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ABSTRACT

This paper contributes to the challenge of learning a function on streamed multimodal data through
evaluation. The core of the result of our paper is the combination of two quite different approaches
to this problem. One comes from the mathematically principled technology of signatures and log-
signatures as representations for streamed data, while the other draws on the techniques of recurrent
neural networks (RNN). The ability of the former to manage high sample rate streams and the latter
to manage large scale nonlinear interactions allows hybrid algorithms that are easy to code, quicker
to train, and of lower complexity for a given accuracy.
We illustrate the approach by approximating the unknown functional as a controlled differential
equation. Linear functionals on solutions of controlled differential equations are the natural universal
class of functions on data streams. Following this approach, we propose a hybrid Logsig-RNN
algorithm (Figure 1) that learns functionals on streamed data . By testing on various datasets, i.e.
synthetic data, NTU RGB+D 120 skeletal action data, and Chalearn2013 gesture data, our algorithm
achieves the outstanding accuracy with superior efficiency and robustness.

1 Introduction

The relationship between neural networks and differential equations is an active area of research ([6], [29], [3]). For
example, Funahashi et al. introduced the continuous recurrent neural network(RNN) [11]; He et al. connect residual
networks and discretized ODEs [6]. A typical continuous RNN has the form

9Yt “ ´
Yt
τ
`AσpBYtq ` It, (1)

where It and Yt are an input and output at time t respectively4. Rough Path Theory teaches us that is more robust to
consider the differential equation of the type

dYt “ V pYtqdXt, (2)
˚TL is supported by the EPSRC under the program grant EP/S026347/1 and by the Alan Turing Institute under the EPSRC grant

EP/N510129/1.
:WY is supported by Royal Society Newton International Fellowship.
;HN is supported by the EPSRC under the program grant EP/S026347/1 and by the Alan Turing Institute under the EPSRC

grant EP/N510129/1.
4τ is a constant, A and B are matrices and σ is an activation function.
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and replace I as an input with its integral. We can rewrite (1) in this form by setting Xt “ pt,
şt

s“t0
Isdsq and

V py, pt, xqq “ ´ y
τ t`AσpByqt`x. This allows the input to be of a broader type, andX need not even be differentiable

for the equation to be well defined. Y inherits its regularity from X; equations in this form admit uniform estimates
when X is a rough path (highly oscillatory and potentially non-differentiable). This reformulation provides a much
broader class of mathematical models for functionals on streamed data, of which the continuous RNN is a special case.

In [32] Lyons gives a deterministic pathwise definition to Equation (2) driven by rough signals. This analysis applies
to almost all paths of e.g. vectored valued Brownian motion, diffusion processes, and also to many processes outside
the SDE case, paths rougher than semi-martingales. [32] articulates that in order to control the solution to Equation
(2), it suffices to control the p-variation and the iterated integrals of X (the signature of X) up to degree tpu. Crucially
these estimates allow p ąą 1 and allow accurate descriptions of Yt to emerge from the coarse global descriptions ofX
and its oscillations given by the signature. The log-signature carries the exactly the same information as the signature
but is considerably more parsimonious; it is a second mathematically principled transformation, and like the signature,
it is able to summarize and vectorize complex un-parameterized streams of multi-modal data effectively over a coarse
time scale with a low dimensional representation.

One area where this has been worked out in detail is with the numerical analysis of stochastic differential equations
(SDEs). The most effective high order numerical approximation schemes for SDEs show that describing a path through
the log-signature enables one to effectively approximate the solution to the equation and any linear functional of that
solution globally over interval the path is defined on, without further dependence on the fine details of the recur-
rent structure of the streamed data. It leads (in what is known as the log-ode method) to produce a state-of-the-art
discretization method of of Inhomogenous Geometric Brownian Motion (IGBM)[8].We exploit this understanding
to propose a simply but surprisingly effective neural network module (Logsig-RNN) by blending the Log-signature
(Sequence) Layer with the RNN layer (see Figure 1) as an universal model for functionals on un-parameterized (and
potentially complex) streamed data.

Figure 1: Comparison of Logsig-RNN and RNN.

The Logsig-RNN network has the following advantages:

1. Time dimension reduction: The Log-Signature Layer transforms a high frequency sampled time series to a
sequence of the log-signatures over a potentially much coarser time partition. It reduces the time dimension
of RNN significantly and thus speed up training time.

2. High frequency and continuous data: For the high frequency data case, the RNN type approach suffers
from severe limitations, when applied directly [5]. In this case, one has to down-sample the stream data to
a coarser time grid to feed it into the RNN-type algorithm (Figure 1 (Left)). It may miss the microscopic
characteristic of the streamed data and render lower accuracy. The Logsig-RNN model can handle such case
or even continuous data streams very well (Figure 1).
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3. Robustness to missing data. Compared with the signature feature set, the log-signature is a parsimonious
representation of the signature [38], and empirically proved more robust to missing data. We validate the
robustness of the Logsig-RNN model on various datasets, which outperforms that of the RNN model signifi-
cantly.

4. Highly Oscillatory Stream data: There is a fundamental issue when one accesses a highly oscillatory stream
through sampling. It is quite possible for two streams to have very different effects and yet have near identical
values when sampled at very fine levels [9]. Therefore, to model a functional on a general highly oscillatory
stream, the RNN on the sampled stream data would be challenged, requiring huge amounts of augmentation,
and very fine sampling to be effective. In contrast, the rough path theory shows that if one postulates the
(log)-signature of streamed data up in advance, the Logsig-RNN model can be much effective.

In summary, the main contributions of the paper are listed as follows:

1. to introduce the Log-signature (Sequence) Layer as a transformation of sequential data, and outline its back-
propagation through time algorithm. It is highlighted that the Log-signature Layer can be inserted between
other neural network layers conveniently, not limited to the pre-defined feature extraction.

2. to design the novel neural network model (Logsig-RNN model) by blending the log-signature layer with
RNN (Section 3.2) and prove the universality of the Logsig-RNN model for the approximation any solution
map to the SDEs (Theorem 4.1);

3. to propose the PT-Logsig-RNN model by adding the linear project layer in front of the Logsig-RNN archi-
tecture to tackle the case for the high dimensional input path (Section 3.3).

4. to apply the Logsig-RNN algorithm to both synthetic data and empirical data to demonstrate its superior
accuracy, effectiveness and robustness (Section 5). We achieve the state-of-the-art classification accuracy
93.27% on ChaLearn2013 gesture data by the PT-Logsig-RNN model (Section 5.3).

1.1 Related Work

1.1.1 Learning SDEs

SDEs of the form (2) are useful tools for modelling random phenomena and provide a general class of functionals on
the path space. SDEs not only are commonly used as models for the time-evolving process of many physical, chemical
and biological systems of interacting particles [12], but also are the foundational building blocks in the derivatives
pricing theory, an area of huge financial impact ([2], [33], [4]). Statistical inference for SDEs has rich literature due
to the importance of research outcomes and applications (see [1] for the survey and overview). Most of the research
focuses on the parameter estimation of (model-specific) stochastic processes; in particular [36] is the pioneering work
for the parameter estimation for a general stochastic process, which goes beyond diffusion processes by matching
expected signature of the solution process. However, in contrast to these work, our approach is non-parametric and is
used to learn the solution map without any assumption on the distribution of the stochastic process.

1.1.2 Rough paths theory in machine learning

Recently the application of the rough path theory in machine learning has been an emerging and active research area.
The empirical applications of the rough paths theory primarily focused on the signature feature, which serves as an
effective feature extraction, e.g. online handwritten Chinese character/text recognition([13], [42]), action classification
in videos [43], and financial data analysis ([14], [31]). In addition, those previous work mainly combine the signature
with the convolutional neural network or fully connected neural network. To our best knowledge, the proposed method
is the first of the kind to integrates the sequence of log signature with the RNN. The log-signature brings many benefits
(Section 2.3). The log-signature has been used as a local feature descriptor for gesture [21] and action recognition [43].
These used cases are bespoke; in contrast, the proposed Logsig-RNN is a general method for sequential data with
outstanding performance in various datasets (See Section 5). Moreover, we extend the work on the back-propagation
algorithm of the log-signature transformation in [37] to the sequence of the log-signature.

1.1.3 Time series modelling

In [20] Levin et al. firstly proposed the signature of a path as the basis functions for a functional on the un-
parameterized path space and suggested the first non-parametric model for time series modelling by combining signa-
ture feature and the linear model (Sig-OLR). However, Sig-OLR has the limitation of inefficient global approximation
due to the instability of the polynomial extrapolation. Despite the successful empirical applications of the signa-
ture feature sets ([13], [42], [43]), the theoretical question on which learning algorithms are most appropriate to be

3
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combined with the (log)-signature feature remains open. Our work is devoted to answering this question with both
theoretical justification and promising numerical evidence.

