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Abstract

We revisit the classical problem of approximating a stochastic differential equation by a discrete-time
and discrete-space Markov chain. Our construction iterates Carathéodory’s theorem over time to match
the moments of the increments locally. This allows to construct a Markov chain with a sparse transition
matrix where the number of attainable states grows at most polynomially as time increases. Moreover,
the MC evolves on a tree whose nodes lie on a “universal lattice” in the sense that an arbitrary number of
different SDEs can be approximated on the same tree. The construction is not tailored to specific models,
we discuss both the case of uni-variate and multi-variate case SDEs, and provide an implementation and
numerical experiments.

1 Introduction
Consider a stochastic differential equation (SDE) with generic vector fields µ and σ

dXt = µ(Xt)dt +σ(Xt)dWt , X0 = x ∈ Rd (1)

and driven by a multi-dimensional Brownian motion W . The aim of this article is to construct a map

DISCRETIZEn : (µ,σ ,x) 7→ (Mn,x)

parametrized by a discretization parameter n = 1,2, . . . that takes as inputs the drift µ and the diffusion
vector field σ , as well as the starting position x, and which outputs the transition matrix M of a Markov
chain1 (MC), denoted as Xn = (Xn

i )i=0,1,2,... with starting value Xn
0 = x, and such that

Law(Xn)→ Law(X) as n→ ∞ and the state space of the Markov Chain Xn is a sparse tree.

Naive discretization strategies generically lead to an explosion of the state space of the MC.

Example 1. Consider the one-dimensional SDE

dXt = σ(Xt)dWt , X0 = x ∈ R

and the Markov chain Xn given (implicitly) as the discretized Euler scheme

Xn
i+1 = Xn

i +n−1/2
σ(Xn

i )Bi,
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1Throughout we refer to a discrete-time and discrete-space Markov process when we refer to a Markov chain (MC).
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where Bi denote independent Bernoulli random variables. Then Xn converges in law to X, but for generic
volatility σ the cardinality of the state space of Xn grows in time i as O(2i) because the tree nodes of the
random walk “do not recombine”. However, the special case σ(x) = 1 shows that “small state spaces”
are possible since in this case the simple symmetric random walk

Xn
i+1 = Xn

i +n−1/2Bi,

converges weakly to X – in this case a Brownian Motion – and the cardinality of the state space grows
only linearly with the number of steps since Xn evolves on a “recombining tree”.

Although Example 1 is elementary, it motivates the arguably most popular approach to time-space
discretization, namely to transform the SDE (2) into an SDE with constant volatility where naive time-
space discretization strategies work. The main contribution of this work is to completely avoid such
transformations (change of measure, Doss–Sussman, Lamperti, etc.) by using ideas from convex geometry
about reducing the support of discrete measures; so called recombination of measures. This results in
several attractive properties of DISCRETIZEn compared to classical approaches: in particular, it naturally
extends to the multi-variate case and even for one-dimensional diffusion it relaxes assumptions on the
vector fields µ and σ . Moreover, the construction is universal in the sense that when applied to many
SDEs X ,Y, .., the resulting MCs Xn,Y n, . . . evolve in the same state space that is a lattice, in fact on the
same recombining tree with different branching probabilities.

Related Work. The problem of approximating an SDE by a MC arises in many areas:

Mathematical Finance. One of the earliest motivations came from American option pricing and resulted
in the famous Cox–Ross–Rubinstein [9] model which uses a MC to approximate the Black–Scholes
SDE. A big improvement was made in the work of Nelson and Ramaswamy [47], which uses the
Lamperti transform to construct a recombining tree so that the number of states of the MC increases
at most linearly with the number of steps, thus avoiding the exponential explosion of states in [9].
This approach has been refined and extended to models beyond Black–Scholes, such as multi-variate
SDEs [3, 12], such as GBM, CIR and CEV models [2, 14, 16, 17, 36, 46, 55], regime-switching
[38, 39, 54], stochastic volatility models [15, 35, 35, 44, 44], and many other model-specific
solutions [19, 24, 41]. We also highlight that approaches that do not rely on transformations have
been developed such as [49, 50, 51] that use probability density functions approximations such as
Edgeworth expansions, model specific approaches [19, 41], or moment approximations [7, 8, 29, 34].
All of these have areas where they are advantage but among the drawbacks are they rely on either
genuinely one-dimensional arguments, exploit model-specific properties, can result in negative
transition probabilities that arise due to transformations or moment approximations.

Optimal Control. American option pricing can be seen as a special case of an optimal control problem
where MC approximations are classic; see Kushner [31] and [32, Chapter 10, Theorem 6.2] for
general background. An essential tool in this literature is to construct MCs by matching local
moments [31, 32]2 which ensures convergence to the SDE. These local consistency conditions are
also central to our construction (Definition 3 and Lemma 2)3. Note that in general the topology of
weak convergence is too coarse to guarantee that the solution of an optimal control problem for MCs
can be transferred to SDEs but under additional assumptions this holds; in particular, we show that
this is the case for our lattice-tree model approximation under essentially the same assumption used
in the approximation of [32]. We also highlight [19, 41]

2See e.g. [32, Equation (1.3), page 71].
3In particular, for the schemes we build the conditions required by [31, 32] can be proved to be equivalent thanks to the bounds of

Theorems 4, 8, 10.
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Formal Verification. More recently, the formal verification community has started to investigate how to
formally verify SDEs [4, 28, 56, 57]. Software tools, such as PRISM [33] or Storm [11], exploit
structural properties of the transition matrix of MCs to allow scalable formal proofs that are applied
to check whether probabilistic temporal-logic properties hold or not. These tools can be leveraged
for the formal verification of SDEs by using them on MC approximations that are close in law to
the given SDE. In this context, it is especially important that firstly, the discretization applies to
large classes of SDEs under generic assumptions on drift and volatility vector fields; secondly, it is
essential that the approximating MC transition matrix has structure, such as sparsity.

