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Abstract 

Conventional magnetic resonance imaging (MRI) has a pivotal role in diagnosis and post-

treatment management of glioblastoma, however it has limitations. This work investigates the 

use of advanced MRI techniques that assess the tumour microenvironment, and artificial 

intelligence (AI) techniques that compute quantitative features, as potential imaging 

biomarkers in key clinical issues faced by clinicians, through several retrospective studies. 

Results show that advanced multiparametric MRI is superior to current standard-of-care 

imaging for the diagnosis of glioblastoma, and in treatment response assessment. Results of 

AI techniques on pre-operative imaging show the ability to differentiate between 

glioblastoma and metastasis with an accuracy of 88.7%, prediction of overall survival with a 

high level of accuracy, and stratification of patients into high- and low-level groups of MGMT 

promoter methylation with accuracies between 45-67%. In the early post-treatment phase, AI 

analysis of imaging can distinguish between disease progression and pseudoprogression with 

an accuracy of 73.7%, compared to neuroradiologist accuracy of 32.9%. Integrating these 

techniques into routine clinical practice is essential to improve patient outcomes. Further 

work is required to validate advanced imaging and AI biomarkers, towards the longer-term 

goal of using these as clinical decision support tools, to benefit patients with glioblastoma and 

other brain tumours. 
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enhancement (arrow) confirming pseudoprogression. ....................................................... 53 

Figure 18. Post-operative complications following debulking of left frontal glioblastoma in a 

patient on steroids. (A) Pre-operative CE-T1WI. (B,C) IP-MRI pre-contrast and CE-T1WI 
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cavity and a shallow right frontal collection, (D) DWI shows resection-related reversible 

ischaemic changes surrounding the cavity in the left frontal lobe. (E,F) Pre-contrast and 

CE-T1WI three weeks later shows progression of residual tumour. In addition, there is a 

new lesion in the right frontal lobe, (G,H) showing strong restricted diffusion (arrow) and 

low ADC signal in keeping with right frontal lobe abscess formation. ................................ 58 

Figure 19. A case of radiation necrosis in a patient with previous craniospinal radiotherapy for 

medulloblastoma. (A,B,C) FLAIR, pre-contrast and CE-T1WI showing a ring-enhancing 

lesion in the right anterior temporal lobe (arrow). Multiparametric MRI: (D,E,F) DWI, ADC 

and rCBV maps show no restricted diffusion or significantly raised perfusion. (G,H) Single-

voxel spectroscopy shows mild elevation of Cho/Cr and raised lipid and lactate levels. 

Findings are consistent with radiation necrosis. .................................................................. 60 

Figure 20. Leukoencephalopathy following whole brain radiotherapy for brain metastases. 

(A,B) Axial T2WI and coronal FLAIR showing extensive, confluent and symmetrical white 

matter T2WI/FLAIR signal hyperintensity. (C,D) DWI and CE-T1WI shows no restricted 

diffusion or contrast enhancement. ..................................................................................... 62 

Figure 21. Case of a left parieto-occipital diffuse glioma  which was resected and treated with 

CRT 19 years ago with ongoing surveillance imaging since then. Most recent imaging (A) 

Pre-contrast T1WI, (B,C) axial and coronal CE-T1WI, (E,F) axial and coronal FLAIR, shows 

new thickened cortex with FLAIR signal hyperintensity (arrow), as well as cortical and 

leptomeningeal enhancement in the irradiated area (arrow), in keeping with SMART 

syndrome. (D) SWI shows foci of susceptibility changes indicating post-radiotherapy 
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Figure 22. Multiple radiation induced meningiomas. (A,B) Axial and (C) coronal CE-T1WI 

demonstrating multiple radiation-induced intracranial meningiomas (parasagittal, left 

tentorial and left frontal) in a patient who had cranial radiotherapy decades previously 
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Figure 23. Brain metastasis from breast carcinoma. (a) CE-T1WI showed a lesion in the motor 

area of the right mesial frontal lobe. (b) Follow-up imaging demonstrated increase in the 

lesion size with oedema. Multiparametric MRI demonstrated: (c) a low ADC (999 x10-6 

mm2/sec), (d) a borderline rCBV ratio (1.9, arrow) on PWI, and (e) high Cho/Cr ratio (3.6, 

arrow) on multi-voxel MRS (TE=30 ms). The perilesional parenchyma showed a low 

Cho/Cr ratio, reflecting vasogenic oedema as opposed to tumour infiltration. (f) 

Histopathology demonstrated poorly differentiated metastatic adenocarcinoma with 

discernible focal ductal structures and tumour well demarcated from adjacent brain 
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Figure 24. Glioblastoma mimicking a haemorrhagic metastasis. Conventional MRI: (a, b) Axial 

FLAIR and CE-T1WI, showed a haemorrhagic thick-rimmed enhancing space-occupying 

mass lesion in the right temporo-parietal region with perilesional oedema. 

Multiparametric MRI: (c, d) DWI and ADC map demonstrated susceptibility artefact due 

to haemorrhage within the lesion. (e) PWI showed high perfusion along the enhancing 

posterolateral aspect of the lesion. (f) MRS within the centre of the lesion demonstrated 

susceptibility artefact due to the presence of haemorrhage, however a high level of 

necrosis was demonstrated by the high lipid peak. (g) MRS from perilesional oedema 

showed a high Cho/Cr ratio (>2), suggesting an abnormal microenvironment. The very 

high rCBV and high Cho/Cr ratio were consistent with a high-grade glioma containing 

internal haemorrhage rather than simple haemorrhage, metastasis, lymphoma, 

granuloma or abscess. The lesion was resected and histopathology confirmed IDH-
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Figure 25. Primary CNS lymphoma. Conventional MRI Findings: (a, b) Axial T2W and post-

contrast T1W sequences showed a large homogenously enhancing lesion in the left 

occipital lobe. (c) ADC map showed very low ADC (<600 x 10-6mm2s-1) throughout the 

lesion. (d) PWI showed low perfusion throughout the lesion compared to normal-

appearing contralateral white matter. (e, f) MRS showed a very high Cho/Cr ratio (>6, 

thick arrow) and very high lipid peaks in a non-necrotic appearing lesion (TE 30 ms and 

135 ms, thin arrows). The low perfusion, very low ADC, very high lipid peak in a non-

necrotic appearing lesion and high choline peak were characteristic of lymphoma. 

Histopathology confirmed a diffuse large B-cell PCNSL....................................................... 80 

Figure 26. Atypical appearances of lymphoma. Conventional MRI Findings: (a, b) Axial T2WI 

and CE-T1WI showed a rim-enhancing space-occupying lesion in the right caudate 

nucleus with surrounding oedema. (c, d) DWI and ADC map showed very low ADC within 

the central area of necrosis. (e) PWI showed low perfusion throughout the lesion 

compared to normal-appearing contralateral white matter. (f, g) MRS showed slightly 

raised Cho/Cr ratio and the presence of lipid at 1.3 and 0.9 ppm. No amino or organic 

acid peaks were present to suggest abscess. The low perfusion, low ADC, high lipid peak 
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and only slightly raised choline favoured an atypical/necrotic-appearing lymphoma over a 

high-grade glioma. Histopathology confirmed a diffuse B-cell non-Hodgkin lymphoma. . 81 

Figure 27. Glioblastoma mimicking haemorrhagic lymphoma. Conventional MRI: (a, b) Axial 

CE-T1WI and FLAIR sequences, showed a large heterogeneous solid space-occupying 

mass lesion in the right insular lobe extending into the frontal operculum with 

perilesional oedema. (c) SWI showed susceptibility artefact indicating internal 

haemorrhage. Multiparametric MRI: (d, e) DWI and ADC map demonstrated restricted 

diffusion in the non-haemorrhagic areas of the enhancing lesion. (f) PWI showed high 

perfusion within the enhancing component. (g, h) MRS from the non-haemorrhagic 

enhancing component showed a very high Cho/Cr ratio and a very high lipid peak. 

Resection of the lesion confirmed a diagnosis of IDH-wildtype glioblastoma. .................. 82 

Figure 28. Low-grade glioma. Conventional MRI: (a) FLAIR, (b) T2WI and (c) CE-T1WI showed a 

diffuse abnormality in the left temporal lobe without contrast enhancement. (d) ADC 

map showed high ADC throughout the lesion (1300 x 10-6mm2s-1), (e) PWI showed low 

perfusion throughout the lesion (arrow) compared to normal-appearing white matter, 

and (f, g) MRS (TE 30 ms) showed slightly raised Cho/Cr ratio (1.0), slightly low NAA/Cr 

(1.1) and a very high mI/Cr ratio (0.9, arrow). Lipid or lactate peaks were not significantly 

elevated. Multiparametric MRI appearances suggested no evidence of dedifferentiation. 

Stable appearances were seen on follow-up imaging for over five years, confirming the 

lesion’s low-grade nature. ..................................................................................................... 84 

Figure 29. Non-enhancing glioblastoma. (a-c) T2WI, FLAIR and CE-T1WI sequences 

demonstrated a non-enhancing signal abnormality in the left temporal lobe. 

Multiparametric MRI: (d) Heterogeneous ADC values throughout the lesion with focal 

areas of low ADC (lowest observed 940 x 10-6mm2s-1, arrow). (e) High rCBV throughout 

the lesion (arrow) compared to normal-appearing white matter (3.5). (f) Single-voxel 

spectroscopy showed very high Cho/Cr (2.3, arrow) and Cho/NAA ratios (3.1). (g) 

Histopathology from biopsy of the lesion showed low grade diffuse astrocytoma with 

mild to moderately pleomorphic astrocytic cells in a fibrillary background. There was 

discrepancy of histological and genetic classification with morphological features of a 

low-grade glial neoplasm, but a convincing genetic profile of glioblastoma, overriding the 

morphological appearances. (h) Follow-up imaging 6 months later showed contrast 

enhancement on conventional MRI...................................................................................... 85 

Figure 30. High-grade transformation of a non-enhancing diffuse glioma and targeting biopsy 

using multiparametric MRI. Conventional MRI: (a, b) CE-T1WI and T2WI demonstrated a 

large non-enhancing space occupying mass lesion without significant oedema. 

Multiparametric MRI: (c, d) Heterogeneous ADC and rCBV values throughout the lesion. 

(e) Multi-voxel MRS clearly showed a focal area of very high Cho/Cr ratio and very small 

lactate peak. (f) A targeted biopsy was taken from the area of highest choline peak 
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(arrow), and histopathology showed anaplastic astrocytoma with moderately atypical 

astrocytic cells in a fibrillary background with a few abnormal mitoses (WHO grade 3). . 87 

Figure 31. Gliomatosis cerebri pattern of disease. Conventional MRI: (a, b) Axial FLAIR and CE-

T1WI showed diffuse non-enhancing multifocal deep white matter infiltrative lesions 

throughout both cerebral hemispheres. Multiparametric MRI: (c) ADC map demonstrated 

no areas of low ADC. (d) However, PWI showed a focal area of slightly raised perfusion in 

the right frontal centrum semiovale (arrow) compared to normal-appearing white 

matter. (e, f) MRS showed high mI/Cr ratio, slightly raised Cho/Cr ratio (1.2) and slightly 

low NAA/Cr ratio. Focal raised perfusion and choline area was chosen for the optimal site 
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Figure 32. Epidermoid-like lesion of the corpus callosum. Conventional MRI: (a-c) T2WI, FLAIR 

and CE-T1WI showed a lesion involving the splenium of the corpus callosum and right 

parietal lobe. Multiparametric MRI: (d, e) DWI and ADC map showed restricted diffusion 

(arrow). (f) Very low perfusion on PWI (arrow). (g) MRS showed very high lipid (1.3 ppm, 

arrow), without an increase in Cho. In this case, appearances were not typical for high-

grade glioma as there was low perfusion and no significant increase in Cho, and not 

typical for lymphoma as there was no contrast enhancement or raised Cho. Biopsy was 

consistent with epidermoid-like lesion with no evidence of malignancy. .......................... 90 

Figure 33. Haemorrhagic glioblastoma mimicking pyogenic abscess. (a) Non-contrast CT 

showed a hyperdense lesion in the genu of the corpus callosum with extensive 

surrounding vasogenic oedema. (b) T2WI confirmed a mass lesion with surrounding 

vasogenic oedema. (c, d) DWI and ADC map showed restricted diffusion with very low 

ADC within the majority of the lesion. (e) SWI demonstrated faint internal susceptibility 
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conventional imaging and DWI alone were unable to distinguish between pyogenic 

abscess and glioblastoma. In this case, follow-up was consistent with glioblastoma. The 

restricted diffusion is this case was due to haemorrhage, which appeared at least 
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Figure 34. Glioblastoma mimicking pyogenic abscess. (a) Non-contrast CT showed a low 

attenuation lesion in the left temporal lobe, with no evidence of haemorrhage. (b) T2WI 

confirmed a cystic mass lesion with surrounding vasogenic oedema. (c, d) DWI and ADC 
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sequences, and can be misleading if not identified on SWI or if not combined with other 
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Figure 35. Pyogenic abscess. Conventional MRI: (a, b) T2WI and CE-T1WI sequences 

demonstrated a ring-enhancing mass lesion in the left frontal lobe with surrounding 
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amino and organic acid peaks. These characteristic MRS findings in combination with the 

very low ADC and low perfusion were diagnostic of abscess. Diagnosis was confirmed on 
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Figure 36. Tuberculoma. Conventional MRI Findings: (a, b) Axial T2WI and CE-T1WI showed 

hypointense confluent lesions on T2WI in the right frontal lobe with extensive 
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patient commenced anti-tuberculosis treatment, and surgical intervention was avoided.
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T1WI and FLAIR showed a well-defined cystic lesion with a thin enhancing wall in the 
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PWI showed low rCBV, (e, f) MRS showed very high levels of lipid at 1.3 ppm and slightly 

elevated Cho/Cr ratio. In this case, the combination of multiparametric MRI findings were 

not consistent with glioblastoma. The differential remained between atypical infection 

such as toxoplasmosis and lymphoma, however the location was atypical for lymphoma, 

thus favouring toxoplasmosis. Biopsy of the lesion was non-diagnostic and the patient 

commenced treatment for toxoplasmosis. (g) Follow up CE-T1WI at 1 month showed 
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Figure 38. Tumefactive demyelinating lesion. Conventional MRI: (a, b) T2WI and CE-T1WI 

revealed a large heterogeneous space occupying mass lesion and diffuse pattern of 
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centrally (>1000 × 10-6mm2s-1) and a thin rim of low ADC reflecting an advancing edge of 
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and lactate at 0.9 ppm and 1.3 ppm respectively. (f) The metabolic profile from the 

adjacent perilesional area also showed a similarly abnormal spectral pattern. PWI (not 

shown) demonstrated a low rCBV except in the anterior-superior component. The 

striking presence of glutamine and glutamate on MRS, the enhancement pattern and 

generally low perfusion favoured an inflammatory lesion, as opposed to high-grade 

glioma or lymphoma. The patient made a recovery on methylprednisolone and avoided 
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135 ms showed slightly low NAA/creatine ratio and absence of lactate. In this case, the 

findings of low perfusion (<2), absence of a lactate peak and presence of glutamine and 

glutamate favoured an inflammatory aetiology such as neurosarcoidosis rather than a 

high-grade glioma. A tapering dose of an oral corticosteroid was commenced, during 

which neurological symptoms improved. Three-month follow-up MRI; (i) axial T2WI, (j) 

CE-T1WI, (k) FLAIR and (l) ADC sequences showed near complete resolution of the lesion.
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normal Cho/Cr (arrow), and normal NAA/Cr ratios and minimally increased glutamine and 
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heterogeneously enhancing component. The model’s prediction value for this patient 
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ADC radiomics showed relatively lower kurtosis, higher correlation and lower contrast 

values. ................................................................................................................................... 209 
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1.  INTRODUCTION 

 Motivation 

I have been fascinated by imaging for many years; more than 15 years ago, I wrote a report 

on medical imaging during my A-levels. At medical school, this curiosity led me to undertake 

an intercalated BSc in radiological sciences with a project in diffusion tensor imaging, an 

advanced neuroimaging technique. The collaborative approach between scientists, physicists, 

mathematicians, and clinicians was valuable, each offering unique perspectives towards a 

unified goal. During my core training as a specialty registrar in clinical radiology, naturally, I 

gravitated towards neuroimaging, and spent time in the neuroradiology department at the 

Queen Elizabeth Hospital Birmingham, and started working with my current supervisor, 

Professor Vijay Sawlani, to assess the role of advanced neuroimaging techniques in 

inflammatory conditions of the brain. I attended various neuroradiology multi-disciplinary 

team (MDT) meetings, which gave me a clearer insight into the key clinical issues faced by 

clinicians, and this also highlighted the limitations of current imaging techniques, which can 

greatly impact patient care. These were largely uncertainties surrounding diagnosis and post-

treatment imaging. One of the most important issues I witnessed on numerous occasions was 

the uncertainty around differentiating treatment-related changes from tumour progression in 

patients who had undergone treatment for brain tumours. My supervisor had previous 

experience in using advanced magnetic resonance imaging (MRI) in this field; I was fortunate 

to have his expertise and guidance, as well as being at one of the largest centres for treating 
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brain tumours in the UK, and now a Tessa Jowell Centre of Excellence for brain tumours. We 

decided to investigate further, and I put forward a PhD proposal to look into the use of 

advanced MRI techniques to better assess glioblastoma treatment response, trying to keep a 

clinical focus and provide solutions that are directly relevant in practice. During the planning 

phase of the project in 2017, I came across the early use of artificial intelligence (AI) in 

healthcare, for example the use of radiomic texture analysis and machine learning to predict 

whether similar appearing lung nodules on imaging would remain stable or become malignant 

over time. I realised that this could potentially be applied to imaging of glioblastoma, as 

treatment-related changes and tumour progression appeared similar on imaging yet are 

distinct pathologies with very different outcomes. This led me to widen the scope of my 

research to also incorporate and investigate the use of AI techniques as well as advanced 

imaging in this PhD project, for their role in the diagnosis and prognostication of patients with 

glioblastoma, whilst maintaining a strong focus on clinically relevant research. 

 Aim 

The aim is to further the understanding of advanced imaging and AI techniques to identify 

more accurate, predictive, and clinically relevant imaging biomarkers in neuro-oncology, 

towards the longer-term goal of using these as validated clinical decision support tools to 

benefit patients with glioblastoma and other brain tumours.  
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 Thesis structure and objectives 

Chapter 2: Glioblastoma 

This chapter provides a background to glioblastoma, the diagnostic features clinically, on 

conventional imaging, and on histopathology, followed by the recent 2021 updates to the 

World Health Organisation integrated diagnostic criteria. The role of imaging throughout the 

patient pathway is presented, and a brief overview of current treatment strategies as well as 

experimental approaches to diagnostics and therapeutics is highlighted.  

 

Chapter 3: Advanced imaging in the diagnosis of glioblastoma 

A clinical challenge faced by radiologists is differentiating between various brain tumours and 

other non-tumoural lesions. This chapter provides a review of the role of advanced MRI 

techniques for the diagnosis of glioblastoma and differentiating it from other intracranial 

lesions including neoplastic, infective, inflammatory, and vascular-related lesions which can 

mimic its appearances on conventional imaging.  

 

Chapter 4: Machine learning-based radiomic analysis for distinguishing between glioblastoma 

and metastasis 

One of the most frequently observed clinical issues is differentiating between glioblastoma 

and a single brain metastasis on conventional MRI. In this chapter, a study is presented to 

investigate the use of machine learning and quantitative radiomic features to distinguish 

between glioblastoma and brain metastasis on conventional imaging. It also introduces 
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artificial intelligence techniques and the process involved in machine and deep learning 

studies.  

 

Chapter 5: Machine learning-based radiomic evaluation of pre-operative imaging for 

prediction of MGMT methylation promoter status and overall survival 

With the growing role of molecular markers in tumour classification, survival prediction and 

treatment strategies, imaging biomarkers that can accurately reflect molecular markers of 

tumours could provide a ‘virtual biopsy’ of lesions. This chapter provides a study investigating 

machine learning with a combination of sub-regional radiomic features and clinical features to 

predict O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation status in 

glioblastoma, from conventional pre-operative imaging and also the combination of all 

features including MGMT promotor methylation status through machine learning to predict 

overall survival.  

 

Chapter 6: Advanced MRI techniques for early prediction of treatment response 

The use of advanced MRI techniques have been suggested for treatment response 

assessment in the latest brain tumour guidelines published by the National Institute for 

Health and Care Excellence (NICE). This chapter provides a study to evaluate the utility of 

advanced MRI techniques using diffusion-weighted imaging (DWI), perfusion-weighted 

imaging (PWI) and magnetic resonance spectroscopy (MRS) in clinical practice for assessing 

treatment response in patients with glioblastoma. 
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Chapter 7: Machine learning-based radiomic evaluation of early treatment response 

prediction 

This chapter provides a study investigating the use of machine learning with sub-regional 

quantitative radiomic features from conventional imaging and DWI in combination with 

clinical features and MGMT promotor methylation status to predict treatment response 

assessment in patients with glioblastoma. 

 

Chapter 8: Conclusions 

Finally, a summary of the work, its clinical relevance and suggestions for future work are 

presented.  

 

 Patient and carer opinions 

In December 2017, during the design of this research, I approached the Brain Tumour Charity 

and provided a research proposal summary. This was reviewed by the Brain Tumour Charity’s 

research team and sent to patients and carers within their Research Involvement Network for 

feedback and comments. There were 13 responses, of which 77% strongly agreed that the 

research was worth pursuing, and the remaining 23% agreed that the research was worth 

pursuing. Feedback was used to improve the study design, and individual comments from 

patients and carers are provided below: 
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• “Pseudoprogression was one of the main sources of anxiety for my family during the 

treatment – definitely a relevant topic.” 

• “Really liking the radiomics sounds superb. If it closes or narrows the window of 

uncertainty and gives more clarity around growth and treatment will be a god send.” 

• “I have concerns that the process will be too machine led. There needs to be a certain 

amount of human lead work.” 

• “Really good to see progression in this area. One of the most frustrating periods is 

scan time, and the difficulties then faced as doctors are unable to tell the difference re 

true tumour progression or not is significant.” 

• “I am aware of the problems posed by the current inaccuracy of MRI scans soon after 

surgery.” 

• “Whereas this seems highly promising, we must continue to recognise the 

ineffectiveness of current treatments.” 

• “This study will be very useful.” 

• “This seems like a fantastic use for AI and could be something with a fairly quick 

turnaround.”  

• “Anything to help diagnosis is surely worthwhile.” 

• “It seems the validity for the research will be gained early as it will involve 

retrospective scans and if it works it is a big thumbs up for AI and brain tumours.” 

• “This was one of the clearest and best worded summary document I've read as part of 

the research involvement network.” 
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2.  GLIOBLASTOMA 

Parts of this chapter (Sections 2.9 and 2.10) are adapted from [1], previously published by 

International Journal of Neuro-oncology (licensed under CC BY-NC-SA 4.0). 

 Epidemiology 

 Central nervous system tumours 

The Office for National statistics recorded 9,737 new cases of primary tumours affecting the 

central nervous system (CNS) in England in 2017 [2]. A breakdown of the type and sites of 

tumours are shown in Table 1 and a breakdown of the number of cases by age group and sex 

is shown in Figure 1. There is a peak incidence between the 65-to-74-year age groups, and 

there is largely similar proportion of males and females affected. 

Type and site of tumours 
Number 
of cases  

Malignant neoplasm of brain 4,568 

Benign neoplasm of meninges 2,443 

Benign neoplasm of brain and other parts of CNS 953 

Benign neoplasm of pituitary gland 822 

Neoplasm of uncertain or unknown behaviour of brain and CNS 475 

Neoplasm of uncertain or unknown behaviour of meninges 272 

Malignant neoplasm of spinal cord, cranial nerves and other parts of 
CNS 

141 

Malignant neoplasm of meninges 60 

Benign neoplasm of pineal gland 3 
 

Table 1. Registrations of newly diagnosed cases of CNS neoplasm by type in England in 2017. 
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Figure 1. Number of new central nervous system tumour cases by age group and sex in 

England in 2017. 

 

 Malignant primary brain tumours 

Malignant primary tumours of the brain make up the highest group of cases of all CNS 

tumours, at a proportion of 47%, or 4,568 new cases in 2017. A breakdown of the number of 

cases by age group and sex is shown in Figure 2. The peak incidence of cases is between the 

ages of 65 and 74, with a greater proportion of males affected than females (ratio 1.4:1).  
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Figure 2. Number of new malignant tumour cases of the brain by age group and sex in 

England in 2017. 

 

 Glioblastoma 

Glioblastoma is the most common malignant primary brain tumour. Approximately 55% of 

malignant brain tumours are glioblastoma [3], equating to more than 2,500 new cases per 

year and an age standardised incidence of 5 per 100,000 per year in England [4]. The 

incidence rate has more than doubled between 1995 and 2015, with a percentage rise similar 

across all age groups, suggesting environmental or lifestyle factors may be contributing to this 

increase [5]. Until recently, glioblastoma had been classified as “primary glioblastoma”, seen 

in about 90% of patients as de novo development of the disease, without any evidence of a 

precursor lesion and a mean age at diagnosis of 62 years [6]. The remaining 10% of patients 

were categorised as “secondary glioblastoma” from a precursor diffuse astrocytoma or 
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anaplastic astrocytoma, and are usually younger at time of presentation with the mean age of 

44 years and better prognosis [6]. However, there has since been a shift in classification based 

on genetic markers, which will be detailed ahead in Section 2.5.  

 Causal and risk factors  

High-dose ionising radiation has been associated with an increased incidence of all brain 

tumours and an established risk factor for developing glioblastoma [7]. Evidence for this is 

largely from exposure of the population to atomic bomb irradiation and high-dose 

radiotherapy. There is no conclusive evidence regarding exposure to medical imaging-related 

diagnostic radiation, however the cumulative effects of diagnostic exposures from 

computerised tomography (CT) imaging is of concern, given the increasing incidence of 

ionising radiation-related medical imaging within the population [8]. 

The increased incidence of glioblastoma over time may be explained by few possible factors. 

Long-term exposure to traffic-related air pollution has been associated with the development 

of glioblastoma in 12 cohorts from six European countries through the European Study of 

Cohorts for Air Pollution Effects [9]. Increased indoor radon exposure as a result of double-

glazed windows and house sealing leading to lower exchange with outside air may also 

explain the increase in incidence over time [10,11].  

In 2011, the International Agency for Research on Cancer classified radiofrequency fields as a 

possible carcinogen for increasing the risk of glioma in those with a heavy cellular phone use 

[12]. There has been mixed evidence since this review was published, and no clear association 
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determined yet, however given the unknown latency period, the risk of non-ionising radiation 

from cellular phones is still under review [13]. In addition, extremely low frequency 

electromagnetic fields have raised possible association with glioblastoma, which is also under 

investigation [14]. 

There have been inconsistent findings for occupational exposure of chemicals and pesticides 

for glioblastoma risk, however certain occupations have demonstrated an increase in glioma 

risk, including butchers, meat cutters, salesperson, record clerk, waitress, farmer and women 

associated with employment in agriculture, textile, electronics and retail [8]. 

Monogenic Mendelian disorders such as Lynch syndrome and Li-Fraumeni syndrome have 

been associated with an increased risk of glioblastoma, but make up only a small proportion 

of cases, and genome-wide association studies have identified common genetic variations in 

seven genes for glioma risk [8]. There is also some evidence linking mitochondrial dysfunction 

and metabolic disease to drive genetic changes and increased risk of glioma formation [5]. 

There is also some evidence for potential viral triggers such as cytomegalovirus as a causative 

factor for development of glioblastoma [15,16]. A large meta-analysis has shown that a 

history of allergies or atopic disease appears to have a protective effect against developing 

glioblastoma, with a reduced risk of almost 40% [17]. 

 Clinical presentation 

The majority of patients present with a short history of symptoms, usually between 3-6 

months in duration [7]. In some patients, symptoms appear acutely, mimicking stroke. In 
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patients with secondary glioblastoma from low-grade tumour transformation, symptoms can 

occur over a number of years. The clinical presentation varies depending on the size of the 

lesion, location, speed of growth and whether or not there are any secondary effects or 

complications related to the tumour.  

Early symptoms are non-specific, and patients may present several times to healthcare 

services before being referred for investigation. The mean length of clinical symptoms is four 

months in isocitrate dehydrogenase-wildtype (IDH-wildtype) glioblastoma, formerly known as 

primary glioblastoma, and 15 months in IDH-mutant glioblastoma, formerly referred to as 

secondary glioblastoma [6]. Low-grade gliomas that can undergo transformation to 

glioblastoma are also picked up incidentally on head and neck imaging performed for other 

reasons. 

More than 95% of patients present with glioblastoma in the supratentorial compartment, 

with the highest incidence in the frontal lobes, followed by multiple overlapping lobes, 

followed by the temporal lobes, parietal lobes and lastly the occipital lobes [18]. At 

presentation, 35% of patients with glioblastoma with have multiple lesions [19].  

Signs and symptoms from direct involvement of the brain tissue is as a result of necrosis, 

giving focal neurology in the majority of cases. Tumours involving eloquent areas of the brain 

will cause symptoms earlier and are diagnosed sooner and as smaller lesions. Parietal lobe 

location of tumour can cause sensory disturbance, hemineglect and spatial disorientation, 

whereas tumours involving any part of the optic radiations can cause visual field defects [20]. 

Seizures are a presenting feature in 22% of patients with glioblastoma, thought to be related 
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to temporal lobe or cortical location [21,22]. In other areas such as the frontal lobe, temporal 

lobe or corpus callosum there are often more subtle symptoms such as personality change, 

mood disorders and short-term memory deficits which can lead to delays in imaging and 

diagnosis, and consequently tend to be larger lesions when diagnosed [20,22].  

In a small number of cases, glioblastoma can occur within the posterior fossa, brainstem, and 

spinal cord, leading to cerebellar signs, cranial nerve palsy, or long tract signs. 

Leptomeningeal involvement is rare and usually occurs late in the disease, and distant 

metastatic disease arising from glioblastoma is also rare [23]. 

Secondary effects of glioblastoma can include raised intracranial pressure due to large 

tumour size and associated peritumoural oedema. This can cause mass effect and shift of 

intracranial contents, typically associated with a dull, unilateral progressive headache which is 

worse in the early morning or at night, seen as a presenting feature in 30-50% of patients 

[7,23]. Papilloedema and vomiting are late-stage signs of the raised intracranial pressure and 

now rarely seen. Obstruction of the ventricular system and associated hydrocephalus is 

another complication of the mass effect, which will give a similar clinical presentation. 

Intracranial haemorrhage as a presenting feature of glioblastoma is possible but rare [24].  

There are various published red flag symptoms and criteria for imaging referral. Table 2 

summarises several important red flag symptoms which warrant rapid referral for 

investigation, and the recommended guidance in the UK primary care setting for investigating 

a potential brain tumour is shown in Figure 3. The frequency of reported symptoms in 

primary care leading up to the diagnosis of a brain tumour is shown in Figure 4. 
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New, severe or persistent headache, significantly different from previous headaches 

Associated fever or other systemic symptoms 

New headache in adults, especially those aged over 50 years of age 

Headache on exertion, at night or in the early morning 

Headache with meningism 

Headache with neurological signs 

Headache exacerbated by Valsalva manoeuvre  

Progressively worsening headache 

New headache in the older adults or children 

Table 2. Red flag symptoms for brain tumours. (Adapted from [25]). 

 

 

Figure 3. Recommended guidance for investigating for tumour in primary care. (Reprinted 

from [26], with permission). 
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Figure 4. Frequency of symptoms reported to general practitioners in the six months before 

brain tumour diagnosis. (Reprinted from [27], with permission). 
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 Diagnosis 

 Conventional imaging 

Depending on the clinical presentation, first-line investigations can involve CT or MRI of the 

brain. CT is generally performed in acute situations where a patient may have been referred 

to hospital with focal neurology or seizures and there is concern of acute haemorrhage, acute 

infarct, hydrocephalus, or when MRI is not available or contraindicated. Contraindications 

may include the presence of a non-compatible cardiac device, certain implants and metallic 

foreign bodies within the orbits. MRI of the brain is generally performed in patients with more 

long-term signs or symptoms or headache with red flag symptoms. According to the current 

NICE guidelines, the recommended structural imaging for a suspected glioma is MRI with the 

following sequences unless MRI is contraindicated [28]: 

• T2-weighted imaging (T2WI) 

• Fluid-attenuation inversion recovery (FLAIR) 

• Diffusion-weighted imaging (DWI) 

• Pre-contrast T1-weighted imaging (T1WI) 

• Contrast-enhanced T1WI (CE-T1WI) 

Appearances of glioblastoma on CT is typically that of a mass lesion with central hypodensity 

which represents the area of necrosis, surrounded by irregular isodense or hyperdense 

margins, representing the area of cellularity. There is usually associated mass effect and 

peritumoural vasogenic oedema. Post contrast CT imaging will typically demonstrate intense 

heterogenous enhancement peripherally (Figure 5).  
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Figure 5. Post-contrast CT appearances of glioblastoma. Large, centrally necrotic areas 

demonstrating irregular rim enhancement and some surrounding vasogenic oedema.  

 

Similar appearances are seen on MRI (Figure 6), with T2WI/FLAIR hyperintensity representing 

central necrosis, peripheral irregular and nodular enhancement following gadolinium contrast 

and T2WI/FLAIR hyperintensities within the surrounding white matter representing 

surrounding tumour infiltration and vasogenic oedema. 



18 

 

 

Figure 6. Typical MRI appearances of glioblastoma on CE-T1WI. Large necrotic lesion within 

the left cerebral hemisphere with mass effect and surrounding vasogenic oedema/infiltration. 

