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ABSTRACT

The availability of mobile technologies has enabled the efficient collection prospective longitudinal,
ecologically valid self-reported mood data from psychiatric patients. These data streams have potential
for improving the efficiency and accuracy of psychiatric diagnosis as well predicting future mood
states enabling earlier intervention. However, missing responses are common in such datasets and
there is little consensus as to how this should be dealt with in practice. A signature-based method
was used to capture different elements of self-reported mood alongside missing data to both classify
diagnostic group and predict future mood in patients with bipolar disorder, borderline personality
disorder and healthy controls. The missing-response-incorporated signature-based method achieves
roughly 66% correct diagnosis, with f1 scores for three different clinic groups 59% (bipolar disorder),
75% (healthy control) and 61% (borderline personality disorder) respectively. This was significantly
more efficient than the naive model which excluded missing data. Accuracies of predicting subsequent
mood states and scores were also improved by inclusion of missing responses. The signature method
provided an effective approach to the analysis of prospectively collected mood data where missing
data was common and should be considered as an approach in other similar datasets.1

Keywords Signature method ·Missing responses · Bipolar disorder · Borderline personality disorder

1 Introduction

The rapid emergence of mobile technologies has transformed the way in which mental health data can be
collected. Until recently clinicians were wholly reliant on anamnestic approaches and thus hampered by the inaccuracy
of retrospective recall regarding psychiatric symptoms. Mobile technologies have enabled the efficient capture of
self-reported symptoms in an ecologically valid and prospective manner. A number of different approaches to the
analysis of longitudinal mood data have been employed [7, 4, 3]. However missing data is ubiquitous and poses a
significant methodological challenge. Mood data may be missing unrelated to mood state or in fact be a consequence of
current mood state. Standard approaches such as imputation may inadvertently lead to the loss of important information
[8].

Signatures from rough path theory [15] are an effective way of analyzing these types of data as they capture the
order in which events occur. The approach incorporates missing data into the system in order to capture the underlying
patterns and the evolving interactions between missing data and responses, and to predict the future from the past of an
evolving system [13]. So far, the signature method has significantly contributed to automated recognition of Chinese
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handwriting [9, 24], formulation of appropriate stochastic partial differential equations to model randomly evolving
interfaces [11, 12], skeleton-based human action recognition [25], diagnosis of Alzheimer’s disease [17] and speech
emotion recognition [23]. In a previous analysis we demonstrated that a signature-feature model could be successfully
applied to 6-dimensional self-reported mood data [3], however missing data was not used in this analysis.

In this study, we used a missing-response-incorporated signature-feature-based machine learning model to re-
analyse weekly mood data collected from the AMoSS study [22] which used self-reported mood data and wearables to
distinguish between individuals with bipolar disorder (BD), borderline personality disorder (BPD) and healthy controls
(HC). We sought to test whether this new analytic approach was superior to standard approaches to mood quantification
in its ability to distinguish these diagnostic groups and predict future mood states/scores.

2 Methods

2.1 Data

Patients with BD or BPD and healthy volunteers reported their mood using Altman Self-Rating Mania scale
(ASRM) [1] and the Quick Inventory of Depressive Symptoms (QIDS-SR16) [20] were collected. ASRM is a short,
5-item self-assessment questionnaire assessing the presence and severity of manic or hypomanic symptoms. QIDS-SR16
contains 16 items covering the 9 DSM-IV symptom criterion domains [2] with the total score ranging from 0 to 27.

The data were collected as part of the AMoSS study [22]. ASRM and QIDS data were collected from 142
individuals as part of the AMoSS study and the participants completed standardised questionnaires on a weekly basis
using the True Colors mood monitoring system [10] after receiving a text or email prompt. Two of the 142 participants
either withdrew consent or had no clinical diagnosis and were therefore excluded from analysis. We further excluded
14 participants who failed to provide at least 20 weeks data as part of the analysis is based on information in data of
at least 20 weeks. Of the remaining 126 participants, 49 were diagnosed as bipolar disorder and 32 were borderline
personality disorder. All identical duplicate values were checked and removed, and only the first response of a week
was kept if multiple responds happened within that week. Most of the time, assessments were completed one after the
other, of which the sum scores can then be paired up. We discarded the excessive observed data which could not be
paired. Using this data, 2-dimensional concatenated data of paired observations from ASRM and QIDS was obtained
for each participant, where the score is ‘-1’ for a missing response.

Table 1: Demographic characteristics of the three clinical groups (the appropriate distributions are summarised in the
form of the median +/− in the interquartile range).