1.1.4 Functional Data Analysis

Learning a functional on streamed data falls under the category of the functional data analysis (FDA) [34], which
models data using functions or functional parameters and analyse data providing information about curves, surfaces or
anything else varying over a continuum. The representation theory of the functional on functions plays an important
role in FDA study. Functional principal components analysis ([40]) is one of the main techniques of FDA to represent
the function data, which express the function data as the linear coefficients of the basis functions(usually without taking
into account the response variable corresponding to the function input). In contrast to it, albeit taking the functional
view of sequential data, our approach focuses on the representation of the path in terms of its effect (functional on the
path, i.e . the solution of the controlled differential equation driven by the path).

2 The Log-Signature of a Path

Consider a continuous time series x over the time interval J :“ rS, T s built at some very fine scale out of time stamped
values xD̂ “ rxt1 , xt2 , ¨ ¨ ¨ , xtns, where D̂ “ pt1, ¨ ¨ ¨ , tnq. When x is highly oscillatory, to well capture effects of
x, classical approaches requires sampling x at high frequency, or even collect all the ticks. In this section, we takes
the functional view on xD̂ by embedding it to a continuous path by interpolation for a unified treatment (See detailed
discussion in Section 4 of [20]). We start with the introduction to p-variation to measure the roughness of a continuous
path. Then we introduce a graded feature, so-called log-signature feature as an effective and high order summary of a
path of finite p-variation over time intervals. It follows with the key properties of the log-signature in machine learning
applications.

2.1 A Path with finite p-variation

Let E :“ Rd and X : J Ñ E be a continuous path endowed with a norm denoted by | ¨ |. To make precise about the
class of paths we discuss throughout the paper, we introduce the p-variation as a measure of the roughness of the path.

Definition 2.1 (p-Variation). Let p ě 1 be a real number. Let X : J Ñ E be a continuous path. The p-variation of X
on the interval J is defined by

||X||p,J “

«

sup
DĂJ

r´1
ÿ

j“0

ˇ

ˇXtj`1
´Xtj

ˇ

ˇ

p

ff
1
p

, (3)

where the supremum is taken over any time partition of J , i.e. D “ pt1, t2, ¨ ¨ ¨ , trq. 5

Let VppJ,Eq denote the range of any continuous path mapping from J toE of finite p-variation. The larger p-variation
is, the rougher a path is. The compactness of the time interval J can’t ensure the finite 1-variation of a continuous path
in general (See Example 2.1).

Example 2.1. A fractional Brownian motion (fBM) with Hurst parameterH has sample paths of finite p-variation a.s.
for p ą 1

H . The larger H is, the rougher fBM sample path is. For example, Brownian motion is a fBM with H “ 0.5.
It has finite p2` εq-variation a.s @ε ą 0, but it has infinite p-variation a.s.@p P r1, 2s.

For each p ě 1, the p-variation norm of a path X : J Ñ E of finite p-variation is denoted by ||X||p´var and defined
as follows:

||X||p´var “ ||X||p,J ` sup
tPJ
||Xt||.

2.2 The log-signature of a path

We introduce the signature and the log signature of a path, which take value in the tensor algebra space denoted by
T ppEqq endowed with the tensor multiplication and componentwise addition[30].

5 Let J “ rS, T s be a closed bounded interval. A time partition of J is an increasing sequence of real numbers D “

pt0, t1, ¨ ¨ ¨ , trq such that S “ t0 ă t1 ă ¨ ¨ ¨ ă tr “ T . Let |D| denote the number of time points in D, i.e. |D| “ r ` 1.

∆D denotes the time mesh of D, i.e. ∆D :“
r´1
max
i“0

pti`1 ´ tiq.

4
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Definition 2.2 (The Signature of a Path). Let J denote a compact interval and X : J Ñ E be a continuous path with
finite p-variation such that the following integration makes sense. Let I “ pi1, i2, ¨ ¨ ¨ , inq be a multi-index of length
n where ij P t1, ¨ ¨ ¨ , du,@j P t1, ¨ ¨ ¨ , nu. Define the coordinate signature of the path XJ associate with the index I
as follows:

XI
J “

ż

. . .

ż

u1ă¨¨¨ăuk
u1,...,ukPJ

dXpi1qu1
b ¨ ¨ ¨ b dXpinqun .

The signature of X is defined as follows:

SpXqJ “ p1,X
1
J , . . . ,X

k
J , . . . q. (4)

where Xk
J “ pX

I
JqI“pi1,¨¨¨ ,ikq,@k ě 1. Let SkpXqJ denote the truncated signature of X of degree k, i.e.

SkpXqJ “ p1,X
1
J , . . . ,X

k
Jq. (5)

Example 2.2. When X is a multi-dimensional Brownian motion, the above integration can be defined in both
Stratonovich and Itô sense. It is because that the Brownian motion has samples of infinite p-variation for p P r1, 2s a.s
([30]).

Remark 2.1 (The Signature of Discrete Time Series). The discrete version of a path xD is of finite 1-variation. Thus
the signature of xD is well defined. It is highlighted that SpxDq is NOT the collection of all the monomials of discrete
time series! The dimension of all monomials of xD grow with |D|, while the dimension of SkpxDq is invariant to |D|.

The signature of a path has many good properties, which makes the signature an efficient representation of an un-
parameterized path. We refer readers to [20] for an introduction to the signature feature in machine learning.

The logarithm of the element in T ppEqq is defined similar to the power series of the logarithm of a real value except
for the multiplication is understood in the tensor product sense.

Definition 2.3 (Logarithm map). Let a “ pa0, a1, ¨ ¨ ¨ q P T ppEqq be such that a0 “ 1 and t “ a ´ 1. Then the
logarithm map denoted by log is defined as follows:

logpaq “ logp1` tq “
8
ÿ

n“1

p´1qn´1

n
tbn,@a P T ppEqq. (6)

Lemma 2.1. The logarithm map is bijective on the domain ta P T ppEqq|a0 “ 1u.

Definition 2.4 (The Log Signature of a Path). The log signature of path X by logpSpXqq is the logarithm of the
signature of the path X , denoted by lSpXq. Let lSkpXq denote the truncated log signature of a path X of degree k.

2.3 Properties of the log-signature

We summarize the key properties of the log-signature, which make the log-signature as a principled and effective
summary of streamed data over intervals. In addition, we highlight the comparison of properties of the log-signature
and the signature. More details on properties of (log)-signature can be found in the appendix, and the illustrative
examples of pendigit data is provieded by pendigit demo.ipdb.6

2.3.1 Bijection between the signature and the log-signature

As the logarithm map is bijective, there is one-to-one correspondence between the signature and the log-signature
[30]. The statement is also true for the truncated signature and log-signature up to the same degree. For example,
by projecting both sides of Eqn (2.3) to E, the first level of signature and log-signature are both increments of the
path XT ´ XS . For the second level of the signature pXpi,jqS,T qdi,jP“1, it can be decomposed to its symmetric and
anti-symmetric parts

X
pi,jq
S,T “

1

2
X
piq
S,TX

pjq
S,T `A

pi,jq
S,T , (7)

where Api,jqS,T “ 1
2

`

Xp1,2q ´Xp2,1q
˘

. It is noted that Api,iq “ 0 and lS2 “ Ap1,2qre1, e2s. This is an example to show
that the signature and log signature(lower dimension) is a bijection up to degree 2.

6 pendigit demo.ipdb can be found via the github link: https://github.com/logsigRNN/learn_sde/blob/
master/Pen-digit_learning/pendigit_demo.ipynb.
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Figure 2: The top-left figure represents the trajectory of the digit 2, and the rest of figures plot the coordinates of
the pen location via different speed respectively, which share the same signature and log signature given in the first
subplot.

2.3.2 Dimension Reduction

The log-signature is a parsimonious representation for the signature feature, which is of lower dimension compared
with the signature feature in general. It be used for significant dimension reduction. Let us consider the linear subspace
of T ppEqq equipped with the Lie bracket operation r., .s, defined as follows:

ra, bs “ ab b´ bb a.

Theorem 2.1. (Theorem 2.3, [30]) For any pathX of finite 1-variation , there exist λi1,¨¨¨ ,in such that the log-signature
of X can be expressed in the following form7

lSpXq “
d
ÿ

i“1

λiei `
ÿ

ně2
ei1 ,¨¨¨ ,ein
Pt1,¨¨¨ ,du

λi1,,¨¨¨ ,inrei1 , r¨ ¨ ¨ , ren´1, ensss.

