CEUR-WS.org/Vol-3203/short4.pdf

Datalog Rewriting for Guarded TGDs

Michael Benedikt!, Maxime Buron?, Stefano Germano?!, Kevin Kappelmann? and
Boris Motik’

'Oxford University, Parks Road, Oxford, OX1 3QD, United Kingdom
2LIRMM, Inria, Univ. of Montpellier, Montpellier, France
? Technical University of Munich, Boltzmannstraf3e 3, Garching, 85748, Germany

Abstract

We deal with the problem of fact entailment with respect to a database and a set of integrity constraints,
focusing on the case of Guarded tuple-generating dependencies (GTGDs). The original approach to
the problem in the literature is via forward reasoning or “chasing”, where one completes the input
database by adding fresh elements and facts. This completion process may be infinite, but in the case
of GTGDs it is known that one can compute a point where the chase can be cut off without missing
any base facts. Another approach is by forming an automaton and checking it for emptiness. Neither
of these approaches scales to large input datasets. An alternative approach is to rewrite the constraints
into Datalog: the Datalog rewriting can be generated in advance of any dataset and will produce the
same base facts as the original constraints. It is known that Datalog rewritings always exist. But to our
knowledge the approach has never been implemented. In this work we overview effective algorithms to
Datalog rewriting of GTGDs. This presents work that will appear in VLDB 2022.

Keywords
Chase, Datalog, Fact Entailment, Guarded TGDs, Resolution, Rewriting

1. Introduction

Reasoning with dependencies has played a large role in database theory. Dependencies can
be used to describe semantic restrictions on sources, mapping rules between datasources and
virtual data objects in data integration, and semantic rules on virtual data that allow new
data items to be derived. A fundamental computation problem associated with dependencies
is query answering: given a query (), as an existentially quantified conjunction of atoms (a
conjunctive query), a collection of facts |, and a set of dependencies 3, find all the answers
to @ that can be derived from | via reasoning with ¥. For general classes of dependencies,
such as tuple-generating dependencies (TGDs) and equality-generating dependencies, query
answering is undecidable. Thus, much early work focused on dependencies for which query
answering is decidable, with two families being those with terminating chase: 1) those for
which forward-reasoning by inferring all new facts from | will terminate in a finite number of
steps — weakly-acyclic dependencies are perhaps the best-known class with terminating class -
and 2) those for which backwards reasoning terminates — these are often known as first-order

Datalog 2.0 2022: 4th International Workshop on the Resurgence of Datalog in Academia and Industry, September 05,
2022, Genova - Nervi, Italy
& michael benedikt@cs.ox.ac.uk (M. Benedikt); maxime buron@inria.fr (M. Buron); stefano.germano@cs.ox.ac.uk
(S. Germano); kevin.kappelmann@tum.de (K. Kappelmann); boris.motik@cs.ox.ac.uk (B. Motik)
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

=] CEUR Workshop Proceedings (CEUR-WS.org)

104

mailto:michael.benedikt@cs.ox.ac.uk
mailto:maxime.buron@inria.fr
mailto:stefano.germano@cs.ox.ac.uk
mailto:kevin.kappelmann@tum.de
mailto:boris.motik@cs.ox.ac.uk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Michael Benedikt et al. CEUR Workshop Proceedings 104-113

rewritable classes. Another attractive class of dependencies that emerged in the last decade
are guarded tuple-generating dependencies (GTGDs). Guarded TGDs allow to express simple
referential constraints on source instances, common mapping rules between sources and targets,
and target constraints in common description logic and ontology languages. Query-answering
for GTGDs has long been known to be decidable [1]. They are also interesting and challenging
in that they do not in general have a terminating chase and are not first-order rewritable.

There are several ways to derive the decidability of GTGD query-answering. One can argue
that GTGDs have the tree-like model property — it suffices to look at structures that can be
coded by trees — and then argue via reduction to Monadic Second Order Logic over trees, which
was shown decidable by Rabin [2]. A refinement is to argue for the tree-like model property,
directly generate an automaton that accepts codes of tree-like models, and test non-emptiness of
the automaton [3]. Another variant is to create a Tableau calculus that tries to build a tree-like
model, using a form of blocking to ensure termination. This approach is widely-applied in the
setting of description logics [4] and was later lifted to the setting of guarded logics [5]. The
first approach is infeasible in practice. The second suffers from two problems: building the
automaton is extremely expensive and the non-emptiness test is both complex and expensive.
The third approach is more plausible, but it requires a huge amount of non-determinism in
choosing what tableau rules to fire in addition to the complexity of the blocking condition.