Central necrosis and irregular peripheral enhancement are demonstrated. 

 

Single lesions are seen in 65% of patients and multiple lesions are seen 35% of patients. 

Multiple lesions can be categorised into multifocal disease, when there is a clear path of 

spread, usually through areas of T2WI/FLAIR hyperintensity, which is seen in 87% of patients 

with multiple lesions. The second is multicentric disease, when there is no clear path of 

spread, seen in 13% of those with multiple lesions [19].  
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Figure 7. Multicentric disease in glioblastoma. Large necrotic enhancing mass lesion centred 

on the genu of the corpus callosum. There is a distant enhancing lesion in the left parietal 

white matter indicating multicentric disease. 

 

Although the typical appearance of glioblastoma is a large necrotic periphery enhancing mass 

lesion, rarely, in the early stages of the disease the appearances are of a small hyperintense 

lesion on T2WI with no or poor contrast enhancement, which develops into a more typical 

mass lesion with necrosis, ring enhancement and peritumoural oedema within a short period 

of time, reported to be 2.5 to 6 months [29]. Calcification and haemorrhage are rarely seen 

and is represented by hyperdensity on CT imaging, hyperintensity on pre-contrast T1WI 

(Figure 8) or susceptibility artefact on T2* or susceptibility-weighted imaging (SWI). On 

T2*/SWI imaging, a hypointense rim may be seen from blood products, which is irregular and 

incomplete when present and located inside the peripheral enhancing component [30]. 
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Figure 8. Haemorrhage within glioblastoma. (A) Pre-contrast T1WI showing hyperintensity in 

the left temporal pole indicating haemorrhage and vasogenic oedema throughout the left 

temporal lobe. (B) CE-T1WI confirms the haemorrhage to be within an irregular necrotic mass 

lesion in the left temporal pole. 

 

Previously termed IDH-mutant glioblastoma, usually demonstrates a large bulky non-

enhancing lesion with cortical infiltration with a predilection for the frontal and temporal 

lobes (Figure 9), and only limited peritumoural oedema and necrosis [22]. In a proportion of 

cases, glioblastoma may not show any contrast enhancement and mimic the appearances of a 

low-grade lesion [31], which is further detailed in Section 3.3.3.  
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Figure 9. IDH-mutant glioblastoma. (A) Bulky infiltrative right frontal lesion showing 

predominant high signal on T2WI and central heterogeneous low signal. (B) Faint central 

patchy enhancement within the area of signal abnormality. 

 

 Differential diagnosis 

The differential diagnosis for a single or multiple rim-enhancing mass lesions within the brain 

changes according to the patients age, presence of comorbidities, clinical presentation and 

differences in imaging characteristics. The main differential diagnoses are between other 

neoplastic lesions, infections, inflammatory and vascular lesions. In all cases of suspected 

brain tumours, a CT examination of the thorax, abdomen and pelvis is performed to look for 

the presence of primary malignancy elsewhere. When body imaging does not provide 

additional information, distinguishing between the aforementioned intracranial pathological 

processes are difficult based on conventional imaging alone and therefore additional 

techniques such advanced imaging can be used. Advanced MRI techniques can be useful 

when there is a diagnostic dilemma regarding diagnosis, for example when the risk of biopsy 
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is high due to location of the tumour in an eloquent or deep location, patient co-morbidities 

or a lesion that mimics another pathology. This is discussed further in Chapter 3, and the use 

of AI techniques to help address this issue is investigated in Chapter 4. 

 

 Histopathology  

Currently, tissue samples obtained from surgical resection or biopsy forms the mainstay of 

diagnosis. Glioblastoma is typically a large, irregular lesion arising from the white matter 

which is macroscopically heterogenous, containing haemorrhage, necrosis, cystic and 

gelatinous regions, some of which appear yellow and soft, whereas other areas are white and 

firm [7]. Microscopically, glioblastoma is an intrinsic lesion that has no distinct brain-tumour 

interface under microscopy and infiltrates diffusely along vessels and white matter tracts 

which can be apparently normal on MRI [32]. Microscopy typically gives the cellular 

morphology of an anaplastic astrocytoma, with pleomorphism, mitotic activity, vascular 

endothelial cell proliferation and necrosis [22]. In some cases, cellular morphology may 

represent oligodendroglial or primitive neuroectodermal tumour features [22]. 

 

 Experimental approaches to diagnosis 

Studies have shown that through liquid biopsy of blood plasma, cerebrospinal fluid (CSF) and 

urine, cell-free circulating tumour deoxyribonucleic acid (DNA) can be obtained. This can be 

used as a minimally invasive tool for metabolic profiling to identify risk of developing 

glioblastoma, asymptomatic screening, obtaining a genetic diagnosis of glioblastoma, 

personalised treatment planning and monitoring response to treatment [33–35]. However, 
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currently there are no validated liquid biopsy biomarkers for the detection or prognostication 

of glioblastoma, and in order to translate this promising technology into clinical practice, 

more sensitive techniques including the integration of multiple biomarkers, standardised 

approaches, more cost-effective methods and large prospective studies are required [36]. 

Large-scale pilot screening programmes are being performed worldwide, and commencing 

within the UK National Health Service (NHS) in 2021 to further investigate blood biomarkers 

of malignancy using a test targeting key regions of the genome [37,38]. 

 World Health Organisation classification 

 2016 classification 

Until 2016, the World Health Organisation (WHO) classification of brain tumours was based 

on morphological appearances of histology on microscopy, though mitoses, microvascular 

proliferation and necrosis. In 2016, there was an update to the classification of brain tumours, 

based on a combination of microscopic morphology, as well as molecular and genetic features 

[39]. The WHO defined three categories for glioblastoma based on IDH status, determined 

using immunohistochemistry and/or sequencing: [1] glioblastoma IDH-wildtype, [2] 

glioblastoma IDH-mutant and [3] glioblastoma NOS, which is reserved for diagnosis when IDH 

evaluation cannot be performed or is inconclusive. The simplified algorithm for diagnosis is 

shown in Figure 10 [6].  
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 2021 classification 

Since the 2016 WHO classification, there had been multiple proposed interval updates by the 

Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy 

(cIMPACT-NOW) [40]. In May 2021, the changes were incorporated and published in the 5th 

edition of the WHO Classification of Central Nervous System Tumours [41], and there are 

several important updates specifically relevant to the classification of glioblastoma. There has 

now been discontinuation of the term ‘Glioblastoma, IDH-mutant’, and currently three main 

distinct entities within the diffuse glioma group:  

• Astrocytoma, IDH-mutant 

• Oligodendroglioma, IDH-mutant and 1p/19q-codeleted 

• Glioblastoma, IDH-wildtype 

IDH-mutant diffuse tumours are now considered as ‘Astrocytoma, IDH-mutant’ and graded 

between 2-4. Previously, grading was based on histological features alone, however 

molecular markers provide useful prognostic information and therefore these are now used 

for grading and combined with histological features to come to an integrated diagnosis [42]. 

In addition, the presence of a molecular marker even in the absence of specific histological 

features can enable classification of the tumour. The presence of any of the following would 

lead to designation of a tumour as ‘Astrocytoma, IDH-mutant, WHO grade 4’: 

• Microvascular proliferation (histological) 

• Necrosis (histological) 
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• Cyclin dependent kinase inhibitor 2 (CDKN2) A/B homozygous deletion (genetic 

alteration)  

The diagnosis of ‘Glioblastoma, IDH-wildtype, WHO grade 4’ can now made in cases of IDH-

wildtype diffuse astrocytic tumours, if there is the presence of at least one of the following 

histological features, or one of the three genetic alterations being present: [40] 

• Microvascular proliferation (histological) 

• Necrosis (histological) 

• Telomerase reverse transcriptase (TERT) promoter mutation (genetic alteration) 

• Epidermal growth factor (EGFR) gene amplification (genetic alteration) 

• Both the gain of entire chromosome 7 and loss of entire chromosome 10 (genetic 

alteration). 

Other key biomarkers include O6-methylguanine DNA methyltransferase (MGMT) promoter 

methylation, co-deletion of the short arm of chromosome 1 and the long arm of chromosome 

19 (1p/19q), and loss of alpha-thalassemia/mental retardation syndrome X-linked (ATRX) 

gene. The molecular heterogeneity is thought to reflect patient sensitivity to treatment and 

prognosis, but the overlap of biomarkers complicates assessment of the role of these 

individual alterations [8,43]. 

The update also classifies a missense mutation of glycine for arginine or valine at position 34 

of the histone H3.3 protein as “Diffuse glioma, H3.3, G34-mutant” [40], and being distinct 

from IDH-wildtype glioma, IDH-mutant glioma and H3 K27M-mutant diffuse midline glioma. 
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The mean overall survival (OS) in patients with H3.3 G34-mutant diffuse glioma is longer than 

that compared to IDH-wildtype glioblastoma, but shorter compared to patients with WHO 

grade 4 IDH-mutant glioma [44]. A summary of the integrated diagnosis and classification 

pathway in the 2021 update is shown in Figure 11. 

 

Figure 11. Diagnostic algorithm for the integrated classification of the major diffuse gliomas in 

adults. (Reprinted from [45], licensed under CC BY 4.0). 
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 Prognosis 

Glioblastoma has the highest average years of life lost per patient for any cancer, at just over 

20 years [46]. More than two thirds of patients will die within two years of diagnosis [47], and 

only about 5% of patients survive beyond five years [20]. Patients with single lesions have a 

greater mean OS compared to patients with multiple (multifocal/multicentric) lesions, at 18 

months and 10 months respectively [19]. Patients with multicentric lesions have the worst 

prognosis, with a mean OS of three months [19].  

 Molecular biomarkers 

There is an array of molecular markers associated with glioma, however the three most 

reliable and reproducible predictive markers include IDH mutations, MGMT promoter 

methylation, and 1p/19q co-deletion. Patients who are triple-positive have a much more 

favourable prognosis than those who are in the triple-negative group [48]. There are also a 

number of other molecular biomarkers and emerging biomarkers which have been less 

studied, and the clinical impact is less clear. An understanding of the relationship between 

mutations and tumour characteristics is important for moving towards personalised 

treatment for patients with glioblastoma. 

 IDH 

Somatic mutations in IDH 1/2 occur at arginine residues, at codon 132 of IDH1 and at codon 

172 of IDH2 [43]. The IDH1 and IDH2 mutations affect tumour metabolism, encouraging the 

reduction of α-ketoglutarate to 2-hydroxyglutarate (2-HG) [49], leading to a genome-wide 
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glioma cytosine–phosphate–guanine island methylator phenotype (G-CIMP), 

hypermethylation at a large number of loci, and is predictive of better response to 

chemotherapy [8]. IDH-mutant tumours also have lower levels of hypoxia-inducible factor 1α 

and lactate dehydrogenase A, which results in a slower growing tumour and improved 

prognosis [43].  

IDH mutations are seen in more than 80% of WHO grade II/III gliomas [50], and according to 

the previous WHO 2016 classification, they were markers of secondary glioblastoma, and only 

seen rarely in primary glioblastoma, in less than 5% of cases [43,51]. Previous studies 

comparing OS based on the previous classification have shown that the presence of IDH 

mutation confers an improvement in OS, with a median of 31 months in IDH-mutant 

glioblastoma following surgery and chemoradiotherapy (CRT) compared to a median OS of 15 

months in patients with IDH-wildtype glioblastoma [6]. In patients only having surgery and 

radiotherapy, the median OS in IDH-mutant glioblastoma is 24 months, compared with 9.9 

months in IDH-wildtype glioblastoma [6]. This is summarised in Table 3. 

 

 Median overall survival (months) 

Treatment IDH-wildtype glioblastoma IDH-mutant glioblastoma 

Surgery and radiotherapy 9.9 24 

Surgery and CRT 15 31 

Table 3. Median OS for glioblastoma according to IDH status and treatment. 
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 MGMT promoter methylation 

The MGMT gene on chromosome 10q26 encodes a DNA repair protein that removes alkyl 

groups from the O6 position of guanine, which is important for DNA alkylation [52]. Epigenetic 

silencing of the MGMT gene through promoter methylation is found in 40% of glioblastoma 

[53], and results in loss of MGMT expression (low MGMT levels) and increases the effects of 

alkylating chemotherapy agents such as temozolomide (TMZ), and is an important factor in 

response to treatment and increased OS [52]. Three-class stratification of MGMT levels into 

unmethylated (methylation <9%), intermediate (9–29%) and highly methylated (>29%) has a 

prognostic impact with a median progression-free survival (PFS) of 8, 12 and 15 months 

respectively and median OS of 13, 16 and 20 months respectively [54]. 

 

 Co-deletion of 1p and 19q  

In IDH-mutant glioblastoma, the loss of the short arm of chromosome 1 (1p) and the long arm 

of chromosome 19 (19q), referred to as 1p/19q deletion is most commonly found in tumours 

with oligodendroglial morphology, approximately 80% of cases [55], and is associated with 

better OS [56]. 

 

 EGFR 

The EGFR gene is a major activator of signalling pathways and responses. EGFR has been 

found to be amplified in 40% of glioblastoma, overexpressed in 60% and deleted or mutated 

in 24-67% of cases [57]. It is rarely seen in IDH-mutant glioblastoma. About half of patients 

with EGFR amplification have a mutation due to deletion of exons 2–7 (EGFRvIII) [58]. Recent 
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studies have shown associations between high levels of EGFR amplification and poorer 

survival [59] as well as poorer response to anti-angiogenic therapy [60]. However older 

studies show a lack of consensus between EGFR amplification and clinical outcomes, and it 

has been suggested that this may be a result of IDH and MGMT not being accounted for, and 

data from an era before widespread TMZ use [61]. 

 

 p53 pathway 

The tumour suppressor protein p53 is implicated in almost every cancer. Deletion of p53 can 

occur but the pathway is more often modulated by a number of upstream regulators and 

downstream effectors [58]. Various stresses as well as anti-tumour therapies can activate p53 

by increasing its stability, which then acts as a transcriptional regulator of its downstream 

genes [62]. Mutations within the p53 pathway are seen in 78% of glioblastoma however IDH-

mutant glioblastoma more often shows direct mutations of the p53 gene and alterations in 

the p53 pathway are thought to promote progression to a high-grade lesion [58]. However, as 

the p53 pathway is involved in various cellular responses, the prognostic value of this 

mutation is largely unknown [63]. 

 

 CDKN2 A/B 

The CDKN2 gene encodes for the protein p14ARF which stabilises p53 function for tumour 

suppression and the deletion is associated with greater proliferation, higher tumour grade 

and homozygous deletion of CDKN2 A/B is associated with a lower OS and PFS in IDH-wildtype 

glioblastoma [61].  



32 

 

 Loss of ATRX 

The ATRX gene has a role in histone deposition, cell cycle regulation and maintaining stability 

of the genome, and ATRX inactivation can be due to mutations, deletions, gene fusions, or a 

combination of these [64]. ATRX mutations are markers of astrocytic tumours and generally 

mutually exclusive with 1p/19q co-deletion [65]. They are seen in 71% of IDH-mutant 

glioblastoma and rarely in IDH-wildtype glioblastoma [6]. Presence of the mutation confers a 

better prognosis [66]. 

 

 TERT 

TERT promoter gene alterations are seen in 72% of IDH-wildtype glioblastoma and 26% of 

IDH-mutant glioblastoma [6], and are usually mutually exclusive with ATRX alterations [67]. 

They are thought to represent a mechanism by which the tumours perform telomere 

elongation to achieve limitless replication potential, however there is a varied consensus and 

the majority of studies to date suggest that TERT mutation is not an independent prognostic 

factor for IDH-wildtype glioblastoma [61].  

 

 Phosphatase and tensin homolog (PTEN) 

PTEN, a tumour suppressor gene found in chromosome 10 shows mutations in 24% of IDH-

wildtype glioblastoma and rarely in IDH-mutant glioblastoma [6,68]. Studies have shown that 

PTEN mutations do not provide a prognostic benefit in IDH-wildtype glioblastoma, however 

PTEN mutation status is a predictor of responsiveness to tumour treating fields (TTF) therapy 
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with an almost doubling of median post-progression survival from 11.6 months to 22.2 

months [69].  

 Treatment of glioblastoma 

 Multi-disciplinary team (MDT) meeting 

Within the NHS in the UK and across the world in many other countries, patients are 

discussed at a specialist neuro-oncology MDT meeting at first radiological diagnosis of a 

suspected brain tumour [28], which is the primary direct pathway of referral for all new brain 

tumour diagnoses. The MDT comprises of specialist consultant neuro-oncologists, 

neurosurgeons, neuroradiologists and neuropathologists. In addition, allied healthcare 

professionals such as specialist brain tumour nurses, occupational and speech therapists, 

radiotherapy radiographers and research trial coordinators also attend the meeting.  

The role of the MDT meeting is to ensure diagnosis, treatment and care is effectively provided 

by specialists through multidisciplinary team-working; ensure guidelines are followed; and 

ensure eligible patients are supported into clinical trials. There is a strong clinical consensus 

from the UK that effective team working at the MDT results in improved clinical decision 

making, better coordinated patient care, and higher quality care [70]. 

Each patient case is presented with clinical assessments, imaging studies and pathology 

specimens discussed in detail in order to come to an appropriate diagnosis. Appropriate 

treatment strategies such as surgical approaches and CRT protocols considering the patient’s 

individual circumstances are discussed, and management plan options are created for 
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discussion with the patient, in a timely manner. The creation of surgeon-led subspecialist 

clinics involving brain tumour specialist clinical nurse practitioners allow the rapid review of 

patients to discuss diagnosis and management options [71].  

The overarching aim of glioblastoma treatment is to delay tumour progression and increase 

the patient’s OS [32], which is the foundation of discussions at the MDT meeting. However, in 

patients who are elderly, have a poor performance status or have a tumour which is not 

amenable to surgical resection, MDT discussions will be around offering a biopsy, unless the 

risk is considered too high, there is a limited prognosis or patient preference, in which case a 

course of palliative radiotherapy or best supportive care is offered [27]. 

 

 Surgery 

Surgical intervention is the mainstay of treatment, with the aims of firstly acquiring a 

diagnosis by obtaining a tissue sample for molecular biomarkers and secondly maximal safe 

resection [20], which has been shown to improve OS [72,73]. In addition, surgery is crucial for 

improving quality of life and in some patients for reversing neurological deficit and controlling 

seizures [7]. The extent of resection is highly dependent upon the tumour location and 

involvement of eloquent brain regions such as the primary motor, somatosensory, visual or 

auditory cortices, Broca’s area, Wernicke’s area, the brainstem or basal ganglia which are less 

amenable to intervention and resultingly lead to a worse prognosis [7]. In addition, the 

degree of resection can depend on experience of the neurosurgeon as well as the use of pre-

operative and intra-operative techniques [20].  
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In surgical intervention, preservation of cortical and subcortical structures is important to 

preserve functional status in glioblastoma resection within eloquent areas, and there are 

various techniques and approaches to identify pathways involved in motor, sensory, 

language, memory and cognitive functions, particularly when the tumour may distort normal 

anatomy and there may be reorganisation of neural networks due to cortical plasticity [32]. 

Various intraoperative tools have been developed to enhance the neurosurgeon's ability to 

identify tumour margins and improve resection while simultaneously preserving eloquent 

brain function [32], which are briefly described below. If surgical resection is not feasible due 

to location of the tumour in an eloquent area or due to patient factors, a stereotactic biopsy 

is usually performed and includes multiple samples of different regions within the tumour, as 

studies have shown intratumoural heterogeneity of MGMT promoter methylation as well as 

other genetic markers [74,75]. Intra-operative review of cytological specimens is performed 

to confirm the diagnosis and ensure there is an adequate tissue sample [45]. 

 

 Pre-operative imaging techniques 

A recommendation by NICE is that diffusion tensor imaging (DTI) should be considered in 

addition to standard neuronavigation techniques to reduce injury to critical tracts during 

resection of glioblastoma [28]. DTI tractography is a technique to visualise the white matter 

tracts within the brain, obtained through DWI. These can be superimposed onto conventional 

MRI sequences, to produce a map of critical white matter tracts for neurosurgical planning 

and navigation. It illustrates the spatial relationships of tumour to white matter tracts, can be 

performed pre-operatively and is non-invasive.  
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A randomised controlled trial has shown that the use of pre-operative DTI tractography 

compared with resection without DTI tractography led to a significantly higher rate of gross 

total resection (74.4% vs. 33.3%), a significantly lower rate of post-operative motor deficit 

(15.3% vs. 32.8%), a significantly higher 6-month Karnofsky Performance Scale score (77 vs. 

53), a significantly higher median OS (21.2 vs. 14.0 months), and a 43% reduction in the risk of 

death [76]. 

DTI tractography has demonstrated a strong clinical correlation with subcortical stimulation, 

being able to locate the corticospinal tract location in about 95% of cases [77]. In combination 

with functional MRI (fMRI), which measures changes in blood oxygen level, reflecting activity 

of neurons, it has demonstrated to directly influence clinical decisions, surgical approach and 

extent of resection of glioblastoma, due to localisation of functional cortical areas and 

subcortical pathways in eloquent regions (Figure 12) [32,78]. Motor mapping fMRI correlates 

very highly with areas identified by direct cortical mapping with a sensitivity and specificity of 

95–100%, and language mapping using fMRI has a sensitivity and specificity between 37–91 

and 64–83%, respectively, and is becoming the study of choice for pre-operative assessment 

of language dominance, as a non-invasive alternative to the Wada test [79]. 
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Figure 12. Pre-operative DTI tractography of the arcuate fasciculus to inform planning of 

awake craniotomy with speech and motor mapping and monitoring in a right-handed man 

with glioblastoma. (a, d) Pre-operative sagittal and axial CE-T1WI demonstrated an enhancing 

lesion in the dominant subcentral gyrus extending into the posterior insular. (b) Silent word 

generation language fMRI showed left-side language dominance. The activated anterior 

language areas were seen in the inferior and middle frontal gyri, in close proximity to the 

anterior and superior border of the lesion. (c, e) Left arcuate fasciculus three-dimensional 

reconstruction to demonstrate relation of the tract to the lesion. (f) Intra-operative 

neuronavigation MRI with DTI tractography of the arcuate fasciculus. (g) Post-operative CE-

T1WI demonstrated greater than  95% extent of resection. Post-operatively there was a 

transient subtle deterioration in expressive dysphasia that improved to the patient's baseline 

day 10 post-operatively. (Reprinted from [32], with permission). 

 

Despite limitations of reconstruction variability and a lack of standardised techniques which 

can generally lead to over-estimation but also under-estimation of tracts, a systematic review 

correlating with ground truth data has shown that current DTI tractography algorithms 



38 

 

produce tracts containing 90% of ground truth bundles [80]. Protocols for standardised region 

of interest (ROI) placement can reduce variability and newer techniques and advanced 

reconstruction methods can also improve tracking particularly where there are crossing fibres 

[81]. DTI and fMRI should not be used instead of intra-operative mapping techniques; 

however they are indispensable tools in surgical planning.  

 

 Intra-operative techniques 

Intra-operative stimulation mapping 

Intra-operative cortical and subcortical electrical stimulation mapping performed during 

awake craniotomy is currently the gold standard [82]. Functional mapping during awake 

craniotomy allows localisation of language and motor areas as well as position of the white 

matter tracts associated with the speech and motor functions [32,83]. The recent Cochrane 

meta-analysis has recommended awake craniotomy as the main method of enabling a 

maximal safe resection in patients with tumours in eloquent locations [84], and another 

meta-analysis has shown that resection of high-grade gliomas with intra-operative stimulation 

mapping during awake craniotomy leads to a more extensive resection, significantly longer OS 

and fewer post-operative complications compared with craniotomy under general 

anaesthesia [85], and there are recommendations for its implementation as standard-of-care 

for glioma surgery [86]. Furthermore, intra-operative stimulation mapping offers the 

opportunity to rapidly identify motor or language tracts during surgery and reducing the 

number of subcortical stimulations when combined with DTI fibre tracking [87], as well as 
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increasing extent of resection and reducing mortality when combined with fluorescent-guided 

resection [88,89]. 

 

Fluorescence-guided surgery 

Currently, gross total resection is defined by the lack of residual contrast enhancement on the 

early post-operative MRI, however the area of contrast enhancement largely reflects areas of 

breakdown of the blood-brain barrier, and tumour infiltration is present microscopically in the 

surrounding non-enhancing tumour margins which are an important prognostic factor [90]. 

One of the most studied technologies is 5-aminolevulinic acid (5-ALA), a prodrug administered 

orally approximately 2-4 hours before surgery, which leads to accumulation of fluorescent 

protoporphyrin IX (PPIX) in glioma cells (Figure 13) [32]. Although the underlying mechanisms 

are unclear, it enables glioma cells to be visualised in real-time intra-operatively using a 

microscope with appropriate filters and guides resection [91]. Current commercially available 

systems rely on subjective visual assessment of fluorescence by the neurosurgeon, however 

more accurate quantitative estimation of PPIX is being developed [32].  

A recent systematic review and meta-analysis showed 5-ALA–guided surgery led to a 

significant increase in gross total resection rate; 26% higher in the 5-ALA group compared to 

conventional surgery, and a small but significant increase in survival with the use of 5-ALA, 

although this was less conclusive as an independent outcome [92]. 5-ALA has also been 

shown to be a useful adjunct in the resection of recurrent glioblastoma and there are 

recommendations for its use routinely in resection of recurrent disease [93].  
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Figure 13. 5-ALA guided resection of glioblastoma. (a) Pre-operative and (b) post-operative 

axial CE-T1WI demonstrated complete resection of the left temporal glioblastoma. (c) 

Microscope view under blue light on opening the dura to visualise glioblastoma in coral pink 

following 5-ALA administration. Microscope view (d) under blue light and (e) under white light 

showed complete tumour resection. (Reprinted from [32], with permission). 

 

Intra-operative imaging technologies 

There have been recent advances in intra-operative imaging technologies, specifically intra-

operative MRI (iMRI) and intra-operative ultrasound (iUS) which can provide real-time 

information about the site of disease as well as nearby structures, providing imaging 

neuronavigation which can compensate for brain shift during surgery [32]. Both iMRI and iUS 

are recommended by current NICE guidelines to be considered in helping to achieve maximal 

surgical resection of glioblastoma [28]. 
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iMRI can provide a three-dimensional view of disease, adjacent structures and interval 

updates of resection status during surgery for neuronavigation, leading to more accurate 

resection; however it is not widely available and comes with a high cost and increased time of 

surgery due to additional imaging time, as well as the extravasation of gadolinium contrast 

into the resection cavity which can make imaging interpretation difficult [90].  

iUS is faster, simpler to use and much more readily available [32]. A recent randomised 

controlled trial showed that iUS-guided surgery is safe and leads to complete resection of the 

contrast-enhancing tumour more frequently than standard neurosurgery, without adverse 

outcomes and can be considered to maximise extent of resection similar to iMRI or 5-ALA-

guided surgery, although the detection of tumour is dependent on operator experience, 

resolution and type of probe used [94]. Advanced ultrasound techniques such as contrast 

enhanced ultrasound (CEUS), Doppler ultrasound and elastography could improve tumour 

detection [94]. 

Many individual studies have demonstrated that the use of intra-operative imaging 

technologies lead to an increase in the extent of resection and gross total resection rate, 

although a recent Cochrane review of intra-operative imaging technologies concluded that 5‐

ALA-guided surgery and iMRI may be beneficial in maximising extent of resection but it is 

based on low‐levels of evidence and the effects of image‐guided surgery on OS, PFS and 

quality of life are unclear [84]. Integrated navigation using information from multiple 

modalities allows structural and functional information to be co-registered to allow more 

accurate and safer resection particularly in eloquent areas [32]. A recent systemic review of 5-

ALA-guided surgery and iMRI showed no superiority of one technique over the other 
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regarding outcome, but suggested the combined use of 5-ALA and iMRI, which could be 

promising for resection beyond the enhancing tumour [95]. Another study suggested that 

iMRI should only be used in combination with 5-ALA-guided surgery as although 5-ALA 

fluorescence goes beyond the borders of contrast enhancement, iMRI overcomes the 

limitations of depth and residual tumour from limited views [90].  

 

Navigated transcranial magnetic stimulation 

Navigated transcranial magnetic stimulation (nTMS) is an emerging technology for pre-

operative planning and cortical mapping for safe maximal resection of tumours within or 

close to motor and language areas and can be used during surgery with nTMS-based 

tractography to also guide intra-operative mapping and resection [96]. A recent meta-analysis 

has shown its use is associated with fewer post-operative permanent motor deficits and 

increased gross total resection rate compared to standard surgery without pre-operative 

nTMS mapping [96]. However, more research is required to provide better evidence for this 

emerging technology [32].    
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 Post-operative imaging and treatment 

Neuroimaging with MRI is the primary method to evaluate disease status, for treatment 

response assessment as well as evaluating expected and unexpected tumour and treatment-

related changes. Post-treatment imaging includes the immediate post-operative MRI (IP-MRI), 

a pre-radiotherapy MRI (PR-MRI), a post-radiotherapy treatment baseline MRI (TB-MRI), 

followed by regular interval imaging during adjuvant TMZ and post-treatment monitoring 

imaging [97]. 

The recent WHO brain tumour classification based on an integrated diagnosis including 

molecular characteristics and advancement in various treatment options has made a direct 

impact on post-treatment imaging appearances. It has made the interpretation of post-

operative/post-treatment imaging more challenging. Accurate assessment of imaging at 

appropriate time points requires background information of molecular genetics of the 

tumour, clinical status of the patient and treatment timescales particularly TMZ and 

radiotherapy treatments.  

The response assessment criteria for primary and secondary tumours which were initially 

produced for clinical trials are making their way into clinical practice. Standardised imaging 

protocol and multiparametric MRI at appropriate time points and standardised 

measurements are key factors for post-treatment response assessment.  
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 Immediate post-operative MRI (IP-MRI) 

IP-MRI is performed with intravenous (IV) contrast to determine the extent of resection and 

assess for residual disease. The challenge arises as post-operatively reactive enhancement is 

present and can mimic residual tumour. There are varied opinions as to the optimal timing of 

the IP-MRI study, however current practice of imaging within 72 hours of surgery to 

distinguish between reactive enhancement and residual tumour is based on a very early study 

[98]. Studies since then have demonstrated post-operative reactive parenchymal, dural and 

leptomeningeal enhancement is seen in about a third of patients who have IP-MRI within 72 

hours [99], and can be seen as early as 17 hours following surgery and increasing with time 

[100,101]. Thin linear enhancement is more likely but not always associated with reactive 

change, and thick linear or nodular enhancement has a fairly high specificity for residual 

tumour [102,103]. More recent studies have proposed that post-operative MRI should be 

performed as early as possible [104] and at least within 45 hours following surgery [103], and 

a close analysis of enhancement patterns along with comparison to the pre-operative MRI 

study is essential to help discriminate between residual tumour and reactive enhancement 

[99]. iMRI has been shown to be superior to an early post-operative MRI, demonstrating a 

lower incidence of reactive change and therefore better ability to distinguish residual tumour, 

however the recommendation is that an additional DWI study is performed in the early post-

operative period as ischemic lesions can be overlooked on the iMRI [105]. 
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 Pre-radiotherapy MRI (PR-MRI) 

CRT treatment involves radiotherapy of 60 Gray in 30 daily fractions over six weeks and 

typically begins 3-5 weeks following surgery to allow for post-operative recovery [106]. 

Radiotherapy planning of the gross tumour volume is defined on the planning CT study using 

the co-registered pre-operative and post-operative CE-T1WI and FLAIR MRI sequences [107]. 

Due to the time interval between the post-operative MRI and planning CT, shift of normal 

brain tissue occurs with filling of parts of the resection cavity, leading to inaccurate 

registration between the post-operative MRI and planning CT study [108], and interval 

tumour growth or reactive enhancement may occur in the interim and therefore many 

centres also obtain a repeat MRI at the time of radiotherapy to ensure accurate co-

registration of the target volumes. It has been shown that patients with evidence of tumour 

growth between the IP-MRI and PR-MRI have a shorter survival [109] and the information 

from the PR-MRI can be useful for the clinical management of patients by reducing the ratio 

of patients diagnosed with pseudoprogression [110]. Current practice in the UK has shown 

only 32% of centres reported routinely performing PR-MRI [97]. The issue still remains that 

glioblastoma infiltration is present diffusely beyond the extent of the visible enhancing lesion 

on MRI [32]. There is evidence that advanced imaging techniques at the IP-MRI or PR-MRI 

time point can be useful to identify tumour infiltration and predict recurrence, these include 

low apparent diffusion coefficient (ADC) on DWI [111,112], high choline (Cho) [113], high 

lactate to N-acetylaspartate (NAA) ratio on MRS [114], and the use of O-(2-[18F]fluoroethyl-)-

L-tyrosine positron emission tomography (18F-FET-PET) [115]. 
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 Chemoradiotherapy 

The current standard treatment for patients with glioblastoma who have a good performance 

status (Karnofsky performance status ≥70), and are around the age of 70 years of age and 

under is maximum safe surgical resection followed by radiotherapy (60 Gray in 30 fractions) 

with concurrent TMZ [28], which usually commences 3-5 weeks following surgery [106], 

followed by six months of adjuvant TMZ as per the Stupp protocol [116]. In patients under 70 

years of age who do not undergo treatment, the median OS is approximately 3-4.5 months, 

however treatment with surgery followed by radiotherapy improves median OS to 

approximately 15-16 months [27]. The role of radiotherapy is to improve local control without 

inducing neurotoxicity, and the exact timing, dose and radiotherapy schedule is multifactorial, 

determined by patient age, performance status, volume of residual tumour and prognosis 

[45].  

