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Abstract. Consider a set of points sampled independently near a smooth compact sub-
manifold of Euclidean space. We provide mathematically rigorous bounds on the number
of sample points required to estimate both the dimension and the tangent spaces of that
manifold with high confidence. The algorithm for this estimation is Local PCA, a local
version of principal component analysis. Our results accommodate for noisy non-uniform
data distribution with the noise that may vary across the manifold, and allow simultaneous
estimation at multiple points. Crucially, all of the constants appearing in our bound are ex-
plicitly described. The proof uses a matrix concentration inequality to estimate covariance
matrices and a Wasserstein distance bound for quantifying nonlinearity of the underlying
manifold and non-uniformity of the probability measure.

1. Introduction

In this paper, we study the problem of estimating tangent spaces and the intrinsic di-
mension of a data manifold with high confidence. Our goal is to provide mathematically
rigorous, explicit and practical bounds on the number of sample points required for such
estimations. In data science terms, a tangent space gives the optimal local linear regression
and the intrinsic dimension is the degree of freedom of data. Our estimators are standard
applications of Local PCA, a local version of principal component analysis (PCA). Locally
computed principal components approximate tangent spaces, and their eigenvalues allow
inference of the intrinsic dimension.

To the best our knowledge, our results on both tangent space and dimension estima-
tion are the first ones which simultaneously: (1) apply to noisy non-uniform distribution
concentrated near a manifold, with the noise term allowed to vary across the manifold, (2)
accommodate multiple data points, and (3) explicitly compute all constants appearing in the
bounds, including dependence on dimension. Our proofs clearly separate the geometric and
probabilistic aspects of the estimation process into modular components; we hope that the
reader will find this convenient when attempting to use, build upon or improve our results.
We begin by defining our estimators.
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Figure 1. An illustration of Local PCA. Left: Dataset concentrated near
a torus. Middle: Local neighborhood selection. Top Right: Tangent space
estimation. Top bottom: Dimension estimation.

Estimators from Local PCA. Given m points x = {x1, . . . xm} ⊂ RD, denote by
x̄ = 1

m

∑
i xi the mean and denote by Σ̂[x] = 1

m

∑
i(xi − x̄)(xi − x̄)> the empirical

covariance matrix. By PCA we mean the diagonalisation Σ̂[x] = UΛU>, where U is
an orthogonal matrix and Λ is a diagonal matrix. Writing U = [v1, . . . vD] and letting
diagonal entries of Λ be λ1 ≥ . . . ≥ λD ≥ 0, we define lower-dimensional subspaces and
eigenvalues as:

Πk[x] := span(v1, . . . , vk)

~λΣ̂[x] := (λ1, . . . , λD)

Local PCA at an open set W ⊆ RD performs PCA on points of x that lie in W . We
are interested in W given by an open ball. Given a radius parameter r > 0, let xi :=

{xj | j 6= i} ∩ {y | ‖y − xi‖ < r}. Define the k-dimensional tangent space estimator and
the intrinsic dimension estimator with threshold η:

Π̂(x, r, i, k) :=Πk[xi]

d̂(x, r, i, η) := Thr
(
~λΣ̂[xi], η

)
(1.1)

where Thr
(
(λ1, . . . λD), η

)
is the smallest k such that (λk+1+· · ·+λD) ≤ η ·(λ1+· · ·+λD).

When we calculate Π̂ and d̂ for a sample drawn near a d-dimensional manifold, we will
get accurate estimations of tangent spaces and the intrinsic dimension d. Intuitively, this is
because when a manifold is zoomed in closely enough at each point, its curvature flattens
out and we essentially get a d-dimensional disk. Let’s translate this intuition to precise
mathematics. To do this, we precisely describe how we draw a random sample near a
manifold.
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Setup. Let M ⊂ RD be a smoothly embedded d-dimensional compact manifold. Let µ0

be a Borel probability measure on RD with a probability density function ϕ : M → R≥0:
for each open U ⊆ RD, define

µ0(U) :=

∫
U∩M

ϕ dHd

where Hd is the d-dimensional Hausdorff measure. Let X ∼ µ0. Let Y be a RD-valued
random variable representing noise, with bounded norm ‖Y ‖ ≤ s. Now our random
sample X = {X1, . . . Xm} is drawn i.i.d. from µ:

µ := Law(X + Y )

Here we emphasise that X and Y are not assumed to be independent. Assume that ϕ
satisfies the Lipschitz condition ‖ϕ(x)− ϕ(y)‖ ≤ α · dM(x, y) for every x, y ∈ M , where
dM is the geodesic distance onM . Assume that s < τ , where τ is the reach ofM , defined
as the maximum length to which M can be thickened normally without self-intersection.

Additionally, denote by ωd = πd/2/Γ(d
2

+ 1) the volume of the unit d-dimensional ball.
Denote by ](Π1,Π2) the principal angle between subspaces Π1,Π2 (Definition 5.4). Denote
by P(E) the probability of event E. Denote by ϕmax, ϕmin the maximum and the minimum
of the function ϕ. Our main results ensure accurate estimations if:

(1) r is small enough to ignore curvature
(2) r is big enough to ignore noise
(3) mrd is big enough to ensure dense sampling

Main Results.

Theorem A (Tangent Space Estimation). Let X = {X1, . . . Xm} be a random sample
as above. Given θ, δ, % > 0, the following holds:

√
2τs ≤ r ≤ S1 and

m(r − 2s)d

logm
≥ S2 =⇒ P

(
max
i≤%m
]
(
T̂i, Ti

)
≤ θ

)
≥ 1− δ

Here Ti is the tangent space of M at X⊥i , the orthogonal projection of Xi to M . T̂i =

Π̂(X, r, i, d) is the tangent space estimator defined in (1.1). S1, S2 are defined as:

S1(τ, d, ϕ, θ) =
c1τ sin θ

(d+ 2)
· ϕmin

3ϕmin + 8dϕmax + 5ατ

S2(%,D, d, ϕ, θ) =
c2(d+ 2)2

ωdϕmin sin2 θ
log

(
c3D%

δ

)
and c1 = 1/16, c2 = 4642, c3 = 14.
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Theorem B (Intrinsic Dimension Estimation). Let X = {X1, . . . Xm} be a random
sample as above. Given η, δ, % > 0 with η < (2D)−1, the following holds:

√
2τs ≤ r ≤ S1 and

m(r − 2s)d

logm
≥ S2 =⇒ P

(
d̂i = d for i ≤ %m

)
≥ 1− δ

where d̂i = d̂(X, r, i, η) is the dimesnion estimator defined in (1.1). Here S1, S2 are:

S1(τ, d, ϕ, η) =
c1τ

(d+ 2)D(1 + η−1)
· ϕmin

3ϕmin + 8dϕmax + 5ατ

S2(%,D, d, ϕ, η) =
c2(d+ 2)2D2(1 + η−1)2

ωdϕmin

log

(
c3D%

δ

)
and c1 = 1/48, c2 = 41778, c3 = 14.

Remarks. If ϕ vanishes in a small region, we may avoid division by zero by replacing
ϕmin by 1.04 · Φ(r − 2s)1, where Φ(r) = infx∈M µ0

(
Ux,r

)
/(ωdr

d) and Ux,r is the set of points
on M within geodesic distance r from x. Also, conditions for r given by two inequalities
can be collectively replaced by one upper bound on a function Q, defined in Proposition 4.4.
Lastly, we may set r = (c logm/m)1/d with c = 1.01dS2 to recover the situation in [3], where
in our case c is fully calculated in the main theorems2.

1.1. Structure of the paper. Theorems A and B follow easily from Theorem 5.3 in
Section 5, which is about estimating covariance matrices locally. Ingredients for its proof
span Sections 2, 3, 4. In Section 2, we modify the matrix Hoeffding’s inequality to show
that Local PCA correctly estimates covariance (Proposition 2.6). In Section 3, we show that
given two compactly supported probability measures µ, ν valued in RD, there is a Lipschitz
relation of the form ‖Σ[µ] − Σ[ν]‖ ≤ C ·W1(µ, ν) where Σ[µ] is the covariance matrix of µ
(Proposition 3.3). In Section 4, we show that if a well-behaved measure on a manifold is
restricted to a tiny ball, then its Wasserstein distance to the uniform measure over the unit
tangential disk is small (Proposition 4.4). The Lipschitz relation in Section 3 then translates
the Wasserstein bound to the bound on matrix norms.

We summarize the notations and conventions of this article in the Appendix (page 27).

1.2. Related works. The task of estimating geometric and topological quantities of
manifolds from finitely many sample points lies at the crux of statistical inference, and
as such the literature surrounding these topics is vast. Below we have described some of
the techniques of which we are aware, and direct the reader to [36, 21, 7] for a more
comprehensive survey.

1Φ quantifies local concentration of the measure µ0. See Theorem 5.3.
2The constant 1.01 arises due to noise considerations; it comes from ensuring that r − 2s ≥ r/1.01.
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Figure 2. Summary of the relations between the main results.

Tangent space estimation. Probabilistic bounds on tangent space estimation using
Local PCA have been studied in considerable detail, for example in [3, 32, 17, 29]. To the
best of our knowledge, our work is the first in which the tangent space estimation applies to:

(1) Noisy non-uniform distribution with noise allowed to vary across the manifold,
(2) Deals with multiple data points simultaneously, and
(3) Explicitly computes all constants in bounds, including dimensional dependence.

The dimensional dependence, for example, reflects the fact that covariance of the uniform
distribution over the d-dimensional unit disk have O(1/d) terms (see Lemma 6.1).

In [17] and [32], the underlying probability measure is assumed to be uniform, and only
estimation at a single point is considered. In [29], various constants have not been explicitly
computed, and there is no consideration of noise in data distribution. In [3], various constants
have not been computed explicitly, thus not specifying the minimum sample size requirement
and scaling factor c for their prescription r = (c logm/m)1/d. Furthermore, their noise model
is assumed to be orthogonal to the manifold.

Dimension estimation. The idea to use local principal component analysis for estimat-
ing intrinsic dimension is ancient, dating back at least to [12]. As such, there is a plethora
of literature on the problem of estimating intrinsic dimensions. The work of [23] provides a
practical and widely-used maximum likelihood estimator, but there are no known theoret-
ical guarantees of its correctness even for synthetic data. The minimax-based estimator of
[18] does come with such guarantees, but in order to compute it one is compelled to solve
minimisation problems over the symmetric group on m elements (with m being the total size
of the input dataset); thus, this estimator becomes intractable in practice. The recent work
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of [6] introduces a far more efficient Wasserstein-based estimator with guarantees3, but does
not adapt to noise. Our efforts in this paper were motivated by the desire to find a suitable
balance between practical efficiency, theoretical soundness and compatibility with noise.

