aliased contributions are removed with spherical truncation with wavenumbers
k = |k| > kmax =

√
2/3N set equal to zero (i.e. the highest resolved wavenumber is kmax)

(Patterson and Orszag, 1971). This yields the final pseudospectral expression for the
fully dealiased non-linear term in the vorticity equation

[⟨∇x × (u× ω)⟩k]q =

⎧⎪⎪⎨⎪⎪⎩
1

2
ϵqjlkjkm[⟨umul⟩k + ⟨vmvl⟩k], k ≤

√
2

3
N,

0, k >

√
2

3
N.

(2.13)

The tensor ⟨umul⟩k is symmetric and the solver exploits this to limit the computational
expense and memory requirements in (2.13) (see Rogallo (1981)). Note that the pseu-
dospectral treatment of the non-linear term in the vorticity equation is very similar to
the pseudospectral treatment of the non-linear term in the NS equations (see e.g. Canuto
et al. (1987)). However, by solving the vorticity equation rather than the NS equations
there is no need to project the non-linear term onto its component orthogonal to k (i.e.
its solenoidal part) as the terms in the vorticity equation are all solenoidal, yielding some
cost reduction relative to the NS case.

The above dealiasing technique (2.13) with no aliasing errors is popular in DNSs of
homogeneous/periodic turbulence (see e.g. Wan et al. (2010); Ishihara et al. (2016)).
An alternative popular dealiasing technique introduced by Rogallo (1977) uses a random
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shifting technique and truncation to limit rather than eliminate aliasing errors (see e.g.
Yeung et al. (2018)). If used in conjunction with a second-order Runge-Kutta method
for time integration, the aliasing errors are of order O(∆t2) where ∆t is the time step.
This method has the advantage of being less costly in terms of required operations than
the full dealiasing technique (2.13) as the non-linear term is only calculated once rather
than twice, but it does not eliminate aliasing errors. The choice of dealiasing technique
is closely related to the choice of time integration method (see section 2.1.4).

The computational complexity of pseudospectral methods is comparable to that of
finite difference methods with complexity O(N3). In contrast to finite difference meth-
ods with algebraic order of convergence, the pseudospectral methods have faster than
algebraic order of convergence (Hussaini and Zang, 1987; Canuto et al., 1987). This high
spatial accuracy, combined with the complexity mentioned above, make pseudospectral
methods the methods of choice for DNSs of homogeneous/periodic turbulence.

2.1.2 Large-scale Body Forcings

Turbulent flows are highly dissipative; unless energy is injected, they decay rapidly (Ten-
nekes and Lumley, 1972). In DNSs of statistically steady forced homogeneous/periodic
turbulence, the large scales are forced to keep the turbulence from decaying in a time-
averaged sense. Only the large scales are forced with the intention that the memory-losing
property of the cascade (see section 1.2) makes the behaviour at intermediate and small
scales universal irrespective of the particular forcing. This insensitivity to the large-scale
forcing has been confirmed in DNSs in terms of the energy spectrum with an approxi-
mate k−5/3 scaling present at intermediate wavenumbers and an exponential decay at high
wavenumbers with various forcings (Sagaut and Cambon, 2018). To assess the sensitivity
of our results to the forcing, we have used two qualitatively different forcings.

The first forcing is a negative damping forcing (see Linkmann and Morozov (2015);
McComb et al. (2015))

ˆ︁f(k, t) = {︄
(ϵW/2Kf )ˆ︁u(k, t), 0 < |k| < kf ,

0, otherwise,
(2.14)

where ϵW = const., kf is the cutoff wavenumber and Kf is the total kinetic energy per
unit mass contained in the forcing band 0 < |k| < kf . This forcing yields a constant
energy input rate per unit mass ϵW at scales 0 < |k| < kf (Yoffe, 2012)

∑︂
k

ˆ︁ui(−k, t) ˆ︁fi(k, t) = ϵW
Kf

∑︂
k

0<|k|<kf

1

2
ˆ︁ui(−k, t)ˆ︁ui(k, t), (2.15a)

=
ϵW
Kf

∑︂
0<k<kf

E(k, t), (2.15b)

= ϵW . (2.15c)
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Negative damping forcing is a standard type of forcing in DNS (see e.g. Machiels (1997);
Kaneda and Ishihara (2006); Vela-Martín (2022b)). (2.14) does not prefer any particular
direction and has a complicated, time-dependent spatial profile (McComb et al., 2015).

The second forcing is an ABC forcing (Podvigina and Pouquet, 1994; Linkmann, 2018)

f(x, k) = (A sin kx3 + C cos kx2, B sin kx1 + A cos kx3, C sin kx2 +B cos kx1). (2.16)

This forcing is time-independent, deterministic and maximally helical as ∇x×f is parallel
to f (Galanti and Tsinober, 2000). This forcing injects helicity h = u · ω, which limits
the Lamb vector ω × u and consequently non-linear interactions (Moffatt, 2014) (as
u · ∇xu = 1/2∇x|u|2 − ω × u and 1/2∇x|u|2 can be absorbed in a modified pressure).

2.1.3 Initial Conditions

To integrate the vorticity equation forward in time, we need to set appropriate initial
conditions. We choose realistic initial conditions (to be clarified below) such that we limit
the computational effort to integrate the ˆ︁ω field from this initial artificial configuration
to homogeneous turbulence. This approach assumes that the turbulent flow after some
initial transient t > t0 loses its memory of the initial conditions in the sense that it has
equal statistical behaviour across appropriate initial conditions for t > t0 (this turbulence
feature is denoted as "Loss of predictability" by Tsinober (2009)).

We use an algorithm from Yoffe (2012) to set the initial conditions for our DNSs. At
each point in space, each velocity component is assigned a value according to a standard
normal variable. This velocity field is transformed to Fourier space where it is made
incompressible through the projection operator (see appendix B and equation (B.1)) and
truncated for k > kmax. The energy spectrum Ec(k) is calculated from this velocity fieldˆ︁u (see equation (2.20)). ˆ︁u is next scaled according to (’:=’ denotes computer assignment)

ˆ︁u(k, 0) := ˆ︁u(k, 0)√︄Em(k)

Ec(k)
, (2.17)

where the model spectrum Em(k) is specified as

Em(k) = 0.001702k4e−2(k/5)2 , (2.18)

and it is plotted in figure 2.1. Equation (2.17) yields an initial velocity field which
is random and solenoidal with kinetic energy similar to unity (

∫︁∞
0
Em(k)dk ∼ 1). At

small wavenumbers Em(k) ∼ k4, which mimics Batchelor turbulence (see Batchelor et al.
(1956); Davidson (2015)). As k increases the local power-law exponent p in Em(k) ∼ kp

decreases and p becomes negative. At large k, Em(k) decays exponentially (see Kraichnan
(1959) and Pope (2000) on the exponential decay of E at dissipative k).
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Figure 2.1: Yoffe’s model spectrum (2.18) used to set DNS initial conditions.

2.1.4 Temporal Evolution

Having specified the various terms in the vorticity equation (2.5a) and initial conditions,
we can numerically integrate (2.5a) forwards in time. We can write this equation in the
semi-discretised form (the methods of lines) (Hirsch, 2007)

dˆ︁ω(k, t)

dt
= F (ˆ︁ω), (2.19)

where F (ˆ︁ω) denotes the RHS of (2.5a). We integrate in time the ordinary differen-
tial equations (2.19) with the fourth-order low-storage Runge-Kutta-Gill (RKG) method
(Gill, 1951). Algorithm 1 details the steps to integrate ˆ︁ω one time step ∆t forward.

The chosen spatial and temporal discretisations determine stability criteria arising
from the viscous and convective terms. The viscous criterion reads νk2max∆t ≤ 2.79

(Hirsch, 2007; Canuto et al., 1987). Note that the viscous term can alternatively be
integrated exactly (see Rogallo (1977)). If c denotes a characteristic velocity scale, the
convective term yields the stability criterion kmaxc∆t ≤ 2

√
2 (Canuto et al., 1987). This

critertion can be rewritten in terms of the CFL number β = c∆t/∆x and reads β ≤
3/π ≈ 0.95 (where ∆x denotes the grid spacing 2π/N).

The RKG method has truncation errors of order ∆t4 and tends to be used together with
the dealiasing technique of Patterson and Orszag (1971) (see e.g. Ishihara et al. (2016)).
This contrasts with the dealiasing technique of Rogallo (1977), where the reduction in
aliasing errors is intimately linked to a second-order Runge-Kutta method. On one hand,
the dealiasing and temporal integration method used in this thesis has a relatively high
dealiasing cost but high temporal accuracy, allowing relatively large ∆t. On the other
hand, the dealiasing and temporal integration method of Rogallo (1977) has a lower
dealiasing cost but lower temporal accuracy, allowing relatively small ∆t (we discuss the
issue of adequate temporal resolution in section 2.2.1).
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Algorithm 1 Runge-Kutta-Gill method for the vorticity equation

1: R := F (ˆ︁ω)∆t.

2: ˆ︁ω := ˆ︁ω + 1/2R.

3: Q := R.

4: R := F (ˆ︁ω)∆t.

5: ˆ︁ω := ˆ︁ω + (1− 1/
√
2)(R−Q).

6: Q := (−2 + 3/
√
2)Q+ (2−

√
2)R.

7: R := F (ˆ︁ω)∆t.

8: ˆ︁ω := ˆ︁ω + (1 + 1/
√
2)(R−Q).

9: Q := −(2 + 3/
√
2)Q+ (2 +

√
2)R.

10: R := F (ˆ︁ω)∆t.

11: ˆ︁ω := ˆ︁ω + 1/6(R− 2Q).

2.1.5 In-situ Processing and Output

As the code numerically integrates the vorticity equation forwards in time, it calculates
and outputs numerous quantities. These include:

Energy spectrum. The instantaneous three-dimensional energy spectrum is cal-
culated from ˆ︁ui(k, t) as

E(k, t) =
∑︂
k

k−1/2≤|k|<k+1/2

1

2
ˆ︁u∗i (k, t)ˆ︁ui(k, t), (2.20)

where the superscript ’∗’ is the complex conjugate.

Turbulent kinetic energy. The spatially averaged turbulent kinetic energy K(t)

per unit mass is found by summing E(k, t) across all wavenumbers k

K(t) =
∑︂
k

E(k, t). (2.21)

Integral length scale. A characteristic large-scale length scale, the integral length
scale, is calculated as

L(t) =
3π

4

∑︂
k

k−1E(k, t)/K(t)dk. (2.22)

Viscous dissipation rate. The spatially averaged viscous dissipation rate (⟨. . .⟩x
denotes a spatial average over the computational domain) is calculated as
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⟨ϵ⟩x(t) = 2ν
∑︂
k

k2E(k, t)dk. (2.23)

Root-mean-square (r.m.s.) velocity. A large-scale velocity scale is found from
K(t). If one assumes isotropy, ⟨u21⟩x(t) = ⟨u22⟩x(t) = ⟨u23⟩x(t) = u(t)2 and we get

u(t) =

√︃
2

3
K(t). (2.24)

Dissipation coefficient. The dissipation rate can be normalised with large-scale
quantities as

Cϵ(t) = ⟨ϵ⟩x(t)
L(t)

u(t)3
. (2.25)

Small-scale resolution. The instantaneous Kolmogorov scale η(t) is given as
⟨ϵ⟩−1/4

x (t)ν3/4 (see section 1.2). The small-scale resolution can be measured in terms
of the ratio of η(t) to the highest resolved wavelength (see section 2.1.1)

kmaxη(t) =

√
2

3
N⟨ϵ⟩−1/4

x (t)ν3/4. (2.26)

Taylor scale. The Taylor scale λ(t) is an intermediate length scale, i.e. η(t) <

λ(t) < L(t) (Pope, 2000). In homogeneous turbulence it is defined as (Taylor, 1935)

λ(t) =
(︁15νu(t)2
⟨ϵ⟩x(t)

)︁1/2
. (2.27)

Reynolds number. In homogeneous turbulence the Reynolds number is typically
specified in terms of the Taylor-scale Reynolds number

Reλ(t) =
u(t)λ(t)

ν
. (2.28)

Courant-Friedrichs-Lewy (CFL) number. The CFL number characterises the
ratio of the time step ∆t to the smallest time scale of the numerical solution. The
solver calculates at each time step the maximum CFL number across space and
velocity components

β(t) = max
i

[︂
max

x

(︁∆t
∆x

ui(x, t)
)︁]︂
. (2.29)

Besides the above-listed quantities, the solver outputs u, p and f at regular time intervals
(see section 2.2.2 and table 2.2).
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2.2 Numerical Setup

2.2.1 Resolution Requirements and Large-scale Periodicity

A DNS needs to resolve all time and length scales of the flow. Otherwise, the results are
resolution dependent and reminiscent of LES rather than DNS. We consider the spatial
resolution in a DNS simulation with the quantity kmax⟨η⟩t. This quantity is proportional
to the ratio of the smallest turbulent length scale ⟨η⟩t to the smallest resolved length
scale (2π/kmax). As kmax⟨η⟩t increases, the spatial resolution improves. Traditionally,
kmax⟨η⟩t has been set to about 1.50. This resolution is typically considered adequate for
intermediate-scale quantities (Donzis et al., 2008). Intense small-scale quantities, e.g.
higher-order moments of ϵ, require higher kmax⟨η⟩t. The investigations of Yeung et al.
(2018) suggest that the required kmax⟨η⟩t increases with ⟨Reλ⟩t and that kmax⟨η⟩t ≈ 5.5

is adequate to capture the evolution of the maximum value of ϵ for ⟨Reλ⟩t ≤ 650.
Regarding temporal resolution, accuracy is typically more restrictive than stability

and typically requires ⟨β⟩t ≲ 0.1 for DNS simulations of homogeneous turbulence. Yeung
et al. (2018) showed that ⟨β⟩t in the range 0.1−0.3 for a spatially well-resolved simulation
is adequate to resolve the time scales determining intense small-scale quantities. This
study used a second-order temporal discretisation, such that the CFL range 0.1− 0.3 is
a conservative range for a fourth-order temporal discretisation as used in this thesis.

Another quantity which can severely affect the numerical solution is the integral length
scale L(t) to box size (2π) ratio. If the ratio 2π/L(t) is too small, the largest scales of the
flow will be affected by the imposed periodicity (Davidson, 2015). To avoid this scenario
and have the turbulence mimic, say, turbulence in a wind tunnel, it is important that
L(t) ≪ 2π. However, if L(t) is reduced, it limits the range of scales which can be resolved
for a given resolution N . Typically, the compromise between achieving a high range of
scales and limiting the effects of periodicity is selected in forced homogeneous turbulence
as 2π/⟨L⟩t ≈ 5 (see e.g. Leung et al. (2012); Yeung et al. (2015); Iyer et al. (2020)).

2.2.2 DNS Data Description

We generated the DNS datasets in table 2.1 to pursue the thesis objectives outlined in
section 1.3 within the resolution and large-scale periodicity restrictions of the previous
section. We ensured that all datasets satisfy the "periodicity criterion" 2π/⟨L⟩t ⪆ 5. All
datasets have good temporal resolution with ⟨β⟩t ≤ 0.20 and β(t) ≤ 0.28 at all times.
This ensures that the convective stability criterion is satisfied and the viscous stability
criterion is satisfied with νk2max∆t ≤ 0.3 ≪ 2.79 across the datasets (see section 2.1.4).

Concerning the spatial resolution kmax⟨η⟩t, there is a trade-off between resolution and
the range of scales/Reynolds number. The dataset DNS1 is used in chapter 4 to study
the small-scale dynamics, which requires a high spatial resolution (kmax⟨η⟩t = 5.5). The
datasets DNS2-DNS3-DNS4 are used to study intermediate scale dynamics in chapters
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⟨Reλ⟩t N ν kmax⟨η⟩t ⟨β⟩t 2π/⟨L⟩t ⟨Cϵ⟩t Forcing

DNS1 81 512 0.003 5.5 0.19 5.8 0.50 ND

DNS2 111 256 0.0018 1.9 0.11 5.4 0.47 ABC

DNS3 112 256 0.0018 1.9 0.10 5.7 0.47 ND

DNS4 174 512 0.00072 1.9 0.20 5.4 0.45 ND

Table 2.1: DNS parameters and we used the acronym ND (negative damping).

3 and 5. This requires only moderately spatially resolved simulations (kmax⟨η⟩t = 1.9),
such that we can obtain higher Reynolds numbers for a given simulation size. The
datasets DNS3-DNS4 with the same type of forcing allow us to investigate the Reynolds
number effect on the dynamics. We use DNS2-DNS3 at the practically identical Reynolds
number to consider the effect of the large-scale forcing on the dynamics. Note that the
four datasets have ⟨Cϵ⟩t values consistent with the literature (Sreenivasan, 1998).

The datasets with the negative damping forcing all have the forcing parameters kf =

2.5 and ϵW = 0.1 (see section 2.1.2). We adopted these parameter values from previous
studies (Linkmann and Morozov, 2015; Yasuda and Vassilicos, 2018). DNS2 is forced
with the sum of two ABC forcings: one forcing with A = B = C = 0.032 at k = 1 and
one forcing with A = B = C = 0.095 at k = 2. These parameters make DNS2-DNS3 have
similar ⟨Reλ⟩t and 2π/⟨L⟩t such that we can isolate the effect of the large-scale forcing.

There are initial transients in the simulations where the DNSs are affected in a sta-
tistical sense by the initial conditions (see section 2.1.3). We sample statistics from the
datasets only after these initial transients. Figure 2.2 shows the temporal evolution of
the turbulent kinetic energy K(t) for the four datasets (T ≡ ⟨L⟩t/⟨u⟩t is the integral time
scale). Initially, there are large variations in K(t) before the variations become smaller in
magnitude. K(t) does not become constant after the initial transient but keeps varying
due to cascade imbalances between the large-scale interscale transfer rate and the dissi-
pation rate (Goto and Vassilicos, 2016a; Goto et al., 2017). Hence, the end of the initial
transient is difficult to determine. The vertical lines in figure 2.2 show the times we start
sampling the four DNSs as the K(t) variations become similar to the variations at later
times. We sample u, p and f every dT = 0.01T for the DNSs with N = 256 and every
dT = 0.1T for the DNSs with N = 512. u is also sampled ∆t thereafter for every DNS so
we can calculate time derivatives. dT , the sample starting time Ts, the sample end time
Te and the total sampling time ∆T = Te − Ts are listed in table 2.2. The time-averaged
statistics in table 2.1 and the KHMH terms (see section 2.3) are calculated over these
time periods. Figure 2.3 shows the time-averaged three-dimensional energy spectra. An
intermediate scale −5/3 scaling becomes increasingly apparent as ⟨Reλ⟩t increases.

Note that our ⟨Reλ⟩t are relatively limited due to the high computational cost of our
KHMH Helmholtz-decomposed post-processing (which is typically at least one order of
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Ts/T Te/T ∆T/T dT/T

DNS1 6.42 33.0 26.58 0.1

DNS2 11.68 31.31 19.63 0.01

DNS3 12.5 33.5 21 0.01

DNS4 8.63 35.5 26.87 0.1

Table 2.2: Sampling starting times Ts, sampling end times Te, total sampling times ∆T
and sampling intervals dT for fields u, p and f in DNS1-DNS4.
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Figure 2.2: Temporal evolution of the turbulent kinetic energy K(t) for the DNSs. The
vertical dashed lines denote the time instances at which we start to sample
data from the datasets after their initial transients.

magnitude more expensive than the DNSs themselves). We detail the computational
expense of this particular aspect of the post-processing once the relevant terms have
been introduced in section 3.1.3 (see also section 3.4 discussing an alternative evaluation
method). The next section details the other aspects of our KHMH post-processing.

2.3 KHMH Post-processing

Having obtained appropriate DNSs datasets, we use u, p and f to study the cascade dy-
namics in these simulations in terms of the KHMH equation and the spatially averaged
KHMH equation (we introduce the KHMH equation (3.19) and an interpretation of its
terms in the next chapter and we give its derivation in appendix A). This requires ac-
curate calculations of the various KHMH terms, which we describe in this section (these
calculations benefit from the Armadillo C++ library (Sanderson and Curtin, 2016, 2018)).

A KHMH term Q at time t depends in general on its centroid x and its separation
vector r. In chapters 3-4 we calculate spatio-temporal KHMH statistics across scales
(i.e. Q statistics over x, r and t) and in chapter 5 we calculate temporal statistics across
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Figure 2.3: Time-averaged three-dimensional energy spectra ⟨E⟩t(k). (a)−(d) correspond
to the DNS datasets DNS1-DNS4. The energy spectra are normalised with
K41 variables ⟨ϵ⟩ and ν and ⟨. . .⟩ denotes a space and time average.

scales of spatially averaged KHMH terms ⟨Q⟩x = ⟨Q⟩x(r, t) (i.e. ⟨Q⟩x statistics over t
and r). The latter case of spatially averaged KHMH terms permits efficient and accurate
evaluation methods which take advantage of Parseval’s theorem; the KHMH terms can
be rewritten in terms of sums of products of velocity/force components which can be
evaluated in Fourier space. E.g. we can evaluate ⟨ui(x+ r)uj(x)⟩x in Fourier space as

⟨ui(x+ r)uj(x)⟩x = ⟨
∑︂
k

ˆ︁ui(k)eik·(x+r)
∑︂
k′

ˆ︁uj(k′
)eik

′ ·x⟩x, (2.30a)

=
∑︂
k

ˆ︁ui(k)ˆ︁u∗j(k)eir·k, (2.30b)

where the final line follows from the orthogonality of Fourier modes and ˆ︁ui conjugate
symmetry. We derive expressions for the spatially averaged KHMH terms in terms of ˆ︁ui
and ˆ︁fi in appendix C. This methodology was inspired by Gatti et al. (2019), who used
this approach to calculate spatially averaged KHMH terms in the turbulent channel flow.
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Figure 2.4: (a) The spherical coordinate system. The filled square denotes its centre. (b)
The integration and grid points with radii r = 1 and r = 2. The filled circles
are grid points and the open circles are integration points.

We calculate Q(x, r, t) spatio-temporal statistics in physical space. The KHMH terms
can be rewritten in terms of combinations of terms involving u,f , p and their derivatives
at locations x ± r/2 (see the end of appendix A for two examples). As the points
x ± r/2 do not necessarily coincide with grid points, we calculate the contributions to
the KHMH terms with trilinear interpolation. We use sixth-order central differences for
spatial derivatives and first-order forward differences for time derivatives (and we use the
same time discretisation for time derivatives of the spatially averaged KHMH terms).

We typically consider statistics of KHMH terms Q (or quantities derived from KHMH
terms such as Q2) in terms of their spherically averaged values across scales rd = |r|. If
we let Q denote an arbitrary KHMH term or a derived KHMH quantity, the spherical
averaging operation over a sphere of diameter rd can be written as

Qa =
1

πr2d

∫︂∫︂
|r|=rd

Qdr, (2.31a)

=
1

4π

∫︂ π

0

sinϕ dϕ
∫︂ 2π

0

Q dθ, (2.31b)

where θ and ϕ denote the polar and azimuthal angles (see figure 2.4(a)). We approximate
(2.31) numerically by two repeated one-dimensional quadratures

Qa ≈ 1

4π

∫︂ π

0

sinϕ dϕ
Nθ(ϕ)∑︂
j=1

wjQ(ϕ, θj)∆θ, (2.32a)

≈ 1

4π

Nϕ(r)∑︂
i=1

Nθ(r,ϕ)∑︂
j=1

wiwjsinϕiQ(ϕi, θj)∆θ∆ϕ, (2.32b)

where wi and wj are integration weights, Nϕ and Nθ are the number of grid points in
azimuthal and polar directions, ∆θ and ∆ϕ are the spherically equidistant integration
spacings and r denotes the integration radius in integer grid points. For a given r we have
Nϕ = 4r+ 1 and Nθ = 8rϕ = 8rsinϕ available grid points, where rϕ denotes the radius of
the circle at the given ϕ (see figure 2.4). The grid spacings are given as ∆ϕ = π/(Nϕ(r)−1)
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Figure 2.5: Relative KHMH residuals at intermediate and large scales for DNS datasets
DNS2-DNS3-DNS4. (a) Relative average residual magnitudes of the spatially
averaged KHMH equation. (b) Relative average residual magnitudes of the
KHMH equation.

and ∆θ = 2π/(Nθ(r, ϕ)− 1). We use Simpson’s rule to set the weights wi and wj.
The equidistant integration approach limits the distance between grid points and

integration points (see figure 2.4(b)) such that we limit the effect of interpolation errors
in the computation of Q(ϕi, θj). This is important at small scales where the grid spacing
and the scales of interest are of a similar order of magnitude. This contrasts with a
Lebedev quadrature approach where interpolation errors from a discrete grid are not
considered (Lebedev, 1975) (and as we generally do not calculate the entire Q field in x-
space, we cannot use the recent integration method of Iyer et al. (2017), which spectrally
interpolates the field of interest to Lebedev integration points). The smallest integration
sphere we employ is for DNS1 with the sphere r = 1 and rd ≈ ⟨η⟩t. This results in rather
coarse spherical averages Qa (i.e. 26 integration points). The spherically averaged Q
might not be converged in terms of the spherical integration, and one should be careful
when comparing absolute statistics (such as e.g. ⟨Q2⟩a where ⟨⟩ denotes a spatio-temporal
average) at small scales between studies using coarse surface integrations (we get a lower
estimate of the integration error at r = 1 by integrating a constant over the sphere with a
relative error of 3∗10−3). In terms of relative magnitudes, the coarseness of the spherical
averaging does not invalidate relative statements between KHMH terms Qa

1 and Qa
2 such

as Qa
1 ≫ Qa

2. We see from (2.32b) that the local difference between KHMH terms Qa
1

and Qa
2 can only be considerable if Q1 ≫ Q2 in an average sense over the considered

separations r.
We consider the accuracy of our KHMH post-processing methodology by calculating

the residuals of the relevant KHMH equations (which will be introduced in the follow-
ing chapters). We denote the local residual of the solenoidal KHMH equation (3.22a)
as R(x, r, t) such that the residual of the spatially and spherically averaged solenoidal
KHMH equation equals ⟨R⟩ax(rd, t). The effect of the residuals on the KHMH statistics
of interest are negligible if the magnitudes of the residuals are negligible compared to the



42 2.3. KHMH POST-PROCESSING

0.00 0.25 0.50 0.75 1.00

rd/〈λ〉t

0.00

0.02

0.04

0.06

0.08

0.10

√
〈(
R

a
)2
〉/
√

〈(
Π

a S
)2
〉

Figure 2.6: Relative KHMH residuals at small scales for dataset DNS1.

magnitudes of the dominant KHMH terms. That is, in chapter 5 we study the spatially
averaged KHMH dynamics at intermediate and large scales. For our results from DNS
datasets DNS2-DNS3-DNS4 to be appropriately accurate, we require that the magnitude
of the average residual in the spatially averaged KHMH equation

√︁
⟨(⟨R⟩ax)2⟩t to be neg-

ligible compared to the magnitude of the dominant spatially averaged KHMH terms (see
figure 5.2). We show in this chapter that this latter quantity is of the order 0.1⟨ϵ∗⟩, where
ϵ∗ is the two-point viscous pseudo-dissipation rate (see equation (3.20)). Figure 2.5(a)
shows that indeed the residuals are negligible compared to the dominant spatially aver-
aged KHMH terms at intermediate and large scales. These results confirm the evaluation
methods of the spatially averaged KHMH terms developed in appendix C and show that
the time-derivative evaluation and spherical integration methods are accurate (note that
these two latter methods are also used in chapters 3-4).

Chapter 3 studies the spatio-temporally fluctuating cascade dynamics at intermedi-
ate and large scales. Our KHMH post-processing of DNS2-DNS3-DNS4 is appropriately
accurate if the magnitudes of the spatio-temporal residuals

√︁
⟨(Ra)2⟩ are negligible com-

pared to the spatio-temporal fluctuations of the dominant KHMH terms, which equals√︂
⟨(Π a

S
)2⟩ where ΠS is the solenoidal interscale transfer rate (see chapter 3 and figure

3.9). Figure 2.5(b) shows that the residuals are an order of magnitude smaller than the
dominant KHMH terms at intermediate and large scales for DNS2-DNS3-DNS4. The
normalised residuals seem to increase with ⟨Reλ⟩t. As the spatial resolution is almost
identical for these DNSs, it seems that the spatio-temporal KHMH dynamics become
increasingly challenging to resolve/demanding finer spatial resolution as ⟨Reλ⟩t increases.

Finally, chapter 4 studies the spatio-temporally fluctuating cascade dynamics at small
scales. Our KHMH post-processing of DNS1 is appropriately accurate if the spatio-
temporal residuals

√︁
⟨(Ra)2⟩ are negligible compared to

√︂
⟨(Π a

S
)2⟩ at small scales (see

figure 4.2(c)). This is verified in figure 2.6 with the residuals being an order of magnitude
smaller than the dominant KHMH terms. All in all, our KHMH post-processing method-
ology applied to our DNS datasets is adequately accurate to study the cascade dynamics
as outlined in the thesis objectives (see section 1.3).
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3. Interscale and Interspace Energy
Transfer Dynamics in Homogeneous
Turbulence

Turbulence has been known to be intermittent since the late 1940s (Batchelor et al.,
1949), and this intermittency has mainly been taken into account as structure function
exponent corrections to K41’s average picture (see section 1.2). However, Yasuda and
Vassilicos (2018) studied intermittent fluctuations without reference to structure function
exponents which require high Reynolds numbers to be well defined and to be predicted
from Kolmogorov’s theory or various intermittency-accounting variants of this theory (see
Frisch (1995) and references therein). They concentrated their attention on the actual
fundamental basis of Kolmogorov’s theory which is scale-by-scale equilibrium for statisti-
cally homogeneous and stationary turbulence, and not on the theory’s structure function
and energy spectrum scaling consequences. The scale-by-scale equilibrium implied by
statistical homogeneity and stationarity is that the average interscale turbulence energy
transfer rate is balanced by nothing more than average scale-by-scale viscous diffusion
rate, average turbulence dissipation rate and average energy input rate by a stirring
force, irrespective of Reynolds number (except that the Reynolds number needs to be
large enough for the presence of random fluctuations). It is most natural for a study of
intermittency to start with the fluctuations around this balance, which means that along
with the fluctuations of interscale transfer, dissipation, diffusion and energy input, all
other fluctuating turbulent energy change rates need to be taken into account as well
even if their spatio-temporal averages equal zero.

The intermittency corrections to Kolmogorov’s average cascade theory which have
been developed since the 1960s (e.g. see Sreenivasan and Antonia (1997)) are most often
based on the intermittent fluctuations of the local (in space and time) turbulence dissi-
pation rate, yet Yasuda and Vassilicos (2018) demonstrated that these dissipation fluctu-
ations are much less intense than the fluctuations of other turbulent energy change rates
such as the non-linear interspace energy transfer rate (which is a scale-by-scale rate of
turbulent transport in physical space), the fluctuating work resulting from the correlation
of the fluctuating pressure gradient with the fluctuating velocity and the time-derivative
of the scale-by-scale turbulent kinetic energy. These results showed that the fluctuations
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around the average scale-by-scale balance are significant at low to moderate Reynolds
numbers (⟨Reλ⟩t ranging from 80 to 170), implying that the average scale-by-scale bal-
ance is not locally representative at such Reynolds numbers. Moreover the various en-
ergy exchange processes exhibit significant correlations: the fluctuating pressure-velocity
term is correlated with the interscale energy transfer rate, and the time derivative of
the turbulent kinetic energy below a certain two-point length rd is correlated with the
inter-space energy transport rate at the same length rd. Yasuda and Vassilicos (2018)
explained the former correlation as resulting from the link between non-linearity and pres-
sure and the latter correlation as reflecting the passive sweeping of small turbulent eddies
by large ones (Tennekes, 1975) (Baj et al. (2022) recently showed that these correlation
results extend to higher Reynolds numbers forced homogeneous/periodic turbulence at
⟨Reλ⟩t = 433 and the von Kárman flow at ⟨Reλ⟩t = 199). This sweeping (also termed
“random Taylor hypothesis”) has been studied by reference to the one-point incompress-
ible Navier-Stokes equation (e.g. Tennekes (1975), Tsinober et al. (2001)) rather than
the two-point Kármán-Howarth-Monin-Hill (KHMH) equation, used by Yasuda and Vas-
silicos (2018) in their study of the fluctuating turbulence cascade. The KHMH equation
is a scale-by-scale energy budget local in space and time, directly derived from the in-
compressible Navier-Stokes equations for the instantaneous velocity field (see Hill (2002))
without decomposition (e.g. Reynolds decomposition), without averages (e.g. Reynolds
averages), and without any assumption made about the turbulent flow (e.g. isotropy).

The initial trigger of the present chapter is to substantiate the claim of Yasuda and
Vassilicos (2018) concerning KHMH correlations being caused by random sweeping by
translating the sweeping analysis of Tsinober et al. (2001) to the KHMH equation. In do-
ing so we espouse the Helmholtz decomposition which Tsinober et al. (2001) introduced
for the analysis of the acceleration field. We apply it to the two-point Navier-Stokes
difference (NSD) equation (which is the equation governing the dynamics of two-point
velocity differences) and the KHMH equation which derives from it. This decomposition
into solenoidal and irrotational terms breaks the Navier-Stokes equation into two equa-
tions, one being the irrotational balance between non-linearity and pressure and the other
being the solenoidal balance between local unsteadiness and advection which encapsu-
lates the sweeping. With this decomposition we substantiate all the correlations observed
by Yasuda and Vassilicos (2018) between different KHMH terms representing different
energy change processes, not only the ones caused by sweeping. In fact, we educe the
relation between interspace turbulence energy transfer/transport and two-point sweeping
(i.e. the random Taylor hypothesis that we generalise to two-point statistics), and we
extend the correlation study to solenoidal and irrotational sub-terms of the KHMH equa-
tion. This leads to even stronger correlations than those found by Yasuda and Vassilicos
(2018) and deeper insights into the local cascade dynamics. We also study the recently
introduced decomposition (Alves Portela et al., 2020) of the interscale transfer rate into
a homogeneous and an inhomogeneous interscale transfer component. We analyse their
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fluctuations and the correlations of these fluctuations, both unconditionally and condi-
tionally on relatively rare intense interscale transfer events. Finally, we derive solenoidal
and irrotational KHMH equations for arbitrary boundary conditions.

Section 3.1.1 is a reminder of the application of the Helmholtz decomposition to the
one-point Navier-Stokes equation by Tsinober et al. (2001). In this section we also val-
idate our DNSs by retrieving the conclusions of Tsinober et al. (2001) on sweeping and
by comparing our DNS results on one-point acceleration dynamics to theirs. In sections
3.1.2-3.1.3 we apply the Helmholtz decomposition to the two-point NSD equation for
the case of homogeneous/periodic turbulence and in section 3.1.4 we derive from the
Helmholtz decomposed Navier-Stokes difference equations corresponding KHMH equa-
tions. Section 3.1.4 formalises the connection between the NS and KHMH dynamics,
clarifies under which conditions a link exists between NS and KHMH dynamics and pro-
vides results on scale and Reynolds number dependencies of the KHMH dynamics. By
considering the NSD dynamics in terms of solenoidal and irrotational dynamics, we de-
rive two new KHMH equations. In section 3.2 we use these two new KHMH equations
to obtain new results on the fluctuating cascade dynamics across scales both uncondi-
tionally and conditionally on relatively rare intense interscale energy transfer events. In
section 3.3 we analyse the inhomogeneous and homogeneous contributions to the inter-
scale energy transfer rate (Alves Portela et al., 2020). Section 3.4 derives the irrotational
and solenoidal KHMH equations for arbitrary boundary conditions (rather than periodic
boundary conditions). Finally, section 3.5 summarises our results.

3.1 Helmholtz Decomposition of Two-point

Navier-Stokes Dynamics and Corresponding

Turbulent Energy Exchanges

We next show how we apply the Helmholtz decomposition to the KHMH equation for
homogeneous/periodic turbulence. We start in 3.1.1 by applying this decomposition to
the one-point Navier-Stokes equation following Tsinober et al. (2001). In this section
we also validate DNS2-DNS3-DNS4 by retrieving the conclusions and results of Tsinober
et al. (2001) on one-point acceleration dynamics. In sections 3.1.2 and 3.1.3 we apply the
Helmholtz decomposition to the two-point Navier-Stokes difference equation for the case
of homogeneous/periodic turbulence and in section 3.1.4 we derive from the Helmholtz-
decomposed Navier-Stokes difference equations corresponding KHMH equations.

The converged spatio-temporal results are mainly from the datasets DNS3-DNS4 (with
negative damping forcing and Taylor-scale Reynolds numbers 112 and 174), but we display
some key results also for the dataset DNS2 (with ABC forcing and ⟨Reλ⟩t = 111). Unless
otherwise stated, the results from the dataset with the ABC forcing are qualitatively
equal to the results with the negative damping forcing with ⟨Reλ⟩t = 112.
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DYNAMICS AND CORRESPONDING TURBULENT ENERGY EXCHANGES

3.1.1 Solenoidal and Irrotational Acceleration Fluctuations

The Helmholtz decomposition states that a twice continuously differentiable 3D vector
field q(x, t) defined on a domain V ⊆ R3 can be expressed as the sum of an irrotational
vector field qI(x, t) and a solenoidal vector field qS(x, t) (Helmholtz, 1867; Sprössig, 2010)

qI(x, t) = −∇xϕ(x, t), qS(x, t) = ∇x ×B(x, t), (3.1)

where ϕ(x, t) is a scalar potential and B(x, t) is a vector potential. Helmholtz’s rationale
in developing this decomposition was in the description of continuous fluid motion in R3.
He considered the fluid motion consisting of: i) expansion or contraction in three orthog-
onal directions, ii) rotation about an instantaneous axis and iii) translation (Helmholtz,
1867). The expansion/contraction can be considered as a scalar potential as the corre-
sponding motion is irrotational (∇x × ∇x = 0), and the second part can be considered
as the curl of a vector potential as the corresponding motion is solenoidal/incompressible
(∇x · ∇x× = 0). The translation being both solenoidal and irrotational can be consid-
ered as either included in the vector potential or in the scalar potential (Bhatia et al.,
2013). The Helmholtz decomposition and its interpretation can be applied to any vector
field q(x, t) satisfying the above conditions, and Tsinober et al. (2001) applied it to fluid
accelerations and the incompressible Navier-Stokes equation.