The above theorem shows that the dimension of the truncated log-signature is no greater than that of the truncated
signature due to the linear dependence of rei1 , rei2 ¨ ¨ ¨ , ren´1, ensss. For example, rei, ejs “ ´rej , eis. The analytic
formula for the dimension of the truncated log signature can be found in Theorem A.6.

2.3.3 Invariance under time parameterization

We say that a path X̃ : J Ñ E is the time re-parameterization of X : J Ñ E if and only if there exists a non-
decreasing surjection λ : J Ñ J such that X̃t “ Xλptq, @t P J .

Lemma 2.2. Let X P V1pJ,Eq and a path X̃ : J Ñ E is the time re-parameterization of X . Then

lSpXqJ “ lSpX̃qJ . (8)

It is an immediate consequence of the bijection between the signature and log-signature, and the invariance of the
signature (Lemma A.3). Re-parameterizing a path does not change its (log)-signature. In Figure 2, speed changes
result in different time series representation but the same (log)signature feature. The (log)-signature feature can remove
the redundancy caused by the speed of traversing the path, which brings massive dimension reduction benefit.

2.3.4 Missing Data, variable length and unequally time spacing

The (log)-signature feature set can both deal with time series of variable length and unequal time spacing. No matter
the length of the time series is and how the time spacing is, the (log)-signature feature transformation provides a fixed
dimension descriptor for any d-dimensional time series. Compared with the signature, the log-signature is empirically
more robust to missing data (Figure 5).

signature log-signature
uniqueness of a path X X
invariance of time parameterization X X
the universality X 7
no redundancy 7 X

Table 1: Comparison of Signature and Log-signature

7The equivalent statement is that the log signature is a Lie series, which is defined in Definition A.4.
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In contrast to signature, the log-signature does not have universality, and thus it needs be combined with non-linear
models for learning. We summarize the comparison of the signature and log-signature in Table 1.

3 Logsig-RNN Network

Consider a discrete d-dimensional time series xD̂ “ pxtiq
n
i“1 over time interval J . The lifted path associated with xD̂

is the piecewise linear interpolation of xD̂. Let D be a coarser time partition of J such that D :“ pukq
N
k“0 Ă D̂.

3.1 Log-Signature Layer

We propose the Log-Signature (Sequence) Layer, which transforms an input xD̂ to a sequence of the log signature of
xD̂ over a coarser time partition D .

Definition 3.1 (Log-Signature (Sequence) Layer). Given D and D̂, a Log-Signature Layer of degree M is a mapping
from Rdˆn to RdlsˆN , which computes plkqN´1

k“0 as an output for any xD, where lk is the truncated log signature of x
over the time interval ruk, uk`1s of degree M as follows:

lk “ lSM pxqruk,uk`1s, (9)

where k P t0, 1, ¨ ¨ ¨N ´ 1u and dls is the dimension of the truncated log-signature.

It is noted that the Log-Signature Layer does not have any weights. In addition, the input dimension of Log-signature
layer is pd, nq and the output dimension is pN, dlsq where N ď n and dls ě d. The Log-Signature Layer potentially
shrinks the time dimension effectively by using the more informative spatial features of a higher dimension.

Backpropogation Let us consider the derivative of the scalar function F on plkqNk“1 with respect to path xD̂, given
the derivatives of F with respect to plkqNk“1. By the Chain rule, it holds that

BF ppl1, ¨ ¨ ¨ , lN qq

Bxti
“

N
ÿ

k“1

BF pl1, ¨ ¨ ¨ , lN q

Blk

Blk
Bxti

. (10)

where k P t1, ¨ ¨ ¨ , Nu and i P t0, 1, ¨ ¨ ¨ , nu.

If ti R ruk´1, uks, BlkBxti
“ 0; otherwise Blk

Bxti
is the derivative of the single log-signature lk with respect to path xuk´1,uk

where ti P DX ruk´1, uks. The log signature lSpxD̂q with respect to xti is proved differentiable and the algorithm of
computing the derivatives is given in [17], denoted by OxtiLSpx

D̂q. This is a special case for our log-signature layer
when N “ 1. In general, for any N P Z`, it holds that @i P t0, 1, ¨ ¨ ¨ , nu and k P t1, ¨ ¨ ¨ , Nu,

Blk
Bxti

“ 1tiPruk´1,uksOxtiLSpxuk´1,ukq, (11)

Thus the backpropogation algorithm of the Log-Signature Layer can be implemented using Equation (10) and (11).8

3.2 Logsig-RNN Network

Before proceeding to the Logsig-RNN network, we introduce the conventional recurrent neural network(RNN). RNN
is composed with three types of layers, i.e. the input layer pxtqt, the hidden layer phtqt and the output layer potqt. RNN
takes the sequence of d-dimensional vectors px1, x2, ¨ ¨ ¨ , xT q as an input and compute the output potqTt“1 P ReˆT
using Equation (12):

ht “ σpUxt `Wht´1q, ot “ qpV htq, (12)
where U , W and V are model parameters, and σ and q are two activation functions in the hidden layer and output
layer respectively. Let Rσppxtqt|Θq denote the RNN model with pxtqt as the input, σ and linear function q as the
activation functions of the hidden layer and output layer respectively and Θ :“ tU,W, V u is the parameter set of the
RNN model.

We propose the Logsig-RNN model by incorporating the log-signature layer to the RNN. We defer the motivation of
the Logsig-RNN Network to next section.

8In iisignature python package [18], logsigbackprop(deriv, path, s, Method = None) returns the derivatives of some scalar
function F with respect to path, given the derivatives of F with respect to logsig(path, s, methods). Our implementation of the
back-propogation algorithm of the log-signature layer uses logigbackprop() provided in iisignature.

7
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Figure 3: Architecture of PT-Logsig-RNN Model. It consists with the first Path Transformation Layers, the Log-
Signature (Sequence) Layer, the RNN-type layer and the last fully connected layer. It is used for both action and
gesture recognition in our experimental section.

Model 3.1 (Logsig-RNN Network). Given D :“ pukq
N
k“0, a Logsig-RNN network computes a mapping from an input

path xD to an output defined as follows:

• Compute plkqN´1
k“0 as the output of the Log-Signature Layer of degree M for an input pxD̂q by Definition 3.1.

• The output layer is computed by RσpplkqN´1
k“0 |Θq, where Rσ is a RNN network with certain activation func-

tion σ.

Remark 3.1 (Link between RNN model and Logsig-RNN model). For M “ 1, Logsig-RNN network is reduced to
the RNN model with pxuk`1

´ xukq
N
k“1 as an input. When D coincides with D̂, the Logsig-RNN Model is the RNN

model with increment of raw data input.

Remark 3.2. The sampling time partition of raw data D̂ can be potentially much higher than D used in Logsig-RNN
model. The higher frequency of input data would not increase the dimension of the log-signature layer, but it makes
the computation of lk more accurate.

The Logsig-RNN model (depicted in Figure 1) can be served as an alternative to the RNN model and its variants of
RNNs, e.g. LSTM, GRU. One main advantage of our method is to reduce the time dimension of the RNN model
significantly while using the log-signature as an effective representation of data stream over sub-time interval. It
leads to higher accuracy and efficiency compared with the standard RNN model. Compared with Sig-OLR ([20]) our
approach achieves better accuracy via dimension reduction by using the log signature sequence of lower degree to
represent the signature of high degree.

3.3 Path Transformation Layers

To efficiently and effectively exploit the path, we further propose two transformation layers accompanied with Log-
Signature Layer. The overall model, namely PT-Logsig-RNN, is shown in Figure 3.

Embedding Layer In many real-world applications, the input path dimension is large and the dimension of the trun-
cated log-signature grows fast w.r.t. the path dimension. To reduce the high path dimension, we add a linear Embed-
ding Layer before the Log-Signature Layer. The mapping L, implemented by the embedding layer, translates the input
sequence pXtiq

n
i“1 into real vectors pLXtiq

n
i“1, where LXti P Rd

1

and d1 ă d. The weights in this layer are trainable
and are learned from data. The embedding layer leads to significant spatial dimension reduction of rear layers.

8
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Accumulative Layer The Accumulative Layer maps the input sequence pXtiq
n
i“1 to its partial sum sequence Yti ,

where Yti “
ři
j“1Xtj , and i “ 1, ¨ ¨ ¨ , n. One advantage of using the Accumulative Layer along with Log-Signature

Layer is to extract the quadratic variation and other higher order statistics of an input path X effectively [35].