Concentration inequality. Our concentration inequality for covariance matrices, Propo-
sition 2.4, is directly derived from the matrix Hoeffding inequality in [31]. A more sophis-
ticated approach, such as the one from [19], may be used to improve our concentration
inequality. For instance, the constants appearing in Proposition 2.4 may be improved. Sim-
ilar methods for analyzing (non-local, non-manifold) PCA are also studied in [20, 27].

Other Techniques. We also list related techniques that appear in other papers. A
cubic bound of the form ‖Σ[µ]−Σ[ν]‖ ≤ Cr3, where µ, ν are probability measures supported
on a ball of radius r in RD, is derived for uniform measures in [5]. We also obtain a similar
inequality (Proposition 3.3 and Corollary 4.5). The key difference in the two derivations
is that our approach uses the Wasserstein distance rather than the total variation distance
from [5] to quantify similarity of measures. Our inequality has the advantage of allowing
non-uniformity and of having explicit constants.

We use a transportation plan in Proposition 4.4 to quantify how much a measure sup-
ported near a manifold locally deviates from the uniform measure on a tangential disk. This
transportation plan is executed with a similar idea as the proof of Proposition 3.1 in [30].
However, their transportation plan does not involve noise and applies to different types of
local covariance matrices.

In [4], local polynomial regression were used to estimate manifolds and their tangent
spaces from uniform point samples lying on tubular neighbourhoods. Compared to this
work, our results have the advantage of not requiring the noise to be uniformly distributed.
Our result only estimates tangent spaces and not higher-order information like curvature.
However, the Wasserstein bound could potentially be leveraged to produce bounds on poly-
nomial approximations.

Local PCA has been extensively used in contexts independent of the manifold hypothesis
[12, 16, 33, 25], although the theoretical analysis is either heuristic or makes strong as-
sumptions on the underlying distribution (e.g. Gaussian). Theoretical analysis in manifold
learning is a flourishing field, with many significant examples including [14, 13, 2, 3, 11,
10, 18, 4, 30] and many others.
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2. Local estimation of covariance matrices

The main result of this section is Proposition 2.6, where we establish bounds for local
covariance estimation. Our main tool is the matrix Hoeffding inequality [31, Theorem 1.3]4.
Here onwards, we will use ‖A‖ to denote the operator norm of a given matrix A: ‖A‖ :=

sup‖x‖=1 ‖Ax‖.

Theorem 2.1 (Matrix Hoeffding). Let Y1, . . . Ym be independent Hermitian random D×
D matrices so that for each i we have both EYi = 0 and ‖Yi‖ ≤ αi for some real number
αi ≥ 0. Write σ2 =

∑m
i=1 α

2
k. Then for every ε ≥ 0,

P
(
‖Y1 + · · ·+ Ym‖ ≥ ε

)
≤ 2D · exp

(
−ε2

8σ2

)
This inequality can be used to establish concentration of vectors.5

Corollary 2.2. Let X1, . . . Xm be independent random vectors in RD satisfying EXi =

0, and ‖Xi‖ ≤ αi for some real number αi. Write σ2 =
∑m

1 α
2
i . Then for every ε ≥ 0,

P
(
‖Y1 + · · ·+ Ym‖ ≥ ε

)
≤ 2(D + 1) · exp

(
−ε2

8σ2

)
Throughout the remainder of this section, we fix a Borel probability measure µ on RD.

We define some probabilistic notions.

Definition 2.3. Given X ∼ µ, the covariance matrix of µ is the following D×D matrix:

Σ[µ] := E[(X − EX)(X − EX)>]

Let δx be the Dirac delta measure at a point x. Given x = {x1, . . . xm} ⊂ RD, define the
empirical measure δx:

δx :=
1

m
(δx1 + · · ·+ δxm)

Given a Borel set U ⊆ RD, the normalised restriction of µ to U is defined as follows: for
each Borel set V ⊂ RD,

µ|U(V ) :=
µ(U ∩ V )

µ(U)

We impose the convention that µ|U = 0 whenever µ(U) = 0, and note that µ|U constitues a
Borel probability measure on RD whenever µ(U) > 0.

4Our version of the matrix Hoeffding inequality follows from the one in [31] by noting that for any matrix
A, the operator norm ‖A‖ equals max(λmax(A), λmax(−A)) where λmax denotes the largest eigenvalue. And
moreover, ‖A‖ ≤ α implies that α2 · Id−A2 is positive definite.

5Apply Hermitian dilation, which takes a rectangular matrix A and produces a Hermitian matrix AH =[
0 A>

A 0

]
. Then ‖AH‖2 = ‖A2

H‖ = ‖A‖2 and the result applies.
7



If X = (X1, . . . Xm) is µ-i.i.d. sample, then Σ[δX] = 1
m

∑m
i=1(Xi − X̄)(Xi − X̄)>, where

X̄ = 1
m

∑
iXi is the sample mean. The expected value of Σ[δX] is in fact m−1

m
Σ[µ], but the

following computation tells us that we may use it to estimate Σ[µ].

Proposition 2.4 (Concentration inequalities for covariance). Let µ be a Borel probability
measure on RD and let X = (X1, . . . Xm) be an i.i.d. sample drawn from µ. Suppose that
the support of µ is contained in a ball of radius r. Then for each ε ≥ 0,

P
(
‖Σ̂0 − Σ[µ]‖ ≥ ε

)
≤ 2D · exp

(
− mε2

512r4

)
P
(
‖Σ̂− Σ[µ]‖ ≥ ε

)
≤ (4D + 2) · exp

(
− mε2

1152r4

)
where, denoting X̄ = 1

m

∑
iXi,

Σ̂0 =
1

m

m∑
i=1

(Xi − EX)(Xi − EX)>, Σ̂ =
1

m

m∑
i=1

(Xi − X̄)(Xi − X̄)>

Proof. We may assume that r = 1 without loss of generality, since for general r we
know that r2Σ is the covariance of r · X for all X ∼ µ. Thus, we have ‖X − EX‖ ≤ 2

by the triangle inequality and the constraint on the support of µ. The bound for Σ̂0 is
obtained directly by applying the matrix Hoeffding inequality from Theorem 2 as follows.
Writing Σ[µ] = Σ, set Yi = 1

m
((Xi − EX)(Xi − EX)> − Σ). Then ‖Yi‖ ≤ (4 + 4)/m and

σ2 = m · (8/m)2 = 64/m. Since Σ̂0 = Σ̂ + (X̄ − EX)(X̄ − EX)>, we have

P(‖Σ̂− Σ‖ ≥ t) = P(‖Σ̂0 − (X̄ − EX)(X̄ − EX)> − Σ‖ ≥ t).

Therefore, for any parameter α in [0, 1], we obtain

P
(
‖Σ̂− Σ‖ ≥ t

)
≤ P

(
‖Σ̂0 − Σ‖ ≥ αt

)
+ P

(
‖X̄ − EX‖2 ≥ (1− α)t

)
≤ P

(
‖Σ̂0 − Σ‖ ≥ αt

)
+ P

(
‖X̄ − EX‖ ≥ 1

2
(1− α)t

)
≤ 2D · exp

(
−α

2mt2

512

)
+ 2(D + 1) · exp

(
−(1− α)2mt2

128

)
.

In the last inequality, we used the bound for Σ̂0 as well as Corollary 2.2, with σ2 = 4.
Choosing α = 2/3 to make the exponents equal, we obtain the second bound. �

We will estimate Σ[µ|U ] with Σ[δX|U ] assuming that U is bounded.

Proposition 2.5. Let X = (X1, . . . Xm) be an i.i.d. sample drawn from µ and let
U ⊆ RD be a Borel set which is contained in a ball of radius r. Denote by Σ̂U the covariance
Σ[δX|U ], and similarly write ΣU = Σ[µ|U ]. Then for any error level ε > 0, we have that Σ̂U

estimates ΣU :
P
(
‖Σ̂U − ΣU‖ ≤ ε

)
≥ 1− δ,

8



where δ is an expression such that limm→∞ δ = 0, defined as:

δ = (4D + 2)(1− µ(U)(1− ξ))m with ξ := exp(−ε2/1152r4).

Proof. The proof follows from conditioning the membership of elements of X to U .
Denoting by SI the event (Xi ∈ U ⇐⇒ i ∈ I) and writing u := µ(U), we have

P
(
‖Σ̂U − ΣU‖ ≥ ε

)
=

∑
I⊆{1,...m}

P
(
‖Σ̂U − ΣU‖ ≥ ε | SI

)
· P(SI).

Writing |I| for the cardinality of each I, we have

P
(
‖Σ̂U − ΣU‖ ≥ ε

)
=

∑
I⊆{1,...m}

u|I|(1− u)m−|I|P
(
‖Σ̂U − ΣU‖ ≥ ε | SI

)
=

m∑
k=0

(
m

k

)
uk(1− u)m−kP

(
‖Σ̂U − ΣU‖ ≥ ε | S{1,...k}

)
≤

m∑
k=0

(
m

k

)
uk(1− u)m−k · (4D + 2)ξk

= (4D + 2) · (1− u(1− ξ))m.

Here Proposition 2.4 was applied in the only inequality above. Note that the possibility S∅
is correctly accounted for since we included k = 0 when indexing the sum in the second line
above. �

Now we prove the main result of this section, about estimating Σ[µ|Ui
] for open balls Ui.

Proposition 2.6. Let µ be a Borel measure supported on a compact subset K ⊂ RD,
and let X = (X1, . . . Xm) be a µ-i.i.d. sample. Given a radius r > 0, consider for 1 ≤ i ≤ m

the covariances Σ̂i := Σ[δXi
|Ui

] and Σi = Σ[µ|Ui
], where Xi = {Xj|j 6= i} and Ui = Br(Xi).

Let ε, δ, % > 0 where we assume6 that ε ≤ 2r2. Then the following holds:
m

logm
≥ 1156r4

u0ε2
log

(
14D%

δ

)
=⇒ P

(
max
i≤%m
‖Σ̂i − Σi‖ ≤ ε

)
≥ 1− δ

where u0 = infx∈K µ(Br(x)) > 0.

Proof. Let k = b%mc. Define the set Ei ⊆ (RD)m as:

Ei :=
{
x = (x1, · · ·xm) |

∥∥∥Σ̂[δxi
|Ui

]− Σ[µ|Ui
]
∥∥∥ > ε

}
.