Group Recruited for analysis Weeks in study Ages Gender (males)

BD 54 49 51±3 38±19 16
HC 52 45 51±2 37±18 13

BPD 34 32 51±2 34±12 3

2.2 Features extraction

2.2.1 Encoding missing data

Among all the 126 valid participants in our study, 90% missed a response on a least one occasion during their
task-active weeks. Signature features allow missing responses to be included in the analysis without the need for
imputation. The missing events are translated into a new counting process [14]. An example is illustrated in Figure 1
for the procedure. In the general case, if one work on data with N many time points, the accumulative missing counts
can be generated for each of the N time points by calculating the sum of missing observations up to that particular time
point; meanwhile each missing observation, i.e., input "-1" in our case, is replaced by the valid value that happened in
the nearest past (referred as the feed forward method). This does not imply that the missing responses are assumed to
take the same value as their nearest valid responses. By doing this, the increments in both observation and missing
counts can be preserved and captured, which are indeed the most critical features in the signature method together with
their functionals [16].
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After transforming missing responses, one then normalises (and accumulate like in [3]) the data to make it
scale-free in order to apply signature transformation.

[x1, x1, x1, x4]
[y1, y2, y2, y4]
[0, 1, 3, 3]

[x1,−1,−1, x4]
[y1, y2,−1, y4]

Figure 1: An example for integrating missing responses: the left block contains 2 dimensional data of 4 consecutive
observations, where -1 represents one missing observation; in the right block the feed forward method is applied for
filling in all missing places with valid values that happened in the corresponding nearest past, while an additional
dimension is added to count missing events cumulatively at each time points.

2.2.2 Signature features

In recent year, the signatures of the continuous paths generated from longitudinal data is considered as an efficient
feature set for learning purpose because of its nature to capture the nonlinear effect of the evolving systems [16].
Consider Rd-valued time-dependent, piecewise-differentiable paths of finite length. Such a path X mapping from time
domain [a, b] to Rd is denoted as X : [a, b]→ Rd. For short we will use Xt for X(t), t ∈ [a, b]. Each coordinate path
of X is a real-valued path and denoted as Xi, i ∈ [d] with [d] := {1, . . . , d}. The signature of a path X : [a, b]→ Rd,
denoted by S(X)a,b, is the infinite collection of all iterated integrals of X . That is,

S(X)a,b := (1, S(X)1a,b, . . . , S(X)da,b, S(X)1,1a,b, S(X)1,2a,b, . . .), (1)

where, the 0th term is 1 by convention, and the superscripts of the terms after the 0th term run along the set of all
multi-index {(i1, . . . , ik)|k ≥ 1, i1, . . . , ik ∈ [d]} with the coordinate iterated integral being

S(X)i1,...,ika,b :=

∫
a<tk<b

· · ·
∫
a<t1<t2

dXi1
t1 . . . dXik

tk
. (2)

The finite collection of all terms S(X)i1,...,ika,b with the multi-index of fixed length k is termed as the kth level of the
signature. The truncated signature up to the pth level is denoted by bS(X)a,bcp. In machine learning context, truncated
signature features are always obtained by truncating the original signature to some finite level.

For discrete data stream x =
(
x1, . . . ,xn

)
, where x contains n observations, and the ith observation xi, i ∈ [n],

is assumed to be a d-dimensional column vector at the ith time point, one needs to convert it to a continuous Rd-valued
path via piecewise linear interpolation or other transforms in order to compute signature. The availability of Python
packages iisignature [19] and esig allows easy calculation of signature, where the linear interpolation is implemented
automatically by the packages.

For our purpose, we extracted the consecutive paired observations for each participant, incorporated the missing
data, and then calculated the corresponding signature features via Python package iisignature, where the signature
features were truncated to level 2. To distinguish from standard signature features, our features were named the
missing-response-incorporated signature features (MRSF).

2.3 Signature-based classification

In order to investigate the role of ASRM and QIDS scores in differentiating between healthy controls and different
patient groups, a missing-response-incorporated signature-based classification model was developed to classify the
diagnostic group a participant belonged to. For each of 126 participants, a stream of 20 consecutive paired observations,
no matter missing or not, was randomly drawn from the 2-dimensional concatenated data for this task. Then the
collection of the 20 consecutive paired data were randomly split into a training set (70%) and a testing set (30%). The
proposed model was based on a random forest classifier and was trained on the MRSF of the training set.