Time-incorporated Layer The Time-incorporated Layer is to add the time dimension to the input sequence pXtiq
n
i“1;

in formula, the output is pti, Xtiq
n
i“1. The log-signature of the time-incorporated transformation of a path is proved to

fully recover the path by Lemma A.5.

4 Universality of Logsig-RNN Network

In this section, we prove the universality of Logsig-RNN network to approximate a solution to any controlled differen-
tial equation under mild conditions. The motivation of the Logsig-RNN network comes naturally from the numerical
approximation theory of the SDEs.

Let pXtqtPr0,T s and pYtqtPr0,T s be two stochastic processes under the probability space pΩ,F , P q such that Y is the
solution to Equation (13) driven by the path X ,

dYt “ fpYtqdXt, YS “ ξ, (13)

where X has finite p-variation a.s., and f : R Ñ LpE,Rq is a smooth vector field satisfying certain regularity
condition. Let If denote the solution map which maps XJ to YT . The goal is to learn the solution map If from the
input-output pairs pXpiqJ , Y

piq
T q

Ns
i“1, which are iid samples of pXJ , YT q. Classical numerical schemes of simulation of

the solution to Equation (13) are mainly composed with two steps:

1. Local Approximation of Yt ´ Ys when t is close to s.

2. Paste the local approximation together to get the global approximation for YT .

Let us start with the local approximation of the solution to Equation (13) using step M -Taylor Expansion, i.e.

Yt ´ Ys «
M
ÿ

k“1

f˝kpYsq

ż

săs1ă¨¨¨ăskăt

dXt1 b ¨ ¨ ¨ b dXsk , (14)

where f˝m : RÑ LpEbm,Rq is defined recursively by

f˝1 “ f ; f˝k`1 “ Dpf˝kqf, (15)

where Dpgq denotes the differential of the function g.

We paste the local Taylor approximation together to estimate for the solution on the whole time interval J . The strategy
is outlined as follows. Fix a time partition D “ pukqNk“0 of J . We define the estimator pŶ D,M

uk
qk given by M -step

Taylor expansion associated with D in the following recursive way: for k P t0, ¨ ¨ ¨ , N ´ 1u,

Ŷ D,M
u0

“ y0,

Ŷ D,M
uk`1

“ Ŷ D,M
uk

`

M
ÿ

j“1

f˝jpŶ D,M
uk

qXj
uk,uk`1

(16)

:“ gfD,M plk, Ŷ
D,M
uk

q,

where M is the degree of log-signature and lk is defined in Equation (9). Ŷ D,M
uN converges to YT when ∆D tends to 0

provided f is smooth enough (see Theorem B.1).

Equation (16) exploits a remarkable similarity between the recursive structure of an RNN Rσ and the one defined by
the numerical Taylor approximation to solutions of SDEs ŶuN . It is noted that in Equation (16) Ŷ D,M

uk`1
depends on

Ŷ D,M
uk

and the log-signature lk. In this way, Ŷ D,M
uk

plays a role similar to the hidden neurons of the RNN model with
plkq

N´1
k“0 as an input (see Figure 7). It motivates us to propose the Logsig-RNN Network (Model 3.1) to approximate

the solution to any SDE under the regularity condition. This idea is natural if one thinks that gfD,M can be universally
approximated by neural network. We establish the universality theorem of the Logsig-RNN network as follows. The
proof can be found in the appendix.

9
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Theorem 4.1 (Universality of Logsig-RNN Model). Let Y denote the solution of a SDE of form (13) under the
previous regularity condition of Theorem B.2. Let K be any a compact set SpVppJ,Eqq. Assume f P C8b 9. For
any ε ą 0, there exist the constants C1 :“ C1pp, γ, f,Kq and C2 :“ C2pf,Kq such that M ą tpu and ∆D ď

minpεp{M`1´pC1, εC2q, lk is defined in Equation (9). Then there exists a RNNRσp|Θq with some Θ, s.t.

sup
SpXqPK

||YT ´RσpplkqNk“1|Θq|| ď ε. (17)

5 Numerical Experiments

We demonstrate the performance of the Logsig-RNN algorithm on both synthetic SDE data and empirical data, includ-
ing NTU RGB+D 120 action data and Chalearn 2013 gesture data in terms of the accuracy, efficiency and robustness.10

5.1 Synthetic Data Generated by a SDE

As an example of high frequency data, we simulate the solution YT to the SDE of Example 5.1 using Milstein’s method
with the time step T

50000 for T “ 10. An input path is the discretized Brownian motion WD̂, where D̂ “ D50001
11.

We simulate 2000 samples of pXD̂, YT q, which is split to 80% for the training and the rest for the testing. Here
we benchmark our approach with (1) RNN0: the conventional RNN model, (2) Sig-OLR: the linear model on the
signature, (3) Sig-RNN: the RNN model with the signature sequence.
Example 5.1. Suppose Yt satisfies the following SDE:

dYt “ p´πYt ` sinpπtqqdX
p1q
t ` YtdX

p2q
t , Y0 “ 0, (18)

where Xt “ pX
p1q
t , X

p2q
t q “ pt,Wtq, Wt is a 1-d Brownian motion, and the integral is in the Stratonovich sense.

Data Methods Fea. dim. Error(ˆ10´6) Train time(s)
High RNN0 (50k, 1) ´ ´

Frequency Sig-OLR 62 2.25 178
(50k steps) Sig-RNN (4,14) 2.40 360

Logsig-RNN (4,8) 2.14 529
Down- RNN0 (1k,1) 7.79 50930
sampling Sig-OLR 62 3.69 9
(1k steps) Sig-RNN (4,14) 2.55 177

Logsig-RNN (4,8) 2.16 343
Missing RNN0 (1k,1) 16.40 47114
Data Sig-OLR 62 3.75 9
(drop 5% Sig-RNN (4,14) 3.05 182
from 1k) Logsig-RNN (4,8) 2.91 372

Table 2: Comparison of methods on the SDEs data.

As shown in Table 2, we apply the above four methods for three kinds of inputs (1) XD̂ (high frequency); (2) down-
samplingXD̂ to 1k time steps (downsampling); (3) randomly throw away 5% points of 1k down sampled data (missing
data). We compare the accuracy and training time of the Logsig-RNN algorithm. The training time is the first time
of the loss function of the model to reach the error tolerance level 2 ˚ 10´6 before 25k epochs in the train set and the
MSE is chosen as performance metric. First of all, Table 2 shows that the Logsig-RNN achieves the best accuracy for
all three cases among all the methods. In particular, it is the most robust to missing data. Moreover, it reduces the time
dimension of RNN from 50k{1k to 4, and thus significantly save the training time from 50930s to 343s.

5.2 Action Recognition: NTU RGB+D 120 Data

NTU RGB+D 120 [23] is a large-scale benchmark dataset for 3D action recognition, which consists of 114, 480
RGB+D video samples that are captured from 106 distinct human subjects for 120 action classes.

We use the network constructed by the path transformation layers following by the Logsig-RNN model (i.e. PT-
Logsig-RNN shown in Figure 3) and apply it to the skeleton data of the NTU RGB+D 120 data (150 dimensional data
streams) for action classification. The network configurations are given in appendix.

9f P C8b means f is infinitely differentiable and all the derivatives are bounded. This regularity condition can be weaken.
10We implement all algorithms in Tensorflow. It runs on a computer equipped with GeForce RTX 2080 Ti GPU.
11Dn denotes an equally spaced partition of r0, T s of n steps.

10
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Methods X-Subject(%) X-Setup(%)
Dynamic Skeleton[16] 50.8 54.7
ST LSTM[26] 55.7 57.9
FSNet[24] 59.9 62.4
TS Attention LSTM[27] 61.2 63.3
MT-CNN + RotClips[19] 62.2 61.8
Pose Evolution Map[28] 64.6 66.9
LSTM (baseline) 61.6 58.5
PT + LSTM 62.0 60.5
PT + Logsig +LSTM 65.7 64.5

Table 3: Comparison of methods on the NTU RGB+D 120.

As shown in Table 3, we subsequently add the Path Transformation Layers (PT) and the Log-signature layer (Logsig)
to the baseline LSTM to validate the performance of each model. For X-Subject task, adding PT Layer results in a 0.4
percentage points (pp) gain over the baseline and the Logsig layer further gives a 3.7 pp gain. For X-Subject protocol,
our method outperforms other methods. For X-Setup, our method is only beaten by [28]. The latter leverages the
informative pose estimation maps as additional clues. Notice that our PT-Logsig-LSTM is flexible enough to allow
incorporating other advanced techniques (e.g. data augmentation and attention module) or combining multimodal
clues (e.g. pose confidence score) to achieve further improvement.