6We lose nothing from this assumption; suppose µ, ν are two measures supported on a single ball of
radius r. Then ‖Σ[µ] − Σ[ν]‖ ≤ 2r2 since ‖Σ[µ] − Σ[ν]‖ = sup‖x‖=1 x

>(EX∼µ,Y∼νXX> − Y Y >)x =

sup‖x‖=1(〈X,x〉2 − 〈Y, x〉2 ≤ 2r2) ≤ 2r2.
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where xi = {xj|j 6= i}. By the union bound, symmetry, and Proposition 2.5, we then have:

µ(E1 ∪ · · · ∪ Ek) ≤ µ(E1) + · · ·+ µ(Ek)

= k ·
∫
µk−1

(
{(x2, · · ·xm)|(x1, x2, · · ·xm) ∈ E1}

)
dµ(x1)

≤ k ·
∫

(4D + 2)(1− ux(1− ξ))m−1 dµ(x)

where ux = µ(Br(x)), ξ = exp(−ε2/1152r4), and µk−1 is the product measure on (RD)k−1

induced by µ. Since 0 < ξ < 1 and 0 < ux ≤ 1 for any x in the support K of µ, we have
that 0 < ux(1− ξ) < 1 as well. Letting u0 := infx∈K ux, we have:∫

(4D + 2)k(1− ux(1− ξ))m−1 dµ(x) ≤ (4D + 2)k(1− u0(1− ξ))m−1 (2.1)

Letting right hand side of (2.1) to be ≤ δ, we get the condition:

(4D + 2)k(1− u0(1− ξ))m−1 ≤ δ

⇐⇒ −1

log (1− u0(1− ξ))
· log

(
(4D + 2)k

δ

)
≤ m− 1 (2.2)

To produce a simpler lower bound for m, we calculate:
−1

log (1− u0(1− ξ))
≤ 1

u0

(
1152r4

ε2
+ 1

)
− 1

2
≤ 1

u0

· 1156r4

ε2
− 1

2

where the first inequality is due to Lemma 6.8, and the second inequality follows from the
assumption that ε2 ≤ 4r4.7 Using the fact that log((4D + 2)/δ) ≥ 2 and Lemma 6.6, we
obtain the claimed sufficient condition for (2.2):

1156r4

u0ε2
log

(
14D%

δ

)
≤ m

logm

To establish that u0 > 0, consider the covering of K by balls of radius r/2. Since K is
compact, it admits a subcover {Br/2(x) | x ∈ J}, with J a finite set. Thus, every x ∈ K
admits a y ∈ J satisfying x ∈ Br/2(y). Triangle inequality guarantees that Br/2(y) ⊆ Br(x),
so that µ(Br/2(y)) ≤ µ(Br(x)) and hence infy∈J µ(Br/2(y)) ≤ infx∈K µ(Br(x)). Since the left
hand side is an infimum over a finite set of strictly positive numbers, it is also strictly positive
and we have u0 > 0 as desired. �

3. Lipschitz property of covariance matrix

Our goal in this section is to outline sufficient conditions under which the assignment
µ 7→ Σ[µ] becomes a Lipschitz function with respect to the Wasserstein distance [34] on its

7By similar reasoning, the left hand side of (2.2) is at least 1
u0

(1150r4/ε2), so that this sufficient condition
doesn’t weaken the bound much.
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domain, defined as follows. Let (M, dM) be a Polish metric space equipped with probability
measures µ and ν. For each p ≥ 1, the p-Wasserstein distance between µ and ν equals

Wp(µ, ν) :=

(
inf

γ∈Π(µ,ν)

∫
M×M

dM(x, y)p d γ(x, y)

)1/p

where Π(µ, ν) is the set of measures on M × M with marginals equal to µ and ν. Note
that whenever 1 ≤ p ≤ q, we have Wp(µ, ν) ≤ Wq(µ, ν) by the power mean inequality.
Throughout this section, we use the notation X ∼ µ and Y ∼ ν, whenever probability
distributions µ, ν are defined.

Lemma 3.1. Given Borel probability measures µ, ν valued in RD, define µ̃ = Law(X−EX)

and similarly ν̃. Then for each p ≥ 1,
(1) ‖EX − EY ‖ ≤Wp(µ, ν)

(2) Wp(µ̃, ν̃) ≤ 2 ·Wp(µ, ν)

Proof. Defining x0 := EX and y0 := EY , we have

‖x0 − y0‖ =

∥∥∥∥∫
RD

∫
RD

(x− y) dµ(x) d ν(y)

∥∥∥∥
=

∥∥∥∥∫
RD×RD

(x− y) d γ(x, y)

∥∥∥∥ , for any γ ∈ Π(µ, ν)

= inf
γ∈Π(µ,ν)

∥∥∥∥∫
RD×RD

(x− y) d γ(x, y)

∥∥∥∥
≤ inf

γ∈Π(µ,ν)

∫
RD×RD

‖x− y‖ d γ(x, y)

= W1(µ, ν)

Noting that W1(µ, ν) ≤ Wp(µ, ν) for any p ≥ 1, we get the first claim. For the second claim,

Wp(µ̃, ν̃)p = inf
γ∈Π(µ,ν)

∫
RD×RD

‖(x− x0)− (y − y0)‖p d γ(x, y)

= 2p · inf
γ∈Π(µ,ν)

∫
RD×RD

(
‖x− y‖+ ‖x0 − y0‖

2

)p
d γ(x, y)

≤ 2p · inf
γ∈Π(µ,ν)

∫
RD×RD

‖x− y‖p + ‖x0 − y0‖p

2
d γ(x, y)

= 2p−1(Wp(µ, ν)p + ‖x0 − y0‖p)
≤ 2p ·Wp(µ, ν)p

where the first inequality is the power mean inequality, and the second inequality follows
from the first claim. �

Lemma 3.2. For probability measures µ, ν defined on R and supports contained the in-
terval [−R,+R], we have the 2R-Lipschitz relation for all p ≥ 1:

E[X2]− E[Y 2] ≤ 2R ·Wp(µ, ν)
11



Proof. Since Wp is increasing in p, it suffices to prove the assertion for p = 1.

E[X2]− E[Y 2] =

∫
R

∫
R
(x2 − y2) dµ(x) d ν(y)

=

∫
R×R

(x2 − y2) d γ(x, y), for any γ ∈ Π(µ, ν)

≤ 2R · inf
γ∈Π(µ,ν)

∫
R×R
|x− y| d γ(x, y)

= 2R ·W1(µ, ν)

where the only inequality above follows from the fact that the derivative of f(x) = x2 is
bounded by 2R if x ∈ [−R,+R]. �

Proposition 3.3. Suppose µ, ν are probability measures on RD such that each measure
comes with a ball of radius r that contains the support of the measure. Then for p ≥ 1, we
have the following Lipschitz property:

‖Σ[µ]− Σ[ν]‖ ≤ 4r ·Wp(µ̃, ν̃) ≤ 8r ·Wp(µ, ν)

where µ̃ = Law(X − EX).

Proof. We assume that r = 1, since the case for general r follows by scaling: r affects
the covariance matrix on the order of r2 and the Wasserstein distance on the order of r. Also,
the second inequality follows from the first by Lemma 3.1, so it suffices to show the first
inequality. Since we are then working with µ̃ and ν̃ and since covariance matrix is invariant
under translation, we may rewrite µ = µ̃ and ν = ν̃ and assume that µ, ν have zero means.
We may also assume that both suppµ and supp ν are contained within B2(0) by the triangle
inequality; there is a ball B1(x) of radius 1 containing suppµ, so that by triangle inequality,
suppµ ⊆ B1(x) ⊆ B2(0).

Denoting S := Σ[µ] − Σ[ν], it is a real symmetric matrix and we may diagonalise it
as S = UΛU>. U = [u1, . . . uD] is orthogonal and Λ is a diagonal matrix with entries
λ1 ≥ · · · ≥ λD. The operator norm of S is maxi |λi|, which can be written as:

‖S‖ = max
i
|λi| = max

i

∣∣(U>SU)i,i
∣∣

= max
i

∣∣E[U>XX>U ]i,i − E[U>Y Y >U ]i,i
∣∣

= max
i

∣∣E(U>X)2
i − E(U>Y )2

i

∣∣
where Ai,i refers to the (i, i)th entry of a matrix A and wi refers to the ist entry of a vector
w. Now we are done by the following that holds for all i:

E(U>X)2
i − E(U>Y )2

i ≤ 4 W1((U>µ)i, (U
>ν)i)

≤ 4 W1(U>µ, U>ν)

= 4 W1(µ, ν)

12



where U>µ = Law(U>X) and (U>µ)i denotes the marginal of U>µ at its ith coordinate. The
first inequality is Lemma 3.2 with 2R = 4. The second inequality is a general fact that applies
to the Wasserstein distances between marginals. The last equality follows from the fact that
the Wasserstein distance is invariant with respect to isometry applied simultaneously to
the two measures. Finally, multiplying by the Lipschitz constant 2 for the non-centered
measures, we get the Lipschitz constant 8. The inequality for other p follows since Wp is
increasing in p. �

4. Wasserstein bound for Flattening a Measure on Manifold

In this section, we quantify the extent to which a probability distribution valued near
a manifold approximates the uniform distribution over a tangential disk, using the Wasser-
stein distance. We first define the measure of interest using a probability density function,
Hausdorff measure, and a noise term.

Definition 4.1. Given a metric space and a positive integer d, denote by Hd the d-
dimensional Hausdorff measure [28] on the metric space:

Hd(U) = lim
δ↓0
Hd
δ(U), Hd

δ(U) =
ωd
2d

inf
diam(Cj)<δ
U⊆∪Cj

(
∞∑
j=1

diam(Cj)
d

)

where ωd := πd/2

Γ( d
2

+1)
. Given a Borel set U ⊆ RD with a finite, nonzero real d-dimensional

Hausdorff measure Hd(U) ∈ (0,∞), denote by Unifd(U) the d-dimensional uniform proba-
bility measure over U with respect to Hd; for each V ,

Unifd(U) := Hd|U , i.e. Unifd(U)(V ) =
Hd(U ∩ V )

Hd(U)

Definition 4.2. SupposeM is a d-dimensional smooth compact manifold with a smooth
embedding into RD and ϕ : M → R+ is a continuous function satisfying

∫
M
ϕ dHd = 1. Let

µ0 be the Borel probability measure given by defining for each open U ⊆ RD the following:

µ0(U) =

∫
U∩M

ϕ dHd

Let s ≥ 0 be a constant, X ∼ µ0 and let Y be a random variable valued in RD with bounded
norm ‖Y ‖ ≤ s. Here X and Y are not assumed to be independent. Define

µ := Law(X + Y )

Then P(M, s) is defined as the set of all such pairs (µ0, µ), given M and s.

The following are notions from differential geometry relevant to us.

Definition 4.3. For each compact Riemannian manifold M ⊂ RD,

13



(1) For each x, y ∈M , let dM(x, y) be the length of the shortest geodesic connecting x
and y.8

(2) The reach τ of M is the supremum of t ≥ 0 satisfying the following: If x ∈ RD

satisfies dRD(x,M) ≤ t, then there is a unique point x⊥ ∈M such that dRD(x, x⊥) =

dRD(x,M). Here, dRD(x, y) = ‖x − y‖ is the Euclidean distance on RD, and
dRD(x,M) = infy∈M dRD(x, y).

(3) For each point x ∈ M , we denote by B̊r ⊆ TxM the open ball of radius r around
0 ∈ TxM , while the notation Br(x) ⊆ RD is reserved for the (usual) open ball of
radius r around x ∈ RD.