For comparison, the random forest classifier was also trained on features extracted through a clinic-used metric
based on the average score in each category over the valid scores in 20 consecutive observations (the naive classification
model). The performance of the missing-response-incorporated signature-based classification model (MRSCM, level
2) and the baseline model (the naive classification model), for classifying the diagnostic groups were tested on
bootstrapping and measured in terms of accuracy. Meanwhile the confusion matrices of both methods were generated to
allow more detailed analysis, from which f1 scores for different clinic groups were computed. To assess the separation
ability of different methods, we created the receiver operating characteristic curves (ROC) at various threshold settings
and computed areas under curve (auc).
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2.3.1 Spectrum analysis

To further test the performance of the MRSCM (level 2), we investigated the likelihood of each of the three
groups being categorised into the correct clinic group. We trained the model on the 20 consecutive streamed data of
all but one participant and tested it with the data of this participant. The probability vector of each participant being
classified into each group was calculated and then projected onto the equilateral triangle, with each vertex representing
one of the three clinic groups. For example, if the inferred probabilities of one participant being classified as BD, HC
and BPD are 0.1, 0.5 and 0.4 respectively, then the corresponding probability vector is [0.1, 0.5, 0.4]. This vector is
indeed on a 3-dimensional triangle surface [p, q, 1− p− q], with non-negative p, q and p+ q ≤ 1. This triangle is the
equilateral triangle that all the inferred 3-dimensional probability vectors will be sitting on.

2.4 Signature-based predictions

We then sought to predict the mania and depression states/scores of each participant in the next week on the last
10 paired observations. Empirically, using the last 10 consecutive data was more effective than using 20, perhaps the
future mood state/score is dependent on the most recent states.

2.4.1 State prediction

At this stage, in order to simplify the prediction problem, we reduced the outcome to one of three mutually
exclusive responses. We treated ASRM and QIDS similarly but separately. That is, for ASRM, no answer (future
response is missing), normal (score of ASRM is no bigger than 5) or manic (score of ASRM is bigger than 5); and
for QIDS, no answer (future response is missing), normal (score of QIDS is no bigger than 10) or depressed (score of
QIDS is bigger than 10).

The target of the prediction is not quantified, so we approached the problem as a classification problem rather
than as a regression. We chose to learn the relation between the pattern of last 10 consecutive observations and the
future state through classifiers. For this task, the MRSF truncated at level 2 were extracted from data and a random
forest classifier-based predictive model was trained for each clinical group separately. For comparison, the random
forest classifier-based predictive model was also trained on features extracted through computing the mean of the last
10 consecutive observations (naive predictive model). The prediction of ASRM/QIDS states of each participant based
on diagnostic group using the missing-response-incorporated signature-based predictive model (stateMRSPM, level 2)
and the naive predictive model were tested with bootstrapping and measured in terms of accuracy.

2.5 Spectrum analysis

To assist the understanding towards the distribution of the responses to ASRM/QIDS, the bar histograms of the
proportions of selected features, namely, no answer/normal/manic for ASRM and no answer/normal/depressed for
QIDS, for each clinic group were plotted for an overview.

We also visualised the true proportion vectors as well as the prediction results of each participant using triangle
spectrum plots. This is a natural adoption as we also have three different states: no answer, normal and manic/depressed.

The true proportion vector reflects the ground truth. It consists of three elements, that is, the proportion of this
participant giving ’no answer’, ’normal’ and ’manic’ (resp. ’depressed’) for ASRM (resp. QIDS) during his/her entire
study. In order to demonstrate group-dependent characteristics, true proportion vectors for the same questionnaire of
patients from the same clinical group were visualised in the same 3-dimensional equilateral triangle surface.

Regarding the predicted result, for each participant of one of the three groups (BD/HC/BPD), ASRM/QIDS
states of 5 weeks rather than 1 week were predicted using stateMRSPM (level 2) trained from random 10 consecutive
observations of the rest participants in the same group. To avoid overfitting, we excluded the participants that generated
at most 5 buckets of 10 consecutive weeks data. Then the predicted proportion of his/her giving each of the three
different responses for future ASRM/QIDS could be directly calculated from the predicted ASRM/QIDS states of the
five weeks.

2.6 Score prediction

We also sought to predict the next reported ASRM/QIDS score made by a participant based on features extracted
from their previous 10 weekly observations, no matter missing or not. To ensure comparability of our results, we
predicted raw ASRM/QIDS scores. For our own comparison, we also made more coarse-grained predictions according
to the categories for QIDS: none (1-5), mild (6-10), moderate (11-15), severe (16-20) and very severe (21-27) [20], and
for ASRM: none (0-5), mild (6-9), moderate (10-13), severe (14-17) and very severe (17-20).