In older patients with a good performance status, a shortened course of hypofractionated 

radiotherapy (40 Gray in 15 fractions) with concurrent TMZ followed by adjuvant TMZ for up 

to 12 months is preferred [27], which has shown to be superior to hypofractionated 

radiotherapy alone (median OS 9.3 vs. 7.6 months) [117]. Other options for treatment include 

hypofractionated radiotherapy alone, TMZ alone and best supportive care according to other 

factors [20]. A summary of the management pathway for patients is shown in Figure 14. 
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Figure 14. Glioblastoma management pathway, adapted from NICE guideline NG99. 

(Reprinted from [27], with permission). 
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In patients who have a tumour with high levels of MGMT promoter methylation, there is a 

significant increase in survival when treated with CRT compared to those treated with 

radiotherapy alone; the median OS is 21.7 months versus 15.3 months respectively [52]. 

 

 Early post-chemoradiotherapy treatment imaging 

After completion of radiotherapy and concomitant TMZ chemotherapy, a treatment baseline 

MRI (TB-MRI) is usually performed at four to six weeks following completion of radiotherapy, 

which gives an early assessment of the response to treatment [292]. Response to treatment is 

assessed by changes in the contrast-enhancing lesion from standard  MRI using the Response 

assessment in neuro-oncology criteria (RANO) criteria [293]. Although contrast enhancement 

is generally a good marker of tumour, in many cases, radiological features of disease 

progression are observed within the first 3-6 months following radiotherapy treatment, by an 

increase in enhancing disease [294]. In a proportion of these, increases in oedema, mass 

effect, and contrast enhancement within the high-dose radiotherapy volume are transient 

and resolve over time without intervention [295]. This phenomenon is known as 

pseudoprogression (psPD), and in cases of early enhancing disease, the reported incidence of 

psPD from a recent meta-analysis is 36% [296], but older studies have shown a variation in 

incidence from 12-64% according to various criteria used and it is seen more often in patients 

who show high levels of MGMT promoter methylation [297–301].  

Although the pathological process is not clearly understood, histological features associated 

with psPD are bland necrosis, fibrosis, gliosis, oedema, demyelination and vascular 
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hyalinisation [302]. Patients with pseudoprogression usually remain clinically asymptomatic 

and have a longer OS compared with those with true tumour progression (tPD). 

In clinical practice, it is difficult to differentiate between tPD and psPD; conventional MRI 

scans utilising CE-T1WI and T2WI/FLAIR sequences have a low diagnostic accuracy for 

distinguishing between these two entities at early time points from six weeks to three months 

post-radiotherapy [118], due to similar imaging appearances as demonstrated in Figure 15. 

Treatment is therefore continued with short interval imaging (4-6 weeks) and when 

progression is identified on consecutive imaging, true progression is confirmed. Some 

patients inevitably continue ineffective treatment, are delayed from receiving alternative 

treatments, or face potential exclusion from entering clinical trials as a result of deterioration 

in clinical status. More early and accurate diagnosis between true progression and 

pseudoprogression is essential to optimise treatment strategies and improve outcome, 

therefore imaging techniques that act as biomarkers of treatment effectiveness are required 

[119–121].  

A meta-analysis from 2017 has shown the sensitivity and specificity of anatomical MRI to be 

68% and 77% respectively from five studies, for treatment response evaluation of high-grade 

glioma [122]. Early radiographic indicators of true progression on standard CE-T1WI have 

shown to be enhancement involving the corpus callosum, multiple lesions, subependymal 

spread, solid enhancement with distinct margins, a spreading wave front of enhancement and 

enhancing nodules, although these features have a large overlap with psPD and can be 

influenced by corticosteroid use and MGMT promotor methylation status [123]. On standard 

T2WI/FLAIR, the increase in volume of signal change shows limited ability to distinguish 
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between the entities, however a reduction of FLAIR signal at the post-CRT imaging time point 

can occur in a minority of cases of psPD, but is not seen in tPD [124]. The signal intensity 

within the resection cavity on FLAIR imaging when hyperintense is associated with higher 

rates of progression at six and 12 months, and also poor outcomes, thought to be related to 

leakage of protein and blood products secondary to increased vessel permeability in tumour, 

within the resection cavity [125].  

 

 

Figure 15. True progression and pseudoprogression in glioblastoma. (A) A case of tPD in 

glioblastoma. 48 hours post-operative CE-T1WI showed post-surgical changes in the right 

posterior frontal lobe. Six weeks post-CRT CE-T1WI showed enhancing disease at the site of 

surgery. 4.5 months post-CRT CE-T1WI showed a significant increase in enhancing disease, 

suggesting tPD. (B) A case of psPD. 48 hours post-operative CE-T1WI showed a small amount 

of residual enhancing disease in the right frontal lobe. 6 weeks post-CRT CE-T1WI showed an 

increase in enhancing disease at the site of surgery. 4.5 months post-CRT CE-T1WI showed a 

significant decrease in enhancing disease. 7.5 months post-CRT CE-T1WI showed further 

decrease in enhancing disease, suggesting psPD. 
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 Role of advanced imaging techniques in post-treatment imaging 

A recent review article has shown that advanced MRI techniques that can assess physiological 

and metabolic properties of tissue have shown to be useful, these include ADC from DWI, 

fractional anisotropy from diffusion tensor imaging (DTI), dynamic susceptibility contrast 

(DSC) perfusion, dynamic contrast-enhanced (DCE) perfusion, arterial spin labelling (ASL), 

MRS, ferumoxytol relative cerebral blood volume (rCBV), amide proton transfer (APT) 

weighted imaging, parametric response mapping (PRM) and perfusion MRI-fractional tumour 

burden (pMRI-FTB) [123]. Combining advanced MRI techniques in a multiparametric protocol 

have shown to provide a higher degree of confidence in assessing glioblastoma treatment 

response (Figure 16 and Figure 17) [113,126–128], which is investigated in Chapter 6. 

Positron emission tomography (PET) is another imaging modality that can be used to 

distinguish between true progression and pseudoprogression. The most widely used tracer, 

fluorodeoxyglucose (FDG), has a limited role however has a higher accuracy in combination 

with advanced MRI techniques [129]. Other tracers with low background brain activity have 

shown to be more useful than FDG-PET, such as 11C-methyl-methionine-PET (MET-PET), FET-

PET or 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (FDOPA-PET) [123], but are less available. 

Many studies have shown that radiomics in combination with machine learning is promising 

[130–136], which is investigated in Chapter 7. 
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Figure 16. True progression in post-treatment glioblastoma with low MGMT promoter 

methylation (<10%). (A) Pre-operative CE-T1WI. (B) IP-MRI CE-T1WI showed resection of the 

right frontal glioblastoma. (C) Early post-CRT CE-T1WI at six weeks showed a significant 

increase in contrast enhancement. Multiparametric MRI at this time point demonstrated: (D) 

areas of restricted diffusion on DWI and ADC (<1000), (E) a high rCBV ratio on PWI (>2.0), (F) a 

very high choline/creatine (Cho/Cr) ratio (3.8), high Cho/NAA ratio on MRS. All parameters 

suggested a poor response and disease progression. 
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Figure 17. Pseudoprogression in post-treatment glioblastoma. (A) Pre-operative CE-T1WI. (b) 

Post-operative CE-T1WI showed resection of the left frontal glioblastoma. (C) Early post-CRT 

CE-T1WI at four weeks showed an increase in contrast enhancement (arrow). 

Multiparametric MRI at this time point demonstrated (D,E) areas of free diffusion on DWI and 

ADC, (F) a low rCBV ratio on PWI, (G) a low Cho/Cr ratio, a low Cho/NAA ratio and presence of 

lipid and lactate on MRS. All these parameters suggested features of pseudoprogression. (H) 

Follow-up CE-T1WI at 12 months showed a further decrease in enhancement (arrow) 

confirming pseudoprogression. 

 

 Treatment response assessment criteria 

Imaging of glioblastoma as well as other high-grade glial tumours during the adjuvant 

chemotherapy and post-treatment monitoring period, should be assessed by the RANO 

criteria. This takes account of the size of the contrast-enhancing lesion and non-contrast-

enhancing surrounding T2WI/FLAIR signal change on imaging compared to the pre-treatment 

baseline imaging and uses the smallest lesion size following treatment for determining 
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progression, as well as incorporating clinical status and use of corticosteroids [137]. Outcome 

is determined as complete response (CR), partial response (PR), stable disease (SD), or 

progressive disease (PD). The criteria acknowledges the issue of psPD, specifying that within 

the first 12 weeks following completion of radiotherapy, tPD can only be attributed if there is 

new contrast enhancement outside the radiation field or if there is histological confirmation 

of tumour progression [138]. The inclusion of T2WI/FLAIR disease criteria is important as up 

to 40% of patients treated with bevacizumab show an increase in non-enhancing disease 

despite contrast-enhancing disease remaining stable [139]. The working group have discussed 

issues surrounding pseudoresponse after treatment with anti-angiogenic therapies, where 

apparent response is due to normalisation of abnormally permeable tumour vessels rather 

than a true treatment response, and therefore imaging responses should persist for at least 

four weeks before they are considered as true responses. In 2016, the immunotherapy 

response assessment in neuro-oncology (iRANO) guidelines were developed to further 

address this issue, with the key addition of guidelines to continue immunotherapy treatment 

for three months if immunotherapy treatment was initiated within six months, as long as 

there is no significant clinical decline. On repeat imaging, if patients have subsequent PD they 

can be classified as having tPD, which is back dated to the date of initial radiographic PD 

[140]. If imaging findings at the three month follow up study meet the criteria for SD, PR or CR 

according to RANO criteria, compared to the previous MRI study meeting the criteria for PD, 

and there is no clinical decline, patients should be considered as responding to 

immunotherapy treatment.  
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 Limitations of RANO and future perspective 

Although the RANO criteria is the current response assessment criteria for glioblastoma, it has 

its limitations. The use of bidimensional measurements of the contrasting-enhancing lesion 

can overestimate disease volume, the thresholds to define PR and PD are relatively arbitrary, 

the use of percentage change thresholds causes bias in smaller lesions, and the evaluation of 

non-enhancing T2WI/FLAIR signal change is thought to be more complex than originally 

thought [137]. Modified treatment response criteria based on volumetric assessment may 

provide more accurate measurements of lesions, and the use T1 subtraction maps may be 

able to identify enhancing lesions more clearly. Although the current updated RANO criteria 

acknowledge the issue of psPD and iRANO considers pseudoresponse, they do not fully 

address the underlying issues of accurate treatment response and heterogeneity of the 

tumour, which will require advanced imaging biomarkers to address. There is increasing 

evidence of advanced MRI techniques such as DWI, PWI and MRS for more accurately 

assessing treatment response in glioblastoma, and calls for their inclusion, however these 

techniques have not yet been included in the response assessment criteria.  

 

 Imaging during adjuvant TMZ and post-treatment monitoring 

Glioblastoma is a very invasive lesion that cannot be removed completely by surgery due to 

microscopic infiltration, and recurrence of disease occurs in approximately 80% of patients 

and is usually seen within 2-3 cm of the previously resected disease [7], occurring at a median 

time of nine months [125]. Clinical assessment and contrast-enhanced MRI forms the basis of 

glioblastoma follow-up to identify recurrence. MRI should be performed every 3 months 
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following  radiotherapy, or earlier if there is evidence of clinical progression, and ideally on 

similar MRI equipment and scanner field strength to limit variability [141]. In cases of 

confirmed tPD, management involves second line treatments or supportive care depending 

on the patient’s prior treatment, performance status and risk.  

In contrast to psPD which is generally observed within the first 3-6 months following 

radiotherapy, radiation necrosis is a later process, seen mostly between 6-24 months after 

radiotherapy but can occur up to several years later [58]. This is a severe tissue reaction to 

radiotherapy, more progressive and the proposed mechanism is thought to be related to 

vascular endothelial injury, glial and white matter damage and changes to the fibrinolytic 

enzyme system, leading to perivascular coagulative necrosis [143]. Advanced MRI techniques 

have shown to be useful to distinguish between radiation necrosis and recurrent tumour, 

however studies have shown that multimodal combination or multiparametric MRI have the 

best diagnostic accuracies [144,145]. 

When disease recurrence is identified, further options for treatment are discussed at the 

neuro-oncology MDT, taking account of tumour phenotype, location of disease, time since 

previous treatment, patient preference and the patient’s performance status [27]. Options 

may include surgical resection of focal recurrence, further radiotherapy, second-line 

chemotherapy such as lomustine or combination chemotherapy such as PCV or an active 

palliative care approach [27]. Where re-operation is feasible, maximal safe resection of 

recurrent disease has shown to provide a significant benefit to prognosis especially in cases of 

gross total resection on imaging, irrespective of the extent of resection originally [146].  
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 Recurrence 

Treatment options for recurrent glioblastoma should be discussed at the MDT and take 

account of the patient’s personal preferences, performance status, previous treatment and 

time from last treatment, as well as molecular marker status [28]. In the UK, second-line 

chemotherapy is usually combination therapy with procarbazine, lomustine, and vincristine 

(PCV), or lomustine alone, and for focal disease recurrence further surgery or radiotherapy 

are also options. Compared to the initial management of glioblastoma, the management of 

recurrence is less standardised and a variety of approaches may be considered. Adequate 

selection of patients is required for second-line treatments and it is recommended that 

patients are treated at high-volume specialist centres and clinical trials should also be 

considered [147]. 

  Treatment-related complications 

  Surgery-related complications 

An understanding of the commonly encountered post-operative complications on imaging is 

essential for appropriate management. Post-operative restricted diffusion is seen surrounding 

the resection cavity in 64% of patients following tumour resection [148], as a result of direct 

surgical trauma, vascular injury, and tumour devascularisation and is reversible in most cases. 

However, in 1% of cases post-operative cytotoxic oedema indicating stroke can be seen which 

shows contrast enhancement in the subacute phase and evolves on serial imaging as 

encephalomalacia develops. Therefore, it is important to correlate new enhancement with 
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the immediate post-operative DWI to not mistakenly diagnose tumour recurrence for post-

operative infarct [149]. Other complications post-resection include intracranial haemorrhage 

with an incidence of 1.6% [149]. Post-resection infection is a less common complication 

typically seen in patients who are immunocompromised and can be seen as bone flap 

infection, subdural empyema, cerebritis, abscess and meningitis (Figure 18) [149]. 

 

 

Figure 18. Post-operative complications following debulking of left frontal glioblastoma in a 

patient on steroids. (A) Pre-operative CE-T1WI. (B,C) IP-MRI pre-contrast and CE-T1WI within 

48 hours showing small residual tumour and haematoma within the resection cavity and a 

shallow right frontal collection, (D) DWI shows resection-related reversible ischaemic changes 

surrounding the cavity in the left frontal lobe. (E,F) Pre-contrast and CE-T1WI three weeks 

later shows progression of residual tumour. In addition, there is a new lesion in the right 

frontal lobe, (G,H) showing strong restricted diffusion (arrow) and low ADC signal in keeping 

with right frontal lobe abscess formation.  
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  Radiation-related complications 

Radiation-related injury is often categorised into acute (days to weeks), early delayed (weeks 

to months), and late delayed (months to years) complications. Acute and early delayed injury 

is a result of changes in vessel permeability and blood-brain barrier disruption, resulting in 

oedema, and is usually reversible resolving spontaneously. On imaging, acute radiation-

related injury can be difficult to identify as the oedema is often indistinguishable from 

tumoural vasogenic oedema. In the early delayed period, there is transient demyelination 

that demonstrates enhancement usually in the radiation field, however this also can be 

indistinguishable from tumour on imaging. The issues surrounding this are discussed later in 

more detail.  

Radiation necrosis or radionecrosis is a serious late delayed complication following radiation 

therapy resulting in an irreversible and progressive necrotic mass lesion and can be seen 

years following radiation therapy. The true rate is difficult to establish given that appearances 

can mimic tumour recurrence on MRI, but is estimated to be between 5% and 25% [150]. The 

proposed pathophysiology of radiation necrosis is thought to be due to vascular injury and 

damage to glial cells resulting in demyelination and neo-angiogenesis with abnormal leaky 

vasculature. An increase in enhancing disease and perilesional oedema alone is not specific to 

diagnose either tumour recurrence or radiation necrosis. Patterns of enhancement have 

previously been described in the literature to describe radiation necrosis such as “Swiss 

cheese”, “soap bubble” or “cut green pepper” however these have shown to have a positive 

predictive value of only 25% [151]. The low predictive value of conventional MRI has led to 

the use of advanced techniques such as PWI, MRS and PET to help distinguish between 
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radiation necrosis and tumour recurrence (Figure 19). Using DSC-PWI, with an rCBV cut-off 

2.1 has shown to give a high diagnostic accuracy to distinguish between the two entities 

[152]. Raised Cho levels on MRS have shown to be a useful imaging parameter [153], as have 

NOEMTR and AmideMTR parameters obtained from chemical exchange saturation transfer 

(CEST) imaging [154]. 

 

 

Figure 19. A case of radiation necrosis in a patient with previous craniospinal radiotherapy for 

medulloblastoma. (A,B,C) FLAIR, pre-contrast and CE-T1WI showing a ring-enhancing lesion in 

the right anterior temporal lobe (arrow). Multiparametric MRI: (D,E,F) DWI, ADC and rCBV 

maps show no restricted diffusion or significantly raised perfusion. (G,H) Single-voxel 

spectroscopy shows mild elevation of Cho/Cr and raised lipid and lactate levels. Findings are 

consistent with radiation necrosis.  

 

Vascular injury is another late delayed radiation-related complication, and is categorised into 

three main appearances: radiation-induced vasculopathy, radiation-induced vascular 
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proliferative lesions, and radiation-induced mineralising microangiopathy [149]. Radiation-

induced vasculopathy is the proliferation of vessel walls resulting in stenosis or occlusion, 

mainly affecting large basal cerebral arteries and as a result, patients are at increased risk for 

ischaemia and infarcts. Radiation-induced vascular proliferative lesions include capillary 

telangiectasia and cavernous malformations as a result of microvasculature injury and 

neoangiogenesis. Radiation-induced mineralising microangiopathy is the formation of 

dystrophic microcalcifications within the brain parenchyma due to calcium deposition in 

damaged vessel walls and necrotic brain tissue, typically in the basal ganglia and subcortical 

white matter [149]. 

Radiation-induced leukoencephalopathy refers to white matter injury usually without 

necrosis, thought to be related to direct axonal injury or secondary injury from vascular 

compromise, appearing as progressive, symmetrical, confluent T2WI/FLAIR hyperintensity 

involving predominantly the periventricular white matter (Figure 20). The incidence is unclear, 

but has been reported in 34% of patients receiving whole-brain radiation treatment after six 

months of follow-up [155]. Patients may be asymptomatic or present with neurocognitive 

decline and there is a poor correlation between imaging and symptoms. It is important to be 

aware that some patients may be on immunosuppressive treatments and therefore can 

develop progressive multifocal leukoencephalopathy (PML), which is generally more 

asymmetrical and affects the subcortical U fibres, and it is important to be able to distinguish 

between the two entities [149].  
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Figure 20. Leukoencephalopathy following whole brain radiotherapy for brain metastases. 

(A,B) Axial T2WI and coronal FLAIR showing extensive, confluent and symmetrical white 

matter T2WI/FLAIR signal hyperintensity. (C,D) DWI and CE-T1WI shows no restricted 

diffusion or contrast enhancement.  

 

Another late delayed phenomenon is stroke-like migraine attacks after radiation therapy 

(SMART) syndrome consisting of migraine-like symptoms in patients who have had previous 

radiotherapy treatment. It is proposed to be related to reversible vascular dysregulation 

resulting in disruption, typically affecting the posterior cerebral hemispheres or cerebellum 

with gyriform T2WI/FLAIR hyperintensity and enhancement with some cases also showing 

diffusion restriction (Figure 21) [156], and usually improves or resolves on follow-up imaging.  
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Figure 21. Case of a left parieto-occipital diffuse glioma  which was resected and treated with 

CRT 19 years ago with ongoing surveillance imaging since then. Most recent imaging (A) Pre-

contrast T1WI, (B,C) axial and coronal CE-T1WI, (E,F) axial and coronal FLAIR, shows new 

thickened cortex with FLAIR signal hyperintensity (arrow), as well as cortical and 

leptomeningeal enhancement in the irradiated area (arrow), in keeping with SMART 

syndrome. (D) SWI shows foci of susceptibility changes indicating post-radiotherapy 

cavernoma formation.  

 

Finally, radiation-induced tumours are an uncommon but serious complication and can occur 

decades following radiation therapy (Figure 22). These can be low-grade or high-grade, with 

meningioma the most common radiation-induced tumour [157].  
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Figure 22. Multiple radiation induced meningiomas. (A,B) Axial and (C) coronal CE-T1WI 

demonstrating multiple radiation-induced intracranial meningiomas (parasagittal, left 

tentorial and left frontal) in a patient who had cranial radiotherapy decades previously for 

leukaemia as a child. 

 

  Chemotherapy-related complications 

Chemotherapy agents can result in toxicity to various structures in the CNS, with the 

structure, type and extent of involvement varying according to the agent and dose 

administered. White matter is particularly vulnerable to chemotherapy-related injury, most 

commonly resulting in a toxic leukoencephalopathy and many chemotherapy agents can 

potentiate the effects of radiation-related brain injury. On imaging, the appearances are 

typically of T2WI/FLAIR hyperintensity in the fronto-parietal white matter and on DWI there 

may be focal or diffuse areas of reversible restricted diffusion, which improve over time after 

stopping the causative chemotherapy agent [158]. 
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 Other treatment strategies and experimental approaches 

  Tumour treating fields (TTF) 

TTF delivers low-intensity, intermediate-frequency alternating electric fields via the scalp 

which selectively disrupting division of glioblastoma cells [159]. A significant survival benefit 

has been observed by adding TTF therapy to maintenance TMZ therapy, increasing median OS 

from 16.0 months to 20.9 months and increasing five-year survival from 5% to 13% [159]. The 

treatment is fairly well tolerated with no increase in systemic side effects, however about a 

half of patients experience mild to moderate local skin reaction and about 2% of patients 

develop severe skin reactions [159]. Although TTF is currently used in the United States and in 

some countries within Europe, it is currently not offered as a treatment in the UK, due to its 

limited cost-effectiveness.  

 

  Anti-angiogenic therapies  

These primarily focus on binding to and blocking the vascular endothelial growth factor 

(VEGF) receptor and have shown to be beneficial in a number of solid tumours as well as in 

pre-clinical and early clinical glioblastoma trials. Anti-angiogenic therapy appears to improve 

PFS and possibly improve quality of life, but randomised controlled trials so far have not 

shown any improvement in OS for patients with glioblastoma [160,161].  
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  Immunotherapy  

Immunotherapy treatments for glioblastoma such as immune checkpoint inhibitors, vaccine 

therapy and adoptive T-cell therapy are undergoing extensive research and clinical trials, 

however to date, phase III clinical trials for immunotherapy treatments have been 

disappointing, thought to be due to tumour heterogeneity and the marked 

immunosuppressive microenvironment induced by glioblastoma [162–164]. Further work is 

ongoing to try to bypass resistance mechanisms, sensitise glioblastoma to therapy and 

increase efficacy of the treatments.  

 

  Ribonucleic acid (RNA) targeted therapies 

RNA targeted therapies have evolved rapidly over the past few years and has the potential for 

therapeutic targets in glioblastoma, through the use of biodegradable nanoparticles delivery. 

These can be through liposomes, polymeric nanoparticles, bacterial toxins, stem cell derived 

exosomes or viral vectors, delivering interference RNA molecules to the tumour and have 

shown benefit in cell lines and mouse models [165]. This however does not accurately 

represent a real model due to tumour microenvironment and the presence of the blood-brain 

barrier (BBB). Although the BBB is disrupted in glioblastoma, it remains a rate-limiting factor 

for the delivery and therapeutic potential of RNA nanotechnology [166]. Delivery via 

intrathecal, intraventricular, or intranasal routes to bypass the BBB and techniques to disrupt 

the BBB such as focussed ultrasound are therefore being investigated. MRI-guided focused 

ultrasound in combination with cavitating microbubbles can be used to disrupt the BBB and 

has had extensive research in animal models, showing improved delivery of chemotherapy to 
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glioblastoma, and is currently being trialled as a promising tool to increase glioblastoma 

exposure to therapy and reduce systemic toxicity [167]. 

 

  Convection enhanced delivery (CED) 

CED is a method to target therapies such as chemotherapy or conjugated toxins to the CNS 

and tumour by stereotactic placement of catheters that provide positive-pressure infusion of 

agents to the target tissue, bypassing the BBB and limiting systemic toxicity [168]. CED has 

shown to be safe and effective in pre-clinical and clinical studies, however phase III 

randomised controlled trials have shown no overall benefit and further improvements in CED 

devices and therapeutic agents is required for this promising tool for the treatment of 

glioblastoma [168]. 

 

  Tumour heterogeneity 

Recently, an increasing number of studies have reported that worse clinical outcomes are 

associated with increasing levels of tumour heterogeneity at histological and genetic levels 

[169]. The heterogeneity is thought to be associated with differences in tumour 

microenvironment, particularly the pH and oxygen levels in the extracellular environment, as 

well as glucose and lactate components, which support glioblastoma growth, invasion and 

infiltration, limiting effectiveness of treatments [170]. Tissue sampling obtained through 

biopsy can show some information about glioblastoma heterogeneity at the sample site, 

however, is not able to provide in vivo spatial information about the entire tumour. 

Furthermore, in the case of tumour recurrence, there is a need to visualise heterogeneity in 
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vivo. With imaging, phenotypic heterogeneity of the entire tumour is apparent in vivo, 

through several techniques, which have the advantage of being non-invasive, avoiding the 

need and risks of biopsy, and assessing heterogeneity more comprehensively. Firstly, 

advanced techniques that assess and quantitively measure properties of the tissue and 

tumour microenvironment are able to assess intra- and inter-tumour heterogeneity, 

discussed further in Chapters 3 and 6. Secondly, macroscopically reflected texture observed 

on imaging can be used to detect patterns and assess glioblastoma heterogeneity [171], 

discussed further in Chapters 4, 5 and 7. 

 Summary 

Glioblastoma is the most common malignant primary brain tumour, and despite significant 

efforts in diagnostics and treatment strategies, the prognosis for patients is poor, with only a 

small improvement over the years. Recent updates to the WHO classification of brain 

tumours have led to major changes, with a much more significant role of molecular markers 

in the integrated diagnosis and management options for patients with gliomas. In order to 

improve prognosis and quality of life further for patients with glioblastoma, there is the need 

for validated biomarkers for earlier diagnosis, better diagnostic techniques for improving the 

degree of resection of infiltrative non-enhancing disease at surgery and more effective 

targeted therapies. In addition, interpretation of post-treatment imaging is challenging, and 

more sensitive and specific biomarkers of treatment response are required to improve 

patient outcomes. 
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3. ADVANCED IMAGING IN THE DIAGNOSIS OF 

GLIOBLASTOMA 

Parts of this chapter are adapted from [113], previously published by Insights into Imaging. 

 Introduction 

MRI plays a major role in the diagnosis, grading, treatment planning and treatment response 

assessment of glioblastoma, as well as other brain tumours and intracranial lesions. 

Conventional MRI provides the anatomical and structural details of lesions in the neuraxis, 

however its specificity is limited. Rim-enhancing lesions that mimic the imaging appearances 

of glioblastoma have a wide differential diagnosis on conventional MRI, each with different 

treatment strategies. Even with recent improvements in contrast resolution, higher magnetic 

field strengths and improved contrast agents, tissue characterisation remains limited using 

conventional imaging acquisitions. When there is diagnostic uncertainty, patients will usually 

undergo biopsy of brain lesions, which is not without risk [172]. Adjunct MRI techniques have 

been developed and are used to quantitatively measure a number of properties of brain 

tissue in vivo, thus allowing regional changes in the tissue microenvironment to be better 

characterised.  
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 Advanced MRI techniques 

The most commonly used advanced techniques in clinical practice are DWI, PWI and MRS. 

DWI is based on the random (Brownian) motion of water molecules in tissue, and the 

magnitude is visualised on an ADC map, providing information about water movement and 

cellularity, with many clinical applications in neuroimaging [173]. PWI provides information 

about angiogenesis and vascularity and its use has substantially increased over the past 

decade [174]. MRS provides information about the composition of various metabolites within 

the tissue. These quantitative methods together provide more than just structural 

information; they provide functional information about tumour cellularity, proliferation, 

vascularity, vessel permeability, and tissue metabolite composition [175].  

Changes in physiological processes due to the nature of the underlying lesion are reflected in 

the information obtained from DWI, PWI and MRS. There have been a number of studies 

demonstrating that these techniques can help improve differentiation of neoplastic from non-

neoplastic lesions [176–179] and the grading of brain tumours [180]. The clinical application 

of advanced imaging for the diagnosis of glioblastoma is detailed later in this chapter, and its 

role in assessing treatment response is detailed further Chapter 6.  

 

 Combining techniques 

Over time, there has been development of these adjunct advanced MRI techniques in 

isolation, beginning with MRS, DWI and then PWI. In clinical practice and throughout the 

literature usually these techniques were compared with each other, however recent studies 

show that the information gained from each of these techniques are substantial and  
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complementary, and there is scarcity of studies investigating the combined approach and this 

is urgently needed [181]. In this chapter, the combined use of advanced MRI techniques 

consisting of DWI, PWI and MRS is presented in helping to establish the diagnosis of 

glioblastoma from similar appearing lesions on imaging. 

 Methods 

 Study design 

This was a retrospective review of patients who underwent conventional and multiparametric 

MRI between June 2014 to March 2021 as part of routine clinical care. The decision to 

undergo multiparametric MRI was determined at the Queen Elizabeth Hospital Birmingham 

Neuro-Oncology MDT by uncertainty at the meeting regarding intracranial lesion diagnosis on 

imaging, which would directly impact upon patient management. Multiparametric MRI was 

recommended with the aim of providing additional diagnostic information and narrowing the 

differential diagnosis. A selection of cases highlighting the most common differential 

diagnoses of glioblastoma on conventional imaging were selected and the utility of 

multiparametric MRI discussed. Diagnostic outcomes were established from histological, 

imaging, or clinical follow-up. Approvals for this study were obtained from the University 

Hospitals Birmingham Research Governance Office. 

 MRI acquisition 

Routine-of-care multiparametric MRI studies were performed on a 3 Tesla scanner 

(Magnetom Verio; Siemens, Erlangen, Germany) with a 32-channel phased-array head coil. 
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Standard brain MRI sequences included T2WI and 3D-FLAIR. Echo-planar imaging (EPI) DWI 

was acquired at b-values of 50 and 1000 s/mm2 with echo time (TE) 100 ms, repetition time 

(TR) 7000 ms, in-plane resolution of 1 mm and slice thickness of 4 mm. This was followed by 

DSC perfusion imaging using gradient-echo EPI during the first pass of a standard dose (7.5 

mmol) bolus of gadolinium-based contrast agent (Gadovist 0.1 mmol/ml, Bayer plc) 

administered intravenously at a flow rate of 6 ml/s. A total of 80 imaging volumes were 

acquired at a temporal resolution of 2.1 seconds with the bolus typically arriving between the 

10th and 15th volumes. TE was 30 ms, TR was 2100 ms, in-plane resolution was 1.5 mm and 

slice thickness was 4 mm. This was followed by a 3D-CE-T1WI magnetisation-prepared rapid 

acquisition with gradient echo (MPRAGE) sequence acquired in the axial plane (1 mm voxels) 

with sagittal and coronal reformats. MRS was performed using a combination of multi-voxel 

(for tumoural and peritumoural regions) and single-voxel point resolved spectroscopy (PRESS) 

sequences with short echo (TE 30 ms) and intermediate echo (TE 135 ms). TE 135 ms was 

usually performed to show lactate inversion at 1.3 ppm (J-coupling effect). Typically, 2D or 3D 

MR spectroscopic imaging (MRSI) was first performed in the axial plane choosing a slice or 

slab with the largest contrast-enhancing lesion area (or on FLAIR in the case of a non-

enhancing lesion), area with restricted diffusion, or high perfusion. This was followed by 10 

mm isotropic single-voxel MRS, with placement of the volume-of-interest further guided by 

the metabolic profiles estimated by MRSI. The single voxel method was used to maximise 

diagnostic yield by combining information from contrast-enhancement, DWI, DSC-PWI and 

MRSI to sample the most relevant part of the lesion likely to provide the highest quality 

spectra. 
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 MRI post-processing and analysis 

ADC maps were calculated from the DWI on the MRI scanner software (Magnetom VB17; 

Siemens, Erlangen, Germany). DSC data were post-processed on a Siemens Leonardo 

workstation (software version VB17; Siemens, Erlangen, Germany) using a global arterial input 

function (AIF) without leakage correction, producing maps of rCBV and relative cerebral blood 

flow (rCBF). MRS data were processed and fitted using the MRI scanner software (Magnetom 

VB17; Siemens, Erlangen, Germany) to include peak integral values for NAA, Cho, creatine 

(Cr), myo-inositol (mI), glycine (Gly), glutamine and glutamate (Glx), lactate and lipids. Imaging 

was visually examined for the areas of lowest ADC values and highest rCBV values (relative to 

contralateral normal appearing brain) and then measured using a 3 mm ROI. MRS was used to 

determine the maximum observed ratio of Cho/Cr in the ROI as well as presence or absence 

of other key metabolites. 