(4) Given x ∈M , the exponential map expx sends each v ∈ TxM to the endpoint of the
unique geodesic on M starting at x with the initial velocity of v.

We remark that 1/τ is an upper bound of the acceleration of geodesics on M in the
ambient space RD ⊃M . The following is the main result of this section.

Proposition 4.4. Let (µ0, µ) ∈ P(M, s) whereM ⊆ RD is a compact smoothly embedded
d-dimensional manifold with reach τ and s ≥ 0. Let x ∈ suppµ, let x⊥ be any point in
Bs(x) ∩M , and let r be a number satisfying 2s ≤ r ≤ (

√
2 − 1)τ − 2s. Then there exists a

function Q so that the following holds for any p ≥ 1:

Wp(ν, ν̃) ≤ τ ·Q
( r
τ
,
s

τ

)
where ν := µ|Br(x), and ν̃ := Unifd(Br(x⊥) ∩ Tx⊥M)

Furthermore, we may take:

Q(ρ, σ) = 3σ + (ρ+ 2σ)2 +
1.2ϕmax

Φ
(2ρ+ (ρ+ 2σ)2)(1− Ωd) +

2.2ρ

Φ
(ϕmax − ϕmin) + 1.4ρ3

where ϕmax, ϕmin are extrema of ϕ taken over Br+2s(x⊥) and

Φ = Φ(x⊥, r − 2s) :=
µ0(expx⊥ B̊r−2s)

ωd(r − 2s)d
, and Ω :=

ρ− 2σ

(ρ+ 2σ) + (ρ+ 2σ)2

Proof. We consider the following multi-step transportation plan (see Figure 4), from
ν0 := ν, going through ν1, ν2, ν3, ν4 which we define below and finally reaching ν5 := ν̃.
Informally, these steps can be summarized as

(1) Perform a naive denoising on ν0 to get ν1

(2) Apply inverse exponential map to get ν2

(3) Fold in the portion of ν2 on the outer rim to the inside to get ν3

(4) Flatten out the nonuniformity and get ν4.
(5) Rescale radius uniformly to get ν5.

8Equivalently, dM (x, y) be the infimum of lengths of all piecewise regular curves that connect x and y.
This follows from the Hopf-Rinow Theorem; see Corollary 6.21 and 6.22 in [22].
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Figure 3. An overview of the transportation plan in the proof of Proposition
4.4. The last four sub-diagrams take place on the tangent space. Nonuniform
shadings in the 3rd, 4th sub-diagrams indicate nonuniform probability distri-
bution.

Step 1. Suppose thatX ∼ µ0 and (X+Y ) ∼ µ. We define ν1 := Law(X | X+Y ∈ Br(x))

and define the transportation plan ν01 by ν01 := Law((X + Y,X) | X + Y ∈ Br(x)), whose
marginals are ν0 and ν1. Thus for each open U ⊆ RD, we have

ν1(U) =P(X ∈ U | X + Y ∈ Br(x))

=
1

µ(Br(x))
P(X ∈ U and X + Y ∈ Br(x)) (4.1)

where µ(Br(x)) = P(X+Y ∈ Br(x)), which follows by the definition of µ. The transportation
cost is bounded as Wp(ν0, ν1) ≤ E(X+Y,X)∼ν01‖(X+Y )−X‖ ≤ s. Note that by the assumption
x ∈ suppµ, we have µ(Br(x)) > 0 and thus we are not conditioning on the null event.

By Equation (4.1), ν1 is well understood in regions where the condition X + Y ∈ Br(x)

either always or never holds. If X ∈ Br−s(x), then since ‖Y ‖ ≤ s, the triangle inequality
implies X + Y ∈ Br(x). Similarly if X /∈ Br+s(x), then X + Y /∈ Br(x). By also noting
that ‖x − x⊥‖ ≤ s, the triangle inequality once again implies Br−2s(x⊥) ⊆ Br−s(x) and
Br+s(x) ⊆ Br+2s(x⊥). Applying Equation (4.1), we get the following:

ν1(U) ≤ µ0(U)

µ(Br(x))
for any U

ν1(U) =
µ0(U)

µ(Br(x))
for U ⊆ Br−2s(x⊥)

ν1(U) = 0 for U ⊆ Br+2s(x⊥)c (4.2)

where Ac denotes the complement of a set A. Note that µ(Br(x)) is a constant, since we
fixed x.

Step 2. We define ν2 by pushing forward ν1 along the inverse of the exponential map
expx⊥ , but we must do it where the exponential is invertible. The injecvitity radius is defined

15



Figure 4. Measure µ and its restriction µ|Br(x), where x ∈ RD and x⊥ ∈M .

as the largest radius ι so that for any z ∈M , expz is a diffeomorphism (and thus invertible)
when restricted to the ball of radius ι centered at 0 ∈ TzM . It is known that the injectivity
radius is at least π · τ (Proposition A1 of [1]). Meanwhile, Lemma 6.11 implies the following
inclusions, which tell us our domains of interest:

expx⊥(B̊rin) ⊆ Br−2s(x⊥) ∩M

Br+2s(x⊥) ∩M ⊆ expx⊥(B̊rout) (4.3)

where B̊r is the open ball of radius r in Tx⊥M centered at 0, and the radii rin, rout are defined
as:

rin := r − 2s

rout := (r + 2s) + (r + 2s)2/τ (4.4)

Now r + 2s ≤ (
√

2 − 1)τ implies rout ≤ πτ , and thus the exponential map is invertible on
Br+2s(x⊥) ∩M . Therefore, noting Equation (4.2), we may define ν2 as follows:

ν2 := (F−1)∗ν1, where F = expx⊥ |B̊rout
Or equivalently,

ν2(U) = ν1(expx⊥(U ∩ B̊rout))
Note that the support of ν2 is contained in F−1(Br+2s(x⊥)) by the definition of ν2 and
Equation (4.2). We also have F−1(Br+2s(x⊥)) ⊆ B̊rout by Equation (4.3).

The transportation plan is the application of Lemma 6.3 to the pushforward along exp−1
x⊥
.

In performing the transportation, we regard the tangent space as embedded: Tx⊥M ⊆ RD

so that the transportation happens in the ambient space RD. By the last result mentioned
in Lemma 6.10, the transportation cost then is bounded as:

Wp(ν1, ν2) ≤ (r + 2s)2

τ

16



Thus by Equations (4.2) and (4.3),

ν2(U) ≤
µ0(expx⊥ U)

µ(Br(x))
for U ⊆ B̊rout

ν2(U) =
µ0(expx⊥ U)

µ(Br(x))
for U ⊆ B̊rin

ν2(U) = 0 for U ⊆ (B̊rout)c (4.5)

Meanwhile, we can evaluate µ0(U) when U ⊆ B̊rout explicitly using the area formula from
geometric measure theory9, which is a generalization of chain rule:

µ0(expx⊥(U)) =

∫
expx⊥

(U)

ϕ dHd =

∫
U

ϕ(expx⊥ y) J expx⊥(y) d y

Here, J f denotes the Jacobian of a function f and d y is the d-dimensional Lebesgue measure.
Thus,

ν2(U) ≤ 1

µ(Br(x))

∫
U

ϕ(expx⊥ y) J expx⊥(y) d y for U ⊆ B̊rout

ν2(U) =
1

µ(Br(x))

∫
U

ϕ(expx⊥ y) J expx⊥(y) d y for U ⊆ B̊rin

ν2(U) = 0 for U ⊆ (B̊rout)c (4.6)

Step 3. We saw that ν2 can be written in terms of µ0 inside radius rin and vanishes
outside radius rout. The annular region between the two radii is harder to understand since
it is where curvature and noise interact, as indicated by Equation (4.1). In Step 3 we remove
this annular region, so that we only need to deal with ν2 restricted to B̊rin . We decompose
ν2 as ν2 = ν in

2 + νout
2 , where we define for each Borel set U ⊆ Tx⊥M the following:

ν in
2 (U) := ν2(U ∩ B̊rin)

νout
2 (U) := ν2(U ∩ (B̊rout − B̊rin))

Define
ν3 :=

(
∫ ν in

2

)−1
ν in

2

where
∫
ν in

2 := ν in
2 (Tx⊥M) is the total mass of ν in

2 , which is a constant. The transportation
plan is to: (a) transport νout

2 to the Dirac delta distribution centered at 0 ∈ TxM and (b)
transport this Dirac delta distribution back to (

∫
νout

2 /
∫
ν in

2 )ν in
2 . Note that

∫
νout

2 /
∫
ν in

2 is
just a normalization constant and that

∫
ν in

2 +
∫
νout

2 = 1. By Lemma 6.4, the transportation
cost Wp(ν2, ν3) is bounded by (rout + rin)

∫
νout

2 , since the first part of this transportation
moves by distance at most rout, the second part moves by at most rin, and the total mass to
move is

∫
νout

2 .

9See for example [9] for a standard reference in geometric measure theory
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Equation (4.6) carries over since ν3 and ν in
2 are proportional; for each open U ⊆ Tx⊥M ,

ν3(U) =
1

µ(Br(x)) ∫ ν in
2

∫
U∩B̊rin

ϕ(expx⊥ y) J expx⊥(y) d y (4.7)

Step 4. We flatten out the non-uniformity in ν3. As in Equation (4.7) above, ν3 is given
by the probability density function ψ(y) := ϕ(expx⊥ y) J expx⊥(y) times a constant. Defining
ν4 = Unifd(B̊rin), we can directly apply Lemma 6.5:

Wp(ν3, ν4) ≤ ωdr
d
in

µ(Br(x)) ∫ ν in
2

· (ψmax − ψmin) · 2rin

where the factor ωdrdin is needed to rescale the Lebesgue measure d y in Equation (4.7) into
d̃ y = d y/(ωdr

d
in) so that

∫
B̊rin

d̃ y = 1, so that Lemma 6.5 can be applied. In the above,

extrema of ψ are taken over B̊rin . The variation ψmax − ψmin can be controlled with the
triangle inequality as follows10:

|ψmax − ψmin| ≤ (ϕmax − ϕmin)

(
1 +

r2
in

2τ 2

)
+ ϕmin

2r2
in

3τ 2

Here the extrema of ϕ are taken over the geodesic ball expx⊥(B̊rin). We used Corollary
6.13, which tells us that:

1− ‖y‖
2

6τ 2
≤ | J expx⊥(y)| ≤ 1 +

‖y‖2

2τ 2
(4.8)

We furthermore note that, by Equation 4.6,

µ(Br(x)) ∫ ν in
2 =

∫
B̊rin

ϕ(expx⊥ y) J expx⊥(y) d y ≥ ωdr
d
in

(
1− r2

in

6τ 2

)
ϕmin

so that
ϕmin ≤

µ(Br(x)) ∫ ν in
2

ωdrdin
· 1

1− r2
in/6τ

2

Thus the transportation cost is bounded as:

Wp(ν3, ν4) ≤
(

ωdr
d
in

µ(Br(x)) ∫ ν in
2

(ϕmax − ϕmin) (1 +
r2

in

2τ 2
) +

2r2
in/3τ

2

1− r2
in/6τ

2

)
· 2rin

We note at this point that the extrema of ϕ may be taken over Br+2s(x⊥) instead, since
Br+2s(x⊥) ⊇ expx⊥(B̊rin). This relaxation is done for a compatibility with another extrema
of ϕ taken later.