Similarly, the topic of reducing the support of a measure while matching statistics given as integrals against
a set specified functions (such as monomials) is well studied:

Recombination. If the measure is discrete then it is a direct consequence of Carathéodory’s Theorem that
such a reduction is possible. However, the proof of Carathéodory’s Theorem is not constructive and
the design of algorithms that carry out such a measure construction efficiently is still the subject of
recent research; e.g. just over the last ten years the articles [6, 20, 21, 22, 37, 43, 53] provide novel
algorithms. Recombination has already been used in the context of SDE simulations: in order to
make “Cubature on Wiener Space” [42] efficient, a recombination step is applied iteratively over
time, similar in spirit to our construction; see [37] for a discussion on how powerful this can be for
cubature methods on Wiener space. However, there the focus is to match the marginal distribution
of an SDE at a fixed time but the total number of possible states that can be visited over time grows
very quickly. This makes this approach too expensive to store the whole model which in turn is
required for the above mentioned applications in finance, optimal control, and formal verification.
Nevertheless, combining the result of this paper with cubature paths for Brownian motion might be
an interesting future research venue.

Contribution and Outline. Our approach is inspired by the above mentioned local consistency con-
ditions. The novelty is that we iterate Carathéodory’s recombination to obtain the algorithm (Mn,x) :=
DISCRETIZEn(µ,σ ,x), such that the resulting MC Xn = (Xn

i ) with transition matrix Mn satisfies the
following points:

1. the MC Xn is a always a stochastic process, that is the transition matrix Mn is a stochastic ma-
trix. This is noteworthy, since one of the biggest drawbacks of the landmark paper Nelson and
Ramaswamy [47] and many of the above mentioned literature, is that it can result in “negative
transition probabilities” between nodes, already in the one-dimensional case.

2. the transition matrix Mn is sparse and as a consequence the support of Xn grows slowly. This allows
to store the whole model, which in turn allows the use in optimal stopping or formal verification
algorithms.

3. the approach is not tailored to specific models under the standard regularity assumptions on the
vector fields, and it extends to the multi-dimensional case. For dimensions d ≥ 3 some additional
assumptions are needed, but notice that there are very few baselines to compare to, since most results
are model-specific or only apply in the one-dimensional case.

4. The state space is a universal lattice in the terminology of Chen and Yang [5]: for every n there
exists a γn such that DISCRETIZEn applied to many SDEs X ,Y, .. gives MCs Xn,Y n, . . . that evolve
on the same recombining tree that has as nodes a subset of the lattice γnZd .

The structure of the paper is as follows: Section 2 provides general background and informally describes
the algorithm DISCRETIZEn. Sections 3, 4 and 5 contain the main theoretical results and are divided
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based on the dimension treated: Section 3 treats one-dimension state spaces and Section 4 treats two-
dimensional state spaces. The general case is treated in 5 and makes stronger assumptions on the vector
fields. Section 6 compares to previous work and expands on applications such as optimal stopping. Finally,
Section 7 turns the theoretical results of the previous sections into algorithms and presents numerical
experiments.
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2 Background
In this Section, we provide background and outline the basic construction.

Lattice Approximations. Throughout we consider a d-dimensional SDEs in Ito form

dX s,x
t = µ(X s,x

t )dt +σ(X s,x
t )dWt , X s,x

s = x ∈ Rd , (2)

on a time interval [0,T ] where µ : Rd → Rd and σ : Rd → Rd×h. When there is no confusion, we denote
X s,x as X and we use Xx if s = 0. We recall that if µ,σ are Lipschitz continuous and have linear growth,
then there exists a pathwise unique solution to Equation (2), see for example N. Ikeda [45] and for weaker
conditions see [52]. Our goal is find a sequence (Xn) of MC that converges fast in weak topology to X .

Definition 1. Let (Xn)n≥1 be a sequence of Markov chains and denote Xn = (Xn
i )i≥0 to emphasize the

time-coordinate i . Further, let (γn)n≥1 ⊂ (0,∞) a sequence that converges to 0. We say that (Xn)n≥1

1. is a lattice approximation to X if Xn
i ∈ γnZd for all n > 0, i≥ 0;

2. converges weakly to X with respect to a class of functions F, if for every f ∈ F, t ∈ [0,T ]
limn→∞E[ f (Xn

bnt/Tc)] = E[ f (Xt)];

3. converges weakly to X with rate α respect to the class of functions F if for every f ∈ F, t ∈ [0,T ]

E[ f (Xt)]−E[ f (Xn
bnt/Tc)] = O(n−α).

Two important classes F of test functions for our approach are the continuous differentiable functions with
polynomial growth and, resp. with linear growth: Cl

P(E,F) denotes the space of functions from E to F l
times continuously differentiable with polynomial growth, including their derivatives; similarly Cl

b(E,F)
denotes the space of functions from E to F l times continuously differentiable with linear growth, with
uniformly bounded derivatives.

State Space Growth. An essential requirement is that the number of states that the MC can attain grows
slowly as time progresses. Example 1 shows that in naive discretization schemes the support of Xn

i grows
exponentially in i, but sometimes the growth can be at most polynomial.

Definition 2. A Markov chain Xn = (Xn
i )i=0,1,2,... is sparse if card[supp(Xn

i )] = O(id) as i→ ∞.
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The same definition appears in Nelson and Ramaswamy [47] but there they use instead the term “recom-
bining” for what we call a sparse MC in Definition 2. We prefer the term “sparse” for two reasons: firstly,
to avoid confusion with the “recombination of measure” that is essential in our construction; secondly, we
want to highlight that, unlike previous work, the emphasis of our approach is not the construction of a
recombining tree – instead, we focus directly on controlling the size of the support. If a MC is sparse in the
sense of Definition 2, then its transition matrix has sparse row entries (since there are di lattice points and
only O(id) can be reached). That the resulting MC evolves on a recombining lattice tree is a consequence
of this approach, rather than its main goal (when n gets large, see Section 7 for examples).

Local Consistency. Denoting with
Σ(x) = σ(x)σ(x)>

and applying Ito’s lemma4 shows that there exists a q≥ 1 and α > 0 and natural number N such that for
all n > N

|E[Xt+n−1 −Xt |Xt = x]−µ(x)n−1| ≤c(1+ |x|q)n−1−α

|E[(Xt+n−1 −Xt −n−1
µ(Xt))

⊗2|Xt = x]−Σ(x)n−1| ≤c(1+ |x|q)n−1−α ,

where the constant c = c(µ,σ) depends only the vector fields. These two estimates characterize the SDE
and it is a classic result that MCs that locally approximate these two moments converge weakly.