4
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For this task, the MRSF truncated at level 2 were extracted from each sequential data and a random forest
regressor-based predictive model was trained for each clinical group separately. The future score prediction of each
participant using missing-response-incorporated signature-based predictive model (scoreMRSPM, level 2) was tested
with bootstrapping and measured in terms of accuracy and mean absolute error (MAE).

Summary

We used the publicly available Python iisignature package (version 0.23) to calculate signatures of streams of data,
Python numpy package (version 1.19.0) for data manipulations and processing, Python scikit-learn package (version
0.23.1) for machine learning tasks and matplotlib for plotting and graphics (version 3.2.1).

The study was approved by the NRES Committee East of England—Norfolk (13/EE/0288) and the Research and
Development department of Oxford Health NHS Foun- dation Trust.

A summary of tasks and models can be found in Table A1 and Table A2.

3 Results

3.1 Classification of the diagnostic group

MRSCM (level 2) categorised 66.3% of participants into the correct with a standard deviation 0.06 while the
naive model only classified 54.9% of participants correctly with a higher variability 0.08. The accuracy from MRSCM
improved with transformation of missing responses, indicating that missing responses bring additional information and
therefore enhance the performance of the model.

Figure 2 gives the confusion matrices for both methods, which illustrates the detailed correct and false classification
for each group and allows for computing f1 scores in Table 2. Table 2 shows that the MRSCM (level 2) has higher f1
scores in all three classes. It achieved its lowest f1 score for classifying bipolar group. However, encoding the missing
information into the model, the ability of classifying BPD was significantly enhanced from 40%+ (the naive model) to
60%+ (MSRCM, level 2).

The receiver operating characteristic curves for three clinic groups from both methods are plotted in Figure 3 with
corresponding areas under curve (auc) recorded in the brackets. The MRSCM (level 2) has better ability in identifying
all three diagnostic groups in terms of auc. Both methods have their lowest auc from ROC of bipolar group, which
implies it is more likely for bipolar participants to be misplaced into the other two groups.

BD HC BPD

B
D

H
C

B
P

D

849 333 255

252 1089 19

329 116 558

(a) MRSCM (level 2).

BD HC BPD

B
D

H
C

B
P

D

728 496 213

292 1021 47

417 204 382

(b) Naive classification model.

Figure 2: Confusion matrices of the missing-response-incorporated signature-based classification model (MRSCM,
level 2) and the naive classification model.

3.1.1 Spectrum analysis

In Figure 4, the triangle spectrum of the predicted diagnosis from MRSCM (level 2) are plotted. In each of
the plots, the regions of highest density of participants are located in the correct corner of the triangle. The greatest
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Table 2: f1 scores for group classification using the missing-response-incorporated signature-based classification model
(MRSCM, level 2) and the naive classification model.

Model BD HC BPD

MRSCM (level 2) 59.2% 75.2% 60.8%
Naive classification model 50.7% 66.3% 46.4%
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(a) MRSCM (level 2).
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(b) Naive classification model

Figure 3: Receiver operating characteristic curves of the missing-response-incorporated signature-based classification
model (MRSCM, level 2) and the naive classification model.

consistency is with the healthy participants. Meanwhile, the probabilities of misdiagnosis to other groups can be
measured by comparing the distances to the other two vertices to the distance to the right vertex. For instance, one can
deduce from Plot (b) that the likelihood of misplacing healthy participants into the borderline group is very low. Plot (c)
shows the other way around: BPD participants are unlikely to be misidentified as healthy control. Plot (a) shows that
the bipolar patient can be misidentified as healthy control with relatively high probability and as BPD with relatively
low probability.	
	
	
	
																																					BPD	

									 	
							HC																																																										BD																										

 
 
                                                
 
 
 
 
                                          Borderline 

        
Healthy                                                                         Bipolar 

(a) BD participants.

	
	
	
	
																																		BPD	

						 	
			HC																																																										BD	
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Healthy                                                                          Bipolar 

(b) HC participants.

	
	
	
	
																																					BPD	

									 	
							HC																																																										BD	

 
 
                                                
 
 
 
 
 
                                           Borderline 

         
  Healthy                                                                         Bipolar 

(c) BPD participants.