Step 5. Here we simply rescale B̊rin to B̊r radially, which multiplies the associated
probability density function by a constant factor (Lemma 6.9), so that we get another uniform
distribution. By Lemma 6.3, the transportation cost is bounded by r − rin = 2s.

10Writing ψ(1) := ϕ ◦ expx⊥
and ψ(2) := J expx⊥

so that ψ = ψ(1)ψ(2), we obtain that |ψmax − ψmin| ≤
|ψ(1)

maxψ
(2)
max − ψ(1)

minψ
(2)
min| ≤ |ψ

(1)
max − ψ(1)

min| · |ψ
(2)
max|+ |ψ(1)

min| · |ψ
(2)
max − ψ(2)

min|
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The Total Bound. Collecting the bounds11, we get:

Wp(ν0, ν5)

≤Wp(ν0, ν1) + Wp(ν1, ν2) + Wp(ν2, ν3) + Wp(ν3, ν4) + Wp(ν4, ν5)

≤s+
(r + 2s)2

τ
+ (rin + rout)

∫
νout

2

+

(
ωdr

d
in

µ(Br(x)) ∫ ν in
2

(ϕmax − ϕmin) (1 +
r2

in

2τ 2
) +

2r2
in/3τ

2

1− r2
in/6τ

2

)
· 2rin + 2s (4.9)

Using Equations (4.5), (4.6) and (4.8), we obtain the following bounds:

µ(Br(x))

∫
ν in

2 = µ0(expx⊥ B̊rin) ≤ ϕmax(1 +
r2

out

2τ 2
)ωdr

d
in

µ(Br(x))

∫
νout

2 ≤ µ0(expx⊥(B̊rout − B̊rin)) ≤ ϕmax(1 +
r2

out

2τ 2
)ωd(r

d
out − rdin)

where ϕmax is the maximum of ϕ taken over Br+2s(x⊥).12 Combining these, we get:∫
νout

2∫
ν in

2

=
µ(Br(x))

∫
νout

2

µ(Br(x))
∫
ν in

2

≤ ϕmax(1 + r2
out/2τ

2)ωd(r
d
out − rdin)

µ0(expx⊥ B̊rin)
= Φ′(Ω−d − 1)

with Ω =
rin

rout

,Φ′ =
ϕmax(1 + r2

out/2τ
2)ωdr

d
in

µ0(expx⊥ B̊rin)
≥ 1

Here the upper bound for µ(Br(x)) ∫ ν in
2 was used only to show Φ′ ≥ 1. We can bound ∫ νout

2

using the above, as follows:∫
νout

2 =

(
1 +

∫
ν in

2∫
νout

2

)−1

≤
(

1 +
1

Φ′(Ω−d − 1)

)−1

≤ Φ′(1− Ωd)

where the first inequality holds by plugging in the upper bound for ∫ νout
2 / ∫ ν in

2 , and the
second inequality holds since Φ′ ≥ 1. Plugging these into Equation (4.9), we get that
Wp(ν0, ν5) is no larger than

3s+
(r + 2s)2

τ
+ (rin + rout)(1− Ωd)ϕmax(1 +

r2
out

2τ 2
)

ωdr
d
in

µ0(expx⊥ B̊rin))

+

(
ωdr

d
in

µ(Br(x)) ∫ ν in
2

(ϕmax − ϕmin)

(
1 +

r2
in

2τ 2

)
+

2r2
in/3τ

2

1− r2
in/6τ

2

)
· 2rin

11We use a slight abuse of notation and identify νk with ι∗νk for k = 2, . . . 5, where ι : Tx⊥M ↪→ RD is
the inclusion of tangent space. This is not a problem, since generally Wp(ι∗µ1, ι∗µ2) ≤Wp(µ1, µ2) holds for
any measures µ1, µ2 on Tx⊥M .

12It suffices to take maximum of ϕ over Br+2s(x) in bounding µ(Br(x))
∫
νout2 , since ν2 is supported on

exp−1x⊥
(Br+2s(x)).
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By the assumption r+ 2s ≤ (
√

2− 1)τ , we have both rin ≤ (
√

2− 1)τ and rout ≤ (2−
√

2)τ .
These inequalities further imply:

1 +
r2

in

2τ 2
≤ 1.09 and 1 +

r2
out

2τ 2
≤ 1.18 and

2/3

1− r2
in/6τ

2
≤ 0.69.

Plugging these numbers into our bound above for Wp(ν0, ν5) yields the desired result. �

We have the following bound, upon further assumptions on the noise radius s and the
probability density ϕ:

Corollary 4.5. In Proposition 4.4, suppose that we additionally assume that there exist
α, β satisfying:

‖ϕ(x)− ϕ(y)‖ ≤ α · dM(x, y), for any x, y ∈M
σ ≤ βρ2, with β ≤ 1.2

Then we have the following bound for any p ≥ 1:

Wp(ν, ν̃) ≤ Q1(ρ, β) · τρ2

where Q1(ρ, β) is given by:

Q1(ρ, β) = 3β + β2
1 +

1.2ϕmaxd

Φ
(2 + β2

1ρ)(1 + 4β) +
4.4ατ

Φ
(1 + β1ρ)β1 + 1.4ρ

where β1 = 1 + 2βρ. In particular, for β = 1/2, we have:

Q2(ρ) := Q1(ρ,
1

2
) = (2.5 + 3.4ρ+ρ2) +

3.6ϕmaxd

Φ
(2 +ρ+ 2ρ2 +ρ3) +

4.4ατ

Φ
(1 + 2ρ+ 2ρ2 +ρ3)

Proof. We first have:

ρ+ 2σ ≤ β1ρ, and 1− Ωd ≤ d(1 + 4β)ρ (4.10)

where the first line is by the definition of β1 and the second line is by Lemma 6.7. This
almost derives Q1, except the bound on ϕmax − ϕmin. Since geodesic distance is used, the
Lipschitz assumption on ϕ implies: ϕmax − ϕmin ≤ 2αrout by using radial segments in the
ball B̊rout ⊆ Tx⊥M . By the definition of rout and the bound ρ+ 2σ ≤ β1ρ, we have:

rout

τ
≤ (ρ+ 2σ) + (ρ+ 2σ)2 ≤ (1 + β1ρ)β1ρ

and thus:

ϕmax − ϕmin ≤ 2ατ(1 + β1ρ)β1ρ (4.11)

Plugging in Equations 4.10 and 4.11 into the expression for Q(ρ, σ) derives the expression
for Q1. Note that the condition β ≤ 1.2 is simply added so that if ρ ≤

√
2 − 1, we get

1 − 2βρ ≥ 0 and thus ρ − 2βρ2 = ρ(1 − 2βρ) ≥ 0, which is necessary for applying Lemma
6.7. The expression for Q2 is obtained by direct substitution of β = 1/2. �
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5. Tangent space and dimension estimation

In this section, we combine the Propositions 2.6, 3.3, and 4.4 to prove Theorem 5.3. This
in turn implies both Theorem A and B.13

Definition 5.1. Given a d-dimensional subspace Π ⊆ RD, denote the D×D orthogonal
projection matrix to Π by PΠ, which is a real symmetric matrix, given concretely as:

PΠ = AΠA
>
Π

where AΠ ∈ RD×d is any matrix whose columns form an orthonormal basis of Π.

Definition 5.2. Let X = (X1, . . . Xm) be an i.i.d. sample drawn from µ, a Borel
probability measure on RD. Given x ∈ RD and r > 0, define:

P̂i :=
d+ 2

r2
Σ[δXi

|Ui
], where Xi = {Xj}j 6=i, Ui = Br(Xi)

If Π ⊆ RD is a d-dimensional subspace, then Lemma 6.1 says that:

(d+ 2)Σ[Unif(Π ∩ B1(0))] = PΠ

Thus an approximation to this covariance matrix in Proposition 4.4 amounts to the approx-
imation of a projection matrix, and justifies the definition of P̂i.

Theorem 5.3. Let (µ, µ0) ∈ P(M, s)14 where M is a smoothly embedded compact d-
dimensional manifold M ⊆ RD with reach τ and s ≥ 0 is a real number. Let ϕ be the
probability density function of µ0 which satisfies ‖ϕ(x)−ϕ(y)‖ ≤ α ·dM(x, y). Let X1, . . . Xm

be an i.i.d. sample drawn from µ and let X⊥1 , . . . X⊥m be their orthogonal projections to M .
Given δ, ε, α > 0 and assuming15 ε < 2, suppose r,m satisfy the following:√

2s

τ
<
r

τ
<

ε

16(d+ 2)Q2(r/τ)
and

m

logm
≥ 4642(d+ 2)2

u0ε2
log

(
14Dα

δ

)
where u0 = infx∈suppµ µ(Br(x)). Then with probability at least 1− δ, the following holds:

max
i≤αm

∥∥∥P̂i − Pi

∥∥∥ ≤ ε

where Pi is the projection matrix to the tangent space TX⊥
i
M , and Q2 is defined as:

Q2(ρ) = (2.5 + 3.4ρ+ ρ2) +
3.6ϕmaxd

Φ
(2 + ρ+ 2ρ2 + ρ3) +

4.4ατ

Φ
(1 + 2ρ+ 2ρ2 + ρ3)

where Φ =
µ0(expx⊥ B̊r−2s)

ωd(r − 2s)d

13Minor technical note: In the special cases discussed in the Introduction, we set k = m in Theorems A
and B, use Lemma 6.6, and use log(14D) > 1 + log(4D + 2) assuming D ≥ 2.

14See Definition 4.2.
15Nothing is lost from this assumption since operator norm of the difference of two projection operators

is at most 2.
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Proof. Out of total allowed error ε, we will allocate one half ε/2 to the concentra-
tion inequality (Proposition 2.6) and the other half ε/2 to the curvature (Proposition 4.4).
Throughout the proof, we use the shorthand Ui = Br(X⊥i ).