Definition 3. [Local consistency [30, page 328]] We say that a sequence (Xn)n≥1 of MCs is locally
δ (n)-consistent with X, if there exists a function n 7→ δ (n) such that δ (n)→ 0 as n→ ∞ and for every
i≤ n

E

(
E
[

Xn
i+1−Xn

i

n−1

∣∣∣Xn
i

]
−µ(Xn

i )

)2

= O(δ (n)), and E

E

[
(Xn

i+1−Xn
i )
⊗2

n−1

∣∣∣Xn
i

]
−Σ(Xn

i )

2

= O(δ (n)).

Theorem 1. [30, Theorem 9.7.4] Let (Xn) be locally δ (n) consistent with X and further assume

E[|Xn
i+1−Xn

i |6]≤δ (n)n−2 and E[max
i
|Xn

i |2q]≤ c(1+ |X0|2q) for every q≥ 1, (3)

and that the vector fields coefficients µ,σ are in C4
b . Then5

|E f (Xn
n )−E f (XT )| ≤ c ·

(
min

{√
δ (n),n−1/2

})
, f ∈C3

P(Rd ,R), (4)

where the constant c depends only on x,µ,σ , f .

Clearly for SDEs the convergence criterion (1) is equivalent to the convergence criterion of Definition 1.

Remark 1. Our regularity assumptions follow closely [30] from which Theorem 1 is taken. The literature
also provides similar results under similar regularity assumptions. For example Ethier and Kurtz [13],
Stroock and Varadhan [52] provides general results regarding Markov processes, whereas Kushner
[31], Kushner and Dupuis [32] generalises to controlled SDEs (we return to this in Section 6.2) although
none of these comes with explicit rates, as in Theorem 1.

4µ,σ ∈C4
b is sufficient; [30, 52] for weaker conditions

5The rate of convergence is stated in the proof of [30, Theorem 9.7.4].
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Lattice-Tree models by Recombination. We construct a lattice approximation Xn to X by specifying
the transition matrix P(n)

x,y := P(Xn
i+1 = y|Xn

i = x) inductively, by iterating over i. Let X0 = x a.s., and define
Xn

0 := x. Now assume that we can construct a lattice-valued random variable Yx such that

E[Yx]≈ µ(x)n−1, E[Y⊗2
x ]≈ µ(x)⊗2n−2 +Σ(x)n−1.

We then set P(n)
x,y := P(Yx = y− x) which determines the row P(n)

x,: . For each y such that P(n)
x,y 6= 0 we then

repeat the same procedure for the row P(n)
y,: , see Algorithm DISCRETIZE. If additionally each Yx has a

small support and the support is constrained on a lattice γnQZd , with Q denoting a d×d-matrix, then it
follows that the transition matrix P(n) is sparse and that

E[Xn
1 −Xn

0 |Xn
0 = x]≈ µ(x)n−1, E[(Xn

1 −Xn
0 )
⊗2|Xn

0 = x]≈ µ(x)⊗2n−2 +Σ(x)n−1, (5)

with Xn a MC that has the lattice QγZd as its state space. So far we have made the strong assumption that
the lattice-valued random variable Yx exists: this is not obvious, since formally this means to solve the
non-linear and lattice-constrained system{

∑
r
i=1 pili ≈ µ(x)n−1

∑
r
i=1 pil⊗2

i ≈ µ(x)⊗2n−2 +Σ(x)n−1 (6)

subject to : pk ≥ 0,
r

∑
k=1

pk = 1, li ∈ γQZd ,

where ∑i piδli denotes the law of the increment Yi. The main result of the following sections is to show
that – perhaps surprisingly – this is in general possible, and it can be done efficiently in terms of rate of
convergence as well as size of the state space of Xn. In order to show the existence of such a lattice-valued
random variable Yx that has small support r and that approximately matches the first two moments (2), we
make use of a classic theorem of Carathéodory.

Theorem 2 (Carathéodory [40] ). Let {xi}N
i=1 be a set of N points in Rn and N > n+1. Any point z that

lies in the convex hull of these N points, z can be expressed as a convex combination of maximum n+1
points, i.e. z = ∑

n+1
j=1 p jx?j , where x?j ∈ {xi}N

i=1 and 0≤ pi ≤ 1, ∑i pi = 1 .

Section 3 discusses this for d = 1 and Section 4 resp. Section 5 for d = 2 resp. d ≥ 3.

3 Lattice-Tree Models for One-Dimensional Diffusions
We now apply the methodology outlined at the end of Section 2 to one-dimensional SDEs. The first step
establishes the existence of a random variable Y that matches (or closely approximates) any given first two
moments and is additionally supported on a lattice. The second step uses this random variable to define the
MC.

Matching the Moments
For γ > 0, a ∈ R denote

bacγ :=max{γz,z ∈ Z s.t. γz≤ a}, daeγ := min{γz,z ∈ Z s.t. γz > a}.

If γ = 1 we suppress the subscript γ and the above reduces to the standard notation for the ceiling and floor
functions.

6



Theorem 3. Let a,b ∈ R, b≥ 0, and γ > 0. Then there exists a random variable Y such that

1. E[Y ] = a and |E[Y 2]−a2−b2| ≤ γ2

4 ,

2. supp(Y )⊂ {y ∈ γZ : |y| ≤
√

a2 +b2 + γ}.

Moreover, if

a2 +b2 ≥ (dae2
γ
−bac2

γ
)(a−bac

γ
)γ−1 + bac2

γ
,

then one can additionally assume that E[Y 2] = a2 +b2.

Proof. Wlog suppose a≥ 0. For a discrete random variable Y denote pi := Pr(Y = yi). If

E[(Y,Y 2)] = ∑
i

pi(yi,y2
i ) = (a,m) (7)

for a m such that |m− (a2 +b2)| ≤ γ2/4 and yi ∈ γZ, then the result follows. We distinguish three cases,
depending on the position of (a,a2 +b2) in relation to the points (daeγ ,dae2γ), (bacγ ,bac2γ), as depicted in
Figure 1. Formally, 

Case 1 : a2 ≤ a2 +b2 ≤ dae
2
γ−bac

2
γ

daeγ−bacγ
(a−bac

γ
)+ bac2

γ
,

Case 2 :
dae2γ−bac

2
γ

daeγ−bacγ
(a−bac

γ
)+ bac2

γ
≤ a2 +b2 ≤ dae2

γ
,

Case 3 : dae2
γ
≤ a2 +b2.