The solenoidal and irrotational Navier-Stokes equations in homogeneous/periodic tur-
bulence can be derived from the incompressible Navier-Stokes equation in Fourier space.
After transforming back to physical space, one obtains

∂u

∂t
+ (u · ∇xu)

T = ν∇2
xu+ fT , (3.2a)

(u · ∇xu)
L = −1

ρ
∇xp+ fL, (3.2b)

where superscripts L and T denote fields obtained from longitudinal and transverse parts
of respective Fourier vector fields (see the first paragraph of appendix B for definitions).
For a periodic vector field q, qL equals the irrotational field qI and qT equals the solenoidal
field qS (see appendix B). From (3.2a)-(3.2b), one arrives at (Tsinober et al., 2001)

∂u

∂t
+ (u · ∇xu)S = ν∇2

xu+ fS, (3.3a)

(u · ∇xu)I = −1

ρ
∇xp+ fI , (3.3b)

which we refer to as Tsinober equations. (3.3a) contains only solenoidal vector fields and
(3.3b) contains only irrotational vector fields. Note that in the case of an incompressible
periodic velocity field, the velocity field is solenoidal, i.e. u = uS. This follows immedi-
ately from the scalar potential ϕ being the solution to ∇2

xϕ = 0 with periodic boundary
conditions for ∇xϕ, yielding ϕ = const.
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⟨q2⟩/(3⟨ϵ⟩3/2ν−1/2) ⟨q2⟩/⟨a2
c⟩

⟨Reλ⟩t 111 112 174 111 112 174

ac 7.21 8.47 14.28 1 1 1

al 4.92 5.87 11.21 0.68 0.69 0.78

acS 4.98 5.93 11.26 0.69 0.70 0.79

acI 2.23 2.55 3.03 0.31 0.30 0.21

ap 2.23 2.55 3.03 0.31 0.30 0.21

a 2.38 2.60 3.09 0.32 0.31 0.22

aν 0.05 0.05 0.05 0.0069 0.0062 0.0038

f 0.01 0.007 0.005 0.00020 0.00081 0.00032

Table 3.1: Normalised average magnitudes ⟨q2⟩/(3⟨ϵ⟩3/2ν−1/2) and ⟨q2⟩/⟨a2
c⟩ for Navier-

Stokes accelerations and forces q for DNS2-DNS3-DNS4. The former normal-
isation and the notation q2 ≡ qiqi follow from Tsinober et al. (2001).

In section 3.4 we show that (3.3a) is the integrated vorticity equation and that (3.3b)
is the integrated Poisson equation for pressure. The procedure presented in section 3.4 for
obtaining the Tsinober equations is also used in this same section to obtain generalised
Tsinober equations for turbulence with arbitrary boundary conditions.

Following the notation of Tsinober et al. (2001), we define al ≡ ∂u/∂t, ac ≡ u ·∇xu,
a ≡ al +ac, ap ≡ −1/ρ∇xp and aν ≡ ν∇2

xu. In such notation, equations (3.3a)-(3.3b)
are al + acS = aν + fS and acI = ap + fI . Tsinober et al. (2001) in fact wrote these
equations for statistically homogeneous/periodic Navier-Stokes turbulence without body
forces, i.e. with f = 0. In general, however, the body forcing can be considered, as in the
present work, to be non-zero and typically incompressible, i.e. fI = 0 but fs ̸≡ 0, given
that a compressible component of the forcing can be subsumed into the pressure field in
incompressible turbulence. In body-forced statistically stationary homogeneous/periodic
turbulence, the average forcing magnitude ⟨f 2⟩(≡ ⟨fifi⟩), where the brackets denote
spatio-temporal averaging, tends to be small compared to ⟨a2

ν⟩ when the forcing is applied
only to the largest scales (Vedula and Yeung, 1999). Given that ⟨f · u⟩ = ⟨ϵ⟩, where ϵ is
the viscous (pseudo-)dissipation rate, f 2 can be quite small if f is not close to orthogonal
to the velocity field. This is indeed the case with the negative damping and ABC forcings
used in this study. In cases where f is close to orthogonal to the velocity field, which
is conceivable in electromagnetic situations (Lorentz force), f 2 needs to be large enough
for ⟨f · u⟩ to balance ⟨ϵ⟩. In this study we have not considered such forcings and some
of our results might not apply to such situations. Our results for the forcings we used
indicate that ⟨f 2⟩ is indeed much smaller than ⟨a2

ν⟩ (see results from our DNS in table
3.1) and the probability to find values of f 2 large enough to be comparable to the other
terms in the Tsinober equations is extremely small (see results from our DNS in figure
3.1 and table 3.2 where we see, in particular, that |f | > 0.1|acS | in 15.3% and 6.3% of the



48
3.1. HELMHOLTZ DECOMPOSITION OF TWO-POINT NAVIER-STOKES

DYNAMICS AND CORRESPONDING TURBULENT ENERGY EXCHANGES

α 0.001 0.01 0.1 1

Prob(a2
ν > αa2

cS
) (0.893, 0.808) (0.441, 0.308) (0.068, 0.037) (0.004, 0.002)

Prob(f 2 > αa2
cS

) (0.707, 0.476) (0.155, 0.063) (0.008, 0.003) (3 ∗ 10−4, 9 ∗ 10−5)

Table 3.2: Probabilities of events q2 > αp2 for NS terms (q,p) with α specified on the top
row. The two probability values in the brackets for each (q,p, α) combination
refer to ⟨Reλ⟩t = 112 and ⟨Reλ⟩t = 174 respectively.
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Figure 3.1: Probability density functions (PDFs) P of Navier-Stokes acceleration and
force magnitudes q2 for terms q listed at the top of (a). Pmax for the PDF of
q2 denotes its maximum value. (a) ⟨Reλ⟩t = 112, (b) ⟨Reλ⟩t = 174.

spatio-temporal domain for the two Reynolds numbers respectively, the percentage being
smaller for the higher Reynolds number. If we consider |f | >

√
0.1|acS | ≈ 0.32|acS |, we

see that this is only satisfied in 0.8% and 0.3% of the spatio-temporal domain respectively.
Furthermore, figure 3.1 and table 3.2 show that f is also typically much smaller than aν .
We can therefore write al + acS ≈ aν , this being a good approximation in the majority
of the flow for the majority of the time. With acI = ap given that fI = 0, these two
equations are very close to the way that Tsinober et al. (2001) originally wrote them
(al + acS = aν and acI = ap for f ≡ 0) and we can therefore expect to retrieve the
results and conclusions of Tsinober et al. (2001).

The DNS of Tsinober et al. (2001) showed that aν is typically negligible (i.e. in a
statistical sense, not everywhere at any time in the flow) compared to all the other accel-
eration terms in the Tsinober equations, namely al, acS , acI and ap. This is confirmed by
our DNS results in tables 3.1-3.2 and in figure 3.1 which are for similar Reynolds numbers
to those of Tsinober et al. (2001) and where we report magnitudes, and probabilities of
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⟨Reλ⟩t ⟨cos(acI , ap)⟩ ⟨cos(a, ap)⟩ ⟨cos(al, acS )⟩ ⟨cos(al, ac)⟩ ⟨cos(ac, ap)⟩

111 0.9999 0.969 -0.976 -0.707 0.406

112 0.9999 0.972 -0.985 -0.726 0.388

174 0.9999 0.975 -0.990 -0.796 0.308

Table 3.3: NS average alignments ⟨cos(q,p)⟩ for NS acceleration pairs (q,p).

various acceleration terms. It is worth noting that aν is not everywhere always negligible,
at these Reynolds numbers at least. For example, |aν | > 0.1|acS | in 44.1% and 30.8%

of the space-time domain for our lower and higher Reynolds number respectively; and if
we consider |aν | > 0.32|acS |, this is satisfied in 6.8% and 3.7% of cases. Note that the
DNS results of Tsinober et al. (2001) suggest that the viscous force typically decreases
in magnitude compared to acS as the Reynolds number increases and our results for our
two Reynolds numbers agree with this trend. One may therefore expect the first of the
two Tsinober equations for homogeneous/periodic turbulence with the kind of forcing we
consider here to typically reduce to

al + acS ≈ 0, (3.4)

at high enough Reynold numbers, the approximation being valid in the sense that the
neglected terms are significantly smaller than the retained ones in the majority of the flow
for the majority of the time. There exist, however, some relatively rare spatio-temporal
events where the neglected viscous force and/or body force are significant (for example,
as stated a few lines above, |aν | is larger than 0.32|acS | in 6.8% and 3.7% of all spatio-
temporal events for our lower and higher Reynolds numbers respectively) and where the
right-hand side of (3.4) is therefore not zero. More generally, one cannot use equation
(3.4) to derive statistics of small-scale quantities, as in Tang et al. (2022) for example.

The second of the two Tsinober equations, namely

acI = ap, (3.5)

is exact everywhere and at any time and we keep it as it is.
Equations (3.4)-(3.5) suggest similar magnitudes and strong alignment between al

and −acS and equal magnitudes as well as perfect alignment between acI and ap. Such
magnitudes and alignments were observed in the DNS of Tsinober et al. (2001) and are
also strongly confirmed by our own DNS in table 3.3 (acS and acI are calculated on
the basis of equation (B.1) in appendix B and aliasing errors are removed by phase-
shifting and truncation (Patterson and Orszag, 1971)). As suggested by previous DNS
and experimental results (e.g. Tsinober et al. (2001); Chevillard et al. (2005); Yeung et al.
(2006)), and as also supported by our own DNS results in tables 3.1 and 3.3, a ≈ ap and
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⟨a2
l ⟩/⟨a2⟩ ∼ ⟨Reλ⟩1/2t . In fact, the scaling ⟨a2

l ⟩/⟨a2⟩ ∼ ⟨Reλ⟩1/2t follows from the analysis
of Tennekes (1975) who expressed the concept of passive sweeping by pointing out that
"at high Reynolds number the dissipative eddies flow past an Eulerian observer in a
time much shorter than the time scale which characterizes their own dynamics". It then
follows from equations (3.4)-(3.5), from ⟨a2

l ⟩/⟨a2⟩ ∼ ⟨Reλ⟩1/2t and from ⟨a2
p⟩ ≈ ⟨a2⟩ that

⟨a2
cS
⟩/⟨a2

cI
⟩ ∼ ⟨Reλ⟩1/2t with increasing ⟨Reλ⟩t, i.e. ac becomes increasingly solenoidal

with increasing ⟨Reλ⟩t. In this way, (3.4) leads to an increasing anti-alignment tendency
between al and ac with increasing Reynolds number, which is consistent with the notion
of passive sweeping of small eddies by large ones, i.e. the random Taylor hypothesis of
Tennekes (1975). These observations and conclusions were all made by Tsinober et al.
(2001) and their DNS who showed, in particular, that the Taylor length-based Reynolds
number does not need to be so large to make them, and are now confirmed by our DNS
in table 3.1.

As a final point, it is a general property of periodic vector fields q that ⟨qI(x, t) ·
qS(x + r, t)⟩x = 0 for any r (including r = 0), where ⟨. . .⟩x signifies a spatial average.
This is readily shown by inserting the Fourier representation of qI and qS (see appendix
B) and applying the orthogonality relation of the discrete Fourier modes (Canuto et al.,
1987). Thus, ⟨a2

c⟩ = ⟨a2
cI
⟩+ ⟨a2

cS
⟩. Both our DNS and the DNS of Tsinober et al. (2001)

confirm this equality. From this equality and from (3.4), ⟨a2
cS
⟩/⟨a2

cI
⟩ ∼ ⟨Reλ⟩1/2t , (3.5),

a ≈ ap and ⟨a2⟩ ≫ ⟨a2
ν⟩ ≫ ⟨f 2⟩, we have all in all

⟨a2
c⟩ ≥ ⟨a2

cS
⟩ ≈ ⟨a2

l ⟩ ≫ ⟨a2
cI
⟩ = ⟨a2

p⟩ ≈ ⟨a2⟩ ≫ ⟨a2
ν⟩ ≫ ⟨f 2⟩, (3.6)

for large enough ⟨Reλ⟩t. The average magnitude ordering in (3.6) is confirmed in our DNS
(see table 3.1) and the DNS of Tsinober et al. (2001) even though the Reynolds numbers
of these DNS are moderate and so the difference between ⟨a2

cI
⟩ and ⟨a2

l ⟩ is not so large.
Tsinober’s way to formulate sweeping is encapsulated in ⟨a2

cS
⟩ ≈ ⟨a2

l ⟩ ≫ ⟨a2
cI
⟩ = ⟨a2

p⟩ ≈
⟨a2⟩ and in the alignments implied by equations (3.4)-(3.5) which are also statistically
confirmed by our DNS in table 3.3.

The results with the ABC forcing (⟨Reλ⟩t = 111) are similar to the results with
the negative damping forcing (⟨Reλ⟩t = 112) (see tables 3.1 and 3.3). One noticeable
difference is the lower magnitudes ⟨q2⟩/(3⟨ϵ⟩3/2ν−1/2) with the ABC forcing compared
to the negative damping forcing. Possibly, the ABC forcing helicity input limits the NS
non-linearity and consequently the related fluctuations of the other NS accelerations.

3.1.2 From One-point to Two-point Navier-Stokes Dynamics

The Navier-Stokes difference (NSD) equation at centroid x and separation vector r is
derived by subtracting the Navier-Stokes (NS) equation at location x+ = x + r/2 from
the NS equation at location x− = x − r/2 (see appendix A and figure 3.2). Defining
δq(x, r, t) ≡ q(x + r/2, t) − q(x − r/2, t) for any NS term q(x, t), the NSD equation
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Figure 3.2: Illustration of Navier-Stokes difference (NSD) centroid x and separation r.

(Hill, 2002) reads
∂δu

∂t
+ δac = −1

ρ
∇xδp+ δaν + δf , (3.7)

The NSD equation governs the evolution of δu, which can be thought of as approximately
pertaining to the momentum at scales smaller or comparable to |r| (Townsend, 1976).
We derive the solenoidal NSD equation by subtracting the solenoidal Tsinober equation
(3.3a) at x − r/2 from the same equation at x + r/2. The same operation is used to
derive the irrotational NSD equation. The resulting equations read (with δfI = 0)

∂δu

∂t
+ δacS = δaν + δf , (3.8a)

δacI = −1

ρ
∇xδp, (3.8b)

where δacS(x, r, t) ≡ acS(x+r/2, t)−acS(x−r/2, t) and δacI (x, r, t) ≡ acI (x+r/2, t)−
acI (x− r/2, t) and note that these terms refer to solenoidal and irrotational terms in x-
space rather than r-space. The forcings we consider have no irrotational part and so
δfI = 0. At the moderate ⟨Reλ⟩t of our DNS, the approximate equation (3.4) is valid
in the sense explained in the text which accompanies it in the previous sub-section, i.e.
for a majority of spatio-temporal events. If the magnitude of the separation vector r is
not too small for viscosity to matter directly nor too large for the forcing to be directly
present, we may safely subtract equation (3.4) at x− r/2 from equation (3.4) at x+ r/2

to obtain an approximation to (3.8a) for sufficiently high Reynolds number: this is the
first of the two equations below where δal ≡ ∂δu/∂t:

δal + δacS ≈ 0, (3.9a)

δacI = −1

ρ
∇xδp. (3.9b)

The second equation, equation (3.9b), follows directly from (3.8b) without any restriction
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Figure 3.3: NSD exceedance probabilities Prob(q2 > αp2) for the NSD terms on top of (a)
as a function of separation length rd = |r|. The legend entries read (q, α,p)
for the NSD terms introduced in the first paragraph of 3.1.2.(a) ⟨Reλ⟩t = 112,
⟨L⟩t = 3.5⟨λ⟩t. (b) ⟨Reλ⟩t = 174, ⟨L⟩t = 5.2⟨λ⟩t. NSD magnitudes q2 and p2

are sampled at scale rd = |r| at random orientations r.

on either r or Reynolds number and is exact.
Like equation (3.4), (3.9a) can be expected to be valid broadly except where and when

δaν + δf is large enough not to be negligible. Figure 3.3 shows statistically converged
estimations of exceedance probabilities of NSD viscous and external force terms which
suggest that (3.9a) is indeed a good approximation for most of space and time at the
Reynolds numbers of our two DNS, at the very least for separation distances larger than
⟨λ⟩t and smaller than ⟨L⟩t. With regards to the forcing, Prob(|δf | > 0.32|δacS |) is
typically of the order of 1%, in particular for our higher Reynolds number. With regards
to the viscous force, Prob(|δaν | > 0.32|δacS |) is typically of the order of 5% for rd ≥ ⟨λ⟩t
and even less for our higher Reynolds number.

The link between non-linearity and pressure invoked in the two-point analysis of Ya-
suda and Vassilicos (2018) has its root in equation (3.9b) which parallels (3.5) and states
that δacI and δap are perfectly aligned and have the same magnitudes. Furthermore, sim-
ilarly to the way that equation (3.4) supports the concept of sweeping of small turbulent
eddies by large ones in the usual one-point sense, (3.9a) suggests similar magnitudes for
and strong alignment between δal and −δacS . A two-point concept of sweeping similar
to the one of Tennekes (1975) which relies on alignment between δal and −δac should
also require that δac tends towards δacs with increasing Reynolds number, i.e. that δac

becomes increasingly solenoidal. We therefore seek to obtain inequalities and approx-
imate equalities similar to (3.6). Note that equations (3.9a)-(3.9b) immediately imply
⟨δa2

cS
⟩ ≈ ⟨δa2

l ⟩, ⟨δa2
cI
⟩ = ⟨δa2

p⟩ and ⟨δa2
p⟩ ≈ ⟨δa2⟩. It therefore remains to argue that

⟨δa2
c⟩ ≥ ⟨δa2

cS
⟩ ≫ ⟨δa2

cI
⟩ which is exactly what we need to arrive at a new concept of

two-point sweeping.
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We start from

⟨δq · δq⟩(r) = ⟨q+ · q+⟩ − ⟨q+ · q−⟩+ ⟨q− · q−⟩ − ⟨q− · q+⟩, (3.10a)

= 2
[︁
⟨q · q⟩ − ⟨q+ · q−⟩(r)

]︁
, (3.10b)

where q+ ≡ q(x + r/2) and q− ≡ q(x − r/2) and used ⟨q+ · q+⟩ = ⟨q− · q−⟩ = ⟨q · q⟩
because of statistical homogeneity/periodicity. Previous studies (Hill and Thoroddsen,
1997; Vedula and Yeung, 1999; Xu et al., 2007; Gulitski et al., 2007) demonstrated that
fluid accelerations, pressure gradients and viscous forces have limited spatial correlations
in terms of alignments at scales larger than ⟨λ⟩t for moderate and high ⟨Reλ⟩t. Thus, if we
assume the two-point term to be negligible compared to the one-point term in equation
(3.10b) for scales |r| larger than ⟨λ⟩t, we have that ⟨δq · δq⟩(r) is approximately equal to
2⟨q · q⟩ for |r| larger than ⟨λ⟩t. From (3.6) we therefore obtain

⟨δa2
c⟩ ≥ ⟨δa2

cS
⟩ ≈ ⟨δa2

l ⟩ ≫ ⟨δa2
cI
⟩ = ⟨δa2

p⟩ ≈ ⟨δa2⟩ ≫ ⟨δa2
ν⟩ ≫ ⟨δf 2⟩, (3.11)

for |r| larger than ⟨λ⟩t, but ⟨δa2
c⟩ ≥ ⟨δa2

cS
⟩ and ⟨δa2

cI
⟩ = ⟨δa2

p⟩ are in fact valid for any
r. Inequality ⟨δa2

c⟩ ≥ ⟨δa2
cS
⟩ follows from ⟨δa2

c⟩ = ⟨δa2
cI
⟩ + ⟨δa2

cS
⟩ which itself follows

from ⟨acI (x, t) · acS(x+ r, t)⟩x = 0 for any r for periodic turbulence (see section 3.1.1).
Equality ⟨δa2

cI
⟩ = ⟨δa2

p⟩ follows directly from (3.9b) which is exact and holds for any r

and any Reynolds number. Of equalities/inequalities (3.11), the ones that we did not
already directly derive from/with equations (3.9a)-(3.9b) are ⟨δa2

c⟩ ≥ ⟨δa2
cS
⟩ ≫ ⟨δa2

cI
⟩

and ⟨δa2
ν⟩ ≫ ⟨δf 2⟩. The present way to formulate the new concept of two-point sweeping

follows from Tsinober’s way to formulate sweeping and is encapsulated ⟨δa2
cS
⟩ ≈ ⟨δa2

l ⟩ ≫
⟨δa2

cI
⟩ = ⟨δa2

p⟩ ≈ ⟨δa2⟩ and in the alignments implied by (3.9a)-(3.9b). We confirm
equations (3.9a)-(3.9b)-(3.11) with our DNS in the remainder of this subsection.

To test (3.11) with our DNS data in a manageable way, we calculate spatio-temporal
averages of r-orientation-averaged quantities (see section 2.3 and equation (2.32))

(δq · δq)a(x, rd, t) ≡
1

πr2d

∫︂∫︂
|r|=rd

δq(x, r, t) · δq(x, r, t), dr, (3.12)

which we plot in figure 3.4(a1,a2) as ratios of such quantities versus rd. In figure 3.4(a1,a2)
we plot spatio-temporal averages of r-orientation-averaged quantities (3.12) for various
NSD accelerations/forces. A comparison of relative magnitudes in the plots of figure
3.4(a1,a2) with relative magnitudes in table 3.1 makes it clear that the results are consis-
tent with (3.11) and ⟨δq · δq⟩(r)/⟨q · q⟩ close to 2 for rd ≥ ⟨λ⟩t at both ⟨Reλ⟩t to a good
degree of accuracy (⟨δq · δq⟩(r)/⟨q · q⟩ increases from 1.8 to 2.0 as rd grows from ⟨λ⟩t
to ⟨L⟩t). Note, in figure 3.4(a1,b1) the average quantities corresponding to δal and δacS

overlap and those corresponding to δap, δa and δacI also overlap. At scales below ⟨λ⟩t,
the average relative magnitudes change slightly, but the NSD magnitude separations still
abide by (3.11), the NSD analogue to (3.6), at all scales.
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Figure 3.4: (a1, b1) Spatio-temporal averages of spherically averaged NSD magnitudes
⟨δq2⟩a for NSD terms δq as a function of rd: (a1) ⟨Reλ⟩t = 112, (b1) ⟨Reλ⟩t =
174. The magnitudes of the terms (δal, δacS) overlap and the magnitudes of
the terms (δap, δa, δacI ) overlap. (a2, b2) average NSD alignments between
NSD terms (δq, δw) as a function of rd: (a2) ⟨Reλ⟩t = 112, (b2) ⟨Reλ⟩t = 174.

In figure 3.4(b1,b2) we use our DNS data to plot spatio-temporal averages of r-
orientation-averaged cosines of angles between various NSD terms δq and δw to test
for average alignments as a function of rd. These alignment results are of course in per-
fect agreement with (3.9b) but they are also in good agreement with (3.9a) and acceptable
agreement with δa ≈ δap (the cosine of the angle between these two acceleration vectors
is higher than 0.9 for all rd). They also show that we should not expect δal to be ex-
tremely well aligned with −δac at our moderate Reynolds numbers. This demonstrates
the pertinence of the solenoidal-irrotational decomposition which has revealed very good
alignments at our moderate Reynolds numbers for which there are significantly weaker
alignments without this decomposition.

In conclusion, figure 3.4 provides strong support for equations (3.9a)-(3.9b)-(3.11)
which establish the two-point link between non-linearity and pressure, and also a concept
of two-point sweeping.
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Figure 3.5: (a) Space-time-average NSD magnitudes ⟨δq2⟩a as a function of rd. The
magnitudes of the terms (δal, δacS) overlap and the magntiudes of the terms
(δap, δa, δacI ) overlap. (b) average NSD alignments between NSD terms
(δq, δw) as a function of rd. ⟨Reλ⟩t = 111 (ABC forcing).

Figure 3.5 shows the NSD average magnitudes and alignments results with the ABC
forcing. We note that the results with the negative damping forcing (DNS3) extend to
the DNS with ABC forcing (DNS2). The relative NSD magnitudes approximately equal
the analogue NS magnitudes and the average alignments behave similarly to the negative
damping forcing alignments (compare figures 3.4(a2) and 3.5(b)).

3.1.3 Interscale Transfer and Physical Space Transport

Accelerations

The convective non-linearity is responsible for non-linear turbulence transport through
space and non-linear transfer through scales. We want to separate these two effects and
therefore decompose the two-point non-linear acceleration term δac into an interscale
transfer acceleration aΠ and a physical space transport acceleration aT (see Hill (2002)
and appendix A for more details), i.e δac = aΠ + aT with

aT (x, r, t) =
1

2
(u+ + u−) · ∇xδu, aΠ (x, r, t) = δu · ∇rδu. (3.13)

With this decomposition of the non-linear term, the NSD equation (3.7) reads

∂δu

∂t
+ aΠ + aT = −1

ρ
∇xδp+ δaν + δf . (3.14)

We note relations aΠ = 1/2(δaC + u+j ∂u
−/∂x−j − u−j ∂u

+/∂x+j ) and aT = 1/2(δaC −
u+j ∂u

−/∂x−j +u−j ∂u
+/∂x+j ) which can be used to show that ⟨a2

Π ⟩ and ⟨a2
T ⟩ tend towards

each other as |r| grows above the integral length scale due to negligible average velocity
alignments at such scales. We report DNS evidence of this tendency below in this section.
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We want to consider the effects of the interscale transfer and interspace transport
terms in the solenoidal and irrotational NSD dynamics and we therefore break down the
NSD equation (3.14) into two equations, one irrotational and one solenoidal. We perform
Helmholtz decompositions in centroid space x for a given separation r at time t

δq(x, r, t) = δqI(x, r, t) + δqS(x, r, t) = −∇xϕ(x, r, t) +∇x ×B(x, r, t), (3.15)

where ϕ(x, r, t) is a scalar potential and B(x, r, t) is a vector potential. In periodic
turbulence the Helmholtz decomposition in centroid space equals the difference of the
Helmholtz decomposition in physical space δqI = δqI and δqS = δqS (see appendix B).
From δac = aΠ + aT and the linearity of the Fourier transform follow δacS = δacS

=

aΠS
+ aTS and δacI = δacI

= aΠI
+ aTI . Thus, we can rewrite the NSD solenoidal and

irrotational equations (3.8a)-(3.8b) in periodic/homogeneous turbulence as

aΠI
+ aTI = δap, (3.16a)

δal + aΠS
+ aTS = δaν + δf . (3.16b)

We emphasize that the interscale transfer term aΠS
is related non-locally in space to

two-point vortex stretching/compression and tilting terms governing the evolution of the
vorticity difference δω. This follows from the fact that, as for the Tsinober equations,
the NSD solenoidal equation is an integrated vorticity difference equation. We provide
mathematical detail on the connection between aΠS

and δω in section 3.4.
Equation (3.16a) can also be obtained by integrating the Poisson equation for δp in

centroid space similarly to equation (3.16b) which, as already mentioned, can be obtained
by integrating the vorticity difference equation in that same space. We use this approach
in section 3.4 to derive these equations for periodic/homogeneous turbulence but also their
generalised form for non-homogeneous turbulence. By deriving the exact equations for
aTI (x, r, t) and aΠI

(x, r, t) in Fourier centroid space we show in appendix B that we have
aTI (x, r, t) = aΠI

(x, r, t) in periodic/homogeneous turbulence. This result combined
with (3.16a) yields

aΠI
= aTI =

1

2
δap =

1

2
δacI , (3.17)

in periodic/homogeneous turbulence. In figure 3.6 we plot spatio-temporal averages
of r-orientation-averaged quantities (3.12) for various acceleration/force terms in the
Helmholtz decomposed NSD equations and in figure 3.7 we plot spatio-temporal averages
of r-orientation-averaged cosines of angles between various two-point acceleration terms
in these equations. The overlapping magnitudes in figure 3.6 and the average alignments
in figure 3.7 confirm (3.17), or rather validate our DNS given that (3.17) is exact.

Note that the computational procedure to calculate the various r-orientation-averaged
terms in these figures is computationally expensive. To calculate the NSD irrotational
and solenoidal parts of the interscale and interspace transport terms at a given time t and
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Figure 3.6: Average magnitudes ⟨δq2⟩a of NSD terms present in the irrotational and sole-
noidal NSD equations (3.16b)-(3.17). All values have been normalised with
⟨δa2

cS
⟩a at the largest considered separation rd. The magnitudes of the terms

(δal +aTS ,aΠS
) overlap and the magnitudes of the terms (1/2δacI ,aTI ,aΠI

)
overlap. (a) ⟨Reλ⟩t = 112, (b) ⟨Reλ⟩t = 174.

separation r, we use the pseudospectral algorithm of Patterson and Orszag (1971) with
one phase-shift and spherical truncation. We apply this algorithm to δuj and ∂δui/∂rj

for the interscale transfer and for (u+j + u−j )/2 and ∂δui/∂xj for the interspace transfer.
Hence, we express these vectors/tensors in Fourier space (see equations (B.14a)-(B.14d)
in appendix B) and apply the pseudospectral method of Patterson and Orszag (1971) to
calculate ˆ︂aT (k, r, t) and ˆ︂aΠ (k, r, t) without aliasing errors. We next decompose these
fields into irrotational and solenoidal fields with the projection operator and inverse these
fields to physical space to obtain aΠS

(x, r, t), aΠI
(x, r, t), aTS(x, r, t) and aTI (x, r, t).

These fields can then be sampled over x to calculate e.g. a2
ΠS

(x, r, t) or KHMH terms
such as 2δu·aΠS

(x, r, t) (see section 3.1.4). If we assume that the cost of a DNS time step
is similar to the cost of the pseudospectral method to calculate the NS non-linear term,
the calculation of solenoidal and irrotational interspace and interscale transfers for one t
and one r has similar cost to one DNS time step. The total cost of the pseudospectral
post-processing method is proportional to the total number Nr of separation vectors r

that we use in our spherical averaging across scales rd and to the total number of samples
in time ∆T/dT (see table 2.2). With a total number of separation vectors Nr ∼ 103−104

and our ∆T/dT values, the total cost of the pseudospectral post-processing method in
terms of DNS time steps is one order of magnitude larger than the cost of the DNS itself.
This high post-processing cost limits the attainable ⟨Reλ⟩t values.

The NSD solenoidal equation (3.16b) describes a balance between the time-derivative,
solenoidal interscale transfer, solenoidal interspace transport, viscous and forcing terms.
From the point we made in the sentence directly following equation (3.14), we expect
⟨a2

TS⟩ and ⟨a2
ΠS

⟩ to tend to become equal to each other as the amplitude of r tends to
values significantly larger than ⟨L⟩t. Figure 3.6 confirms this trend. With decreasing
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Figure 3.7: Average alignments of NSD terms (δq, δw) listed on top of (a) and (b). The
average alignments of (δap,aTI ) and (δap,aΠI

) overlap: (a) ⟨Reλ⟩t = 112,
(b) ⟨Reλ⟩t = 174.

rd, the magnitudes of aΠS
decrease relative to those of aTS . At all scales rd ≥ ⟨λ⟩t the

magnitudes of aTS and aΠS
are one order of magnitude larger than those of the viscous

term δaν and this separation is greater for the larger ⟨Reλ⟩t. The magnitudes of δaν

are themselves much larger than those of δf (not shown in figure 3.6 for not overloading
the figure but see figure 3.4(a1)). These observations suggest that the solenoidal NSD
equation (3.16b) reduces at scales rd ≥ ⟨λ⟩t to the approximate

δal + aTS ≈ −aΠS
, (3.18)

where this equation is understood as accurate in most regions of the flow for the majority
of the time (as for the NS dynamics, we do expect dynamically important regions localised
in space and time where the dynamics differ from (3.18).) Figure 3.6 confirms equation
(3.18) in this sense. An additional important observation to be made from figure 3.6 is
that δacS tends to become increasingly dominated by aTS rather than aΠS

as rd decreases.
Equation (3.18) is the same as equation (3.9a), and similarly to figure 3.4 which pro-

vides support for equation (3.9a), figures 3.6 and 3.7 provide strong support for equation
(3.18), in particular for rd ≥ ⟨λ⟩t. It is interesting to note that the average alignment
between the left and the right-hand side of equation (3.18) lies between 90% and 100%
(typically 95%) for rd ≥ ⟨λ⟩t. Whilst this is strong support for approximate equation
(3.18), the fact that the alignment is not 100% is a reminder of the nature of the approxi-
mation, i.e. that relatively rare spatio-temporal events do exist where the viscous and/or
driving forces are not negligible.

At length-scales rd ≤ ⟨λ⟩t, the alignment between δal and −aTS improves while the
alignment between δal+aTS and −aΠS

worsens with decreasing rd (see figure 3.7) presum-
ably because of direct dissipation and diffusion effects, so that δal + aTS ≈ 0 becomes a
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Figure 3.8: (a) ⟨δq2⟩a normalised with ⟨δa2
cS
⟩a at the largest considered rd. The magni-

tudes of the terms (δal + aTS ,aΠS
) overlap and the magnitudes of the terms

(1/2δacI ,aTI ,aΠI
) overlap. (b) NSD average alignments. The average align-

ments of (δap,aTI ) and (δap,aΠI
) overlap. ⟨Reλ⟩t = 111 (ABC forcing).

better approximation than equation (3.18) at rd < 0.5⟨λ⟩t. This observation is consistent
with our parallel observation that the magnitude of aTS increases while the magnitude of
aΠS

decreases with decreasing rd.
On the other end of the spectrum, i.e. as the length scale rd grows towards ⟨L⟩t, the

alignment between δal and −aTS worsens while the alignment between δal and −aΠS

improves (see figure 3.7), both reaching a comparable level of alignment/misalignment
which contribute together to keep approximation (3.18) statistically well satisfied with
95% alignment between δal + aTS and −aΠS

.
The strong anti-alignment between aTS and δal, increasingly so at smaller rd (see

figure 3.7) expresses the sweeping of the two-point momentum difference δu at scales rd
and smaller by the mainly large-scale velocity (u+ + u−)/2. Note that this two-point
sweeping differs from anti-alignment between δal and δac for two reasons. Firstly, by
using the Helmholtz decomposition we have removed the pressure effect embodied in the
acI contribution to ac which balances the pressure gradient. This was first understood in
Tsinober et al. (2001) in a one-point setting and is here extended to a two-point setting.
Secondly, δacS is the sum of an interspace transport aTS and an interscale transfer term
aΠS

such that the interpretation of two-point sweeping as anti-alignment between acS

and al as sweeping cannot be exactly accurate. The advection of δu by the larger-scale
velocity is attributable to aTS , and figure 3.7 shows that the two-point sweeping anti-
alignment between δal and aTS increases with decreasing rd.

The sweeping anti-alignment between δal and aTS is by no means perfect even if it
reaches about 90% accuracy at rd < ⟨λ⟩t, as is clear from the similar magnitudes and very
strong alignment tendency between δal + aTS and −aΠS

at scales |r| ≥ ⟨λ⟩t (see figures
3.6-3.7). (Note that the Lagrangian solenoidal acceleration δal + aTS and aΠS

are both
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Galilean invariant.) Equation (3.18) may be interpreted to mean that the Lagrangian
acceleration of δu moving with the mainly large scale velocity (u+ + u−)/2, namely
δal + aTS , is evolving in time and space in response to −aΠS

: when there is an influx of
momentum from larger scales there is an increase in δal + aTS and δu and vice versa.

Figure 3.8 contains average NSD magnitudes and alignments for the DNS with ABC
forcing. These quantities behave qualitatively identically for the two types of forcings.

3.1.4 From NSD Dynamics to KHMH Dynamics

The scale-by-scale evolution of |δu|2 locally in space and time is governed by a KHMH
equation. This makes KHMH equations crucial tools for examining the turbulent energy
cascade (see e.g. Marati et al. (2004); Thiesset et al. (2014); Cimarelli et al. (2016)). The
original KHMH equation and the new solenoidal and irrotational KHMH equations that
we derive below are simply projections of the corresponding NSD equations onto 2δu (see
appendix A for a detailed derivation of the KHMH equation). Hence, KHMH dynamics
depend on NSD dynamics and the various NSD terms’ alignment or non-alignment ten-
dencies with 2δu. In this subsection we present four KHMH results all clearly demarcated
and identified in italics.

By contracting the NSD equation (3.7) with 2δu, one obtains the KHMH equation
(Hill, 2002; Yasuda and Vassilicos, 2018):

∂

∂t
|δu|2 + u+k + u−k

2

∂

∂xk
|δu|2 + ∂

∂rk

(︁
δuk|δu|2

)︁
= −2

ρ

∂

∂xk

(︁
δukδp

)︁
+ 2ν

∂2

∂r2k
|δu|2

+
ν

2

∂2

∂x2k
|δu|2 −

[︃
2ν

(︁∂u+i
∂x+k

)︁2
+ 2ν

(︁∂u−i
∂x−k

)︁2]︃
+ 2δukδfk, (3.19)

where no fluid velocity decomposition nor averaging operations have been used. In line
with the interpretation and naming convention of Yasuda and Vassilicos (2018), we asso-
ciate the various terms with the following physical processes:

At(x, r, t) ≡ ∂/∂t(|δu|2) is the time-derivative term; (3.20a)

T (x, r, t) ≡ ∂/∂xk((u
+
k + u−k )|δu|2/2) is the turbulent transport term; (3.20b)

Π (x, r, t) ≡ ∂/∂rk(δuk|δu|2) is the interscale energy transfer term; (3.20c)

Tp(x, r, t) ≡ −(2/ρ)∂/∂xk(δukδp) is the pressure-velocity term; (3.20d)

Dr,ν(x, r, t) ≡ 2ν∂2/∂r2k(|δu|2) is the viscous diffusion in r-space; (3.20e)

Dx,ν(x, r, t) ≡ ν∂2/∂x2k(|δu|2/2) is the viscous diffusion in x-space; (3.20f)

I(x, r, t) ≡ 2δukδfk is the energy input rate; (3.20g)

ϵ∗(x, r, t) ≡ 2ν[(∂u+j /∂x
+
k ))

2 + (∂u−j /∂x
−
k ))

2] (3.20h)

is two times the sum of the pseudo-dissipation at x+ and x−.
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With this notation (3.19) can be written

At + T + Π = Tp +Dr,ν +Dx,ν − ϵ∗ + I. (3.21)

Preempting notation used further down in this chapter, Ac ≡ T +Π and D ≡ Dr,ν+Dx,ν−
ϵ∗ (see also table A.1 at the end of appendix A with a summary of the NS/NSD/KHMH
notation sorted according to physical mechanism).