Concentration inequality: By Proposition 2.6, we may use k points for local covariance
estimation by error level r2ε/2(d+ 2):

‖Σ[δXi
|Ui

]− Σ[µ|Ui
]‖ ≤ r2

d+ 2
· ε

2
, for all i ≤ k

with probability at least 1− δ, if m satisfies the inequality in the theorem statement.
Curvature: By combining Corollary 4.5 and Proposition 3.3, the following holds for

every x ∈ suppµ:∥∥∥∥Σ[µ|Ui
]− r2

d+ 2
Pi

∥∥∥∥ ≤ 8r · r
2Q2

τ
≤ 8τε

16(d+ 2)Q2

· r
2Q2

τ
=

r2

d+ 2
· ε

2

where Q2 = Q2(r/τ). In the second inequality, the assumption on r in the theorem statement
was used. Note that r2

d+2
PX⊥

i
is the covariance of the uniform measure over the tangential

disk of radius r, by Lemma 6.1.
By the triangle inequality, for all i ≤ k we have∥∥∥∥d+ 2

r2
Σ[δXi

|Ui
]− Pi

∥∥∥∥ ≤ d+ 2

r2

(
‖Σ[δX|Ui

]− Σ[µ|Ui
]‖+

∥∥∥∥Σ[µ|Ui
]− r2

d+ 2
Pi

∥∥∥∥)
≤ ε

2
+
ε

2
= ε,

as desired. We note that the assumptions 2s ≤ r and r+ 2s ≤ (
√

2− 1)τ of Proposition 4.4
follow from the assumption on r and ε < 2. �

5.1. Proof of Theorem A. To use Theorem 5.3, we relate the projection matrices to
angular deviation between subspaces using the Davis-Kahan theorem (see [35] or [8]).

Definition 5.4. Suppose Π1,Π2 ⊆ RD two subspaces of RD. The principal angle be-
tween Π1 and Π2 is defined as:

](Π1,Π2) := max
x∈Π1

min
y∈Π2

](x, y)

with cos](x, y) = 〈x, y〉/(‖x‖ · ‖y‖).

Definition 5.5. For a real symmetric matrix A of sizeD×D, suppose its diagonalization
is given by A = UΛU>, with U being an orthogonal matrix and Λ being a diagonal matrix
whose entries are arranged in the decreasing order. Then for an integer k ≤ D, define
Π(A, k) ⊆ RD as the span of the first k columns of U .

Theorem 5.6 (Davis-Kahan). Suppose that A is a real symmetric matrix with eigenval-
ues λA1 ≥ λA2 ≥ · · · . Then for any other real symmetric matrix B and a positive integer k
such that λAk 6= λAk+1,

sin]

(
Π(A, k),Π(B, k)

)
≤ ‖A−B‖
λAk − λAk+1
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Proof of Theorem A. Taking ε = sin θ in Theorem 5.3, the following holds for each i ≤ k:

‖Pi−P̂i‖ ≤ sin θ

Since both Pi and P̂i are real symmetric matrices and since eigenvalues of Pi are (1, . . . 1, 0, . . . 0),
letting A = Pi, B = P̂i, and k = d in the Davis-Kahan theorem gives:

sin]

(
Π(Pi, d),Π(P̂i, d)

)
≤ ‖Pi−P̂i‖ ≤ sin θ

Since Pi is the projection matrix to TX⊥
i
M , a d-dimensional space, we have Π(Pi, d) = TX⊥

i
M .

Furthermore, Π(P̂i, d) = Π(Σ[δXi
|Ui

], d) = Π̂i, where Ui = Br(Xi).
Finally, the condition r/τ < ε/16(d + 2)q in Theorem A implies r/τ ≤ 1/48 and thus

Q2(r/τ) ≤ q = 3 + (8ϕmaxd + 5ατ)/ϕmin, so that Theorem 5.3 applies. Also, the condition
r + 2s ≤ (

√
2 − 1)τ is dropped from Theorem A because r/τ < 1/48 and

√
2s/τ < r/τ

implies r + 2s ≤ (
√

2− 1)τ .

5.2. Proof of Theorem B. To relate a perturbation of eigenvalues to a perturbation
of covariance matrices, we use the Hoffman-Wielandt theorem [15].

Theorem 5.7 (Hoffman-Wielandt). For normal matrices A,A′ of dimension D × D,
there is an enumeration of eigenvalues (λ1, . . . λD) of A and (λ′1, . . . λ

′
D) of A′ such that

D∑
i=1

|λi − λ′i|2 ≤ ‖A− A′‖2
F

where ‖A‖F :=
√

Tr(A>A) denotes the Frobenius norm, with Tr(•) denoting the trace. In
particular, if A,A′ are real symmetric matrices, then16

‖~λ[A]− ~λ[A′]‖ ≤ ‖A− A′‖F

where ~λ[A] ∈ RD is the vector of eigenvalues of A, arranged in the decreasing order.

Now we note the following simple result for dimension estimation using tail sum.

Proposition 5.8. Let ~λ = (λ1, . . . λD) ∈ RD be such that λ1 ≥ λ2 ≥ · · · ≥ λD ≥ 0.
Let ~λ(d,D) = 1

d+2
(1, . . . 1, 0 . . . 0) ∈ RD where there are D − d zeros. Let η be a tolerance

parameter such that 0 < η < 1/(2d).∥∥∥∥~λ− ~λ(d,D)

∥∥∥∥
2

<
1

3
√
D(1 + η−1)

=⇒ Thr(~λ, η) = d

where Thr is defined in the Introduction.

Proof. Writing ~λ−~λ(d,D) = (t1, . . . tD), let q1 = |t1|+ · · ·+ |td|, q2 = |td+1|+ · · ·+ |tD|,
and q = q1 + q2 = ‖~λ− ~λ(d,D)‖1. Then since generally D−1/2‖x‖1 ≤ ‖x‖2, we have:

q <
√
D · η

3
√
D(1 + η)

=
η

3(1 + η)

16This special case for real symmetric matrices follows from Lemma 6.14.
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A sufficient condition for Thr(~λ, η) = d is:

q2 ≤ η‖~λ‖1, and q2 +

(
1

d+ 2
− q1

)
> η‖~λ‖1

Since ‖~λ(d,D)‖1 = d/(d + 2), triangle inequality implies that d
d+2
− q ≤ ‖~λ‖1 ≤ d

d+2
+ q.

Thus we can formulate the following sufficient conditions:

q < η

(
d

d+ 2
− q
)
, and

1

d+ 2
− q > η

(
d

d+ 2
+ q

)
⇐⇒ (1 + η)q <

ηd

d+ 2
, and (1 + η)q <

1− ηd
d+ 2

⇐⇒ q <
min(ηd, 1− ηd)

(1 + η)(d+ 2)

By our assumption that η < 1/(2d), we have min(ηd, 1 − ηd) = ηd. Thus our sufficient
condition is q < η

1+η
· d
d+2

. The right hand side is minimised for d = 1, so that this is
precisely implied by the assumption. �

Proof of Theorem B.
The proof goes verbatim except we use the Hoffman-Wielandt theorem instead of the

Davis-Kahan theorem, and that we use the estimation error for the covariances ‖Σ̂ − Σ‖2:
ε−1 = 3D(1 + η−1). Then the following chain of inequalities hold with probability ≥ 1− δ:

‖~λ− ~λ(d,D)‖2 ≤ ‖Σ̂− Σ‖F ≤
√
D · ‖Σ̂− Σ‖2 ≤

1

3
√
D(1 + η−1)

The proof is then completed by applying Proposition 5.8.

References

[1] E. Aamari, J. Kim, F. Chazal, B. Michel, A. Rinaldo, and L. Wasserman. Estimating the reach of a
manifold. Electronic journal of statistics, 13(1):1359–1399, 2019.

[2] E. Aamari and C. Levrard. Stability and minimax optimality of tangential delaunay complexes for
manifold reconstruction. Discrete & Computational Geometry, 59(4):923–971, 2018.

[3] E. Aamari and C. Levrard. Nonasymptotic rates for manifold, tangent space and curvature estimation.
Ann. Statist., 47(1):177–204, 2019.

[4] Y. Aizenbud and B. Sober. Non-parametric estimation of manifolds from noisy data. arXiv:2105.04754
[math.ST], 2021.

[5] E. Arias-Castro, G. Lerman, and T. Zhang. Spectral clustering based on local PCA. J. Mach. Learn.
Res., 18:Paper No. 9, 57, 2017.

[6] A. Block, Z. Jia, Y. Polyanskiy, and A. Rakhlin. Intrinsic dimension estimation. arXiv preprint
arXiv:2106.04018, 2021.

[7] F. Chazal and B. Michel. An introduction to topological data analysis: fundamental and practical
aspects for data scientists. Frontiers in artificial intelligence, 4, 2021.

[8] C. Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation. iii. SIAM Journal on
Numerical Analysis, 7(1):1–46, 1970.

24



[9] H. Federer. Geometric measure theory. Springer, 2014.
[10] C. Fefferman, S. Ivanov, Y. Kurylev, M. Lassas, and H. Narayanan. Fitting a putative manifold to noisy

data. In Conference On Learning Theory, pages 688–720. PMLR, 2018.
[11] C. Fefferman, S. Mitter, and H. Narayanan. Testing the manifold hypothesis. Journal of the American

Mathematical Society, 29(4):983–1049, 2016.
[12] K. Fukunaga and D. R. Olsen. An algorithm for finding intrinsic dimensionality of data. IEEE Trans-

actions on Computers, 100(2):176–183, 1971.
[13] C. R. Genovese, M. P. Pacifico, I. Verdinelli, L. Wasserman, et al. Minimax manifold estimation. Journal

of machine learning research, 13:1263–1291, 2012.
[14] C. R. Genovese, M. Perone-Pacifico, I. Verdinelli, and L. Wasserman. Manifold estimation and singular

deconvolution under hausdorff loss. The Annals of Statistics, 40(2):941–963, 2012.
[15] A. J. Hoffman and H. W. Wielandt. The variation of the spectrum of a normal matrix. In Selected

Papers Of Alan J Hoffman: With Commentary, pages 118–120. World Scientific, 2003.
[16] N. Kambhatla and T. K. Leen. Dimension reduction by local principal component analysis. Neural

computation, 9(7):1493–1516, 1997.
[17] D. N. Kaslovsky and F. G. Meyer. Non-asymptotic analysis of tangent space perturbation. Inf. Inference,

3(2):134–187, 2014.
[18] J. Kim, A. Rinaldo, and L. Wasserman. Minimax rates for estimating the dimension of a manifold.

arXiv preprint arXiv:1605.01011, 2016.
[19] V. Koltchinskii and K. Lounici. Concentration inequalities and moment bounds for sample covariance

operators. Bernoulli, 23(1):110–133, 2017.
[20] V. Koltchinskii and K. Lounici. Normal approximation and concentration of spectral projectors of sample

covariance. The Annals of Statistics, 45(1):121–157, 2017.
[21] J. A. Lee and M. Verleysen. Nonlinear dimensionality reduction, volume 1. Springer.
[22] J. M. Lee. Introduction to Riemannian manifolds. Springer, 2018.
[23] E. Levina and P. Bickel. Maximum likelihood estimation of intrinsic dimension. Advances in neural

information processing systems, 17, 2004.
[24] M. Lezcano-Casado. Geometric optimisation on manifolds with applications to deep learning. DPhil

Thesis, University of Oxford, 2021.
[25] T. Minka. Automatic choice of dimensionality for pca. Advances in neural information processing sys-

tems, 13:598–604, 2000.
[26] P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with high confidence

from random samples. Discrete & Computational Geometry, 39(1-3):419–441, 2008.
[27] M. Reiß and M. Wahl. Nonasymptotic upper bounds for the reconstruction error of pca. The Annals of

Statistics, 48(2):1098–1123, 2020.
[28] L. Simon. Lectures on geometric measure theory. The Australian National University, Mathematical

Sciences Institute, Centre . . . , 1983.
[29] A. Singer and H.-T. Wu. Vector diffusion maps and the connection Laplacian. Comm. Pure Appl. Math.,

65(8):1067–1144, 2012.
[30] R. Tinarrage. Recovering the homology of immersed manifolds. arXiv preprint arXiv:1912.03033, 2019.
[31] J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational

mathematics, 12(4):389–434, 2012.
[32] H. Tyagi, E. Vural, and P. Frossard. Tangent space estimation for smooth embeddings of Riemannian

manifolds. Inf. Inference, 2(1):69–114, 2013.