(8)

Figure 1: Proof of Theorem 3. bi represents b under the hypothesis of Case i.

Case 1. We claim that we can choose y1 = bacγ , y2 = daeγ , p1 =
a−bacγ
daeγ−bacγ

and p2 = 1− p1. This gives

E[Y ] = a and the bound on |EY 2−a2−b2| follows from a direct calculation:

E[Y 2] =
a−bac

γ

dae
γ
−bac

γ

dae2
γ
+

(
1−

a−bac
γ

dae
γ
−bac

γ

)
bac2

γ
=

a−bac
γ

γ
(dae2

γ
−bac2

γ
)+ bac2

γ

=
a−bac

γ

γ
((bac

γ
+ γ)2−bac2

γ
)+ bac2

γ
= (a−bac

γ
)(γ +2bac

γ
)+ bac2

γ
.

Assuming that b satisfies the inequalities (3)-Case 1, results in

E[Y 2]−a2−b2 =(a−bac
γ
)(γ +2bac

γ
)+ bac2

γ
−a2−b2

7



≥(a−bac
γ
)(γ +2bac

γ
)−
dae2

γ
−bac2

γ

γ
(a−bac

γ
)

≥(a−bac
γ
)(γ +2bac

γ
)− (γ +2bac

γ
)(a−bac

γ
)≥ 0.

Denoting θ := (a−bac
γ
)/γ ∈ [0,1] we write

E[Y 2]−a2−b2 =(a−bac
γ
)(γ +2bac

γ
)+ bac2

γ
−a2−b2

≤(a−bac
γ
)(γ +2bac

γ
)+ bac2

γ
−a2

≤θγ(γ +2bac
γ
)+ bac2

γ
− (bac

γ
+θγ)2 ≤ θγ

2(1−θ)≤ γ2

4
.

Case 2. The point (a,a2 +b2) is contained in the convex hull spanned by the four points6

{(y,y2) : y ∈ {±daeγ ,±bacγ}}. (9)

By Carathéodory’s Theorem 2, (a,a2 +b2) is a convex combination of three points of the set (3). Hence,
(3) holds with m = a2 +b2.

Case 3. Since a2 +b2 ≤
⌈√

a2 +b2
⌉2

γ

the point (a,a2 +b2) is contained in the convex hull spanned by the

four points {(y,y2) : y ∈ {±daeγ ,±
⌈√

a2 +b2
⌉2

γ

}}, and by Carathéodory’s Theorem 2 we can conclude.

To finish the proof, we need the bounds on the support of the r.v. Y , however it is sufficient to note that
this is true by construction.

For special cases of a,b one gets stronger results (with simpler proofs).

Corollary 1. Let b≥ 0, and γ > 0. Then there exists a random variable Y with

1. E[Y ] = 0 and E[Y 2] = b2,

2. supp(Y )⊂ {y ∈ γZ : |y| ≤ b+ γ}.

Proof. Let us call a++ = min{γz > 0,z ∈ Z s.t. γ2z2 > b2}, then one possible solution (but not the only
one) is the r.v. Y with support on±a++ with probability b2/(2a2

++) and 0 with probability 1−b2/a2
++.

Corollary 2. Let a,b ∈ R, b≥ 0, and γ > 0. Then there exists a r.v. Y with

1. E[Y ] = a and E[Y 2] = a2 +b2;

2. supp(Y )⊂ {y ∈ γZ∪{a} : |y| ≤
√

a2 +b2 + γ}.

Proof. It should be clear from Figure 1 that adding a to the lattice γZ, the convex hull of the 6 points
(±bacγ ,bac2γ),(±a,a2),(±daeγ ,dae2γ),(±d

√
a2 +b2eγ ,d

√
a2 +b2e2γ) contains the point (a,a2 + b2) and

the Caratheodory’s Theorem 2 concludes the proof.

Remark 2. In some applications, it can be required to constrain the support of the r.v. on specific intervals,
e.g. in finance the price quantity should be non-negative. In this case, from Figure 1, it should be clear
that one could proceed looking for the smallest point γz? such that the point (a,a2 +b2) lays in the convex
hull of the points (γ,γ2), (bacγ ,bac2γ), (daeγ ,dae2γ) and (γz?,γ2z2

?).
6Other solutions can exist.
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Constructing the Lattice-Tree Model
Now we are ready to build the Markov chain Xn which approximates X and such that the state space
recombines if the SDE coefficients are bounded for the case d = 1. We extend to models with dimension
greater than 1 in the next Sections.

Theorem 4. Let d = 1 and µ,σ ∈C4
b , β > 0 and σ2

min := infx σ2(x). Set

γn :=

{
2n−1/2σmin , if σmin > 0,√

n−1−β , , otherwise.

Then there exists a lattice approximation (Xn)n≥1 to X on X0∪ γnZ respect to the class of functions f ∈C3
P

with rate 1/2 if σmin > 0, or min(β , 1
2 ) otherwise. Moreovercard[supp(Xn

i )]≤ icn−1/2

γn
+ ic , if µ,σ are bounded,

card[supp(Xn
i )]≤

i(cn−1/2+γn)exp(cin−1/2)
γn

, if µ,σ have linear growth.

Note that, if µ,σ are bounded and σmin > 0, then card[supp(Xn
i )]≤ ic, i.e. Xn recombines.

The proof below allows to state the same result but with the lattice approximation supported on the
“shifted lattice” X0 + γnZ instead of X0 ∪ γnZ. However, an advantage of the above formulation is that
several diffusions can be supported on the same lattice, namely γnZ and the union of their starting points,
whereas shifting the lattice would require to build a complete new lattice every time a diffusion is added.
We prepare the proof of Theorem 4 with the following Lemma.