An alternative approach is based on Datalog rewriting: starting from 3 alone, we create a
Datalog program rew(X) which produces the same base facts as ¥ for any dataset |. Datalog
rewriting has its origins in work of Marnette [6], but has been extended to wider classes of
constraints [7, 8] and refined to get more information on the program [9]. Since ¥ and rew(X)
entail the same base facts on |, we can answer any existential-free conjunctive query (i.e. queries
where all variables are answer variables). The restriction to existential-free queries is technical:
existentially quantified variables in a query can be matched to objects introduced by existential
quantification, and these are not preserved in a Datalog rewriting. However, practical queries
are typically existential-free since all query variables are usually answer variables. The rewriting
approach has the advantage of being scalable in the data. Moreover, rew(X) can be run using
optimized Datalog engines [10, 11]. While the approach has been implemented in the setting of
description logics [12, 13], concrete algorithms in the setting of GTGDs have not yet appeared.

The goal of this work is to give an account of Datalog rewriting for GTGDs. We will explain
the relationship to the tree-like model approach and provide an abstract framework, giving
sufficient conditions that guarantee completeness of a Datalog rewriting algorithm. After
providing an initial algorithm that instantiates the framework, we show how the algorithm
can be optimized. We implemented the algorithms and performed an experimental evaluation,
showing that they are competitive and useful in practice. The GitHub repository [14] contains
the associated codebase and experiments.

2. Related Work

Decidability of query answering for GTGDs was shown in [1], based on cutting off the chase.
This technique has been extended to wider classes (e.g. frontier-guarded TGDs [7]).
Answering queries via rewriting originated within description logics. The original emphasis

105

Michael Benedikt et al. CEUR Workshop Proceedings 104-113

was on queries and constraints where there is a rewriting as a union of conjunctive queries
(UCQs), as in the DL-Lite family [15]. Datalog rewriting was extensively explored in the context
of ontologies in [12], with an implementation in [10]. In the context of TGDs, rewritings were
first considered in the context of inclusion and key dependencies [16], where again one can
obtain a UCQ rewriting. Datalog-rewritability for certain answers of conjunctive queries with
respect to GTGDs was shown first in [6]. This was extended to frontier-guarded TGDs in [9]
and nearly frontier-guarded and nearly guarded TGDs [8]. While Datalog rewriting has been
implemented for separable and weakly separable TGDs [17], it has not been implemented for
GTGDs to our knowledge.

Our work relies on connections between query rewriting and specialized versions of the
chase, dating back to work on answering queries over data sources with access patterns [18]. It
was later explored for GTGDs and disjunctive GTGDs in [19]. This paper presents work that is
to appear in a longer version in VLDB.

3. Preliminaries

We assume the usual notion of instance and formulas, based on infinite sets vars of variables and
Vals of values. We assume that Vals contains every element that will occur in an instance. For
« a formula or a set thereof, consts(«) and vars(«) are the sets of constants and free variables,
respectively, in a.

Dependencies. A tuple generating dependency (TGD) is a first-order formula of the form:
VZ[5(Z) — 3y n(Z,)] where 8 and 7 are conjunctions of atoms. 3 is referred to as the body
and 7 as the head. A TGD is full if the head contains no existential quantifiers. A TGD is
in head-normal form if it is full and its head contains exactly one atom, or it is non-full and
each head atom contains at least one existentially quantified variable. Each TGD can be easily
transformed to an equivalent set of TGDs in head-normal form. A full TGD in head-normal
form is a Datalog rule, and a Datalog program is a finite set of Datalog rules. The head-width of
a TGD 7 (hwidth(7)) is the number of variables in the head; this is extended to sets of TGDs by
taking the maxima over all TGDs. A Guarded TGD (GTGD) is one where at least one atom in [
contains all the variables of (.

Fact Entailment. Given a set of TGDs X and a set of facts I, the ground closure of I under ¥ is
the set of facts F' using only constants from I (so-called base facts) that can be derived from [
using 3. The fact entailment problem is to decide whether a given base fact F' is in the ground
closure of I under Y. We are interested in deciding fact entailment for GTGDs.