 

 Normative and cut-off values 

Normal brain ADC values for cortical grey and white matter are 833 x 10-6mm2s-1 and 701 x 

10-6mm2s-1 respectively [182]. Mean ADC values in high-grade neoplastic lesions such as 

glioblastoma, anaplastic astrocytoma and metastases have shown to be 700-780 x 10-6mm2s-

1, lymphoma has shown to be 510 x 10-6mm2s-1, and low-grade tumours have shown to be 

1090 x 10-6mm2s-1 [183]. The mean rCBV ratios in high-grade neoplastic lesions have shown to 

be 1.9, compared to 1.3 in low-grade neoplastic lesions [184]. Normative values for Cho/Cr at 

TE 135 ms range from 0.7–1.0 in grey matter and 1.2–1.4 in white matter, with slightly higher 

values seen in the brainstem and cerebellum [185]. Short TE (30 ms) shows more metabolites 
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and is primarily used for assessing tumoural and non-tumoural lesions. Normal Cho/Cr ratios 

using short TE MRS are 0.6 in grey matter and 1.0 in white matter [186]. High-grade 

neoplastic lesions have shown to demonstrate a mean Cho/Cr ratio of 2.4 on short TE MRS, 

compared with a mean Cho/Cr ratio of 1.5 for low-grade neoplastic lesions [187]. 

Histopathological correlation has demonstrated that high Cho is suggestive of tumour and 

lactate is often observed in glioblastoma, thought to represent anaerobic glycolysis in the 

enhancing rim [116]. 

As there is a wide variability of cut-off values for each parameter in the literature, based on 

the results of a number of studies the definition of high-grade neoplastic lesions were 

deemed to have cut-off values of: ADC <1000 x 10-6mm2s-1, rCBV ratio >2.0 and Cho/Cr ratio 

>1.8 [187–190]. These parameters were used semi-quantitatively by identifying the lowest 

ADC value, highest rCBV value and highest Cho/Cr ratio within the lesion. This information 

was read in combination with conventional imaging, clinical findings, and other investigations. 
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 Neoplastic lesions 

As glioblastoma typically presents as a single rim-enhancing, centrally necrotic lesion, the 

neoplastic differential diagnoses would include a single cerebral metastasis, primary CNS 

lymphoma in an immunocompromised patient and other primary neoplastic lesions. In the 

case of multifocal or multicentric glioblastoma, multiple metastases or secondary CNS 

lymphoma would remain differential diagnoses. As glioblastoma can also present as a non-

enhancing lesion, patients who present with a low-grade appearing lesion on conventional 

imaging should have non-enhancing glioblastoma as a suspected differential diagnosis. 

 

 Metastasis 

Intracranial metastasis has a similar conventional imaging appearance to glioblastoma. In the 

presence of normal body imaging and no source of primary neoplastic disease, it can be 

challenging to distinguish between the two. Metastases usually present as smaller lesions, 

generally located near the grey-white matter junction, and with proportionally more 

extensive surrounding vasogenic oedema compared to the size of the lesion than 

glioblastoma, although these are not entirely reliable methods to distinguish between the 

entities. However, as glioblastoma infiltrates the brain parenchyma surrounding the 

enhancing lesion, there are expected to be differences in this region, as opposed to 

metastases in which there is no invasion of the surrounding parenchyma. Conventional 

imaging show no discernible differences in the perilesional oedema, however a number of 

advanced MRI techniques have shown to be able to discriminate between glioblastoma and 

metastasis based on the perilesional environment due to diffuse tumour infiltration beyond 
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the enhancing margins in glioblastoma [191]. On MRS, the abnormal perilesional ratios of 

NAA/Cr >1.5, Cho/Cr >1.4 and Cho/NAA >1.1, as well as rCBV >1.7 have shown to be able to 

differentiate glioblastoma from metastases with a high sensitivity, with the Cho/Cr ratio 

performing best at 89%, however the intratumoural values for these metrics did not show any 

significant differences between the two pathologies [192]. In the case of metastases, the 

peritumoural region showed values which were closer to the contralateral normal appearing 

parenchyma. A case of metastasis demonstrating a normal perilesional environment on MRS 

is shown in Figure 23.  

 

 

Figure 23. Brain metastasis from breast carcinoma. (a) CE-T1WI showed a lesion in the motor 

area of the right mesial frontal lobe. (b) Follow-up imaging demonstrated increase in the 

lesion size with oedema. Multiparametric MRI demonstrated: (c) a low ADC (999 x10-6 
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mm2/sec), (d) a borderline rCBV ratio (1.9, arrow) on PWI, and (e) high Cho/Cr ratio (3.6, 

arrow) on multi-voxel MRS (TE=30 ms). The perilesional parenchyma showed a low Cho/Cr 

ratio, reflecting vasogenic oedema as opposed to tumour infiltration. (f) Histopathology 

demonstrated poorly differentiated metastatic adenocarcinoma with discernible focal ductal 

structures and tumour well demarcated from adjacent brain tissue. 

In comparison to metastasis which demonstrates a normal metabolic profile in the 

peritumoural region, a case of glioblastoma mimicking a haemorrhagic metastasis is shown in 

Figure 24; in this case the perilesional environment demonstrates an abnormally raised 

Cho/Cr ratio, indicative of glioblastoma tumour infiltration. Two types of patterns on the MRS 

spectrum have previously been observed in glioblastoma; the first, seen in the majority of 

cases is a high Cho and lactate-dominant peak which is associated with lesions that 

homogeneously enhance or cystic lesions, and the second is a high Cho and a lipid-dominant 

peak which is seen in ring-enhancing masses with irregular margins on imaging [193]. 
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Figure 24. Glioblastoma mimicking a haemorrhagic metastasis. Conventional MRI: (a, b) Axial 

FLAIR and CE-T1WI, showed a haemorrhagic thick-rimmed enhancing space-occupying mass 

lesion in the right temporo-parietal region with perilesional oedema. Multiparametric MRI: (c, 

d) DWI and ADC map demonstrated susceptibility artefact due to haemorrhage within the 

lesion. (e) PWI showed high perfusion along the enhancing posterolateral aspect of the lesion. 

(f) MRS within the centre of the lesion demonstrated susceptibility artefact due to the 

presence of haemorrhage, however a high level of necrosis was demonstrated by the high 

lipid peak. (g) MRS from perilesional oedema showed a high Cho/Cr ratio (>2), suggesting an 

abnormal microenvironment. The very high rCBV and high Cho/Cr ratio were consistent with 

a high-grade glioma containing internal haemorrhage rather than simple haemorrhage, 

metastasis, lymphoma, granuloma or abscess. The lesion was resected and histopathology 

confirmed IDH-wildtype glioblastoma.  

 

Other metrics that have been investigated include mean diffusivity (MD) from DTI, which is 

higher in peritumoural vasogenic oedema from metastases compared to infiltrative oedema 

in glioblastoma [194]. Using rCBV >3.14 and MD <143 x 10-6mm2s-1, the diagnostic accuracy of 

differentiating glioblastoma from metastasis was 98% [195]. Recently, neurite orientation 
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dispersion and density imaging (NODDI) of the perilesional oedema has also shown to be 

useful to discriminate between the two lesions [196]. This is an emerging advanced DWI 

method that has been developed to evaluate dendrite and axonal microstructure based on a 

non-Gaussian diffusion model, demonstrating a good agreement of fibre density with 

histological validation [197]. NODDI has shown to  outperform DWI, DTI and diffusion kurtosis 

imaging (DKI) in differentiating between the lesions [198], although these were small studies. 

The use of radiomics and machine learning for this clinical issue is further discussed in 

Chapter 4. 

 

 Lymphoma 

Primary CNS lymphoma (PCNSL) is a form of extranodal non-Hodgkin’s Lymphoma and unlike 

other brain neoplasms, resection of PCNSL rarely provides benefit, instead chemotherapy and 

radiotherapy are preferred treatment choices [199]. Hence, it is important to differentiate 

lymphoma from glioblastoma. Typical conventional imaging appearances of PCNSL are an 

avidly homogenously enhancing mass, which is hypointense on T1WI and iso- to hypointense 

on T2WI. There is little mass effect for size and limited surrounding vasogenic oedema. 

Multiparametric MRI in PCNSL demonstrates a very low ADC indicating dense cellular packing, 

lower perfusion due to lack of angiogenesis (rCBV <2.18) [200], very high Cho/Cr ratio due to 

high membrane turnover, high lipid peak at 1.3 ppm due to infiltration by macrophages even 

without necrosis [201], and very low NAA levels [202]. Imaging features of typical PCNSL is 

demonstrated in Figure 25.  

 



80 

 

 

Figure 25. Primary CNS lymphoma. Conventional MRI Findings: (a, b) Axial T2W and post-

contrast T1W sequences showed a large homogenously enhancing lesion in the left occipital 

lobe. (c) ADC map showed very low ADC (<600 x 10-6mm2s-1) throughout the lesion. (d) PWI 

showed low perfusion throughout the lesion compared to normal-appearing contralateral 

white matter. (e, f) MRS showed a very high Cho/Cr ratio (>6, thick arrow) and very high lipid 

peaks in a non-necrotic appearing lesion (TE 30 ms and 135 ms, thin arrows). The low 

perfusion, very low ADC, very high lipid peak in a non-necrotic appearing lesion and high 

choline peak were characteristic of lymphoma. Histopathology confirmed a diffuse large B-cell 

PCNSL.  

 

The atypical imaging appearances of PCNSL are necrosis, irregular or peripheral enhancement 

and haemorrhage, closely mimicking glioblastoma on conventional imaging (Figure 26). It is 

generally seen in Epstein Barr Virus (EBV)-positive PCNSL as well as patients who are 

immunocompromised, such as patients with human immunodeficiency virus (HIV), chronic 

alcohol misuse, and certain collagen vascular diseases, however there is also some evidence 
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that immunological deterioration due to normal ageing can also lead to these atypical 

appearances of PCNSL [203]. 

 

 

Figure 26. Atypical appearances of lymphoma. Conventional MRI Findings: (a, b) Axial T2WI 

and CE-T1WI showed a rim-enhancing space-occupying lesion in the right caudate nucleus 

with surrounding oedema. (c, d) DWI and ADC map showed very low ADC within the central 

area of necrosis. (e) PWI showed low perfusion throughout the lesion compared to normal-

appearing contralateral white matter. (f, g) MRS showed slightly raised Cho/Cr ratio and the 

presence of lipid at 1.3 and 0.9 ppm. No amino or organic acid peaks were present to suggest 

abscess. The low perfusion, low ADC, high lipid peak and only slightly raised choline favoured 

an atypical/necrotic-appearing lymphoma over a high-grade glioma. Histopathology 

confirmed a diffuse B-cell non-Hodgkin lymphoma.  

 

Haemorrhage within PCNSL is a rare, but can occur as an atypical presentation [204]. A 

confirmed case of haemorrhagic glioblastoma mimicking lymphoma on conventional MRI as 

well as DWI and MRS is shown in Figure 27. In this case, the raised rCBV on PWI was the 
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distinguishing factor for glioblastoma rather than lymphoma, despite the typical PCNSL 

appearances of markedly low ADC on DWI and very high Cho/Cr ratio and lipid peaks on MRS.  

 

 

Figure 27. Glioblastoma mimicking haemorrhagic lymphoma. Conventional MRI: (a, b) Axial 

CE-T1WI and FLAIR sequences, showed a large heterogeneous solid space-occupying mass 

lesion in the right insular lobe extending into the frontal operculum with perilesional oedema. 

(c) SWI showed susceptibility artefact indicating internal haemorrhage. Multiparametric MRI: 

(d, e) DWI and ADC map demonstrated restricted diffusion in the non-haemorrhagic areas of 

the enhancing lesion. (f) PWI showed high perfusion within the enhancing component. (g, h) 

MRS from the non-haemorrhagic enhancing component showed a very high Cho/Cr ratio and 

a very high lipid peak. Resection of the lesion confirmed a diagnosis of IDH-wildtype 

glioblastoma.  

 

A meta-analysis of 22 studies to evaluate the diagnostic performance of advanced MRI 

techniques to differentiate between PCNSL from glioblastoma showed a high diagnostic 

performance, with PWI techniques of DSC or ASL showing the highest performance [205]. A 
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number of recent studies have investigated machine learning techniques to distinguish 

between glioblastoma and PCNSL, resulting in a moderate to high model performance with an 

area under the receiver operating characteristic curve (AUC) of 0.77-0.98 across all studies 

and also superior to radiologists in some [206–210].  

 

 Transforming low grade glioma and non-enhancing glioblastoma 

Low-grade gliomas are primary neoplasms of the brain which are generally slow-growing and 

are typically diagnosed in young adults between the ages of 20-45 years [211,212], but most 

will transform to a high-grade lesion, with the median time being 56 months for grade 2 

gliomas [213]. Low-grade gliomas are usually detected incidentally and appear as an area of 

focal signal abnormality with no enhancement on conventional MRI. Multiparametric MRI 

features of a low-grade glioma are a relatively high ADC (>1000 x 10-6mm2s-1), low rCBV (<2), 

low Cho/Cr ratio (<1.8), high NAA and absence of lactate and lipids on MRS [214,215]. Imaging 

features of a typical low-grade glioma is demonstrated in Figure 28.  
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Figure 28. Low-grade glioma. Conventional MRI: (a) FLAIR, (b) T2WI and (c) CE-T1WI showed a 

diffuse abnormality in the left temporal lobe without contrast enhancement. (d) ADC map 

showed high ADC throughout the lesion (1300 x 10-6mm2s-1), (e) PWI showed low perfusion 

throughout the lesion (arrow) compared to normal-appearing white matter, and (f, g) MRS 

(TE 30 ms) showed slightly raised Cho/Cr ratio (1.0), slightly low NAA/Cr (1.1) and a very high 

mI/Cr ratio (0.9, arrow). Lipid or lactate peaks were not significantly elevated. 

Multiparametric MRI appearances suggested no evidence of dedifferentiation. Stable 

appearances were seen on follow-up imaging for over five years, confirming the lesion’s low-

grade nature. 

 

The presence of contrast enhancement in a diffuse glioma is often regarded as a sign of a 

high-grade lesion, however non-enhancing diffuse gliomas are high-grade (Grade 3/4) in 

approximately one third of cases [31]. This has an impact upon treatment, patient outcome 

and OS, as conventional MRI has limitations for the grading of lesions. Non-enhancing 

glioblastoma and transforming low-grade gliomas can show changes in multiparametric MRI 

metrics before contrast enhancement is seen on conventional imaging. In the case of 

perfusion imaging, a significant increase in rCBV can be seen up to 12 months before 
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transformation is seen on conventional imaging [216]. Multiparametric MRI features of a non-

enhancing high-grade glioma or transforming low-grade glioma are focal low ADC (<1000 x 

10-6mm2s-1), high rCBV (>2), high Cho/Cr ratio (>1.8), low NAA and presence of lactate and 

lipids on MRS [214,215,217], and the use of these advanced techniques are recommended in 

the current NICE guidelines for assessing potential of high-grade transformation in a tumour 

appearing to be low-grade on conventional MRI [28]. The typical multiparametric MRI 

features of a non-enhancing glioblastoma are demonstrated in Figure 29. In the early stages 

of malignant transformation, only one or two of the above parameters may be abnormal 

focally within the tumour, and any longitudinal changes in multiparametric information can 

suggest a transforming tumour.  

 

 

Figure 29. Non-enhancing glioblastoma. (a-c) T2WI, FLAIR and CE-T1WI sequences 

demonstrated a non-enhancing signal abnormality in the left temporal lobe. Multiparametric 

MRI: (d) Heterogeneous ADC values throughout the lesion with focal areas of low ADC (lowest 

observed 940 x 10-6mm2s-1, arrow). (e) High rCBV throughout the lesion (arrow) compared to 
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normal-appearing white matter (3.5). (f) Single-voxel spectroscopy showed very high Cho/Cr 

(2.3, arrow) and Cho/NAA ratios (3.1). (g) Histopathology from biopsy of the lesion showed 

low grade diffuse astrocytoma with mild to moderately pleomorphic astrocytic cells in a 

fibrillary background. There was discrepancy of histological and genetic classification with 

morphological features of a low-grade glial neoplasm, but a convincing genetic profile of 

glioblastoma, overriding the morphological appearances. (h) Follow-up imaging 6 months 

later showed contrast enhancement on conventional MRI.  

 

In non-enhancing tumours, there is risk of inaccuracy in stereotactic biopsy leading to under-

grading of WHO grade 3 tumours, reported in 28% of cases [218]. Successful stereotactic 

biopsy diagnosis rate utilising multiparametric MRI techniques has shown to be more than 

93% [219]. To obtain a better biopsy yield and to avoid sampling error for non-enhancing 

tumours, the target of biopsy can be selected from a high Cho, high rCBV or low ADC location. 

A case demonstrating high-grade transformation of a diffuse glioma and the use of Cho 

mapping for choosing the highest Cho peak to target biopsy in a non-enhancing tumour is 

shown in Figure 30. Early detection of non-enhancing glioblastoma and malignant 

transformation, before contrast enhancement is seen on conventional MRI will allow early 

initiation of appropriate treatment, which will ultimately have an effect on improving the 

patient’s OS.  
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Figure 30. High-grade transformation of a non-enhancing diffuse glioma and targeting biopsy 

using multiparametric MRI. Conventional MRI: (a, b) CE-T1WI and T2WI demonstrated a large 

non-enhancing space occupying mass lesion without significant oedema. Multiparametric 

MRI: (c, d) Heterogeneous ADC and rCBV values throughout the lesion. (e) Multi-voxel MRS 

clearly showed a focal area of very high Cho/Cr ratio and very small lactate peak. (f) A 

targeted biopsy was taken from the area of highest choline peak (arrow), and histopathology 

showed anaplastic astrocytoma with moderately atypical astrocytic cells in a fibrillary 

background with a few abnormal mitoses (WHO grade 3).  

 

Another advanced imaging technique which has shown promise include magnetic resonance 

fingerprinting-based relaxometry, which acquires T1 and T2 measurements simultaneously 

within the lesion and perilesional region. This has shown significant quantitative differences in 

the perilesional region between glioblastoma and lower grade glioma with mean T1 value of 

the peritumoural white matter being significantly higher in glioblastoma compared to low-

grade glioma (1578 vs. 1066 ms) [220]. In addition, machine learning-based texture radiomics 
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shows promise and has shown to be able to distinguish between low-grade and high-grade 

gliomas using DWI and PWI with a high accuracy (>90%) [221]. 

 

 Gliomatosis cerebri 

Gliomatosis cerebri is a rare growth pattern of infiltrative diffuse glioma involving at least 3 

lobes of the brain with an incidence of 0.1 per million [222]. Based on the 2016 WHO 

classification, a recent clinicopathological study identified that the majority of tumours 

exhibiting this pattern of infiltration were IDH-wildtype diffuse or anaplastic astrocytomas 

(70%), followed by IDH-mutant diffuse or anaplastic astrocytomas and lastly IDH-wildtype or 

IDH-mutant glioblastoma (5%) [223]. Due to the extensive involvement, palliative surgery, 

radiotherapy and chemotherapy have been used to treat patients with gliomatosis cerebri, 

however there is currently no established treatment guideline [223]. Multiparametric MRI can 

help in making the diagnosis of a high-grade infiltrative tumour lesion from other non-

neoplastic causes and help to identify areas of early transformation and a suitable biopsy 

target, given the widespread changes [224]. A case of gliomatosis cerebri with focal changes 

on PWI is shown in Figure 31. 
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Figure 31. Gliomatosis cerebri pattern of disease. Conventional MRI: (a, b) Axial FLAIR and CE-

T1WI showed diffuse non-enhancing multifocal deep white matter infiltrative lesions 

throughout both cerebral hemispheres. Multiparametric MRI: (c) ADC map demonstrated no 

areas of low ADC. (d) However, PWI showed a focal area of slightly raised perfusion in the 

right frontal centrum semiovale (arrow) compared to normal-appearing white matter. (e, f) 

MRS showed high mI/Cr ratio, slightly raised Cho/Cr ratio (1.2) and slightly low NAA/Cr ratio. 

Focal raised perfusion and choline area was chosen for the optimal site of a targeted biopsy.  
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 Epidermoid-like lesion of the corpus callosum 

The main differential diagnoses for a mass lesion involving the corpus callosum lesion is 

between glioblastoma and lymphoma. On conventional imaging, it is sometimes difficult to 

differentiate between these two entities and other less common lesions. In Figure 32, a case 

of a rare benign epidermoid-like lesion of the corpus callosum is demonstrated. The 

multiparametric MRI features favoured a benign lesion rather than glioblastoma or lymphoma 

and this was confirmed on biopsy. 

 

 

Figure 32. Epidermoid-like lesion of the corpus callosum. Conventional MRI: (a-c) T2WI, FLAIR 

and CE-T1WI showed a lesion involving the splenium of the corpus callosum and right parietal 

lobe. Multiparametric MRI: (d, e) DWI and ADC map showed restricted diffusion (arrow). (f) 

Very low perfusion on PWI (arrow). (g) MRS showed very high lipid (1.3 ppm, arrow), without 

an increase in Cho. In this case, appearances were not typical for high-grade glioma as there 

was low perfusion and no significant increase in Cho, and not typical for lymphoma as there 

was no contrast enhancement or raised Cho. Biopsy was consistent with epidermoid-like 

lesion with no evidence of malignancy.  
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 Infective lesions 

Similar appearing lesions to glioblastoma on conventional imaging with an infective aetiology 

most commonly include pyogenic abscess and other less common aetiologies can include 

tuberculoma, toxoplasmosis, cryptococcoma, neurocysticercosis, aspergillosis as well as other 

rarer opportunistic infections.  

 

 Abscess 

Cerebral abscesses account for 1-8% of intracranial mass lesions [225]. Diagnosis can be 

challenging as abscesses on conventional imaging can mimic primary necrotic tumours and 

metastases. Multiparametric MRI features of pyogenic abscess are uniformly low ADC due to 

the higher viscosity of fluid. The ADC values are typically less than 700 × 10-6mm2s-1 [226], 

which is lower than expected to be seen in high-grade tumours or metastases (700-780 x 10-

6mm2s-1). A case demonstrating haemorrhagic glioblastoma mimicking a pyogenic abscess on 

conventional and DWI alone is shown in Figure 33. In addition, a second similar case is shown 

in Figure 34, in which there was no discernible haemorrhage on CT or MRI except subtle 

findings on the SWI sequence, highlighting the need for the combined use of advanced 

imaging and additional parameters to distinguish between glioblastoma and pyogenic 

abscess. 
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Figure 33. Haemorrhagic glioblastoma mimicking pyogenic abscess. (a) Non-contrast CT 

showed a hyperdense lesion in the genu of the corpus callosum with extensive surrounding 

vasogenic oedema. (b) T2WI confirmed a mass lesion with surrounding vasogenic oedema. (c, 

d) DWI and ADC map showed restricted diffusion with very low ADC within the majority of the 

lesion. (e) SWI demonstrated faint internal susceptibility artefact. (f) CE-T1WI showed a 

necrotic appearing mass lesion within the genu of the corpus callosum with thin, irregular 

peripheral enhancement. The findings on conventional imaging and DWI alone were unable 

to distinguish between pyogenic abscess and glioblastoma. In this case, follow-up was 

consistent with glioblastoma. The restricted diffusion is this case was due to haemorrhage, 

which appeared at least subacute in age, and can be misleading in making the correct 

diagnosis on imaging.  
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Figure 34. Glioblastoma mimicking pyogenic abscess. (a) Non-contrast CT showed a low 

attenuation lesion in the left temporal lobe, with no evidence of haemorrhage. (b) T2WI 

confirmed a cystic mass lesion with surrounding vasogenic oedema. (c, d) DWI and ADC map 

showed discrete areas of internal restricted and non-restricted diffusion. (e) SWI 

demonstrated faint internal susceptibility artefact posteriorly. (f) CE-T1WI showed a cystic 

lesion with thin, irregular rim enhancement. The findings on conventional imaging and DWI 

alone were unable to confidently distinguish between pyogenic abscess and glioblastoma. 

Histology was consistent with glioblastoma. The internal restricted diffusion is this case is due 

to haemorrhage, not appreciable on CT or other conventional sequences, and can be 

misleading if not identified on SWI or if not combined with other multiparametric imaging.  

 

Given that conventional imaging and DWI alone have a limited ability to distinguish between 

glioblastoma and abscess, PWI and MRS have shown to be useful to make the distinction. 

Perfusion, specifically rCBV is significantly lower in pyogenic abscess compared to 
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glioblastoma (1.91 vs. 2.76) [227]. MRS features of abscess are different from tumours and 

show the presence of lactate as well as amino and organic acids such as valine, alanine (0.9 

and 1.5 ppm), acetate (1.9 ppm) and pyruvate (2.4 ppm) within the necrotic cavity, which is 

characteristic for the diagnosis of an abscess [193]. By using MRS and DWI, the sensitivity and 

specificity for diagnosis is up to 100% [228,229]. Typical multiparametric appearances of a 

pyogenic abscess are shown in Figure 35. 

 

 

Figure 35. Pyogenic abscess. Conventional MRI: (a, b) T2WI and CE-T1WI sequences 

demonstrated a ring-enhancing mass lesion in the left frontal lobe with surrounding oedema. 

(c, d) DWI and ADC sequences showed low ADC (600 × 10-6mm2s-1, arrow) throughout the 

lesion. (e) PWI demonstrated significantly lower perfusion (arrow) than the contralateral 

white matter. (f, g) MRS showed high lipid as well as the presence of amino and organic acid 

peaks. These characteristic MRS findings in combination with the very low ADC and low 

perfusion were diagnostic of abscess. Diagnosis was confirmed on aspiration which revealed 

colonies of gram-positive cocci. 
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Other techniques that have shown to be able to differentiate between the two pathologies 

with a high accuracy are DTI metrics. Abscess showed significantly lower MD, higher fractional 

anisotropy (FA) and higher planar coefficient (CP) compared to necrotic glioblastoma, with a 

classification model sensitivity and specificity of 91% and 93% respectively [227]. Asphericity 

values from an ROI of the lesion on CE-T1WI have also shown to be useful, with abscesses 

being more spherical and a model AUC of 0.98, with the advantage of being simpler than 

using machine learning-based radiomic models [230]. In addition, SWI has shown to be useful 

by assessing the degree of intralesional susceptibility signal (ILSS). In glioblastoma, as there is 

angiogenesis there is associated increased signal loss on SWI indicating tumour 

microvascularity, which when combined with ADC values had a 100% accuracy for 

distinguishing between necrotic glioblastoma and pyogenic abscess [231].  

 

 Tuberculoma 

Intracranial tuberculoma is a rare cause of a space-occupying lesion composed of caseating 

granuloma from systemic spread of tuberculosis infection, but potentially lethal as it can 

rupture and cause tuberculous meningitis. Conventional MRI appearances of tuberculoma can 

mimic glioblastoma due to ring enhancement, but often also shows hypointensity on 

conventional T2WI. Multiparametric MRI usually demonstrates an intermediate level of ADC, 

elevated perfusion, and high lipids on MRS, with a normal spectroscopic pattern in the 

perilesional area. ADC can be variable according to the stage of disease, degree of cellular 

infiltration and liquefactive necrosis [232]. Elevated rCBV is seen in tuberculoma, secondary to 

angiogenesis and inflammation. The lipids at 1.3 ppm seen on MRS in tuberculoma reflect the 
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mycobacterium wall and moderately high Cho is present due to inflammatory activity [233]. 

Glioblastoma has a higher mean Cho/Cr ratio compared to tuberculoma (2.1 vs. 1.3) on short 

TE MRS [234]. A case of tuberculoma is shown in Figure 36. 

 

 

Figure 36. Tuberculoma. Conventional MRI Findings: (a, b) Axial T2WI and CE-T1WI showed 

hypointense confluent lesions on T2WI in the right frontal lobe with extensive perilesional 

oedema and enhancement. Multiparametric MRI: (c) ADC map showed intermediate values 

(900 × 10-6mm2s-1), (d) PWI showed perfusion higher than the contralateral white matter, (e, 

f) MRS showed very high levels of lipid at 1.3 ppm (thin arrows), without any lactate. There 

was slightly elevated Cho/Cr ratio (1.5) on short TE MRS (thick arrow), moderately low NAA/Cr 

ratio and absence of mI. In this case of tuberculoma, it was the combination of a hypointense 

lesion on T2WI, raised rCBV, raised lipids and moderately increased Cho/Cr ratio that helped 

to make the diagnosis. The patient commenced anti-tuberculosis treatment, and surgical 

intervention was avoided. 
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Another useful advanced technique in the diagnosis of tuberculoma include APT-weighted 

imaging. This generates tissue contrast from mobile amide protons in the tissue’s peptides 

and intracellular proteins and in a small series of patients has shown significantly lower 

mobile amide protons in the tuberculoma microenvironment as well as raised values in the 

perilesional parenchyma, reflecting a lower protein content internally and raised protein 

content in the surrounding parenchyma, compared to glioblastoma [235]. 

 

 Toxoplasmosis 

Cerebral toxoplasmosis is a parasitic infection caused by Toxoplasma gondii. It is usually seen 

in immunocompromised patients and with this background, the differential diagnosis is more 

extensive and the diagnosis can be difficult to ascertain, however prompt treatment is 

warranted due to the associated high mortality of up to 65% [236]. Conventional imaging 

characteristically shows a “target sign” of enhancement, which when eccentric in location is 

highly specific for toxoplasmosis, although it has a low sensitivity, and another feature is 

concentric enhancement [237]. However, it may still commonly present as a rim-enhancing 

lesion without a target sign, depending on the stage of evolution, closely mimicking 

glioblastoma on conventional imaging, as demonstrated in Figure 37. 
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Figure 37. Toxoplasmosis in a HIV positive patient. Conventional MRI Findings: (a, b) Axial CE-

T1WI and FLAIR showed a well-defined cystic lesion with a thin enhancing wall in the right 

lentiform nucleus with extensive perilesional oedema. Multiparametric MRI: (c) ADC map 

showed a concentric pattern of reduced diffusivity with central cystic change, (d) PWI showed 

low rCBV, (e, f) MRS showed very high levels of lipid at 1.3 ppm and slightly elevated Cho/Cr 

ratio. In this case, the combination of multiparametric MRI findings were not consistent with 

glioblastoma. The differential remained between atypical infection such as toxoplasmosis and 

lymphoma, however the location was atypical for lymphoma, thus favouring toxoplasmosis. 

Biopsy of the lesion was non-diagnostic and the patient commenced treatment for 

toxoplasmosis. (g) Follow up CE-T1WI at 1 month showed reduction in the size of the lesion. 
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 Other CNS infections 

Neurocysticercosis is the most common parasitic CNS infection, and a literature review has 

identified 33 cases of neurocysticercosis lesions than mimicked neoplastic lesions, with a high 

rate of misdiagnosis particularly when there is a solitary lesion [238]. MRS has shown to be a 

useful tool to identify succinate in neurocysticercosis [239], and recently the combined use of 

MRS, DTI and PWI has shown to be able to establish the diagnosis of a solitary 

neurocysticercosis lesion from other neoplastic lesions by the succinate peak on MRS, high 

MD, low FA and low rCBV values compared to contralateral normal appearing brain 

parenchyma [240]. Cryptococcosis is an invasive fungal disease which can infiltrate the CNS 

leading to encapsulated cystic cryptococcomas which mimic glioblastoma, usually in 

immunocompromised patients [241], but has also been reported in immunocompetent 

patients [242,243]. In addition, cerebral aspergillosis is a rare fungal infection of the CNS in 

which clinical as well as conventional imaging is relatively non-specific, mimicking a neoplastic 

lesion usually in patients who are immunocompromised [244], but again has also been 

reported in those who are immunocompetent [245]. MRS of cerebral fungal lesions has 

shown to be useful as it demonstrates peaks of succinate, alanine, lactate, and lipid as well as 

multiple peaks between 3.6 and 3.8 ppm which represent trehalose [246,247]. 
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 Inflammatory lesions 

 Tumefactive demyelinating lesions 

Tumefactive demyelinating lesion (TDL) is the term given to demyelinating lesions that 

present clinically and radiologically indistinguishable from those of a neoplastic mass lesion, 

and often lead to biopsy [248]. This is estimated to occur in about 1-2 out of every 1000 cases 

of multiple sclerosis, but also occurs in patients with no history of demyelinating disease 

[249]. An acute TDL can have ill-defined borders, mass effect, surrounding oedema, central 

necrosis and contrast enhancement, which mimic glioblastoma [250]. They usually 

demonstrate central high ADC, a thin rim of low ADC (representing the active zone of 

demyelination), generally low rCBV, high Cho/Cr ratio, high glutamate and glutamine and 

presence of lipid and lactate. Raised glutamate and/or glutamine peaks are thought to 

represent neuroglial breakdown and the astrocytic response secondary to inflammation, even 

if the conventional imaging pattern is more consistent with a tumour [117]. The metabolic 

profile from the adjacent perilesional area usually shows a similarly abnormal spectral 

pattern. MRS should not be read in isolation as it can mimic tumoural spectrum, however the 

combination of parameters will lead to the correct diagnosis of a TDL. A case of TDL is shown 

in Figure 38.  
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Figure 38. Tumefactive demyelinating lesion. Conventional MRI: (a, b) T2WI and CE-T1WI 

revealed a large heterogeneous space occupying mass lesion and diffuse pattern of 

enhancement. Multiparametric MRI: (c, d) DWI and ADC images showed high ADC centrally 

(>1000 × 10-6mm2s-1) and a thin rim of low ADC reflecting an advancing edge of demyelination 

(arrow). (e) MRS showed a high Cho/Cr ratio (6.4), near normal NAA/Cr ratio, high glutamate 

and glutamine (arrow), low mI/Cr ratio, and the presence of lipid and lactate at 0.9 ppm and 

1.3 ppm respectively. (f) The metabolic profile from the adjacent perilesional area also 

showed a similarly abnormal spectral pattern. PWI (not shown) demonstrated a low rCBV 

except in the anterior-superior component. The striking presence of glutamine and glutamate 

on MRS, the enhancement pattern and generally low perfusion favoured an inflammatory 

lesion, as opposed to high-grade glioma or lymphoma. The patient made a recovery on 

methylprednisolone and avoided biopsy. One-month follow-up imaging: (g) Axial T2WI, (h) CE-

T1WI and (i) ADC map showed significant improvement in mass effect, midline shift and 

overall volume of the lesion.  
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Acute disseminated encephalomyelitis (ADEM) is an immune-mediated inflammatory 

demyelinating condition which can also present as a TDL following infection or vaccination, 

mostly in children but also seen in adults [251]. MRI typically show large ill-defined 

T2WI/FLAIR hyperintense lesions which are bilateral and asymmetrical, affecting the white 

and grey matter, with variable contrast enhancement (approximately in 30% of cases), 

depending on the stage of the disease, and treatment is with high-dose IV corticosteroids 

[252]. Contrast-enhancing ADEM can mimic glioblastoma and vice versa, as demonstrated in a 

recently published case report in which a case of glioblastoma was misinterpreted as ADEM 

following COVID-19 vaccination based on conventional imaging [253]. Advanced imaging 

features of tumefactive ADEM are similar to that described previously, with areas of low ADC, 

low rCBV, an increased Cho/Cr ratio, presence of lipid and lactate as well as elevation of 

glutamine and glutamate peaks [254]. 