Lemma 1. If there exists α > 0 and a q≥ 1 such that for m = 1,2

1.
∣∣∣E[(Xi+1−Xi)

⊗m|Xi = Xn
i ]−E[(Xn

i+1−Xn
i )
⊗m|Xn

i = Xn
i ]
∣∣∣≤ c(1+ |Xn

i |q)n−1−α ,

2. E[maxi |Xn
i |q]≤ c(1+ |X0|q),

3. E[|Xn
i+1−Xn

i |6|Xn
i ]≤ c(1+ |Xn

i |q)n−2−2α ,

then Xn converges weakly with rate min{α, 1
2} to X for f ∈C3

P.

Proof. The first two items imply the local consistency (1) for δ (n) = n−2α , see Appendix, Lemma 2.
Similarly, the second and third items imply the conditions required by Theorem 1, in particular the third
item, thanks to item 2, implies E[|Xn

i+1−Xn
i |6]≤ δ (n)n−1 with δ (n) = n−2α .

Proof of Theorem 4. We first deal with the strictly elliptic case when σ2
min := infx σ2(x)> 0. Theorem 3

applied with a = µ(x)n−1 and b = σ(x)n−1/2 guarantees the existence of a random variable Yx such that

E[Yx] = µ(x)n−1, E[Y 2
x ] = µ

2(x)n−2 +σ
2(x)n−1 (10)

and such that

supp(Yx) =

{
zγn,z ∈ Z s.t. |z|γn ≤

√
µ(x)2n−2 +σ(x)2n−1 + γn

}
, (11)

if we can show that

a2 +b2 ≥ (dae2
γn
−bac2

γn
)(a−bac

γn
)γ−1

n + bac2
γn
. (12)

9



Substituting (3) yields

σ(x)2

n
≥
d µ(x)

n e
2
γn−b

µ(x)
n c

2
γn

γn

(
µ(x)

n
−bµ(x)

n
cγn

)
+bµ(x)

n
c2γn−

µ2(x)
n2 =θγ

2
n (1−θ), (13)

where θ in the last equality is defined as θ := ( µ(x)
n −b

µ(x)
n cγn)γ

−1
n . Since θ ∈ [0,1], choosing γn ≤

2n−1/2σmin implies (3) because θ(1−θ) ∈ [0,1/4] if θ ∈ [0,1]. Hence, the existence of the random vari-
able Yx matching the moments (3) and with support on the grid (3) follows. By applying this construction
to different x we can define a Markov chain Xn as described in Algorithm DISCRETIZE by inductively
filling out the transition matrix P(n).
If Xn

0 is not in the lattice γnZ some attention is needed: to have Xn
1 in γnZ it is necessary to build YXn

0
on

the lattice γnZ−Xn
0 , indeed Xn

1 = Xn
0 +YXn

0
would be in γnZ. This is also equivalent to build the r.v. ỸXn

0

on γnZ s.t. EỸXn
0
= µ(Xn

0 )+Xn
0 and EỸ 2

Xn
0
= σ(Xn

0 )
2 +(µ(Xn

0 )+Xn
0 )

2 and define YXn
0

:= ỸXn
0
−Xn

0 with

support on γnZ−X0 s.t. EYXn
0
= µ(Xn

0 ) and VYXn
0
= σ(Xn

0 )
2.

The resulting Markov chain Xn evolves on the state space γnZ and it only remains to show the claimed
convergence rate and growth of the support as the time progresses. We do this by showing that the assump-
tions of Lemma 1 apply. Lemma 1-Item (1) holds by (3). Lemma 1-Item (2) holds in great generality for
Markov chains following this construction, see Lemma 3. For the remaining Lemma 1-Item (3) note that
for some z j ∈ Z

E |Yx|6=
3

∑
j=1

p j|2n−1/2
σminz j|6≤c

∣∣∣n−6
µ(x)6+n−3

σ(x)6+26n−3
σ

3
min

∣∣∣≤c(1+|x|6)n−3,

which we can apply to x = Xn
i and shows that the assumptions of Lemma 1 are satisfied which in turn

finishes the proof of the convergence rate.
When µ,σ have linear growth, in order to bound the growth of the support we use the discrete

Grönwalls Inequality, cf. Lemma 4,

|Xn
i | ≤

i−1

∑
j=0

∣∣∣YXn
j

∣∣∣≤ i−1

∑
j=0

n−1/2c(1+ |Xn
j |)+ γn ≤ (cn−1/2i+ iγn)exp(cin−1/2).

Since the points lk ∈ γnZ such that |lk| ≤ c are c/γn we have that

card[supp(Xn
i )]≤

i(cn−1/2 + γn)exp(cin−1/2)

γn
.

If µ,σ are bounded, it is easy to obtain through similar reasoning that

|Xn
i | ≤

i−1

∑
j=0

∣∣∣YXn
j

∣∣∣≤ icn−1/2 + iγn,

which implies that

card[supp(Xn
i )]≤

icn−1/2

γn
+ ic.

This finishes the proof of the elliptic case σ2
min > 0.

The non-elliptic case, infσ2(x) = 0, follows analogously: as before we rely on Theorem 3 that ensures
the existence of a random variable Yx such that

E [Yx] = n−1
µ(x), E[Y 2

x −n−2
µ

2(x)−n−1
σ

2(x)]≤ γ2
n

4

10



and that is supported on γnZ. Note that, unlike in the elliptic case, this time we do not match the second
moment exactly, and the second moment condition shows that for any any β > 0 we can take γn ≤ n

−1−β

2 .
For the rates of convergence it is enough to observe that

√
δ (n) of Theorem 1 is equal to β due

to approximation of the second moment, see Lemma 1-Item (1). Moreover, remember that the rate of
convergence in Theorem 1 is bounded by 1/2.

Note that both the choices of γn satisfy nγ2
n < c for some c > 0, as required by Lemma 3.

For the special case µ(x) = 0 we can prove the following Corollary.

Corollary 3. Let d = 1, µ = 0, σ ∈C4
b and for any c > 0 set γn = cn−1/2. If Xn

0 ∈ γnZ, then there exists a
lattice approximation (Xn)n≥1 to X on γnZ respect to the class of functions f ∈C3

P with rate 1/2. Moreover,
the same bounds on the cardinality of the support of Theorem 4 hold true.

Proof. If µ(x) = 0 we can use Corollary 1 and then follow the same reasoning of the previous proof. Since
the first two moments can be approximated exactly independently of the lattice considered, we can choose
γn = cn−1/2 for any c > 0. The dependence of γn on n is chosen because required by Lemma 3: γn must
satisfy nγ2

n < c for some c > 0.