5.3 Gesture Recognition: Chalearn 2013 data

The Chalearn 2013 dataset [7] is a public available dataset for gesture recognition, which contains 20 Italian gestures
performed by 27 subjects. It provides Kinect data, which contains RGB, depth, foreground segmentation and skeletons.
Here, we only use skeleton data (20 3D joints) for the gesture recognition (see appendix for more details).

We compare our method (Figure 3) with several state-of-the-art methods [22]. Table 4 shows that the PT-Logsig-RNN
algorithm with M “ 2 and N “ 4 outperforms other methods in terms of the accuracy. We present both the results
with/without the data-augmentation. With augmentation, our results significantly outperform others to achieve the
state-of-the-art result.

Methods Accuracy(%) Data Aug.
Deep LSTM [39] 87.10 ´

Two-stream LSTM [41] 91.70
‘

ST-LSTM + Trust Gate [25] 92.00
‘

3s net TTM [22] 92.08
‘

RNN0 90.92
Ś

RNN0 (+data augmentation) 91.18
‘

PT-Logsig-RNN 92.21
Ś

PT-Logsig-RNN(+data augmentation) 93.27
‘

Table 4: Comparison of methods on the Chalearn 2013 data.

Regarding to the robustness to missing data, we randomly set a certain percentage of frames (r) by all-zeros for
each sample in the validation set, and evaluate the trained models of our method and RNN0 to the new validation
data. Table 5 shows that logsig-RNN model with M “ 2 consistently beats the baseline RNN for different r, which
validates the robustness of our method comparing with the benchmark.

r
M 2 3 4 RNN0

0% 92.21 89.66 70.71 90.92
10% 91.32 88.58 69.11 81.77
20% 90.33 86.60 67.89 68.22
30% 87.68 81.74% 63.24 50.35
50% 74.40 57.13 41.07 21.78

Table 5: The accuracy (%) of the testing set with missing data with different dropping ratio (r). Here N “ 4.

6 Conclusion

The Logsig-RNN model, inspired from the numerical approximation theory of SDEs, provides an accurate, efficient
and robust algorithm to learn a functional on streamed data. Numerical results show that it improves the performance

11
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of LSTM significantly on both synthetic data and empirical data. In ChaLearn2013 gesture data, PT-Logsig-RNN
achieves the state-of-the-art classification accuracy. It is noted that the gesture or action data is naturally one kind of
enormous continuous data streams in real world. When devices make higher frequency sampled data available, the
proposed algorithm can be very suited in related tasks, while conventional downsampling-based RNNs probably fail.

12
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Appendix
Appendix A Preliminary of Rough Paths Theory

In this section, we give a brief overview of the signature and log signature of a path, and provide the necessary
preliminary of Rough Path Theory. Besides we provide the pendigit demo.ipynb12 as illustrative examples to help
readers have a better understanding of the properties of the (log)-signature.

A.1 The signature of a path

Let us recall the definition of the signature of a path.
Definition A.1 (The Signature of a Path). Let J denote a compact interval and X : J Ñ E be a continuous path with
finite p-variation such that the following integration makes sense. Let I “ pi1, i2, ¨ ¨ ¨ , inq be a multi-index of length
n where ij P t1, ¨ ¨ ¨ , du,@j P t1, ¨ ¨ ¨ , nu. Define the coordinate signature of the path XJ associate with the index I
as follows:

XI
J “

ż

. . .

ż

u1ă¨¨¨ăuk
u1,...,ukPJ

dXpi1qu1
b ¨ ¨ ¨ b dXpinqun

The signature of X is defined as follows:

SpXqJ “ p1,X
1
J , . . . ,X

k
J , . . . q (19)

where Xk
J “

ż

. . .

ż

u1ă¨¨¨ăuk
u1,...,ukPJ

dXu1
b ¨ ¨ ¨ b dXuk “ pX

I
JqI“pi1,¨¨¨ ,ikq,@k ě 1.

Let SkpXqJ denote the truncated signature of X of degree k, i.e.

SkpXqJ “ p1,X
1
J , . . . ,X

k
Jq. (20)

The signature of the path has geometric interpolation. The first level signature X1
J is the increment of the path X , i.e

XT ´XS , while the second level signature represents the signed area enclosed by the curveX and the cord connecting
the ending and starting point of the path X .

The signature of X arises naturally as the basis function to represent the solution to linear controlled differential
equation based on the Picard’s iteration ([30]). It plays the role of non-commutative monomials on the path space. In
particular, if X is a one dimensional path, the kth level of the signature of X can be computed explicitly by induction
as follows that for every k P N,

Xk
J “

pXT ´XSq
k

k!
. (21)

A.1.1 Multiplicative Property

The signature of paths of finite 1´variation has the multiplicative property, also called Chen’s identity.
Definition A.2. Let X : r0, ss Ñ E and Y : rs, ts Ñ E be two continuous paths. Their concatenation is the path
denoted by X ˚ Y : r0, ts Ñ E defined by

pX ˚ Y qu “

"

Xu, u P r0, ss,

Yu ´ Ys `Xs, u P rs, ts.

Theorem A.1 (Chen’s identity). . Let X : r0, ss Ñ E and Y : rs, ts Ñ E be two continuous paths of bounded
one-variation. Then

SpX ˚ Y q “ SpXq b SpY q.

Chen’s identity asserts that the signature is a homomorphism between the path space and the signature space.
12 pendigit demo.ipynb is provided in the gitub via https://github.com/logsigRNN/learn_sde/blob/master/

Pen-digit_learning/pendigit_demo.ipynb
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A.1.2 Calculation of the signature

In this subsection, we explain how to compute the truncated signature of a piecewise linear path. Let us start with a
d-dimensional linear path.
Lemma A.1. Let X : rS, T s Ñ E be a linear path. Then

SnpXq “
pXT ´XSq

bn

n!
. (22)

Equivalently speaking, for any multi-index I “ pi1, ¨ ¨ ¨ , inq,

SI “

śn
j“1pX

pijq
T q

n!
(23)

Chen’s identity is a useful tool to enable compute the signature of the piecewise linear path numerically.
Lemma A.2. Let X be a E-valued piecewise linear path, i.e.Xis the concatenation of a finite number of linear paths,
and in other words there exists a positive integer land linear pathsX1, X2, ..., Xlsuch that X “ X1 ˚X2 ˚ ˚Xl. Then

SpXq “ bli“1 exppXiq. (24)

A.1.3 Uniqueness of the signature

Let us start with introducing the definition of the tree-like path.
Definition A.3 (Tree-like Path). A path X : J “ rS, T s Ñ E is tree-like if there exists a continuous function
h : J Ñ r0,`8q such that hpSq “ hpT q “ 0 and such that, for all s, t P J with s ď t,

||Xt ´Xs|| ď hpsq ` hptq ´ 2 inf
uPrs,ts

hpuq.

Intuitively a tree-like path is a trajectory in which a section where the path exactly retraces itself. The tree-like
equivalence is defined as follows: we say that two paths X and Y are the same up to the tree-like equivalence if and
only if the concatenation of X and the inverse of Y is tree-like. Now we are ready to characterize the kernel of the
signature transformation.
Theorem A.2 (Uniqueness of the signature). Let X P VppJ,Eq . Then SpXq determines X up to the tree-like
equivalence defined in Definition A.3.[15]

Theorem A.2 shows that the signature of the path can recover the path trajectory under a mild condition. The unique-
ness of the signature is important, as it ensures itself to be a discriminative feature set of un-parameterized streamed
data.
Remark A.1. A simple sufficient condition for the uniqueness of the signature of a path of finite length is that one
component of X is monotone. Thus the signature of the time-joint path determines its trajectory (see [20]).

A.1.4 Invariance under time parameterization

Lemma A.3 (Invariance under time parameterization). [30] Let X P V1pJ,Eq and a path X̃ : J Ñ E is the time
re-parameterization of X . Then

SpXqJ “ SpX̃qJ . (25)

Re-parameterizing a path inside the interval does not change its signature. In Figure 2, speed changes result in dif-
ferent time series representation but the same signature feature. It means that signature feature can reduce dimension
massively by removing the redundancy caused by the speed of traversing the path. It is very useful for the applications
where the output is invariant w.r.t. the speed of an input path, e.g. online handwritten character recognition and video
classification.