To examine the KHMH dynamics in terms of irrotational and solenoidal dynamics
we contract the irrotational and solenoidal NSD equations with 2δu to derive what we
refer to as irrotational and solenoidal KHMH equations. Each of the KHMH terms can
be subdivided into a contribution from the NSD irrotational part and a contribution
from the NSD solenoidal part of the respective term in the NSD equation. A solenoidal
KHMH term corresponding to a δq(x, r, t) or q(x, r, t) term in equation (3.16b) equals
QS = 2δu · δqS or QS = 2δu · qS, and an irrotational KHMH term corresponding to a
δq(x, r, t) or q(x, r, t) term in equation (3.17) equals QI = 2δu · δqI or QI = 2δu · qI .
With Q = 2δu ·δq or Q = 2δu ·q, we have Q = QI +QS. The irrotational and solenoidal
KHMH equations for periodic/homogeneous turbulence follow from contracting equations
(3.16b) and (3.17) with 2δu and read

At + TS + ΠS = Dr,ν +Dx,ν − ϵ∗ + I, (3.22a)

ΠI = TI =
1

2
Tp, (3.22b)

where use has been made of the fact that the velocity and velocity difference fields are
solenoidal. These two equations are our first KHMH result.

Space-local changes in time of |δu|2, expressed via At, are only due to solenoidal
KHMH dynamics in equation (3.22a) which include interspace transport, interscale trans-
port, viscous and forcing effects. The irrotational KHMH equation (3.22b) formulates how
the imposition of incompressibility by the pressure field affects interspace and interscale
dynamics. Solenoidal and irrotational KHMH equations valid for arbitrary boundary
conditions are given in section 3.4.

We first consider the spatio-temporal average of these equations in statistically steady
forced periodic/homogeneous turbulence. As ⟨Tp⟩ = 0, we obtain from equation (3.22b),
⟨ΠI⟩ = ⟨TI⟩ = 0. It follows from ⟨TS⟩ + ⟨TI⟩ = ⟨T ⟩ = 0 that ⟨TS⟩ = 0. Finally, as
⟨Dx,ν⟩ = 0, the spatio-temporal average of (3.22a) reads

⟨Π ⟩ = ⟨ΠS⟩ = ⟨Dr,ν⟩ − ⟨ϵ∗⟩+ ⟨I⟩. (3.23)

If an intermediate inertial subrange of scales |r| can be defined where viscous diffusion
and forcing are negligible, equation (3.23) reduces to ⟨ΠS⟩ ≈ −⟨ϵ∗⟩ in that range. This
theoretical conclusion (which is not part of our DNS study) is the backbone of the Kol-
mogorov (1941a,b,c) theory for high Reynolds number statistically homogeneous station-
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ary small-scale turbulence with the additional information that the part of the average
interscale transfer rate involved in Kolmogorov’s equilibrium balance is the solenoidal in-
terscale transfer rate only. This is our second KHMH result. On average, there is a
cascade of kinetic energy from large to small scales where the rate of interscale transfer is
dominated by two-point vortex stretching effects (see section 3.4 for the relation between
aΠS

and vorticity difference dynamics) and is equal to −⟨ϵ∗⟩ independently of |r| over a
range of scales where viscous diffusion and forcing effects are negligible.

In this chapter we concentrate on the fluctuations around the average picture described
by the scale-by-scale equilibrium (3.23) for any Reynolds number. If we subtract the
spatio-temporal average solenoidal KHMH equation (3.23) from the solenoidal KHMH
equation (3.22a) and use the generic notation Q′ ≡ Q − ⟨Q⟩, we attain the fluctuating
solenoidal KHMH equation

At + TS + Π
′

S
= D′

r,ν +Dx,ν − ϵ∗
′
+ I ′

. (3.24)

This equation governs the fluctuations of the KHMH solenoidal dynamics around its
spatio-temporal average. Clearly, if these non-equilibrium fluctuations are large relative to
their average values, the average picture expressed by equation (3.23) is not characteristic
of the interscale transfer dynamics. We now study the KHMH fluctuations in statistically
stationary periodic/homogeneous turbulence on the basis of equations (3.22b) and (3.24).
Concerning equation (3.22b), note that Π

′

I
= ΠI , T

′

I
= TI and T ′

p = Tp.
We start by determining the relative fluctuation magnitudes of the spatio-temporal

fluctuations of each term in the KHMH equations (3.22b) and (3.24). These relative
fluctuation magnitudes can emulate those of respective terms in the NSD equations under
the following sufficient conditions: (i) the fluctuations are so intense that they dwarf
averages, so that ⟨(Q′)2⟩ ≈ ⟨Q2⟩; (ii) the mean square of any KHMH term Q = 2δu · δq
corresponding to a NSD term δq(x, r, t) (equivalently Q = 2δu · q corresponding to
q(x, r, t)) can be approximated as

⟨Q2⟩(r) ≈ 4⟨|δu|2⟩⟨|δq|2⟩⟨cos2(θq)⟩, (3.25)

where the approximate equality results from a degree of decorrelation and θq is the angle
between δq(x, r, t) and δu(x, r, t); (iii) ⟨cos2(θq)⟩ is not very sensitive to the choice of
NSD term δq (or q). For NSD terms δq and δw satisfying these conditions, we get

⟨(2δu · δq)2⟩(r)
⟨(2δu · δw)2⟩(r) ≈ ⟨|δu|2⟩⟨|δq|2⟩⟨cos2(θq)⟩(r)

⟨|δu|2⟩⟨|δw|2⟩⟨cos2(θw)⟩(r)
≈ ⟨|δq|2⟩(r)

⟨|δw|2⟩(r) , (3.26)

which means that KHMH relative fluctuation magnitudes and NSD relative fluctuation
magnitudes are approximately identical. The first approximate equality in (3.26) follows
directly from (3.25) and the second approximate equality follows from hypothesis (iii)
that cos2(θq) and cos2(θw) are about equal.
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Figure 3.9: (a1, b1) KHMH average square magnitudes ⟨Q⟩a and (a2, b2) KHMH average
square fluctuating magnitudes ⟨Q′⟩a, where Q′

= Q − ⟨Q⟩, for the KHMH
terms Q listed above the figures. The following pairs of KHMH terms have
overlapping magnitudes in (a2, b2): (At,AcS), (At+TS,ΠS) and (TI ,ΠI). (a1,
a2) ⟨Reλ⟩t = 112, (b1,b2) ⟨Reλ⟩t = 174.

We test hypothesis (i) by comparing the plots in figure 3.9(a1, b1) with those in figure
3.9(a2, b2). Figure 3.9(a1, b1) shows average magnitudes of KHMH spatio-temporal
fluctuations for terms with non-zero spatio-temporal averages. Comparing with figure
3.9(a2, b2), we find ⟨(Q′)2⟩a ≈ ⟨Q2⟩a, i.e. hypothesis (i), for Ac and ΠS, but not for D.

We test hypothesis (ii) by testing the validity of (3.25) and hypothesis (iii) concerning
approximately similar cos2(θq) behaviour for different KHMH terms. In figure 3.10(a1, b1)
we plot ratios of right-hand sides to left-hand sides of equation (3.25) and see that (3.25)
is not valid, but it is nevertheless about 50% to 98% accurate for rd ≥ ⟨λ⟩t. Note that
(3.25) might be sufficient but that it is by no means necessary for the left-most and the
right-most sides of (3.26) to approximately balance. In those cases where the variations
between the ratios plotted in figure 3.10(a1, b1) are not too large and the assumption of
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Figure 3.10: Test of the assumptions (ii)-(iii) related to relations (3.25)-(3.26) connecting
NSD and KHMH relative magnitudes. (a1,b1) Test of assumption (ii) by
taking the ratio of the left-hand and right-hand sides of (3.25) for the KHMH
terms listed above the figures. (a2,b2) test of assumption (iii) used in (3.26)
by comparing the behaviour of ⟨cos2(θq)⟩a for the NSD terms listed above
the figures. The horizontal line 0.5 corresponds to the value of ⟨cos2(θq)⟩ if
θq is uniformly distributed. (a1, a2) ⟨Reλ⟩t = 112, (b1, b2) ⟨Reλ⟩t = 174.

approximately similar cos2(θq) for different KHMH terms more or less holds, the left-most
and the right-most sides of (3.26) can approximately balance.

Incidentally, figure 3.10(a2, b2) also shows that the angles θq are not random but that
they are more likely to be small rather than large in an approximately similar way for all
important NSD terms: cos2(θq) ranges between about 0.28 and 0.36 for all NSD terms
(except the viscous acceleration difference and the force difference) at all scales rd. These
values are much smaller than 0.5, the value that cos2(θq) would have taken if the angles
θq were random. There is therefore an alignment tendency between δu and NSD terms
which is similar for all the important NSD terms, thereby allowing the balance between
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Figure 3.11: NSD and KHMH relative average square magnitudes (which should be sim-
ilar based on (3.26)) for the terms listed above the figures: (a1) NSD and
(a2) KHMH for ⟨Reλ⟩t = 112, (b1) NSD and (b2) KHMH for ⟨Reλ⟩t = 174.

the left-most (ratio of KHMH terms) and the right-most (ratio of NSD terms) sides of
(3.26) to approximately hold as seen by comparing the plots (a1)-(b1) (mean square NSD
terms) with the plots (a2)-(b2) (mean square KHMH terms) in figure 3.11. Note that the
viscous term is bounded from above, ⟨D2⟩(r) ≤ 4⟨|δu|2|δaν |2⟩, which indicates limited
magnitudes compared to the irrotational and the dominant solenoidal terms because of
the limited magnitude of ⟨δa2

ν⟩. The limited fluctuations of the viscous terms are clearly
seen in figure 3.9 (hypotheses (i)-(iii), and subsequently equation (3.26), hold for the
same KHMH terms with the ABC forcing as with the negative damping forcing, i.e. all
terms except the viscous term D and the forcing term I (not shown)).

Figure 3.11 does confirm the NSD-KHMH correspondence (3.26) which is a step further
from the NS-NSD correspondence reported earlier in this chapter. Consistent with this
NSD-KHMH correspondence (3.26), figure 3.9 makes it clear that the magnitudes of the
fluctuations of all KHMH terms (solenoidal and irrotational) are much higher than those
of the turbulence dissipation at all scales rd > 0.5⟨λ⟩t, and more so for the higher of the
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Figure 3.12: (a) KHMH average square magnitudes ⟨Q2⟩a and (b) KHMH average square
fluctuating magnitudes ⟨(Q′

)2⟩a. In (b) the KHMH pairs (At,AcS), (At +
TS,ΠS) and (TI ,ΠI) have overlapping magnitudes. ⟨Reλ⟩t = 111.

two Reynolds numbers. As these KHMH fluctuations
√︁

⟨(Q′)2⟩a are large relative to their
spatio-temporal averages ⟨Q⟩a, an average description of the KHMH dynamics cannot,
therefore, be accurate locally. Attention must be directed at most if not all KHMH terms
to characterise the local KHMH dynamics at such scales. Figure 3.9 shows that for scales
rd ≥ ⟨λ⟩t, the largest average fluctuating magnitudes are those of A′

c, followed closely
by At and TS. Next come the very similar magnitudes of Π ′

S
and At + TS. Thereafter

follow the irrotational terms ΠI = TI (= 0.5Tp) and finally the viscous, dissipative and
forcing terms D′

, ϵ∗
′ and I ′ in that order. That is, for scales rd ≥ ⟨λ⟩t, consistent with the

NSD-KHMH correspondence (3.26) and the NSD magnitude hierarchy (3.11), we have

⟨A2
t ⟩ ≈ ⟨A2

cS
⟩ ≫ ⟨T 2

p ⟩ = 4⟨Π 2
I
⟩ = 4⟨T 2

I
⟩ = ⟨A2

cI
⟩ ≫ ⟨D2⟩ ≫ ⟨I2⟩. (3.27)

Moreover, figure 3.11 shows for decreasing rd for rd ≥ ⟨λ⟩t that the relative fluctuation
magnitude of AcS = TS + ΠS remains about constant but that of TS increases while
that of ΠS decreases. The convective non-linearity is increasingly of the spatial transport
type and diminishingly of the interscale transfer type as the two-point separation length
decreases. This order of fluctuations is our third KHMH result. (Figure 3.12 reiterates
this hierarchy of KHMH fluctuation magnitudes for the DNS with an ABC forcing.)

These KHMH fluctuations suggest that the solenoidal KHMH equation reduces to:

At + TS + Π
′

S
≈ 0, (3.28)

understood in the sense that it holds in the majority of the domain for the majority of
time. The approximate equation At + TS + Π

′

S
≈ 0 is our fourth KHMH result.

We next consider correlations between different intermediate and large scale fluctuat-
ing KHMH terms in light of their fluctuation magnitudes and equations (3.22b)-(3.28).
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Figure 3.13: Spherically averaged correlation coefficients between KHMH terms listed on
top of (b) and (c) as a function of scale rd. (a) ⟨Reλ⟩t = 111, (b) ⟨Reλ⟩t =
112, (c) ⟨Reλ⟩t = 174.

3.2 Fluctuating KHMH Dynamics

3.2.1 Correlations between Different KHMH Terms

We start this section by assessing the existence/non-existence of local (in space and time)
equilibrium between interscale transfer and dissipation at some intermediate scales. In
figure 3.13 we plot correlations between various KHMH terms. In particular, this figure
shows that the correlation coefficient between Π

′

S
and −ϵ∗′ lies well below 0.2 for all

scales rd ≥ ⟨λ⟩t. The scatter plots of these quantities in figure 3.14 confirm the absence
of a local relation between interscale transfer and dissipation. For example, for a given
local dissipation fluctuation, the corresponding local interscale transfer rate fluctuation
can be close to equally positive or negative. There is no local equilibrium between these
quantities as they fluctuate at scales rd ≥ ⟨λ⟩t. Such a correlation should of course
not necessarily be expected. Our results show that the very weak correlation between
these two quantities at these scales is even lower for the higher ⟨Reλ⟩t. However, as rd
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Figure 3.14: Scatter plots of Π
′

S
and ϵ∗

′ at random orientations r with rd/⟨λ⟩t =
(1.45, 3.1) for (a, b), σΠS

is the standard deviation of ΠS and ⟨Reλ⟩t = 174.

decreases below ⟨λ⟩t, the correlations between Π
′

S
and either −ϵ∗′ or D′ increase up to

values between about 0.3 and about 0.5. This increased correlation may suggest a feeble
tendency towards local equilibrium between interscale transfer rate and dissipation rate
at scales rd < ⟨λ⟩t. However, these scales are strongly affected by direct viscous processes
and can therefore not be inertial range scales.

Following the question of local equilibrium, we now look for local sweeping. Figure
3.13 shows strong anti-correlation between At and TS, increasingly so as rd decreases
from larger to smaller scales. As At + TS +ΠS ≈ 0, this behaviour requires an increasing
magnitude separation between the terms (At, TS) and (At + TS,ΠS) as rd decreases as
observed in the previous section. In other words, the local Eulerian sweeping accelerations
of |δu|2 by the mainly large-scale advection velocity (u+ + u−)/2 become increasingly
strong relative to the local Lagrangian acceleration of |δu|2 moving in the (u+ + u−)/2

frame. This behaviour is clearly analogous to the behaviour pictured by Tennekes (1975).
The scatter plots of At and TS in figure 3.15 make the two-point sweeping tendency with
decreasing rd very evident. As rd decreases, ΠS causes decreasing deviations from two-
point sweeping relative to the (At, TS) magnitudes.

The correlation coefficients in figure 3.13 and scatter plots in figure 3.16 show that it is
only in relatively rare circumstances that At + TS +ΠS ≈ 0 is significantly inaccurate for
scales rd ≥ ⟨λ⟩t. Similarly to NSD dynamics, as more than average |δu|2 is cascaded from
larger to smaller scales at a particular location (Π

′

S
< 0), At + TS increases; and as more

than average |δu|2 is inverse cascaded from smaller to larger scales (Π
′

S
> 0), At + TS

decreases. This behaviour differs from the analogue NS one-point behaviour in Tennekes
(1975) and Tsinober et al. (2001); the Lagrangian two-point accelerations At+TS balance
mainly with solenoidal interscale transfers rather than with viscosity as in the one-point
approximate balance (al +acS ≈ aν). This dual role of non-linearity in terms of physical
and interscale transport is unavailable in a one-point setting. Note that Π

′

S
is to a large

extent determined by aΠS
which, as we show in section 3.4, is a non-local function in
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Figure 3.15: Scatter plots of At and TS at random orientations r normalised by σAt and
σTS , their respective standard deviations. ΠS0.05

is the value of ΠS at the
respective rd for which 5% of the samples are more negative than ΠS0.05

and
ΠS0.95

is the value of ΠS for which 95% of the samples are more positive
than ΠS0.95

. The events ΠS < ΠS0.05
and ΠS > ΠS0.95

are marked in red and
green respectively, while the remaining events are marked in blue. The red
line marks At = −TS − ⟨ΠS|ΠS < ΠS0.05

⟩, where ⟨ΠS|ΠS < ΠS0.05
⟩ is the

average value of ΠS conditioned on ΠS < ΠS0.05
. The green line marks At =

−TS − ⟨ΠS|ΠS > ΠS0.95
⟩ and the blue line marks At = −TS (with all terms

appropriately normalised with σAt and σTS). rd/⟨λ⟩t = (0.12, 1.45, 3.1, 5.2)
for (a, b, c, d) and ⟨Reλ⟩t = 174.

space of the vortex stretching/compression and tilting dynamics determining the two-
point vorticity difference δω evolution (see the similar KHMH correlation coefficients
with the ABC forcing in figure 3.13(a)).

A fairly complete way to summarise the balance At + TS +ΠS ≈ 0 at scales rd ≥ ⟨λ⟩t
is by noting that as rd decreases two-point sweeping makes the fluctuation magnitudes
of TS tend to become comparable to those of At (i.e. local Eulerian accelerations) while
those of At+TS (i.e. local Lagrangian accelerations) decrease by comparison. As viscous
effects are negligible at most locations at most times, At + TS ≈ −ΠS is accurate with
the interscale transfer rate (arising from the vortex stretching/compression dynamics of
its spatial vicinity), making |δu|2 evolve in the frame moving with larger scales.
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Figure 3.16: Scatter plots of At + TS and Π
′

S
at random orientations r. The residual

−b ≡ At + TS +Π
′

S
and the values b0.05 and b0.95 are defined analogously as

for ΠS0.05
and ΠS0.95

in the previous figure. The events b < b0.05 and b > b0.95
are marked in red and green respectively, while the remaining events are
marked in blue. The red line marks At+TS = −Π

′

S
−⟨b|b < b0.05⟩, the green

line At + TS = −Π
′

S
− ⟨b|b > b0.95⟩ and the blue line At + TS = −Π

′

S
(with

all terms appropriately normalised with σΠS
). rd/⟨λ⟩t = (0.12, 1.45, 3.1, 5.2)

for (a, b, c, d) and ⟨Reλ⟩t = 174.

3.2.2 Conditional KHMH Statistics

At scales rd below ⟨λ⟩t, the relation At + TS + ΠS ≈ 0 becomes less accurate as the
correlation coefficient between At + TS and −ΠS drops from 0.95 to 0.7 with decreasing
rd (see figure 3.13), reflecting the increase of correlation between ϵ∗ and −ΠS and the
even higher increase towards values close to 0.5 of the correlation coefficient between
D and ΠS. This increase of correlation appears to reflect the impact of relatively rare
yet intense local/instantaneous occurrences of interscale transfer rate as shown in figure
3.17 where we plot correlations conditional on relatively rare interscale events where the
magnitudes of the spherically averaged interscale transfer rates are higher than 95% of all
interscale transfer rates of the same sign (positive for backward and negative for forward
transfer) in our overall spatio-temporal sample. This impact is highest at scales smaller
than ⟨λ⟩t where the correlation coefficient conditioned on intense forward or backward
interscale transfer rate events of ±ΠS and either ϵ∗ or D can be as high as 0.7 (+ΠS in the



3. INTERSCALE AND INTERSPACE ENERGY TRANSFER DYNAMICS IN
HOMOGENEOUS TURBULENCE 71

0 1 2 3

rd/〈λ〉t

−0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

co
rr
(Q

a 1
,Q

a 2
|Π

a S
>

Π
a S
0
.9

5
)

(At + TS,−ΠS)
(At + TS ,D)

(At + TS ,−ǫ∗)
(−ΠS ,D)

(ΠS , ǫ∗)
(At,−TS)

(a)

0 1 2 3

rd/〈λ〉t

−0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

co
rr
(Q

a 1
,Q

a 2
|Π

a S
<

Π
a S
0
.0

5
)

(At + TS,−ΠS)
(At + TS ,D)

(At + TS ,−ǫ∗)
(ΠS ,D)

(ΠS ,−ǫ∗)
(At,−TS)

(b)

Figure 3.17: (a) KHMH correlation coefficients among the 5% strongest spherically av-
eraged backward interscale transfer events Π a

S
> Π a

S0.95
. (b) KHMH cor-

relation coefficients among the 5% strongest spherically averaged forward
interscale transfer events Π a

S
< Π a

S0.05
. ⟨Reλ⟩t = 112 (corresponding plots

for ⟨Reλ⟩t = 174 are omitted because they are very similar).

case of backward events and −ΠS in the case of forward events which causes significantly
higher correlations between At + TS and either −ϵ∗ or D in the case of backward events
than in the case of forward events as seen in figure 3.17). However, the impact of such
relatively rare events is also manifest at scales larger than ⟨λ⟩t (see figure 3.17) where the
conditioned correlation coefficient is significantly higher than the unconditioned one in
figure 3.13. Interestingly, conditioning on these relatively rare events does not change the
correlation coefficients of At + TS with −Π

′

S
except at scales rd smaller than ⟨λ⟩t where,

consistently with the increased conditioned correlations between −ΠS and D, they are
smaller than the unconditional correlation correlation coefficients of At + TS with −Π

′

S
,

particularly at relatively rare forward interscale events where this conditional correlation
drops to values close to 0.3 at scales well below ⟨λ⟩t.

Given our relatively rare intense interscale transfer rates can be the seat of some
correlation between ΠS and either −ϵ∗ or D particularly for rd < ⟨λ⟩t , and given that
At+TS ≈ 0 is a good approximation at scales smaller than ⟨λ⟩t, do we have approximate
two-point sweeping and approximate equilibrium ΠS ≈ D if we condition on relatively rare
forward or backward interscale transfer rate events? In fact the conditional correlations
between At and −TS are very high (close to and above 0.95) at all scales (see figure
3.17), higher than the corresponding unconditional correlations. However, the conditional
averages of At and −TS shown in figure 3.18 are also significantly different at all scales,
implying that these strong conditional correlations do not actually amount to two-point
sweeping at relatively rare forward and backward events. Furthermore, if we condition on
high negative/positive values of ΠS, the averages of both At and TS are positive/negative
(figure 3.18), even though these conditional averages do tend to 0 as rd tends to 0.
This implies that, even though At and −TS are very well correlated at these relatively
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Figure 3.18: (a) Spatio-temporal averages of KHMH terms Qa conditioned on the 5%
strongest spherically averaged backward (a) and forward (b) interscale trans-
fer events. ⟨Reλ⟩t = 112 (corresponding plots for ⟨Reλ⟩t = 174 are omitted
because they are very similar).

rare events, At + TS fluctuates around a constant C where C > 0 if we condition the
fluctuations on relatively rare negative ΠS but C < 0 if we condition them on relatively
rare positive ΠS (C = 0 if we do not condition). This amounts to a systematic deviation
on average from two-point sweeping even though the strong correlation between the high
magnitude fluctuations of At and −TS points at a tendency towards sweeping which is
frustrated by the presence of the comparatively low non-zero local ΠS. Given equation
(3.24), the presence of this non-zero constant C (clearly non-zero for all scales, and non-
zero but tending towards zero as rd tends to 0 well below ⟨λ⟩t) means that the equilibrium
ΠS ≈ D for scales smaller than ⟨λ⟩t seems to not hold either, even at scales smaller than
⟨λ⟩t where the conditional correlation between ΠS and D is significant. In fact, figure
3.18 shows that the conditional averages of Π ′

S
are much larger than those of both D′ and

−ϵ∗′ ; they are much closer to those of At+TS. Viscous effects D or ϵ∗ are more important
locally at intense interscale transfers than at average interscale transfer events, but this
does not entail negligible Lagrangian transport At + TS. We provide a more in-depth
characterisation of the KHMH dynamics at dissipative scales in the next chapter with
KHMH analysis of our well-resolved DNS (DNS1).

In conclusion, −ΠS balances primarily with At + TS, in particular at scales larger
than ⟨λ⟩t. At scales rd ≤ ⟨λ⟩t viscous effects D become increasingly important in the
fluctuating dynamics with decreasing rd. At all scales the viscous effects D are more
important at relatively rare intense interscale transfer events than at average interscale
transfer events, but Lagrangian transport At+TS is always non-negligible in the dynamics
with no local equilibrium between ΠS and D in our DNS2-DNS3-DNS4.
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3.3 Homogeneity and Inhomogeneity Contributions to

Interscale Transfers

The decomposition Π = ΠI + ΠS helped us distinguish between the solenoidal vortex
stretching/tilting and the pressure-related aspects of the interscale transfer. As recently
shown by Alves Portela et al. (2020), the interscale transfer rate Π can also be decomposed
in a way which brings out the fact that it has a direct inhomogeneity contribution to it.
We next examine the decomposition introduced by Alves Portela et al. (2020) which is
Π = ΠI + ΠH where

ΠI =
1

2
δui

∂

∂xi
(u+k u

+
k − u−k u

−
k ), (3.29a)

ΠH = −2δui
∂

∂ri
(u−k u

+
k ). (3.29b)

ΠI can be locally/instantaneously non-zero only in the presence of a local/instantaneous
inhomogeneity. However, it averages to zero, i.e. ⟨ΠI⟩ = 0, in homogeneous turbulence.

An equivalent expression for ΠI immediately reveals where the decomposition Π =

ΠI + ΠH comes from: ΠI = δui∂/∂ri(u
+
k u

+
k + u−k u

−
k ). Given that the total interscale

transfer rate is Π = δui∂/∂ri(δukδuk), the ΠI part of the interscale transfer concerns
the transferred energy differences coming mostly from differences between velocity am-
plitudes, i.e. local/instantaneous inhomogeneities of “turbulence intensity” in the flow;
the ΠH part of the interscale transfer concerns transferred energy differences coming
mostly from differences between velocity orientations. Consistently with its link to lo-
cal/instantaneous non-homogeneity, ΠI can be written in the form (3.29a) making it clear
that ΠI is zero only where and when fluctuating velocity magnitudes are locally uniform.

In comparing the decompositions Π = ΠS +ΠI and Π = ΠI +ΠH , it is worth noting
that ΠI = ΠII

given that ΠIS
= 0 from its centroid gradient form (see equation (3.29a)

and the second paragraph of appendix B). It therefore follows that

ΠS = ΠHS
, (3.30a)

ΠI = ΠI + ΠHI
. (3.30b)

The inhomogeneity-based interscale transfer rate influences only the irrotational part of
the total interscale transfer rate whereas ΠH influences both the irrotational and the
solenoidal parts. As ⟨ΠI⟩ = 0 and ⟨ΠI⟩ = 0, it follows that ⟨ΠHI

⟩ = 0. More to the point,
⟨ΠS⟩ equals ⟨ΠHS

⟩ and so equation (3.23) can be written as

⟨Π ⟩ = ⟨ΠHS
⟩ = ⟨Dr,ν⟩ − ⟨ϵ∗⟩+ ⟨I⟩. (3.31)

The part of Π present in the average interscale transfer/cascade dynamics is ΠS = ΠHS
.

Given that the average interscale transfer is controlled by ΠHS
= ΠS, it is worth
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Figure 3.19: (a, b, c, d, e, f) PDFs of spherically averaged Π decompositions
(Π a,Π a

HI
,Π a

S
,Π a

I
,Π a

H ,Π
a
I ) at ⟨Reλ⟩t = 112. σΠ a is the standard de-

viation of Π a and Pmax is the maximum value of the PDF of Π a.

asking whether the well-known negative skewness of the PDF of Π a (e.g. see Yasuda and
Vassilicos (2018) and references therein) is also present in the PDF of Π a

S
or/and whether

it is spread across different terms of our two interscale transfer rate decompositions. In
figure 3.19 we plot the PDFs of Π a and of the different r-orientation-averaged terms in
the decompositions of Π that we use. It is clear that the PDFs of Π and ΠS are nearly
identical whilst the PDFs of ΠH are different though also negatively skewed. The PDFs
of ΠHI

, ΠI and ΠI are not significantly skewed. In figure 3.20 we plot the skewness
factors of the various interscale transfer terms as well as some other KHMH terms. The
inhomogeneity interscale transfer ΠI has close to zero skewness across scales. Both ΠS

and ΠH are negatively skewed, the former more so than the latter. Given equations
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Figure 3.20: Skewness factors for KHMH terms Q. (a, b, c) ⟨Reλ⟩t = (111, 112, 174).

(3.30a)-(3.30b) and ΠH = ΠS + ΠHI
, this difference in skewness factors is due to the

irrotational part of ΠH which is not significantly skewed and reduces the skewness of
ΠH relative to that of ΠS. All in all, the skewness towards forward rather than inverse
interscale transfers is present in its homogeneous and solenoidal components but is absent
in its non-homogeneous and irrotational parts.

Figure 3.20 also shows that At+TS is slightly positively skewed with skewness factors
of approximately 0.5 at scales rd ≥ ⟨λ⟩t and close to 0 or below at scales below ⟨λ⟩t. The
skewness factor of −ΠS with which At + TS is very well correlated (as we have seen in
the previous section) is about the same at scales close to the integral scale but steadily
increases to values well above 0.5 as rd decreases, reaching nearly 6.0 at scales close to
0.5⟨λ⟩t. This is a concrete illustration of the fact already mentioned earlier in this chapter
that At + TS ≈ −ΠS is a very good approximation for most locations and most times
but not all. Given the very significantly increased correlation/anti-correlation of ΠS with
both D and ϵ∗ at relatively intense forward/inverse interscale transfer events and with
decreasing scale rd, it is natural to expect the skewness factor of ΠS to veer towards the
skewness factors of D and −ϵ∗ which, as can be seen in figure 3.20, are highly negative
with values between −3.0 and −7.0. Note the very similar skewness behaviour with the
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Figure 3.21: Correlation coefficients between various Π decompositions at ⟨Reλ⟩t = 112
(corresponding plots for ⟨Reλ⟩t = 174 are omitted because they are very
similar).

ABC forcing and with the negative damping forcing.
We now consider the local/instantaneous relations between the various interscale

transfer terms in terms of correlation coefficients plotted in figure 3.21(a). First, note
the very strong correlation between Π and ΠS and the moderate correlation between Π

and ΠI . There is no correlation between ΠS and ΠI (see figure 3.21(b)), and so Π corre-
lates with both ΠS (strongly) and ΠI (moderately) for different uncorrelated reasons. Π
feels the influence of solenoidal vortex stretching/compression via ΠS and the influence
of pressure fluctuations via ΠI , the former influencing Π more than the latter. Figure
3.21(a) also shows significantly smaller correlations between Π and ΠH than between Π

and ΠS. This must be due to a decorrelating effect of ΠHI
as ΠH = ΠS + ΠHI

. The
correlations between Π and ΠI are even smaller at the smaller scales but at integral size
scales these correlations are equal to those between Π and ΠH (figure 3.21(a)).

Figure 3.21(b) reveals a strong anti-correlation between ΠI and ΠH at the small scales
and a weak one at the large scales. As the scales decrease, the interscale transfers of
fluctuating velocity differences caused by local/instantaneous non-homogeneities and the
interscale transfers of fluctuating velocity differences caused by orientation differences get
progressively more anti-correlated. This anti-correlation tendency results in ΠH and ΠI

having larger fluctuation magnitudes than Π at smaller scales, in particular scales smaller
than ⟨λ⟩t (verified with our DNS data but not shown here for economy of space).

The other significant correlations revealed in figure 3.21(b) are those between ΠH and
ΠS and those between ΠI and ΠS, particularly as rd increases from around/below ⟨λ⟩t to
the integral length scale. These correlations relate to the very strong correlations between
Π and ΠS but are weaker. One can imagine that ΠS correlates with ΠH sometimes and
with ΠI some other times, but not too often with both given that ΠI and ΠH tend to
be anti-correlated, and that this happens in a way subjected to a continuously strong
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Figure 3.22: Average values of Π decompositions conditioned on (a) intense backward
events, (b) intense forward events at ⟨Reλ⟩t = 112 (corresponding plots for
⟨Reλ⟩t = 174 are omitted because they are very similar).

correlation between Π = ΠH + ΠI and ΠS.
We finally consider in figure 3.22 the average values of the various Π -decompositions

conditional on relatively rare intense Π -events. We calculate averages conditioned on 5%

most negative (forward transfer) Π events (values of Π for which the probability that Π
is smaller than a negative value Π0.05 is 0.05) and on 5% most positive Π (inverse transfer)
events (values of Π for which the probability that Π is larger than a positive value Π0.95

is also 0.05). All these averages tend to 0 as rd tends to 0 below ⟨λ⟩t. The largest such
conditional averages are those of Π ′ followed by those of Π ′

S
. The weakest such conditional

averages are those of ΠI for all rd at both forward and inverse intense interscale transfer
events. This is consistent with our observation in section 3.1.4 that the unconditional
fluctuation magnitude of ΠI is smaller than the unconditional fluctuation magnitudes of
Π followed by those of ΠS. Figure 3.22 also shows a clear difference between conditional
averages of Π ′

H and ΠI when conditioned on intense forward or intense inverse interscale
transfer events. Whilst the conditional averages of these two quantities are similar at
intense inverse events, they differ substantially at forward transfer events where −Π

′
H is

substantially higher than −ΠI except close to the integral length scale. This behaviour,
and the more intense forward rather than backward Π and ΠS events, are consistent with
the negative skewness of ΠH , ΠS and Π and the non-skewed ΠI .

3.4 General Irrotational and Solenoidal KHMH

Equations

We end this chapter by generalising the irrotational and solenoidal KHMH equations
(3.22a)-(3.22b) to incompressible Newtonian flows with very general boundary conditions
(Sprössig, 2010). Consider the twice continuously differentiable vector field q(x, t) defined
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on a domain V ⊆ R3 with the bounding surface S. This field can be uniquely decomposed
into the irrotational and solenoidal vector fields

q(x, t) = qI(x, t) + qS(x, t) = −∇xϕ(x, t) +∇x ×B(x, t), (3.32)

The solution to this problem is qI = qIV +qIB and qS = qSV +qSB, where the solenoidal
and irrotational volume and boundary terms are given as (Sprössig, 2010)

qIV (x, t) =
1

4π

∫︂
V

dy
x− y

|x− y|3 [∇y · q(y, t)], (3.33a)

qIB(x, t) = − 1

4π

∫︂
S

dSy
x− y

|x− y|3 [ˆ︁ny · q(y, t)], (3.33b)

qSV (x, t) = − 1

4π

∫︂
V

dy
x− y

|x− y|3 × [∇y × q(y, t)], (3.33c)

qSB(x, t) =
1

4π

∫︂
S

dSy
x− y

|x− y|3 × [ˆ︁ny × q(y, t)]. (3.33d)

Consider an incompressible fluid that satisfies the incompressible vorticity equation

∇y ×
(︁∂u
∂t

+ u · ∇yu− ν∇2
yu− f

)︁
= 0. (3.34)

By comparing this equation with (3.33c), it is clear that the vorticity equation can be
used to derive an evolution equation for the solenoidal volume parts of the NS terms. We
can apply the following operator to this equation

− 1

4π

∫︂
V

dy
x− y

|x− y|3 ×
[︂
∇y ×

(︁∂u
∂t

+ (u · ∇y)u− ν∇2
yu− f

)︁]︂
= 0, (3.35)

and use (3.33c) to rewrite this equation as

(
∂u

∂t
)SV + (u · ∇xu)SV = (ν∇2

xu)SV + fSV . (3.36)

We can in a similar manner obtain the evolution equation for the irrotational volume NS
terms from the Poisson equation for pressure

1

4π

∫︂
V

dy
x− y

|x− y|3
[︂
∇y ·

(︁
u · ∇yu+

1

ρ
∇yp− f

)︁]︂
= 0, (3.37)

which yields

(u · ∇xu)IV = (−1

ρ
∇xp)IV + fIV . (3.38)

The equations (3.36) and (3.38) state that in all incompressible turbulent flows the sole-
noidal accelerations from volume contributions balance with solenoidal forces from volume
contributions and irrotational accelerations from volume contributions balance with ir-
rotational forces from volume contributions. The former can be viewed as an integrated
vorticity equation which dictates a part of the solenoidal NS dynamics, while the latter
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equation as an integrated pressure Poisson equation which dictates a part of the irrota-
tional NS dynamics. Due to the non-local character of the solenoidal and irrotational
volume terms, we reformulate these equations in terms of full NS term minus bound-
ary terms. E.g., for the time-derivative (∂u/∂t)SV = ∂u/∂t − (∂u/∂t)IB − (∂u/∂t)SB.
The irrotational volume component (see (3.33a)) involves an integral of the divergence of
the respective term (∇y · q(y)). Thus, due to incompressibility, the time derivative and
viscous terms have zero volume irrotational components, (∂u/∂t)IV = (ν∇2

xu)IV = 0.
The solenoidal volume component (see (3.33c)) involves an integral of the curl of the
respective term, and as the curl of the pressure gradient equals zero, this term will have a
zero solenoidal volume component, (−1/ρ∇xp)SV = 0. We rewrite the solenoidal volume
terms in equation (3.36) with combinations of full terms and boundary terms to obtain

∂u

∂t
+ ((u · ∇x)u)S = ν∇2

xu+ fS+

(
∂u

∂t
)IB − (ν∇2

xu)IB + (
∂u

∂t
)SB + ((u · ∇x)u)SB − (ν∇2

xu)SB − fSB , (3.39)

where the sum of the four rightmost terms on the RHS equals (−1/ρ∇xp)SB as the NS
equations are satisfied at the boundary. By using this simplification and writing out all
the boundary terms, we arrive at

∂u

∂t
+ ((u · ∇x)u)S = ν∇2

xu+ fS

− 1

4π

∫︂
S

dSy
x− y

|x− y|3 [ˆ︁ny · (∂u
∂t

− ν∇2
yu)]−

1

4π

∫︂
S

dSy
x− y

|x− y|3 × [ˆ︁ny ×∇y
1

ρ
p]. (3.40)

By rewriting the irrotational volume components in equation (3.38) in terms of the full
terms and the boundary terms, we have

((u · ∇x)u)I = −1

ρ
∇xp+ fI + ((u · ∇x)u)IB − (−1

ρ
∇xp)IB − fIB − (−1

ρ
∇xp)SB, (3.41)

where the sum of the irrotational boundary terms equals −(∂u/∂t)IB +(ν∇2
xu)IB by the

NS equations at the boundary. If we use this relation and write out all boundary terms,
we arrive at

((u · ∇x)u)I = −1

ρ
∇xp+ fI

+
1

4π

∫︂
S

dSy
x− y

|x− y|3 [ˆ︁ny · (∂u
∂t

− ν∇2
yu)] +

1

4π

∫︂
S

dSy
x− y

|x− y|3 × [ˆ︁ny ×∇y
1

ρ
p]. (3.42)

The equations (3.40) and (3.42) are generalisations of the equations (3.3a)-(3.3b) for
homogeneous turbulence and these equations are valid in all incompressible flows. The
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difference to homogeneous turbulence is the collection of boundary terms

R(x, t) ≡ 1

4π

∫︂
S

dSy
x− y

|x− y|3 [ny · (∂u
∂t

− ν∇2
yu)] +

1

4π

∫︂
S

dSy
x− y

|x− y|3 × [ny ×∇y
1

ρ
p],

(3.43a)

= −(al)IB + (aν)IB − (ap)SB. (3.43b)

We use this notation to express the general irrotational and solenoidal NS equations as

∂u

∂t
+ ((u · ∇x)u)S = ν∇2

xu+ fS −R(x, t), (3.44a)

((u · ∇x)u)I = −1

ρ
∇xp+ fI +R(x, t). (3.44b)

In homogeneous turbulence all the boundary terms in R(x, t) equal zero individually
(see the second paragraph of appendix B), such that we recover equations (3.3a)-(3.3b).
In general, the boundary terms will be non-zero and differ in different flows; e.g. at a solid
wall the boundary term from the time-derivative will vanish because of no-slip and the NS
equations at the wall can be used to rewrite the boundary terms as a non-local function of
the pressure gradient only. Note that the above procedure, at least partially, separates the
NS dynamics into solenoidal and irrotational dynamics. This differs from other studies
which have used the Helmholtz decomposition to study the effect of the solenoidal and
irrotational parts of a given field in the full NS equations (e.g. the Reynolds stresses (Wu
et al., 1996; Perot and Moin, 1996) or the convective acceleration from the fluctuating
velocity field (Rosenberg and McKeon, 2019)).