The Chase. Fact entailment for TGDs is semi-decidable, and many variants of the chase can
be used to define a (possibly infinite) set of facts that contains precisely all base facts entailed
by an instance and a set of TGDs. By drawing inspiration from techniques for reasoning with
guarded logics [20, 21] and referential database constraints [22], fact entailment for GTGDs can
be decided by using a variant of the chase that works on tree-like structures. Specifically, a
chase tree T consists of a directed tree, one tree vertex that is said to be recently updated, and a
function mapping each vertex v in the tree to a finite set of facts 7'(v). A chase tree T" can be
transformed to another chase tree 7" in the following two ways.

106

Michael Benedikt et al. CEUR Workshop Proceedings 104-113

« One can apply a chase step with a GTGD 7 = VZ[— 3§ n] in head-normal form. The
precondition is that there exist a vertex v in 7" and a substitution ¢ with domain # such that
o(B) C T'(v). The result of the chase step is obtained as follows.

— If 7 is full (and thus 7 is a single atom), then chase tree 7" is obtained from 7' by making
v recently updated in 7" and setting 7" (v) = T'(v) U {o(n)}.

— If 7 is not full, then o is extended to a substitution ¢’ that maps each variable in
7 to a labeled null not occurring in 7. The chase tree 7" is then obtained from T
by introducing a fresh child v’ of v, making v’ recently updated in 7", and setting
T(W') =0'(n) U{F € T(v) | F is ¥-guarded by ¢’(n) }, where F is ¥-guarded by some
set of facts S if consts(F') C consts(F’) U consts(X) for some F’ € S.

« One can apply a propagation step from a vertex v to a vertex v’ in T. Chase tree T” is
obtained from 7" by making v’ recently updated in 7" and setting 7" (v") = T'(v") U S for
some nonempty set S satisfying S C {F € T'(v) | F is X-guarded by T'(v)}.

A tree-like chase sequence for an instance I and a finite set of GTGDs X in head-normal form
is a finite sequence of chase trees Ty, ..., T, such that 7y contains exactly one root vertex r
that is recently updated in Tj and Ty (r) = I, and each T; with 0 < ¢ < n is obtained from 7;_;
by a chase step with some 7 € ¥ or a propagation step. For each vertex v in T}, and each fact
F € T,,(v), this sequence is a tree-like chase proof of F' from I and X. It is well known that
I, Y E F if and only if there exists a tree-like chase proof of F' from I and X (e.g. [1]).

Rewriting. A Datalog rewriting of a finite set of TGDs ¥ is a Datalog program rew(X) such
that 7,3 = F'if and only if I, rew(X) = F for every instance I and base fact F. If ¥ contains
GTGDs only, then a Datalog rewriting rew(X) is guaranteed to exist (which is not the case for
general TGDs). Thus, we can reduce fact entailment for GTGDs to Datalog reasoning, which
can be solved using highly optimized Datalog techniques.

4. The Chase and Datalog Rewriting

Our objective is to develop algorithms that compute the rewriting of GTGDs. Intuitively, each
algorithm will derive Datalog rules that summarize sequences of steps in a tree-like chase proof.
Instead of introducing a child vertex v by using a chase step with a non-full GTGD at vertex
v, performing some inferences in v’, and then propagating a derived fact F' back from v’ to v,
these “shortcuts” will derive F' in one step without having to introduce v’. The main question
is how to keep the number of derived rules low while still being able to derive all sequences
necessary for completeness. A key observation is that instead of considering arbitrary chase
proofs, we can restrict our attention to chase proofs that are one-pass according to Definition 4.1
below.

Definition 4.1. A tree-like chase sequence Ty, ..., T, for an instance I and a finite set of GTGDs
Y in head-normal form is one-pass if, for each 0 < i < n, chase tree T} is obtained by applying
one of these two steps to the recently updated vertex v of T;_1:

« a propagation step copying exactly one fact from v to its parent, or

107

Michael Benedikt et al. CEUR Workshop Proceedings 104-113

« a chase step with a GTGD from % provided that no propagation step from v to the parent of v is
applicable.