4 Lattice-Tree Models for Two-Dimensional Diffusions
We now carry out the same procedure in the two-dimensional case. The key difference to the one-
dimensional case is in the first step: the existence of a random variable that matches the moments closely
and is supported on a lattice is much more involved to be shown. Nevertheless, we show that by using the
eigenvalues of the matrix B the system in (2) can be solved.

Matching the Moments
Throughout this Section we fix a ∈Rd and B ∈Rd×d . We assume that B is symmetric and positive definite
and denote the eigenvalues of B with (λi)i ordered from biggest to smallest, λ1 ≥ λ2 ≥ ·· · ≥ λmin with
λmin denoting the smallest eigenvalue. We need the following two theorems to prove the main statements
of this Section.

Theorem 5. [Hoffman and Wielandt [25]] If A and B are normal matrices with eigenvalues λi[A] and
λ j[B], then there exists a suitable numbering of the eigenvalues s.t.

∑
i
|λi[A]−λi[B]|2 ≤ |A−B|2.

Theorem 6. [Gerschgorin Circle Theorem [18]] Let B ∈ Rd×d with entries bi j, then every eigenvalues λi
of B lies in at least one of the Gershgorin circles

Circle(bii) := {c ∈ C : |c−bii| ≤∑
j 6=i
|bi j|}.

Now we are ready to prove the main statement.

Theorem 7. Let d = 2, a ∈ Rd , B ∈ Rd×d symmetric and positive definite, λmin > 0, then for every γ such
that 0 < γ ≤

√
λmin/3 there exists a random variable Y such that

1. E[Y ] = a and E[Y⊗2] = a⊗2 +B;

2. supp(Y )⊂ {y ∈ γZ2 : |y|∞ ≤ |a|∞ +
√

2λ1 +
√

2λ2 +6γ}.

11



Moreover, if a = 0, the above applies for every 0 < γ ≤
√

λmin.

Proof. We first consider the case when a = 0. In this case, note that if Ȳ is a discrete random variable
that matches the second moment, EȲ⊗2 = B, and Z is a Bernoulli random variable independent of Ȳ , such
that P(Z =±1) = 1

2 , then the random variable Y := Z · Ȳ has mean E[Y ] = a = 0 and E[Y⊗2] = B. Hence,
solving the system (2) reduces to find l1, . . . , lr ∈ γZ2 such that

r

∑
i=1

pililT
i = B, pi ≥ 0,

r

∑
i=1

pi = 1, (14)

for some r ∈ N+. Moreover, since B is symmetric, there exists Q ∈ Rd×d orthonormal whose columns are
the eigenvectors of B, such that B = QΛQT and Λ is diagonal with elements the eigenvalues of B, which
are strictly positive by assumption. Applying this, allows to rewrite (4) as

r

∑
i=1

piQT lilT
i Q = Λ, pi ≥ 0,

r

∑
i=1

pi = 1. (15)

Henceforth, we denote with q1 = (q11,q12) and q2 = (q21,q22) the two eigenvectors of B. It follows that if
q1 is an eigenvector for Q, then −q1 is also an eigenvector for the same eigenvalue and −q1 still forms
an orthonormal basis with ±q2. We use these properties of eigenvalues in the following without loss of
generality.

Case q12 = 0 or q21 = 0. Assume q12 = 0 (the case q21 = 0 follows analogously), then q1 = e1 and q2 = e2.
Hence, Q = I and we can refer to Theorem 9, which applies to d greater than 2 and B semi-positive definite.

Case q11,q21 > 0. We first note that
〈q1,q1〉2 = q2

11 +q2
12 = 1

〈q2,q2〉2 = q2
21 +q2

22 = 1
〈q1,q2〉= q11q21 +q12q22 = 0,

if and only if


q11 = sign(q11)

√
1−q2

12

q21 = sign(q21)
√

1−q2
22

q11
q12

=− q22
q21

.

Using the last equation on the system on the right hand side, we obtain

sign(q11)sign(q12)

√
1−q2

12

|q12|
=−sign(q21)sign(q22)

|q22|√
1−q2

22

.

This in turn implies that
sign(q11)sign(q12) =−sign(q21)sign(q22).

We now claim that without loss of generality, we can assume that q11 > 0, q12 > 0 and q21 > 0,q22 < 0:
indeed if we flip the sign of the eigenvectors they are still eigenvectors and we can re-label q1,q2. Moreover,
note that

q11

q12
=−q22

q21
⇐⇒ q2

22 =

(
q11

q12

)2(
1−q2

22

)
⇐⇒ q2

22

(
1+
(

q11

q12

)2
)

=

(
q11

q12

)2

⇐⇒ q22 =−
q11√
1−q2

11√
1+ q2

11
1−q2

11

=−q11,

12



which implies that

q1 =

(
q11,

√
1−q2

11

)
and q2 =

(√
1−q2

11,−q11

)
. (16)

In the following, we assume that 1 > q11 ≥ 1/
√

2 - otherwise we can state q1,q2 as functions of q12 and
proceed similarly.7 Now note that if there exist r points l1, . . . , lr ∈ γZ2 s.t.

Λ ∈ ConvexHull{(QT l1)⊗2, . . . ,(QT lr)⊗2}, (17)

then Equation (4) hold true for some pi to be computed. It only remains to show that (4) holds. This is a
hard problem, but in our case a simple argument works. We make use of the simple observation that if
A = {a1, . . . ,ar} ⊂ Rh and b ∈ Rh s.t.

∀ ∼∈ {≤,≥}h ∃a ∈ A such that a∼ b then b ∈ ConvexHull(A). (18)

We now apply (4) with b = Λ and A = {(QT l1)⊗2, . . . ,(QT lr)⊗2}. Since Λ and (QT li)⊗2 are symmetric
we work in dimension h = 3 instead of h = 4. The premise in Equation (4) reduces to show that for each
of the eight possible choices of ∼= (∼2,∼1,∼1,∼3) ∈ {≥,≤}3, there exists a point l ∈ γZ2 such that(

〈q1, l〉2 〈q1, l〉〈q2, l〉
〈q1, l〉〈q2, l〉 〈q2, l〉2

)
∼

(
λ1 0
0 λ2

)
.