The NSD irrotational and solenoidal equations in general turbulent flows are obtained
by subtracting the solenoidal and irrotational NS equations (3.44a)-(3.44b) at x − r/2

from the same equations at x+ r/2 to give

∂δu

∂t
+ δacS = δaν + δfS − δR, (3.45a)

δacI = −1

ρ
∇xδp+ δfI + δR. (3.45b)

The rephrasing of the irrotational and solenoidal NSD equations in terms of the interscale
and interspace transport terms can also be performed for non-homogeneous turbulence.
We derive the centroid irrotational and solenoidal NSD equations similarly as for the
NS irrotational and solenoidal equations by starting with the NSD equation (3.7). This
yields the equations

δal + aTS + aΠS
= δaν + δfS −R, (3.46a)

aTI + aΠI
= δap + δfI +R, (3.46b)
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Figure 3.23: Average magnitudes of aΠSB
relative to the average magnitudes of aΠS

as a function of d: the Euclidian distance from the sampling location to
the closest boundary. The legends denote rd/⟨λ⟩t. (a) ⟨Reλ⟩t = 112, (b)
⟨Reλ⟩t = 174.

where

R(x, r, t) ≡ 1

4π

∫︂
S

dSy
x− y

|x− y|3 [ˆ︁ny · (δal − δaν)]−
1

4π

∫︂
S

dSy
x− y

|x− y|3 × [ˆ︁ny × δap],

(3.47a)

= −(δal)IB + (δaν)IB − (δap)SB. (3.47b)

These boundary terms are individually equal to zero in homogeneous turbulence for
the analogue reasons as in the NS dynamics. Regarding the irrotational dynamics, in
general, aTI ̸= aΠI

, but the irrotational volume terms are always equal, (aT )IV = (aΠ )IV
from equation (3.33a) and

∇x · aΠ = ∇x · aT =
1

2

(︁∂u+k
∂x+i

∂u+i
∂x+k

− ∂u−k
∂x−i

∂u−i
∂x−k

)︁
. (3.48)

The solenoidal interscale transfer term aΠS
can be written as

aΠS
(x, r, t) = − 1

4π

∫︂
V

dy
x− y

|x− y|3 × [∇y × aΠ (y, r, t)]+

1

4π

∫︂
S

dSy
x− y

|x− y|3 × [ˆ︁ny × aΠ (y, r, t)], (3.49)

where the surface integral is of smaller order of magnitude than the volume integral away
from boundaries and increasingly so with increasing ⟨Reλ⟩t in our DNSs (see figure 3.23).
Hence, for an interpretation of aΠS

, we consider aΠS
≈ aΠSV

with

(∇x×aΠ )i = δuk
∂δωi

∂rk
− δωk

2

s+ij + s−ij
2

− ω+
k + ω−

k

4
δsij+

ϵijk
2

[
∂u+l
∂x+j

∂u−k
∂x−l

− ∂u−l
∂x−j

∂u+k
∂x+l

], (3.50)
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where sij is the strain-rate tensor and ϵijk is the Levi-Civita tensor. This set of terms
constitutes a part of the non-linear term in the evolution equation for the vorticity differ-
ence δω(x, r, t), i.e. vorticity at scales |r| and smaller, as ∇x × δac = ∇x × (aΠ + aT ).
If one contracts (3.50) with 2δω, the RHS corresponds to non-linear terms which de-
termine the evolution of the enstrophy |δω|2 at scales smaller or comparable to |r| (see
Baj et al. (2022) for an investigation of the local |δω|2 dynamics in homogeneous turbu-
lence). We interpret the first term on the RHS in (3.50) as vorticity interscale transfer.
By the connection to |δω|2, we interpret the second and third terms as related to en-
strophy production/destruction and vortex tilting (Tsinober, 2009) at scales smaller or
comparable to |r| due to interactions between the vorticity and strain fields. These three
terms justify the interpretation of aΠS

being related non-locally in space to the vortex
stretching/compression and tilting dynamics of its spatial vicinity. The last term in (3.50)
appears in ∇x × aTSV

with a negative sign such that these terms cancel.
The exact solenoidal and irrotational KHMH equations follow from contracting equa-

tions (3.46a)-(3.46b) with 2δu

At + TS + ΠS = Dr,ν +Dx,ν − ϵ∗ + IS − 2δu ·R, (3.51a)

TI + ΠI = Tp + II + 2δu ·R, (3.51b)

and TIV = ΠIV . This shows that the solenoidal and irrotational KHMH equations can
be extended to non-homogeneous turbulence. In contrast to homogeneous turbulence, in
general boundary terms couple the irrotational and solenoidal dynamics.

In the case of negligible boundary terms 2δu ·R, TIB and ΠIB and solenoidal forcing
II = 0, we recover from (3.51) the solenoidal and irrotational KHMH equations in ho-
mogeneous turbulence (3.22). This would be very important in a practical sense as this
would allow us to calculate the irrotational terms from TI = ΠI = Tp/2 and subsequently
the solenoidal terms from

TS = T − TI , (3.52a)

ΠS = Π − ΠI . (3.52b)

Hence, in this case we would only require the pressure, forcing and velocity fields to cal-
culate all the KHMH terms efficiently. This "indirect" evaluation of the irrotational and
solenoidal terms contrasts with the computationally expensive evaluation of the integrals
(3.33) for non-homogeneous turbulence and the pseudospectral method for homogeneous
turbulence. We can use this indirect method in homogeneous turbulence whenever II = 0

as the above boundary terms equal zero. For non-homogeneous turbulence, we also need
to assess that the boundary terms 2δu ·R, TIB and ΠIB are negligible. Note that this as-
sessment requires the evaluation of surface integrals rather than the more computationally
expensive evaluation of volume integrals.

In this chapter we used the direct evaluation of the centroid Helmholtz-decomposed
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NSD and KHMH terms as described in section 3.1.3 for all but one statistic. We used the
above indirect method to obtain sufficient samples to converge the skewness factors of
the centroid Helmholtz-decomposed terms in figure 3.20. We checked that the direct and
indirect evaluation methods yield identical results for lower-order statistics (i.e. average
KHMH magnitudes and correlation coefficients).

3.5 Summary

The balance between space-time-averaged interscale energy transfer rate on the one hand
and space-time-averaged viscous diffusion, turbulence dissipation rate and power input
on the other does not represent in any way the actual energy transfer dynamics in sta-
tistically stationary homogeneous/periodic turbulence. In this chapter we have studied
the fluctuations of one-point and two-point acceleration terms in the NS and NSD equa-
tions and their relation to the various terms of the KHMH equation and we now give a
summary of the results.

The various corresponding terms in the NS and NSD equations behave similarly rel-
ative to each other at scales similar and larger than ⟨λ⟩t because of negligible effects
of two-point acceleration alignments. The corresponding terms in the NSD and KHMH
equations behave similarly relative to each other because the two-point velocity difference
has a similar tendency of alignment with each one of the terms of the NSD equation.

The terms in the solenoidal KHMH equation which fluctuate with the highest magni-
tudes are the local (Eulerian) unsteadiness term At and the solenoidal interspace transfer
rate TS. The fluctuation intensity of the Lagrangian transport At+TS is much reduced by
comparison to both these terms as a consequence of two-point sweeping (and increasingly
so as the scale decreases) and is comparable to the fluctuation intensity of the solenoidal
interscale transfer rate ΠS. In fact, for scales larger than ⟨λ⟩t, the relation

At + TS + Π
′

S
≈ 0, (3.53)

is a good approximation for most times and most locations in the flow. At + TS can
be viewed as a Lagrangian time rate of change of |δu|2 moving with (u+ + u−)/2. As
more than average |δu|2 is cascaded from larger to smaller scales at a particular location
(Π

′

S
< 0), At+TS and |δu|2 increases; and as more than average |δu|2 is inverse cascaded

from smaller to larger scales (Π
′

S
> 0), At + TS and |δu|2 decreases.

The solenoidal interscale transfer rate is negligibly correlated with viscous diffusion
and/or turbulence dissipation at scales larger than ⟨λ⟩t and rather weakly correlated at
scales smaller than ⟨λ⟩t. Its fluctuation magnitude is also significantly larger than that
of D, −ϵ∗ and I at all scales. That is, the solenoidal interscale transfer rate fluctuates
almost exclusively with At+TS with which it is extremely well correlated at length scales
larger than ⟨λ⟩t and very significantly correlated at length scales smaller than ⟨λ⟩t. The
relatively rare space-time events which do not comply with (3.53) with non-negligible



84 3.5. SUMMARY

viscous effects are responsible for the different skewness factors of At+ TS (small, mostly
positive, skewness factor) and of Π ′

S
(negative skewness factor, increasingly large negative

values with decreasing scale). Among these rare events, there is no local equilibrium
between interscale transfer and viscous effects with At+TS typically non-negligible locally.

The irrotational part of the interscale transfer rate has zero spatio-temporal average
but is exactly equal to the irrotational part of the interspace transfer rate and half the
two-point pressure work term in the KHMH equation. In fact, the exact relation in homo-
geneous turbulence ΠI = TI = Tp/2 explains the significant correlation between Π and Tp

reported by Yasuda and Vassilicos (2018). The irrotational part of the interscale trans-
fer rate derives from the integrated Poisson equation for two-point pressure fluctuations
whereas the solenoidal part of the interscale transfer rate derives from the integrated two-
point vorticity equation and includes non-local (in space) vortex stretching/compression
and tilting effects of its spatial vicinity.

We have also considered the decomposition into homogeneous and inhomogeneous in-
terscale transfer rates recently introduced by Alves Portela et al. (2020) and have studied
their fluctuations in statistically stationary homogeneous turbulence. The PDFs of the
homogeneous interscale transfer rate are skewed towards forward cascade events whereas
the PDFs of the inhomogeneous interscale transfer rate are not significantly skewed. How-
ever, the skewness factors of the PDFs of the homogeneous interscale transfer rate are not
as high as those of both the full and the solenoidal interscale transfer rates. Relating to
this, Π is highly correlated with ΠS more than with ΠI , ΠH and ΠI . There is an increas-
ing correlation between ΠI and −ΠH as the length scale decreases, in particular below
⟨λ⟩t where it reaches values above 0.6. The interscale transfer of |δu|2 caused by local
inhomogeneities in fluctuating velocity magnitudes tends to cancel the interscale transfer
of |δu|2 caused by misalignments between the two neighbouring fluctuating velocities, in
particular at scales below ⟨λ⟩t. As a result, the fluctuation magnitudes of Π are smaller
than those of both ΠI and −ΠH .

Finally, we derived generalised irrotational and solenoidal KHMH equations which can
be used to study the cascade dynamics in incompressible turbulent flows with very general
boundary conditions. The equations are similar to their analogues in homogeneous tur-
bulence, but in general boundary terms couple the irrotational and solenoidal dynamics.
Our investigations of the non-zero boundary term aΠS

in homogeneous turbulence with
our DNSs suggest that the boundary terms in the generalised irrotational and solenoidal
KHMH equations might be negligible sufficiently far from boundaries, in particular at
smaller scales and higher Reynolds numbers. Such a scenario would allow for efficient
space-local (rather than non-local) calculations of all KHMH terms in the generalised
solenoidal and irrotational KHMH equations, including centroid Helmholtz-decomposed
non-linear terms.
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4. Energy Transfer Dynamics at
Small Scales

The evolution of turbulent kinetic energy in both physical and scale spaces is central
to the understanding and prediction of turbulent flows. In the case of statistically ho-
mogeneous and stationary forced turbulence, we showed in chapter 3 that the average
aspect of this evolution collapses into a simple balance between average (solenoidal) in-
terscale turbulence transfer rate and average turbulence dissipation rate in an inertial
range of scales bounded from below by the Taylor scale and from above by the integral
length scale. Yasuda and Vassilicos (2018) and the previous chapter demonstrated how
unrepresentative this average balance is of what actually happens in this range of scales.

In the range of scales below the Taylor scale, the average two-point turbulent kinetic
energy balance does not involve only interscale transfer and dissipation but also viscous
diffusion in scale space. Whilst the two-point turbulent energy evolution and balance
in the inertial range is of paramount importance for reduced-order models and coarse-
graining, it is essential in the dissipative range for determining the smallest, viscosity-
affected or dominated, local length and time scales (Frisch and Vergassola, 1991; Dubrulle,
2019). In the present study we investigate how representative the average two-point
turbulent kinetic energy balance is of what actually happens at length scales below the
Taylor scale in statistically stationary forced periodic turbulence. To this end, we use
the solenoidal KHMH equation of chapter 3 and a highly resolved Direct Numerical
Simulation (DNS1) of forced homogeneous/periodic turbulence.

The following section describes the spatio-temporal average and fluctuating forms
of the solenoidal KHMH equation for statistically homogeneous and stationary turbu-
lence. We characterise the small-scale dynamics globally in terms of averages, standard
deviations, skewnesses, flatness factors and correlation coefficients. In section 4.2 we fo-
cus on interscale transfer and viscous terms and their spatio-temporal coincidence/non-
coincidence in low and high two-point kinetic energy (|δu|2)a regions. Section 4.3 in-
vestigates the non-coincidence of interscale transfer and viscous terms in terms of the
solenoidal KHMH equation and KHMH statistics conditioned on various (|δu|2)a levels.
We summarise our main findings in section 4.4.
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Figure 4.1: Spatio-temporal averages of surface-averaged terms of the solenoidal KHMH
equation (4.1) as functions of rd/⟨λ⟩t. The black vertical line marks rd = ⟨η⟩t.

4.1 Average and Fluctuating KHMH Dynamics

The KHMH equation governs the evolution of the velocity difference squared |δu|2 across
scales, space and time. The solenoidal and irrotational KHMH equations, a decomposition
of the KHMH equation, for statistically homogeneous/periodic turbulence derived in the
previous chapter read

At + TS + ΠS = Dx,ν +Dr,ν − ϵ∗ + I, (4.1)

ΠI = TI =
1

2
Tp, (4.2)

The spatio-temporal average of the solenoidal KHMH equation for statistically stationary
and homogeneous turbulence at scales small enough for the large-scale (|δu|2) input rate
⟨I⟩ to be negligible reads (see equation (3.23) in chapter 3)

⟨ΠS⟩ ≈ ⟨Dr,ν⟩ − ⟨ϵ∗⟩, (4.3)

As proven by Valente and Vassilicos (2015) and confirmed by the DNS of Yasuda
and Vassilicos (2018), ⟨Dr,ν⟩ is negligible at scales |r| larger than the Taylor scale. This
average balance therefore simplifies to ⟨ΠS⟩ ≈ −⟨ϵ∗⟩ at scales larger than the Taylor
scale yet much smaller than the length scales where the large-scale forcing acts. Here
we concentrate on scales below the Taylor scale and study how representative (4.3) is of
what happens at these scales.

We calculated surface-averaged terms Qa(x, rd, t) = (πr2d)
−1

∫︁∫︁
|r|=rd

Q(x, r, t)dr for
every term Q in the solenoidal KHMH equation (4.1) for our well-resolved DNS (DNS1).
Note that in this chapter we use the indirect evaluation method (see section 3.4) of the
centroid Helmholtz-decomposed KHMH terms to efficiently sample these KHMH terms.
In figure 4.1 we plot the non-zero spatio-temporal averages of surface-averaged terms. At
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scales |r| = rd < 0.6⟨λ⟩t, our DNS confirms (4.3) in the form

⟨Π a
S
⟩ ≈ ⟨Da

r,ν⟩ − ⟨ϵ∗a⟩, (4.4)

and also shows that both sides of the equation are negative and that they tend to zero
monotonically with decreasing rd. In fact, on average all terms in (4.1)-(4.2) equal or
tend to zero as rd tends to zero except for Dr,ν and ϵ∗. Note, as clearly seen in figure
4.1, that ⟨ϵ∗a⟩ is independent of rd in statistically homogeneous/periodic turbulence and
that limrd→0⟨Da

r,ν⟩ = ⟨ϵ∗a⟩ follows from a straightforward Taylor expansion of δu around
r = 0. Figure 4.1 confirms that ⟨Da

r,ν⟩ tends to ⟨ϵ∗a⟩ as rd tends to zero and also shows
that ⟨Da

r,ν⟩ is a positive monotonically decreasing function of rd.
The natural next step is to consider spatio-temporal fluctuations of the various terms

in the KHMH equation around their average values. By subtracting the spatio-temporal
average solenoidal KHMH equation from the solenoidal KHMH equation we obtain

Aa
t + T a

S
+ Π a′

S
≈ Da

x,ν +Da′
r,ν − ϵ∗a

′
(4.5)

at scales rd small enough for the large-scale (|δu|2)a input rate I to be negligibly small
(and Qa′ = Qa − ⟨Qa⟩). The focus of interest in this chapter is the extent in which
the average balance (4.4) is representative locally, i.e. the extent of validity of a local
balance Π a

S
≈ Da

r,ν − ϵ∗a at the smallest, dissipative, length scales (rd ⪅ 0.5⟨λ⟩t). The
Reynolds number of our well-resolved DNS (⟨Reλ⟩t = 81) may not be very high, but we
are concerned with the dynamics at scales between rd = ⟨η⟩t and rd = 0.5⟨λ⟩t which does
not change much or change very slowly with increasing ⟨Reλ⟩t (Pope, 2000).

A natural starting point for addressing our question is in terms of standard deviations
of the various terms in the fluctuating solenoidal KHMH equation. In figure 4.2(a, b, c)
we plot these terms versus rd/⟨λ⟩t. To set the scene within a wider context, figure 4.2(a)
shows how these standard deviations vary with rd/⟨λ⟩t over a range of scales rd that
is wider than our actual range of interest as it is from ⟨η⟩t to ⟨L⟩t = 2.6⟨λ⟩t. These
average fluctuations are similar to the results at higher Reynolds numbers, but they
are smaller in magnitude (see figure 3.9 in chapter 3. This Reynolds number trend is
consistent with the results in chapter 3). In figure 4.2(b) we concentrate attention on the
range ⟨η⟩t ≤ rd ≤ 0.5⟨λ⟩t. It is clear that the standard deviations of all surface-averaged
solenoidal KHMH terms except for Da

r,ν and ϵ∗a tend to zero monotonically as rd decreases
towards zero. The standard deviations of Da

r,ν and of ϵ∗a tend to the same non-zero value
of about 1.2⟨ϵ∗a⟩ as rd decreases towards zero. Furthermore, the standard deviation of
Da

r,ν − ϵ∗a tends to zero in a way that is close to the way that the standard deviation of
Π a

S
tends to zero as rd tends to zero.
For a proper initial estimate of the importance of fluctuations in the cascade dynamics,

we need to compare these standard deviations to an appropriate non-zero spatio-temporal
average. In figure 4.2(c) we plot them normalised by the absolute value of the spatio-
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Figure 4.2: (a) Plot of
√︁

⟨(Q′)2⟩a with the same overlapping terms as in chapter 3:
(At,AcS),(At + TS,ΠS) and (TI ,ΠI). (b, c) Plots of KHMH standard de-
viations of terms Qa; normalised by ⟨ϵ∗a⟩ (which is independent of rd) in (b)
and normalised by |⟨Π a

S
⟩| (which decreases with decreasing rd) in (c). (d)

Flatness factors of various spherically averaged KHMH terms.

temporal average of Π a
S
, which also tends to zero as rd tends to zero. The standard

deviations of all the terms in the solenoidal KHMH equation which tend to zero as rd
tends to zero do so at a rate that is comparable to or even marginally slower than |⟨Π a

S
⟩|.

In fact the standard deviation of Π a
S

is between 2.5 and 2.8 times larger than |⟨Π a
S
⟩| for all

rd in the range ⟨η⟩t to 0.5⟨λ⟩t and the standard deviation of Da
r,ν − ϵ∗a is between 1.2 and

2.0 times larger than |⟨Π a
S
⟩| in that range. These fluctuations are clearly very significant

compared to the average balance (4.4). Furthermore, whilst Π a
S

and Da
r,ν−ϵ∗a are equal on

average, the standard deviation of Π a
S

is at least 40% larger than the standard deviation
of Da

r,ν − ϵ∗a in this range of scales.
Figure 4.2(c) reveals that the largest fluctuations (except those of Da

r,ν and ϵ∗a) are
by far those of Aa

t and T a
S

at these viscous length scales but that they partially cancel
by the sweeping effect (discussed in some detail in chapter 3) so that the fluctuations of
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Figure 4.3: (a) Skewness factors and (b) correlation coefficients of terms in the solenoidal
KHMH equation across normalised scales rd/⟨λ⟩t.

Aa
t +T a

S
are between those of Π a

S
and Da

r,ν− ϵ∗a in intensity. Except for the (|δu|2)a input
rate Ia which is insignificant at the very small scales, the smallest standard deviations
are those of Da

x,ν , the viscous diffusion in physical space. Preempting observations made
further down in this chapter concerning the importance of Da

x,ν , we note that the standard
deviations of Π a

S
and Da ≡ Da

x,ν + Da
r,ν − ϵ∗a tend to equal each other as rd approaches

⟨η⟩t whereas the standard deviation of Da
r,ν − ϵ∗a remains below that of Π a

S
. That is, Da

x,ν

seems to be non-negligible in the cascade dynamics at small scales.
The results of figure 4.2(a, b, c) are the first indications that the average balance (4.4)

nor a local balance Π a
S
≈ Da

r,ν − ϵ∗a may be characteristic of reality. Not only are the
standard deviations of Π a

S
and Da

r,ν−ϵ∗a much larger than their average values at scales rd
under 0.5⟨λ⟩t, they are also the result of extremely intermittent fluctuations as evidenced
by their flatness factors which are well over 40 at these scales (see figure 4.2(d)). In fact,
all the terms in the solenoidal KHMH equation are much more intermittent than ϵ∗a and
Da

r,ν at these scales, even Da
r,ν − ϵ∗a. Furthermore, Π a

S
and Da

r,ν − ϵ∗a have significantly
different skewnesses as shown in figure 4.3(a). With very intermittent fluctuations which
are different in terms of standard deviations and skewnesses, it is likely that Π a

S
and

Da
r,ν − ϵ∗a are not typically equal locally. In fact, it is interesting to note the role of

the viscous diffusion in physical space once again as the skewness of Da is equal to the
skewness of Π a

S
at scales rd between ⟨η⟩t and 0.25⟨λ⟩t.

The fluctuations of Π a
S

and Da
r,ν − ϵ∗a may be extremely intermittent and differ in

magnitude, but be nevertheless correlated. The Pearson correlation coefficient of Π a
S

and
Da

r,ν − ϵ∗a is about 0.45 at rd = 0.5⟨λ⟩t and increases to about 0.72 at rd = ⟨η⟩t (see
figure 4.3(b)). This is a significant correlation but the correlation curve between Π a

S
and

Da in figure 4.3(b) is about the same. It is important to note that two signals can be
well correlated yet be different in magnitude nearly everywhere/every time. Even so, the
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near-perfect correlation seen in figure 4.3(b) between Da
r,ν and ϵ∗a at scales close to ⟨η⟩t

reflects very similar Da
r,ν and ϵ∗a spatio-temporal fields at rd close to ⟨η⟩t (the standard

deviation of 1−Da
r,ν/ϵ

∗a at rd = ⟨η⟩t is 0.025).
Given the high but far from perfect correlation between Π a

S
and Da

r,ν − ϵ∗a at scales
close to ⟨η⟩t it may still not be a priori inconceivable that the average balance (4.4) may
be, to some degree, a fairly representative balance even though the two spatio-temporal
fluctuations of Π a

S
and Da

r,ν − ϵ∗a differ in fluctuation intensity and skewness. In the
following section we investigate the degree of correspondence between Π a

S
and Da

r,ν − ϵ∗a

more closely by conditioning on low and high two-point energy (|δu|2)a regions. Given
the results on Π a

S
and Da in figures 4.2 and 4.3 (same standard deviation and skewness

at scales close to ⟨η⟩t, similar flatness factors, and correlations comparable to those of Π a
S

and Da
r,ν − ϵ∗a), we also investigate the relation between Π a

S
and Da.

4.2 Small-scale Interscale Transfer and Viscous Terms

in Low and High Two-point Energy Regions

We define ⟨Q|(|δu|2)a⟩ to be the average value of Q conditionally on (|δu|2)a being within
a certain range of (|δu|2)a values and we consider 20 such ranges of increasing values of
(|δu|2)a: the 5% smallest (|δu|2)a values, the 5% to 10% smallest (|δu|2)a values, and
so on till the 95% to 100% smallest (|δu|2)a values which are actually the 5% highest
values of (|δu|2)a. In figure 4.4 we plot (a) ⟨Da|(|δu|2)a⟩, (b) ⟨Da

r,ν − ϵ∗a|(|δu|2)a⟩ and (c)
⟨Da

x,ν |(|δu|2)a⟩ versus ⟨Π a
S
|(|δu|2)a⟩ for increasing (|δu|2)a and for scales rd between ⟨η⟩t

and ⟨λ⟩t. We checked that the results in this figure and figure 4.7 are insensitive to the
number of (|δu|2)a ranges as we also tried 10 and 100 ranges with very similar results.

Figure 4.4 shows that as the (|δu|2)a values increase, the equality ⟨Π a
S
|(|δu|2)a⟩ ≈

⟨Da|(|δu|2)a⟩ appears clearly (see figure 4.4(a)) for all rd in the range ⟨η⟩t ≤ rd ≤ 0.6⟨λ⟩t
whereas ⟨Π a

S
|(|δu|2)a⟩ ≈ ⟨Da

r,ν − ϵ∗a|(|δu|2)a⟩ does not (see figure 4.4(b)). This behaviour
has its root cause in the viscous diffusion in physical space which is non-zero in regions
with high values of (|δu|2)a. Interestingly, ⟨Da

x,ν |(|δu|2)a⟩ is increasingly negative as
(|δu|2)a values increase (see figure 4.4(c)), which is also the case for all other three
quantities plotted in figure 4.4. In fact both ⟨Da

x,ν |(|δu|2)a⟩ and ⟨Da
r,ν − ϵ∗a|(|δu|2)a⟩

vary linearly with ⟨Π a
S
|(|δu|2)a⟩ if the (|δu|2)a values are not too small, and these two

linear dependencies sum up to give ⟨Π a
S
|(|δu|2)a⟩ ≈ ⟨Da|(|δu|2)a⟩.

We conclude that (i) with increasing (|δu|2)a values, the average balance (4.4) is
increasingly not representative of the conditionally averaged transfer balance at viscosity
affected/dominated length scales as (ii) the viscous diffusion in physical space cannot
be neglected in regions of significant local inhomogeneity where (|δu|2)a is high. In
such regions the viscous diffusion in physical space contributes to the loss of (|δu|2)a,
though, on average, less than Da

r,ν − ϵ∗a which is also negative on average but with higher
magnitudes (see figure 4.4(b, c)).
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Figure 4.4: Plots of (a) ⟨Da|(|δu|2)a⟩, (b) ⟨Da
r,ν − ϵ∗a|(|δu|2)a⟩ and (c) ⟨Da

x,ν |(|δu|2)a⟩ ver-
sus ⟨Π a

S
|(|δu|2)a⟩ (see the definition of these conditional averages in the first

paragraph of section 4.2). All plotted quantities are normalised by |⟨Π a
S
⟩|

and are plotted for different values of rd. The legend at the top of (a) gives
the values of rd/⟨λ⟩t which correspond to different coloured symbols (note
⟨η⟩t ≈ 0.06⟨λ⟩t). The average quantities plotted are conditional on 20 differ-
ent ranges of (|δu|2)a values as described in the first paragraph of section 4.2
and ranges with increasing values of (|δu|2)a for each rd are from right to left
in (a)-(c) (see the arrow indicating increasing local two-point energy in (a)).

The third conclusion is quantitative, namely that

⟨Π a
S
|(|δu|2)a⟩ ≈ ⟨Da|(|δu|2)a⟩ (4.6)

holds for all ranges of high enough (|δu|2)a values in the range of scales ⟨η⟩t ≤ rd ≤ 0.6⟨λ⟩t
whereas ⟨Π a

S
|(|δu|2)a⟩ = ⟨Da

r,ν − ϵ∗a|(|δu|2)a⟩ does not. This raises the question whether
Π a

S
≈ Da happens more often than Π a

S
≈ Da

r,ν − ϵ∗a at these very small scales.
To look more closely at the local cascade dynamics, including in the low two-point

energy regions, we plot in figure 4.5 probability density functions (PDFs) of Π a
S
−Da and

Π a
S
− (Da

r,ν − ϵ∗a) conditional on (|δu|2)a. The red curves are PDFs conditional on the
5% smallest values of (|δu|2)a whereas the blue and green curves are, respectively, PDFs
conditional on the 5% and 0.5% highest values of (|δu|2)a for a given length scale rd. The
top plots (a) and (b) are for rd = ⟨η⟩t, the middle plots (c) and (d) are for rd = 0.24⟨λ⟩t
and the bottom plots (e) and (f) are for rd = 0.48⟨λ⟩t. The first observation to make
is that, if normalised by their maximum PDF value Pmax and the standard deviation of
Π a

S
for high (|δu|2)a events, the high (|δu|2)a PDFs of Π a

S
− Da (blue and green curves

in the left plots of figure 4.5) are approximately symmetric with respect to positive and



92
4.2. SMALL-SCALE INTERSCALE TRANSFER AND VISCOUS TERMS IN LOW

AND HIGH TWO-POINT ENERGY REGIONS

−10 −5 0 5 10
10−3

10−2

10−1

100
P
/
P
m

a
x

LE

e−1.00|z|

HE

e−1.81|z|

VHE

e−1.67|z|

(a)

−10 −5 0 5 10 15
10−3

10−2

10−1

100
LE

e−2.52
√

z

HE

e−1.79|z|

VHE

e−1.64|z|

(b)

−10 −5 0 5 10
10−3

10−2

10−1

100

P
/
P
m

a
x

LE

e−1.03|z|

HE

e−1.46|z|

VHE

e−1.36|z|

(c)

−10 −5 0 5 10 15
10−3

10−2

10−1

100
LE

e−2.66
√

z

HE

e−1.52|z|

VHE

e−1.38|z|

(d)

−10 −5 0 5 10

z =
(
Π a

S
−Da

)
/σ(Π a

S
| (|δu|2)a)

10−3

10−2

10−1

100

P
/
P
m

a
x

LE

e−1.09|z|

HE

e−1.32|z|

VHE

e−1.31|z|

(e)

−10 −5 0 5 10 15

z =
(
Π a

S
−Da

r,ν + ǫ∗a
)
/σ(Π a

S
| (|δu|2)a)

10−3

10−2

10−1

100
LE

e−2.90
√

z

HE

e−1.33|z|

VHE

e−1.34|z|

(f)

Figure 4.5: Probability density functions of Π a
S
− Da (left) and Π a

S
− Da

r,ν + ϵ∗a (right)
conditional on low two-point energy (|δu|2)a (LE) events (the events with the
5% smallest (|δu|2)a values at scale rd), high (|δu|2)a (HE) events (the events
with the 5% highest (|δu|2)a values at scale rd) and very high (|δu|2)a (VHE)
events (the events with the 0.5% highest (|δu|2)a values at scale rd): (a, b)
rd = ⟨η⟩t, (c, d) rd = 0.24⟨λ⟩t, (e, f) rd = 0.48⟨λ⟩t). Pmax and σ(Π a

S
|(|δu|2)a)

denote, respectively, PDF maximum value and standard deviation of Π a
S

con-
ditional on the particular range of (|δu|2)a values considered. The dashed
lines show exponential/stretched exponential fits of the PDFs calculated with
least squares.

negative values and become decreasingly heavy-tailed with decreasing rd. Irrespective of
the value of rd in the range ⟨η⟩t ≤ rd ≤ 0.5⟨λ⟩t, the most likely value of Π a

S
−Da is zero

at the 5% and 0.5% highest (|δu|2)a events. The most likely value of Π a
S
−Da is also zero

at the 5% lowest (|δu|2)a events. However, the PDF of Π a
S
−Da conditional on these 5%

lowest (|δu|2)a events and normalised by Pmax and the standard deviation of Π a
S

for these
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(|δu|2)a -0.005 -0.05 -0.1 +0.1 +0.05 +0.005

⟨η⟩t (9.7, 9.2) (10.4, 12.7) (10.9, 13.5) (31.4, 25.3) (34.2, 25.4) (41.0, 24.3)

0.24⟨λ⟩t (9.1, 10.4) (10.1, 12.8) (10.5, 13.7) (27.5, 23.7) (30.1, 24.4) (37.9, 24.6)

0.48⟨λ⟩t (8.9, 11.9) (9.7, 13.5) (10.0, 14.1) (21.8, 19.5) (23.6, 20.1) (27.5, 20.9)

Table 4.1: Share of events (in %) with 2
3
Da < Π a

S
< 4

3
Da (left entries) and share of events

with 2
3
(Da

r,ν − ϵ∗a) < Π a
S
< 4

3
(Da

r,ν − ϵ∗a) (right entries) with various (|δu|2)a
conditioning. Each row corresponds to one rd given in the leftmost column
and the top row denotes the (|δu|2)a conditioning. E. g. −0.05 denotes the
5% of the events with the lowest (|δu|2)a and +0.1 denotes the 10% of the
events with the highest (|δu|2)a.

events (red curves in the left plots of figure 4.5) becomes increasingly heavy-tailed with
decreasing rd in the range ⟨η⟩t ≤ rd ≤ 0.5⟨λ⟩t (but remains approximately symmetric
with respect to positive and negative values). We return to these tendencies when we
discuss figure 4.7 in the next section.