A.1.5 Shuffle Product Property

We introduce a special class of linear forms on T ppEqq; Suppose pe˚1 , ¨ ¨ ¨ , e
˚
d , ¨ ¨ ¨ q are elements of E˚. We can

introduce coordinate iterated integrals by setting Xpiqu :“ xe˚i , Xuy, and rewriting xe˚i1 b ¨ ¨ ¨ b e˚in, SpXqy as the
scalar iterated integral of coordinate projection. In this way, we realize nth degree coordinate iterated integrals as

14
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the restrictions of linear functionals in Ebnto the space of signatures of paths. If pe1, ¨ ¨ ¨ , edq is a basis for a finite
dimensional space E, and pe˚1 , ¨ ¨ ¨ , e

˚
d q is a basis for the dual E˚. Therefore, it follows that

XJ “
ÿ

kě0
i1,¨¨¨ ,ik
tP1,2,¨¨¨ ,du

ż

. . .

ż

u1ă¨¨¨ăuk
u1,...,ukPJ

dXpi1qu1
b ¨ ¨ ¨ b dXpikquk

e1 b ¨ ¨ ¨ b ek.

Theorem A.3 (Shuffle Algebra). The linear forms on T ppEqq induced by T pE˚q, when restricted to the range
SpVppr0, T s, Eq of the signature, form an algebra of real valued functions for p ă 2.

The proof can be found in page 35 in [30]. The proof is based on the Fubini theorem, and it is to show that for any
e˚, f˚ P T pE˚q, such that for all a P SpVppr0, T s, Eq,

e˚paqf˚paq “ pe˚ � f˚qpaq (26)

A.1.6 Universality of the signature

Any functional on the path can be rewritten as a function on the signature based on the uniqueness of the signature
(Theorem A.2). The signature of the path has the universality, i.e. that any continuous functional on the signature can
be well approximated by the linear functional on the signature (Theorem A.4)[20].

Theorem A.4 (Signature Approximation Theorem). Suppose f : S1 Ñ R is a continuous function, where S1 is a
compact subset of SpVppJ,Eqq13. Then @ε ą 0, there exists a linear functional L P T ppEqq˚ such that

sup
aPS1

||fpaq ´ Lpaq|| ď ε. (27)

Proof. It can be proved by the shuffle product property of the signature and the Stone-Weierstrass Theorem.

A.2 The log-signature of a path

A.2.1 Lie algebra and Lie series

If F1 and F2 are two linear subspaces of T ppEqq, let us denote by rF1, F2s the linear span of all the elements of the
form ra, bs, where a P F1 and b P F2. Consider the sequence pLnqně0 be the subspace of T ppEqq defined recursively
as follows:

L0 “ 0;@n ě 1, Ln “ rE,Ln´1s. (28)

Definition A.4. The space of Lie formal series over E, denoted as LppEqq is defined as the following subspace of
T ppEqq:

LppEqq “ tl “ pl0, ¨ ¨ ¨ , ln, ¨ ¨ ¨ q|@n ě 0, ln P Lnu. (29)

Theorem 2.1 can be rewritten in the following form.

Theorem A.5 (Theorem 2.23 [30]). Let X be a path of finite 1-variation. Then the log-signature of X is a Lie series
in LppEqq.

A.2.2 The bijection between the signature and log-signature

Similar to the way of defining the logarithm of a tensor series, we have the exponential mapping of the element in
T ppEqq defined in a power series form.

Definition A.5 (Exponential map). Let a “ pa0, a1, ¨ ¨ ¨ q P T ppEqq. Define the exponential map denoted by exp as
follows:

exppaq “
8
ÿ

n“0

abn

n!
. (30)

Lemma A.4. The inverse of the logarithm on the domain ta P T ppEqq|a0 ‰ 0u is the exponential map.

13 SpVppJ,Eqq denotes the range of the signature of x P VppJ,Eq.
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Theorem A.6. The dimension of the space of the truncated log signature of d-dimensional path up to degree n over d
letters is given by:

DLn “
1

n

ÿ

d|n

µpdqqn|d

where µ is the Mobius function, which maps n to
$

&

%

0, if n has one or more repeated prime factors
1, if n “ 1
p´1qk if n is the product of k distinct prime numbers

The proof can be found in Corollary 4.14 p. 96 of [38].

A.2.3 Calculation of the log-signature

Let’s start with a linear path. The log signature of a linear path XJ is nothing else, but the increment of the path
XT ´XS .

Baker-Cambpell-Hausdorff formula gives a general method to compute the log-signature of the concatenation of two
paths, which uses the multiplicativity of the signature and the free Lie algebra. It provides a way to compute the
log-signature of the piecewise linear path by induction.

Theorem A.7. For any S1, S2 P LppEqq

Z “ logpeS1eS2q “
ÿ

ně1
p1,...,pně0
q1,....qně0
pi`qią0

p´1qn`1

n

1

p1!q1!...pn!qn!
rpSp11 Sq12 ...S

pn
1 Sqn2 q (31)

where r : A˚ Ñ A˚ is the right-Lie-bracketing operator, such that for any word w “ a1...an

rpwq “ ra1, ..., ran´1, ans...s.

This version of BCH is sometimes called the Dynkin’s formula.

Proof. See remark of appendix 3.5.4 p. 81 in [38].

A.2.4 Uniqueness of the log-signature

Like the signature, the log-signature has the uniqueness stated in the following theorem.

Theorem A.8 (Uniqueness of the log-signature). Let X P VppJ,Eq . Then lSpXq determines X up to the tree-like
equivalence defined in Definition A.3.

Theorem A.8 shows that the signature of the path can recover the path trajectory under a mild condition.

Lemma A.5. A simple sufficient condition for the uniqueness of the log-signature of a path of finite length is that one
component of X is monotone.

A.3 Comparison of the Signature and Log-signature

Both the signature and log-signature take the functional view on the discrete time series data, which allows a unified
way to treat time series of variable length and missing data. For example, we chose one pen-digit data of length 53
and simulate 100 samples of modified pen trajectories by dropping at most 16 points from it, to mimic the missing
data of variable length case (See one sample in Figure 4). Figure 5 shows that the mean absolute relative error of the
signature and log-signature of the missing data is no more than 6%. Besides the log-signature feature is more robust
to missing data and of lower dimension compared with the signature feature.
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Figure 4: (Left) The chosen pen trajectory of digit 9. (Right) The simulated path by randomly dropping at most 16
points of the pen trajectory on the left.

Figure 5: Signature and Log-Signature Comparison for the missing data case.

Figure 6: Signature and Log-Signature Comparison for the missing data case.

A.4 Rough Path and the Extension Theory

Let C0,pp∆T , T
tpupEqq be the space of all continuous functions from the simplex ∆T :“ tps, tq|0 ď s ď t ď T u

into the truncated tensor algebra T tpupEq. We define the p-variation metric on this linear space as follows: for X,Y P

17
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C0,pp∆T , T
tpupEqq, set

dppX,Y q “ max
1ďiďtpu

˜

sup
DĂr0,T s

ÿ

D
||Xi

tl´1,tl
´ Y itl´1,tl

||
p
i

¸
1
p

. (32)

Definition A.6. Let p ě 1 be a real number and n ě 1 be an integer. Let ω : r0, T s Ñ r0,8s be a control. Let
X : ∆T Ñ T pnq be a multiplicative functional. We say that X has finite p-variation on ∆T controlled by ω if

||Xi
s,t|| ď

ωps, tq
i
p

βp ip q!
,@ps, tq P ∆T . (33)

In general, we say that X has finite p-variation if there exists a control such that the conditions above are satisfied.

The concept of the rough path theory is a generalization of the signature of a path of finite 1-variation.
Definition A.7 (Rough path). Let E be a Banach space. Let p ě 1 be a real number. A p-rough path in E is a
multiplicative functional of degree tpu in E with finite p-variation. The space of p-rough paths is denoted by ΩppV q.
Definition A.8 (Geometric rough path). A geometric p-rough path is a p-rough path that can be expressed as a limit
of 1-rough path in the p-variation distance defined above. The space of geometric p-rough path in E is denoted by
GΩppEq.

Theorem A.9 (Extension theorem). Let X and Y be two multiplicative functional in T pnqpV q of finite p-variation,
n ě tpu controlled by ω. Suppose that for some ε P p0, 1q,

||Xi
s,t ´ Y

i
s,t|| ď ε

ωps, tq
i
p

β
´

i
p

¯

!
, (34)

for i “ 1, ¨ ¨ ¨ , n and for all ps, tq P ∆T . Then provided β is chosen such that

β ě 2p2

¨

˝1`
8
ÿ

r“3

ˆ

2

r ´ 2

˙

tpu

p

˛

‚. (35)

Appendix B Proof of Global Approximation Theorem

In this section, we prove that the global approximation theorem of the high order Taylor expansion of the solution to
the controlled differential equations.