Spelled out in coordinates the above reads as


〈q1, l〉〈q2, l〉∼1 0
〈q1, l〉2∼2 λ1

〈q2, l〉2∼3 λ2

⇐==========⇒
Using Equation (4)



(
q11li1+

√
1−q2

11li2

)(√
1−q2

11li1−q11li2

)
∼1 0(

q11li1+
√

1−q2
11li2

)2
∼2 λ1(√

1−q2
11li1−q11li2

)2
∼3 λ2.

We denote ϕ :=
√

1−q2
11

q11
, therefore the system we study is

(li1 +ϕli2)(ϕli1− li2)∼1 0
(li1 +ϕli2)

2 ∼2
λ1
q2

11

(ϕli1− li2)
2 ∼3

λ2
q2

11
,

(19)

where li = (li1, li2), li1 ∈ γZ and li2 ∈ γZ. We now claim that for every of the r = 8 possible choices of
∼1,∼2,∼3∈ {≤,≥}3 one can find a li ∈ γZ2 such that Equation (4) holds. All the possible combinations
of ∼1,∼2,∼3 are {≥≥≥,≥≥≤,≥≤≥,≥≤≤,≤≥≥,≤≥≤,≤≤≥,≤≤≤} and we study them in order.
We suppress the subscript i for li = (li1, li2). Let us also resume some bounds

1√
2
≤ q11 < 1, 1≤ 1

q11
<
√

2, 0≤ ϕ ≤ 1, 1≤ 1
ϕ

< ∞. (20)

7The implications regarding q1,q2 at first glance can seem hostile, however geometrically they are more intuitive. They depend
on the fact that q1,q2 form an orthonormal basis and changing the signs they are still eigenvectors and they still form an orthonormal
basis.
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• (≥≥≥) We have the following system, whose solutions are on the right
(l1 +ϕl2)(ϕl1− l2)≥ 0
(l1 +ϕl2)

2 ≥ λ1
q2

11

(ϕl1− l2)
2 ≥ λ2

q2
11

⇐⇒


Solution 1≥≥ Solution 2≤≤
l1 ≥

√
λ1

q11
−ϕl2 or l1 ≤−

√
λ1

q11
−ϕl2

l1 ≥ 1
ϕ

√
λ2

q11
+ 1

ϕ
l2 l2 ≤− 1

ϕ

√
λ2

q11
+ 1

ϕ
l2.

“Solution 1≥≥” means that we consider the case where l1 +ϕl2 ≥ 0, ϕl1− l2 ≥ 0 and similarly for
the other case “Solution 2 ≤≤”. In this and the successive cases we focus on “Solution 1 ≥≥”. In
this case the solution can be obtained choosing e.g. l2 = 0 and l1 big enough, which however would
result in an unbounded solution given that 1/ϕ ≥ 1 is not bounded from above. A bounded solution
is8

l2 =

⌊
−
√

λ2

q11

⌋
γ

∈ [−
√

2λ2− γ,−
√

λ2]

l1 =


√

λ1

q11
−ϕ

⌊
−
√

λ2

q11

⌋
γ


γ

∈
[√

λ1,
√

2λ1 +
√

2λ2 +2γ

]
,

which is bounded. This is obtained choosing l2 so that 1
ϕ

√
λ2

q11
+ 1

ϕ
l2 ≈ 0 and then using it in the first

equation of “Solution 1”.

• (≥≥≤) We have the following system whose, solutions are on the right
(l1 +ϕl2)(ϕl1− l2)≥ 0
(l1 +ϕl2)

2 ≥ λ1
q2

11

(ϕl1− l2)
2 ≤ λ2

q2
11

⇐⇒


Solution 1≥≥ Solution 2≤≤
l1 ≥

√
λ1

q11
−ϕl2 or l1 ≤−

√
λ1

q11
−ϕl2

1
ϕ

l2 ≤ l1 ≤ 1
ϕ

√
λ2

q11
+ 1

ϕ
l2 − 1

ϕ

√
λ2

q11
+ 1

ϕ
l2 ≤ l1 ≤ 1

ϕ
l2.

This case is more tedious. We choose l1 = γn, l2 = γbnϕc, where n is the smallest integer satisfying
γn≥

√
2λ1. This implies that the first equation of “Solution 1” is satisfied: using Equation (4)

γn≥
√

2λ1 ≥
√

λ1

q11
≥
√

λ1

q11
−ϕγ bnϕc .

We choose therefore l1 = γn = d
√

2λ1eγ ∈ [0,
√

2λ1 + γ]. The same bound for l2 holds true since
l2 = γbnϕc ≤ l1, again using Equation (4).
It remains to prove that the second equation of “Solution 1” is satisfied. Dividing the second equation
of “Solution 1” by l2 we prove the left inequality

l1
l2

=
γn

γ bnϕc
≥ n

nϕ
=

1
ϕ
,

and, since by assumption γ ≤
√

λ2 we conclude that

l1
l2
− 1

ϕ
=

γnϕ− γ bnϕc
γ bnϕcϕ

≤ γ

γ bnϕcϕ
=

γ

l2ϕ
=⇒ l1

l2
≤ 1

ϕ

(
1+

γ

l2

)
≤ 1

ϕ

(
1+

1
l2

√
λ2

q11

)

because 1≤ 1
q11
≤
√

2, which is equivalent to the second equation of “Solution 1”.

8In this and the successive cases, we have found really useful plotting the lines (l1 as function of l2) represented by the two
equations in “Solution 1”.
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• (≥≤≥) We have the following system, whose solutions are on the right
(l1 +ϕl2)(ϕl1− l2)≥ 0
(l1 +ϕl2)

2 ≤ λ1
q2

11

(ϕl1− l2)
2 ≥ λ2

q2
11

⇐⇒


Solution 1≥≥ Solution 2≤≤
−ϕl2 ≤ l1 ≤

√
λ1

q11
−ϕl2 or −

√
λ1

q11
−ϕl2 ≤ l1 ≤−ϕl2

l1 ≥ 1
ϕ

√
λ2

q11
+ 1

ϕ
l2 l1 ≤− 1

ϕ

√
λ2

q11
+ 1

ϕ
l2.