The PDFs of Π a
S
− Da are plotted in log-lin axes to make it clear that their tails

are exponential tails over a range of Π a
S
− Da values. Exponential tails are a sign of

intermittency and mean that there is much more than a normal number of events in
space and time with large and very large deviations from Π a

S
≈ Da. The most likely

occurrence remains Π a
S
− Da = 0, but it is in fact not so likely. In table 4.1 we report

the probability of finding 2
3
Da < Π a

S
< 4

3
Da which is a very generous upper bound on

the probability to find Π a
S
≈ Da: it increases as rd decreases from 0.5⟨λ⟩t to ⟨η⟩t and it

also increases as we condition on progressively higher (|δu|2)a. This probability ranges
from 8.9% if we condition on the 0.5% lowest (|δu|2)a and focus on rd = 0.48⟨λ⟩t, to
41% if we condition on the 0.5% highest (|δu|2)a and focus on rd = ⟨η⟩t. It is therefore
generally unlikely to find Π a

S
≈ Da in the turbulence except at the very highest (|δu|2)a

with rd = ⟨η⟩t. Note that Π a
S
≈ Da is rather rare at rd = ⟨η⟩t in low (|δu|2)a regions with

e.g. a 10.4% probability among the 5% lowest (|δu|2)a.
Unlike Π a

S
− Da, the most likely value of Π a

S
− (Da

r,ν − ϵ∗a) is not zero (see figure
4.5(b, d, f)). It is non-zero and positive if conditioned on the 5% lowest (|δu|2)a events,
and non-zero and slightly negative if conditioned on either the 5% or the 0.5% highest
(|δu|2)a events. Similarly to Π a

S
−Da, the high (|δu|2)a PDFs of Π a

S
− (Da

r,ν − ϵ∗a) (blue
and green curves in the right plots of figure 4.5) normalised by their maximum PDF value
Pmax and the standard deviation of Π a

S
for high (|δu|2)a events, are decreasingly heavy-

tailed (and exponential) for decreasing rd. The PDF of Π a
S
− (Da

r,ν − ϵ∗a) conditional on
the 5% lowest (|δu|2)a events and normalised by Pmax and the standard deviation of Π a

S

for these events (red curves in the right plots of figure 4.5) is different for different values
of rd in the range ⟨η⟩t ≤ rd ≤ 0.5⟨λ⟩t. It is very significantly asymmetric with a vast bias
towards positive values and becomes increasingly heavy-tailed on its positive side as rd
decreases within this range, but not on both positive and negative sides as in the case
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AND HIGH TWO-POINT ENERGY REGIONS

Figure 4.6: Scatter plots at rd = ⟨η⟩t of (a, b) (Da
r,ν − ϵ∗a,Π a

S
) and (c, d) (Da,Π a

S
) con-

ditioned on (a, c) the 5% lowest (|δu|2)a events and (b, d) the 5% highest
(|δu|2)a events. The black dotted lines show (a, b) Π a

S
= Da

r,ν − ϵ∗a and (c, d)
Π a

S
= Da. All KHMH terms are normalised with the standard deviation of

Π a
S

conditioned on the 5% lowest (a, c) or 5% highest (b, d) (|δu|2)a events.

of Π a
S
− Da. On its negative side its tail is an exponential while its tail on the positive

side is a stretched exponential. As the difference between Da and Da
r,ν − ϵ∗a equals Da

x,ν ,
it follows from figure 4.5 that the strong bias towards positive Π a

S
− (Da

r,ν − ϵ∗a) events
in low (|δu|2)a regions is balanced by Da

x,ν ≫ 0 events in such regions. Hence, as could
be expected, physical space viscous diffusion Da

x,ν tends to transport (|δu|2)a from high
(|δu|2)a regions to low (|δu|2)a regions (remember the behaviour of Da

x,ν in high (|δu|2)a
regions in figure 4.4). However, it is less obvious that this physical mechanism is as
non-negligible in the local KHMH dynamics at small scales as our results show.

The scatter plots in low and high (|δu|2)a regions in figure 4.6 shed more light on
this behaviour. In low (|δu|2)a regions Π a

S
is equally likely to be positive or negative,

while Da
r,ν − ϵa is heavily skewed towards negative values such that Π a

S
− (Da

r,ν − ϵa) has a
tendency of being positive. In low (|δu|2)a regions Da is approximately symmetric with
the events Da

r,ν − ϵa ≪ 0 being balanced by events Da
x,ν ≫ 0 (compare figures 4.6(a, c)).

In the high (|δu|2)a regions the behaviours of Da
r,ν−ϵa, Da and Π a

S
are all skewed towards

negative values such that the high (|δu|2)a region PDFs in figure 4.5 are all approximately
symmetric (the above scatter plots are qualitatively equal at rd/⟨λ⟩t = (0.24, 0.48)).

As Π a
S

≈ Da events are unlikely and physical space diffusion is non-negligible in a
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considerable set of events, it is not surprising that it is unlikely to find events Π a
S

≈
Da

r,ν − ϵ∗a (see table 4.1). It is significantly less likely finding such events than finding
Π a

S
≈ Da events. The probability of finding 2

3
(Da

r,ν−ϵ∗a) < Π a
S
< 4

3
(Da

r,ν−ϵ∗a) ranges from
9.2% to 25.4% whereas the probability of finding 2

3
Da < Π a

S
< 4

3
Da ranges from 8.9%

to 41.0% (table 4.1). Unlike the latter which increases as we condition on progressively
higher (|δu|2)a, the probability of finding 2

3
(Da

r,ν−ϵ∗a) < Π a
S
< 4

3
(Da

r,ν−ϵ∗a) levels off (see
table 4.1). When we condition on increasing values of (|δu|2)a it becomes increasingly
difficult to neglect the viscous diffusion in physical space.

We have therefore reached two conclusions in this section. First, physical space viscous
diffusion is important in the local cascade dynamics in both low and high (|δu|2)a regions
at small scales. That is, Π a

S
≈ Da is significantly more accurate than the local version

of the average balance (4.4) Π a
S
≈ Da

r,ν − ϵ∗a in such regions. Second, the probability of
finding events Π a

S
≈ Da is not overwhelming. The PDFs of Π a

S
− Da contain significant

deviations from zero across (|δu|2)a levels with wide tails, especially in low (|δu|2)a regions
and to a lesser extent in high (|δu|2)a regions. We next address the significant deviations
of Π a

S
− Da from zero by considering the fluctuating solenoidal cascade dynamics for

various (|δu|2)a conditionings at small scales.

4.3 Small-scale Dynamics across Two-point Energy

Levels

Given that Π a
S
− Da is not so often zero at the small scales, is there a typical (|δu|2)a

transfer balance at small dissipative length scales? To answer this question we return
to the solenoidal KHMH equation (4.5) and plot in figure 4.7(a, c, e) standard deviations
of various terms in this equation conditioned on various ranges of (|δu|2)a values. We
consider the same 20 ranges of (|δu|2)a values that we considered for figure 4.4 (see the
first paragraph of section 4.2), and in the horizontal axes of the two plots in figure 4.7 we
mark each one of these ranges by its average (|δu|2)a value normalised by (⟨|δu|2⟩a. Figure
4.7(a) shows that the standard deviations of Π a

S
and Da are quite close to each other for

all (|δu|2)a levels but that the standard deviation of Π a
S

is nevertheless consistently higher
than that of Da. The only other term in Aa

t + T a
S

= −(Π a
S
− Da) is Aa

t + T a
S

, and the
fluctuations of Aa

t +T a
S

are never negligible. Consistent with the wide tails in the PDFs of
(Π a

S
−Da) normalised by the standard deviations of Π a

S
in figure 4.5(a, c, e), we see that

in low (|δu|2)a regions the standard deviations of Lagrangian transport Aa
t + T a

S
to the

standard deviations of interscale transfer increases with decreasing rd as the PDF tails
become wider. Similarly, in high (|δu|2)a regions the standard deviations of Lagrangian
transport to the standard deviations of interscale transfer decrease with increasing rd as
the PDF tails become tighter. Hence, the deviations from Π a

S
−Da ≈ 0 seem intimately

linked to Lagrangian transport and except perhaps at specific spatio-temporal instances,
it is not possible to neglect this term in the cascade dynamics at these dissipative scales.
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Figure 4.7: (a, c, e) Conditional standard deviations of various surface-averaged KHMH
terms Qa for rd = (⟨η⟩t, 0.24⟨λ⟩t, 0.48⟨λ⟩t) and (b, d, f) conditional Pearson
correlation coefficients of pairs of surface-averaged KHMH terms Qa

1 and Qa
2

for rd = (⟨η⟩t, 0.24⟨λ⟩t, 0.48⟨λ⟩t). These standard deviations and correla-
tion coefficients are calculated from spatio-temporal statistics conditioned on
various ranges of (|δu|2)a at the rd value of each corresponding plot. The
conditioning is identical to that in figure 4.4: the horizontal axes display the
average (|δu|2)a values within each (|δu|2)a range normalised by the spatio-
temporally averaged ⟨|δu|2⟩a. Increasing values of (|δu|2)a are therefore from
left to right on the horizontal axes.

Figure 4.7(b, d, e) with correlation coefficients conditioned on (|δu|2)a provides further
insights into the cascade dynamics. At the low to moderate (|δu|2)a levels at rd = ⟨η⟩t
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there is a correlation of about 0.7 between Aa
t+T a

S
and −Π a

S
and also between Aa

t+T a
S

and
Da. However, there is effectively no correlation at these (|δu|2)a levels between Π a

S
and

any of the diffusion/dissipation terms Da, Da
x,ν and Da

r,ν−ϵ∗a. The significant correlations
which exist between Aa

t +T a
S

and −Π a
S

on the one hand and between Aa
t +T a

S
and Da on

the other must therefore arise from different spatio-temporal instances given the absence
of correlation between Π a

S
and Da. The picture suggested by Aa

t + T a
S
+Π a

S
= Da and by

these presences and absences of correlations conditioned on low to moderate (|δu|2)a levels
is as follows: as (|δu|2)a at scale rd = ⟨η⟩t is transported along a Lagrangian path, part of
it may at one time be transferred to another scale and part of it may at another time be
dissipated and diffused by viscosity, but very rarely will both significantly happen at the
same time. There is indeed little spatio-temporal coincidence between interscale transfer
rate and diffusion/dissipation at these (|δu|2)a levels. To complete the picture, viscous
diffusion in space acts against viscous diffusion/dissipation Da

r,ν − ϵ∗a at low to moderate
(|δu|2)a levels: whilst Da

r,ν − ϵ∗a most typically removes (|δu|2)a, Da
x,ν counteracts by

adding (|δu|2)a at that scale from neighbouring physical space. This picture is essentially
true for all scales rd between ⟨η⟩t and 0.5⟨λ⟩t (see figure 4.7(c, d, e, f)). With increasing
rd the standard deviations of Da, Da

x,ν and Da
r,ν − ϵ∗a decrease relative to those of Π a

S
and

Aa
t +T a

S
. This leads to weaker correlations between Da and Π a

S
and stronger correlations

between Aa
t + T a

S
and −Π a

S
, tending towards the KHMH dynamics in chapter 3.

This picture changes dramatically as we reach the 5% highest (|δu|2)a levels, i.e. levels
between about 30 to 60 times (⟨|δu|2⟩a. Firstly, at such high (|δu|2)a levels, Da

r,ν−ϵ∗a and
Da

x,ν acquire some significant tendency to act together (correlation coefficient of about
0.4) to remove (|δu|2)a from scale rd = ⟨η⟩t. Secondly, the correlations of Aa

t + T a
S

with
−Π a

S
and with Da drop but remain significant (correlation coefficients of about 0.4) whilst

Π a
S

acquires substantial correlation with the diffusion/dissipation terms: its correlation
coefficients with Da and with Da

r,ν − ϵ∗a rise to about 0.7, and its correlation coefficient
with Da

x,ν rises too but not so much (it reaches about 0.4). At these particularly high
(|δu|2)a levels and very small scales ⟨η⟩t, the strongest correlation is therefore the one
between Π a

S
and Da but it is not so strong that we may neglect the Lagrangian transport

term Aa
t + T a

S
, i.e. the remaining term in the full balance Aa

t + T a
S
+ Π a

S
= Da, which is

also significantly correlated with both −Π a
S

and Da. We chose to focus on the correlation
between Π a

S
and Da rather than between Π a

S
and Da

r,ν−ϵ∗a even though they have the same
correlation coefficients because we have seen that, unlike Π a

S
and Da

r,ν − ϵ∗a, Π a
S

and Da

have an increasing statistical tendency to get close to each other with increasing (|δu|2)a
levels and decreasing length scale (see figure 4.4, table 4.1 and figure 4.7). However, this
does not happen without some correlation with Lagrangian transport. As rd increases,
the standard deviations of viscous terms weaken relative to those of Π a

S
and Aa

t + T a
S

with the cascade dynamics tending towards the behaviour discussed in chapter 3. At
rd = 0.48⟨λ⟩t, viscous terms correlate most strongly with interscale transfer at high
rather than low (|δu|2)a levels.
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4.4 Summary

In statistically stationary homogeneous/periodic turbulence the average relation ⟨Π a
S
⟩ ≈

⟨Da
r,ν⟩ − ⟨ϵ∗a⟩ holds in the dissipation/diffusion-dominated range rd < 0.5⟨λ⟩t, yet it does

not represent reality locally. Events where Π a
S
≈ Da

r,ν−ϵ∗a can of course be found but they
are few. What happens at these small scales cannot be described without Lagrangian
transport Aa

t + T a
S

and physical space viscous diffusion Da
x,ν .

In most of the flow for most of the time the levels of (|δu|2)a at these length scales are
low to moderate and one finds significant correlations between Aa

t + T a
S

and Π a
S

on the
one hand and between Aa

t + T a
S

and Da = Da
r,ν +Da

x,ν − ϵ∗a on the other. There are some
spatio-temporal instances interscale transfer balance with Lagrangian transport and some
other spatio-temporal instances viscous effects balance with Lagrangian transport, but
rarely do viscous effects balance with interscale transfer. Also, viscous diffusion in space
is typically positive and counteracts the (|δu|2)a -reducing action of Da

r,ν − ϵ∗a which is
typically negative.

As we focus on the highest levels of (|δu|2)a at these length scales the picture changes
quite drastically but Aa

t + T a
S

maintains a presence even if weakened. The highest corre-
lation is now between Π a

S
and Da. Even though this correlation is similar to that of Π a

S

and Da
r,ν − ϵ∗a, we have seen that there is much more of a tendency for Π a

S
and Da to

get close to each other than Π a
S

and Da
r,ν − ϵ∗a as physical space viscous diffusion is non-

negligible. In these regions the viscous diffusion in physical space acquires a tendency
to cooperate/correlate with Da

r,ν − ϵ∗a and enhance (|δu|2)a reduction. The balancing
between Π a

S
and Da does not happen perfectly though given that Aa

t + T a
S

retains some
correlation with both −Π a

S
and Da, which means that all terms in Aa

t + T a
S
+ Π a

S
= Da

can momentarily follow each other simultaneously at these high (|δu|2)a levels.
The cascade dynamics presented in this chapter, and the presence of Lagrangian trans-

port and physical space viscous diffusion in particular, suggests limited validity of the
assumption of a local balance between interscale transfer and viscous diffusion in scale
space/dissipation (Frisch and Vergassola, 1991) at any (|δu|2)a level. At low and mod-
erate (|δu|2)a levels, Lagrangian transport is very important in the cascade dynamics
with a limited tendency of spatio-temporal coincidence of Π a

S
and Da

r,ν − ϵ∗a. The results
at our higher (|δu|2)a levels show that physical space viscous diffusion is important in
such regions. Moreover, the results suggest that Da

x,ν becomes increasingly important in
the local small-scale cascade dynamics as one focuses on even higher (|δu|2)a levels than
considered in this chapter.
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5. Spatially Averaged Unsteady
Energy Exchanges

The local cascade dynamics of chapters 3-4 fluctuates violently in space and time with
strong departures from its average/equilibrium behaviour. The spatially averaged mani-
festation of the local cascade dynamics is highly unsteady at scales similar to the integral
length scale and there is a time delay between large-scale turbulent kinetic energy or in-
terscale transfer and small-scale dissipation (see section 1.2 and references therein). This
large-to-small-scale time delay behaviour, which is consistent with a step-by-step energy
cascade, is not restricted to homogeneous/periodic turbulence with similar behaviour also
observed in e.g. homogeneous/periodic shear flow (Horiuti and Ozawa, 2011) and von
Kárman flow (Pinton et al., 1999).

Starting with Yoshizawa (1994), several authors have considered corrections to the K41
inertial range behaviour at larger scales in homogeneous/periodic turbulence due to un-
steadiness effects. Yoshizawa and others (see e.g. Woodruff and Rubinstein (2006)) have
included unsteadiness effects (in Fourier space) by assuming small/slow perturbation(s) to
the K41 equilibrium solution. This approach has been used to arrive at energy spectrum
corrections with wavenumber dependence k−7/3, new large-eddy simulation models (Ho-
riuti and Tamaki, 2013) and turbulence dissipation scalings (Bos and Rubinstein, 2017).
These predictions have been partly verified (see Horiuti and Tamaki (2013); Khurshid
et al. (2021)). However, the physical basis and subsequent applicability/limitations of
this perturbation approach remains unclear. That is, can the cascade dynamics at these
larger scales simply be characterised as the K41 equilibrium solution and small/slow
corrections or is the cascade dynamics at these scales fundamentally different from K41
behaviour?

This chapter considers the larger-scale unsteady cascade dynamics as generally being
very different from K41 equilibrium behaviour. We characterise the cascade dynamics by
formalising the well-known notion of a finite cascade time-lag (see e.g. (Lumley, 1992;
Wan et al., 2010) in terms of a (physical space) hypothesis connecting the spatially av-
eraged interscale transfer rate and the spatially averaged viscous dissipation rate, where
the former increasingly precedes the latter with increasing scale separation (this hypoth-
esis can be viewed as a generalisation of the earlier time-lag hypothesis of Bos et al.
(2007)). From this physical basis, which accounts for generally non-negligible cascade
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unsteadiness, we develop and confirm with our DNSs that it is only under certain rather
restrictive conditions the formalised time-lag hypothesis allow for a perturbation expan-
sion around the K41 equilibrium solution. This limitation in scope of the non-equilibrium
perturbation expansions is required to improve their accuracy. Moreover, by developing
the physical basis of such a perturbation approach, it is argued that it can be more easily
generalised to naturally occurring turbulent flows.

The next section considers the spatially averaged cascade dynamics in
periodic/homogeneous turbulence. Our DNSs confirm the significant cascade unsteadi-
ness in terms of physical space quantities. In section 5.2 we connect this cascade behaviour
and earlier cascade time-lag ideas in terms of a (physical space) formalised time-lag hy-
pothesis. We examine this hypothesis with our low to moderate Reynolds number DNSs
before demonstrating in section 5.3 that this hypothesis can be used to decompose the
low-frequency cascade dynamics and second-order structure function scaling into equi-
librium and non-equilibrium contributions. Section 5.4 uses the phenomenology of a
time-lagged energy cascade to motivate a new dissipation scaling law which is approxi-
mately identical to the non-equilibrium dissipation scaling (Goto and Vassilicos, 2015) for
our DNSs of forced homogeneous/periodic turbulence. We provide a chapter summary
in section 5.5.

5.1 Spatially Averaged KHMH Dynamics in

Homogeneous Turbulence

We study the spatially averaged cascade dynamics in terms of the spatially averaged
KHMH equation. This equation governs the evolution of ⟨|δu|2⟩x(r, t) across scales r

and time t and reads in homogeneous/periodic turbulence

∂

∂t
⟨|δu|2⟩x+⟨δuk

∂|δu|2
∂rk

⟩x = 2ν
∂2

∂r2k
⟨|δu|2⟩x−2ν

⟨︁(︁∂u+i
∂x+k

)︁2
+
(︁∂u−i
∂x−k

)︁2⟩︁
x
+⟨2δuiδfi⟩x (5.1)

or in terms of the notation introduced in equation (3.20) in chapter 3

⟨At⟩x + ⟨Π ⟩x = ⟨Dr,ν⟩x − ⟨ϵ∗⟩x + ⟨I⟩x. (5.2)

We have that ⟨ΠS⟩x = ⟨Π ⟩x and ⟨Tp⟩x = ⟨T ⟩x = ⟨Dx,ν⟩x = 0 from periodicity (see the
non-averaged KHMH equation (3.21)) and note that the dissipation ⟨ϵ∗⟩x = 2⟨ϵ+⟩x(t) +
2⟨ϵ−⟩x(t) = 4⟨ϵ⟩x(t) does not depend on r (where ϵ = ν(∂ui/∂xj)

2).
We first consider the average cascade behaviour of forced and freely decaying homo-

geneous/periodic turbulence (treating these two cases together is useful in highlighting
their similar cascade dynamics). We apply a time average to (5.2) in the case of forced
homogeneous/periodic turbulence and an ensemble average to (5.2) in the case of freely
decaying homogeneous/periodic turbulence. This operator is denoted ⟨⟩t/E and when
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applied to (5.2) it yields the equation

⟨At⟩x,t/E + ⟨Π ⟩x,t/E = ⟨Dr,ν⟩x,t/E − ⟨ϵ∗⟩x,t/E + ⟨I⟩x,t/E, (5.3)

where ⟨At⟩x,t/E = 0 in forced homogeneous turbulence and I = 0 in freely decaying
homogeneous turbulence. If the forcing is not applied or only applied at the largest
scales of the flow, and noting that ⟨Dr,ν⟩x ≪ ⟨ϵ∗⟩x for rd > λ (see the kinematic upper
bound in appendix B of Valente and Vassilicos (2015)), (5.3) reduces to

⟨At⟩x,t/E + ⟨Π ⟩x,t/E ≈ −⟨ϵ∗⟩x,t/E (5.4)

at scales λ < rd < L. Hence, in an intermediate range of scales in forced and freely
decaying homogeneous/periodic turbulence the KHMH spatio-temporal/ensemble aver-
age (5.3) reduces to approximately (5.4) which contains effects of unsteadiness, interscale
transfer and dissipation and the interscale energy transfer is on average from larger to
smaller scales ⟨Π ⟩x,t/E < 0 (Goto and Vassilicos, 2016b; Yasuda and Vassilicos, 2018).

The spatio-temporal/ensemble averaged cascade picture (5.3)-(5.4) only partially de-
scribes the spatially averaged energy cascade. Subtracting equation (5.3) from equa-
tion (5.2), yields the KHMH equation for temporal fluctuations around the space- and
time/ensemble-averaged cascade behaviour

A”
t + Π ” = D”

r,ν − ϵ∗” + I”, (5.5)

where we used the generic notation Q” ≡ ⟨Q⟩x − ⟨Q⟩x,t/E for KHMH terms Q. One
might imagine that D”

r,ν and I” can be neglected at scales λ < rd < L with

A”
t + Π ” ≈ −ϵ∗”. (5.6)

In the case of both (5.4) and (5.6) being valid, the spatially averaged KHMH equation
(5.2) in both forced and freely decaying homogeneous/periodic turbulence reduces at such
scales to

⟨At⟩x + ⟨Π ⟩x ≈ −⟨ϵ∗⟩x, (5.7)

where unsteadiness ⟨At⟩x, interscale transfer ⟨Π ⟩x and the viscous dissipation ⟨ϵ∗⟩x are
the cascade processes determining the spatially averaged energy cascade at such scales.
Equation (5.7) is necessarily more general than K41 local equilibrium ⟨Π ⟩x ≈ −⟨ϵ∗⟩x.

The characterisation (5.7) of the spatially averaged cascade dynamics requires the
spatial averaging scale La to be not much smaller or much bigger than the integral length
scale L. In the case of forced homogeneous/periodic turbulence with typically La/L ≈ 5

and La = 2π (see section 2.2.1), the temporal fluctuations Π ” are small but non-negligible
compared to its spatio-temporal/ensemble average value ⟨Π ⟩x,t/E (Goto and Vassilicos,
2015). Hence, ⟨Π ⟩x is almost always negative across scales and ⟨Π ⟩x ̸≈ ⟨Π ⟩x,t/E. This
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Figure 5.1: KHMH spatio-temporal averages. (a) ⟨Reλ⟩t = 112, (b) ⟨Reλ⟩t = 174.

contrasts on one end with an infinite averaging dimension La/L→ ∞, where the spatial
averages converge to their spatio-temporal/ensemble averages (under periodic boundary
conditions) with all unsteadiness effects concealed ⟨Π ⟩x = ⟨Π ⟩x,t/E. On the other end,
with the averaging dimension going to zero La/L → 0 one obtains the original, non-
averaged KHMH equation with the multitude of additional physical processes we consid-
ered in chapters 3-4 and a significant proportion of inverse cascade events (⟨Π ⟩x > 0)
(Yasuda and Vassilicos, 2018). By considering the case of 5 ≲ La/L ≪ ∞, we focus on
an unsteady direct energy cascade (⟨Π ⟩x < 0) with periodic boundary conditions (these
boundary conditions might limit the relevance of this chapter to naturally occurring tur-
bulent flows where the spatially averaged fluid of size L3

a interacts with its surrounding
fluid in a typically non-periodic manner).

Having broadly considered the spatially averaged KHMH dynamics in forced/freely
decaying homogeneous/periodic turbulence, we analyse the spatially averaged KHMH
dynamics in our DNSs of forced homogeneous/periodic turbulence with the efficient and
accurate evaluation methods developed in appendix C. The majority of these results
(and the results in the following sections) will be from the datasets DNS3-DNS4 with
the negative damping forcing, but we will also report some key results with the dataset
DNS2 with the ABC forcing. Unless otherwise stated, the results in DNS2 and DNS3 are
qualitatively equal. Figure 5.1 shows the spatio-temporally and surface-averaged KHMH
terms in datasets DNS3-DNS4, which satisfy ⟨Π a⟩ = ⟨Da

r,ν⟩−⟨ϵ∗⟩+⟨Ia⟩ (where ⟨⟩ denotes
a space-time average). The direct influence of the large-scale injection ⟨Ia⟩ diminishes as
rd decreases below the integral length and approaches the Taylor scale, while the direct
influence of scale space viscous diffusion ⟨Da

r,ν⟩ is significant at scales similar and smaller
than the Taylor scale.

These KHMH space-time-average values conceal temporal fluctuations which we char-
acterise in terms of KHMH temporal standard deviations

√︁
⟨Q”2⟩a in figure 5.2. The order

of the largest of these temporal standard deviations is 0.1⟨ϵ∗⟩ and belongs to ⟨At⟩x, ⟨Π ⟩x
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Figure 5.2: KHMH temporal standard deviations. (a) ⟨Reλ⟩t = 112, (b) ⟨Reλ⟩t = 174.
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Figure 5.3: KHMH correlation coefficients. (a) ⟨Reλ⟩t = 112, (b) ⟨Reλ⟩t = 174.

and ⟨ϵ∗⟩x. The injection temporal fluctuations I” are only non-negligible compared to
these three terms at scales rd close to ⟨L⟩t, while the viscous diffusion in scale space is
non-negligible in terms of temporal fluctuations for scales rd < ⟨λ⟩t. We checked that the
interscale transfer ⟨Π a⟩x(rd, t) is always from larger to smaller scales at all times across
scales and Reynolds number in our DNSs, i.e. ⟨Π a⟩x(rd, t) < 0 for all samples.

The KHMH temporal standard deviations translate into strong correlation coefficients
between ⟨At⟩x + ⟨Π ⟩x and −⟨ϵ∗⟩x (see figure 5.3). These correlations peak at 0.981 and
0.997 at the lower and higher Reynolds number at the Taylor scale. They decrease slightly
as rd decreases below the Taylor scale due to scale space viscous diffusion and decrease
more significantly as rd increases towards the integral scale due to the effect of injec-
tion. These results, consistent with figure 5.2, suggest that both ⟨Dr.ν⟩”x and ⟨I⟩”x have
relatively limited influence in the temporally fluctuating cascade dynamics except at the
very smallest and the very largest scales of the flow. This contrasts with the significance
of these two processes in the space-time-average dynamics, where their direct influence
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Figure 5.4: DNS2 KHMH (a) standard deviations and (b) correlation coefficients.

seems to be wider in scale (i.e. compare figure 5.1 with figures 5.2-5.3) (our results in the
next section support this view on the temporally fluctuating cascade dynamics). It seems
that the cascade dynamics can be viewed in terms of the sum of a background almost
stationary cascade where both ⟨Dr.ν⟩x and ⟨I⟩x are important and a temporally varying
cascade where these two terms are less important. That is, equation (5.6) concerning the
cascade temporal fluctuations seems satisfied in our DNSs at some intermediate scales
and not the stronger equation (5.7) concerning both the cascade average and fluctuating
behaviour. With regards to equation (5.6) and the temporally fluctuating cascade dynam-
ics, it is worth mentioning the much higher correlation coefficients between ⟨At⟩x+ ⟨Π ⟩x
and −⟨ϵ∗⟩x than between ⟨Π ⟩x and −⟨ϵ∗⟩x, except at the very smallest scales. Neither
⟨Π ⟩x nor ⟨At⟩x correlates strongly with −⟨ϵ∗⟩x at scales above the Taylor scale as there
is a significant cancellation tendency between ⟨Π ⟩x and ⟨At⟩x (this might be interpreted
in terms of advection in scale space/cascading from larger to smaller scales).

The KHMH temporal standard deviations and correlation coefficients with the ABC
forcing (DNS2) (see figure 5.4) are very similar to those with the negative damping forcing
(DNS3). This suggests that the temporally fluctuating cascade dynamics is relatively
insensitive to the large-scale forcing. The KHMH spatio-temporal averages are also very
similar (not shown).

It is important to note that the considerations in this section are not restricted to
low Reynolds numbers. With increasing Reynolds number/range of scales one can expect
an intermediate range of scales which might approximately be in K41 equilibrium, but
one would still have larger scales similar to the integral length scale where unsteadiness
is important in the cascade dynamics (Goto and Vassilicos, 2016b). Having validated
our DNSs and KHMH physical space approach, we next delve further into the cascade
dynamics by proposing and examining with our DNSs a formalised time-lag hypothesis
partially motivated by the above spatially averaged cascade dynamics.
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5.2 A Formalised Time-lag Hypothesis for

Homogeneous Turbulence

A common concept to study the turbulent energy cascade is a time characterising the
finite time larger-scale energy uses to cascade to dissipative scales. Typically, this time-
lag is discussed informally (Lumley, 1992; Goto and Vassilicos, 2016a) or it is determined
as the time-lag which optimises a (often high) correlation coefficient between a large-
and a small-scale quantity (Wan et al., 2010; Cardesa et al., 2015; Ballouz et al., 2020;
Vela-Martín, 2022b). With the notable exception of Bos et al. (2007), it is rarely used
to predict the turbulence cascade dynamics. Bos et al. (2007) assumes in freely decay-
ing homogeneous turbulence a time-lag between the large-scale spatio-ensemble averaged
interscale transfer rate ⟨Π ⟩ax,E and the spatio-ensemble averaged dissipation rate ⟨ϵ∗⟩x,E
and uses this as a starting point to predict the dissipation coefficient in freely decaying
homogeneous turbulence. This example shows how a formalisation of the popular time-
lag idea can lead to non-trivial results. We next argue that the time-lag hypothesis of
Bos et al. (2007) can be generalised to a wider range of scales in both forced and freely
decaying homogeneous/periodic turbulence in an instantaneous spatially averaged sense.

The previous section corroborated that in homogeneous/periodic turbulence with 5 ≲

La/L≪ ∞ in a wide range of scales at low to moderate Reλ:

i. ⟨Π ⟩ax < 0 almost always in time;

ii. A”
t + Π ” ≈ −ϵ∗” almost always in time,

where condition (ii) is not applicable at the largest and smallest scales of the flow. This
behaviour (i)-(ii) can be connected to time-lagged cascades by the argument of Lumley
(1992). If the dissipation fluctuations in (ii) only directly affect scales rd < λ, energy
fluctuations at scales λ < rd < L are not directly affected by production, dissipation
or diffusion. Hence, one might expect from (ii) that an energy fluctuation at scales
λ < rd < L is conserved and simply cascaded from larger to smaller scales (i) in a finite
time. Similarly, an interscale transfer fluctuation at such scales could be expected to cause
a temporal fluctuation in the future dissipation rate. Such cascade behaviour is consistent
with the relatively limited correlations between the interscale transfer and dissipation at
scales ⟨λ⟩t < rd < ⟨L⟩t in figure 5.3 and the limited local importance of ϵ∗ in the cascade
dynamics at such scales (see chapter 3). That is, the above fluctuating cascade picture can
be characterised as unsteady, unidirectional (from larger to smaller scales) and inertial,
i.e. energy fluctuations are not directly affected by production, dissipation or diffusion.

Before formalising the above cascade picture, we highlight one additional topic perti-
nent to the time-lagged cascade dynamics. Figure 5.5 displays time series from our DNSs
of the KHMH terms in condition (ii). Firstly, there is a time-lag between Π ” and ϵ∗”

which tends to decrease with rd (we quantify this time-lag below). Secondly, as discussed
and demonstrated in the study of spectral energy transfers in Khurshid et al. (2021), it is
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Figure 5.5: Time series of Π ”(rd, t), ϵ∗”(t) and (A”
t (rd, t) + Π ”(rd, t)). (a1, a2) rd = ⟨λ⟩t,

(b1, b2) rd = ⟨L⟩t/2. (a1, b1) ⟨Reλ⟩t = 112, (a2, b2) ⟨Reλ⟩t = 174.

only the slow/low-frequency part of the interscale transfer that is cascaded to the dissi-
pative scales (Goto et al. (2017) discusses the slow/quasiperiodic turbulence evolution in
forced homogeneous/periodic turbulence at length). The fast/high-frequency interscale
transfers might not be transmitted through the scales as they are too fast to markedly
affect ⟨|δu|2⟩ax (Khurshid et al., 2021) (there is a differential relation between interscale
transfer and ⟨|δu|2⟩ax (5.1) such that both a significant interscale transfer amplitude and
duration is required to significantly affect ⟨|δu|2⟩ax). The high-frequency interscale trans-
fers seem to decrease in amplitude at smaller rd with a closer resemblance between Π ”

and subsequent ϵ∗”. This behaviour is consistent with the ratio La/rd increasing as rd
decreases such that intermittent high-frequency interscale transfers are increasingly av-
eraged out, leaving only the slow/quasiperiodic turbulence evolution affecting Π ”. It
follows that one should expect a causal relation between the present interscale transfer
and the future dissipation to be more accurate at the lower rather than the higher end
of λ < rd < L.

Given the above deliberations, we propose the following formalisation of the unsteady
cascade behaviour in homogeneous/periodic turbulence denoted the "formalised time-lag
hypothesis":

⟨Π ⟩ax(rd, t) ≈ −CΠ ⟨ϵ∗⟩x(t+ τ), (5.8)



5. SPATIALLY AVERAGED UNSTEADY ENERGY EXCHANGES 107

0 1 2 3 4 5

rd/〈λ〉t

0.0

0.2

0.4

0.6

0.8

1.0

C
Π 〈Reλ〉t = 111

〈Reλ〉t = 112

〈Reλ〉t = 174

Figure 5.6: Formalised time-lag prefactor CΠ = 1− (⟨Ia⟩x,t + ⟨Da
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where τ > 0 is the (single) time delay between subsequent variations in interscale transfer
and dissipation, which is monotonically increasing with rd. The prefactor CΠ is required
to ensure consistency with the time/ensemble-averaged KHMH equation (5.3) and reads

CΠ = 1− ⟨Ia⟩x,t/E + ⟨Da
r,ν⟩x,t/E

⟨ϵ∗⟩x,t/E
. (5.9)

We use the remainder of this section to test the formalised time-lag hypothesis. We
start by showing consistency between (5.8) and the average KHMH behaviour (5.3).
In forced homogeneous turbulence, by virtue of the spatio-temporally averaged KHMH
equation, the prefactor can be re-written CΠ (rd) = ⟨Π ⟩ax,t(rd)/⟨ϵ∗⟩x,t. If we insert this
expression for CΠ (rd) into (5.8) and apply a time average, we obtain

⟨Π ⟩ax,t(rd) ≈ −CΠ (rd)⟨⟨ϵ∗⟩x(t+ τ)⟩t = ⟨Π ⟩ax,t(rd) (5.10)

under the condition that ⟨⟨ϵ∗⟩x(t+τ)⟩t = ⟨ϵ∗⟩x,t. This condition concerns the delay τ and
is satisfied by e.g. a delay which only depends on rd (see τ below). The CΠ (rd)-values in
our DNSs are displayed in figure 5.6. One can imagine that CΠ (rd) tends to unity at the
lower end of ⟨λ⟩t < rd < ⟨L⟩t as the Reynolds number increases with limited injection
and viscous diffusion in scale space.

In freely decaying homogeneous turbulence, the spatio-ensemble averaged KHMH
equation at scales rd > λ reads ⟨At⟩ax,E ≈ −⟨Π ⟩ax,E − ⟨ϵ∗⟩x,E with ⟨At⟩ax,E < 0 (see
Goto and Vassilicos (2016b)). This behaviour is consistent with the ensemble-averaged
(5.8) (CΠ ≈ 1 with I = 0 and ⟨Da

r,ν⟩x,E ≈ 0)

− ⟨Π ⟩ax,E(rd, t) ≈ ⟨ϵ∗⟩x,E(t+ τ) (5.11)

as long as −⟨Π ⟩ax,E(rd, t) and ⟨ϵ∗⟩x,E(t) are decaying in tandem with a delay such that
the viscous dissipation is always corresponding to the more negative interscale transfer
rate of the past. This corresponds to a decreasing −⟨Π ⟩ax,E(rd, t)/⟨ϵ∗⟩x,E(t) ratio with
increasing rd, in agreement with the results and argument in Goto and Vassilicos (2016b).
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Figure 5.7: (a) Optimal time delays τ/T and the vertical lines denote ⟨λ⟩t/⟨L⟩t. We have
inserted a linear and a 2/3 rd-scaling. (b) Correlations at optimal time delays
Rτ (rd) (solid lines) and at no time delay R0(rd) (dashed lines). The black
horizontal line equals 1.0.

We next use our DNSs of forced homogeneous/periodic turbulence to test the for-
malised time-lag hypothesis instantaneously. For now we assume that τ is a function of
rd only τ = τ(rd) and calculate the delay as τ(rd) = argmaxτ ′ R(rd, τ

′
), where R(rd, τ

′
)

is the correlation function between ⟨Π ⟩ax(rd, t) and −⟨ϵ∗⟩x(t) with time-lag τ ′ . We also
consider the correlations with optimal time-lag Rτ (rd) = R(rd, τ(rd)) and no time-lag
R0(rd) = R(rd, 0) to compare the formalised time-lag hypothesis and no time-lag across
scales rd. Figure 5.7(a) displays the time-lags τ(rd), while figure 5.7(b) shows the Rτ (rd)

and R0(rd) values at the three DNSs. If we first focus on the larger scales, we see that
τ(⟨L⟩t) ≈ 2.0T with correlations Rτ = (0.7, 0.6, 0.8) with increasing Reynolds number.
The Reynolds number difference might be due to the injection being less important in
the dynamics at the highest Reynolds number (see figures 5.1-5.4). These Rτ correlation
values contrast with the no time-lag correlations R0 = (0.2,−0.2,−0.2). As we move to
smaller rd, the delays τ decrease and the correlations increase. There is still a significant
difference between no time-lag and the formalised time-lag hypothesis at rd ≈ ⟨λ⟩t with
τ(⟨λ⟩t) ≈ 0.5T and time-lagged correlations (0.95, 0.94, 0.99) and no time-lag correlations
(0.70, 0.65, 0.90) (displayed in increasing Reynolds number). This difference between τ

and τ = 0 is consistent with the significant presence of unsteadiness in the cascade dy-
namics at the Taylor scale (see figures 5.2-5.4). At scales below ⟨λ⟩t the delay tends
to zero with correlations close to unity for the formalised time-lag hypothesis and no
time-lag (the τ -values are similar to those of Khurshid et al. (2021) in their figure 5(c)).