 

 Neurosarcoidosis 

Sarcoidosis is an idiopathic systemic disease with non-caseating granuloma. It typically 

presents as multiple enhancing parenchymal and/or meningeal lesions and can be extremely 

difficult to differentiate from glioblastoma. A case of neurosarcoidosis is demonstrated in 

Figure 39 and follow-up MRI shows near complete resolution of the lesion. A response to 

steroid treatment is usually helpful in making diagnosis. In this case, multiparametric MRI 

showed focal areas of low ADC, low perfusion, moderately high Cho/Cr ratio, presence of 

glutamate and glutamine peak at 2.4-2.6 ppm, large lipid peaks at 0.9 and 1.3 ppm with an 

absence of a lactate peak suggesting necrosis. There is very little literature on advanced 
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imaging in neurosarcoidosis, with a recent single case report showing non-specific findings 

except for slight NAA/Cr ratio reduction on MRS [255]. 

 

 

Figure 39. Neurosarcoidosis in a known case of systemic sarcoidosis. Conventional MRI 

Findings: (a, b) Axial and coronal T2WI, (c) axial FLAIR, and (d) CE-T1WI, showed a diffuse 

infiltrative lesion with enhancing foci in the right cerebellar peduncle extending to the 

brainstem, mimicking a neoplastic lesion. Multiparametric MRI: (e) DWI showed focal areas of 

low ADC (<1000 × 10-6mm2s-1). (f) PWI showed low perfusion in comparison to the 

contralateral side. (g) MRS with a short TE (30 ms) showed moderately high Cho/Cr ratio (<2), 

near normal NAA/Cr and mI/Cr, presence of glutamate and glutamine at 2.4-2.6 ppm and 

large lipid peaks at 0.9 and 1.3 ppm suggesting necrosis. (h) MRS with a TE 135 ms showed 

slightly low NAA/creatine ratio and absence of lactate. In this case, the findings of low 
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perfusion (<2), absence of a lactate peak and presence of glutamine and glutamate favoured 

an inflammatory aetiology such as neurosarcoidosis rather than a high-grade glioma. A 

tapering dose of an oral corticosteroid was commenced, during which neurological symptoms 

improved. Three-month follow-up MRI; (i) axial T2WI, (j) CE-T1WI, (k) FLAIR and (l) ADC 

sequences showed near complete resolution of the lesion. 

 

In comparison, a similar appearing and located lesion on conventional imaging is shown in 

Figure 40; this showed abnormal multiparametric MRI features suggestive of a high-grade 

glioma. Again sited in the brainstem, a difficult location for biopsy to obtain a tissue diagnosis. 

Biopsy of this lesion was inconclusive, however multiparametric MRI demonstrated features 

of a high-grade neoplastic lesion rather than a non-neoplastic lesion, which had significant 

implications for changing the course of patient management.  
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Figure 40. High-grade glioma. Conventional MRI: (a, b) Axial and coronal CE-T1WI, showed a 

well-defined lesion at the ponto-medullary junction. Multiparametric MRI: (c) ADC map 

demonstrated low ADC (590 x 10-6mm2s-1). (d) PWI showed high perfusion (rCBV 2.8, arrow). 

(e, f) MRS showed a high Cho/Cr ratio (2.9, arrow), low NAA/Cr ratio, and presence of lipid 

peaks. MRI findings of a low ADC (<1000 x 10-6mm2s-1), high rCBV (>2) and high Cho/Cr ratio 

(>1.8) were consistent with a high-grade glioma rather than a granuloma or abscess. The 

presence of high Cho levels in the perilesional area (not shown) favoured high-grade glioma 

over a metastatic lesion. In this patient, an initial biopsy was inconclusive and as a result of 

the multiparametric MRI findings, a decision to undergo further biopsy was overturned. The 

patient underwent radiotherapy for presumed glioblastoma. 
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 Encephalitis 

Bickerstaff’s Brainstem Encephalitis is a rare disorder characterised by acute 

ophthalmoplegia, ataxia and altered sensorium [256]. It is now increasingly being recognized 

as anti-GQ1b syndrome or spectrum disorder [257]. Brainstem signal abnormality has a wide 

differential of imaging appearances on conventional MRI and may mimic a glial neoplastic 

lesion. The treatments options of these entities vary significantly. A case of Bickerstaff 

brainstem encephalitis is shown in Figure 41. In this case, the lack of enhancement, low rCBV, 

high ADC, normal Cho as well as presence of glutamine and glutamate at 2.3 and 2.4 ppm 

excluded glioma. Following treatment with IV methylprednisolone, follow-up MRI shows 

complete resolution.  
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Figure 41. Bickerstaff brainstem encephalitis. Conventional MRI Findings: (a) Axial T2WI, (b, c) 

sagittal and coronal FLAIR, and (d) axial CE-T1WI, showed a diffuse high signal lesion in the 

pons with no enhancement post-contrast. Multiparametric MRI: (e, f) DWI showed high ADC 

throughout the lesion (>1000 × 10-6mm2s-1). (g, h) MRS showed normal mI/Cr, normal Cho/Cr 

(arrow), and normal NAA/Cr ratios and minimally increased glutamine and glutamate peaks 

(2.3 and 2.4 ppm). PWI (not shown) had low rCBV compared to normal-appearing white 

matter. The lack of enhancement, low rCBV, high ADC and normal Cho excluded glioma. 

These multiparametric MRI features in conjunction with an acute presentation favoured an 

inflammatory lesion. Two-month follow-up imaging: (i) Axial T2WI, (j) FLAIR and (k) ADC map 

showed lesion regression and normalisation of diffusion. In this case, CSF analysis revealed 

antiganglioside antibodies consistent with a diagnosis of Bickerstaff brainstem encephalitis. 
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 Vascular-related lesions 

 Infarct 

Cerebral infarcts within the subacute phase demonstrate enhancement and can be mistaken 

for a neoplastic mass lesion (Figure 42). Recent case reports have highlighted this issue, for 

example a case of cerebellar infarct which was mistakenly diagnosed as glioblastoma on 

conventional imaging and underwent resection [258]. Conversely even though the clinical 

presentation and history is generally extremely useful to making the diagnosis, it can be 

misleading and cases have also been reported of patients presenting clinically and on 

conventional imaging and DWI with acute stroke due to typical vascular territory location and 

acute symptoms, but subsequently diagnosed as glioblastoma [259,260]. A case from the 

current study is also presented in which there was a similar dilemma (Figure 43). 
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Figure 42. Left posterior cerebral artery (PCA) territory infarct mimicking glioblastoma on 

conventional imaging. (a) FLAIR, (b) SWI and (c) CE-T1WI showed signal change in the medial 

left occipital lobe with haemorrhagic change and mass-like enhancement. (d, e) DWI and ADC 

showed predominately subcortical gyriform restricted diffusion. (f) FLAIR four months later 

showed a reduction in the degree of signal change, confirming a diagnosis of infarct rather 

than a neoplastic lesion. The findings on conventional imaging alone were unable to 

confidently distinguish between glioblastoma and subacute infarct. DWI provided additional 

information in this case to establish the diagnosis of subacute infarct. 
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Figure 43. Presumed glioblastoma mimicking subacute infarct on conventional imaging and 

DWI. (a) T2WI, (b) SWI and (c) CE-T1WI showed signal change in the right occipital lobe 

without haemorrhagic change and presence of subcortical enhancement. (d, e) DWI and ADC 

showed a wedge-shaped area of restricted diffusion. (f) CE-T1WI at one (not shown) and two 

months later showed a progressive significant increase the degree of enhancement and mass 

effect, confirming a diagnosis of a high-grade neoplastic lesion rather than infarct. The 

findings on conventional imaging as well as DWI were more consistent with a subacute 

infarct. However, without additional multiparametric MRI, high-grade neoplasm remained in 

the differential diagnosis as the clinical history did not provide additional information towards 

the diagnosis.  
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The recommendation has been to use additional advanced imaging techniques such as PWI 

and MRS to help distinguish between infarct and high-grade neoplastic lesions [258]. In 

infarct, PWI will generally be much lower than glioblastoma and MRS typically shows a high 

NAA/Cr ratio, low Cho/Cr ratio and lipid-dominant peak in contrast to what is seen in 

glioblastoma, although occasionally there may be an overlap of some MRS features in the late 

subacute phase at six weeks post-infarct and therefore the multiparametric approach is 

essential [193,261,262].  

 

 Haemorrhage 

Glioblastoma diagnosis has shown to be delayed in patients where the initial presentation of 

the tumour is through intracerebral haemorrhage, given that underlying malignancy accounts 

for only 2.3% of cases of intracerebral haemorrhage [24,263], as demonstrated in the case 

shown in Figure 44. The majority of patients therefore go on to have imaging to identify a 

vascular abnormality, usually CT angiography, but this cannot reliably identify an underlying 

tumour, and a post-contrast MRI is suggested as the investigation of choice. This is more able 

to pick up the pathological enhancement of underlying malignancy, however, it is still 

confounded by peripherally enhancing haematoma if performed in the subacute stage and 

therefore should be performed at approximately six weeks following the acute event. In the 

case of pathological enhancement at this six-week time point, multiparametric MRI can be 

useful to confirm the presence of a neoplastic process. 
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Figure 44. Glioblastoma presenting as intracerebral haemorrhage. (a) Non-contrast CT 

showed acute right fronto-parietal intracerebral haemorrhage. Follow up MRI at six weeks: (b) 

T2WI, (c) SWI and (d, e) DWI and ADC confirmed the presence of haematoma contraction and 

evolution, with peripheral haemosiderin susceptibility artefact. (f) CE-T1WI at 12 months 

showed a large enhancing necrotic mass lesion, at the site of prior haemorrhage, consistent 

with an IDH-wildtype glioblastoma on histology. In this case, post-contrast MRI at the six-

week time point may have been useful to detect abnormal enhancement and if present, 

additional multiparametric MRI of the enhancing disease could have provided information 

pointing towards the diagnosis of a high-grade neoplasm rather than simple haemorrhage, 

potentially avoiding a delay in the diagnosis and enabling earlier commencement of 

treatment. 

 

 Vasculitis 

Primary angiitis of the CNS (PACNS), also known as primary CNS vasculitis is a rare form of 

vasculitis caused by idiopathic cerebrovascular granulomatous inflammation. Tumour-like 
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mass lesion is a rare presentation of PACNS, seen in approximately 5% of cases and is 

extremely difficult to distinguish from neoplastic lesions on conventional imaging, frequently 

misdiagnosed as glioblastoma and leads to surgical intervention rather than aggressive 

immunosuppression and steroid treatment [264,265]. MRS is recommended and has shown 

to be one of the key imaging methods to be able to distinguish between glioblastoma and a 

tumour-like mass lesion of PACNS through the marked elevation of the glutamate and 

glutamine peaks which is associated with inflammatory processes and not consistent with 

glioblastoma [264,266,267]. The degree of Cho, NAA, lipid and lactate levels were found to be 

less specific to distinguish between the entities [264]. High-resolution vessel wall MRI (VW-

MRI) is a newer technique more frequently being used to detect abnormalities within and 

surrounding cerebral vasculature, which is more specific for a diagnosis of vasculitis and not 

often seen in neoplastic disorders, although VW-MRI requires further studies to establish 

imaging biomarkers to distinguish between the various causes of vasculitis [264,268]. 
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 Limitations and future direction 

There are some inherent challenges for adoption of multiparametric MRI techniques in 

routine clinical practice, such as brain regions affected by susceptibility, small lesions and 

non-enhancing lesions. However, the adoption and widespread clinical use of multiparametric 

MRI protocols is improving with the use of higher magnetic field strength magnets, 

specialised coils and readily available vendor post-processing tools. There has been 

improvement in the standardisation of acquisition techniques over time, particularly with the 

publication of white papers on imaging [175,269]. However, the cross-site and cross-vendor 

standardisation is still difficult to address, as there is some variability of threshold values and 

limited understanding of combining the parametric information. This is expected to improve 

further with training of specialists in the field, development of consensus guidelines and the 

routine incorporation of these techniques into clinical practice providing larger datasets and 

scope for multi-centre and prospective studies [270].  

It is imperative that functional multiparametric information from DWI, PWI and MRS is read in 

combination with structural MRI sequences, such as T1WI, T2WI, FLAIR, SWI, CE-T1WI to 

further characterise lesions. These semi-quantitative multiparametric parameters of ADC, 

rCBV and Cho/Cr should be evaluated comprehensively and in conjunction with each other, 

rather than in isolation to narrow the differential diagnosis. Integrating these techniques with 

other more advanced MRI methods, other imaging modalities such as PET, as well as 

quantitative machine learning-based techniques such as radiomics and deep learning is 

expected to even further improve the diagnostic accuracy of imaging, but requires further 

work and validation [271,272]. 



115 

 

 Conclusion 

This study has demonstrated through a variety of clinical cases that glioblastoma is mimicked 

by various other neoplastic, infective, inflammatory, and vascular-related disease processes 

on conventional MRI and can be frequently misdiagnosed. Combining conventional imaging 

with advanced MRI techniques that assess the lesion and perilesional microenvironment are 

crucial and have shown to make a positive difference for individual patient management and 

more informed decisions at the MDT meeting. Their use is strongly recommended by 

numerous studies and guidelines to improve the diagnostic accuracy of imaging and thus 

reducing uncertainty, unnecessary invasive procedures in the case of non-neoplastic lesions, 

as well as being able to commence definitive treatment earlier with the aim of improving 

patient outcomes.  
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4.  MACHINE LEARNING-BASED RADIOMIC 

ANALYSIS FOR DISTINGUISHING BETWEEN 

GLIOBLASTOMA AND METASTASIS 

 Introduction 

There are approximately 2,500 new cases of glioblastoma in England every year [4], and it has 

been estimated that there are 16,000 patients diagnosed with brain metastasis in the UK 

every year [273], affecting approximately 30-40% of patients with extracranial primary cancer 

[274,275], although there is difficulty in establishing the true incidence [276]. As previously 

discussed in Section 3.3.1, brain metastases have a similar appearance to glioblastoma on 

conventional imaging, and particularly when presenting as a solitary or single lesion it can be 

difficult to distinguish from glioblastoma. Each of the pathologies have different treatment 

strategies and considerations, such as the pre-operative administration of 5-ALA for 

fluorescence guided resection to ensure maximal safe resection of glioblastoma, en bloc 

resection of metastases compared to piecemeal resection in glioblastoma, and option of non-

surgical treatments such systemic therapies or stereotactic radiosurgery for certain brain 

metastases [277].  

The diagnosis of metastasis or glioblastoma is currently based on histopathological 

appearances of the lesion, from samples obtained through biopsy or resection, which is not 
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without risk particularly when lesions are sited in eloquent areas or in high-risk patients. An 

accurate method for differentiating between glioblastoma and solitary metastasis non-

invasively using imaging is required to help plan patient management options. Although 

advanced MRI techniques have shown the ability to distinguish between the two pathologies, 

they are not routinely performed for this indication in clinical practice within the UK and 

therefore techniques that utilise conventional imaging sequences would be more clinically 

utilisable. Radiomic studies involve the extraction of numerous quantitative features from 

images and in combination with an AI technique such as machine learning, diagnostic or 

prediction models can be created. The aim of this study was to investigate the accuracy of 

radiomics and machine learning for distinguishing between glioblastoma and brain 

metastasis, using routinely-acquired pre-treatment MRI studies. 

 Background 

AI is a broad term encompassing several branches of computer science that involve creating 

systems to perform tasks that usually require human intelligence, such as machine learning 

and deep learning. Machine learning involves training computers to perform tasks without 

explicit programming, usually using human engineered features to distinguish patterns of 

data, whereas in deep learning the computer learns features in order to classify data and 

these are compositional or hierarchical [278]. Machine learning and deep learning have been 

used in many applications outside of imaging and medicine with success, and only recently 

over the last few years have these been used in medical imaging. Although the techniques 

have been used for decades, three key factors have allowed these techniques to be used 
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more widely: (a) large quantities of labelled data, (b) more powerful and less expensive 

parallel computing hardware, and (c) improvements in training techniques [278]. There are 

various steps involved as described below. 

 

  Image acquisition and pre-processing 

Standardised image acquisition and pre-processing steps are essential for machine and deep 

learning. For optimum results, radiological studies should be standardised as much as 

possible. They should ideally be acquired using the same protocol (resolution, field of view, 

slice thickness, cut angles, contrast washout time) and images should be acquired from the 

same scanner and without artefact. The use of volumetric imaging is superior to thick slices as 

there is limited loss of information or the need to create information by interpolating or re-

slicing. The use of multiple conventional MRI sequences and multiparametric information 

provides additional data for use in machine and deep learning but will make analysis timelier 

and more complex. As with all studies, larger number of cases will give more power and can 

compensate for heterogeneity in the dataset, from the use of different scanners, different 

protocols, or imaging from different institutions. Pre-processing usually involves image 

intensity normalisation, applying magnetic field inhomogeneity correction and re-slicing if 

required. Multiple sequences from each case should also be co-registered to allow application 

of the mask for segmentation, and feature extraction in machine learning or feature 

definition in deep learning. 
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  Segmentation 

Segmentation of the lesion is usually a pre-requisite for machine and deep learning studies, 

although depending on the application, some deep learning studies may involve input of the 

entire image or image stack without delineation of a particular ROI. Usually the ROI is a 

tumour or lesion but can also include its subcomponents or the perilesional environment; an 

example shown in Figure 45.  

 

Figure 45. Example of glioblastoma segmentation. Left: Enhancing disease (red) and necrosis 

(blue) components segmented on post-contrast T1-weighted imaging. Middle: In addition 

peritumoural oedema (yellow) is segmented on T2-weighted imaging. Right: Volumes of 

interest created in three dimensions. 

 

The ROI can be two-dimensional in the form of a segmentation mask on a single image or on a 

single slice of a series, or it can be a three-dimensional mask spanning over a number of 

slices, in the form of a volume of interest (VOI). Segmentation can be performed manually, 

semi-automatically or automatically, and there are various tools available. The manual 

technique, if performed by a radiologist is generally the most accurate and considered to be 

gold-standard or ground truth but is subjective and there may be interobserver variability. 

Manual segmentation is considered the most time-consuming, especially when there are 
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large lesions which span over a number of slices, in combination with thin slice volumetric 

imaging. Semi-automatic methods are preferred to reduce segmentation time and involve 

automatic computer-aided segmentation methods, most commonly edge-based detection 

methods in combination with a manually-placed seed point, followed by manual adjustments. 

Fully automatic methods can be used, although these methods usually require multiple MRI 

sequences for tumour segmentation and may not be accurate where there are complex 

lesions, and close proximity or attachments to surrounding structures.  

 

  Feature extraction 

Machine learning can be used to recognise patterns in imaging, by converting medical images 

into higher-dimensional data [279,280]. Large numbers of quantitative radiological features, 

termed “radiomic features” can be extracted from the image ROI or VOI; the features are 

usually mathematical descriptions of the visual properties of an image. Radiomic feature 

extraction is performed using dedicated software packages or custom-built applications for 

specific features. Features consist of shape and size, first-order statistics (histogram-based 

techniques of voxel values), second-order statistics (textural features defining correlations 

between voxels) and higher-order methods (such as the use of filter grids) [281]. Human-

defined imaging features, clinical and patient features, laboratory results, and molecular 

markers can also be integrated as additional features into the machine learning algorithm and 

combined with imaging as inputs into deep learning algorithms. 

For deep learning, features are not defined, rather the computer encodes features using 

artificial neural networks which consists of connected nodes, based on the structure of 
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biological neural networks [278]. For processing imaging data, the dominant architecture is 

the convolutional neural network (CNN), which has neurons arranged to produce a 

convolution of a small part of the image (kernel), which subsequently moves across the image 

and outputs its location and value, producing a set of values that pass through various hidden 

layers to amplify important features [282].  

 

  Feature selection and classification 

In machine learning, the algorithm computes the radiomic features and additional features, 

and ranks them according to importance in making the defined outcome prediction, known as 

supervised learning, as the data is labelled. The outcome can be a histological diagnosis, 

correlation with a molecular or genomic marker (termed “radiogenomics”), a dichotomous 

clinical outcome, or prognostic outcome. The algorithm then identifies the best combination 

of features for classification. There are various classifiers that can be used; the most popular 

include support vector machine (SVM), random forest, k-nearest neighbour (k-NN), Naïve 

Bayes and logistic regression. A final model is produced combining the most predictive 

features and their weightings. 

For deep learning, the input is a set of values representing features, each multiplied by a 

corresponding weight. The CNN determines the important features as a part of its search 

process and therefore the bias of testing only features that a human believes to be important 

as well as the bias of selecting important features, is removed. The CNN is trained by 

adjusting weights and biases of each node, via an optimisation algorithm and the 

performance of the CNN is re-assessed by measuring the inaccuracy of the prediction and 
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parameters are incrementally adjusted [278]. Unsupervised learning approaches for CNN 

remains difficult in practice, as data is not labelled therefore the classifier clusters images 

based on the algorithm results, hence semi-supervised learning approaches are preferred, 

combining unlabelled and labelled data [278]. There are many different types of CNN 

architecture, with varying numbers of layers and layer sizes, and they appear to perform 

differently for different given problems, and selecting the best one is still a trial-and-error 

process [282]. Compared to machine learning studies, deep learning studies require many 

more samples to provide adequate results.  

 Methods 

 Study design 

The study involved retrospective analysis of consecutive patients at the Queen Elizabeth 

Hospital Birmingham who had pre-operative imaging and subsequently newly diagnosed with 

IDH-wildtype glioblastoma, as well as patients who had imaging prior to a diagnosis of brain 

metastases. Approvals for this study were obtained from the University Hospitals Birmingham 

Research Governance Office. 

 

 Inclusion and exclusion criteria 

Inclusion criteria for glioblastoma cases were: (a) pathology-confirmed IDH-wildtype 

glioblastoma according to the WHO Criteria, and (b) pre-operative volumetric CE-T1WI MRI 

sequence. Inclusion criteria for brain metastases cases were: (a) pathology-confirmed primary 
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malignancy elsewhere with imaging confirmation of one or more brain metastasis, and (b) 

volumetric CE-T1WI MRI sequence. Exclusion criteria were: (a) biopsy, surgical resection or 

radiotherapy treatment of the brain lesion prior to the MRI; (b) significant imaging artefact; 

(c) ambiguous tumour margins resulting in unsuitability for segmentation; and (d) enhancing 

lesions measuring less than 10 mm in diameter in at least one dimension.  

In total, 228 lesions across 55 patients with brain metastases were assessed for suitability 

from which 53 lesions across 37 patients were included in the study from those who had 

imaging over a 4-month period between August and November 2018. Of the 175 excluded 

lesions, 171 were excluded due to size less than 10 mm and 4 were excluded due to previous 

treatment or biopsy. In total 101 cases of glioblastoma were assessed for eligibility over a 17-

month period between June 2016 and November 2017, and the same number of 

corresponding glioblastoma lesions were included in the study (53 cases). Of the 48 excluded 

patients, 28 patients did not have a confirmed IDH status or had a glioblastoma variant, 8 

patients had IDH-mutant glioblastoma, and 12 patients did not have volumetric CE-T1WI 

performed, or imaging contained significant artefact. The mean age (and standard deviation 

(SD)) of patients in the glioblastoma group (n=53) was 55.6 years (11.6) and in the brain 

metastasis group (n=37) it was 63.2 years (10.9). In the glioblastoma group, 23/53 (43%) were 

female and in the brain metastasis group, 20/37 (54%) were female. A flowchart of patients is 

shown in Figure 46. 
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Figure 46. Flowchart of patient inclusion and exclusion criteria. 

 

 MRI acquisition 

All volumetric CE-T1WI was acquired with a maximum in-plane voxel size of 1.0 x 1.0 mm2 and 

the maximum slice thickness was 1 mm. For patients with glioblastoma, standard-of-care 

clinical imaging data was acquired from various MRI scanners: Siemens and GE 1.5 Tesla (45 

studies), Siemens 3.0 Tesla (8 studies) scanners (Siemens Healthcare, Erlangen, Germany and 

GE, Milwaukee, USA) with 32-channel phased-array head coils, across several sites with TR = 

540-690 ms and TE = 3-17 ms at 1.5 Tesla, TR = 1480-2350 ms and TE = 3-10 ms at 3.0 Tesla. 
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For patients with brain metastases, standard-of-care clinical imaging data was acquired from 

two Siemens 3.0 Tesla MRI scanners (Siemens Healthcare, Erlangen, Germany) with 32-

channel phased-array head coils, TR = 1480-1700 ms and TE = 2.6-3.2 ms. IV gadolinium 

contrast (Dotarem; Guerbet, Villepinte, France) was administered as a bolus of 10-15 ml (10 

ml if weight <70 kg, 15 ml if weight ≥70 kg). 

 

 Segmentation 

A three-dimensional mask was created for each lesion based on the CE-T1WI. The entire 

enhancing lesion including non-enhancing tumour core, was manually segmented in the 

Microsoft Radiomics App (Microsoft Research, Cambridge, UK), as shown in Figure 47. For 

glioblastoma cases, manual adjustments were made on each slice through the consensus of 

two neuroradiologists (>20 and 5 years’ experience). For brain metastases cases, the 

radiotherapy masks used for delivering SRS were used from routine clinical care, which was 

contoured by a consultant neuroradiologist and verified for accuracy by another 

neuroradiologist (>20 years’ experience). 
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 Image pre-processing pipeline 

Image resampling and intensity normalisation was performed using PyRadiomics (version 3.0) 

pipeline modules [283]. Image voxel size was normalised by performing image resampling 

according to the lowest acquisition resolution to avoiding upsampling (1.0 x 1.0 x 1.0 mm). 

Image intensity normalisation was applied based on the entire image and centred at the 

mean with SD. Hyperintensity artifact was corrected for by removing outlier voxel intensities 

greater than the 99.9th percentile for each image.  

 

 Radiomic feature data extraction and models 

Radiomic feature data extraction was performed using PyRadiomics (version 3.0) [283]. 

Numerical values were obtained for a total of 107 features from the segmentation mask for 

each patient. Features included 14 shape-based features, 18 first order and 75 second order 

features. Second-order features consisted of 24 gray-level co-occurrence matrix (GLCM) 

features 14 gray-level dependence matrix (GLDM) features, 16 gray-level run-length matrix 

(GLRLM) features, 16 gray-level size-zone matrix (GLSZM) features and five neighbourhood 

gray-tone difference matrix (NGTDM) features. Feature groups, families and individual 

features are listed in Figure 48. Features were normalised and standardised by centring the 

mean at zero and scaling the variance at one prior to machine learning. Two feature set 

models were constructed which subsequently underwent feature selection and classification: 

(i) 14 shape-based radiomic features from the tumour mass segmentation mask; and (ii) 93 

first order and second order radiomic features extracted from the tumour mass segmentation 

mask.  
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Figure 48. List of the shape-based, first order and second order radiomic features used. 
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 Feature selection and classification 

The entire dataset was split into five folds using stratified random sampling, to carry out 

variable selection within nested cross-validation [284], as shown conceptually in Figure 49. 

The outer loop of nested cross-validation comprised of the five folds, each containing 80% 

training data and 20% testing data. The inner loop of each of the five training folds were used 

to identify the most predictive features in each model using a multi-step pipeline. Clusters of 

highly correlated features were identified using the Pearson correlation coefficient matrix 

(Python pandas environment, version 1.0.1 [285]) and the most representative features were 

kept from the clusters (R2 > 0.8) and remaining features removed. Cross-validated 10-fold 

recursive feature elimination with a random forest classifier considering Gini impurity 

measures was then used to further reduce and select the most predictive features (Python 

scikit-learn environment, version 0.22.1 [286]). Classification in the outer loop was performed 

using a Naïve Bayes classifier in Orange (version 3.24) [287]. Only features that appeared in all 

five folds of the outer loop were selected to produce the final feature set. The AUC, 

sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and 

accuracy of the model was calculated. 
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Figure 49. Conceptual overview of the nested-cross validation technique used. 
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 Results 

 Predictive features 

The most predictive features for each of the five folds, as well as the top common features 

across all folds of the two models along with the average AUC are shown in the tables below. 

The average AUC for the shape-based radiomic feature model was 0.97 (Table 4), with least 

axis length and sphericity features being common across all folds. The average AUC for the 

first and second order radiomic feature model was 0.92 (Table 5), with the first order feature 

of energy being common across all folds. 

 

Fold 1 2 3 4 5 

Common 

features and 

average AUC 

across all folds 

Top 

features 

Least axis-

length 

Sphericity 

Least axis-

length 

Sphericity 

Elongation 

Least axis length 

Sphericity 

Least axis-

length 

Sphericity 

Elongation 

Least axis-

length 

Sphericity 

 

Least axis-

length 

Sphericity 

 

AUC 0.97 0.98 0.98 0.92 0.99 0.97 

Table 4. Most predictive shape-based radiomic feature sets across each fold.  
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Fold 1 2 3 4 5 

Common 

features and 

average AUC 

across all folds 

Top 

features 

Energy (FO) 

LAHGLE 

(GLSZM) 

LAE (GLSZM) 

DE (GLDM) 

10th percentile 

(FO) 

Range (FO) 

SRE (GLRLM) 

Minimum (FO) 

RLNU (GLRLM) 

LAE (GLSZM) 

Energy (FO) 

LALGLE (GLSZM) 

DE (GLDM) 

LRLGLE (GLRLM) 

10th percentile 

(FO) 

Minimum (FO) 

SRE (GLRLM) 

LAHGLE (GLSZM) 

Energy (FO) 

LAE (GLSZM) 

Minimum (FO) 

DE (GLDM) 

10th percentile 

(FO) 

SDE (GLDM) 

GLNU (GLSZM) 

SRE (GLRLM) 

RLNU (GLRLM) 

Energy (FO) 

Energy (FO) 

LAHGLE (GLSZM) 

LAE (GLSZM) 

DE (GLDM) 

LRLGLE (GLRLM) 

SRLGLE (GLRLM) 

Minimum (FO) 

Range (FO) 

10th percentile 

(FO) 

Energy (FO) 

AUC 0.95 0.86 0.98 0.92 0.89 0.92 

DE = dependence entropy, FO = first-order, GLDM = gray-level dependence matrix, GLNU = gray-level non-

uniformity, GLRLM = gray-level run-length matrix, GLSZM = gray-level size-zone matrix, LAE = large area 

emphasis, LAHGLE = large area high gray level emphasis, LALGLE = large area low gray level emphasis, LRLGLE 

= long run low gray level emphasis, RLNU = run length non-uniformity, SDE = small dependence emphasis, SRE 

= short run emphasis, SRLGLE = short run low gray level emphasis. 

Table 5. Most predictive first and second order radiomic feature sets across each fold. 

 

 Final feature set model 

For the final feature set model, the most predictive features that appeared in all folds of both 

models were combined. Two features were obtained from the shape-based radiomic features 

(least axis length and sphericity) and one feature was obtained from the first and second 

order radiomic features model (first order energy). Definitions of the individual radiomic 

features within the final radiomic signature are shown in Table 6.  
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Feature 

Name 
Feature Category Feature Definition 

Least axis 

length 
Shape-based 4√𝜆𝑙𝑒𝑎𝑠𝑡  

Sphericity Shape-based 2𝜋𝑅

𝑃
=
2√𝜋𝐴

𝑃
 

Energy First-order ∑(𝑋(𝑖) + 𝑐)2

𝑁𝜌

𝑖=1

 

A = surface area of the mesh in mm2, c = optional value which shifts the intensities to prevent negative 

values in X,  Np = the number of pixels included in the ROI, P = perimeter of the mesh in mm, R = radius of 

circle with the same surface as the region of interest, X = a set of Np voxels included in the region of 

interest, λleast = smallest axis length. 

Table 6. Definitions for the most predictive radiomic features in the final feature set for 

differentiating between glioblastoma and brain metastasis. 

 

Comparison of the final radiomic feature set mean values between the glioblastoma and brain 

metastasis groups showed significant difference, which are shown as box plots in Figure 50. In 

the glioblastoma groups there were significantly higher values of least axis length, 

significantly lower values of sphericity, and significantly higher values of energy (p<0.001). 
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Figure 50. Box plots of the final model radiomic feature values, comparing the glioblastoma 

and brain metastasis groups. (A) Least axis length, (B) sphericity, and (C) energy. 
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The performance of the final model combining these three features demonstrated an AUC of 

0.97, with an accuracy and confidence interval (CI) of 88.7% (81.1-94.0), sensitivity 88.7% 

(77.0-95.7), specificity 88.7% (77.0-95.7), PPV 88.7% (78.6-94.4) and NPV 88.7% (78.6-94.4). 

Results of each fold from the final model are shown in Table 7 and the receiver operating 

characteristic curve for the final feature set model is shown in Figure 51. 