Thus, each step in a one-pass tree-like chase sequence is applied to a “focused” vertex; steps
with non-full TGDs move the “focus” from parent to child, and propagation steps move the
“focus” in the opposite direction. Moreover, once a child-to-parent propagation takes place, the
child cannot be revisited in further steps. Theorem 4.2 states a key property about chase proofs
for GTGDs: whenever a proof exists, there exists a one-pass proof too.

Theorem 4.2. For every instance I, each finite set of GTGDs ¥ in head-normal form, and each
base fact F' such that I,% |= F, there exists a one-pass tree-like chase proof of F' from I and X.

One-pass chase proofs are interesting because they can be decomposed into loops: a subse-
quence 7, ..., T} of chase steps that move the “focus” from a parent to a child vertex, perform
a series of inferences in the child and its descendants, and finally propagate one fact back to the
parent. If non-full TGDs are applied to the child, then the loop can be recursively decomposed
into further loops at the child. The properties of the one-pass chase ensure that each loop is
finished as soon as a fact is derived in the child that can be propagated to its parent, and that
the vertices introduced in the loop are not revisited at any later point in the proof. This way,
each loop at vertex v can be seen as taking the set 7;(v) as input and producing the output fact
F that is added to Tj(v). This leads us to the following idea: for each loop with the input set of
facts T;(v), a rewriting should contain a “shortcut” Datalog rule that derives the loop’s output.

These ideas are formalized in Proposition 4.3, which will provide us with a correctness
criterion for our algorithms.

Proposition 4.3. A Datalog program Y is a rewriting of a finite set of GTGDs Y. in head-normal

form if
« Y is a logical consequence of 22,
« each Datalog rule of ¥ is a logical consequence of ./, and

« for each instance I, each one-pass tree-like chase sequence 1y, . .., T, for I and ¥, and each
loop T;, . .., Tj at the root vertex r with output fact F, there exist a Datalog rule 3 — H € %'
and a substitution o such that () C T;(r) and o (H) = F.

Intuitively, the first condition ensures soundness: rewriting ¥’ should not derive more facts
than Y. The second condition ensures that ¥’ can mimic direct applications of Datalog rules
from X at the root vertex r. The third condition ensures that 3’ can reproduce the output of
each loop at vertex r using a “shortcut” Datalog rule.

5. Rewriting Algorithms

We now consider ways to produce Datalog rules that “shortcut” all necessary steps in the chase.
These are motivated and proven correct using Proposition 4.3. Each method is presented as a

108

Michael Benedikt et al. CEUR Workshop Proceedings 104-113

set of inference rules that derive new rules (either full or non-full) from existing ones. We will
then close the original set of rules under this inference process. Since this inference process is
closely related to resolution in classical theorem proving [23], we sometimes refer to the output
of a step as a resolvent.

In this short paper, we omit details of the algorithm that uses the inference rules to perform
the closure: see [24]. The algorithm maintains sets of rules that have not yet been processed,
and performs an iteration. At each step it performs redundancy elimination, important not only
for efficiency but also for termination, and normalization (e.g. conversion to head normal form,
choosing canonical names for variables).

The FullDR Algorithm: Creating Datalog Rules Directly. Our first algorithm will create
only full (aka Datalog) rules. Similar algorithms have appeared in the prior literature for related
TGD classes [8, 18]. The main interest here is that this algorithm will serve as a baseline.

Definition 5.1. The Full Datalog Rewriting inference rule FullDR can be applied in two ways,
depending on the types of TGDs it takes.

+ The (COMPOSE) variant of the FullDR inference rule takes full TGDs
T =VZ[B — A and T =VZ[AANB — H'|

and a substitution 0 such that

- 0(A)=0(A),

- dom(f) = ZU Z, and

- rng(f) C w U consts(7) U consts(7’), where W is a vector of hwidth(X) + |consts(X)|
variables different from T U Z,

and it derives (3) N 0(8') — O(H').