Theorem B.1 (Global Approximation Theorem). Let Ŷ D,M
uN be defined as previously. For any ε ą 0, when ∆D ď

´

ε
C̃

¯p{ptγu`1´pq

and M ě tγu, then Ŷ D,M
uN satisfies that

||YT ´ Ŷ
D,M
uN || ď ε, (36)

where SpXq P K, K is a compact set SpVppJ,Eqq and C̃ is a constant depending p, γ, the norm of f and the radius
of K defined in Equation (41).

Before proceeding to the proof of the above theorem, we need the following auxiliary lemma and classical results on
the numerical approximation of the SDEs (Theorem B.2).
Lemma B.1. Let K be a compact set of GΩppJ,Eq for some p ě 1. J 1 is a compact sub-time interval of J . Then the
mapping F : K Ñ T tpupEq, i.e. x ÞÑ logpxJ 1q is continuous. The image of K under the function F is compact.

Theorem B.2. [10] Assume that X “ p1, X1, . . . , Xtpuq is a p-geometric rough path14. Let f be a Lippγq vector
field where γ ą p. Then there exists C :“ Cpp, γq such that

||YT ´ Ŷ
D,M
uN || ď C

N
ÿ

k“1

|f |tγu`1
˝γ ||X||

tγu`1
p´var;rtk´1,tks

. (37)

14A geometric p-rough path is the limit of the sequence of the signature of paths of finite 1-variation in the p-variation distance.
A discrete time series of finite length is an example of geometric p-rough path @p ě 1.
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Now we are ready to prove Theorem B.1.

Proof. According to Theorem B.2, there exists C :“ Cpp, γq such that

||YT ´ Ŷ
D,M
uN || ď C

N
ÿ

k“1

|f |tγu`1
˝γ ||X||

tγu`1
p´var;rtk´1,tks

. (38)

It implies that the estimation error is of order ∆
tγu`1
p . As SpXq P K, then it exists a constant C1 ą 0 s.t.

sup
SpXqPK

||X||p´var,J ď C1. (39)

Equation (38) implies that

||YT ´ Ŷ
D,M
uN || ď C̃∆D

tγu`1
p ´1. (40)

where C :“ Cpp, γq is given in Theorem B.2 and

C̃ “ C
N

max
k“1

´

||f |||γ|`1
˝γ

¯

Cp1 . (41)

Appendix C Proof of Universality of the Logsig-RNN model

In this section, we prove that the universality of the Logsig-RNN model (Theorem 4.1 of our paper). Firstly, we
introduce the auxiliary lemmas and then complete the proof of Theorem 4.1.

C.1 Auxiliary Lemmas

In the following, we use the uniform norm of a function f̃ : K Ñ Rd, i.e.

||f̃ ||8,K :“ sup
xPK

|f̃pxq|.

The following lemma on the universality of shallow neural network was proved by Funahshi (1989).

Lemma C.1. Let σpxq be a sigmoid function (i.e. a non-constant, increasing, and bounded continuous function on
R). Let K be any compact subset of Rn, and f : K Ñ Re be a continuous function mapping. Then for an arbitrary
ε ą 0, there exist an integer N ą 0, an mˆN matrix A and an N dimensional vector θ such that

max
xPK

|fpxq ´AσpBx` θq| ă ε,

holds where σ : RN ÞÑ RN is a sigmoid mapping defined by

σp1pu1, ¨ ¨ ¨ , uN qq “
1 pσpu1q, ¨ ¨ ¨ , σpuN qq.

Lemma C.2. Let K be any compact subset of Rd. Let f and f̃ be two continuously differentiable functions on Rd`e.
Then it follows that

||Gf ´Gf̃ ||8,K ă C||f ´ f̃ ||8,K ,

where C is a constant depending on the Of and N , i.e.

C “

#

CN1 ´1
C1´1 , if C1 ‰ 1;

N, if C1 “ 1.
(42)

C1 :“ sup
px1,¨¨¨ ,xN qPK

N
max
k“1

||Oofpxk, okq||.
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Figure 7: The shared recursive structure of numerical approximation of the solution ŶuN and the RNNRσ .

Proof. As f and f̃ are continuous functions andK is compact, then the image ofGf andGf̃ for any px1, ¨ ¨ ¨ , xN q P K
are compact. Let phiqNi“1 and ph̃iqNi“1 denote Gf and Gf̃ evaluated at px1, x2, ¨ ¨ ¨ , xN q respectively. Then we have

hi`1 “ fpxi`1, hiq and h̃i`1 “ f̃pxi`1, h̃iq.

Then it follows that

||hi`1 ´ h̃i`1|| “ ||fpxi`1, hiq ´ f̃pxi`1, h̃iq||

ď ||fpxi`1, hiq ´ fpxi`1, h̃iq|| `

||fpxi`1, h̃iq ´ f̃pxi`1, h̃iq||

ď ||fpxi`1, hiq ´ f̃pxi`1, h̃iq|| `

sup
xPK

||Dfpx, hq||||hi ´ h̃i||,

which shows the recursive relation of ||hi ´ h̃i||.
It is easy to check that if ai`1 ď C0 ` C1ai with a0 “ 0, it implies that

ai ď

#

Ci1´1
C1´1C0, if C1 ‰ 1

iC0, if C1 “ 1.

Therefore using the above inequality when ai “ ||hi ´ h̃i||, C0 “ maxxPK ||f ´ f̃ ||, it follows that

||hi ´ h̃i|| ď C||f ´ f̃ ||8,

and so does

||Gf ´Gf̃ ||8,K ď C||f ´ f̃ ||8,K ,

where C is defined by Equation (42).

C.2 Proof of Theorem 4.1

First of all, let us give the intuition of the proof of Theorem 4.1. There is a remarkable similarity between the recursive
structure of an RNNRσ and the one defined by the numerical Taylor approximation to solutions of SDEs ŶuN (Figure
7). It is noted that the numerical approximation of the solution Ŷ D,M

uk`1
represented in Equation (16) depends on Ŷ D,M

uk

and the log-signature lk.

we use G to denote the common recursive structure between those two. Specifically, for any given function f̃ :
Rd`e Ñ Re, define Gf̃ :“ Gf̃ ,o1,N : RNˆd Ñ RNˆe as follows:

px1, ¨ ¨ ¨ , xN q ÞÑ po1, ¨ ¨ ¨ , oN q,

where ot`1 “ f̃pxt`1, otq,@t P t1, ¨ ¨ ¨ , N ´ 1u. As o1 is set to be the same and N is fixed in Theorem 4.1 , we skip
the subscript o1 and N in the notation Gf̃ .
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On the one hand, when f̃px, sq :“ AσpUx`Wsq, where A is a matrix of dimension dˆ e, x P Rd and s P Re, then
Gf̃ is the RNN equipped with the activation function σ, denoted by Rp|Θq; on the other hand, the numerical solution
to SDE ŶuN is GgfD,M . Therefore the error E2 is the norm of the difference between GAσpUx`W q and GgfD,M , i.e.

ŶuN ´RσpplkqNk“1 “

´

GgfD,M
´GAσpUx`W q

¯

pplkq
N
k“1q (43)

Proof. By the triangle inequality, it holds that

||YT ´RσpplkqNk“1|Θq|| ď

||YT ´ ŶuN ||
loooooomoooooon

E1

` ||ŶuN ´RσpplkqNk“1|Θq||
loooooooooooooomoooooooooooooon

E2

. (44)

By Global Approximation Theorem (Theorem B.1), E1 can be arbitrarily small by setting ∆D sufficiently small and
truncation degree of the log-signature M sufficiently large.

The universality of the Logsig-RNN model is reduced to control the error E2, which is the difference between
GAσpUx`W q and GgfD,M (Equation 43). Lemma C.1 ensures that the shallow neural network can approximate any

continuous function uniformly well while Lemma C.2 demonstrates the continuity of the map f̃ ÞÑ Gf̃ . Combining
both lemmas we are able to show that E2 can be arbitrarily small provided that ∆D sufficiently small and degree M
sufficiently large.

Appendix D Numerical Examples

In this section, we add one more empirical data experiment on the UCI pen-digit recognition data. Moreover, we
provide the implementation details of our method for the NTURGB+D 120 action data and Chalearn 2013 gesture
data.