Figure 4: Density plots for the predicted diagnosis from MRSCM (level 2): darker blue areas indicate higher density
values, i.e., events that are more likely to happen, and vice versa; red lines indicate the 75% (the lightest red), 50%, 25%
(the darkest red) boundaries of density contours, i.e., the events within the area enclosed by the 75% contour line is with
probability 75% to happen.

3.2 Prediction of the ASRM/QIDS scores of an individual participant

Prediction of the ASRM/QIDS scores of each participant based on his/her own clinic group, are tested on
bootstrapping and summarised in Table 3. Compared to the naive method, the model based on signature features
(truncated at level 2) extracted after handling missing data is with the higher accuracy across all different clinic groups.
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Among the three clinic groups, Both models have their best performance in predicting the ASRM/QIDS scores for
healthy controls and worst performance in predicting the ASRM/QIDS scores for borderline personality disorder.

Table 3: The average accuracy for ASRM/QIDS state prediction using the missing-response-incorporated signature-
based predictive model (stateMRSPM, level 2) and the naive predictive model.

Model BD HC BPD
ASRM QIDS ASRM QIDS ASRM QIDS

stateMRSPM (level 2) 70.6% 64.8% 79.9% 78.9% 65.2% 60.2%
Naive predictive model 61.7% 59.5% 70.1% 71.6% 58.6% 55.6%

Figure 5 demonstrates the proportions of ASRM/QIDS scores of each of the three clinic groups. HC participants
rarely experienced either mania or depression in their entire study and were least likely to have missing responses.
By contrast, BPD patients were most likely to have missing responses. Figure ?? visualises the densities of the
ASRM/QIDS states for three clinic groups using the 3-dimensional equilateral triangle surface.

No Answer Normal Manic
ASRM Scores
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P
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(a) Proportion of ASRM states

No Answer Normal Depressed
QIDS Scores
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31%

52%

17%

25%

72%

3%

40%

13%
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(b) Proportion of QIDS states

Figure 5: Bar charts: the proportion of ASRM/QIDS states of the three clinic groups, where the total number of ASRM
or QIDS questionnaires for BD/HC/BPD are 620, 880, 960.

Figure 7 demonstrates the density spectrum of the predicted ASRM/QIDS states for each clinic group using the
missing-response-incorporated signature-based predictive model (level 2), which is roughly consistent with Figure
6. Recall that for ASRM (resp. QIDS), only 5 future observations were predicted for each participant and therefore
used for computing the proportion (i.e., density). The difference between Figure 7 and Figure 6 comes from the mixed
effects of the prediction error and limited number of observations being predicted for each participant.

3.3 Score predictions

MAEs are recorded in Table 4 for predicting the next reported score using scoreMRSPM (level 2) and the naive
model. The worst performances were to predict ASRM scores for bipolar patients and to predict future QIDS scores for
patients of borderline personality disorder. Table 5 reports the accuracy and MAE for predicting the future severity of
symptoms using signature-based model.
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Figure 6: Density plots of true ASRM/QIDS states for three clinic groups: darker blue indicates higher density value
and vice versa; red lines indicate the 75% (the lightest red), 50%, 25% (the darkest red) boundaries of density contours.	
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Figure 7: Density plots of the predicted ASRM/QIDS states for three clinic groups using the missing-response-
incorporated signature-based predictive method (level 2): darker blue indicates higher density value and vice versa; red
lines indicate the 75% (the lightest red), 50%, 25% (the darkest red) boundaries of density contours
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Table 4: MAE for ASRM/QIDS score prediction using the missing-response-incorporated signature-based predictive
method (scoreMRSPM, level 2) and the naive predictive model.

Model BD HC BPD
ASRM QIDS ASRM QIDS ASRM QIDS

scoreMRSPM (level 2) 2.386 3.437 0.826 1.532 2.117 3.745
Naive predictive model 3.286 4.600 1.137 1.899 2.571 4.671

Table 5: The average accuracy and MAE for the prediction of severity of symptoms using the missing-response-
incorporated signature-based predictive method.

Measure BD HC BPD
ASRM QIDS ASRM QIDS ASRM QIDS

Accuracy 74.3% 76.4% 95.8% 95.0% 82.4% 69.8%
MAE 1.046 0.685 0.191 0.139 0.625 0.794

4 Discussion

This paper introduces the missing-response-incorporated signature-feature-based random forest models and have
them tested on the paired ASRM/QIDS data. Comprising at least 25% of the whole dataset (Figure 5), the missing
response is a remarkable and unreplaceable component and cannot be simply ignored. By integrating the informative
and non-redundant resource from the missing responses, the empowered signature features can be utilised with different
machine learning models on various datasets containing missing information, either to identify the category membership
based on the observed characteristics of the data or to predict the future from the past of an evolving system generated
by the data.