+ The (PROPAGATE) variant of the FullDR inference rule takes TGDs

and a substitution 0 such that
- 0(A;) = 0(A]) foreachi with1 < i <mn,
- dom(f) =7 UZ,
- rmg(f) C W U § U consts(7) U consts(7’), where @ is a vector of hwidth(X) + |consts(X)|
variables different from £ Uy U Z,
-0@)Ny=10,and
- vars(6(8")) Ny =0 andvars((H')) Ny =0,
and it derives (3) N 6(8') — O(H').
The rough idea is that the (PROPAGATE) variant simulates generation of a fact via propagation
from a child to its parent in the chase: We generate a child using one of the original rules and the

child gains a fact F' guarded by the parent using a derived rule. Then (PROPAGATE) generates
a rule that adds F directly. The (COMPOSE) variant simulates transitive fact derivations inside

109

Michael Benedikt et al. CEUR Workshop Proceedings 104-113

a node: at a node v, one derived Datalog rule will generate a fact F, and then a second derived
Datalog rule will use the facts of v unioned with F} to generate an additional fact F». The
(COMPOSE) variant will generate F5 directly from v.

The FullDR algorithm has several obvious weak points. First, it considers all possible ways to
compose Datalog rules as long as this produces a rule with at most hwidth(X) + |consts(X)| vari-
ables. Second, it is not clear how one efficiently obtains the atoms A, ..., A, and A},..., A},
participating in the (PROPAGATE) variant. Third, the number of substitutions 6 in the (COM-
POSE) and (PROPAGATE) variants of the FullDR inference rule can be very large.

Nevertheless, we implemented FullDR using subsumption and indexing techniques used for
the other algorithms. Unsurprisingly, we did not find it competitive in our experiments.

The Existential-Based Rewriting. We now consider an algorithm that generates both non-full
and Datalog rules inductively. Before defining the algorithm formally, we introduce a refined
notion of unification.

Definition 5.2. For X a set of variables, an X-MGU 0 of atoms A1, ..., A, and By, ..., By is
a most general unifier (MGU) of Ay, ..., A, and By, . .., By, with the additional requirement that
O(x) = x foreachx € X.

It is straightforward to see that an X-MGU is unique up to the renaming of variables not
contained in X, and that it can be computed as usual while treating variables in X as if they
were constants. We are now ready to formalize the ExbDR algorithm.

Definition 5.3. The Existential-Based Datalog Rewriting inference rule ExobDR takes GTGDs
T=VZB = IGnAAL A A A and T =VZ[AIA-NALANB — H

withn > 1, and a j-MGU 0 of Ay, ..., An and A}, ..., Al such that

0,

g@)Nyg=10 and vars(8(8")) Ny =
o(H").

and it derives 0(3) AN O(B') — Jy 0(n) ANO(A1) A--- ANO(Ap) A

The intuition behind ExbDR is that it mimics two kinds of evolutions in a one-pass chase
proof. One kind starts with a parent, produces a child node and then evolves it (via some loops
rooted at the child). This evolution is mimicked by producing a non-full TGD that directly
produces the updated child from the parent. The evolution of this child may eventually include a
fact that is guarded by the parent, and hence could be propagated to the parent. The ExbDR rule
also captures this propagation by again deriving a rule with existentials that directly produces
the updated child from the parent; but when this rule is converted into head normal form, it
will break down into a non-full and a full rule, the latter of which mimics the propagation step.

Example 5.4. Consider the set of GTGDs . = {1y,..., T4}, where

T = R(.’El) — 39173/2 T(xl)y17y2)7 T2 = T($1,$2,$3) — Ely U(x17x27y)7
T3 = U(a:l,xg,xg) — V(]Il,.fvg), T4 = T(]Il,.rg,xg) A V(Z‘l,.fvg) A S(CEl) — M(azl),

110

Michael Benedikt et al. CEUR Workshop Proceedings 104-113

We can first apply the ExbDR rule to 7o and 73 to obtain the Datalog rule
75 = T(x1,29,23) — V(x1,22). We can then take 11 and 15 to derive the non-full
76 = R(x1) — Jy1,y2 (T(:cl,yl,yg) A V(xl,yl)). Finally, we can take 1¢ and 14 to ob-
tain 7, = R(x1) N S(z1) — M(x1). No further ExbDR steps are possible and the set
rew(X) = {13, 74, 75, 77 } is returned.

Using Skolemization. The ExbDR algorithm exhibits two drawbacks. First, each application
of the ExbDR inference combines the head atoms of two rules, so the rule heads can get very
long. Second, each inference requires matching a subset of body atoms of 7’ to a subset of the
head atoms of 7. This can be costly, particularly when rule heads are long.