The large time-lag at the close to viscous rd ≈ ⟨λ⟩t is an interesting result. Conven-
tionally, and as we introduced τ above, the delay τ is thought of as the time it takes
larger-scale energy to cascade to viscous scales. However, τ in the formalised time-lag
hypothesis is the delay between interscale transfer and viscous dissipation. Hence, τ in-
cludes both the inertial cascading time from larger scales to viscous scales and the time
it takes this energy at viscous scales to be dissipated. That this latter time seems to
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Figure 5.8: Correlation functions R(rd, τ
′
) between ⟨Π ⟩ax and −⟨ϵ∗⟩x at scale rd with time

delay τ ′ . (a, b, c) for (DNS2,DNS3,DNS4).

be non-zero is consistent with our results in chapter 4 with only a limited tendency of a
direct balance between interscale transfer and viscous effects at small scales. This latter
small-scale time scale might be similar to the physical space viscous diffusion time scale,
which at ⟨λ⟩t is given as tν ∼ ⟨λ⟩2t/ν ∼ T (where we used the definition of the Taylor scale
and the Taylor dissipation scaling (Sreenivasan, 1998)). Note that our above justification
of the formalised time-lag hypothesis leaves the possibility of a τ diffusive component
open. We merely hypothesise that there exists a τ > 0 which increases with rd such that
⟨Π ⟩ax(rd, t) ≈ −CΠ (rd)⟨ϵ∗⟩x(t+ τ), not that τ = 0 at the doorstep to the viscous scales.

We can probe the time-lag between interscale transfer and dissipation more closely
with their correlation functions at rd = ⟨λ⟩t and rd = ⟨L⟩t/2 in figure 5.8. We see as
expected that the maximum correlation shifts to the right and decreases as we consider
larger scales and that the maximum correlations also increase with the Reynolds num-
ber. The correlation functions with DNS3-DNS4 (figure 5.8(b, c)) decrease to zero at
approximately 2T after τ and reach their most negative value approximately 4T after τ .
This behaviour can be explained by the quasiperiodic behaviour of the interscale trans-
fer and dissipation rates in our simulations (see figure 5.5), which has an approximate
period T ∼ 8T (and this type of behaviour is usual in DNSs of forced homogeneous
turbulence across Reynolds numbers and forcings (Goto and Vassilicos, 2015; Goto et al.,
2017)). It is readily shown that two sine functions with period T and time-lag τ have
correlation function R(τ

′
) = cos[2π(τ

′ − τ)/T ]. Hence, the time-lag in the formalised
time-lag hypothesis seems to first and foremost capture this low-frequency, quasiperiodic
behaviour. It follows that predicted time delays must be sufficiently accurate to capture
this behaviour, i.e. deviations in predicted time delays relative to an optimal time delay
τ

′ − τ must be an order of magnitude less than T , which approximately equals 0.8T

in our DNSs (the behaviour with the ABC forcing is slightly different with less clear
quasiperiodic behaviour with R(rd, τ

′
) > 0 for all τ ′).

So far we have considered time-lags which only depend on scale rd. However, locally



110
5.2. A FORMALISED TIME-LAG HYPOTHESIS FOR HOMOGENEOUS

TURBULENCE

0 5 10 15 20 25

0.8

0.9

1.0

1.1

1.2
−
〈Π

〉a x
(r

d
,t
)/
(C

Π
〈ǫ

∗ 〉
x
(t

+
τ
′ )
)

τ
′
= τ(rd)

τ
′
= 0

(a1)

0 5 10 15 20 25

0.8

0.9

1.0

1.1

1.2 (a2)

0 5 10 15 20 25

t/T

0.8

0.9

1.0

1.1

1.2

−
〈Π

〉a x
(r

d
,t
)/
(C

Π
〈ǫ

∗ 〉
x
(t

+
τ
′ )
)

(b1)

0 5 10 15 20 25

t/T

0.8

0.9

1.0

1.1

1.2 (b2)

Figure 5.9: Ratio −⟨Π ⟩ax(rd, t)/CΠ (rd)⟨ϵ∗⟩x(t + τ
′
) with τ

′
= τ(rd) and τ

′
= 0. (a1, a2)

rd = ⟨λ⟩t, (b1, b2) rd = ⟨L⟩t/2. (a1, b1) ⟨Reλ⟩t = 112, (a2, b2) ⟨Reλ⟩t = 174.

in space and time, separate cascade chains will cascade energy to smaller scales more
quickly or less quickly than τ(rd) (see e.g. Lumley (1992); Vela-Martín (2021, 2022b)).
When considering the spatially averaged manifestation of this behaviour, one suspects at
a given scale rd a distribution of time delays τ between the spatially averaged interscale
transfer and dissipation. In the case of our DNSs, where τ in the formalised time-lag
hypothesis seems to mainly capture the low-frequency quasiperiodic cascade imbalances,
we have that a time-invariant τ(rd) captures the time-lagged cascade behaviour as long as
the temporal variations in the delay τ are order 0.1T or less (i.e. 0.8T in our simulations).
That is, a single time-lag approximation of the time-lagged cascade behaviour with time
scale T is accurate when the typical variations of τ − τ are less than or order 0.1T .
The good results in figure 5.7(b) suggest that the temporal variations in the delay are
limited in this sense, in particular at scales rd ≲ ⟨λ⟩t. This is supported by the results in
Vela-Martín (2022b), where the difference in time-lag between large scales and average
enstrophy ωiωi compared to intense or weak enstrophy equals roughly 0.5T (see their
figure 6(b). Enstrophy is a small-scale quantity). It seems that only a crude/approximate
scale-dependent time-lag estimate is needed to capture the quasiperiodic behaviour as it is
evolving slowly and the temporal variations in local time delays are limited in comparison.
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We end this section by testing whether the LHS and RHS of the formalised time-lag hy-
pothesis have equal magnitudes. We first consider the ratio −⟨Π ⟩ax(rd, t)/(CΠ (rd)⟨ϵ∗⟩x(t+
τ(rd))). The time series of these ratios at scales rd = ⟨λ⟩t and rd = ⟨L⟩t/2 are given in
figure 5.9 with τ(rd) values from figure 5.7(a) and the no time-lag value τ = 0. First note
that the ratios oscillate around unity as the formalised time-lag hypothesis is accurate in a
time-averaged sense with τ = τ(rd) or with τ = 0. Figure 5.9 also shows that the interscale
transfer rate is better at predicting the future rather than the present dissipation rate.
E.g. the ratio of the temporal standard deviation of −⟨Π ⟩ax(rd, t)/(CΠ (rd)⟨ϵ∗⟩x(t + τ

′
))

to its time-average value at ⟨Reλ⟩t = 174 with rd = ⟨L⟩t/2 equals 2.3% for τ ′
= τ(rd)

and 7.6% for τ ′
= 0. At rd = ⟨λ⟩t these values reduce to 0.8% and 3.3% for τ ′

= τ(rd)

and τ ′
= 0 respectively.

The accuracy of the formalised time-lag hypothesis can be checked more carefully with
figure 5.10. We plot the root-mean-square

√︁
⟨ϕ2⟩t of the residual ϕ of the formalised time-

lag hypothesis (i.e. the difference between its RHS and LHS). This error measure captures
errors due to time-averaged non-zero errors and fluctuating errors as ⟨ϕ2⟩t = ⟨ϕ⟩2t +

⟨(ϕ”)2⟩t where ϕ”(t) = ϕ(t) − ⟨ϕ⟩t. It is clear from this figure that the formalised time-
lag hypothesis has the best performance at approximately rd ≈ ⟨λ⟩t with approximately
80% and 90% of the future dissipation rate fluctuations predicted by the present interscale
transfer rate at the lower and highest ⟨Reλ⟩t. At the very smallest scales the performance
deteriorates due to the effect of viscous diffusion in the fluctuating dynamics. At the
largest scales the precision of the formalised time-lag hypothesis is also poor, presumably
from the effects of the fluctuating injection and high-frequency interscale transfers. Note
the significant improvements over local equilibrium at the lower end of ⟨λ⟩ < rd < ⟨L⟩t.
E.g. for ⟨Reλ⟩t = 174 for ⟨λ⟩ < rd < 3⟨λ⟩ the normalised time-lag RMS ranges from 10%

to 30% while the normalised local equilibrium RMS ranges from 40% to 100%.
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5.2. A FORMALISED TIME-LAG HYPOTHESIS FOR HOMOGENEOUS

TURBULENCE

In this section we predicted the unsteady cascade behaviour in homogeneous/periodic
turbulence in terms of the formalised time-lag hypothesis. The hypothesis is consistent
with the average cascade behaviour and it relatively accurately predicts the dissipa-
tion rate in our DNSs of forced homogeneous/periodic turbulence at the lower end of
⟨λ⟩t < rd < ⟨L⟩t. It is important to emphasize that this hypothesis yields non-trivial pre-
dictions at as low Reynolds numbers as ⟨Reλ⟩t ∼ 100 where unsteadiness/non-equilibrium
is ubiquitous. This result and the similar behaviour with different large-scale forcings are
consistent with the relatively limited importance of the injection fluctuations I” in the
fluctuating cascade dynamics (see figures 5.2-5.4). That is, the formalised time-lag hy-
pothesis seems relatively insensitive to the large-scale forcing. The time-lag τ seems to
primarily capture the low-frequency, quasiperiodic turbulence evolution, making it rela-
tively easy to develop time-lag estimates which are sufficiently accurate to capture the
unsteady turbulence evolution. It is also worth mentioning that one can expect the for-
malised time-lag hypothesis also to apply at larger scales at higher Reynolds number (this
is suggested by the interscale transfer and dissipation time series in figure 9 of Goto and
Vassilicos (2016a) at ⟨Reλ⟩t = 490). In sum, one can suspect the formalised time-lag
hypothesis to be broadly applicable to predict the spatially averaged dissipation rate in
homogeneous/periodic turbulence. Future investigations with DNSs of forced and freely
decaying homogeneous/periodic turbulence are required to verify this conjecture.

We focus our attention on the practical utility of this dissipation prediction in the
two next sections in terms of corrections to the K41 equilibrium behaviour and a new
dissipation scaling. By having a clear physical basis for these predictions, it is relatively
straightforward to establish their inherent limitations. This physical justification is also
useful for potential later generalisations of non-equilibrium predictions to naturally oc-
curring flows. E.g. if the spatially averaged (|δu|2)a at intermediate scales is moving in
space as it is cascading, it will not only be a time-lag between interscale transfers and
dissipation, but also a spatial separation:

⟨Π ⟩ax(x, rd, t) ≈ −CΠ ⟨ϵ∗⟩x(x+ xτ , t+ τ) (5.12)

with the spatial separation xτ given

xτ (x, rd, t) =

∫︂ t+τ

t

u(x(x, t), t
′
)dt′, (5.13)

where x(x, t) is the Lagrangian trajectory following u from (x, t) and τ > 0 is mono-
tonically increasing with rd (see Wan et al. (2010); Ballouz et al. (2020) for Lagrangian
investigations of large-to-small-scale time-lags). Equations (5.12)-(5.13) should not be
taken too literally. They are only intended to show how simply the (physical space)
formalised time-lag hypothesis might be generalised to accommodate spatial transport
effects. From this or an analogue starting point, one can develop non-equilibrium predic-
tions similarly as we do next for the simpler case of homogeneous/periodic turbulence.
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5.3 Time-lag Corrections to Local Equilibrium

The local equilibrium hypothesis ⟨Π ⟩ax(rd, t) ≈ −⟨ϵ∗⟩x(t) predicts ⟨At⟩ax(rd, t) ≈ 0 at
sufficiently small inviscid scales. It can be used to motivate a r2/3d -scaling of the second-
order structure function (see Kolmogorov (1941a) and section 1.1). The previous section
demonstrated that the formalised time-lag hypothesis ⟨Π ⟩ax(rd, t) ≈ −CΠ (rd)⟨ϵ∗⟩x(t+ τ)

is more accurate with τ = τ(rd) than local equilibrium τ = 0 in our low to moderate
Reynolds number DNSs of forced homogeneous/periodic turbulence. In this section we
use the formalised time-lag hypothesis to develop corrections to the K41 cascade dynamics
and second-order structure function scaling. We verify these expressions with our DNSs
and compare them with previous works on non-equilibrium/unsteadiness corrections to
K41 (Yoshizawa, 1994; Woodruff and Rubinstein, 2006; Bos and Rubinstein, 2017).

5.3.1 Non-equilibrium Dynamics from Time-lag Corrections

We first develop non-equilibrium corrections to the K41 cascade dynamics from the for-
malised time-lag hypothesis. This equilibrium/non-equilibrium decomposition of the cas-
cade dynamics supposes that it is meaningful to write ⟨Π ⟩ax(rd, t) = Π (rd, t) + ˜︁Π (rd, t),
where Π (rd, t) = −CΠ (rd)⟨ϵ∗⟩x(t) is the equilibrium interscale transfer and ˜︁Π (rd, t) is the
non-equilibrium interscale transfer. If we combine this decomposition with the formalised
time-lag hypothesis, the non-equilibrium interscale transfer can be written as

˜︁Π (rd, t) = ⟨Π ⟩ax(rd, t)− Π (rd, t), (5.14a)

= −CΠ (rd)⟨ϵ∗⟩x(t+ τ) + CΠ (rd)⟨ϵ∗⟩x(t), (5.14b)

= −CΠ (rd)
[︂
τ
d⟨ϵ∗⟩x(t)

dt
+
τ 2

2

d2⟨ϵ∗⟩x(t)
dt2

+O(τ 3)
]︂
, (5.14c)

= −CΠ (rd)⟨ϵ∗⟩x(t)
[︂
τ

1

⟨ϵ∗⟩x(t)
d⟨ϵ∗⟩x(t)

dt
+
τ 2

4

1

⟨ϵ∗⟩x(t)2
d2⟨ϵ∗⟩x(t)2

dt2
+O(τ 3)

]︂
, (5.14d)

where we used a Taylor expansion of ⟨ϵ∗⟩x(t+τ) from time t to go from (5.14b) to (5.14c).
We see from (5.14d) that the size of the terms in the ˜︁Π (rd, t) Taylor series relative to the
size of the equilibrium part Π (rd, t) = CΠ (rd)⟨ϵ∗⟩x(t) is dependent on the ratio of the
delay τ to the time scale of change of the dissipation rate Tϵ ≥ 0, where

1

st(t)Tϵ(t)
=

1

⟨ϵ∗⟩x(t)
d⟨ϵ∗⟩x(t)

dt
, (5.15)

and st(t) is the sign function of d⟨ϵ∗⟩x(t)/dt. Only when typically τ/Tϵ ≪ 1 can the
RHS in (5.14d) be accurately characterised by a truncated Taylor series. We plot the
time series of the first-order F and second-order S interscale transfer non-equilibrium
corrections relative to the equilibrium interscale transfer in figure 5.11 with τ = τ and
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Figure 5.11: Time series of non-equilibrium (a) first-order terms F and (b) second-order
terms S. Blue and green ⟨Reλ⟩t = 112, red and yellow ⟨Reλ⟩t = 174.

F (rd, t) =
τ(rd)

⟨ϵ∗⟩x(t)
⃓⃓⃓d⟨ϵ∗⟩x(t)

dt

⃓⃓⃓
, (5.16a)

S(rd, t) =
τ(rd)

2

2⟨ϵ∗⟩x(t)
⃓⃓⃓d2⟨ϵ∗⟩x(t)

dt2

⃓⃓⃓
. (5.16b)

Figure 5.11(a) shows that at scales rd ≈ ⟨L⟩t/2, the second-order correction S takes on
high values, of order unity and seems to be typically larger than the first-order correction
F . At scales rd ≈ ⟨λ⟩t, the first- and second-order corrections seem similar in magnitude
S ∼ F . The time-average values of F and S in figure 5.12(a) agree with these observa-
tions. At scales rd ≥ 0.5⟨λ⟩t, S is on average similar or larger than F . Hence, at no scale
rd ≥ 0.5⟨λ⟩t is there a magnitude separation F ≫ S in our low to moderate Reynolds
number DNSs. This suggests that τ/Tϵ ̸≪ 1 such that (5.14) cannot be expressed as a
truncated Taylor series in our DNSs. At even higher ⟨Reλ⟩t there might exist a limited
range of intermediate scales where τ is sufficiently small such that τ/Tϵ ≪ 1, but this sce-
nario would not yield non-equilibrium corrections at larger scales similar to L (assuming
similar Tϵ values in homogeneous/periodic turbulence). It appears that the above Taylor
expansion of the non-equilibrium interscale transfer has limited applicability in studying
the non-equilibrium cascade dynamics. The Taylor series cannot be truncated at larger
scales as the spatially averaged dissipation rate is evolving too quickly compared to the
time-lag τ (i.e. the degree of non-equilibrium is too severe to allow such a truncation).

The previous section showed that the formalised time-lag hypothesis mainly captures
low frequencies, not high frequencies (see also Khurshid et al. (2021)). The causal re-
lation between larger-scale interscale transfer and dissipation seems restricted to slow,
quasiperiodic cascade imbalances. Rather than developing non-equilibrium corrections
to the full interscale transfer, we need to restrict ourselves to its lower frequencies. To
develop low-frequency non-equilibrium corrections, we apply a low-pass filtering, denoted
with superscript < (and defined in detail below), to the expression for the non-equilibrium
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Figure 5.12: (a) Average size of non-equilibrium first-order corrections ⟨F ⟩t(rd) (solid
lines) and second-order corrections ⟨S⟩t(rd) (dashed lines). (b) Average size
of low-pass non-equilibrium first-order corrections ⟨FL⟩t(rd) (solid lines) and
second-order corrections ⟨SL⟩t(rd) (dashed lines).

interscale transfer (5.14)

˜︁Π<(rd, t) = ⟨Π a⟩<x (rd, t)− Π
<
(rd, t) (5.17a)

= −CΠ (rd)
[︂(︁
τ
d⟨ϵ∗⟩x(t)

dt

)︁<
+
(︁τ 2
2

d2⟨ϵ∗⟩x(t)
dt2

)︁<
+O(τ 3)

]︂
, (5.17b)

= −CΠ (rd)⟨ϵ∗⟩<x (t)
[︂ 1

⟨ϵ∗⟩<x (t)
(︁
τ
d⟨ϵ∗⟩x(t)

dt
)
)︁<

+
1

⟨ϵ∗⟩<x (t)
(︁τ 2
2

d2⟨ϵ∗⟩x(t)
dt2

)︁<
+O(τ 3)

]︂
.

(5.17c)

We define associated non-equilibrium to equilibrium first- and second-order corrections

FL(rd, t) =
τ(rd)

⟨ϵ∗⟩<x (t)
⃓⃓⃓(︁d⟨ϵ∗⟩x(t)

dt

)︁< ⃓⃓⃓
, (5.18a)

SL(rd, t) =
τ(rd)

2

2⟨ϵ∗⟩<x (t)
⃓⃓⃓(︁d2⟨ϵ∗⟩x(t)

dt2
)︁< ⃓⃓⃓

, (5.18b)

and the time scale of change of the low-pass filtered dissipation rate Tϵ< as

1

st(t)Tϵ<(t)
=

1

⟨ϵ∗⟩<x (t)
(︁d⟨ϵ∗⟩x(t)

dt

)︁<
, (5.19)

where st(t) is the sign function of (d⟨ϵ∗⟩x(t)/dt)<. By restricting ourselves to low frequen-
cies rather than all frequencies, a truncated Taylor series of the low-pass non-equilibrium
interscale transfer requires τ/Tϵ< ≪ 1 rather than the more restrictive τ/Tϵ ≪ 1 (the
low-pass filtering tends to make Tϵ< > Tϵ). We next specify the low-pass filtering method-
ology before assessing if τ/Tϵ< ≪ 1 in terms of FL and SL in our DNSs of forced homo-
geneous/periodic turbulence.
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For a quantity q(m) sampled at discrete times 0 ≤ m ≤ M − 1, we limit frequency
leakage effects with a Hamming window (Blackman and Tukey, 1958; Prabhu, 2018)

h(m) = 0.54− 0.46 cos
(︁ 2πm

M − 1

)︁
, (5.20)

i.e. we calculate the windowed signal qw(m) = h(m)q(m). We calculate the FFT of
qw(m), denoted ⌒

q w(f), where f denotes frequency. We apply a low-pass filter

g(f) =

{︄
1.0, |f | ≤ 1/(2T ),

0.0, |f | > 1/(2T )
(5.21)

to ⌒
q w(f) to obtain ⌒

q
<

w(f) = g(f)˜︁qw(f). Finally, we apply an inverse FFT to ⌒
q
<

w(f) to
obtain the low-pass filtered q(m) with cut-off frequency 1/(2T ), denoted q<. This cut-off
frequency approximately retains the quasiperiodic cascade imbalances (if one low-pass
filters the formalised time-lag hypothesis (5.8) with this low-pass filtering methodology,
we obtain behaviour very similar to the formalised time-lag hypothesis in terms of time-
lags τ , correlation coefficients and residuals (not shown)).

Figure 5.12(b) shows the average low-pass first- and second-order corrections FL and
SL. The second-order contribution becomes smaller than the first-order contribution at
scales below ⟨L⟩t and at rd ≈ ⟨λ⟩t there is an approximate order of magnitude difference.
Hence, at the lower end of ⟨λ⟩t < rd < ⟨L⟩t, τ seems to be typically smaller than the time
scale of change of the low-pass filtered dissipation rate Tϵ< . It follows that we indeed
can express the low-pass non-equilibrium interscale transfer rate in terms of the first and
second terms in the Taylor expansion (5.17b)

˜︁Π<(rd, t) ≈ −CΠ (rd)
[︂(︁
τ
d⟨ϵ∗⟩x(t)

dt

)︁<
+
(︁τ 2
2

d2⟨ϵ∗⟩x(t)
dt2

)︁<]︂
. (5.22)

We test the validity of (5.22) by calculating the residuals and correlations between its
LHS and RHS (and we calculate the LHS as ˜︁Π<(rd, t) = ⟨Π a⟩<x (rd, t) + CΠ (rd)⟨ϵ∗⟩<x (t)).
We denote the first- and second-order terms in (5.22) as FΠ = CΠ (rd)τ(rd)(d⟨ϵ∗⟩x(t)/dt)<
and SΠ = CΠ (rd)τ

2/2(d2⟨ϵ∗⟩x(t)/dt2)<. Figure 5.13(a, b) shows that the first- and first-
plus second-order terms are best at predicting ˜︁Π<(rd, t) close to the lower end of ⟨λ⟩t <
rd < ⟨L⟩t, where approximately 80% of its fluctuations are predicted. The residuals
increase as rd increases towards the integral length scale and at scales below the Taylor
scale. Figure 5.13(c, d) with time series of ˜︁Π<, −FΠ and −FΠ − SΠ makes the different
behaviour of the LHS and RHS in the ˜︁Π< prediction clearer. At ⟨λ⟩t the majority of the˜︁Π< fluctuations are captured by −FΠ with some limited improvement in accuracy with
the inclusion of −SΠ . At ⟨L⟩t the phase of ˜︁Π< is approximately captured by −FΠ −SΠ ,
but it overpredicts its amplitude as important higher-order terms in the Taylor expansion
are neglected. This is consistent with the relatively high correlations and residuals in
figure 5.13(a, b) at scales close to ⟨L⟩t. The time series are similar for DNS2 and DNS4.
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Figure 5.13: (a) First- and second-order residuals RMS(˜︁Π<+FΠ )/RMS(˜︁Π<) (solid lines)
and RMS(˜︁Π< +FΠ + SΠ )/RMS(˜︁Π<) (dashed lines). (b) First- and second-
order correlations corr(˜︁Π<,−FΠ ) (solid lines) and corr(˜︁Π<,−FΠ − SΠ )

(dashed lines).(c, d) Time series of ˜︁Π<, −FΠ and −FΠ − SΠ (normalised
by ⟨ϵ∗⟩) at rd = ⟨λ⟩t and rd = ⟨L⟩t. ⟨Reλ⟩t = 112.

The truncated Taylor series (5.22) can also be used to predict the low-pass filtered
time derivative term. If we combine the equilibrium/non-equilibrium decomposition of
⟨Π a⟩<x (rd, t) with the low-pass filtered spatially averaged KHMH equation, we obtain

⟨Aa
t ⟩<x + ˜︁Π< = −(1− CΠ )⟨ϵ∗⟩<x + ⟨Da

r,ν⟩<x + ⟨Ia⟩<x . (5.23)

If the temporal fluctuations of the RHS of this equation are typically small relative to
the temporal fluctuations of its LHS, one might approximate ⟨Aa

t ⟩<x + ˜︁Π< ≈ 0. This
approximation seems most accurate at scales close to the Taylor scale with CΠ close
to unity and limited temporal fluctuations of the viscous diffusion in scale space and
injection. Assuming ⟨Aa

t ⟩<x + ˜︁Π< ≈ 0, we obtain

⟨Aa
t ⟩<x (rd, t) ≈ −˜︁Π<(rd, t) ≈ CΠ (rd)

[︂(︁
τ
d⟨ϵ∗⟩x(t)

dt
)
)︁<

+
(︁τ 2
2

d2⟨ϵ∗⟩<x (t)
dt2

)︁<]︂
. (5.24)
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Figure 5.14: First- and second-order residuals (a) and correlations (b) as defined in figure
5.13 with ⟨Aa

t ⟩<x switched with ˜︁Π<. (c, d) Time series of ˜︁Π<, FΠ and FΠ+SΠ

(normalised by ⟨ϵ∗⟩) at rd = ⟨λ⟩t and rd = ⟨L⟩t. ⟨Reλ⟩t = 112.

We test (5.24) with DNS3-DNS4 in figure 5.14 similarly as we tested the ˜︁Π<(rd, t)

prediction in figure 5.13. In terms of residuals and correlations (figure 5.14(a, b)), the
⟨Aa

t ⟩<x (rd, t) predictions have residuals and correlations very similar to the ˜︁Π<(rd, t)

predictions, consistent with ⟨Aa
t ⟩<x + ˜︁Π< ≈ 0. The time series in figure 5.14(c, d) are

approximately identical to the time series in figure 5.13(c, d) (except a minus sign as
⟨Aa

t ⟩<x (rd, t) ≈ −˜︁Π<(rd, t)) with similar behaviour for DNS2 and DNS4.
Figures 5.12(b)-5.13-5.14 show that at low to moderate Reynolds numbers the for-

malised time-lag hypothesis can be used to decompose the low-pass filtered cascade dy-
namics into equilibrium and non-equilibrium parts, where the non-equilibrium part equals
the truncated series (5.24). This approach is most accurate at the lower end of ⟨λ⟩t <
rd < ⟨L⟩t in our DNSs of forced homogeneous turbulence (where ⟨L⟩t = 3⟨λ⟩t − 5⟨λ⟩t in
our DNSs). These predictions capture approximately 70− 90% of the fluctuations of the
non-equilibrium dynamics in our DNSs at these scales smaller than and similar to the in-
tegral length scale. At these scales the non-equilibrium corrections are modest τ/Tϵ< ≪ 1,
allowing the truncation of the full non-equilibrium series (5.17b). Towards the upper end
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of ⟨λ⟩t < rd < ⟨L⟩t and at scales rd < ⟨λ⟩t the predictions of the non-equilibrium dy-
namics are less accurate as the formalised time-lag hypothesis (and the truncated Taylor
expansion at larger scales) is less accurate. One can susupect that (5.24) is also accurate
at higher Reynolds numbers at inviscid scales rd ≲ L with decreasing magnitude relative
to the equilibrium dynamics as rd and τ/Tϵ< decrease.

The non-equilibrium dynamics (5.24) can be used to study the time/ensemble-averaged
non-equilibrium dynamics in homogeneous/periodic turbulence. Applying time-averages
to (5.24) in forced/statistically stationary homogeneous/periodic turbulence, yields no
average non-equilibrium effects. If we apply an ensemble-average ⟨⟩E to (5.24), we obtain

⟨Aa
t ⟩E ≈ −⟨˜︁Π ⟩E ≈ CΠ (rd)

[︂
⟨τ d⟨ϵ

∗⟩x(t)
dt

)⟩E + ⟨τ
2

2

d2⟨ϵ∗⟩x(t)
dt2

⟩E
]︂
, (5.25)

where we assumed that the ensemble-averaged terms approximately only contain frequen-
cies equal or below the cut-off frequency, i.e. ⟨q<⟩E ≈ ⟨q⟩E. (5.25) can be used to predict
the ensemble-averaged non-equilibrium cascade dynamics in decaying homogeneous tur-
bulence. (5.25) highlights how finite large-to-small scale time-lags can yield non-zero aver-
age effects and that these non-equilibrium corrections are most clearly identified in terms
of spatially averaged cascade dynamics. If one would extend the above non-equilibrium
predictions to flows with spatial transport, one could obtain expressions similar to (5.25)
to estimate non-equilibrium corrections. Having established the applicability of the non-
equilibrium dynamics (5.24), we next use it to arrive at low-pass non-equilibrium correc-
tions to the (⟨|δu|2⟩ax)<(rd, t) scaling behaviour in homogeneous/periodic turbulence.

5.3.2 Non-equilibrium Second-order Structure Function Scaling

from Time-lag Corrections

We next develop non-equilibrium predictions for the (⟨|δu|2⟩ax)<(rd, t) scaling behaviour.
In the following we first relate (⟨|δu|2⟩ax)<(rd, t) to the full low-pass interscale transfer
rate ⟨Π a⟩<x (rd, t) before applying its equilibrium/non-equilibrium decomposition to arrive
at the (⟨|δu|2⟩ax)<(rd, t) equilibrium and non-equilibrium scaling behaviour.

We investigate two closures relating ⟨Π a⟩<x (rd, t) and (⟨|δu|2⟩ax)<(rd, t) (see Monin and
Yaglom (1975)). The first is a low-pass "weak" Kovasznay closure (Kovasznay, 1948)

⟨Π a⟩<x (rd, t) = −DKov
(⟨|δu|2⟩ax)<(rd, t)3/2

rd
, (5.26)

where we use the term weak to note that the prefactor DKov can depend on rd in a
non-dimensional manner (e.g. rd/L), the type of forcing (including non-forcing I = 0)
and/or the Reynolds number, but not time t explicitly. We assume that the temporal
variations of ⟨Π a⟩<x (rd, t) are given approximately by (⟨|δu|2⟩ax)<(rd, t)3/2 and vice versa
and the rd-dependence is essentially left undetermined. That is, we focus on the temporal
variations around some rd-dependent average behaviour (see e.g. Iyer et al. (2020)).
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Figure 5.15: (a) Time-lags τu(rd)/T for the time-lagged closure (5.27) (solid lines) and
time-lags τ(rd)/T from figure 5.7(a) (dashed lines). (b) Kovasznay prefac-
tor normalised temporal standard deviations σ(DKov)/⟨DKov⟩t (dashed lines)
and σ(CKov)/⟨CKov⟩t (solid lines). (c) Time-average Kovasznay prefactors
⟨DKov⟩t (dashed lines) and ⟨CKov⟩t (solid lines) calculated from equations
(5.26)-(5.27)(⟨DKov⟩t and ⟨CKov⟩t overlap). (d) Correlation coefficients be-
tween the LHS and RHS of the closure with no time-lag (5.26) (dashed lines)
and the LHS and RHS of the time-lagged closure (5.27) (solid lines).

The second closure we investigate is a time-lagged low-pass weak Kovasznay closure

⟨Π a⟩<x (rd, t) = −CKov
(⟨|δu|2⟩ax)<(rd, t+ τu)

3/2

rd
, (5.27)

where the delay τu > 0 is increasing with rd and CKov may have the same dependencies
as we listed above for DKov. This closure is motivated by Khurshid et al. (2021) who
found a significant delay between the low-pass spectral transfer and the low-pass energy
spectrum at the same wavenumber (see their figure 6). There is a differential relation
between ⟨Π a⟩<x (rd, t) and (⟨|δu|2⟩ax)<(rd, t), suggesting that a variation in ⟨Π a⟩<x (rd, t)
will only lead to a variation in (⟨|δu|2⟩ax)<(rd, t) some time later (Khurshid et al., 2021)
(see the third paragraph of section 5.2). We focus on these two closures because of their
simplicity and as they allow us to compare our (⟨|δu|2⟩ax)<(rd, t) predictions with earlier
studies which used the strong Kovasznay closure DKov = const. (see section 5.3.3).
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Before testing these closures, we calculate the scale-dependent time-lags τu(rd) as in
the previous section (τu(rd) is the delay which maximises the correlation between the LHS
and RHS of (5.27) at scale rd) and we display the results in figure 5.15(a). These τu(rd)
values are significant relative to the time-lags between interscale transfer and dissipation
τ(rd) and the quasiperiodic cascade imbalances 0.1T ≈ 0.8T . Note that as τu < τ ,
the time-lag between (⟨|δu|2⟩ax)< at scale rd and the dissipation rate is shorter than the
time-lag between the interscale transfer at scale rd and the dissipation rate.

We next test the two closures by calculating the Kovasznay prefactors DKov and CKov

from (5.26) and (5.27) at every time instant and require that the closure(s) captures the
temporal fluctuations, i.e. σ(DKov) ≪ ⟨DKov⟩t or σ(CKov) ≪ ⟨CKov⟩t (where σ(q) denotes
the temporal standard deviation of q = q(t)). Figure 5.15(b) shows that across the DNSs
and scales rd the time-lagged version of the low-pass Kovasznay closure better captures
temporal variations than the non-time-lagged version of the low-pass Kovasznay closure.
Figure 5.15(c) shows the similar average Kovasznay prefactors ⟨DKov⟩t and ⟨CKov⟩t across
scales (their curves overlap). These prefactors vary considerably with rd, implying that
the ⟨Π a⟩<x scale dependence is not captured by only ((⟨|δu|2⟩ax)<)3/2 (a strong Kovasznay
closure DKov = const. is not justified by our DNSs). Figure 5.15(d) shows the correlation
coefficients between the LHS and RHS of (5.26) and (5.27). As could be expected,
the time-lagged version of the low-pass Kovasznay closure outperforms the non-time-
lagged version of the low-pass Kovasznay closure in terms of correlations. We conclude
from figure 5.15 that the time-lagged low-pass weak Kovasznay closure provides a quite
accurate relation between ⟨Π a⟩<x and (⟨|δu|2⟩ax)< temporal variations in our DNSs at low
to moderate ⟨Reλ⟩t, in particular at the lower end of ⟨λ⟩t < rd < ⟨L⟩t.

The closure (5.27) and the earlier non-equilibrium dynamics can be used to develop
the (⟨|δu|2⟩ax)<(rd, t) scaling behaviour. We re-arrange (5.27) for (⟨|δu|2⟩ax)<(rd, t) and
use the formalised time-lag hypothesis to obtain

(⟨|δu|2⟩ax)<(rd, t) =
[︂
− rd/CKov(rd)⟨Π a⟩<x (rd, t− τu

]︂2/3
, (5.28a)

=
[︂
rdCΠ (rd)/CKov(rd)⟨ϵ∗⟩<x (t+ τ − τu)

]︂2/3
. (5.28b)

As ⟨ϵ∗⟩<x (t + τ) can be approximated with a truncated Taylor series from t to t + τ , we
can similarly approximate ⟨ϵ∗⟩<x (t+ τ − τu) as τ − τu < τ , which yields the expression

(⟨|δu|2⟩ax)<(rd, t) ≈
[︂rdCΠ (rd)

CKov(rd)

(︁
⟨ϵ∗⟩<x (t)+

((τ − τu)
d⟨ϵ∗⟩x(t)

dt
)< + (

(τ − τu)
2

2

d2⟨ϵ∗⟩x(t)
dt2

)<
)︁]︂2/3

, (5.29a)

≈
(︁rdCΠ (rd)

CKov(rd)
⟨ϵ∗⟩<x (t)

)︁2/3[︂
1 +

2

3⟨ϵ∗⟩<x (t)
((τ − τu)

d⟨ϵ∗⟩x(t)
dt

)<+

1

3⟨ϵ∗⟩x(t)
(︂
((τ − τu)

2d
2⟨ϵ∗⟩x(t)
dt2

)< − 1

3

1

⟨ϵ∗⟩<x (t)
(︁
(τ − τu)

d⟨ϵ∗⟩x(t)
dt

)︁<
)2
)︂]︂
, (5.29b)
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Figure 5.16: (a) RMSs between the LHS and RHS of (5.29b) with the zeroth-order term
(solid lines), with the zeroth- and first-order term (proportional to τ − τu)
(dashed lines) and with the full RHS of (5.29b) (dotted lines). RMSs are
normalised with σ(⟨|δu|2⟩ax)<). (b) The same line-styling as (a) but it con-
tains correlation coefficients.

where we moved from (5.29a) to (5.29b) by "pulling" ⟨ϵ∗⟩<x (t) out from the parenthesis
before assuming small non-equilibrium corrections relative to the equilibrium behaviour.
The scaling (5.29b) contains three contributions: the zeroth order/equilibrium contri-
bution independent of τ − τu, the first order non-equilibrium contribution proportional
to τ − τu and the second-order non-equilibrium contribution proportional to (τ − τu)

2.
Note that this expansion parameter τ − τu differs from the expansion parameter for the
non-equilibrium dynamics τ due to finite time-lags between ⟨Π a⟩<x and (⟨|δu|2⟩ax)<.

We next test (5.29b) in terms of residuals and correlations in figure 5.16 and we
investigate how the behaviour depends on the inclusion of the first-order and second-
order non-equilibrium corrections (we use for the calculations τ − τu = τ(rd) − τu(rd)).
There are significant decreases in residuals and increases in correlations by including the
first-order non-equilibrium term in the scaling compared to only the zeroth-order term.
This observation is valid across scales and DNSs. At the lower end of ⟨λ⟩t < rd < ⟨L⟩t,
the first-order non-equilibrium scaling captures 80%− 90% of the ⟨|δu|2⟩ax)< fluctuations
compared to 65% − 80% with the zeroth-order prediction. The largest improvements in
accuracy are seen at the highest Reynolds number where the truncated series expansion
of the non-equilibrium dynamics and the time-lagged low-pass weak Kovasznay closure
are the most accurate. This might also explain the slight improvement in accuracy by
including the second-order term at the highest Reynolds number, but this effect seems
negligible at the lower Reynolds numbers.