25



[33] S. Valle, W. Li, and S. J. Qin. Selection of the number of principal components: the variance of the
reconstruction error criterion with a comparison to other methods. Industrial & Engineering Chemistry
Research, 38(11):4389–4401, 1999.

[34] C. Villani. Optimal transport: old and new, volume 338. Springer, 2009.
[35] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.
[36] L. Wasserman. Topological data analysis. Annual Review of Statistics and Its Application, 5:501–532,

2018.

26



6. Appendix

6.1. Notations and conventions. Here are some conventions we use.
• The word ‘dimension’ and ‘intrinsic dimension’ are used interchangeably, where
‘intrinsic’ simply distinguishes it from the ‘ambient’ dimension.
• All manifolds are connected.
• All vectors are by default column vectors.
• ‖v‖ =

√
v>v denotes the Euclidean norm of a vector v ∈ RD.

• ‖A‖ denotes the operator norm of a matrix A ∈ Rm×n, seen as a map Rn → Rm.
‖A‖F =

√
Tr(A>A) denotes its Frobenius norm.

• Id denotes the d× d identity matrix.
• E[X] denotes the expected value of a random variable X.
• Σ[µ] denotes the covariance matrix of a Borel probability measure µ over RD.
• Br(x) ⊆ RD denotes the open ball of radius r centered at x ∈ RD.
• Given a smoothly embedded manifold M ⊆ RD and a point x ∈ M , B̊r ⊆ TxM

denotes the open ball of radius r centered at 0 ∈ TxM , assuming that the choice of
x is clear from the context.
• ~λ[A] ∈ RD denotes the eigenvalues of a real symmetric matrix A of size D × D,
arranged in the decreasing order.
• ωd = πd/2/Γ(d

2
+ 1) denotes the volume of the d-dimensional unit ball.

Additionally, the following letters have specific meanings if not stated otherwise:

Notation Meaning
M A compact manifold smoothly embedded in RD

d (Intrinsic) dimension of M
D Ambient dimension
τ Reach of M
µ Main distribution of interest with noise
µ0 µ before adding noise
ϕ Probability density function on M used to define µ0

α Lipschitz constant for ϕ
m Sample size
r Local detection radius
s Noise radius
% Probabilistic guarantees hold for b%mc out of m points
δ Probabilistic guarantees hold with probability ≥ 1− δ
ρ Normalized local detection radius ρ = r/τ

σ Normalized noise radius σ = s/τ
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6.2. Technical lemmas.

Lemma 6.1. (Lemma 13 from [5]) Given a d-dimensional subspace Π of RD, the covari-
ance matrix of the uniform distribution over the disk Π ∩ B1(0) is given by:

Σ[Unifd(Π ∩ B1(0))] =
1

d+ 2
PΠ

where PΠ is the D ×D projection matrix to Π. Eigenvalues of this matrix are:
1

d+ 2
(1, . . . 1︸ ︷︷ ︸

d

, 0, . . . 0︸ ︷︷ ︸
D−d

)

Proof. Denote by Πd,D the d-dimensional subspace of RD spanned by the first d canoni-
cal basis vectors. The only nontrivial covariance between the marginals of Unifd(Πd,D∩B1(0))

is:
1

ωd

∫
‖x‖≤1

x2
1 dx =

1

ωd · d

∫
‖x‖≤1

‖x‖2 dx =
1

d

∫ 1

0

r2 · drd−1 d r =

∫ 1

0

rd+1 d r =
1

d+ 2

where 1/ωd is multiplied so that the distribution is uniform over the unit disk. This yields
the calculation for the vector of eigenvalues. Thus,

Σ[Unifd(Πd,D ∩ B1(0)] =
1

d+ 2

[
Id 0

0 0D−d

]
Given any d-dimensional subspace Π ⊆ RD, consider an orthonormal basis A = [v1, . . . vD]

such that the first d vectors [v1, . . . vd] span Π. If X ∼ Unif(Π ∩ B1(0)), then A−1X ∼
Unif(Πd,D ∩ B1(0)). Thus the covariance matrix of X is

1

d+ 2
A

[
Id 0

0 0D−d

]
A> =

1

d+ 2
[v1, . . . vd][v1, . . . vd]

> =
1

d+ 2
PΠ

�

Lemma 6.2. Suppose
~λ(d,D) :=

1

d+ 2
(1, . . . 1︸ ︷︷ ︸

d

, 0, . . . 0︸ ︷︷ ︸
D−d

)

If d ≤ d′, then

‖~λ(d,D)− ~λ(d′, D)‖2 =
(d′ − d)(dd′ + 4d+ 4)

(d+ 2)2(d′ + 2)2

Also for any k 6= d, we have:

‖~λ(k,D)− ~λ(d,D)‖ ≥ ‖~λ(d,D)− ~λ(d+ 1, D)‖ =

√
(d+ 1)(d+ 4)

(d+ 2)(d+ 3)
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Proof. The norm of difference is given by direct computation:

‖~λ(d,D)− ~λ(d′, D)‖2 = d ·
(

1

d+ 2
− 1

d′ + 2

)2

+
d′ − d

(d′ + 2)2
=

(d′ − d)(dd′ + 4d+ 4)

(d+ 2)2(d′ + 2)2

The partial derivative of the above expression with respect to d and d′ are strictly negative
and positive respectively, whenever 0 < d < d′. Thus for each d ≥ 2,

min
d′ 6=d
‖~λ(d,D)− ~λ(d′, D)‖

= min(‖~λ(d,D)− ~λ(d+ 1, D)‖, ‖~λ(d,D)− ~λ(d− 1, D)‖)

= min

(√
(d+ 1)(d+ 4)

(d+ 2)(d+ 3)
,

√
d(d+ 3)

(d+ 1)(d+ 2)

)

=

√
(d+ 1)(d+ 4)

(d+ 2)(d+ 3)

where we use the fact that
√

(d+1)(d+4)

(d+2)(d+3)
is decreasing in d for d ≥ 0 (directly checked by

computing the derivative of its square). �

Let’s prove simple inequalities associated to optimal transport, constituting the main
tools to obtain the necessary bounds for covariance matrices.

Lemma 6.3. Let M be a Polish metric space with metric dM . Suppose A,B ⊆ M are
Borel measurable, with inclusion maps ιA : A ↪→ M, ιB : B ↪→ M . Suppose that there is a
continuous bijection f : A → B with a L ≥ 0 with dM(x, f(x)) < L for any x. Let µ be
a Borel probability measure on A. Then for any p ≥ 1, the Wasserstein distance between
pushforwards of µ and f∗µ along inclusions are bounded by L:

Wp(ι
A
∗ µ, ι

B
∗ f∗µ) ≤ L

Proof. If X ∼ ιA∗ µ, then f(X) ∼ ιB∗ f∗µ. Therefore, by using the coupling (X, f(X)),
we obtain the claim:

Wp(ι
A
∗ µ, ι

B
∗ f∗µ) ≤ (EX dM(X, f(X))p)1/p ≤ L

�

Lemma 6.4. Let M be a Polish metric space with metric dM and a finite diameter L :=

supx,y∈M dM(x, y). For a Borel probability measure µ on M and a Dirac delta measure δx
centered at x ∈M , we have:

Wp(µ, δx) ≤ L

Proof. Define the transportation plan ν on M ×M by

ν(U × V ) =

{
µ(U) if x ∈ V
0 otherwise

whose marginals are µ and δx. The transportation cost is bounded by L. �
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Lemma 6.5. Let M be a Polish metric space with metric dM and a finite diameter
L := supx,y∈M dM(x, y). Fix a Borel probability measure µ on M . Let f be a non-negative
continuous function on M with supx∈M f(x) − infx∈M f(x) ≤ C and

∫
M
f(x)dµ(x) = 1.

Let µf be the Borel probability measure on M given by taking f as the probability density
function. Then for any p ≥ 1,

Wp(µf , µ) ≤ CL

Proof. For any real number a, we have a = max(0, a) −max(0,−a). Applying this to
a = f(x)− 1, we may write:

µf = µ+ µ+
f − µ

−
f

where µ+
f (U) =

∫
U

max(0, f(x)− 1) dµ(x)

µ−f (U) =

∫
U

max(0, 1− f(x)) dµ(x)

As such, for any point x ∈M ,

Wp(µf , µ) = Wp(µ+ µ+
f − µ

−
f , µ) ≤Wp(µ

+
f , µ

−
f )

The inequality holds since generally Wp(µ+ ν1, µ+ ν2) ≤Wp(ν1, ν2). Since µ(M) = µf (M),
we have A := µ+

f (M) = µ−f (M). Then

Wp(µ
+
f , µ

−
f ) ≤Wp(µ

+
f , A · δx) + Wp(A · δx, µ−f ) ≤ 2AL

The second inequality is by the previous lemma. By definition of µ+
f , µ

−
f ,

A = µ+
f (M) ≤ sup

x∈M
f(x)− 1

A = µ−f (M) ≤ 1− inf
x∈M

f(x)

Thus 2A ≤ C, and 2AL ≤ CL. �

Lemma 6.6. Suppose a, b, x are real where b > 1 and x > e. Then we have that
x

log x
> a(1 + log b) =⇒ x > a log bx =⇒ x

log x
> a

Proof. Writing y = log x > 1 and c = log b > 0, the assertion follows trivially:

x/y > a(1 + c) =⇒ x > a(y + c) =⇒ x/y > a

�

Lemma 6.7. For the following function

f(x) =
1− ax

(1 + ax)(1 + x+ ax2)

the following holds whenever a > 0, k ≥ 1 and x ∈ [0, 1/a]:

f(x)k ≥ 1− k(1 + 2a)x
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Proof. Let’s always assume x ∈ [0, 1/a] here. By direct evaluation, f ′(0) = −(1 + 2a)

and thus the claim is equivalent to f(x)k ≥ 1 + kf ′(0)x. Since f(0) = 1, it’s sufficient to
show that (fk)′(x) ≥ kf ′(0) for any x. We have f ′ < 0 since f is decreasing, and we can
also directly check that 0 ≤ f ≤ 1. Thus (fk)′ = kfk−1f ′ ≥ kf ′. Thus it suffices to show
that f ′ ≥ f ′(0). By direct computation, we have:

f ′(x) =
2a3x3 − (a2x2 + 4ax+ 2a+ 1)

(1 + ax)2(1 + x+ ax2)2

We want f ′ ≥ f(0) = −(1 + 2a), which is equivalent to:

2a3x3 − (a2x2 + 4ax+ 2a+ 1) + (1 + 2a)(1 + ax)2(1 + x+ ax2)2 ≥ 0

which holds since all of the coefficients are positive, upon expanding the brackets. �

Lemma 6.8. For every t > 0 and s > 1, the following hold:
1

1− e−1/t
− t ∈ [

1

2
, 1]

1

log(1− s−1)
+ s ∈ [

1

2
, 1]

Furthermore, both functions are increasing.