 

Fold AUC Sensitivity, % Specificity, % PPV, % NPV, % Accuracy, % 

1 0.97 81.8 100.0 100.0 84.6 90.9 

2 0.97 90.9 90.0 90.1 90.8 90.5 

3 0.98 100.0 90.0 90.9 100.0 95.0 

4 0.96 100.0 81.8 84.6 100.0 90.9 

5 0.96 90.0 81.8 83.2 89.1 85.9 

Average 0.97 
88.7 

(77.0-95.7) 

88.7 

(77.0-95.7) 

88.7 

(78.6-94.4) 

88.7 

(78.6-94.4) 

88.7 

(81.1-94.0) 

Table 7. Diagnostic performance of the combined final radiomic signature model. 
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Figure 51. Receiver operating characteristic (ROC) curve for the final feature set model. 

 

 Discussion 

Brain metastasis and glioblastoma have overlapping conventional imaging features and it can 

be difficult to differentiate between the two, which can have a direct impact upon patient 

management options. One study of patients with brain metastases has shown that the 

presence of a “solitary” brain metastasis in which there is a controlled primary tumour and no 

other metastases is 45.6%, “single” brain metastases in seen in 26.5% of cases and the 

remainder of patients had two or more brain metastases [288]. Two other studies have 
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shown that a single brain metastasis is seen at presentation in 53-58% of cases [289,290], 

although they do not differentiate between solitary and single metastasis. Therefore, the 

issue of distinguishing between glioblastoma and solitary or single brain metastasis is a 

frequently encountered scenario. There are different treatment approaches for both 

pathologies, including method of surgical resection and guidance, as well as the option of 

non-surgical treatments such systemic therapies or radiotherapy for certain metastases. A 

misdiagnosis of glioblastoma instead of a solitary or single metastasis on imaging prior to 

surgical resection may lead to unnecessary surgery and associated risks if non-surgical 

treatments are preferred options. Conversely a pre-operative misdiagnosis of metastasis 

instead of glioblastoma can lead to suboptimal extent of resection of the infiltrative disease 

within the surrounding brain parenchyma, which impacts upon OS for the patient. 

The results of the current study have demonstrated that a machine learning-based radiomics 

model using shape-based and first order features from a single mask on the pre-treatment 

volumetric CE-T1WI can differentiate between IDH-wildtype glioblastoma and metastasis with 

an accuracy of 89%. The imaging in this study reflects standard-of-care practice acquired 

across field strengths and with varying acquisition parameters as per clinical care, followed by 

standardisation to account for heterogeneity. A moderate-sized dataset of 53 cases of 

glioblastoma and 53 cases of metastases were analysed compared to the currently published 

similar studies. The use of a single volumetric CE-T1WI sequence for analysis provides more 

clinical applicability. Methods included cross-validation within feature selection, rather than 

external to feature selection, which provides more reliable results by reducing selection bias 

[284].  
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There have been a small number of studies to date investigating machine learning-based 

radiomics to differentiate between glioblastoma and brain metastases. As with the current 

study, a few have utilised only CE-T1WI. Artzi et al. evaluated one of the largest number of 

patients to date, which included 212 glioblastoma cases and 227 brain metastasis cases, 

utilising a single volumetric CE-T1WI sequence acquired across both 1.5 and 3 Tesla with 

varying acquisition parameters for a robust approach [291]. In addition, clinical information 

and tumour location were used in the study as features in combination with radiomic 

features, but these were only extracted from three slices at the centre of the lesion rather 

than the whole lesion volume to reduce segmentation time. Final model performance was 

85% to differentiate between glioblastoma and metastasis, and results showed it was also 

possible to distinguish between brain metastasis subtypes. Chen et al. also utilised volumetric 

CE-T1WI, acquired from a single 3T scanner and used the whole tumour mask across 76 cases 

of glioblastoma and 58 cases of brain metastases, and achieved an accuracy of 78% [292]. 

Qian et al. utilised datasets from a hospital site as well as The Cancer Genome Atlas (TCGA) 

publicly available dataset to produce a relatively large dataset, however these were thick 

slices of 5 mm rather than volumetric studies with 1 mm slice thickness [293]. The results 

from this study showed the clinical performance of the best models were superior to 

neuroradiologists.  

Three previous studies have utilised masks on multiple sequences; one small study which 

utilised T2WI and SWI with volumetric CE-T1WI sequences [294] and another moderate-sized 

study which combined T2WI and ADC with volumetric CE-T1WI features, which showed the 

machine learning method was superior to univariate analysis and clinical performance was 
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comparable to that of radiologists [295]. The third study utilised both a traditional machine 

learning and radiomics-based deep learning approach incorporating T2WI with volumetric CE-

T1WI in a relatively large dataset [296]. The diagnostic performance of the model was 89%, 

and top radiomic features included shape, first order and second order features. 

Of the three top radiomic features from the final model in the current study, two were shape-

based features (least axis length and sphericity) and one was a first order feature (energy). 

The least axis length feature is based on the length of the smallest axis of the volume of 

interest, with higher values representing larger lengths, the sphericity feature measures 

roundness of the volume of interest with higher values representing a more circle-like shape, 

and the first order energy feature is a measure of the magnitude of voxel values in the lesion 

with larger values representing a greater sum of the squares of these values [283]. 

Significantly higher least axis length, lower sphericity, and higher energy values were observed 

in IDH-wildtype glioblastoma compared to brain metastases, suggesting that glioblastoma 

lesions were larger in short axis measurements, were less round in shape and had overall 

higher signal intensity on CE-T1WI throughout the entire lesion. Shape and first order 

radiomic features have been demonstrated as useful and top features in models in several 

previous studies [291,294–296]. Morphological differences in size and sphericity have 

previously been demonstrated between the two pathologies, with metastases reported being 

smaller and more spherical compared to glioblastoma [297,298], which is in agreement with 

the results and top radiomics features in the current study. The first order feature of energy is 

reflective of greater enhancing disease and solid components within the lesion in 

glioblastoma compared to metastases which appeared to be more cystic and contain a lower 
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proportion of enhancing disease. This is demonstrated in Figure 52, which shows cases to 

highlight the extreme differences visually in the degree of solid enhancing disease as a 

proportion of the lesion and corresponding energy values.  

 

 

Figure 52. Images to reflect differences in energy between brain metastasis and glioblastoma 

on CE-T1WI. (A) Left parietal brain metastasis, with a very low standardised energy value 

of -0.98. (B) Right parietal brain metastasis, with a very low standardised energy value 

of -0.98. (C) Left insula glioblastoma with a relatively high standardised energy value of -0.47. 

(D) Left peri-trigonal glioblastoma with a much higher standardised energy value of -0.07. 
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 Limitations and future work 

One of the main limitations of this study is the selection bias from utilising cases of 

glioblastoma and metastases that were at different stages of disease and therefore different 

sizes. Brain metastases usually present as smaller lesions due to early and greater extent of 

vasogenic oedema, as well as the other systemic metastases leading to systemic symptoms 

and earlier imaging. Glioblastoma will usually present with a larger lesion size and therefore 

although this represents clinical practice, it would be ideal to size-match cases for the 

purpose of this study. This would significantly reduce the available dataset size as very large 

metastatic lesions would be fewer in number. However, on further analysis of the data in this 

study, the predictive power of each individual features in the final model were analysed and 

the AUC for each were: least axis length 0.93, sphericity 0.86, and energy 0.89. Although the 

size feature of least axis length had the highest performance, when this was removed from 

the model to assess the degree of selection bias, sphericity and energy features combined 

demonstrated an AUC of 0.94, which only slightly less compared to result of the final model 

including the size feature of least axis length with an AUC 0.97. This indicated that there was a 

difference in the model performance without size-matching lesions, but the difference was 

small and reflected routine clinical practice. It would also be useful to include human reading 

accuracy by a neuroradiologist for comparison. In addition, imaging studies with confirmed 

glioblastoma were reviewed from an earlier time period compared to metastases, at which 

point there were more studies performed on 1.5 Tesla compared to 3.0 Tesla, and this may 

have increased heterogeneity in results, but this was partially accounted for during the 

intensity normalisation process.  
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The study only used radiomic features from a single mask of the entire lesion on a single 

CE-T1WI sequence, however the use of clinical features or radiologist defined semantic 

features in combination with multiple sequences may help improve the diagnostic accuracy of 

models further. With additional sequences, segmentation of the peritumoural oedema is also 

possible on T2WI or FLAIR. Radiomic texture analysis of the perilesional environment has also 

shown to be useful to distinguish between metastasis and glioblastoma with a high accuracy, 

reflecting the heterogeneity of peritumoural oedema on imaging in glioblastoma [277], and 

also found to have a model performance comparable to that of radiologists [295].  

In addition, advanced MRI techniques have shown to be useful for this issue but may not be 

clinically applicable for some centres as they are not routinely performed, require longer 

examination times and experienced neuroradiologists for interpretation. With more complex 

examinations, naturally datasets will be smaller in size, and machine learning studies favour 

large datasets from multiple centres, ideally with a prospective cohort to ensure robust 

validation. A small study of nine glioblastoma cases and nine metastases cases in which 

machine learning combined with multiple diffusion and perfusion parameters were able to 

distinguish between the pathologies with a highest accuracy of 83% [209].  

In this study, various histologically distinct metastases were included in the same group, 

which inherently leads to heterogeneity and can lead to reduced accuracy of models and may 

be the reason for the lack of second order texture features in the final model. Separately 

analysing histologically similar metastatic lesions would enable greater performance of 

radiomic models but would require a larger sample size. The current study incorporated 53 

lesions in each group, however further increasing the number of cases will also help to reduce 
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the chance of overfitting in the machine learning analysis and give more accurate results. 

Future work should include differentiating primary tumour type of a metastasis from imaging, 

and molecular subtyping of glioblastoma and metastases using radiomics, through the 

acquisition of larger datasets and using deep neural networks on handcrafted radiomic 

features, which has shown a higher performance than traditional machine learning methods 

[296]. The use of deep learning-based metabolic fingerprints from MRS data have also shown 

potential to differentiate between glioblastoma and metastasis with a high accuracy [299], 

and should be investigated further in combination with other MRI parameters.  

 Conclusion 

This study has demonstrated that a machine learning-based radiomics model using 

shape-based and first order features from a single whole tumour segmentation mask on the 

pre-treatment volumetric CE-T1WI can differentiate between IDH-wildtype glioblastoma and 

metastasis with a moderately high accuracy. Future work should aim to integrate additional 

sequences and advanced MRI techniques to analyse the peritumoural region which may 

provide even greater diagnostic accuracy, as well as larger studies to provide greater 

diagnostic information about tissue diagnosis and molecular markers from imaging. 

  



144 

 

5.  MACHINE LEARNING-BASED RADIOMIC 

EVALUATION OF PRE-OPERATIVE IMAGING FOR 

PREDICTION OF MGMT METHYLATION 

PROMOTER STATUS AND OVERALL SURVIVAL 

This chapter is adapted from [300], previously published by Magnetic Resonance Imaging. 

 Introduction 

It has been shown that the level of MGMT promoter methylation alters the effectiveness of 

alkylating agents, for example TMZ, which is the most common chemotherapy agent used for 

glioblastoma [301]. Therefore, epigenetic silencing of MGMT promoter expression, has been 

used as an important molecular marker in clinical practice [302,303]. Glioblastoma patients 

with a high level of MGMT promoter methylation tend to be more sensitive to TMZ and have 

a better OS as opposed to patients with a low level of methylation [304,305]. MGMT 

promoter methylation level is obtained through analysis of tumour DNA from biopsy or 

surgical resection [306]. It is currently used as a prognostic and predictive marker, however 

intra-tumoural heterogeneity of MGMT promoter methylation can pose difficulties in whole-

tumour characterisation, leading to variable results with survival outcome [74]. 
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MRI is an essential non-invasive imaging modality in clinical practice for assessing the three-

dimensional characteristics of tumours and surrounding brain structures. Radiomics, as an 

emerging field, is the extraction of numerous quantitative imaging features for data-mining, 

to establish potential associations between imaging and biological markers non-invasively 

[307,308]. Recent studies have reported the usefulness of imaging parameters to predict 

MGMT promoter methylation status, however, there still remains debate whether radiomics 

could be used to accurately reflect tumour MGMT promoter methylation and which part of 

the lesion (enhancing solid part, necrotic/cystic part or whole tumour mass) contributes most 

to this correlation [304,309–316]. Semantic imaging features using Visually Accessible 

Rembrandt Images (VASARI) feature scoring system have been shown to improve survival 

prognostication in glioblastoma [317], and there are a few recent studies to investigate 

whether radiomic features and MGMT promoter methylation could be used to predict the OS 

of patients with glioblastoma [318–323]. 

The aim of this study was to determine how accurately sub-regional MRI radiomic models 

based on pre-operative CE-T1WI could accurately assess MGMT promoter methylation status 

and whether machine learning-based models using MGMT methylation, radiomic and clinical 

features could be improved with the addition of semantic features to predict OS in newly-

diagnosed glioblastoma patients from pre-operative imaging. 
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 Methods 

 Study design 

The study involved retrospective analysis of consecutive patients who were newly diagnosed 

with glioblastoma and referred to the Queen Elizabeth Hospital Birmingham over a 3.5-year 

period between June 2014 and December 2017 as part of routine clinical care. Approvals for 

this study were obtained from the University Hospitals Birmingham Research Governance 

Office. 

 

 Inclusion and exclusion criteria 

Inclusion criteria were: (a) pathology-confirmed glioblastoma according to the WHO Criteria; 

(b) pre-operative volumetric CE-T1WI MRI sequence; (c) MGMT promoter methylation status 

available; and (d) follow-up until death or May 2019. Exclusion criteria were: (a) treatment or 

biopsy of the tumour prior to the pre-operative MRI (n=0); (b) significant imaging artefact 

(n=13); (c) presence of another significant intracranial lesion (n=0); (d) ambiguous tumour 

margins resulting in unsuitability for segmentation (n=8); and (e) incomplete clinical data 

(n=13). 215 patients were assessed for suitability and 181 were included in the study.  

 

 Clinical and MGMT promoter methylation profiles 

MGMT promoter methylation status was detected based on methylation-specific polymerase 

chain reaction and recorded in the form of a percentage, reported by a consultant 

neuro-histopathologist. Clinical information that was recorded included patient age, gender, 
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resection extent, post-operative chemo-radiotherapy treatment and OS until May 2019. 

Resection extent was categorised as complete macroscopic resection, near complete 

resection (>90%), debulking or biopsy, based on the post-operative MRI reported by a 

consultant neuroradiologist. 

 

 MRI acquisition 

Standard-of-care clinical imaging data was acquired from various MRI scanners: Siemens 1.5 

Tesla (130 studies), Siemens 3.0 Tesla (29 studies) and GE 1.5 Tesla (22 studies) scanners 

(Siemens Healthcare, Erlangen, Germany and GE, Milwaukee, USA) with 32-channel phased-

array head coils, across several sites. Volumetric CE-T1WI was acquired with a maximum in-

plane voxel size of 1.0 x 1.0 mm2 and the maximum slice thickness was 1 mm. Field of view 

was 240 x 240 mm, matrix size was 256 x 256, TR = 540-690 ms and TE = 3-17 ms at 1.5 Tesla, 

TR = 1480-2350 ms and TE = 3-10 ms at 3.0 Tesla. IV gadolinium contrast (Dotarem; Guerbet, 

Villepinte, France) was administered as a hand-injected bolus of 10-15 ml (10 ml if weight <70 

kg, 15 ml if weight ≥70 kg). 

 

 Image pre-processing and segmentation 

Image signal intensity normalisation was performed using Cancer Imaging Phenomics Toolkit 

(CaPTk) software (version 1.3.0) [324]. Three 3D masks were segmented from each 

volumetric CE-T1WI study. Tumour mass (TM), defined as the entire enhancing lesion 

including non-enhancing tumour core, was manually segmented in the Microsoft Radiomics 

App (Microsoft Research, Cambridge, UK). Following this, the TM sub-component masks of 
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enhancing disease (ENH) and necrosis (NEC), the latter defined as non-enhancing tumour 

core, were semi-automatically segmented using ITK-SNAP (version 3.6.0) [325]. Manual 

adjustments were made on each slice through the consensus of two neuroradiologists (>20 

and 5 years’ experience), who were blind to clinical data and outcome.  

 

 Radiomic feature extraction 

Radiomic features were extracted from TM, ENH and NEC from the volumetric CE-T1WI using 

PyRadiomics (version 1.2.0) [283]. A total of 111 features were extracted from each VOI, 

which included 18 shape-based features, 18 first-order features, and 75 second-order 

features made up of: 24 GLCM, 14 GLDM, 16 GLRLM, 16 GLSZM and five NGTDM features, 

resulting in 333 radiomic features from each patient. Semantic features were assessed using 

VASARI feature scoring system for gliomas [326]. The scoring system involved 16 semantic 

descriptors of imaging features that could be assessed on the single CE-T1WI. These included: 

location, side of lesion centre, eloquent location, degree of enhancement, presence of cyst, 

multifocality, enhancing margin thickness, definition of the enhancing margin, oedema 

proportion, presence of pial invasion, ependymal extension, cortical involvement, deep white 

matter involvement, non-contrast-enhancing tumour crossing midline, contrast-enhancing 

tumour crossing midline and satellite lesions. A consensus was obtained for each feature 

score between the two blinded neuroradiologists. 
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  Feature selection, machine learning and statistics analysis 

Cases were randomly assigned into training and testing groups (ratio 7:3). Feature selection 

and machine learning was performed on the training dataset to ensure an independent 

testing dataset. MGMT promotor methylation cut-off value was determined based on low and 

high survival groups using the “surv_cutpoint” function from the “survminer” package in R 

software, version 3.2.4 (R Foundation for Statistical Computing, Vienna, Austria) and all-

relevant feature selection package “boruta” was used to determine the best feature set. SVM, 

k-NN, decision tree, random forest, gradient boosted trees and deep learning models were 

used in RapidMiner Studio (version 9.2.001) to build classification models, with 10-fold cross 

validation to tune the hyperparameters. The hold-out testing dataset was used to predict 

performance of each model.  

Random survival forest (RSF) analysis was performed for survival prediction in R software. 

Features were ranked by positive importance and used in the variable-hunting algorithm 

through the “randomForestSRC” package. RSF models were built based on each set of 

features using 10-fold cross validation. Testing data was used to validate the performance of 

the model with predicted risk. The time-dependent cumulative case/dynamic control receiver 

operative curve (ROC) was analysed according to the predicted risk of each RSF model at the 

time point of every half month from 80 to 1325 days using the “survivalROC” package. The 

concordance probability (C-index) was also calculated to reflect the discrimination power of 

RSF models. Furthermore, the prediction risks were dichotomised into low and high-risk 

groups to find whether the models could be used to stratify the cases based on OS by using 

the log-rank test.  
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Various sets of features were built, consisting of one-layered set (radiomic, clinical, VASARI 

features and methylation separately), two-layered (a combination of any two categories of 

features), three-layered (a combination of any three categories of features) and four-layered 

(all feature sets combined). Continuous parameters were expressed as the means and SD, and 

compared using a Student’s two-sided, unpaired t-test and one-way ANOVA. Discontinuous 

variables were reported as numbers and percentages and difference between groups were 

tested by Fisher’s exact probability test, with p<0.05 to indicate a significant statistical 

difference. The entire workflow is demonstrated in Figure 53. 

 

 

Figure 53. Overview of the study workflow. 
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 Results 

 Patients 

A total of 181 patients were included in this study (mean age 58.0±12.8 years, 68 (38%) 

female and 113 (62%) male). The median OS was 431 days (range 7 to 2426 days). There were 

no significant differences in age, gender, VASARI features, MGMT promoter methylation index 

or OS following random allocation into training and testing sets (Table 8).  



152 

 

  
Training set 
(n=127) 

Testing set 
(n=54) 

P 
value 

Age (years) 57.19 ±12.72 59.75 ±12.91 0.22 

Gender (F/M) 49/78 19/35 0.79 

Methylation (%) 16.71 ±17.24 18.53 ±19.59 0.55 

Location 

Brainstem 4 1 

0.43 

Frontal lobe 44 13 

Insular 4 0 

Occipital lobe 9 6 

Parietal lobe 17 8 

Temporal lobe 49 26 

Side of lesion centre Left/Middle/Right 62/3/62 29/0/25 0.47 

Eloquent location                                     

Motor 2 2 

0.86 

Speech-Motor 17 6 

Speech-Reception 7 4 

Vision 10 5 

None 91 37 

Enhancement               Marked/Mild/None 111/15/1 45/9/0 0.56 

Cyst                                Yes/No 96/31 37/17 0.42 

Multifocal        Multicentric/Multifocal/None 4/13/110 0/8/46 0.30 

Enhancing margin 
thickness  

<3mm 31 14 

0.61 >3mm 89 35 

Solid 7 5 

Enhancing margin           Well-/Poor-defined 46/81 24/30 0.38 

Oedema proportion          None/ <33% />33% 9/62/52 6/24/24 0.52 

Pial invasion                               Yes/No 67/60 23/31 0.68 

Ependymal extension                          Yes/No 34/92 15/39 1.00 

Cortical involvement                           Yes/No 107/20 43/11 0.59 

Deep white matter 
involvement         

Yes/No 59/68 24/30 0.93 

Non-contrast-enhancing 
tumour crossing midline                       

Yes/No 10/114 3/54 1.00 

Contrast-enhancing 
tumour crossing midline                         

Yes/No 15/112 4/50 0.54 

Satellites                        Yes/No 29/98 12/42 1.00 

Surgery:      

Complete macroscopic resection 22 9 

1.00 

Near complete resection 23 9 

Debulking 77 36 

Biopsy 3 0 

Not available 2 0 

Chemotherapy:               Yes/No/Not available 98/28/1 37/16/1 1.00 

Radiotherapy:                 Yes/No/Not available 115/11/1 47/6/1 1.00 

Survival Status:                                 Alive/Died 19/108 9/45 0.95 

Overall survival (days)        502.21 ±354.14 485.44 ±356.10 0.78 

Table 8. Baseline clinical information and VASARI features for patients in the training and 

testing cohorts.  



153 

 

 Differences in radiomic features across magnetic field strengths 

111 radiomic features were extracted from each of the components of ENH/NEC/TM for each 

patient. Of these, nine features demonstrated significant differences between 1.5 Tesla and 

3.0 Tesla scanner magnetic field strengths. All features had higher values at 3.0 Tesla, these 

were: firstorder.10Percent, ClusterShade, lmc1, lmc2, ClusterProminence, MCC (from ENH 

mask), firstorder.10Percent (from NEC mask) and LargeDependenceHighGrayLevel, MCC, 

Correlation (from TM mask). All these radiomic features were excluded from further analysis. 

 

 Radiomic features to reflect MGMT methylation 

MGMT promoter methylation in the cohort could be used to predict OS, with the best cut-off 

value being 12.75%, therefore this was chosen as the threshold for classification into high-

methylation and low-methylation groups (Figure 54). There were significant differences in 

values of 42 radiomic features between high and low-methylation groups. The majority 

demonstrated higher values in the low-methylation group, especially in the first-order 

features. Following all-relevant feature selection, six features were deemed to be important 

and five more deemed equivocal. Therefore, these 11 features were used to build machine 

learning models, which showed accuracies of between 45-67% to predict MGMT promoter 

methylation status (Table 9).   
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Figure 54. Kaplan-Meier plots of training (A) and testing (B) groups based on MGMT promoter 

methylation index. 

 

Feature Layers k-NN SVM 
Decision 
forest 

Decision 
tree 

Gradient 
boosted tree 

Deep 
learning 

Radiomic features 
52.31%/ 
60.00% 

60.26%/ 
60.00% 

61.92%/ 
61.82% 

57.12%/ 
58.18% 

55.58%/ 
61.82% 

45.58%/ 
47.27% 

Radiomic features 
Clinical information 

52.31%/ 
58.18% 

60.26%/ 
60.00% 

56.35%/ 
60.00% 

57.82%/ 
58.18% 

56.47%/ 
60.00% 

46.15%/ 
49.09% 

Radiomic features 
VASARI features 

58.53%/ 
56.36% 

60.26%/ 
60.00% 

48.46%/ 
67.27% 

53.91%/ 
60.00% 

53.72%/ 
62.27% 

49.29%/ 
54.55% 

Radiomic features 
Clinical information 
VASARI features 

58.53%/ 
56.36% 

60.26%/ 
60.00% 

60.90%/ 
52.73% 

63.40%/ 
54.55% 

58.65%/ 
52.73% 

49.81%/ 
45.45% 

Table 9. Performance of machine learning models and deep learning for prediction of MGMT 

promoter methylation status, according to feature set in the training/testing groups. 

 

 RSF models to predict OS 

Across all features, age and MGMT promoter methylation index were the most important for 

predicting OS in the RSF models (Figure 55). Using variable importance and the variable-

hunting algorithm, five ENH, two NEC and four TM radiomic features were selected to build 
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RSF models with cross-validation. The importance of these features and their cut-off values to 

separate the high- and low-survival groups are listed in Table 10. Four layers of RSF models 

were built and the discriminative performances were demonstrated via C-index and 

integrated AUC (iAUC) values at each 15-day time point by cumulative case/dynamic control 

ROC, which was taken at 82 points between days 15 to 1230. The average iAUC and C-index 

values in the testing set are listed in Table 11.  

 

 

Figure 55. Variable importance in the best RSF model. 
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Features Importance 

(x10
-3

) 

Cut-off 

value 

High Survival 

Group (value, N) 

Low Survival 

Group (value, N) 

P 

value 

Enhancing mask 

Enh.glszm.LargeArea-

Emphasis 

38.26 23021.35 169470.20 

±26710.76 (31) 

4113.88 

±5721.11 (150) 

0.02 

Enh.glszm.ZoneVariance 
32.99 22870.60 169058.10 

±26649.24 (31) 

4071.05 

±5687.17 (150) 

0.02 

Enh.firstorder.Robust-

MeanAbsoluteDeviation 

20.05 34.23 27.06 ±4.85 (39) 58.24 ±14.58 

(142) 

<0.01 

Enh.shape.MajorAxis-

Length 

12.71 48.32 63.39 ±12.65 

(101) 

35.06 ±8.38 (80) 0.03 

Enh.shape.Maximum3D

Diameter 

10.23 62.74 76.19 ±12.73 

(72) 

44.69 ±11.84 

(109) 

0.01 

Necrosis mask 

Nec.Image.original.-

Mean 

9.87 79.74 93.54 ±9.47 

(144) 

74.73 ±3.67 (37) 0.14 

Nec.firstorder.-

RootMeanSquared 

7.48 182.94 141.94 ±33.50 

(75) 

232.13 ±46.71 

(106) 

<0.01 

Tumour mass mask 

Tm.glrlm.shortRunLow-

GrayLevelEmphasis 

44.51 1.06x10
-2

 2.12 ±1.39x10
-2 

(115) 

0.76 ±0.18x10
-2 

(66) 

<0.01 

Tm.shape.Maximum3D 

Diameter 

26.15 53.46 71.76 ±14.40 

(112) 

39.89 ±8.91 (69) 0.03 

Tm.ngtdm.Busyness 
17.54 11.68 24.44 ±22.00 

(72) 

5.69 ±3.23 (109) 0.01 

Tm.shape.SurfaceArea 
17.24 3752.96 10233.89 

±4083.43 (140) 

2567.8 

5±889.92 (41) 

0.02 

Enh = Contrast-enhancing region, glrlm = gray-level run length matrix, glszm = gray-level size zone matrix, 

nec = necrotic region, ngtdm = neighbourhood gray-tone difference matrix, tm = tumour mass mask, 3D = 

three-dimensional. 

Table 10. Selected radiomic features using the variable hunting function in RSF models. 
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Feature 

layer 
Feature set 

iAUC  

(RSF Model) 

C-index  

(RSF Model) 

1 layer 

  

  

  

  

  

Clinical 80.78±6.15 75.56±0.18 

VASARI 90.66±3.31 84.16±0.21 

Methylation 81.62±12.80 69.76±0.22 

Radiomics-ENH 83.21±11.18 67.44±0.33 

Radiomics-NEC 82.63±6.17 71.28±0.28 

Radiomics-TM 87.96±4.85 84.05±0.29 

2 layer 

  

  

  

  

  

  

  

  

  

  

  

Clinical+VASARI 92.51±2.07 84.92±0.35 

Clinical+Rad(ENH) 83.77±5.96 74.47±0.42 

Clinical+Rad(NEC) 84.07±3.41 78.10±0.32 

Clinical+Rad(TM) 88.19±3.91 83.68±0.29 

VASARI+Rad(ENH) 94.34±2.22 88.07±0.35 

VASARI+Rad(NEC) 89.91±3.48 83.10±0.42 

VASARI+Rad(TM) 94.09±1.82 89.81±0.30 

Methylation+Clinical 85.25±16.27 76.07±0.25 

Methylation+VASARI 90.57±10.82 81.58±0.24 

Methylation+Rad(ENH) 86.03±10.81 74.91±0.20 

Methylation+Rad(NEC) 85.36±13.58 73.10±0.35 

Methylation+Rad(TM) 93.46±5.35 83.61±0.23 

3 layer 

  

  

  

  

  

  

Clinical+VASARI+Rad(ENH) 96.34±1.76 90.00±0.24 

Clinical+VASARI+Rad(NEC) 95.80±1.56 90.79±0.31 

Clinical+VASARI+Rad(TM) 92.21±3.39 85.35±0.31 

Clinical+VASARI+Methylation 93.74±8.41 86.00±0.32 

VASARI+Methylation+Rad(ENH) 92.97±6.58 82.02±0.37 

VASARI+Methylation+Rad(NEC) 89.25±10.42 80.86±0.38 

VASARI+Methylation+Rad(TM) 92.82±6.62 83.25±0.21 

4 layer 

  

  

Clinical+VASARI+Rad(ENH)+Methylation 95.12±5.85 87.31±0.27 

Clinical+VASARI+Rad(NEC)+Methylation 91.69±10.58 83.97±0.30 

Clinical+VASARI+Rad(TM)+Methylation 90.79±11.32 81.65±0.31 

ENH = contrast-enhancing mask, C-index = index of concordance, iAUC = integrated AUC. Rad = Radiomic 

features, NEC = necrosis mask, TM = tumour mass mask, VASARI = Visually Accessible Rembrandt Images.  

Table 11. Performance of the different RSF models with various feature layers. 

 

VASARI features extracted from CE-T1WI provided the best performing RSF model among the 

six single-layer models. The highest performing model overall was the 3-layer model 

combining selected radiomic features, clinical information and VASARI features, with an iAUC 
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of 96.2±1.7 and C-index of 90.0±0.3. Feature distribution heatmap from this model is 

provided in Figure 56 and the AUC performance at each time point from the highest 

performing model in each layer is shown (Figure 57). Kaplan-Meier survival plot and 

prediction values of each case in the best RSF model are presented, with linear regression 

used to calculate OS prediction with an R2 of 0.67 (Figure 58 and Figure 59). Typical cases are 

presented in Figure 60. 

 

 

Figure 56. Heatmap of features used in the best RSF model. The cut-off prediction value was 

48. For the high survival group, the median survival duration was 648 days while the median 

value was 214 days in the low survival group. 
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Figure 57. Performance of the best RSF models based on 1-, 2-, 3- and 4-layer features. 

 

 

Figure 58. The Kaplan-Meier survival plot of the RSF model in the training (A) and testing (B) 

groups. 
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Figure 59. Scatter plot and fitted linear regression based on the prediction value of the best 

RSF model. 
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Figure 60. Typical glioblastoma cases in the high and low survival groups. (1A-1C) Single 

glioblastoma lesion in the right frontal lobe with no invasion of surrounding structures. All 

selected radiomic feature values were relatively low and indicated a small-size and 

homogeneously enhancing component. The model’s prediction value for this patient was 

29.7, classified as low risk. MGMT promoter methylation index was 43.5% and the patient’s 

OS was 1440 days. (2A-2C) Glioblastoma with multifocal lesions and ependymal and pial 

invasion. Lesions crossed the midline and satellite lesions were present. All selected radiomic 

feature values were relatively high, indicating a larger and heterogeneously enhancing 

component. The model’s prediction value for this patient was 76.4, classified as high risk. The 

MGMT promoter methylation index was 2% and the patient’s OS was 100 days. 
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 Discussion 

Radiomic features derived from conventional MRI, provides additional information beyond 

the scope of human visual perception, which is emerging to be valuable in prediction of 

glioblastoma OS and PFS, and there is relatively limited literature on this topic [314,315,318–

322]. There are several strengths to this study; firstly, the amalgamation of clinical features, 

radiomic features, MGMT promoter methylation index and semantic VASARI features for 

glioblastoma OS prediction, to date has not been investigated in combination.  

VASARI morphological features, assessed by neuroradiologists, were deemed to be very 

important in the survival models and the best performing one-layer RSF model. According to 

variable importance, multifocality was the most important VASARI feature for OS prediction. 

Regarding radiomic features, a total of five ENH, two NEC and four TM features were selected 

via variable hunting. Shape-related and first-order features accounted for 64% (7/11) which 

meant the size and enhancing signal intensity appeared to be important for OS. These in 

combination with the other second-order selected features including ENH-GLSZM zone 

variance, ENH-GLSZM large area emphasis, ENH-GLRLM short run low gray level emphasis and 

TM-NGTDM busyness, reflected that glioblastoma with longer OS presented as a larger 

tumour along with weaker and more heterogenous enhancement. ENH features contained 

more useful information to predict OS than NEC or TM features. The best performing RSF 

model for OS prediction was based on clinical, VASARI and selected ENH radiomic features, 

achieving an iAUC of 96.20±1.73 and C-index of 90.00±0.34, indicating that it was possible to 

accurately predict OS from pre-operative imaging. Furthermore, the relationship between 

model prediction and actual OS of the cases showed a linear relationship with R2=0.67. It 
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should also be noted that although ENH radiomic features were important, the performance 

of the model based on clinical, VASARI and selected TM features also achieved an iAUC value 

of 92.21±3.39 and C-index of 85.35±0.31, similar to those from the RSF model 

aforementioned. This model would be less time-consuming and more practical as it may 

easier for a radiologist or segmentation algorithm to produce a mask from the entire tumour 

as opposed to the subcomponent of contrast-enhancing area alone. 