The results in figures 5.15-5.16 show that the low-pass non-equilibrium dynamics along
with an appropriate time-lagged relation between interscale transfer and ⟨|δu|2⟩ax)< can be
used to develop an accurate ⟨|δu|2⟩ax)< non-equilibrium scaling. The scaling is applicable
at our low to moderate Reynolds numbers and significantly outperforms the equilibrium
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Figure 5.17: Time-averaged ⟨(|δu|2)a⟩, zeroth-order time-averaged non-equilibrium scal-
ing (rdCΠ (rd)/CKov(rd))

2/3⟨⟨ϵ∗⟩<x (t)2/3⟩t, the K41 scaling r2/3d ⟨ϵ∗⟩2/3 and the
time-average of the RHS of (5.29b) ("Second"). The blue, red and green
lines overlap and the black vertical lines denote ⟨λ⟩t/⟨L⟩t. The y-axis unit
is arbitrary. (a) ⟨Reλ⟩t = 112, (b) ⟨Reλ⟩t = 174. The behaviour is similar
with the ABC forcing (DNS2).

scaling at scales ⟨λ⟩t < rd < ⟨L⟩t. We remind the reader that the physical basis for
the ⟨|δu|2⟩ax)< scaling is time-lags between low-pass interscale transfers and subsequent
low-pass ⟨|δu|2⟩ax)< and dissipation temporal variations which are limited, yet significant
enough to make ⟨|δu|2⟩ax)< evolve in time according to (5.29b). This physical basis and
the similar delay behaviour observed in Khurshid et al. (2021) at ⟨Reλ⟩t ≤ 390 suggest
that the non-equilibrium scaling (5.29b) might extend to and possibly improve at higher
Reynolds numbers. Higher ⟨Reλ⟩t DNSs are required to test the applicability of (5.29b).

In forced homogeneous turbulence (⟨|δu|2⟩ax)< evolves according to the quasiperiodic
turbulence evolution and on average it is only the zeroth order term which is non-zero
(see figure 5.17). If we consider an ensemble-average of (5.29b), we have at first order

⟨⟨|δu|2⟩ax(rd)<⟩E =
(rdCΠ (rd)

CKov(rd)

2/3[︂
⟨(⟨ϵ∗⟩<x )2/3⟩E + ⟨ 2

3(⟨ϵ∗⟩<x )1/3
((τ − τu)

d⟨ϵ∗⟩x
dt

)<⟩E
]︂
.

(5.30)
The dissipation rate decay in freely decaying periodic/homogeneous turbulence and the
time-lag behaviour (5.29b) yield a non-zero (negative) average effect on the ⟨⟨|δu|2⟩ax(rd)<⟩E
scaling. Hence, even though the average effect of the (⟨|δu|2⟩ax)< non-equilibrium correc-
tions equal zero in forced homogeneous/periodic turbulence, these or analogue time-lag
non-equilibrium corrections might be important in other flows. By extending the above
framework to statistically stationary spatially decaying flows one can imagine similar
non-zero average time-lag effects on the ⟨⟨|δu|2⟩ax(rd)<⟩t scaling behaviour.

We next verify a popular time-lag scaling with our DNSs, allowing us to compare our
non-equilibrium predictions with similar predictions from other studies.
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Figure 5.18: (a) Coefficient in (5.31) Cτ = τ(rd)/(r
2/3
d (CKov/CΠ )

1/3⟨⟨ϵ∗⟩<x (t)−1/3⟩t). (b)
Comparison of ⟨τ ∗⟩t (solid lines) and τ (dashed lines). (c) Temporal standard
deviations of τ ∗ relative to its time-averaged values across scales. Vertical
lines denote ⟨λ⟩t/⟨L⟩t. (d) Correlation coefficients between ⟨Π ⟩ax(rd, t) and
⟨ϵ∗⟩x(t+ τ ∗(rd, t)) (solid lines) and ⟨ϵ∗⟩x(t+ τ(rd)) (dashed lines).

5.3.3 Local Delay Scaling and Comparison with Similar Studies

A classical model for estimating the time-lag at some intermediate scale rd to dissipative
scales is the "loca"l scaling τ ∗(rd, t) ∼ rd/(⟨|δu|2⟩ax)<(rd, t)1/2 (Lumley, 1992; Wan et al.,
2010; Ballouz et al., 2020; Vela-Martín, 2022b). This scaling follows from dimensional
necessity if one assumes that τ ∗ at scale rd is only dependent on the local length and
velocity scales. We can rephrase this local τ ∗-estimate by use of the (⟨|δu|2⟩ax)<(rd, t)
scaling (5.29b) at zeroth-order as

τ ∗(rd, t) = Cτr
2/3
d (

CKov(rd)

CΠ (rd)
)1/3⟨ϵ∗⟩<x (t)−1/3, (5.31)

where Cτ = const. > 0. We use only the zeroth-order (⟨|δu|2⟩ax)<(rd, t) scaling as this
is sufficiently accurate to capture the time-lagged cascade behaviour (and it avoids a
non-linear expression for τ ∗). In contrast to the earlier τ(rd) time-lag estimate, τ ∗(rd, t)
varies not only with scale rd but also with time t.

Figure 5.18 tests the accuracy of the local delay scaling τ ∗ (5.31). We first calculate
the proportionality coefficient Cτ in (5.31) by applying a time average to this relation and
matching it with τ(rd) (see the caption of figure 5.18 and figure 5.18(a)). Cτ seems to ap-
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proximately equal 3.5 for ⟨λ⟩t < rd < ⟨L⟩t. We use this Cτ -value to calculate τ ∗(rd, t) with
(5.31) at every time-instant and calculate the correlation coefficients between ⟨Π a⟩x(rd, t)
and ⟨ϵ∗⟩x(t+ τ ∗(rd, t)). Having matched τ ∗ with τ in a time-averaged sense, it is not sur-
prising that their time-average values are very similar (see figure 5.18(b)). The results in
figure 5.18(c) are less obvious and show that the temporal standard deviations of τ ∗ are
tiny compared ⟨τ ∗⟩t. If we consider τ ∗(rd = ⟨λ⟩t) ≈ 0.5T (see figure 5.18(c)), the typi-
cal τ ∗ variation is order 0.01− 0.02T which is almost three orders of magnitude smaller
than T = 8T . Hence, it is not surprising that the correlation coefficients between the
interscale transfer and dissipation are close to identical with a τ(rd) time-lag or with a
τ ∗(rd, t) time-lag (see figure 5.18(d)). Equation (5.31) provides a decent fit to τ with
negligible effect of τ ∗(rd, t) temporal variations. Note that the rd-dependency of τ ∗ is
given by r

2/3
d (CKov(rd)/CΠ (rd))

1/3 which has approximately the same rd-dependency as
τ(rd). Figure 5.7(a) in section 5.2 suggests that τ(rd) follows a linear rd-scaling rather
than a r2/3d -scaling in our DNSs due to the rd-dependencies of CKov and CΠ . Above we
only used the local delay scaling to approximate the delay between interscale transfer and
dissipation τ . Figure 5.15(a) suggests that τu follows approximately the same local scal-
ing with a proportionality coefficient Cτu < Cτ . Having verified the local delay scaling,
we insert it into the first-order non-equilibrium dynamics (5.24)

⟨Aa
t ⟩<x (rd, t) = CτCΠ (rd)

2/3CKov(rd)
1/3r

2/3
d

(︂ 1

⟨ϵ∗⟩<x (t)1/3
d⟨ϵ∗⟩x(t)

dt

)︂<

, (5.32)

and in the first-order non-equilibrium second-order structure function scaling (5.29b)

⟨(|δu|2)a⟩<x (rd, t) =
(︁ CΠ (rd)

CKov(rd)

)︁2/3
r
2/3
d

[︂
⟨ϵ∗⟩<x (t)2/3

+
2

3
(Cτ − Cτu)

(︁CKov(rd)

CΠ (rd)

)︁1/3
r
2/3
d

1

⟨ϵ∗⟩<x (t)1/3
(︁ 1

⟨ϵ∗⟩<x (t)1/3
d⟨ϵ∗⟩x(t)

dt

)︁<]︂
. (5.33)

These expressions can be compared with similar studies. Yoshizawa (1994); Woodruff
and Rubinstein (2006); Horiuti and Tamaki (2013) and Bos and Rubinstein (2017) con-
sider the (spectral) cascade dynamics in terms of a decomposition into equilibrium and
non-equilibrium parts, where the non-equilibrium part is represented as a perturbation
expansion. Horiuti and Tamaki (2013) and Bos and Rubinstein (2017) combine this
assumption with a strong Kovaznay closure (DKov = const.) to arrive at the following
non-equilibrium dynamics at first-order

∂E(k, t)

∂t
=

2

3

1

D
2/3
K

k−5/3 1

⟨ϵ⟩x(t)(t)1/3
d⟨ϵ⟩x(t)(t)

dt
, (5.34)

and the following energy spectrum at zeroth- and first-order

E(k, t) =
1

D
2/3
K

⟨ϵ⟩x(t)2/3k−5/3
[︂
1 +

2

3

1

D
2/3
K

k−2/3 1

⟨ϵ⟩x(t)4/3
d⟨ϵ⟩x(t)
dt

]︂
. (5.35)
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As there is no one-to-one correspondence between the spectral and physical space
cascade dynamics and between the energy spectrum and the second-order structure func-
tion (Frisch, 1995), we will limit our comparison to three qualitative differences between
(5.32)-(5.33) and (5.34)-(5.35). Such a qualitative comparison is supported by the phys-
ical space time-lag results in this chapter and the Fourier space time-lag results in the
literature (see e.g. Goto and Vassilicos (2016a)); if time-lag effects are important in the
energy cascade, they should be similarly predictable in both physical and Fourier spaces.
Note that the scale/wavenumber dependencies of (5.32)-(5.34) and (5.33)-(5.35) are equal
(disregarding CΠ and CKov rd-variations for now).

The first qualitative difference between these expressions is the absence of low-pass
filtering in (5.34)-(5.35). By developing (5.32)-(5.33) from the formalised time-lag hy-
pothesis, we showed that it is only for the low-pass filtered dynamics a truncated series
expansion of the non-equilibrium dynamics is applicable. The second qualitative differ-
ence is the neglect of the time-lag between interscale transfers and the energy spectrum
in (5.35) compared to the presence of this effect in (5.33) in terms of Cτ −Cτu . This has
the effect of overestimating the first-order non-equilibrium effect for the energy spectrum
scaling. Finally, finite Reynolds number effects are discarded in (5.34)-(5.35) in terms of
no CΠ (= 1) or DK rd-dependencies. One can expect that these three differences limit the
accuracy of the Fourier space predictions (5.34)-(5.35). By starting with a Fourier space
formalised time-lag hypothesis and repeating the steps in this section, one could arrive
at more accurate Fourier space predictions and develop their limitations/applicability.

To summarise this section, our DNSs of low to moderate ⟨Reλ⟩t forced homoge-
neous/periodic turbulence support the non-equilibrium predictions (5.32)-(5.33) (and the
more general expressions (5.24)-(5.29b)), in particular at the lower end of ⟨λ⟩t < rd <

⟨L⟩t. The key to arriving at these relations is our formalisation of the cascade time-
lag idea. From this starting point, we develop under which conditions the formalised
time-lag hypothesis can be used to develop simple non-equilibrium corrections to local
equilibrium. An appropriate time-lagged relation between the interscale transfer rate and
⟨(|δu|2)a⟩<x (rd, t) is also required to develop non-equilibrium corrections to the second-
order structure function scaling. Our physical space rather than Fourier space approach
facilitates a similar assessment of cascade unsteadiness effects in other appropriate tur-
bulent flow regions (see e.g. appendix D with (5.32)-(5.33) adapted to grid turbulence).

5.4 Time-lags and Dissipation Scaling Laws

We end this chapter by developing a new dissipation scaling law for forced homoge-
neous/periodic turbulence based on the phenomenology of a time-lagged energy cascade
and the quasiperiodic turbulence evolution; typically in forced homogeneous/periodic
turbulence the dissipation rate and the large-scale kinetic energy are in anti-phase with
long time periods T of order 10 − 20T (and this behaviour can be understood in terms
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Figure 5.19: Time series of u(t)/u0, L(t)/L0 and ϵ(t)/ϵ0. (a, b, c): (DNS2,DNS3,DNS4).

of a time-lagged cascade (Goto et al., 2017)). We think of this behaviour as composed
of two phases: in the first phase there is more than average kinetic energy at the large
scales and the dissipation rate is lower than average and vice versa in the second phase.
We translate this large- and small-scale anti-correlation into a dissipation scaling, noting

L(t) = 3π/4

∫︂ ∞

0

k−1E(k, t)/K(t)dk, (5.36a)

K(t) =

∫︂ ∞

0

E(k, t)dk, (5.36b)

such that L(t)/L0 (where L0 ≡ ⟨L⟩t) can be interpreted: the ratio of the large-scale energy
to the total energy at time t relative to its average ratio (note the large-scale weighing in
(5.36a) from k−1). When L(t)/L0 > 1, there is more than average energy among the large
scales such that we expect less than average dissipation ⟨ϵ⟩x(t)/ϵ0 < 1 (where ϵ0 = ⟨ϵ⟩t)
and similarly when L(t)/L0 < 1 we expect ⟨ϵ⟩x(t)/ϵ0 > 1. This argument is restricted
to the case of limited kinetic energy variations K(t) ≈ const. and note that the velocity
r.m.s. u(t) =

√︁
2/3K(t) has stronger intermediate-scale dependencies than L(t).

The time series in figure 5.19 reiterate the statistical tendency of anti-phase ⟨ϵ⟩x(t)
and L(t) observed in forced homogeneous turbulence (Goto and Vassilicos, 2015, 2016a).
Note the small u(t)/u0 fluctuations in comparison in figures 5.19(b, c), which are neither
in phase nor in anti-phase with ⟨ϵ⟩x(t) (where u0 = ⟨u⟩t). The ABC forcing time series
(figure 5.19(a)) are different and seem to contain a time scale of the order of the sampling
period 20T . This seems related to the less pronounced quasiperiodic behaviour of DNS2
compared to DNS3-DNS4, measured in terms of correlation functions (see figure 5.8).

If one assumes that the above redistributive effect between large and small scales
determines the dissipation scaling, which seems plausible in our DNSs DNS3-DNS4, one
scaling which might capture this behaviour is the "redistributive dissipation scaling"

⟨ϵ⟩x(t)− ϵ0
ϵ0

∼ −L(t)− L0

L0

. (5.37)
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Figure 5.20: Time series related to the non-equilibrium and redistributive dissipation
scalings, normalised by their time-average values. (a, b) ⟨Reλ⟩t = (112, 174).

We use our DNSs to consider the performance of this scaling compared to the Taylor
dissipation scaling law ⟨ϵ⟩x(t) ∼ u(t)3/L(t) (Taylor, 1935; Kolmogorov, 1941b) and the
non-equilibrium dissipation scaling law (Goto and Vassilicos, 2015)

⟨ϵ⟩x(t)
ϵ0

∼ (u(t)/u0)
2

(L(t)/L0)2
. (5.38)

The correlation coefficients between the LHS and RHS of the redistributive, Taylor and
non-equilibrium scaling laws in DNS3-DNS4 read (0.53, 0.75), (0.42, 0.61) and (0.52, 0.75).
The Taylor scaling is presumably outperformed by the redistributive and non-equilibrium
scaling laws as it weighs u(t) too heavily compared to L(t). The relative importance
of u(t) and L(t) can be assessed by considering their importance in the non-equilibrium
dissipation scaling in figure 5.20. These time series show that the (L(t)/L0)

−2 dependence
(blue lines) is key in capturing the ⟨ϵ⟩x(t)/ϵ0 temporal variations (green lines), while the
inclusion of (u(t)/u0)2 (red lines) yields no clear improvement or deterioration. We tested
the dissipation dependence on u(t) further by calculating correlations for ⟨ϵ⟩x(t)/ϵ0 ∼
(u(t)/u0)

m with integer m and |m| ≤ 4. These correlations do not exceed 0.01. The
correlations with the three dissipation scalings are attributable to L(t) for DNS3-DNS4.

The correlations with the redistributive and non-equilibrium scaling are very similar
and seem to increase with the Reynolds number. This latter point might be explained
by the phenomenology of a time-lagged cascade, underpinning the suggested ⟨ϵ⟩x(t) and
L(t) anti-phase behaviour, which should increase in validity as the range of scales in-
creases. Concerning the close-to-identical behaviour of the non-equilibrium scaling and
the redistributive scaling, this follows from the limited effect of (u(t)/u0)2 and the order
0.1 fluctuations of L(t)/L0 around 1 such that

1

(L(t)/L0)2
≈ 1− 2

L(t)− L0

L0

. (5.39)
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If this first-order Taylor approximation of (L(t)/L0)
−2 and u(t) ≈ u0 are inserted into

the non-equilibrium scaling (5.38), one attains after re-arranging the redistributive scaling
law (5.37). It is clear from figure 5.20 that this first-order Taylor approximation follows
(L(t)/L0)

−2 very closely in DNS3 and DNS4 (compare the blue and yellow lines). It
follows that the non-equilibrium scaling reduces to the redistributive scaling in DNS3-
DNS4. This is important as the redistributive scaling law is simpler (there is no u(t)/u0
dependence and it is linear in L(t)) so it is easier to analyse and interpret. Given the
circumstances in DNS3-DNS4, the non-equilibrium dissipation scaling can be interpreted
as resulting from a time-lagged energy cascade undergoing quasiperiodic evolution (i.e.
the justification of the redistributive scaling). L(t)/L0 captures the large-scale behaviour
and its small-scale anti-correlation tendency predicts the dissipation rate.

It must be emphasised that the justification of the redistributive scaling law is re-
stricted to relatively limited temporal variations in kinetic energy K(t) ≈ const. At
higher Reynolds numbers, theK(t) temporal variations might be larger and make the non-
equilibrium and redistributive scaling laws differ. The correlation coefficients with the
redistributive, non-equilibrium and Taylor scaling laws for DNS2 read (0.28, 0.64, 0.78).
In this simulation with the time scale of order 20T , the dissipation scaling behaviour can
not be explained by redistribution (note however the anti-correlation tendency between
ϵ(t)/ϵ0 and L(t)/L0 also in this DNS). The u(t)/u0 and ϵ(t)/ϵ0 behaviour with time scale
20T seem to have a similar phase. Hence, u(t)/u0 correlates with ϵ(t)/ϵ0 and the scal-
ing which includes the strongest u(t)/u0-dependency (the Taylor scaling) correlates most
strongly with the dissipation. Long DNS integration periods would presumably yield
similar dissipation scaling behaviour for DNS2 as with DNS3-DNS4.

The redistributive scaling might not be limited to forced homogeneous turbulence. One
can argue that in the initial period of decaying homogeneous turbulence, the dissipation
scales as in forced homogeneous turbulence due to the finite large-to-small-scale time-lag.
This is suggested by the decaying homogeneous turbulence DNSs of Goto and Vassilicos
(2016b) who found

⟨ϵ⟩x,E(t)
ϵ0

∼ (⟨u⟩E(t)/u0)2
(⟨L⟩E(t)/L0)2

(5.40)

satisfied for t < 3T , where L0, u0 and ϵ0 ∼ u30/L are characteristic length, velocity and
dissipation scales when the forcing was turned off at t = 0. In the DNSs of Goto and Vas-
silicos (2016b), the forcing was turned off when ⟨ϵ⟩x(t)/ϵ0 reached a maximum such that
L(t)/L0 initially had a small value. One can expect the quasiperiodic evolution to next
increase ⟨L⟩E(t)/L0, redistributing energy from small and intermediate scales to large
scales, with a consequent reduction in ⟨ϵ⟩x,E(t)/ϵ0. This anti-correlation tendency can
be represented by the non-equilibrium/redistributive dissipation scaling (the ⟨L⟩E(t)/L0

variations from unity are limited in this initial period (see their figure 1(a))). One might
expect from the ubiquity of the non-equilibrium dissipation scaling law (Vassilicos, 2015)
that this redistributive effect is rather common in turbulent flows. It remains to be
determined whether the redistributive effect can explain at least some of these results.
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We end this section by noting that the scaling behaviour and cascade dynamics in
decaying homogeneous turbulence at times t > 3T in Goto and Vassilicos (2016b) can also
be explained by a time-lagged energy cascade. For times t > 3T in Goto and Vassilicos
(2016b) (i) the interscale transfer, dissipation and unsteadiness terms are all similar in size
and decaying proportionally (this behaviour is denoted as "balanced non-equilibrium").
Moreover, for t > T (ii) the large-scale interscale transfer scales as ⟨u⟩E(t)3/⟨L⟩E(t) for
t > T such that the dissipation follows a Taylor scaling for t > 3T (i.e. (i)-(ii) combined).
Balanced non-equilibrium cascades were developed further in Steiros (2022) with non-
equilibrium predictions of the cascade dynamics and energy spectrum scaling consistent
with DNSs and grid turbulence experiments. It remains to explain why this transition
to balanced non-equilibrium behaviour comes about and the time of this transition.

This question might be addressed with the argument of Bos et al. (2007) and our
results. Bos et al. (2007) assumes the large-scale scaling (ii), a time-lagged cascade and
power-law decay of ⟨u⟩E(t) and ⟨L⟩E(t). These assumptions result in a Taylor scaling and
self-similar interscale transfer, dissipation and unsteadiness terms at times t > T0 + Tc

(i.e. balanced non-equilibrium), where T0 is the time (ii) is first valid and Tc is the
time-lag between large-scale interscale transfer and dissipation. That is, if the cascade is
time-lagged, the dissipation at e.g. t = 0 will scale according to the past behaviour at
time t ≈ −τ(L0) when the turbulence was still forced (i.e. non-equilibrium scaling). As
far as the dissipation is concerned, the effect of turning off the forcing is not felt before
the large scales have reacted/changed behaviour due to the force removal and this effect
has been cascaded to the small scales. Our figure 5.15(a) suggests that the kinetic energy
at scale ⟨L⟩t is only affected by a change in the interscale transfer/cascade dynamics after
a time τu(⟨L⟩t) ≈ T , i.e. at time t = T0 when (ii) is valid in Goto and Vassilicos (2016b).
It takes approximately the time Tc = τ(L0) ≈ 2T before this new large-scale behaviour
affects the dissipation at time t = 3T , the time reported in Goto and Vassilicos (2016b).

In sum, the scaling behaviour in decaying homogeneous turbulence might be divided
into an initial period t < T0 + Tc with redistributive scaling followed by a later period
of Taylor/decay scaling t > T0 + Tc (before the final period of decay sets in (Batchelor,
1953)). The scaling behaviour differs for the redistributive period and the decay period,
but they have in common that they can be explained in terms of a time-lagged energy
cascade. The similar scaling behaviour in e.g. grid turbulence (Vassilicos, 2015) suggests
that such a dual subdivision of the scaling behaviour might be beneficial to synthesise
experimental/DNS results on dissipation scaling behaviour across turbulent flows.

5.5 Summary

The concept of a time-lag between larger-scale interscale transfer and dissipation is com-
monly employed qualitatively in studies of the turbulent energy cascade. In this chapter
we propose a physical space formalisation of this concept for homogeneous/periodic tur-
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bulence denoted the formalised time-lag hypothesis. This hypothesis connects the present
spatially averaged interscale transfer rate with the future spatially averaged dissipation
rate and it is a generalisation of the cascade time-lag hypothesis of Bos et al. (2007),
which is only intended in an ensemble-averaged sense for freely decaying homogeneous
turbulence at large scales. Building on the argument in Lumley (1992), we argue that the
physical basis for this hypothesis is a fluctuating, unsteady, inertial (i.e. no direct fluctu-
ating effects of production, dissipation and diffusion) and unidirectional energy cascade.

The formalised time-lag hypothesis is consistent with the time/ensemble-averaged
behaviour in homogeneous/periodic turbulence and it is able to predict approximately
80− 90% of the dissipation rate fluctuations at the Taylor scale in our low to moderate
Reynolds number DNSs of forced homogeneous/periodic turbulence. This compares with
40−50% of the dissipation fluctuations with local equilibrium. At scales approaching the
integral scale or scales below the Taylor scale, the hypothesis is less accurate with a large
part of the dissipation fluctuations unaccounted for. It is primarily the low-frequency
quasiperiodic cascade imbalances between larger-scale interscale transfer and dissipation
(Goto and Vassilicos, 2015; Goto et al., 2017) which is captured by the formalised time-
lag hypothesis. The time-lag estimate must be sufficiently accurate to capture these
low-frequency temporal variations and a simple delay estimate only dependent on scale
rd is able to achieve this accuracy in our DNSs. Our results indicate that the delay
includes both cascading and diffusive components.

We used the formalised time-lag hypothesis to derive simple non-equilibrium correc-
tions to local equilibrium. In practice, this requires the evolution of the dissipation rate
over a delay time τ to be approximated by its truncated Taylor series. This is not feasible
at and above the Taylor scale in our low to moderate Reynolds number DNSs with the
dissipation rate evolving too rapidly compared to the time delay. However, this approach
is feasible for the low-pass filtered dynamics and second-structure function scaling at time
scales similar to and larger than the integral time scale T . In this case our predictions
for the non-equilibrium dynamics are consistent with the DNSs with significant improve-
ments over the no-time-lag predictions, in particular at scales close to the Taylor scale.
When combined with an appropriate time-lagged closure between the low-pass filtered
interscale transfer and (⟨|δu|2⟩ax)<, we obtain highly accurate second-order structure func-
tion scalings at the lower end of ⟨λ⟩t < rd < ⟨L⟩t. These predictions are similar to earlier
non-equilibrium predictions (Horiuti and Tamaki, 2013; Bos and Rubinstein, 2017), but
they are restricted to the low-pass filtered behaviour, they do account for finite Reynolds
number effects from e.g. non-negligible large-scale energy injection and use a time-lagged
Kovasznay closure to take into account the finite time-lag between interscale transfer and
(⟨|δu|2⟩ax)<. By developing non-equilibrium predictions from a clear physical basis (i.e.
the formalised time-lag hypothesis), the limitations of our non-equilibrium predictions
are clear. Moreover, by generalising the formalised time-lag hypothesis to more complex
flows, non-equilibrium predictions can be developed more generally.
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We used the phenomenology of a time-lagged energy cascade to motivate a new re-
distributive dissipation scaling law for forced homogeneous/periodic turbulence. This
scaling law specifies an anti-correlation tendency between large-scale energy and energy
dissipation from the large-to-small-scale quasiperiodic turbulence evolution (Goto et al.,
2017). As energy becomes concentrated at large scales, the small-scale energy available
for dissipation decreases and vice versa. The successful non-equilibrium dissipation scal-
ing law (Goto and Vassilicos, 2015) reduces to the redistributive scaling law in our DNSs
when the velocity r.m.s. have limited fluctuations relative to its average value and the
integral length scale to its average value has fluctuations around 1 less than or order 0.1.
Hence, the success of the non-equilibrium scaling law in our DNSs can be understood in
terms of a time-lagged energy cascade undergoing quasiperiodic evolution. We showed
that this new scaling along with the Taylor scaling, as derived by Bos et al. (2007) from
time-lag considerations, can be used to tentatively synthesise the reported dissipation
scalings in both forced and freely decaying homogeneous turbulence. These results sug-
gest that a common feature underlying these dissipation scalings is a (non-equilibrium)
time-lagged energy cascade.
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6. Conclusion

The average cascade picture in statistically stationary and homogeneous/periodic tur-
bulence is drastically different from the spatio-temporally fluctuating cascade dynamics
hidden behind it. It makes limited sense to attempt to model an unrepresentative av-
erage cascade picture rather than attempt to model the underlying cascade dynamics
which appear once the clouding effects of averages are lifted. In this thesis we have
studied the local cascade dynamics (rather than the average cascade dynamics) in forced
homogeneous/periodic turbulence in light of the objectives outlined in section 1.3.

In chapter 3 we used the Helmholtz decomposition to decompose the two-point cascade
dynamics into solenoidal and irrotational KHMH equations. At scales rd > ⟨λ⟩t our DNSs
of forced homogeneous/periodic turbulence at low to moderate ⟨Reλ⟩t show that the
solenoidal cascade dynamics can be reduced to a balance between Lagrangian transport
and solenoidal interscale transfer At + TS ≈ −Π

′

S
. This balance is a good approximation

for most times and most locations. As more than average |δu|2 is cascaded from larger
to smaller scales at a particular location, |δu|2 increases; and as more than average
|δu|2 is inversely cascaded from smaller to larger scales, |δu|2 decreases. The solenoidal
interscale transfer rate derives from non-local (in space) vortex stretching and tilting
effects of its spatial vicinity. The fluctuation intensity of the Lagrangian transport At+TS

is much reduced by comparison to At and TS as a consequence of two-point sweeping
(and increasingly so as the scale decreases). At relatively rare interscale transfer events,
viscous effects are non-negligible in the cascade dynamics (together with Π

′

S
and At+TS)

and our results indicate that viscous effects are essential for the negative skewness of
ΠS. The irrotational KHMH equation in homogeneous turbulence reduces to the exact
ΠI = TI = Tp/2, which explains the significant correlation between interscale transfer Π

and pressure-velocity Tp found in Yasuda and Vassilicos (2018). The above key solenoidal
KHMH terms and irrotational KHMH terms have typical fluctuations vastly exceeding
the average cascade behaviour (characterised by ⟨ϵ∗⟩) and typical dissipation fluctuations.

As we move to smaller scales rd < ⟨λ⟩t, the average cascade description includes effects
of interscale transfer, scale space viscous diffusion and viscous dissipation. Our solenoidal
KHMH analysis of a well-resolved DNS of forced homogeneous/periodic turbulence in
chapter 4 shows that Lagrangian transport remains important at these scales. At low
to intermediate levels of (|δu|2)a we find significant correlations between Lagrangian
transport and interscale transfer and between Lagrangian transport and viscous effects
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Da, but the correlations between interscale transfer and viscous effects are limited (and
the correlations between interscale transfer and viscous dissipation/diffusion are similarly
limited, in contrast with Frisch and Vergassola (1991)). There is a correlation tendency
between viscous effects and interscale transfer at high (|δu|2)a events, but there are still
significant correlations between At + TS and these two KHMH terms. Hence, an average
balance between interscale transfer and viscous effects at small scales is not typically
satisfied locally in time and space. At low/high levels of (|δu|2)a, physical space viscous
diffusion tends to significantly increase/decrease (|δu|2)a locally.

The spatially averaged turbulent energy cascade we study in chapter 5 is the spatially
averaged manifestation of the local cascade dynamics in chapters 3-4. The unsteady cas-
cade dynamics can be formalised in terms of a time-lag hypothesis which connects the
present spatially averaged interscale transfer to the future spatially averaged dissipation.
The hypothesis is consistent with the average KHMH dynamics and is able to predict
approximately 80− 90% of the dissipation fluctuations at scales close to the Taylor scale
in our low to moderate Reynolds number DNSs of forced homogeneous/periodic turbu-
lence. It is primarily the low-frequency cascade imbalances between larger-scale interscale
transfer and dissipation which are captured by the hypothesis. We use this hypothesis to
predict the low-pass filtered non-equilibrium cascade dynamics. This equilibrium/non-
equilibrium decomposition of the cascade dynamics relies on a truncated Taylor expan-
sion of the dissipation rate which is only possible for low-frequencies (i.e. order T−1

and below). We combine the low-frequency cascade dynamics with a time-lagged clo-
sure between interscale transfer and (⟨|δu|2⟩ax)< to obtain non-equilibrium corrections to
the second-order structure function consistent with our DNSs. Our predictions have a
clear physical basis in terms of the formalised time-lag hypothesis, making it relatively
straightforward to assess their limitations/applicability and to develop generalisations for
other turbulent flows. Finally, we used the phenomenology of a time-lagged energy cas-
cade to justify a new redistributive dissipation scaling for forced homogeneous/periodic
turbulence which performs identically to the successful non-equilibrium scaling in our
low to moderate Reynolds number DNSs DNS3-DNS4. This scaling law captures the
anti-correlation tendency between the energy dissipation and large-scale energy due to
the quasiperiodic turbulence evolution.

Our results suggest that the local and spatially averaged cascade behaviour contains
crucial insights into obtaining a deeper understanding of turbulent flows. Some of the
research questions raised by our results are as follows:

• It is important to assess the applicability of the spatio-temporal cascade dynamics
of chapters 3-4. For example, do the intermediate scale solenoidal and irrotational
KHMH dynamics reduce to At + TS ≈ −Π

′

S
and ΠI ≈ TI ≈ Tp/2 in a range

of turbulent flow regions and what are the Reynolds number effects? In more
general, anisotropic turbulent flow regions redistribution of kinetic energy across
the various δuiδui components are important (no summation over i). Solenoidal
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and irrotational evolution equations for these quantities can readily be developed
and analysed by adopting the procedures in Hill (2002) and Gatti et al. (2020) to
the irrotational and solenoidal NSD equations rather than the NSD equation.

• The combination of At + TS ≈ −Π
′

S
and intense interscale transfer events imply

concentrated regions of two-point kinetic energy |δu|2. Can a careful study of aΠS

in terms of its non-local dependence on vorticity stretching/compression and tilting
reveal the vorticity dynamics which generates high |δu|2 concentrations? Moreover,
can Lagrangian investigations of such high |δu|2 concentrations reveal if they get
spatially mixed by turbulent transport less rapidly than they are cascaded to smaller
scales? If so, such cascade behaviour could explain the intermittency build-up at
decreasing intermediate scales as discussed in Kraichnan (1974).

• Our results in chapter 4 question the validity of a local balance between viscous
dissipation/scale space diffusion and interscale transfer at small scales. In the future
it will be important to develop estimates of the smallest turbulent length and time
scales which are consistent with the local small-scale dynamics. In the regions with
the highest small-scale two-point energy, the effect of Lagrangian transport in the
dynamics is minimal. Thus, the prospect of a local balance between viscous effects
and interscale transfer seems most promising in such regions with some correction(s)
due to Lagrangian transport. Deeper insights into the small-scale dynamics in
homogeneous/periodic turbulence might be obtained by studying the local KHMH
dynamics affecting its coherent structures (Vincent and Meneguzzi, 1991; Ishihara
et al., 2013). E.g. what are the typical KHMH dynamics affecting Burgers-like
vortices? Such knowledge might be used to devise reduced-order models of small-
scale turbulence and subsequent predictions of its smallest length and time scales.

• In the future it will be essential to assess the accuracy and applicability of the for-
malised time-lag hypothesis and its associated non-equilibrium predictions in forced
and freely decaying homogeneous/periodic turbulence across a range of Reynolds
numbers and forcings. To this end, the pseudospectral method developed in ap-
pendix C for the spatially and spherically averaged KHMH terms in homoge-
neous/periodic turbulence could prove useful, allowing for efficient in-situ calcu-
lations. This time-lag hypothesis and its associated predictions might explain the
low-frequency non-equilibrium cascade dynamics and second-order structure func-
tion scaling behaviour in homogeneous/periodic turbulence. If the hypothesis and
its associated non-equilibrium predictions prove accurate and widely applicable (in
terms of Reynolds numbers and forcings), they might be extendable to other turbu-
lent flow regions (see e.g. equations (5.12)-(5.13)). Investigations of the formalised
time-lag hypothesis and non-equilibrium predictions could also be performed in
terms of their Fourier space analogues to develop non-equilibrium corrections for
the Fourier space cascade dynamics and the energy spectrum.
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• Future LES subgrid-scale (SGS) models should benefit from detailed descriptions
of spatially averaged interscale transfers (chapter 5) and local fluctuating dynamics
of interscale and interspace energy transfers (chapter 3). These two contributions
to interscale transfer dynamics suggest a mixed LES model, where the spatially
averaged interscale transfer dynamics determines the dissipative part of the model
and the local fluctuating dynamics determines the self-similarity part of the model
(mixed models are in general required to provide a priori consistency of both SGS
dissipation and mean stress (Li and Meneveau, 2004; Moser et al., 2021)).

Time-lagged cascade dynamics can be implemented in a LES model similarly as in
Horiuti and Tamaki (2013). They consider a one-equation model (Deardorff, 1974)
for the SGS energy which evolves according to grid-scale kinetic energy temporal
variations (and the eddy-viscosity is determined from the SGS energy). This model
produces good a posteriori predictions in forced homogenous/periodic turbulence.

The local cascade dynamics shows that LES models based on local equilibrium can-
not be suitable for calculating fluctuations in subgrid stresses. On the other hand,
the good correlations between subgrid stresses from similarity models and DNSs
(Bardina et al., 1980; Cimarelli et al., 2019; Abbà et al., 2022) suggest that these
models might indeed approximate (unawarely) at least some of the local cascade
dynamics due to scale invariance/similarity (Meneveau and Katz, 2000), possibly
the fact that At + TS + Π

′

S
≈ 0 holds in most of the flow most of the time. This

relation incorporates balancing between spatial fluxes and forward and backward
interscale transfers, yet a recent work by Vela-Martín (2022a) argues that such
spatial fluxes can be ignored by LES models. The importance of subgrid spatial
transfers in facilitating local interscale transfers remains to be addressed in future
works (the approach in Linkmann et al. (2018) might be used to compare the ability
of LES models to capture/retain spatial transport effects to their accuracy).

• It will be important in the future to assess the redistributive dissipation scaling
in forced homogeneous turbulence and in the initial period of freely decaying ho-
mogeneous turbulence in a range of Reynolds numbers and forcings to quantify
the effect of redistribution in the scaling. If the dissipation mainly scales accord-
ing to redistribution, it would provide a simple and possibly extendable account
of the non-equilibrium scaling behaviour. One should assess if the phenomenology
of a time-lagged energy cascade proves able to predict dissipation scaling tran-
sitions from redistributive/non-equilibrium scaling to Taylor/decay scaling. Such
predictions would be of uttermost importance for RANS turbulent flow prediction
methods, where the dissipation scaling is a crucial ingredient (Leschziner, 2016).

The issues raised in the above list suggest that further studies of spatio-temporally
varying turbulent energy cascades might yield new insights into fundamental issues in
turbulence theory and provide substantial improvements in turbulence modelling.
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A. Derivation of the KHMH Equation

In this appendix we derive the Kármán-Howarth-Monin-Hill (KHMH) equation from the
incompressible Navier-Stokes equations. The derivation is a simplified version of the more
general derivation of Hill (2002), who first derives the evolution equation for the tensor
δuiδuj before arriving at the evolution equation for δuiδui (i.e. the KHMH equation).