Proof. The function s(t) = 1/(1−e−1/t) is an increasing bijection from (0,∞) to (1,∞)

and we have t = −1/ log(1 − s(t)−1). Thus it suffices to prove the properties regarding the
function:

f(t) =
1

1− e−1/t
− t =

eu

eu − 1
− 1

u
=
ueu − eu + 1

u(eu − 1)
, where u =

1

t

Then the claim that this quantity falls in the interval [1/2, 1] is equivalent to:

ueu − u ≤ 2ueu − 2eu + 2, and ueu − eu + 1 ≤ ueu − u

or equivalently,
0 ≤ (u− 2)eu + (u+ 2), and 1 + u ≤ eu

The second inequality is a standard fact, and plugging it into the first inequality shows it
easily. To show that f(t) is increasing, we evaluate the derivative:

d

d t

(
1

1− e−1/t
− t
)

=
e1/t

(e1/t − 1)2t2
− 1

The derivative is positive iff:
1

t2
≤ (e1/t − 1)2

e1/t

which follows from the following:

u ≤ u

∞∑
k=0

(u/2)2k

(2k + 1)!
= eu/2 − e−u/2, where u =

1

t

�
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Lemma 6.9. Let f0 : Rd → R+ be a function such that f0(x) = f0(λx) for any λ > 0,
and that f0 is differentiable when restricted to the unit sphere Sd−1. Define the scaling map
f(x) = f0(x)x for x 6= 0. Then the Jacobian determinant of f is given by:

J f(x) = f0(x)

Proof. We have that ∂
∂xj

(f0(x)xi) = δijϕ+ ∂f0
∂xj
xi where δij is the Kronecker delta. Then

J f = det(f0Id + (∇g)x>) = f0 + (∇f0)>x = f0

by the matrix determinant lemma and the fact that the directional derivative of f0(x) along
x is zero. �

The following lemma, which is a simple extension of Proposition 6.3 of [26], controls the
deviation of geodesic from the first order approximation:

Lemma 6.10. Let M be a smooth compact n-manifold embedded in RD with reach τ .
Suppose that x, y are connected by a (unit speed) geodesic γ : [0, r̃] → M of length r̃ with
γ(0) = x, γ(r̃) = y, and denote r = ‖x− y‖. Then the following inequalities hold:

r̃ − r̃2

2τ
≤ r ≤ r̃

If r ≤ 0.5τ , then the following hold:

r̃

τ
≤ 1−

√
1− 2r

τ
, and ‖y − (x+ r̃γ̇(0))‖ ≤ r̃2

2τ

If r ≤ (
√

2− 1)τ ≈ 0.4τ , then the following also hold:

r̃ ≤ r +
r2

τ
, and ‖y − (x+ r̃γ̇(0))‖ ≤ r2

τ

Proof. Since straight lines are geodesics in RD, we have r ≤ r̃. Meanwhile by the
triangle inequality,

r = ‖γ(r̃)− γ(0)‖ ≥ ‖r̃γ̇(0)‖ −
∥∥∥∥∫ r̃

0

∫ t1

0

γ̈(t2) d t2 d t1

∥∥∥∥ ≥ r̃ − r̃2

2τ

When r ≤ τ/2, this is equivalent to r̃ /∈ (τ − τ
√

1− 2τ−1r, τ + τ
√

1− 2τ−1r). Since r̃ = 0

when r = 0, by continuity we must have r̃ ≤ τ − τ
√

1− 2τ−1r.
To get the error bound of first-order approximation, we calculate by basic calculus the

following:

γ(r̃)− γ(0) =

∫ r̃

0

γ̇(t1) d t1 =

∫ r̃

0

(
γ̇(0) +

∫ t1

0

γ̈(t2) d t2

)
d t1 = r̃γ̇(0) +

∫ r̃

0

∫ t1

0

γ̈(t2) d t2 d t1

and thus

‖γ(r̃)− (γ(0) + r̃γ̇(0))‖ =

∥∥∥∥∫ r̃

0

∫ t1

0

γ̈(t2) d t2 d t1

∥∥∥∥ ≤ ∫ r̃

0

∫ t1

0

1

τ
d t2 d t1 =

r̃2

2τ
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where the last inequality holds because for any t, ‖γ̈(t)‖ ≤ τ−1 (the norm of the second
fundamental form is bounded above by τ−1. See Proposition 6.1 of [26]).

To get simpler bounds, now suppose that r ≤ (
√

2 − 1)τ . We note that x ∈ [0,
√

2 − 1]

implies17 1−
√

1− 2x ≤ x+ x2. Thus

r̃ ≤ τ − τ
√

1− 2τ−1r ≤ r +
r2

τ

‖γ(r̃)− (γ(0) + r̃γ̇(0))‖ ≤ r̃2

2τ
≤ r2

2τ 3
(r + τ)2 ≤ r2

τ
�

Lemma 6.11. Let M ⊆ RD be a compact smoothly embedded d-dimensional manifold with
reach τ . Let x ∈M and let 0 ≤ r ≤ (

√
2− 1)τ be a radius parameter. Then

expx(B̊r) ⊆ Br(x) ∩M ⊆ expx(B̊r+r2/τ )

Proof. The first inclusion expx(B̊r) ⊆ Br(x) ∩ M holds because a straight line is a
geodesic in the ambient space RD. To see the second inclusion, suppose that ‖x− y‖ = s ≤
(
√

2−1)τ . Then Lemma 6.10 tells us that any geodesic connecting (x, y) has length at most
s+ s2/τ . Applyig this to every s ≤ r, we get the inclusion. �

Sectional curvature may be used to bound the Jacobian of the exponential map, as
follows[24]:

Theorem 6.12. LetM be a Riemannian manifold with sectional curvature bounded below
and above by κ− and κ+. Then for x ∈M and v ∈ TxM , the following holds:

min

(
1,

sin
√
κ+‖v‖√

κ+‖v‖

)
≤ ‖(d expx)v‖ ≤ max

(
1,

sin
√
κ−‖v‖√

κ−‖v‖

)
for all ‖v‖ if κ+ ≤ 0, and for ‖v‖ ≤ π/

√
κ+ otherwise. The quantity sinx

x
is taken to be 1

when x = 0.

This implies a weaker bound given in terms of the reach:

Corollary 6.13. Let M ⊆ RD be a smoothly embedded compact Riemannian manifold
with reach τ . Then for x ∈M and v ∈ TxM satisfying r := ‖v‖ ≤ πτ , we have:

sinh
√

2τ−1r√
2τ−1r

≤ ‖(d expx)v‖ ≤
sin τ−1r

τ−1r

In particular, if r ≤ 2τ , then

1− r2

6τ 2
≤ ‖(d expx)v‖ ≤ 1 +

r2

2τ 2

17Since (x+ x2)/(1−
√

1− 2x) ∈ [1, 1.07] when x ∈ [0,
√

2− 1], this relaxation overestimates by at most
7 percent.
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Proof. Norm of the second fundamental form is bounded above by τ−1 [26], and
thus by the Gauss equation applied to sectional curvature (i.e. K(u, v) = 〈R(u, v)u, v〉 =

〈I(u, u), I(v, v)〉 − ‖I(u, v)‖2 for orthonormal u, v), we may take κ− = −2τ−2 and κ+ = τ−2

for the curvature bounds. Thus the radius condition reads r ≤ πτ . Then we have:
sin
√
κ+r√

κ+r
=

sin τ−1r

τ−1r
= 1− r2

6τ 2
+O(r4) ≥ 1− r2

6τ 2

sin
√
κ−r√

κ−r
=

sinh
√

2τ−1r√
2τ−1r

= 1 +
r2

3τ 2
+O(r4) ≤ 1 +

r2

2τ 2
for r ≤ 2τ

where in the end we used sinhx ≤ x+ x3

4
for x ∈ [0, 2

√
2]18. �

Lemma 6.14. For a metric space M and its n-fold product space Mn, the following
function is a metric on Mn:

d◦(x, y) := min
σ,τ∈Sn

dM(σ · x, τ · y) = min
σ∈Sn

dM(x, σ · y)

where Sn is the permutation group on n elements and σ · (y1, . . . yn) = (yσ(1), . . . yσ(n)) per-
mutes the coordinates. If M = R, x, y ∈ M , and if entries of x, y are arranged in the
decreasing order, then

d◦(x, y) = ‖x− y‖

Proof. Reflexivity and symmetry of d◦ hold obviously. To see the triangle inequality,
suppose that x, y, z ∈MD and define σxy by the relation d◦(x, y) = dM(x, σxy · y) (similarly
for σyz, σxz). Then

d◦(x, y) + d◦(y, z) = dM(x, σxy · y) + dM(y, σyz · z)

= dM(x, σxy · y) + dM(σxy · y, σxy · σyz · z)

≥ dM(x, σxy · σyz · z)

≥ d◦(x, z)

This shows that d◦ is indeed a metric.
Consider M = R. Suppose that x1 ≤ · · · ≤ xn, y1 ≤ · · · ≤ yn. Then we claim that for

any σ ∈ Sn, ‖x − y‖ ≤ ‖x − σ · y‖. Suppose z ∈ Rn doesn’t necessarily have its entries
ordered in a decreasing order. If there exists a pair i < j with zi > zj, then we have:
‖x−τij ·z‖ < ‖x−z‖, where τij ∈ Sn is the transposition that swaps i and j. This is because
whenever a < b, a′ < b′, we have (a − a′)2 + (b − b′)2 < (a − b′)2 + (b − a′)2. By repeatedly
applying this sorting process to z = σ ·y, we get the claim. The sorting process ends in finite
time because one can recursively take the smallest unsorted element and swap it all the way
down, i.e. perform a bubble sort. �

18This can be manually checked by computing the first and the second derivative of x+ x3/4− sinhx.
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