We would ideally derive GTGDs with a single head atom and unify just one body atom of 7/
with the head atom of 7, but this does not seem possible if we stick to manipulating GTGDs:
doing so would require us to refer to the same existentially quantified object in different GTGDs.
However, this can be achieved by replacing existentially quantified variables by Skolem terms,
which in turn gives rise to the SkDR algorithm from Definition 5.5.

Definition 5.5. The Skolem Datalog Rewriting inference rule SkDR takes two Skolemized single-
headed rules
T=0—>H and T=AnNE — H

such that
« [is Skolem-free and H contains a Skolem symbol, and
« A’ contains a Skolem symbol, or 7' is Skolem-free and A’ contains all variables of 7/,

and, for 6 an MGU of H and A’, it derives 0(3) N 0(5') — 6(H').

The intuition is that the rule applies in two situations. The first is where H' is Skolem-free
and the atom A’ in 7’ that gets resolved with the head atom of 7 is a guard for the body. Such a
rule may introduce Skolems originating in H in the body of the resolvent. The second case is
where A’ contains such a Skolem symbol. In this case, the resolvent will have fewer Skolems in
its body than 7/. Successive applications of the second case can produce rules with no Skolem
in the body, and eventually can produce a Datalog rule.

Though the Skolem rewriting can improve exponentially on ExbDR, there are also examples
that give an exponential gap in the other direction. Examples can be found in the full paper [24].

Combining Several SkDR Steps Into One. The SkDR algorithm can produce many rules
with Skolem symbols in the body, which is the main reason why it can lose to ExobDR. We next
present the HypDR algorithm. It uses the hyperresolution inference rule [25] as a kind of “macro”
to combine several SkDR steps into one. Our experiments show that this can be beneficial.

Definition 5.6. The Hyperresolution Rewriting inference rule HypDR takes Skolemized single-
headed rules

n=5Kh—H ... 1,=08,— Hp, and =ANNA NG — H

withn > 1 such that

111

Michael Benedikt et al. CEUR Workshop Proceedings 104-113

« foreachi with1 < i < n, conjunction (3; is Skolem-free and atom H; contains a Skolem symbol,

« rule 7’ is Skolem-free,

and, for @ an MGU of H, ..., Hy, and A}, ..., Al,, if conjunction (') is Skolem-free, it derives
0(Br) A=+ NO(Bn) NO(B') — O(H').

We emphasize that all presented algorithms can be proven correct using the completeness
criterion of Proposition 4.3, relying on the one-pass chase. Details are in [24]. There, we also
prove the complexities of the algorithms:

Theorem 5.7. Each presented rewriting can be computed in 2ExPTIME, in ExPTIME for bounded a,
where a is the maximum relation arity in 3, and in PTIME if ¥ is fixed (data complexity).

The resulting rewritings can thus be large in the worst case. From a theoretical point of view,
checking fact entailment via our approach is worst-case optimal [1].

In the full paper [24], we show empirically that rewritings are suitable for practical use
by using a comprehensive collection of 428 synthetic and realistic inputs. We show that our
algorithms can indeed rewrite complex GTGDs, and that the rewriting can be successfully
processed by modern Datalog systems. Complete evaluation results are available online [14].

6. Conclusion

We overviewed an approach for fact entailment for guarded TGDs by rewriting the GTGDs
into a Datalog program that entails the same base facts on each instance. We base this on a
connection between Datalog rewriting and an analysis of a specialized version of the chase.
This connection allowed us to arrive at our algorithms as well as to prove their correctness. We
believe this connection also makes it more intuitive why Datalog-rewritability holds. We briefly
presented several algorithms based on this approach. In the full paper [24], we provide not only
full proofs but also discuss implementation and experimental evaluation of the approaches. The
evaluation shows that the algorithms other than FullDR are competitive and useful in practice.
In the future, we plan to generalize our framework to wider classes of TGDs, such as frontier-
guarded TGDs, and to provide rewritings for conjunctive queries under certain answer seman-
tics. Moreover, we shall investigate whether the extension of our framework to disjunctive
GTGDs [19] can be used to obtain practical algorithms to rewrite into disjunctive Datalog.

References

[1] T.Lukasiewicz, A. Cali, G. Gottlob, A general datalog-based framework for tractable query
answering over ontologies, Journal of Web Semantics 14 (2012) 57-83.