The second strength of this study is that it has a comparatively large sample size and used 

imaging from multiple MRI scanners across a number of hospital sites at different field 

strengths, reflecting heterogeneity of clinical practice. The majority of previous studies utilise 

imaging from either a single institution, single magnetic field strength or publicly available 

imaging datasets, which limits wider clinical applicability. In this study, after gray-scale 

normalisation, the few significantly different features between field strengths were excluded, 

to analyse radiomic features from 1.5 Tesla and 3.0 Tesla together for a more utilisable and 

clinically applicable model. Few researchers have combined imaging studies across magnetic 

field strengths for radiomic studies in feature selection and model-building, however, the use 

of and combining studies from different scanners and field strengths is an important practical 

issue that radiologists encounter in clinical practice. In addition, this study has utilised the 

single pre-operative volumetric CE-T1WI, used for neurosurgical navigation, which is more 

practical than analysis of multiple sequences which recent studies have employed. Producing 

models based on volumetric imaging is also ideal going forward as imaging protocols with 

thick slices are being replaced with thin-slice volumetric imaging.  
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MGMT promoter methylation index proved to be important for OS prediction with the 

optimal cut-off value of 12.75% in this cohort. A total of 42 radiomic features exhibited 

significant differences between the low- and high-methylated groups. Six of these showed a 

weak but significant relationship with MGMT promoter methylation index value (Pearson 

coefficient range: -0.22 to -0.19). First-order ENH radiomic features of mean, root mean 

squared and median exhibited the greatest negative correlation with MGMT methylation 

(Figure 61). This indicates that higher MGMT promoter methylation is associated with lower 

normalised signal intensity from contrast-enhancing glioblastoma, which might be explained 

by higher protein concentration or less BBB impairment in the highly methylated group, 

which requires further laboratory studies for confirmation. Although several popular models 

were used, accuracies of model performance for MGMT promotor methylation prediction 

appeared to be low, at 45-67%. This is similar to previously published work, which showed an 

accuracy of 67% [313]. Other research using features extracted from multiple sequences and 

thick-sliced imaging have demonstrated slightly higher performance [314,315], and therefore 

the limited model performance might be caused by the use of a single volumetric CE-T1WI 

protocol, with thin-slices. 
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Figure 61. An illustration of Pearson correlation coefficient between the selected 42 radiomic 

features and MGMT promoter methylation index. 

 

 Limitations and future direction 

The limitations of this study include the lack of multiple imaging sequences. The use of 

additional conventional imaging sequences, the component of oedema, as well as advanced 

multiparametric imaging such as DWI, PWI and MRS can provide additional information and is 

expected to improve model performance. However, there is a practical and health economic 

impact for the use of these additional imaging sequences pre-operatively, which needs to be 
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weighed up, as currently the single CE-T1WI is the only essential sequence required for 

operative planning. A recent study using radiomic features derived from conventional and 

multiparametric MRI consisting of PWI and DTI parameters identified three distinct imaging 

subtypes of glioblastoma which could risk-stratify patients and identify phenotypic 

heterogeneity in vivo [327], highlighting the potential of combining advanced imaging into 

machine learning models. Secondly, all genetic molecular marker information was not 

available for this study, such as IDH, EGFR, ATRX, p53, etc. which may be important factors in 

OS prediction. Future work should be focussed on improving models for prediction of MGMT 

promotor methylation status as well as other molecular markers. In fact, recent radiomic 

studies have shown the potential to predict other molecular markers such as TERT promoter 

mutation from combining conventional imaging and DWI, although further work is required to 

improve these models [328]. Advancing imaging such as MRS can be used for the 

oncometabolite 2HG to specifically identify IDH-1 mutations in vivo with a high positive 

predictive value [329,330], but it is recommended that other metabolites and structural 

imaging is included in the analysis [331], which could form the basis of future machine 

learning models. Unsupervised deep learning-based techniques using CNN on the publicly 

available dataset from The Cancer Imaging Archive (TCIA) have shown the potential to be able 

to classify IDH-1 mutation, 1p19q co-deletion and MGMT promoter methylation status with a 

high accuracy as well as showing that each genetic category was associated with distinctive 

morphologic imaging features [332]. Lastly, although this study utilised data from a number of 

hospital sites, this was a retrospective study performed on routinely collected clinical data. 

Going forward, larger prospective studies are required with external cross-validation cohorts. 

The larger studies will also favour the use of deep learning models, which have shown the 



167 

 

potential to outperform supervised radiomic model approaches for this particular question of 

imaging-based molecular marker prediction.  

 Conclusion  

This study presents the usefulness of radiomic and VASARI features from pre-operative 

volumetric CE-T1WI in patients with glioblastoma. MGMT promoter methylation index 

demonstrated a significant relationship with a number of first order radiomic features from 

enhancing disease, however models only gave a modest level of accuracy for its prediction 

and further work is required to improve its accuracy. Models using semantic VASARI and 

radiomic features in combination with clinical information showed promise for predicting OS 

with a high level of accuracy. 
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6.  ADVANCED MRI TECHNIQUES FOR EARLY 

PREDICTION OF TREATMENT RESPONSE  

Parts of this chapter are adapted from [113], previously published by Insights into Imaging. 

 Introduction 

Alternative imaging techniques that are clinically applicable and can more accurately assess 

early treatment response are required to optimise treatment strategies, improve patient 

outcomes and maximise quality of life for patients. Multiparametric MRI methods that can 

monitor physiological and metabolic properties of tumour are being employed and 

investigated to address this question. The most commonly used techniques include DWI, PWI 

and MRS. There is increasing data supporting the utility of each of these methods, although 

limitations remain such that no method is currently validated as yielding the definitive MRI 

parameter of choice to distinguish between tPD and psPD. Nevertheless, combining these 

three techniques in a multiparametric MRI protocol may provide a higher degree of 

confidence in assessing glioblastoma treatment response [127,128]. The aim of this study was 

to evaluate the clinical utility of multiparametric MRI through DWI, PWI and MRS for 

differentiating between tPD and psPD in patients undergoing treatment for glioblastoma. 



169 

 

 Methods 

 Study design 

The study involved retrospective analysis of patients who were treated for glioblastoma at 

Queen Elizabeth Hospital Birmingham over a two-year period (June 2014 to May 2016). 

Approvals for this study were obtained from the University Hospitals Birmingham Research 

Governance Office. 

 

 Inclusion and exclusion criteria 

Inclusion criteria were: (a) pathology-confirmed glioblastoma according to the World Health 

Organisation Criteria; (b) surgery followed by standard CRT treatment of radiotherapy and 

concurrent TMZ followed by adjuvant TMZ [4]; (c) presence of and measurable increase in 

contrast-enhancing disease on the post-CRT baseline MRI study at 4-8 weeks, compared to 

the immediate post-operative MRI study; and (d) multiparametric MRI with DWI, PWI and 

MRS performed between 4-8 weeks post-CRT. Exclusion criteria were: (a) patient lost to 

follow-up within six months of CRT treatment; and (b) incomplete post-CRT imaging or 

presence of significant imaging artefact. The flowchart of patient inclusion and exclusion is 

shown in Figure 62. In total, 220 patients underwent surgery for glioblastoma at Queen 

Elizabeth Hospital Birmingham between June 2014 to May 2016 and were assessed for 

eligibility. Of these, 45 patients had new or an increase in enhancing disease of at least 25% 

on the post-CRT baseline MRI study and had clinical and imaging follow-up until at least six 

months, in order to determine outcome. Nine of the 45 patients subsequently had 
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multiparametric MRI within 4-8 weeks following CRT. Overall survival was assessed until 

August 2020 (75 months). 

 

 

Figure 62. Flowchart of patient inclusion and exclusion criteria. 
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 Reference standard 

Standard-of-care MRI reports and clinical oncology noting within the six months following CRT 

were reviewed in order to ascertain the outcome of tPD or psPD. Patients were deemed to 

have tPD if there was radiological or clinical progression according to RANO criteria, or death 

within six months. Patients were deemed to have psPD if there was no further radiological or 

clinical progression according to RANO criteria, within the six months following CRT. Imaging 

was re-reviewed by a consultant neuroradiologist where there was outcome discrepancy or 

uncertainty.  

 

 MRI acquisition, post-processing and analysis 

Imaging acquisition was performed as previously described in Section 3.2.2; post-processing 

and analysis of imaging was performed as described in Section 3.2.3. Multiparametric MRI 

parameters of ADC, rCBV, Cho/Cr ratios at 30 ms and 135 ms, Cho/NAA ratio at 135 ms and 

presence or absence of lipid/lactate were recorded, compared to cut-off values and 

correlated with subsequent clinico-radiological treatment response outcome. Interpretation 

of multiparametric MRI to distinguish tPD from psPD was undertaken using optimal threshold 

values, based on previous literature and local expertise, as follows: ADC<1000x10-6mm2s-1 

[341,342], rCBV>2.1 [127,343,344], Cho/Cr ratio≥1.8 [345,346], and Cho/NAA≥1.9 [153,346]. 

Results from the case series are presented and discussed. 
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 Results 

 Patients 

There were 45 patients who had new or an increase in enhancing disease on the early post-

CRT MRI study, which was performed at a mean of five weeks following treatment; all these 

patients had clinical and imaging follow-up until at least six months or death if this was earlier. 

In this cohort, 23 (51%) were deemed to have tPD (mean age 53.7 years, 30% female, mean 

MGMT promoter methylation 10.3%), 18 (40%) were deemed to have psPD (mean age 49.5 

years, 33% female, mean MGMT promoter methylation 14.5%), and 4 (9%) were deemed to 

have an equivocal outcome (mean age 67.6 years, 25% female, mean MGMT promoter 

methylation 22.5%). The mean OS from the end of CRT treatment was 13.5 months (range 

1.3-53.8) for those with tPD, 23.7 months (range 6.6-57.4) for those with psPD and 9.6 

months (range 4.5-17.6) for those with an equivocal outcome. Of the 45 patients, 9 

subsequently had multiparametric MRI within 4-8 weeks following CRT as part of routine 

clinical care.  

 

 Multiparametric MRI parameters 

Results from the individual parameters acquired from multiparametric MRI, multiparametric 

MRI outcome, clinico-radiological outcome, MGMT promotor methylation and OS for all cases 

are presented in Table 12.  
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 True progression 

Six patients (cases 1-5 and 9) were correctly deemed to have tPD from multiparametric MRI 

evaluation within the first 4-8 weeks post-CRT. Cases 1-5 showed similar multiparametric 

findings across all parameters with a low ADC, high rCBV, high Cho/Cr ratio and high Cho/NAA 

ratio consistent with expectations for tPD (Figure 63). All patients had clinico-radiological 

confirmation of tPD. One patient (case 5) had debulking surgery at 7-months due to tPD and 

received second line chemotherapy between 11-15 months, likely contributing to the survival 

time of 20 months.  

 

 

Figure 63. Case 2: True progression. (a) Immediate post-operative CE-T1WI following 

resection of a right fronto-parietal glioblastoma. (b) Conventional CE-T1WI four weeks post-

CRT treatment demonstrated an increase in the enhancing lesion size with surrounding 

perilesional oedema. Multiparametric MRI at this time point demonstrated: (c, d) areas of low 

ADC (903 x 10-6mm2s-1, arrow), (e) a high rCBV ratio (3.1, arrow) on PWI, (f, g) a high Cho/Cr 

ratio (2.3, arrow), high Cho/NAA ratio and presence of lipid/lactate on MRS. All parameters 
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suggested a poor response and disease progression. (h) Six-month follow-up conventional CE-

T1WI confirmed an increase in enhancing disease, indicating tPD. 

 

The remaining patient (case 9) also demonstrated features of tPD on initial multiparametric 

MRI (Figure 64), with two of the three parameters (PWI and MRS) consistent with tPD. PD was 

confirmed on imaging at 4 months and as a result of confirmed progression, chemotherapy 

was changed. The 7-month follow-up MRI scan showed continued PD, confirming tPD 

according to RANO criteria, and treatment stopped. No further imaging was performed until 

19 months, which revealed a stable treated lesion, but a new separate lesion. There was 

further PD at 32 months and death at 34 months. 
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Figure 64. Case 9. (a) Post-operative CE-T1WI following resection of a right parietal 

glioblastoma. (b) CE-T1WI post-CRT demonstrated a significant increase in enhancement. 

Multiparametric MRI demonstrated: (c) free diffusion with a high ADC (1281 x 10-6mm2s-1), (d) 

high rCBV (8.1), (e,f) high Cho/Cr (2.3) and Cho/NAA ratios with the presence of lipid/lactate. 

Two of the three (PWI and MRS) parameters suggested a poor response. (g) 7-month imaging 

confirmed tPD according to RANO. (h) The 19-month scan showed overall stable appearances 

of the treated lesion and a new separate lesion.  

 

 Pseudoprogression 

Two patients (cases 6 and 7) were correctly deemed to have psPD from multiparametric MRI. 

Both cases showed high ADC, low rCBV, Cho/Cr and Cho/NAA ratios consistent with psPD, 

despite one patient demonstrating a low MGMT promoter methylation status (4.25%), and 

the other patient demonstrating a high methylation status (Figure 65). Both of these patients 

survived more than three years following CRT. 
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Figure 65. Case 6: Pseudoprogression. (a) Pre-operative CE-T1WI showed a right deep parietal 

region glioblastoma. (b) Conventional CE-T1WI four weeks after CRT treatment demonstrated 

a significant increase in the contrast-enhancing area (arrow). Multiparametric MRI at this time 

point demonstrated: (c, d) areas of high ADC (1186 x 10-6mm2s-1) , (e) a low rCBV ratio (1.4, 

arrow) on PWI, (f, g) a low Cho/Cr ratio (1.4), a low Cho/NAA ratio and presence of lipid and 

lactate on MRS. The combination of parameters suggested psPD. (h) Follow-up conventional 

CE-T1WI at six months showed a reduction in the amount of enhancing disease, which 

confirmed psPD. 

 

The remaining patient (case 8) showed an initial increase in enhancing disease on the baseline 

MRI study at 1-month and on the multiparametric MRI at 2-months post-CRT there was a low 

ADC (951 x 10-6mm2s-1), high rCBV (4.2), and raised Cho/Cr (2.2) and Cho/NAA ratios (Figure 

66). All three parameters of DWI, PWI and MRS were suggestive of a poor response and tPD 

on multiparametric MRI. The patient then showed SD on conventional imaging at 4-months 

and PR on conventional imaging at 7-months, surviving for 36 months, indicating psPD 

according to RANO.  
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Figure 66. Case 8. (a) Post-operative CE-T1WI showed partial resection of a right frontal 

glioblastoma. (b) Conventional CE-T1WI four weeks after CRT treatment demonstrated a 

significant increase in contrast enhancement. Multiparametric MRI at this time point 

demonstrated: (c, d) areas of low ADC (951 x 10-6mm2s-1) , (e) a high rCBV ratio (4.2) on PWI, 

(f) a high Cho/Cr ratio (2.2), a high Cho/NAA ratio and presence of lipid and lactate on MRS. 

All parameters suggested tPD. (g) Follow-up conventional CE-T1WI at four months, and (g) 

seven months showed a reduction in the amount of enhancing disease, which confirmed 

psPD according to RANO criteria. 

 

 Discussion 

The phenomenon of psPD, which mimics tPD on conventional MRI during glioblastoma 

treatment, is widely recognised as a significant problem. Whilst the underlying mechanisms of 

psPD are not fully understood, it has been suggested that radiotherapy in combination with 

TMZ chemotherapy causes a higher degree of tumour-cell and endothelial-cell damage [334]. 
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This increased cell damage likely leads to secondary reactions, such as oedema, abnormal 

vessel permeability and necrosis in the tumour area [121], visualised as enhancement on 

conventional imaging, mimicking the appearances of disease progression. Clinically, it can be 

difficult to distinguish between the two and therefore treatment is usually continued, despite 

the possibility that it may be ineffective and short interval imaging is performed until disease 

progression is identified on consecutive imaging. Many patients will inevitably continue 

treatment that is not effective for weeks or months and can be delayed or excluded from 

receiving second-line CRT treatments, surgery, or entering clinical trials as a result of 

deterioration in clinical status from disease progression. Therefore, addressing the 

uncertainty around tPD and psPD on imaging is a key clinical issue which can directly impact 

upon patient outcomes. 

Given the differing mechanisms of treatment effect, response and progression, techniques 

probing the physiological and metabolic characteristics would be expected to provide a more 

accurate assessment of changes following treatment than conventional MRI alone. ADC 

derived from DWI measures the mobility of water molecules in tissue and is inversely 

correlated with cellularity [347]. Mean ADC values in high-grade tumours such as 

glioblastoma are low, with a value typically of 700 × 10−6mm2s−1 [183], consequently, mean 

ADC values have shown to be significantly lower in tPD compared to psPD through numerous 

studies [129,341,342,344,348–354]. There is variability in the literature regarding cut-off 

values, generally ranging from 900-1300 x 10-6mm2s-1, and a meta-analysis has shown the 

sensitivity and specificity of ADC to be 71% and 87% respectively across seven studies for 

treatment response assessment [122]. Assessments of the microvasculature using PWI to 
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estimate rCBV, a biomarker for neoangiogenesis, have also been shown to differentiate 

treatment response, with a significantly higher rCBV ratio in tPD compared to psPD 

[127,129,342–344,350,355–366]. There is again variation in optimal cut-off values for rCBV in 

each study, typically ranging from 1.7-2.4, and a meta-analysis has shown the sensitivity and 

specificity of DSC-PWI to be 87% and 86% respectively across five studies [122]. In addition, 

non-invasive measurements of metabolite levels using MRS have been shown to be useful for 

characterising brain lesions. Elevated Cho, a biomarker of cellular proliferation, relative to 

NAA, a marker of neuronal integrity as well as to Cr have shown to indicate tPD whilst high 

lipids (due to necrosis) combined with low Cho/Cr and Cho/NAA ratios are features of 

radiation damage or psPD [127,129,153,344,346,348,349,354,361,367–372]. A meta-analysis 

has shown the sensitivity and specificity of MRS to be 91% and 95% respectively across nine 

studies [292]. It has been suggested that the Cho/Cr and Cho/NAA ratios are the most useful 

measures for discerning glioblastoma treatment response [127,346], and a Cho/Cr threshold 

ratio >1.79 was suggestive of tumour recurrence, but spectral patterns were less definitive 

when there was a mixed response [345]. In the current study, the Cho/Cr ratios from both the 

intermediate (TE=135ms) and short (TE=30ms) echo times provided similar trends to classify 

treatment response, and an additional parameter for greater confidence.  

Although numerous studies have shown to be useful for this clinical issue, the 

multiparametric approach adds relevant and important information alongside conventional 

MRI findings in distinguishing tPD from psPD in post-treatment glioblastoma. It is a better 

assessment of the structural, physiological and metabolic environment of the tumour, 

compared to the single parameter approach. Combining techniques has shown benefit and 
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could significantly improve diagnostic accuracy. Combining ADC and MRS has shown a 

sensitivity and specificity of 91.5% and 100% respectively, and a reported accuracy of 97.2% 

[363]. Combining PWI and MRS has shown to improve diagnostic accuracy from 82.5% for 

perfusion alone, to 90% with both parameters [341]. Combining ADC, rCBV and MRS has 

shown to produce a diagnostic accuracy of 93.3%, compared to the single parameter 

approach which yielded accuracies between 84.6% to 86.7% [127]. Another study has shown 

that the accuracy of correctly classifying cases was between 62.1% to 79.3% for single 

parameter techniques, however when the three parameter of DWI, PWI and MRS were 

combined, the accuracy of correct classification between recurrent tumour and radiation 

injury improved to 96.6% [128]. 

In this study, combining a high rCBV (>2.1), high Cho/Cr ratio (≥1.8), high Cho/NAA ratio (≥1.9) 

and low ADC (≤1000 x 10-6mm2s-1) correctly identified tPD in all six cases of tPD according to 

RANO criteria. In one of these patients (case 9), there were multiparametric features of tPD at 

the early time point. Following a second multiparametric and conventional MRI assessment at 

the 4-month follow-up time point which again showed PD, TMZ was changed to second-line 

treatment and there was further PD at 7-months. At 19-months and 32-months there was PD. 

In this case, according to RANO, PD at multiple time points until after the 6-month time point 

would be consistent with tPD, which was determined at the earliest time point by 

multiparametric MRI. In addition, this patient’s MGMT promoter methylation was low, 

indicating that true progression was more likely [336]. This case suggests that there may have 

been foci of tumour on initial imaging, detected by the areas of highest rCBV and Cho/Cr 

ratio. Despite the multiparametric findings being consistent with RANO criteria of tPD in the 
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initial 7-month period, there could have been a good response to treatment after the initial 7-

month period leading to stability of disease and a prolonged OS until further progression at 

19 months.  

Combining a low rCBV (≤2.1), low Cho/Cr (<1.8), low Cho/NAA (<1.9) and high ADC (>1000 x 

10-6mm2s-1) correctly identified psPD in two of the three cases according to RANO. One of 

these patients had a low level of MGMT promoter methylation, which is more often 

associated with tPD [336]. In the final patient (case 8), multiparametric MRI features at eight 

weeks post-CRT suggested a picture of tumour recurrence in residual disease from surgery. 

The patient subsequently went on to show psPD according to conventional imaging, with an 

overall survival of 36 months. MGMT promoter methylation was 18%, suggesting both tPD 

and psPD were clinical possibilities. In this case, there may have been a mixed pattern of 

tumour recurrence and treatment-related changes, and as the methods used identify the 

area of lowest ADC, highest rCBV and highest Cho/Cr ratio to represent tumour activity, it is 

likely that the focal residual tumour is what was detected within predominant treatment-

related changes. This bias in the methodology of the current study for using multiparametric 

MRI to identify the area of tumour activity, which is used to inform clinical management, 

could inevitably lead to false positive reports of tPD in patients with and mixed response or in 

patients with residual tumour and psPD. Therefore, careful comparison with the post-

operative MRI study to assess the degree of resection and serial multiparametric MRI 

following treatment to assess for change in parameters to reflect the shift in the disease 

process would be more useful and help overcome this problem, rather than multiparametric 

imaging at one time point. Both case 8 and 9 highlight the issue of mixed response patterns 
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and the limitations of utilising current RANO criteria as the reference standard for this clinical 

issue.   

The current RANO guidelines [138], as well as many studies support the consideration of 

multiparametric MRI to address the unsolved problem of pseudoprogression in glioblastoma 

[119–121,127,333,363,372–376]. This small study and evidence from the literature suggests 

that combining advanced MRI techniques are promising for increasing the accuracy of 

treatment response assessment in glioblastoma.  

 Future direction 

Over the past decade, there has been an increasing validation of quantitative advanced 

imaging biomarkers for treatment response assessment in glioblastoma. Individual studies 

and institutions show good accuracies and clinical benefit in utilising these individual 

advanced techniques, but there remains a lack of standardisation across institutions due to 

differing acquisition parameters and techniques and differing levels of expertise and training 

[377]. The majority of studies so far have investigated individual parameters independently, 

have had limited subject numbers, and have been retrospectively performed at single 

centres. Systematic prospective evaluation using standardised analysis across multiple centres 

is required to validate multiparametric MRI biomarkers in routine clinical practice, to identify 

optimal combination of parameters and optimum thresholds. This will inevitably take time, 

but until this can be established, it is clear that combining the data from multiple advanced 

parameters assessing metabolic, functional, haemodynamic and cellular information 

increases accuracy and can significantly improve assessment of treatment response 
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compared to single parameters and conventional imaging [378], giving greater confidence to 

neuroradiologists and clinicians. This will be even more relevant in the era of emerging and 

targeted therapies, in which treatment response assessment may be even more complex and 

advanced MRI parameters such as DWI, PWI and MRS have already shown the potential to be 

useful [379–381]. Additional imaging parameters and techniques that have shown to be 

useful in treatment response assessment but require larger studies and more evidence 

include DTI, delayed contrast extravasation [382], ferumoxytol iron oxide nanoparticle MRI 

contrast [364,383], APT-weighted MRI [384], and PET has also shown to be a useful modality 

for this clinical issue [385]. Better methodologies of assessment are also required to address 

the issues of a mixed response or residual disease, and volumetric analysis of the entire lesion 

using advanced parameters or histograms may help with this issue. Machine learning 

techniques have great potential, for example in conjunction with radiomic texture features 

extracted from conventional or advanced imaging parameter maps, or unsupervised deep 

learning-based techniques for predicting treatment response [307,386,387], and should be 

explored further, particularly in combination with multiparametric MRI, as will be discussed 

further in Chapter 7. 
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 Conclusion 

Advanced MRI parameters are powerful tools in the assessment of treatment response in 

patients with glioblastoma, particularly as treatments evolve and assessment becomes more 

complex. A multiparametric approach using DWI, PWI and MRS is feasible in the clinical 

setting and provides greater accuracy compared with techniques used in isolation. Further 

prospective evaluation and large multi-centre trials are required for validation, with the aim 

of producing accurate quantitative multiparametric MRI biomarkers.  
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7.  MACHINE LEARNING-BASED RADIOMIC 

EVALUATION OF EARLY TREATMENT RESPONSE 

PREDICTION 

This chapter is adapted from [130], previously published by Clinical Radiology. 

 Introduction 

Treatment response assessment is an important clinical issue, which is complicated by psPD 

mimicking the appearances of tPD on CE-T1WI. Conventional MRI has a low diagnostic 

accuracy for distinguishing between the two entities at early time points and this can lead to 

delays in patient management. Radiomics allows the conversion of standard medical imaging 

into higher-dimensional data through the extraction of mathematical-based features 

[279,280], and can be combined with machine learning to create models for outcome 

prediction.  

The aim of this study was to investigate the accuracy of radiomics and machine learning for 

distinguishing between early tPD and psPD in post-treatment glioblastoma, using routinely 

acquired MRI sequences in combination with clinical information and MGMT promoter 

methylation status. 
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 Methods 

 Study design 

The study involved retrospective analysis of consecutive patients who had surgery for newly 

diagnosed glioblastoma at the Queen Elizabeth Hospital Birmingham over a 3.5-year period 

between June 2014 and December 2017 as part of routine clinical care. Approvals for this 

study were obtained from the University Hospitals Birmingham Research Governance Office. 

 

 Inclusion and exclusion criteria 

Inclusion criteria were: (a) pathology-confirmed glioblastoma according to the WHO Criteria; 

(b) surgery followed by standard CRT treatment [116]; and (c) presence of and measurable 

increase in contrast-enhancing disease on the post-CRT baseline MRI study at 4-6 weeks, 

compared to the immediate post-operative MRI study. Exclusion criteria were: (a) absence of 

baseline MRI study at University Hospitals Birmingham (performed at another centre); (b) 

incomplete post-CRT baseline MRI study, which did not include CE-T1WI, T2WI and ADC 

sequences or presence of significant imaging artefact; (c) mixed response or difficulty 

categorising outcome; (d) patient lost to follow-up within six months of CRT treatment; and 

(e) baseline MRI performed at field strength other than 1.5 Tesla. In total, 76 patients (mean 

age 55 years, range 18-76 years, 39% female) were included in the study (Figure 67). Baseline 

demographics and clinical characteristics were collected, which included patient sex, age at 

diagnosis, extent of surgical resection of the tumour (biopsy, debulking, near total resection, 

complete resection) based on post-operative MRI, Eastern Cooperative Oncology Group 
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(ECOG) performance status, radiotherapy dose, number of radiotherapy fractions and MGMT 

promoter methylation status, from the tumour tissue sample obtained at surgery. 

 

 

Figure 67. Flowchart of patient inclusion and exclusion criteria. 
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 Reference standard 

Clinical radiology reports written by consultant neuroradiologists were reviewed to obtain the 

final diagnosis of tPD or psPD. Studies were labelled as tPD if there was radiological or clinical 

progression according to RANO criteria, or death within six months. A label of psPD was given 

if there was no further radiological or clinical progression according to RANO criteria, within 

the six months following CRT. Imaging was also reviewed and where there was discrepancy of 

outcome, consensus was obtained by two consultant neuroradiologists. Of the 76 patients, 46 

demonstrated tPD and 30 demonstrated psPD. There were seven additional cases which 

showed a mixed response within the six-month period following CRT and a clear outcome was 

not established, therefore these patients were excluded from the study. 

 

 MRI acquisition 

MRI was performed on 1.5 Tesla scanners with 32-channel phased-array head coils. Various 

scanner manufacturers and parameters were used for image acquisition, reflecting the 

heterogeneity of standard-of-care imaging in clinical practice. The imaging protocol included 

axial T2WI, axial DWI with b-values 0 and 1000 s/mm2, and axial spin-echo CE-T1WI of the 

whole-brain. Gadolinium contrast agent (Dotarem; Guerbet, Villepinte, France) was 

administered intravenously 4-6 minutes prior to acquisition of the CE-T1WI as a hand-injected 

bolus of 10-15 ml (10 ml if weight <70 kg, 15 ml if weight ≥70 kg). Acquisition parameters for 

T2WI were: TR = 2800-3050 ms and TE = 95-111 ms; and for CE-T1WI: TR = 540-640 ms and 

TE = 10-17 ms. Maximum in-plane voxel sizes were 0.7 x 0.7 mm2 for T2WI, 1.0 x 1.0 mm2 for 

CE-T1WI and 1.56 x 1.56 mm2 for DWI. Maximum slice thickness for all acquisitions were 5 
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mm with a maximum interslice gap of 2.5 mm. An ADC map was calculated for each patient 

with a b-value of 1000 s/mm2.  

 

 Image pre-processing pipeline 

Image resampling and intensity normalisation was performed using PyRadiomics (version 3.0) 

pipeline modules [283]. Image voxel size was normalised by performing image resampling 

according to the lowest acquisition resolution to avoiding upsampling. Therefore, re-

sectioned images contained the maximum voxel sizes for each sequence across all patients. 

Image intensity normalisation was applied to CE-T1WI and T2WI based on the entire image 

and centred at the mean with standard deviation. Hyperintensity artifact was corrected for by 

removing outlier voxel intensities greater than the 99.9th percentile for each image. CE-T1WI, 

ADC and T2WI were imported into and co-registered in ITK-SNAP (version 3.6.0), using the 

automatic rigid transformation model and mutual information similarity metric [325], to aid 

segmentation of masks. 

 

 Segmentation 

Three-dimensional masks were created for enhancing disease and perilesional oedema, based 

on CE-T1WI and T2WI respectively. A semi-automatic method was used for each set of 

imaging studies using the ITK-SNAP machine learning-based tissue classification pre-

segmentation technique [325]. Mask registration was verified, and accuracy was visually 

inspected by a neuroradiologist with over 20 years of experience, blind to clinical data and 

outcome, with manual adjustments made to masks on each slice of the image if required.  
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 Radiomic feature extraction  

Radiomic features were extracted using the defined masks on the baseline MRI using 

PyRadiomics (version 3.0) [283]. A total of 307 features were extracted for each patient. 

There were 14 shape-based features extracted from each mask. Remaining features were 

extracted from three sets of mask-imaging pairs: the enhancing disease mask on CE-T1WI and 

ADC map, as well as from the perilesional oedema mask on T2WI. From each pair, there were 

18 first-order features and 75 second-order features. Second-order features consisted of 24 

GLCM features 14 GLDM features, 16 GLRLM features, 16 GLSZM features and five NGTDM 

features. A full list of the feature groups, feature families and individual features are shown in 

Figure 68. 
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 Models 

Six feature set models were constructed which subsequently underwent feature selection and 

classification: (i) Clinical and molecular features including the six clinical features of patient 

sex, age at diagnosis, extent of surgical resection of the tumour, ECOG performance status, 

radiotherapy dose, and number of radiotherapy fractions, as well as MGMT promoter 

methylation status; (ii) 14 shape-based radiomic features from the enhancing disease mask; 

(iii) 14 shape-based radiomic features from the perilesional oedema mask; (iv) 93 first- and 

second-order radiomic features extracted from CE-T1WI using the enhancing disease mask; 

(v) 93 first- and second-order radiomic features extracted from the ADC map using the 

enhancing disease mask; and (vi) 93 first- and second-order radiomic features extracted from 

T2WI using the perilesional oedema mask.  

 

 Feature selection 

The entire dataset was split into five folds using stratified random sampling, to carry out 

variable selection within nested cross-validation [284], conceptually demonstrated in Figure 

49. Therefore, there were five total datasets, each comprising of 80% of the data for training 

and the remaining 20% of the data for validation. The most predictive features were 

identified in each model using a multi-step pipeline. Firstly, within each training set clusters of 

highly correlated features were identified using the Pearson correlation coefficient matrix 

(Python pandas environment, version 1.0.1 [285]). The most representative feature was kept 

from the highly correlated clusters (R2 > 0.8) and remaining features removed. Cross-

validated (k=10) recursive feature elimination with a random forest classifier was then used to 
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further reduce and select the most predictive features (Python scikit-learn environment, 

version 0.22.1 [286]). A 10-fold bootstrapped cross-validation approach was used considering 

Gini impurity measures.  