D.1 UCI Pen-Digit Data

In this subsection, we apply the Logsig-RNN algorithm on the UCI sequential pen-digit data15. In Table 6, the Logsig-
RNN with M “ 4 and N “ 4 achieves the accuracy 97.88% in the testing data compared with 95.80% of RNN0. In
addition, the training time of the Logsig-RNN takes 30% of RNND and 3% of the training time of RNN0.

Figure 8: The accuracy comparison of Logsig-RNN in the testing set.

Robustness to missing data and change of sampling frequency To mimic the missing data case, we randomly throw
a certain portion of points for each sample, and evaluated the trained models of Logsig-RNN and RNN0 to the new
testing data. Table 6 shows that our proposed method outperforms the other methods significantly for the missing data
case. Figure 9 shows the robustness of trained Logsig-RNN model for the down-sampled test data. Here the test data
is down-sampled to that of length 8 provided in UCI data. For M “ 4, the accuracy of testing data is above 80%,
which is about 4 times of that of the baseline methods.

15https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
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r
M 2 3 4 5 6 RNN0

0% 97.83% 97.83% 97.88% 97.40% 97.68% 95.80%
10% 97.63% 97.77% 97.14% 96.88% 97.60% 40.91%
20% 96.74% 97.06% 96.68% 95.85% 97.06% 37.28%
30% 95.99% 95.40% 95.17% 95.03% 95.77% 32.65%

Table 6: The accuracy of the modified testing set using different missing data rate (r). Here N “ 4.

Figure 9: Validation of the trained models on the down-sampled dataset. The accuracy of RNND is below 13.5%

D.2 Action Recognition: NTU RGB+D 120 Data

In this subsection, we provide the network architecture and implementation details of the LP-Logsig-RNN model for
the NTU RGB+D 120 dataset. In Tabel 7, it displays the path transform layers is mainly composed with two Conv2D
layers in [44] followed by one Conv1D layer. Before the LSTM layer, the starting frame of each segment of Conv1D
output is incorporated into the output of Logsig layer. DropOut layer is applied after the LSTM layer with dropout
rate 0.8. The number of hidden neurons of LSTM layer is 256.

D.3 Gesture Recognition: Chalearn 2013

We provide the implementation details of the PT-Logsig-RNN model depicted in Figure 3 for the Chalearn 2013 data.
The skeletons are pre-processed by first subtracting the central joint, which is the average position of all joints in one
sample. Then we normalize the data and sample all clips to 39 frames by linear interpolation and uniform sampling.
The path transform layers are composed of two Conv2D layers followed by a Conv1D layer, a Time-incorporated layer
and an Accumulative Layer followed by the log-signature transformation with d1 “ 30. We add DropOut layer to both
of the embedding layer and the LSTM layer to avoid over-fitting, where the two dropout rate are 0.3 and 0.5 resp. The
number of hidden neurons of LSTM layer is 128. To make fair comparison, a DropOut layer is added to the benchmark
RNN0. Three methods of data augmentation are used in the experiments. The first one is rotating coordinates along
x, y, z axis in range of r´π{36, π{36s, r´π{18, π{18s and r´π{36, π{36s respectively. The second one is randomly
shifting the frame temporally in range of r´5, 5s. The last one is adding Gaussian noise with standard deviation 0.001
to joints coordinates.

Appendix E The Universality of Controlled Differential Equations

Definition E.1. Let Yt be the solution to the following equation

dYt “ V pYtqdXt, Y0 “ y0, (45)

where X : r0, T s Ñ“ E of finite 1-variation, and V P C8b and Y : r0, T s ÑW :“ Ro.
Let IV denote the solution map, i.e. for any X is in the admissible set,

IV : pX, y0q ÞÑ Y.

Theorem E.1. The linear functional on the solution map on the path space defined in Equation (46) restricted to the
linear vector fields forms an algebra with componentwise multiplication.
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Layer Output shape Discription
Input p72, 25, 6q
Conv2D p72, 25, 32q Kernel size=1ˆ 1ˆ 32
Conv2D p68, 25, 16q Kernel size=5ˆ 1ˆ 16
Conv1D p68, 40q Kernel size=1ˆ 400ˆ 40
Logsig p32, 820q M “ 2, N “ 4
Add Starting Points p32, 860q Starting points of Conv1D output
LSTM p32, 256q Return sequential output
Output 120

Table 7: Architecture of the action recognition model

Proof. Suppose that Y and Ỹ be the solution to the following equation driven by X , i.e. Let Yt be the solution to the
following equation

dYt “ LpYtqdXt, Y0 “ y0

dỸt “ L̃pỸtqdXt, Ỹ0 “ ỹ0, (46)

where L and L̃ are two linear vector fields.

For any two basis w˚i and w˚j of W˚,

xw˚i , Ytyxw
˚
j , Ỹty “ Y

piq
t Ỹ

pjq
t (47)

and thus

dpY
piq
t Ỹ

pjq
t q “ Y

piq
t dỸ

pjq
t ` Ỹ

pjq
t dY

piq
t (48)

“ xw˚j , Y
piq
t L̃pỸtqdXty ` xw

˚
i , L̃

pjq
t LpYtqdXty,

which can be rewritten as follows: there exist l1, l2 P LpW,LpE,W qq, such that

dpY
piq
t Ỹ

pjq
t q “ xw˚j , l1pỸt b YtqdXty ` xw

˚
i , l2pỸt b YtqdXty.

Therefore, xw˚i , Ytyxw
˚
j , Ỹty can be rewritten as a linear functional on Zt “ Yt b Ỹt, which is the solution to a linear

controlled differential equation driven by X , i.e.

dZt “ LY,Ỹ pZtqdXt,

where LY,Ỹ : W bW Ñ LpE,W bW q.

Let C1pV1pJ,Eq,W q denote the space of continuous functionals on V1pJ,Eq taking values in W , which are invariant
w.r.t time parameterization.
Theorem E.2 (Universality of the linear controlled differential equations). The linear functionals on the solution map
on the path space defined in Equation (46) are dense in the space C1pV1pJ,Eq,W q.

Proof. Let L be a trivial vector field and y0 “ 1. Then IV ” 1. By Theorem E.1, the linear functions on the solution
map form an algebra under the multiplication. By the Stone-Weierstrass Theorem, the proof is complete.

The set of the solution map driven by potential non-linear vector fields include all the solution driven by linear vector
fields. Therefore we establish the universality of linear functionals on solution to controlled differential equations
provided vector fields under the regularity condition.
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1998. 2

[33] R. C. Merton et al. Theory of rational option pricing. Theory of Valuation,, pages 229–288, 1973. 3
[34] H.-G. Müller, R. Sen, and U. Stadtmüller. Functional data analysis for volatility. Journal of Econometrics,,

165(2):233–245, 2011. 4
[35] H. Ni. A multi-dimensional stream and its signature representation. arXiv preprint arXiv:1509.03346, 2015. 9
[36] A. Papavasiliou, C. Ladroue, et al. Parameter estimation for rough differential equations. The Annals of Statistics,,

39(4):2047–2073, 2011. 3
[37] J. Reizenstein and B. Graham. The iisignature library: efficient calculation of iterated-integral signatures and log

signatures. arXiv preprint arXiv:1802.08252, 2018. 3
[38] C. Reutenauer. Free lie algebras. In Handbook of algebra, volume 3, pages 887–903. Elsevier, 2003. 3, 16
[39] A. Shahroudy et al. Ntu rgb+d: A large scale dataset for 3d human activity analysis. In CVPR, 06 2016. 11
[40] B. W. Silverman et al. Smoothed functional principal components analysis by choice of norm. The Annals of

Statistics,, 24(1):1–24, 1996. 4
[41] H. Wang and L. Wang. Modeling temporal dynamics and spatial configurations of actions using two-stream

recurrent neural networks. CVPR,, pages 3633–3642, 2017. 11
[42] Z. Xie, Z. Sun, L. Jin, H. Ni, and T. Lyons. Learning spatial-semantic context with fully convolutional recurrent

network for online handwritten chinese text recognition. IEEE TPAMI,, 40(8):1903–1917, 2018. 3
[43] W. Yang, T. Lyons, H. Ni, C. Schmid, L. Jin, and J. Chang. Leveraging the path signature for skeleton-based

human action recognition. arXiv preprint arXiv:1707.03993, 2017. 3
[44] W. Zhu, C. Lan, J. Xing, W. Zeng, Y. Li, L. Shen, and X. Xie. Co-occurrence feature learning for skeleton based

action recognition using regularized deep lstm networks. In AAAI, 2016. 22

25