[2] M. O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans-
actions of the american Mathematical Society 141 (1969) 1-35.

[3] V.Barany, B. ten Cate, L. Segoufin, Guarded negation, J. ACM 62 (2015) 1-26.

[4] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.), The De-
scription Logic Handbook: Theory, Implementation and Applications, 2nd ed., Cambridge
University Press, 2007.

112

Michael Benedikt et al. CEUR Workshop Proceedings 104-113

(5]
(6]

C. Hirsch, Guarded logics: Algorithms and bisimulation, 2002. Available at http://www.
umbrialogic.com/hirsch-thesis.pdf.

B. Marnette, Resolution and datalog rewriting under value invention and equality con-
straints, arXiv preprint arXiv:1212.0254 (2012). http://arxiv.org/abs/1212.0254.

[7] J.-F. Baget, M.-L. Mugnier, S. Rudolph, M. Thomazo, Walking the complexity lines for

(8]
(9]

[10]

(18]

[19]
[20]

[21]

[22]

generalized guarded existential rules, in: IJCAI, 2011.

G. Gottlob, S. Rudolph, M. Simkus, Expressiveness of guarded existential rule languages,
in: PODS, 2014.

V. Barany, M. Benedikt, B. Ten Cate, Rewriting Guarded Negation Queries, in: MFCS,
2013.

B. Motik, Reasoning in description logics using resolution and deductive databases,
Ph.D. thesis, Karlsruhe Institute of Technology, Germany, 2006. URL: http://digbib.ubka.
uni-karlsruhe.de/volltexte/1000003797.

S. Ahmetaj, M. Ortiz, M. Simkus, Rewriting guarded existential rules into small datalog
programs, in: ICDT, 2018.

U. Hustadt, B. Motik, U. Sattler, Reasoning in description logics by a reduction to disjunctive
datalog, JAR 39 (2007) 351-384.

U. Hustadt, B. Motik, U. Sattler, Reducing SHIQ-description logic to disjunctive datalog
programs., KR (2004).

M. Benedikt, M. Buron, S. Germano, K. Kappelmann, B. Motik, Guarded saturation, 2021.
URL: https://krr-oxford.github.io/Guarded-saturation/.

D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and
efficient query answering in description logics: The DL-Lite family, JAR 39 (2007) 385-429.
A. Cali, D. Lembo, R. Rosati, Query rewriting and answering under constraints in data
integration systems, in: IJCAI, 2003.

Z. Wang, P. Xiao, K. Wang, Z. Zhuang, H. Wan, Query answering for existential rules via
efficient datalog rewriting, in: IJCAI, 2021.

A. Amarilli, M. Benedikt, When can we answer queries using result-bounded data inter-
faces?, in: PODS, 2018.

K. Kappelmann, Decision Procedures for Guarded Logics, CoRR abs/1911.03679 (2019).
M. Y. Vardi, Why is modal logic so robustly decidable?, in: DIMACS Series in Disc. Math.
and TCS, volume 31, 1997, pp. 149-184.

H. Andréka, J. van Benthem, I. Németi, Modal languages and bounded fragments of
predicate logic, J. Phil. Logic 27 (1998) 217-274.

D. S. Johnson, A. C. Klug, Testing Containment of Conjunctive Queries under Functional
and Inclusion Dependencies, JCSS 28 (1984) 167-189.

[23] J. A. Robinson, A machine-oriented logic based on the resolution principle, JACM 12

[24]

[25]

(1965) 23-41.

M. Benedikt, M. Buron, S. Germano, K. Kappelmann, B. Motik, Rewriting the infinite chase,
in: VLDB, 2022.

L. Georgieva, U. Hustadt, R. A. Schmidt, Hyperresolution for guarded formulae, Journal of
Symbolic Computation 36 (2003) 163-192. First Order Theorem Proving.

113

http://www.umbrialogic.com/hirsch-thesis.pdf
http://www.umbrialogic.com/hirsch-thesis.pdf
http://arxiv.org/abs/1212.0254
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000003797
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000003797
https://krr-oxford.github.io/Guarded-saturation/

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The Chase and Datalog Rewriting
	5 Rewriting Algorithms
	6 Conclusion