 

   Statistical analysis and classification 

T-test and chi-squared test were used to calculate differences between clinical features and 

baseline demographics of the tPD and psPD groups, using RStudio software, version 1.2.5033 

(RStudio: Integrated Development for R. RStudio, Inc., Boston, MA, USA). Statistical 

significance was determined at a P-value of less than 0.05. Classification using a Naïve Bayes 

classifier was performed in Orange (version 3.24) [287]. Test data across each of the five folds 

were used to evaluate the performance of each model, with overall model performance 

determined by the mean across the folds. A combined clinico-radiomic signature was 

generated based on the top selected features present in all five folds of each model. The AUC, 

sensitivity, specificity, PPV, NPV and accuracy of the model was calculated. A summary of the 

workflow is shown in Figure 69.  
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Figure 69. Conceptual overview of the radiomics-based study workflow. 

 

 Results 

 Patient demographics 

Patient demographics are summarised in Table 13. Of the 76 patients included in the study, 

within six months of CRT, clinico-radiological follow-up in 46 (60.5%) demonstrated tPD, and 

30 (39.5%) demonstrated psPD. Patients in the psPD group had a significantly higher overall 

survival (21.8 vs. 11.8 months), significantly higher MGMT promotor methylation level (22.1% 

vs. 10.1%) and were significantly younger (50.8 vs. 57.2 years). There were no significant 
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differences observed between the two groups with regard to sex, surgical resection, baseline 

ECOG performance status, radiotherapy dose or fractions.  

 

 
True progression 

(n=46) 

Pseudoprogression 

(n=30) 

 

Age, years (SD) 57.2 (10.2) 50.8 (12.9) p=0.03* 

Sex, female, n  18 (39%) 12 (40%) p=0.87 

Surgical resection, n     p=0.34 

    Biopsy 2 (4%) 0 (0%) 

    Debulking 24 (52%) 21 (70%) 

    Near total 9 (20%) 5 (17%) 

    Complete 11 (24%) 4 (13%) 

ECOG performance status, n 
  

p=0.98 

    0 25 (54%) 16 (53%) 

    1 17 (37%) 11 (37%) 

    2 4 (9%) 3 (10%) 

Radiotherapy dose, Gray (SD) 58 (5.7) 57 (6.6) p=0.60 

Radiotherapy fractions, n (SD) 29 (4.2) 29 (4.1)  p=0.72 

MGMT methylation, % (SD) 10.1 (14.0) 22.1 (17.4) p<0.01* 

Overall survival, months (SD) 11.8 (5.8) 21.8 (7.3) p<0.01* 

Table 13. Patient demographics and clinical characteristics. 

 Neuroradiologist assessment 

Clinical neuroradiologist prediction of treatment response assessment was based on 

standard-of-care reports from the post-CRT baseline MRI study at 4-6 weeks and classified as 
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a dichotomous outcome (tPD or psPD), with an equivocal conclusion categorised as 

misclassification. At this early time point the accuracy of neuroradiologists to distinguish tPD 

from psPD on standard-of-care imaging was 32.9%, with a sensitivity of 52.2% (95% CI 37.0-

67.1), specificity of 3.3% (0.1-17.2), positive predictive value of 45.3% (38.8-52.9) and 

negative predictive value of 4.3% (0.6-23.9). 

 

 Feature set models 

The top features in each fold of each of the six models were selected by Pearson correlation 

coefficient redundant feature removal, recursive feature elimination and bootstrapped cross-

validation. Selected features for each fold and the top common features across all folds of the 

models are shown in the tables below. The average AUC was calculated for each model using 

results from each fold. The AUC for the clinical and molecular model was 0.66 (Table 14), 

imaging shape-based radiomics (enhancing disease) was 0.62 (Table 15), imaging shape-based 

radiomics (perilesional oedema) was 0.46 (Table 16), imaging CE-T1WI radiomics (enhancing 

disease) was 0.56 (Table 17), imaging ADC radiomics (enhancing disease) was 0.69 (Table 18), 

and imaging T2WI radiomics (perilesional oedema) was 0.58 (Table 19). 
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Fold 1 2 3 4 5 

Common 

features and 

average AUC 

across all folds 

Top 

features 

MGMT 

Age 

MGMT 

Age 

Resection 

ECOG 

Sex 

MGMT 

Age 

MGMT 

Age 

Resection 

MGMT 

Age 

MGMT 

Age 

AUC 0.77 0.68 0.61 0.50 0.72 0.66 

Table 14. Performance of top-ranking clinical and molecular feature sets across each fold and 

the common feature set. 

 

Fold 1 2 3 4 5 

Common 

features and 

average AUC 

across all folds 

Top 

features 

Elongation 

SAVR 

Sphericity 

Elongation 

SAVR 

Sphericity 

Flatness 

Sphericity 

Elongation 

SAVR 

Elongation 

Flatness 

Sphericity 

Elongation 

M2DDC 

Sphericity 

Flatness 

Elongation 

Sphericity 

AUC 0.73 0.42 0.64 0.83 0.50 0.62 

M2DDC = maximum 2D diameter column, SAVR = surface area to volume ratio. 

Table 15. Performance of top-ranking imaging related feature sets across each fold and the 

common feature set for shape-based radiomics using the enhancing disease mask. 
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Fold 1 2 3 4 5 

Common 

features and 

average AUC 

across all folds 

Top 

features 

Flatness 

Major axis 

length 

Flatness Flatness 

SAVR 

Elongation 

M2DDC 

Least axis length 

Flatness 

SAVR 

Sphericity 

M2DDC 

Elongation 

Least axis length 

Major axis length 

SAVR 

Sphericity 

Elongation 

M2DDC 

None 

AUC 0.55 0.31 0.50 0.50 0.46 0.46 

M2DDC = maximum 2D diameter column, SAVR = surface area to volume ratio. 

Table 16. Performance of top-ranking imaging related feature sets across each fold and the 

common feature set for shape-based radiomics using the perilesional oedema mask. 

 

Fold 1 2 3 4 5 

Common 

features and 

average AUC 

across all folds 

Top 

features 

Maximum (FO) 

DE (GLDM) 

DN (GLDM) 

Kurtosis (FO) 

90th percentile 

(FO) 

Energy (FO) 

LDLGLE (GLDM) 

DV (GLDM) 

RE (GLRLM) 

DE (GLDM) 

LDLGLE (GLDM) 

Skewness (FO) 

SDHGLE (GLDM) 

DV (GLDM) 

Energy (FO) 

Minimum (FO) 

RE (GLRLM) 

LALGLE (GLSZM) 

SDHGLE (GLDM)  

Kurtosis (FO) 

SAE (GLSZM) 

Skewness (FO) 

Energy (FO) 

DV (GLDM) 

SDLGLE (GLDM)  

90th percentile 

(FO) 

SDE (GLDM) 

DV (GLDM) None 

AUC 0.65 0.50 0.57 0.65 0.41 0.56 

DE = dependence entropy, DV = dependence variance, FO = first-order, GLDM = gray-level dependence 

matrix, GLRLM = gray-level run-length matrix, GLSZM = gray-level size-zone matrix, LALGLE = large area low 

gray level emphasis, LDLGLE = large dependence low gray level emphasis, RE = run entropy, SAE = small area 

emphasis, SDE = small dependence emphasis, SDHGLE = small dependence high gray level emphasis, SDLGLE = 

small dependence low gray level emphasis. 

Table 17. Performance of top-ranking imaging-based feature sets across each fold and the 

common feature set for CE-T1WI radiomics using the enhancing disease mask. 



200 

 

 
 

Fold 1 2 3 4 5 

Common 

features and 

average AUC 

across all folds 

Top 

features 

IMC1 (GLCM) 

LDLGLE (GLDM)  

Contrast 

(NGTDM) 

Kurtosis (FO) 

Busyness 

(NGTDM) 

Correlation 

(GLCM) 

Energy (FO) 

Correlation 

(GLCM) 

Kurtosis (FO) 

IDM (GLCM) 

CS (GLCM) 

Energy (FO) 

10th percentile 

(FO) 

Contrast 

(NGTDM) 

Correlation 

(GLCM) 

Contrast 

(NGTDM) 

Kurtosis (FO) 

Busyness 

(NGTDM) 

IMC1 (GLCM)  

IMC2 (GLCM) 

IDMN (GLCM) 

Correlation 

(GLCM) 

Kurtosis (FO) 

IDMN (GLCM) 

10th percentile 

(FO) 

Energy (FO) 

Contrast 

(NGTDM) 

Busyness 

(NGTDM) 

Kurtosis (FO) 

10th percentile 

(FO) 

LDLGLE (GLDM) 

Correlation 

(GLCM) 

Energy (FO) 

IDMN (GLCM)  

Contrast 

(NGTDM) 

Kurtosis (FO) 

Correlation 

(GLCM) 

Contrast 

(NGTDM) 

AUC 0.58 0.82 0.64 0.79 0.61 0.69 

CS = cluster shade, FO = first-order, GLCM = gray-level co-occurrence matrix, GLDM = gray-level dependence 
matrix, IDM = inverse difference moment, IDMN = inverse difference moment normalized, IMC1 = 

informational measure of correlation 1, IMC2 = informational measure of correlation 2, LDLGLE = large 
dependence low gray level emphasis, NGTDM = neighbourhood gray-tone difference matrix. 

Table 18. Performance of top-ranking imaging-based feature sets across each fold and the 

common feature set for ADC radiomics using the enhancing disease mask. 
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Fold 1 2 3 4 5 

Common 
features and 
average AUC 

across all folds 

Top 
features 

LDLGLE (GLDM) 
Skewness (FO) 
Maximum (FO) 
10th percentile 

(FO) 
90th percentile 

(FO) 
Minimum (FO) 

Energy (FO) 
DE (GLDM) 

Maximum (FO) 
LDLGLE (GLDM) 

DE (GLDM) 
Minimum (FO) 

IR (FO) 
10th percentile 

(FO) 

Minimum (FO) 
DE (GLDM) 

90th percentile 
(FO) 

LDLGLE (GLDM) 
Maximum (FO) 
10th percentile 

(FO) 
SAE (GLSZM) 

IR (FO) 

Skewness (FO) 
LDLGLE (GLDM) 

DE (GLDM) 
DV (GLDM) 

Minimum (FO) 

10th percentile 
(FO) 

Maximum (FO) 
DE (GLDM) 

DE (GLDM) 

AUC 0.58 0.72 0.48 0.61 0.51 0.58 

DE = dependence entropy, DN = dependence non-uniformity, DV = dependence variance, FO = first-order, 
GLDM = gray-level dependence matrix, IR = interquartile range, LDLGLE = large dependence low gray level 

emphasis, SAE = small area emphasis. 

Table 19. Performance of top-ranking imaging-based feature sets across each fold and the 

common feature set for T2WI radiomics using the perilesional oedema mask. 

 

 Combined clinico-radiomic signature 

For the combined clinico-radiomic signature, top common features across all folds of each 

model were combined (Table 20). Two features were obtained from the clinical and molecular 

model (age and MGMT promoter methylation status) and six features were obtained from the 

imaging radiomics models. Of the imaging features, two were shape-based from the 

enhancing disease mask (elongation and sphericity), three were ADC radiomic features from 

the enhancing disease mask (first-order: kurtosis; second-order: correlation (GLCM) and 

contrast (NGTDM)), and there was one T2WI radiomic feature from the perilesional oedema 

mask (dependence entropy (GLDM)). Definitions of the individual radiomic features within the 

combined clinico-radiomic signature are shown in Table 21. The performance of the model 
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with selected clinical and molecular features only (age and MGMT promoter methylation 

status) demonstrated an AUC of 0.66 (0.62-0.70) and the selected imaging-based radiomic 

feature model (six features) demonstrated an AUC of 0.63 (0.58-0.67). For the clinical and 

molecular model, accuracy was 55.3% (44.3-66.3), sensitivity 71.7% (57.0-84.0), specificity 

30.0% (14.7-49.4), PPV 61.1% (53.9-67.9) and NPV 40.9% (25.3-58.6). Combining the clinical, 

molecular and radiomic features improved model performance, with the combined model 

demonstrating an AUC of 0.80 (0.74-0.86), accuracy of 73.7% (66.5-80.9), sensitivity of 78.2% 

(70.7-85.7), specificity of 66.7% (50.7-82.7), PPV of 78.1% (70.9-85.3) and NPV of 67.4% (60.6-

74.3). Results of each fold from the final model are shown in Table 22, and the ROC curve for 

the combined clinico-radiomic model is shown in Figure 70. 

 

Feature Name 
Feature 

Type 
Feature Category 

Imaging 

Parameter 
Image Mask 

MGMT 

methylation 
Molecular - - - 

Age Clinical  - - - 

Elongation Imaging Shape-based CE-T1WI Enhancing disease 

Sphericity Imaging Shape-based CE-T1WI Enhancing disease 

Kurtosis Imaging First-order ADC Enhancing disease 

Correlation Imaging Second-order (GLCM) ADC Enhancing disease 

Contrast Imaging Second-order (NGTDM) ADC Enhancing disease 

Dependence 

entropy 
Imaging Second-order (GLDM) T2WI 

Perilesional 

oedema 

Table 20. List of top features in the combined clinico-radiomic signature to differentiate 

between early true progression and pseudoprogression in patients with glioblastoma. 
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Feature 

Name 
Feature Category Feature Definition 

Elongation  Shape-based  √
𝜆𝑚𝑖𝑛𝑜𝑟

𝜆𝑚𝑎𝑗𝑜𝑟
 

Sphericity Shape-based 2𝜋𝑅

𝑃
=
2√𝜋𝐴

𝑃
 

Kurtosis First-order 
𝜇4
𝜎4

=

1
𝑁𝑃

∑ (𝑋(𝑖) − 𝑋̅)4
𝑁𝑝
𝑖=1

(
1
𝑁𝑝

∑ (𝑋(𝑖) − 𝑋̅)2
𝑁𝑝
𝑖=1

)
2 

Correlation Second-order (GLCM) 
∑ ∑ 𝑝(𝑖, 𝑗)𝑖𝑗

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

− 𝜇𝑥𝜇𝑦

𝜎𝑥(𝑖)𝜎𝑦(𝑗)
 

Contrast Second-order (NGTDM) (
1

𝑁𝑔,𝑝(𝑁𝑔,𝑝 − 1)
∑∑𝑝𝑖𝑝𝑗(𝑖 − 𝑗)2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

)(
1

𝑁𝑣,𝑝
∑𝑠𝑖

𝑁𝑔

𝑖=1

) 

Dependence 

entropy 
Second-order (GLDM) ∑∑𝑝(𝑖, 𝑗) 𝑙𝑜𝑔2(𝑝(𝑖, 𝑗) + 𝜖)

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

 

A = surface area of the mesh in mm2, GLCM = gray-level co-occurrence matrix, GLDM = gray-level 

dependence matrix, Nd = the number of discreet dependency sizes in the image, Ng = the number of 

discreet intensity levels in the image, Ng,p = the number of gray levels where pi≠0, NGTDM = 

neighbourhood gray-tone difference matrix, Nv,p = the total number of voxels in Xg,l, P = perimeter of the 

mesh in mm, pi  = the gray level probability, p(i,j) = the normalized dependence matrix, R = radius of circle 

with the same surface as the region of interest, si  = the sum of absolute differences for gray level I, X = a 

set of Np voxels included in the region of interest, ϵ  = an arbitrarily small positive number, μ4 = the 4th 

central moment, μx = the mean gray level intensity of px, μy = the mean gray level intensity of py, σx = the 

standard deviation of px, σy = the standard deviation of py, λmajor = length of largest principle component 

axis, λminor = length of second largest principle component axis. 

Table 21. Definitions for the radiomic features from the final clinico-radiomic signature [283]. 
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Fold AUC 
Sensitivity, % 

(CI) 

Specificity, % 

(CI) 

PPV, % 

(CI) 

NPV, % 

(CI) 

Accuracy, % 

(CI) 

1 0.77 
80.0 

(44.3-97.5) 

66.7 

(22.3-95.7) 

80.0 

(55.3-92.8) 

66.7 

(33.9-88.7) 

75.0 

(47.6-92.7) 

2 0.82 
77.8 

(40.0-97.2) 

66.7 

(22.3-95.7) 

77.8 

(51.7-92.0) 

66.7 

(34.2-88.5) 

73.3 

(44.9-92.2) 

3 0.83 
88.9 

(51.8-99.7) 

66.7 

(22.3-95.7) 

80.0 

(55.8-92.7) 

80.0 

(36.7-96.5) 

80.0 

(51.9-95.7) 

4 0.76 
66.7 

(30.0-92.5) 

66.7 

(22.3-95.7) 

75.0 

(46.9-91.1) 

57.1 

(31.1-79.8) 

66.7 

(38.4-88.2) 

5 0.82 
77.8 

(40.0-97.2) 

66.7 

(22.3-95.7) 

77.8 

(51.7-92.0) 

66.7 

(34.2-88.5) 

73.3 

(44.9-92.2) 

Average 0.80 
78.2 

(58.9-85.7) 

66.7 

(47.2-82.7) 

78.1 

(66.6-85.3) 

67.4 

(49.1-74.3) 

73.7 

(59.5-80.9) 

Table 22. Diagnostic performance of the combined clinico-radiomic signature model. 

 

 

Figure 70. ROC curve for the combined clinico-radiomic signature model. 
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 Discussion 

This study has demonstrated that incorporating a machine learning-based radiomics model in 

conjunction with clinical features and MGMT promoter methylation status improves early 

prediction of glioblastoma treatment response. As reflected in the neuroradiologist 

assessment results, prediction of treatment response assessment at the early time point is 

extremely difficult in clinical practice based on conventional imaging. The imaging and patient 

cohort in this study reflects standard practice of glioblastoma patient management across the 

UK and most of the world. A relatively large single institution dataset was utilised consisting of 

standard-of-care conventional and ADC imaging from a number of scanners, which will have 

more clinical relevance [388]. Standardisation of imaging was performed through pre-

processing steps to account for heterogeneity from the slightly differing acquisition 

parameters. To avoid variable selection bias, the methods included cross-validation within 

feature selection, rather than external to feature selection, which provides more reliable 

results [284].  

There have been a small number of studies using machine learning-based radiomics of 

conventional imaging, such as on T1WI, T2WI, FLAIR or CE-T1WI, for distinguishing between 

early tPD and psPD. These have investigated radiomics of the contrast-enhancing lesion 

[131,132,389], radiomics of perilesional oedema [133], or a combination of both [135,390]. In 

addition to imaging, in this current study, clinical and molecular marker information has been 

incorporated. One of these prior imaging studies also included MGMT promotor methylation 

status within the models, with a combined model accuracy of 79%, and 76% accuracy for 

imaging alone [135]. Another study had included MGMT promoter methylation status as well 
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as other clinical information within the models, with a combined model AUC of 0.83, and 0.69 

for conventional imaging alone [132]. The results of the current study are broadly in 

agreement with these prior studies; in addition it incorporates robust cross-validation within 

feature selection, achieving an overall combined clinico-radiomic model (imaging, clinical 

features and MGMT) accuracy of 73.7%, AUC 0.80, sensitivity of 78.2% and specificity of 

66.7%.  

Machine learning-based radiomics of the enhancing tumour on ADC maps have been 

previously investigated in several studies, however this has always been in conjunction with 

PWI [363,391–393]. Given the differing mechanisms of treatment effect, response and 

progression, functional techniques probing the physiological and metabolic characteristics 

could be expected to provide a more accurate assessment of changes following treatment 

than conventional MRI alone. Indeed, radiomic evaluation incorporating ADC and rCBV maps 

from PWI has shown to improve diagnostic performance for identifying psPD from tPD 

compared to conventional imaging alone [391]. However in clinical practice, the majority of 

centres in the UK do not perform PWI routinely. In the current study, ADC was specifically 

chosen to be used in conjunction with conventional imaging, as DWI is routinely performed 

for glioblastoma follow up at most centres. The inclusion of this commonly used advanced 

technique has the benefit of improving accuracy as well as making the study results more 

generalisable and clinically applicable. As would be expected, the ADC radiomic model was 

the best performing individual model in this study, however, the combined clinico-radiomic 

signature showed higher performance than the clinical and molecular model or the radiomic 

model alone. Therefore, incorporating the selected shape-based, ADC enhancing disease and 
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T2WI perilesional oedema radiomic features in this signature alongside clinical and molecular 

features provides complementary information, and consequently the best diagnostic 

performance. Of the three top selected ADC radiomic features, one was a first-order feature 

(kurtosis), and the other two (correlation and contrast) were second-order features. The top 

selected feature from T2WI perilesional oedema was a second-order feature (dependence 

entropy).  

First-order features reflect the distribution of voxel intensities within the ROI and second-

order features assess the relationship between neighbouring pixel or voxel grey level values, 

or texture [394]. Image texture assessed by radiomic characterisation of features such as 

enhancement, diffusion and Ktrans, reflects the structure of the lesion and its environment, 

and provides a measure of lesion heterogeneity. Increasing levels of histological and genetic 

tumour heterogeneity are associated with adverse clinical outcomes [395]. Higher kurtosis, 

lower correlation, and higher contrast values were observed in tPD compared to psPD, 

suggesting greater heterogeneity of ADC values of the enhancing lesion in tPD. Example cases 

of visible heterogeneity differences between tPD and psPD are presented in Figure 71. 

Histopathologically there are differences between treatment-related effects and tumour 

progression; psPD is related to necrosis, oedema and abnormal vascular permeability whilst 

tPD is associated with tumour cellularity and vascular proliferation [334,396], therefore 

associated heterogeneity may be detected on imaging. There was a relatively higher 

dependence entropy value within the perilesional oedema on T2WI in tPD compared with 

psPD, implying a more complex texture to the oedema in tPD [323]. Given that glioblastoma 

tends to microscopically infiltrate the surrounding tissue [397], there may be variations in 
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texture in this surrounding region of radiological apparent hyperintensity on T2WI in cases of 

tPD compared with treatment-related effects where there is expected to be less tumour 

infiltration of the surrounding tissue.  

Results from two selected shape-based features of elongation and sphericity indicated that 

there are morphological differences in enhancing disease patterns, which has also been seen 

in treatment response assessment of brain metastases [398]. Furthermore, it is well-

established that low levels of MGMT promoter methylation and higher age is associated with 

tPD, in agreement with the selected features in our model [336,337]. 
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Figure 71. Differences in heterogeneity between tPD and psPD. (A,B) A case of tPD. CE-T1WI 

and ADC map at six weeks post-CRT shows enhancing disease in the right temporal region 

with visible heterogeneity in the corresponding region on the ADC map. ADC radiomics 

showed relatively higher kurtosis, lower correlation and higher contrast values. (C,D) A case of 

psPD. CE-T1WI and ADC map at six weeks post-CRT shows left frontal enhancing disease with 

a more homogenous appearance on the corresponding ADC map. ADC radiomics showed 

relatively lower kurtosis, higher correlation and lower contrast values. 
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 Limitations and future direction 

The RANO criteria was used for outcome classification and although this is the current 

standard for clinical care and trials, there are several limitations as also discussed previously 

in Section 1. These include the use of bidimensional measurements of the contrasting-

enhancing disease which can overestimate disease volume, the relatively arbitrary thresholds 

to define response and progression, as well as the use of percentage change thresholds in 

lesions of different sizes [399]. The biology of post-treatment glioblastoma is also complex 

and there generally exists a combination of both tumour progression as well as treatment 

effects within the region of interest [359]. Modified treatment response criteria based on 

volumetric assessment may provide more accurate classification of ground truth outcome, 

although does not fully address heterogeneity of tumour response. Volumetric conventional 

imaging which is becoming more commonplace due to standardised high-resolution imaging 

protocols, would provide more information, however segmentation can be more time-

consuming if performed manually or semi-automatically. Accurate segmentation in complex 

lesions is likely to be the most time-consuming step in future clinical decision support tools, 

which may take several minutes of manual adjustment, whereas application of machine 

learning-based models to imaging takes in order of only a few seconds. Although glioblastoma 

segmentation at longitudinal follow-up demonstrates high inter-rater agreement [400], 

automated methods have shown comparable performance for segmentation of enhancing 

disease and perilesional oedema [401], and these tools would help integrate radiomics into 

clinical workflows. More consistent scanner acquisition parameters or use of a single scanner 
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may provide better performance of radiomic models, however, may result in smaller datasets 

with less generalisable results. 

Although this study had a relatively large single-centre dataset for this clinical issue, a number 

of patients were excluded as they had their baseline MRI study at their regional hospital, 

despite surgery being performed at Queen Elizabeth Hospital Birmingham. As with all 

machine learning-based radiomic studies, larger datasets from multiple institutions are more 

advantageous, and identification of radiomic features which are reliable and robust between 

scanner manufacturers will help negate some limitations of multicentre studies [387,402]. 

Advanced techniques, particularly the multiparametric MRI approach utilising DWI, PWI and 

MRS is expected to improve classification even further [122,367] given the functional 

assessment of water movement, angiogenesis and cell membrane turnover. However, the 

multiparametric approach currently is only performed at some large specialist centres and 

quantitative analysis of PWI and MRS is sensitive to acquisition parameters as well as post-

processing, therefore at the current time provides smaller datasets, unless standardisation 

across centres is achieved. Radiologist-defined semantic imaging features such as the VASARI 

feature scoring system can also provide an additional source of information and has shown 

benefit in predicting outcome [403]. Similarly, including additional clinical information and 

molecular marker information would be expected to improve classification. With the greater 

availability of additional molecular marker testing, this data should be incorporated into 

future clinico-radiomic model studies. Information from liquid biopsy of circulating tumour 

DNA, specifically genetic cargo used for treatment response assessment, which currently used 
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alone have a low sensitivity, could also be combined with imaging biomarkers in machine 

learning models [404]. 

Lastly, there are a number of packages for radiomic feature extraction and it has been 

demonstrated that reliability of features can vary depending on the package chosen, 

therefore further work into performance and harmonisation of various packages and features 

is required [405]. To date, the use of deep learning techniques using implicit features through 

CNN have not shown superiority to radiomic-based machine learning models for this clinical 

issue [387], however study numbers are small and further work is required to investigate 

unsupervised methods in larger studies. 

 Conclusion 

This study has shown that incorporating a machine learning-based radiomics model utilising 

conventional and advanced imaging in conjunction with clinical features and MGMT promoter 

methylation status, has a complementary effect and improves early prediction of 

glioblastoma treatment response. Future work should aim to integrate additional molecular 

markers, radiologist-defined semantic imaging features, high-resolution imaging with 

multiparametric MRI, and modified treatment response criteria. Multi-centre prospective 

studies are essential to clinically validate glioblastoma treatment response radiomic models, 

with the aim of being used as clinical decision support tools for personalised treatment 

decisions and improving the quality of life for patients. 
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8.  CONCLUSIONS 

 Summary and clinical relevance 

Glioblastoma is the most common aggressive primary brain tumour, and patients have an 

extremely poor prognosis, despite significant efforts in diagnostics and therapeutics over the 

years. Conventional MRI has a well-established and vital role in glioblastoma and is the 

imaging modality of choice; essential for diagnosis, treatment planning, assessing for 

complications, treatment response assessment and post-treatment monitoring. It is non-

invasive, has little risks, easily repeatable and widely available. Despite its key role, 

conventional MRI has a number of limitations as it generally provides structural information 

which has a limited ability to inform treatment strategies, which are not without risks and 

cost. 

AI techniques using radiomic features in combination with machine and deep learning can 

utilise conventional structural imaging sequences and convert them into higher-dimensional 

data through quantitative imaging features that represent tumour metrics. They provide an 

objective method to assess the tumour radiophenotype, reflecting pathology and genetics, in 

a way that is not perceptible to the human eye, showing great potential to be used as imaging 

biomarkers. Machine and deep learning techniques have the advantage of being able to 

incorporate multiple clinical features, molecular markers, and radiologist-defined semantic 

features into complex algorithms which are expected to produce more powerful prediction 

models. There are already several clinical applications of AI in neuroimaging, and the pace of 
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research and progress is expected to be rapid over the next few years with better quality, 

structured and labelled data, advances in training architecture and more powerful computing 

hardware. The current work has shown that AI techniques applied to routinely acquired 

imaging for glioblastoma are feasible and can provide an enhanced level of diagnostic and 

prognostic information compared to current standard-of-care image interpretation. The 

machine learning models have demonstrated the ability to: 

1. Differentiate between IDH-wildtype glioblastoma and metastasis with a moderately-

high accuracy from a single pre-treatment conventional imaging sequence.  

2. Predict OS in patients with glioblastoma with a high level of accuracy using 

multiregional segmentations from pre-operative conventional imaging, combined with 

clinical information and radiologist-defined imaging features.  

3. Stratify patients into high- and low-level groups of MGMT promoter methylation from 

a single pre-operative conventional imaging sequence, with a modest level of 

accuracy. 

4. Predict glioblastoma treatment response outcome at the six-month time point with a 

moderate level of accuracy, from multi-regional segmentations on conventional 

imaging and DWI performed at the 4-6 weeks post-CRT imaging time point, combined 

with clinical features and MGMT promoter methylation status. Results showed a 

significantly higher accuracy compared to that of standard-of-care neuroradiologist 

reports at the early imaging time point.  

Secondly, functional and dynamic advanced MRI techniques have shown to provide a wealth 

of additional information from the tumour and peritumoural microenvironment. These can 
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better assess tumour heterogeneity, be used as tools for clinical problem-solving, provide 

greater diagnostic certainty, avoid unnecessary invasive procedures, and allow therapies to 

be commenced sooner for better patient outcomes. These techniques are currently being 

used in clinical practice at a few centres, however practice varies, and it is clear that 

combining multiple parameters in a multiparametric approach is essential for a more reliable 

assessment and to increase diagnostic accuracy, rather than using parameters in isolation, as 

each one has its own limitations. The current work into advanced imaging techniques has 

shown: 

1. The ability of multiparametric MRI to diagnose and differentiate between 

glioblastoma and various other lesions that mimic its appearances on conventional 

imaging through a series of cases performed in clinical practice, highlighting the real-

world benefit of its use.  

2. The utility of multiparametric MRI in combination with conventional imaging in the 

post-treatment assessment of glioblastoma, particularly in treatment response 

assessment for which it has demonstrated clear clinical benefit. 

Both AI and advanced imaging techniques have shown to be much more useful than 

conventional MRI for non-invasive diagnosis, identifying optimal biopsy targets, assessing 

disease infiltration, in vivo molecular subtyping, prognosis inference, stratifying patients for 

treatment, predicting treatment response, and disease monitoring. Furthermore, the use of 

advanced imaging combined with AI techniques is expected to significantly revolutionise 

diagnostics further, with the aim of being used as clinical decision support tools. 
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 Future direction 

In order to use radiomic and radiogenomic biomarkers in clinical practice as clinical decision 

support tools, further work and validation is required as AI in medical imaging is still in the 

early phases of research. This should include accurate and automated segmentation 

algorithms, larger higher-quality imaging datasets from multiple institutions, prospective 

studies with external validation of radiomic biomarkers and models, and the integration of 

clinical, molecular and multiparametric advanced imaging techniques into machine and deep 

learning algorithms.  

Image segmentation challenges such as the “Brain Tumor Segmentation (BraTS) challenge” 

are helping to address and improve the quality of higher-quality automated segmentation. 

The issue of larger datasets and external validation is partially being addressed by the use of 

publicly available datasets such as TCIA and TCGA, which are a valuable resource that provide 

imaging, genomic, and some clinical data. There is however a lack of publicly available 

datasets for the key clinical issue of treatment response assessment, due to complexity of 

interpretation, outcome assessment and ground truth labelling. This has a subsequent effect 

on the choice of AI techniques; currently the biggest limitation for the lack of deep learning 

techniques in neuro-oncology is the small sample sizes, given the relatively smaller numbers 

of patients diagnosed with glioblastoma compared to other tumours or pathologies. The 

available datasets are further reduced for post-treatment imaging issues including treatment 

response assessment, therefore standardised acquisitions and combining datasets from 

multiple institutions and publicly available datasets will be essential for future deep learning 

studies. There is also lack of publicly available datasets of advanced MRI techniques due to 
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limited use in practice by only a few specialist centres with experienced neuroradiologists. 

Guidelines, standards and training in the use of these techniques is essential, for 

neuroradiologists and higher specialty registrars training in neuroradiology. As advanced 

techniques continue to evolve, these should be used and investigated in parallel with and in 

combination with AI techniques in the future.  

Given the major shift in WHO classification of gliomas in 2021, with a greater emphasis on 

molecular markers towards an integrated diagnosis, further work in radiogenomics is 

required. AI and advanced imaging techniques that can reflect tumour genomic phenotype 

non-invasively through a “virtual biopsy” will be a significant achievement towards 

assessment of tumours and personalised treatments. As already discussed, there are studies 

that show promise towards this aim, however there is a broad array of molecular and 

genomic markers that have complex interactions between them and the radiophenotype, 

which will require further understanding and investigation.  

The overarching aim is to produce clinical decision support tools that will assist 

neuroradiologists in assessing the tumour and provide greater confidence in decision-making. 

This will be achieved through correlating the patient’s clinical features, genomic and 

molecular markers, combined with radiophenotypes from conventional and quantitative 

advanced imaging. Clinical trial platforms such as the recently announced Tessa Jowell BRAIN 

MATRIX in the UK, will be crucial to accelerate research and develop more sensitive diagnostic 

and prognostic biomarkers in glioblastoma. Through this, infrastructure is being developed to 

create a linked network of specialist brain tumour hubs, with central repositories for clinical, 

molecular, pathology and imaging data collection. Standardised protocols for data collection 
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across the centres, and central specialist evaluation of imaging studies will provide large 

numbers of cases and robust data quality for clinical studies. The wealth of clinical, molecular 

and pathological data will be extremely valuable for correlation with imaging through 

radiogenomic studies. Furthermore, through the network of clinical trial units, the accuracy of 

imaging biomarkers that have been developed or identified can be evaluated, and validation 

performed with statistically robust analyses in large cohorts of participants in prospective 

studies across the platform.     
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