We first write the incompressible Navier-Stokes equations in two reference frames x+i
and x−i where the superscripts indicate the reference frame the velocity, pressure and
body forcing is evaluated. These two reference frames are independent of each other.
The Navier-Stokes equations at x+i read

∂u+i
∂x+i

= 0, (A.1a)

∂u+i
∂t

+ u+j
∂u+i
∂x+j

= −1

ρ

∂p+

∂x+i
+ ν

∂2u+i
∂x+j ∂x

+
j

+ f+
i , (A.1b)

and at x−i read

∂u−i
∂x−i

= 0, (A.2a)

∂u−i
∂t

+ u−j
∂u−i
∂x−j

= −1

ρ

∂p−

∂x−i
+ ν

∂2u−i
∂x−j ∂x

−
j

+ f−
i . (A.2b)

The next step in the derivation is to derive an evolution for the velocity difference
δui = u+i − u−i . The symbol δ preceding a quantity ϕ denotes in general δϕ = ϕ+ − ϕ−.
We introduce new reference frames xi and ri where

xi =
1

2
(x+i + x−), (A.3a)

ri = x+i − x−i . (A.3b)

xi denotes the centroid of x+i and x−i and ri their separation vector (see the illustration
of these coordinate systems in figure 3.2). Note the inverse relations

x+i = xi +
1

2
ri, (A.4a)

x−i = xi −
1

2
ri. (A.4b)
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Before proceeding we develop some useful relations between derivatives in the frame
(x+i , x

−
i ) and the frame (xi, ri). We have from (A.3)-(A.4) that

∂

∂xi
=

∂

∂x+j

∂x+j
∂xi

+
∂

∂x−j

∂x−j
∂xi

, (A.5a)

= δij
∂

∂x+j
+ δij

∂

∂x−j
, (A.5b)

=
∂

∂x+i
+

∂

∂x−i
, (A.5c)

where δij is the Kronecker delta. We also have

∂

∂ri
=

1

2

(︁ ∂

∂x+i
− ∂

∂x−i

)︁
, (A.6)

and the inverse relationships

∂

∂x±i
=

1

2

∂

∂xi
± ∂

∂ri
. (A.7)

Finally, the following relationship for the Laplacians will be useful below

∂2

∂x+j ∂x
+
j

+
∂2

∂x−j ∂x
−
j

= 2
∂2

∂rj∂rj
+

1

2

∂2

∂xj∂xj
. (A.8)

We subtract the NS equations at x−i (A.2b) from the NS equations at x+i (A.1b), which
yields

∂δui
∂t

+ u+j
∂u+i
∂x+j

− u−j
∂u−i
∂x−j

= −1

ρ

∂p+

∂x+i
+

1

ρ

∂p−

∂x−i
+ ν

∂2u+i
∂x+j ∂x

+
j

− ν
∂2u−i

∂x−j ∂x
−
j

+ δfi. (A.9)

We rewrite the non-linear, pressure and viscous terms in (A.9) in the reference frame
(xi, ri). As ∂/∂x+j ϕ− = ∂/∂x−j ϕ

+ = 0, we can express the non-linear term as

u+j
∂u+i
∂x+j

− u−j
∂u−i
∂x−j

= u+j
∂(u+i − u−i )

∂x+j
− u−j

∂(u−i − u+i )

∂x−j
, (A.10a)

= u+j
∂δui
∂x+j

+ u−j
∂δui
∂x−j

, (A.10b)

=
u+j + u−j

2

∂δui
∂xj

+ δuj
∂δui
∂rj

, (A.10c)

where we used (A.7) to go from (A.10b) to (A.10c). We can rewrite the pressure term as
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−1

ρ

∂p+

∂x+i
+

1

ρ

∂p−

∂x−i
= −1

ρ

∂δp

∂x+i
+

1

ρ

∂δp

∂x−i
, (A.11a)

= −1

ρ

∂δp

∂xi
, (A.11b)

and the viscous term as

ν
∂2u+i

∂x+j ∂x
+
j

− ν
∂2u−i

∂x−j ∂x
−
j

= ν
∂2δui
∂x+j ∂x

+
j

+ ν
∂2δui
∂x−j ∂x

−
j

, (A.12a)

= 2ν
∂2δui
∂rj∂rj

+
ν

2

∂2δui
∂xj∂xj

, (A.12b)

where we used (A.8) to arrive at the final expression. We insert (A.10c), (A.11b) and
(A.12b) into (A.9) to obtain the following NS difference equations

∂δui
∂t

+
u+j + u−j

2

∂δui
∂xj

+ δuj
∂δui
∂rj

= −1

ρ

∂δp

∂xi
+ 2ν

∂2δui
∂rj∂rj

+
ν

2

∂2δui
∂xj∂xj

+ δfi. (A.13)

We derive an evolution equation for δuiδui = |δu|2 by contracting (A.13) with 2δui

∂|δu|2
∂t

+
u+j + u−j

2

∂|δu|2
∂xj

+δuj
∂|δu|2
∂rj

= −2

ρ

∂(δpδui)

∂xi
+2δui

(︂
2ν

∂2δui
∂rj∂rj

+
ν

2

∂2δui
∂xj∂xj

)︂
+2δuiδfi,

(A.14)
where we used incompressibility to write the pressure-velocity term in conservative form.
The final task before arriving at the KHMH equation is to rewrite the viscous terms. We
first note that for ϕ = ϕ(zi), we have in general

ϕ
∂2ϕ

∂zjzj
=

1

2

∂2ϕ2

∂zj∂zj
+
∂ϕ

∂zj

∂ϕ

∂zj
. (A.15)

If we use this expression for the viscous terms we have

2δui

(︂
2ν

∂2δui
∂rj∂rj

+
ν

2

∂2δui
∂xj∂xj

)︂
= 2ν

∂2|δu|2
∂rj∂rj

+
ν

2

∂2|δu|2
∂xj∂xj

+4ν
∂δui
∂rj

∂δui
∂rj

+ν
∂δui
∂xj

∂δui
∂xj

. (A.16)

We rewrite the two rightmost terms in the RHS of (A.16) in the (x+i , x
−
i ) frame by use

of (A.5)-(A.6) to obtain

4ν
∂δui
∂rj

∂δui
∂rj

+ ν
∂δui
∂xj

∂δui
∂xj

= 2ν
[︁
(
∂u+i
∂x+j

)2 + (
∂u−i
∂x−j

)2
]︁
. (A.17)
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We insert (A.17) into (A.16) which we insert into (A.14) to obtain the KHMH equation

∂|δu|2
∂t

+
u+j + u−j

2

∂|δu|2
∂xj

+ δuj
∂|δu|2
∂rj

= −2

ρ

∂(δpδui)

∂xi

+ 2ν
∂2|δu|2
∂rj∂rj

+
ν

2

∂2|δu|2
∂xj∂xj

+ 2ν
[︁
(
∂u+i
∂x+j

)2 + (
∂u−i
∂x−j

)2
]︁
+ 2δuiδfi. (A.18)

Note that we only assumed the incompressible Navier-Stokes equation to arrive at
the KHMH equation. The formulation (A.18) of the KHMH equation is preferable to
e.g. (A.14) as this formulation lends itself to the physical interpretation of the various
terms we give in section 3.1.4. All derivatives are written in the frame (xi, ri) (except the
viscous dissipation) and all terms appear as differences (δui, δp, δfi) except the advection
velocity (uj + uj)/2. Similarly, the NS difference formulation (A.13) we use in section
3.1.3 is preferable over e.g. the NS difference formulation (A.9). To more easily recognise
the connection between the various NS, NSD and KHMH terms, we have listed them
according to their underlying NS/NSD physical mechanisms in table A.1.

One can calculate the KHMH and NSD terms in physical space with DNS data by
rewriting them in terms of the (x+i , x

−
i ) frame with e.g. the KHMH time-derivative and

NSD pressure gradient terms given as

∂|δu|2
∂t

= 2δui
(︁∂u+i
∂t

− ∂u−i
∂t

)︁
, (A.19)

−1

ρ

∂δp

∂xi
= −1

ρ

(︁∂p+
∂x+i

− ∂p−

∂x−i

)︁
. (A.20)

To sample fields or derivatives at x+i (or x−i ), the same quantities can be calculated at the
surrounding grid points and then be interpolated to x+i with some interpolation scheme
(see section 2.3 for more details on the KHMH post-processing).
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Physical mechanism NS NSD KHMH

Time-derivative al = ∂u/∂t δal = a+
l − a−

l At = 2δu · δal

Non-linearity ac = u · ∇xu δac = a+
c − a−

c Ac = 2δu · δac

Solenoidal non-linearity acS = (u · ∇xu)S δacS = a+
cS − a−

cS AcS = 2δu · δacS

Irrotational non-linearity acI = (u · ∇xu)I δacI = a+
cI − a−

cI AcI = 2δu · δacI

Physical transport [ac] aT = 1
2 (u

+ + u−) · ∇xδu T = 2δu · aT

Solenoidal physical transport [acS ] aTS
= 1

2 ((u
+ + u−) · ∇xδu)S TS = 2δu · aTS

Irrotational physical transport [acI ] aTI
= 1

2 ((u
+ + u−) · ∇xδu)I TI = 2δu · aTI

Interscale transfer [ac] aΠ = 1
2 (u

+ + u−) · ∇xδu Π = 2δu · aΠ

Solenoidal interscale transfer [acS ] aΠS
= 1

2 ((u
+ + u−) · ∇xδu)S ΠS = 2δu · aΠS

Irrotational interscale transfer [acI ] aΠI
= 1

2 ((u
+ + u−) · ∇xδu)I ΠI = 2δu · aΠS

Pressure gradient ap = −1/ρ∇xp δap = a+
p − a−

p Tp = 2δu · δap

Viscosity aν = ν∇2
xu δaν = a+

ν − a−
ν D = 2δu · δaν

Forcing f δf = f+ − f− I = 2δu · δf

Total acceleration a = ap + aν δa = a+ − a− A = 2δu · δa

Physical space diffusion [δaν ] Dx,ν = ν
2∇2

x|δu|2

Scale space diffusion [δaν ] Dr,ν = 2ν∇2
r|δu|2

Two-point pseudo-dissipation [δaν ] ϵ∗ = 2ν((∂u+
i /∂x

+
k )

2

+(∂u−
i /∂x

−
k )

2))

Table A.1: Specification of Navier-Stokes (NS), Navier-Stokes-Difference (NSD) and
Kármán-Howarth-Monin-Hill (KHMH) notation and listing of analogue NS,
NSD and KHMH terms according to their physical mechanisms. Most NSD
terms δq are related to their NS analogue q in terms of δq = q+ − q−, where
q± is q evaluated at x ± r/2 with x being the centroid position and r the
separation vector. Some NSD terms do not have a direct NS analogue as e.g.
aT and aΠ which are related indirectly to the non-linear term δac = aT +aΠ

(and such indirect relationships are highlighted with square brackets). Most
KHMH terms Q(x, r, t) are directly related to a NSD analogue q(x, r, t) as
Q = 2δu ·q. Some of the viscosity-related KHMH terms are indirectly related
to the viscous NSD term δaν as 2δu · δaν = D = Dx,ν + Dr,ν − ϵ (and these
indirect relationships are highlighted with square brackets.) Subscripts S and
I denote solenoidal and irrotational parts in physical space, while subscripts
S and I denote irrotational and solenoidal parts in centroid space (see chapter
3 for more details).
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B. Helmholtz-decomposed Dynamics in
Fourier Space

In this appendix we first list the Helmholtz decomposition for periodic fields. Second,
we show how this decomposition relates to the more general solution to the Helmholtz
decomposition in the case of incompressible fields and fields which can be written as
gradients of scalar fields. (These results are important to connect the general irrotational
and solenoidal KHMH equations and the irrotational and solenoidal KHMH equations
specific to homogeneous/periodic turbulence (see section 3.4).) Thirdly, we show that
the difference of a periodic Helmholtz decomposed term q in physical space equals the
Helmholtz decomposed term δq in centroid space and finally we show that aΠI

(x, r, t) =

aTI (x, r, t) in homogeneous/periodic turbulence (see section 3.1.3).
We first demonstrate that the longitudinal part of a periodic vector field equals the

irrotational part of the vector field and that the transverse part of a periodic vector field
equals its solenoidal part. Let q(x, t) be a periodic, twice continuously differentiable
3D vector field with the Helmholtz decomposition q(x, t) = qI(x, t) + qS(x, t), where
qI(x, t) = −∇xϕ(x, t), qS(x, t) = ∇x ×B(x, t). The scalar and vector potentials ϕ and
B are unique within constants when ∇x · q and ∇x × q are known in the domain and
q is known at the boundary (Bhatia et al., 2013). q(x, t) has the corresponding Fourier
representation ˆ︁q(k, t), which can be decomposed into a component parallel to k (the
longitudinal field ˆ︁qL) and transverse to k (the transverse field ˆ︁qT ) (Stewart, 2012)

ˆ︁qL(k, t) =
k[ˆ︁q(k, t) · k]

k2
, ˆ︁qT (k, t) = ˆ︁q(k, t)− ˆ︁qL(k, t). (B.1)

We define the scalar field Φ(x, t) as

Φ(x, t) =
∑︂
k

ˆ︁q(k, t) · ik
k2

eik·x, (B.2)

such that its Fourier modes read

ˆ︁Φ(k, t) = ˆ︁q(k, t) · ik
k2

. (B.3)
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We can write the inverse Fourier transform of ˆ︁qL as

qL(x, t) =
∑︂
k

−ik[ ˆ︁q(k, t) · ik
k2

]eik·x, (B.4)

=
∑︂
k

−ikˆ︁Φ(k, t)eik·x, (B.5)

= −∇xΦ(x, t), (B.6)

such that qL can be written as the gradient of a scalar potential. Per the uniqueness
of the Helmholtz decomposition Φ = ϕ within a constant with qI = qL. From this and
q = qI +qS = qL+qT it follows that qS = qT , which is what we wanted to demonstrate.

We next connect the Helmholtz decomposition of periodic fields to a very general
Helmholtz decomposition in the cases of incompressible fields and fields which are gra-
dients of scalar fields. The Helmholtz decomposition can be written (Sprössig, 2010)

qIV (x, t) =
1

4π

∫︂
V

dy
x− y

|x− y|3 [∇y · q(y, t)], (B.7a)

qIB(x, t) = − 1

4π

∫︂
S

dSy
x− y

|x− y|3 [ˆ︁ny · q(y, t)], (B.7b)

qSV (x, t) = − 1

4π

∫︂
V

dy
x− y

|x− y|3 × [∇y × q(y, t)], (B.7c)

qSB(x, t) =
1

4π

∫︂
S

dSy
x− y

|x− y|3 × [ˆ︁ny × q(y, t)]. (B.7d)

where qI = qIV + qIB, qS = qSV + qSB and ˆ︁ny denotes the unit surface normal at y

and dSy is the differential surface element at y. In the case of a field q(x, t) which is
incompressible ∇x · q(x, t) = 0, it follows that ˆ︁q(k, t) · k = 0 for every k. By inspection
of (B.1), it is clear that this condition yields ˆ︁qL(k, t) = 0 for every k such that ˆ︁q(k, t) =ˆ︁q(k, t)T . By applying the Fourier transform to this relation and applying qT (x, t) =

qS(x, t) from above, we have that q(x, t) = qS(x, t) for incompressible periodic vector
fields. In the case of q(x, t) = ∇xψ(x, t), where ψ(x, t) is some scalar field, we have
that ˆ︁q(k, t) = ik ˆ︁ψ(k, t). If we insert this expression into the definition of ˆ︁qL(k, t), it
follows that ˆ︁q(k, t) = ˆ︁qL(k, t), which implies that q(x, t) = qI(x, t). If these properties
are combined with equations (B.7a)-(B.7d), we obtain the following simplifications: A
periodic incompressible vector field has qIB = qIV = 0 and a periodic vector field that
can be written as a gradient of a scalar field has qSB = qSV = 0.

We next demonstrate that δqI = δqI and δqS = δqS for a periodic vector field q

(i.e. the difference of a periodic Helmholtz decomposed term q in physical space equals
the Helmholtz decomposed term δq in centroid space). The field q has the Fourier
representation

q(x, t) =
∑︂
k

ˆ︁q(k, t)eik·x, (B.8)
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with the shifted fields

q+(x, r, t) = q(x+ r/2, t) =
∑︂
k

ˆ︁q(k, t)eik·(x+r/2), (B.9a)

q−(x, r, t) = q(x− r/2, t) =
∑︂
k

ˆ︁q(k, t)eik·(x−r/2), (B.9b)

which have the Fourier coefficients

ˆ︂q+(k, r, t) = ˆ︁q(k, t)eik·r/2, (B.10a)ˆ︂q−(k, r, t) = ˆ︁q(k, t)e−ik·r/2. (B.10b)

From the definition of the irrotational part of a vector field in (B.1), it follows

δqI(x, r, t) = q+
I (x, r, t)− q−

I (x, r, t), (B.11a)

=
∑︂
k

[ˆ︂q+
I (k, r, t)− ˆ︂q−

I (k, r, t)]e
ik·x, (B.11b)

=
∑︂
k

k

k2
[ˆ︁q(k, t) · k](eik·r/2 − e−ik·r/2)eik·x, (B.11c)

=
∑︂
k

k

k2
[ˆ︁q(k, t) · k]2i sin(k · r/2)eik·x. (B.11d)

Similarly, we can write

δq(x, r, t) = q+(x, r, t)− q−(x, r, t), (B.12a)

=
∑︂
k

ˆ︁q(k, t)2i sin(k · r/2)eik·x, (B.12b)

and then calculate its irrotational centroid part

δqI(x, r, t) =
∑︂
k

k

k2
[ˆ︁q(k, t) · k]2i sin(k · r/2)eik·x, (B.13)

which shows that δqI(x, r, t) = δqI(x, r, t). By combining this with δq = δqI + δqS =

δqI + δqS, we have also δqS(x, r, t) = δqS(x, r, t), which is what we wanted to show.
We end this appendix by showing that aΠI

(x, r, t) = aTI (x, r, t) in homogeneous/periodic
turbulence. First, we list the following expressions for the vectors and tensors related to
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these two terms in Fourier space

ˆ︂δuj(k, r, t) = 2i sin(k · r/2)ˆ︁uj(k, t), (B.14a)

ˆ︂(u+j + u−j )/2(k, r, t) = cos(k · r/2)ˆ︁uj(k, t), (B.14b)ˆ︃∂δui
∂rj

(k, r, t) = ikj cos(k · r/2)ˆ︁ui(k, t), (B.14c)

ˆ︃∂δui
∂xj

(k, r, t) = −2kj sin(k · r/2)ˆ︁ui(k, t). (B.14d)

By use of these equations, we have that the Fourier coefficients of the transport terms
read (see section 2.1.1 for more details on non-linear terms and convolution sums)

ˆ︂aT (k, r, t) =
∑︂

k=k′+k′′

−2 sin(k
′′ · r/2) cos(k′ · r/2)ˆ︁uj(k′

)k
′′
j ˆ︁u(k′′

), (B.15a)

ˆ︂aΠ (k, r, t) =
∑︂

k=k′+k′′

−2 sin(k
′ · r/2) cos(k′′ · r/2)ˆ︁uj(k′

)k
′′
j ˆ︁u(k′′

). (B.15b)

Their irrotational parts are given per (B.1)

ˆ︂aTI (k, r, t) = − k

k2

∑︂
k=k′+k′′

2 sin(k
′′ · r/2) cos(k′ · r/2)ˆ︁uj(k′

)k
′′
j ˆ︁ul(k′′

)k
′
l , (B.16a)

ˆ︃aΠI
(k, r, t) = − k

k2

∑︂
k=k′+k′′

2 sin(k
′ · r/2) cos(k′′ · r/2)ˆ︁uj(k′

)k
′′
j ˆ︁ul(k′′

)k
′
l . (B.16b)

If we employ the trigonometric identity sinx cos y = 1
2
[sin(x+ y) + sin(x− y)], we get

ˆ︂aTI (k, r, t) = − k

k2

∑︂
k=k′+k′′

[sin(k · r/2) + sin(k
′′ · r/2− k

′ · r/2)]ˆ︁uj(k′
)k

′′
j ˆ︁ul(k′′

)k
′
l ,

(B.17a)

ˆ︃aΠI
(k, r, t) = − k

k2

∑︂
k=k′+k′′

[sin(k · r/2)− sin(k
′′ · r/2− k

′ · r/2)]ˆ︁uj(k′
)k

′′
j ˆ︁ul(k′′

)k
′
l .

(B.17b)

Consider the term sin(k
′′ · r/2−k

′ · r/2)ˆ︁uj(k′
)k

′′
j ˆ︁ul(k′′

)k
′
l . If one adds this term with the

wavenumber triad k
′
= ka and k

′′
= kb ̸= ka with the same term with the wavenumber

triad k
′
= kb and k

′′
= ka the result is zero. Furthermore, in the case of ka = kb this

term is zero per incompressibility. That is, this term does not contribute instantaneously
in the above expressions such that we attain what we wanted to demonstrate

ˆ︂aTI (k, r, t) = ˆ︃aΠI
(k, r, t) = − k

k2
sin(k · r/2)

∑︂
k=k′+k′′

ˆ︁uj(k′
)k

′′
j ˆ︁ul(k′′

)k
′
l . (B.18)
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C. Spatially Averaged KHMH Terms in
Fourier Space

The spatially averaged KHMH equation in homogeneous turbulence (see section 5.1)
reads

⟨At⟩x + ⟨Π ⟩x = ⟨Dr,ν⟩x − ⟨ϵ∗⟩x + ⟨I⟩x. (C.1)

In the following we derive expressions for efficient and accurate evaluations of the spatially
averaged KHMH terms in (C.1) by adapting the derivation of Gatti et al. (2019) to
homogeneous/periodic turbulence.

We start with some preliminary expressions which will be useful later. The velocity
field ui(x, t) can be written in terms of ˆ︁ui(k, t) as

ui(x, t) =
∑︂
k

ˆ︁ui(k, t)eik·x, (C.2)

and the velocity fields at x± r/2 (see appendix B) can be written as

u±i (x, r, t) =
∑︂
k

ˆ︁ui(k, t)e±ik·r/2eik·x. (C.3)

We can express from (C.3) ⟨u+i (x, r, t)u−j (x, r, t)⟩x as (in the following we drop for brevity
the u±i and f±

i dependency on (x, r, t) and the ˆ︁ui and ˆ︁fi dependency on t)

⟨u+i u−j ⟩x = ⟨
∑︂
k

ˆ︁ui(k)eik·r/2eik·x ∑︂
k′

ˆ︁uj(k′
)e−ik

′ ·r/2eik
′ ·x⟩x, (C.4a)

= ⟨
∑︂
k

∑︂
k′

ˆ︁ui(k)ˆ︁uj(k′
)ei(k−k

′
)·r/2ei(k+k

′
)·x⟩x, (C.4b)

=
∑︂
k

ˆ︁ui(k)ˆ︁u∗j(k)eik·r, (C.4c)

where the final line follows from the orthogonality of Fourier modes (Canuto et al., 1987)
(⟨ei(k+k

′
)·x⟩x equals zero for k′ ̸= −k and unity for k′

= −k) and the reality of uj which
requires ˆ︁uj(−k) = ˆ︁u∗j(k) (and ˆ︁u∗j(k) is the complex conjugate of ˆ︁uj(k)). By repeating the
steps in (C.4) for ⟨u+i u+j ⟩x and ⟨u−i u−j ⟩x, it follows that ⟨u+i u+j ⟩x = ⟨u−i u−j ⟩x = ⟨uiuj⟩x.

We next express the spatially averaged KHMH terms which only involve products of
two ui and/or fi components (i.e. all the terms in (C.1) except ⟨Π ⟩x). The spatially
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averaged time derivative term can be written in the semi-discrete form

⟨At⟩x(r, t) =
∂

∂t
⟨δuiδui⟩x, (C.5a)

=
∂

∂t

(︁
⟨u+i u+i ⟩x − 2⟨u+i u−i ⟩x + ⟨u−i u−i ⟩x

)︁
, (C.5b)

=
∂

∂t

(︁
2⟨uiui⟩x − 2⟨u+i u−i ⟩x

)︁
, (C.5c)

= 2
∂

∂t

∑︂
k

ˆ︁ui(k)ˆ︁u∗i (k)(︁1− eik·r
)︁
, (C.5d)

and the forcing term can be developed similarly as

⟨I⟩x(r, t) = 2⟨δuiδfi⟩x, (C.6a)

= 2
(︁
⟨u+i f+

i ⟩x − ⟨u+i f−
i ⟩x − ⟨f+

i u
−
i ⟩x + ⟨u−i f−

i ⟩x
)︁
, (C.6b)

= 2
(︁
2
∑︂
k

ˆ︁ui(k) ˆ︁f ∗
i (k)− ˆ︁ui(k) ˆ︁f ∗

i (k)e
ik·r − ˆ︁ui(k) ˆ︁f ∗

i (k)e
−ik·r)︁, (C.6c)

= 2
∑︂
k

ˆ︁ui(k) ˆ︁f ∗
i (k)(2− eik·r − e−ik·r). (C.6d)

The spatially averaged viscous diffusion in scale space term can be expressed as

⟨Dr,ν⟩x(r, t) = 2ν
∂2

∂r2l
⟨δuiδui⟩x, (C.7a)

= 4ν
∂2

∂r2l

∑︂
k

ˆ︁ui(k)ˆ︁u∗i (k)(︁1− eik·r
)︁
, (C.7b)

= 4ν
∑︂
k

k2ˆ︁ui(k)ˆ︁u∗i (k)eik·r, (C.7c)

where we used the expression developed for ⟨δuiδui⟩x in (C.5) to go from (C.7a) to (C.7b)
(and k2 = klkl). Similarly as for the velocity tensor ⟨uiuj⟩x, it is easy to show that
⟨(∂u+i /∂x+j )2⟩x = ⟨(∂u−i /∂x−j )2⟩x = ⟨(∂ui/∂xj)2⟩x. This allows us to write the spatially
averaged two-point pseudo-dissipation rate as

⟨ϵ∗⟩x(t) = 4ν⟨∂ui
∂xj

∂ui
∂xj

⟩x, (C.8a)

= 4ν⟨
∑︂
k

ˆ︁ui(k)ikjeikx∑︂
k′

ˆ︁ui(k′
)ik

′
je

ik
′
x⟩x, (C.8b)

= 4ν
∑︂
k

k2ˆ︁ui(k)ˆ︁u∗i (k). (C.8c)

We can write the spatially averaged interscale transfer rate in terms of velocity triple
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correlations as

⟨Π ⟩x(r, t) =
∂

∂rj
⟨δujδuiδui⟩x, (C.9a)

=
∂

∂rj
⟨u+i u+i u+j − 2u+i u

+
j u

−
i + u+j u

−
i u

−
i − u+i u

+
i u

−
j + 2u+i u

−
i u

−
j − u−i u

−
i u

−
j ⟩x. (C.9b)

We write the leftmost term in the RHS of (C.9b) as

⟨u+i u+i u+j ⟩x = ⟨
∑︂
k

⟨u+i u+i ⟩keik·x
∑︂
k′

ˆ︁uj(k′
)eik

′ ·xeik
′ ·r/2⟩x, (C.10a)

=
∑︂
k

⟨u+i u+i ⟩kˆ︁u∗j(k)e−ik·r/2, (C.10b)

where

⟨u+i u+i ⟩k =
1

N3

∑︂
x

u+i u
+
i e

−ik·x, (C.11a)

=
∑︂
k′

∑︂
k′′

ˆ︁ui(k′
)ˆ︁ui(k′′

)ei(k
′
+k

′′
)·r/2 1

N3

∑︂
x

ei(k
′
+k

′′−k)·x, (C.11b)

= eik·r/2
∑︂

k=k
′
+k

′′

ˆ︁ui(k′
)ˆ︁ui(k′′

) = eik·r/2⟨uiui⟩k, (C.11c)

such that
⟨u+i u+i u+j ⟩x =

∑︂
k

⟨uiui⟩kˆ︁u∗j(k), (C.12)

(and note the notation ⟨ϕ⟩k = ˆ︁ϕ(k)). When going from (C.11b) to (C.11c), we assume
that aliasing errors are zero or taken appropriate care of. E.g., if one applies the full
dealiasing technique of Patterson and Orszag (1971) to ⟨u+i u+i ⟩k, equation (C.11c) follows
(see also section 2.1.1). Thus, we only need to use this technique once at every time step
to calculate ⟨uiui⟩k rather than for every ⟨u+i u+i ⟩k (i.e. for every r at every time step).

We can repeat the above procedure for the five remaining terms in (C.9b) with the
only differences being the sign in front of r in (C.10b) and (C.11c) and the velocity
component indices (i.e. i or j). The five remaining terms read

−2⟨u+i u+j u−i ⟩x = −2
∑︂
k

⟨uiuj⟩kˆ︁u∗i (k)eik·r, (C.13a)

⟨u+j u−i u−i ⟩x =
∑︂
k

⟨uiui⟩kˆ︁u∗j(k)e−ik·r, (C.13b)

⟨u+i u+i u−j ⟩x =
∑︂
k

⟨uiui⟩kˆ︁u∗j(k)eik·r, (C.13c)

2⟨u+i u−i u−j ⟩x = 2
∑︂
k

⟨uiuj⟩kˆ︁u∗i (k)e−ik·r, (C.13d)

−⟨u−i u−j u−i ⟩x = −
∑︂
k

⟨uiui⟩kˆ︁u∗j(k). (C.13e)
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Clearly, ⟨u+i u+i u+j ⟩x cancels with −⟨u−i u−j u−i ⟩x. Moreover, the contributions to ⟨Π ⟩x from
(C.13b) and (C.13c) equal zero from incompressibility (kjˆ︁u∗j(k) = 0). This leaves only
the contributions from (C.13a) and (C.13d), which yield the following expression

⟨Π ⟩x(r, t) =
∂

∂rj

(︁
− 2

∑︂
k

⟨uiuj⟩kˆ︁u∗i (k)eik·r + 2
∑︂
k

⟨uiuj⟩kˆ︁u∗i (k)e−ik·r)︁, (C.14a)

= 2
∂

∂rj

∑︂
k

⟨uiuj⟩kˆ︁u∗i (k)(︁e−ik·r − eik·r
)︁
, (C.14b)

= 2
∑︂
k

⟨uiuj⟩kˆ︁u∗i (k)(−2ikj cos(k · r)), (C.14c)

= 4
∑︂
k

cos(k · r)kjℑ[⟨uiuj⟩kˆ︁u∗i (k)], (C.14d)

where the final line follows from only considering the real part of (C.14c) and ℑ[z] denotes
the imaginary part of z.

In light of the above expressions, the calculation of spatially averaged KHMH terms at
time t can be subdivided into two steps. Firstly, one obtains the required vector/tensor
fields in Fourier space. ˆ︁fi(k, t) and ˆ︁ui(k, t) are required and ˆ︁ui(k) is required at different
times to calculate the time-derivative in (C.5) (we use a first-order forward difference).
The tensor ⟨uiuj⟩k must be calculated with an appropriate method which removes alias-
ing errors (we use the method of Patterson and Orszag (1971)). This step has the same
complexity as a DNS time step O(N3 log2N). Secondly, the above fields are used in
expressions (C.5d)-(C.6d)-(C.7c)-(C.8c)-(C.14d) to calculate the non-zero spatially av-
eraged KHMH terms at a total Nr separation vectors r. This second step, which has
complexity O(N3Nr), is typically more computationally demanding than the first step
as typically Nr ≫ log2(N). The second step can be performed more efficiently if one is
interested in spherical averages. Applying a spherical average to these expressions, yields

⟨At⟩ax(rd, t) = 2
∂

∂t

∑︂
k

ˆ︁ui(k, t)ˆ︁u∗i (k, t)(︁1− sin(krd)/(krd)
)︁
, (C.15a)

⟨Π ⟩ax(rd, t) = 4
∑︂
k

kjℑ[⟨uiuj⟩k(t)ˆ︁u∗i (k, t)] sin(krd)/(krd), (C.15b)

⟨Dr,ν⟩ax(rd, t) = 4ν
∑︂
k

k2ˆ︁ui(k, t)ˆ︁u∗i (k, t) sin(krd)/(krd), (C.15c)

⟨ϵ∗⟩x(t) = 4ν
∑︂
k

k2ˆ︁ui(k, t)ˆ︁u∗i (k, t), (C.15d)

⟨I⟩ax(rd, t) = 4
∑︂
k

ˆ︁ui(k, t) ˆ︁f ∗
i (k, t)(1− sin(krd)/(krd)). (C.15e)

If the total number of considered scales Nrd ≲ log2(N), we have that the second calcu-
lation step is similarly or less expensive than the first calculation step. In this case, the
calculation of the KHMH terms (C.15) at one time step has complexity O(N3 log2N).
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D. Time-lags and Grid Turbulence

In this appendix we adapt our non-equilibrium cascade dynamics and second-order struc-
ture function scaling (5.32)-(5.33) to grid turbulence by use of Taylor’s hypothesis (Tay-
lor, 1938b; Tsinober, 2009). This results in some interesting expressions, qualitatively
consistent with experiments/DNSs, which shed led light on the relative importance of
advection to interscale transfer in grid turbulence. We start with some preliminary ex-
pressions/relations. Let u denote the fluctuating velocity field and U denote the uni-
directional mean flow in direction x. We define the KHMH unsteadiness, advection and
dissipation terms as:

At(x, r, t) = ∂/∂t(|δu|2); (D.1a)

A(x, r, t) = U∂/∂x(|δu|2); (D.1b)

ϵ∗(x, r, t) = 2ν
[︁
(∂u+i /∂x

+
j )

2 + (∂u−i /∂x
−
j )

2
]︁
. (D.1c)

Taylor’s hypothesis states that ∂/∂t = −U∂/∂x when u/U ≪ 1 where u is the u r.m.s.
If we apply this transformation to the low-pass filtered time-derivative term, we have

⟨Aa
t ⟩<x (x, t) =

∂

∂t
⟨(|δu|2)a⟩<x , (D.2a)

= −U ∂

∂x
⟨(|δu|2)a⟩<x , (D.2b)

= −⟨Aa⟩<x (x, t), (D.2c)

(where A is the advection term). We rewrite similarly the following term as

1

⟨ϵ∗⟩<x
d⟨ϵ∗⟩<x
dt

= −U 1

⟨ϵ∗⟩<x
d⟨ϵ∗⟩<x
dx

, (D.3a)

=
U

Lϵ

, (D.3b)

where Lϵ(x, t) > 0 is the dissipation length scale of change. We also rewrite the dissipation
rate in terms of the velocity r.m.s., the integral length scale and the normalised dissipation
coefficient

⟨ϵ∗⟩<x (x, t) = Cϵ(x, t)
u(x, t)3

L(x, t)
. (D.4)
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We only consider the first-order corrections to local equilibrium. If we use (D.2)-(D.3)-
(D.4) in the expression for the non-equilibrium dynamics (5.32), we obtain at first-order

− ⟨Aa⟩<x (x, t)
⟨ϵ∗⟩<x (x, t)

≈ Cτ

(︁ CKov

CΠCϵ

)︁1/3 ∗ (rd
L
)2/3 ∗ 1

u/U
∗ L

Lϵ

. (D.5)

This expression allows for a simple interpretation. The local delay reads (see (5.31))

τ ∗ = Cτr
2/3
d ∗ (CKov/CΠ )

1/3 ∗ (⟨ϵ∗⟩<x )−1/3 = Cτ (CKov/(CΠCϵ))
1/3 ∗ (rd/L)2/3 ∗L/u, (D.6)

and the advection time scale reads Ta ∼ Lϵ/U . It follows that the RHS of (D.5) is
proportional to the ratio of the delay to the advection time scale τ ∗/Ta. When this
ratio is significant, we have a non-equilibrium cascade as the energy is advected more
or similarly rapidly downstream as it is being cascaded to small scales. This expression
can also be interpreted in terms of xτ∗/Lϵ = τ ∗U/Lϵ where xτ∗ = τ ∗U is the distance
the energy at scale rd is advected before it is dissipated. If xτ∗ is similar or larger than
Lϵ, the cascade is in non-equilibrium. If (CKov/CΠ )

1/3 behaves as in forced homogeneous
turbulence, the expression (D.5) have an approximate linear rd-scaling (see figure 5.7(a)).
This would be consistent with the grid turbulence experiments in Valente and Vassilicos
(2015) where ⟨A⟩at /⟨ϵ∗⟩t ∼ −0.1 at rd/⟨L⟩t ∼ 0.1 and ⟨A⟩at /⟨ϵ∗⟩t ∼ −1 at rd/⟨L⟩t ∼ 1

(see their figure 11b). Moreover, in the initial downstream region the turbulence intensity
u/U decreases from 6% to 3% over a relatively short distance (see figure 5 of Valente and
Vassilicos (2014)) with a downstream increase in −⟨A⟩at /⟨ϵ∗⟩t (see figure 11b of Valente
and Vassilicos (2015)).

We use expressions (D.2)-(D.3)-(D.4) to express the energy scaling (5.33) as

⟨(|δu|2)a⟩<x (x, t)
u(x, t)2

≈
(︁CϵCΠ

CKov

)︁2/3
(
rd
L
)2/3 ∗

[︂
1+

2

3
(Cτ − Cτu)

(︁ CKov

CΠCϵ

)︁1/3 ∗ (rd
L
)2/3 ∗ 1

u/U
∗ L

Lϵ

]︂
. (D.7)

The first-order correction has the same interpretation as above. It is interesting that
non-equilibrium is minimised in regions with high turbulence intensity. This behaviour is
consistent with studies reporting a relatively clear −5/3 scaling of the energy spectrum in
the very near field (with high turbulence intensity) and a less clear power-law behaviour
downstream (with lower turbulence intensity) (Wissink and Rodi, 2008; Alves Portela
et al., 2017). The expressions (D.5)-(D.7) seem to contain some non-trivial qualitative
features of the cascade dynamics and energy scaling consistent with experimental/DNS
results.

Finally, with regards to the dissipation scaling in grid turbulence (see Vassilicos
(2015)), a similar argument can be applied as for freely decaying homogeneous/periodic
turbulence in section 5.4. Note that the analogue to the time t = 0 in grid turbulence is
the point x0 where production effects first become negligible at large scales.
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