The missing-response-incorporated signature-based classification model is superior to the commonly used metric
(the naive classification model) in differentiating the three clinic groups, i.e., bipolar disorder, healthy control and
borderline personality disorder. Although signature-based methods were adopted by Perez et al [3] to improve the
existing results that used neuroimaging [21] or verbal fluency [6], our analysis provides a benchmark at the same
accuracy level while utilising data of much smaller dimensions and missing responses.

Spectrum analysis showed the overlap between the BD and HC groups in Figure 4, which is consistent with the
analysis in [3] and with clinical experience. However, we found a much clearer differentiation between clinical groups
than previous work [3] suggesting that the inclusion of missing data added useful information.

The prediction of future ASRM/QIDS states is notable. To our knowledge this is the first time that non-response
status has been considered alongside normal status and manic/depressed status. Borderline personality disorder tends to
miss the tasks with slightly higher probability for both self-reported assessments than the other two groups, suggesting
that some group-dependent feature is concealed in missing responses.

Most of previous literature like [3] and [18] were interested in predicting future scores. They did not use the
missing responses as part of their information. In our analysis, the inclusion of the missing response information
significantly improved our predictions. The performance (first row in Table 4) in general outperforms the one in [18] in
terms of mean absolute error. Unlike models that need to impose population-level distribution and parameters [5], our
proposed model offers a unified, missing-response-incorporated and non-parametric approach that is able to capture the
nature of the evolving system which generates data streams.

For the naive models, both the performance of ASRM/QIDS-state prediction (Table 3) and the one of diagnostic
group classification (Table 2) for BPD patients are the worst among the three clinic groups. The f1 score for classification
was even below 0.5. For this task, the confusion matrix (Plot (b) in Figure 2) also shows that about 40% of the BPDs
were misclassified as BD patients. The poor performance alerted the unreliability of this naive metric in identifying
BPD patients and predicting their moods. On the other hand, by incorporating extra valuable information like missing
responses into features, the signature-based model lifted the f1 score for identifying BPD patients to above 60%, with
less than one third BPD patients being misclassified as BD. This demonstrates the ability of the missing-response-
incorporated signature features to capture and learn the inherent difference in mood instability between BPD and BD.
Even though, the performance of ASRM/QIDS-state prediction for BPD patients from signature-based model (the last
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two column in Table 3) is still the worst among the three clinic groups. The poor performance is again consistent with
the results from [3]. This consistency may be a result of the unpredictable nature in BPD, or due to the bias from the
same database that is used by both [3] and us.

4.1 Limitations and implications

The missing-response-incorporated signature-based features offer a systematic approach to the analysis of
longitudinal self-reported mood data with the presence of non-randomly distributed missing values. It can be easily
utilised with various machine learning methods for classification and prediction tasks on other databases containing
missing information. The reasons for the moderate accuracies using MRSF are four-fold: the full potential of signature
features is hindered by the small dataset, the proposed feature extraction method might not be the optimal, ASRM/QIDS
data was analysed on the overall-score level instead of on the question-score level, and the diversity within the same
clinic group was not considered for the prediction task. In the future, we would prioritise on two explorations: assessing
our proposed method on different mental health datasets, and adjusting MRSF to the “optimal” signature-based feature
by adding reasonable metrics/transformations which account for different attributes. We are also interested in addressing
the inter-group difference on a much larger dataset of ASRM and QIDS responses by building independent or dependent
missing-response-incorporated signature-based predictive models on clusters within the same group.

Data, code and materials

As the data were collected pre-GDPR and contained sensitive personal data, it cannot be placed into a publicly
accessible repository.

The codes can be found through GitHub repository via https://github.com/yuewu57/mental_health_
AMoSS.
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Appendix

Table A1: A summary of tasks, where conPredition is short for conditional prediction.

Task Description Classes or Values

Classification To identify the participant’s diagnostic group BD/HC/ BPD

State prediction To predict the participant’s future mood state ASRM: No response/Normal/Manic
QIDS: No response/Normal/Depressed

Score prediction To predict the participant’s future raw score ASRM: 0-20
given that it is not missing QIDS: 0-27

Severity prediction The future severity of symptoms obtained by ASRM: 0-4
cut-off scores of score prediction QIDS: 0-4
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