In this case we can take

l2 =

⌊
−
√

λ2

q11

⌋
γ

∈ [−
√

2λ2− γ,−
√

λ2], l1 =

−ϕ

⌊
−
√

λ2

q11

⌋
γ


γ

∈
[
0,
√

2λ2 +2γ

]
.

This solution has been found choosing l2 so that 1
ϕ

√
λ2

q11
+ 1

ϕ
l2 ≈ 0 and then using it in the first

equation of “Solution 1”. The second equation of “Solution 1” is satisfied since l1 is positive. For
the first one, the left inequality is satisfied by definition of l1, whilst the right inequality because
γ ≤
√

λ1 ≤
√

λ1/q11.

• (≥≤≤) We have the following system, whose solutions are on the right
(l1 +ϕl2)(ϕl1− l2)≥ 0
(l1 +ϕl2)

2 ≤ λ1
q2

11

(ϕl1− l2)
2 ≤ λ2

q2
11

⇐⇒


Solution 1≥≥ Solution 2≤≤
−ϕl2 ≤ l1 ≤

√
λ1

q11
−ϕl2 or −

√
λ1

q11
−ϕl2 ≤ l1 ≤−ϕl2

1
ϕ

l2 ≤ l1 ≤ 1
ϕ

√
λ2

q11
+ 1

ϕ
l2 − 1

ϕ

√
λ2

q11
+ 1

ϕ
l2 ≤ l1 ≤ 1

ϕ
l2.

In this case two possible solutions for the case “Solution 1” are (l1, l2) = (0,0) and (l1, l2) = (γ,0),
since by assumption γ ≤min{

√
λ1,
√

λ2}.

• (≤≥≥) We have the following system, whose solutions are on the right
(l1 +ϕl2)(ϕl1− l2)≤ 0
(l1 +ϕl2)

2 ≥ λ1
q2

11

(ϕl1− l2)
2 ≥ λ2

q2
11

⇐⇒


Solution 1≥≤ Solution 2≤≥
l1 ≥

√
λ1

q11
−ϕl2 or l1 ≤−

√
λ1

q11
−ϕl2

l1 ≤− 1
ϕ

√
λ2

q11
+ 1

ϕ
l2 l1 ≥ 1

ϕ

√
λ2

q11
+ 1

ϕ
l2.

We could take simply l1 = 0 and l2 big enough, but this solution would be unbounded (depending on
1/ϕ). Therefore, we reason similarly to the case (≥≥≥): let us rewrite the equations for “Solution
1” respect to l2

l2 ≥
1
ϕ

√
λ1

q11
− 1

ϕ
l1, l2 ≥

√
λ2

q11
+ϕl1,

and we can take as a solution

l1 =

⌊√
λ1

q11

⌋
γ

∈
[√

λ1− γ,
√

2λ1

]

l2 =


√

λ2

q11
+ϕ

⌊√
λ1

q11

⌋
γ


γ

∈
[√

λ2,
√

2λ2 +
√

2λ1 +2γ

]
.

This solution has been found choosing l1 so that 1
ϕ

√
λ1

q11
− 1

ϕ
l1 ≈ 0 and then using it in the other

equation.
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• (≤≥≤) We have the following system, whose solutions are on the right
(l1 +ϕl2)(ϕl1− l2)≤ 0
(l1 +ϕl2)

2 ≥ λ1
q2

11

(ϕl1− l2)
2 ≤ λ2

q2
11

⇐⇒


Solution 1≥≤ Solution 2≤≥
l1 ≥

√
λ1

q11
−ϕl2 or l1 ≤−

√
λ1

q11
−ϕl2

− 1
ϕ

√
λ2

q11
+ 1

ϕ
l2 ≤ l1 ≤ 1

ϕ
l2 1

ϕ
l2 ≤ l1 ≤ 1

ϕ

√
λ2

q11
+ 1

ϕ
l2.

We choose l1 = γn, l2 = γdnϕe, where n is the smallest integer satisfying γn≥
√

2λ1. This implies
that the first equation of “Solution 1” is satisfied: using Equation (4)

γn≥
√

2λ1 ≥
√

λ1

q11
≥
√

λ1

q11
−ϕγ dnϕe .

We choose therefore l1 = γn = d
√

2λ1eγ ∈ [0,
√

2λ1 + γ]. The same bound for l2 holds true since
l2 = γdnϕe ≤ l1, again using Equation (4).
It remains to prove that the second equation of “Solution 1” is satisfied. Dividing the second equation
of “Solution 1” by l2 we prove the left inequality

l1
l2

=
γn

γdnϕe
≤ n

nϕ
=

1
ϕ
,

and, since by assumption γ ≤
√

λ2 we conclude that

l1
l2
− 1

ϕ
=

γnϕ− γ dnϕe
γ dnϕeϕ

≥ −γ

γ bnϕcϕ
=
−γ

l2ϕ
=⇒ l1

l2
≥ 1

ϕ

(
1− γ

l2

)
≥ 1

ϕ

(
1− 1

l2

√
λ2

q11

)

because −1≥− 1
q11
≥−
√

2, which is equivalent to the second equation of Solution 1.

• (≤≤≥) We have the following system, whose solutions are on the right
(l1 +ϕl2)(ϕl1− l2)≤ 0
(l1 +ϕl2)

2 ≤ λ1
q2

11

(ϕl1− l2)
2 ≥ λ2

q2
11

⇐⇒


Solution 1≥≤ Solution 2≤≥
−ϕl2 ≤ l1 ≤

√
λ1

q11
−ϕl2 or −

√
λ1

q11
−ϕl2 ≤ l1 ≤−ϕl2

l1 ≤− 1
ϕ

√
λ2

q11
+ 1

ϕ
l2 l1 ≥ 1

ϕ

√
λ2

q11
+ 1

ϕ
l2.

We can proceed as in the case ≥≤≥: we can take

l2 =

⌈√
λ2

q11

⌉
γ

∈
[√

λ2,
√

2λ2 + γ

]
, l1 =

−ϕ

⌈√
λ2

q11

⌉
γ


γ

∈
[
−
√

2λ2− γ,0
]
.

This solution has been found choosing l2 so that 1
ϕ

√
λ2

q11
+ 1

ϕ
l2 ≈ 0 and then using it in the first

equation of “Solution 1”. The second equation of “Solution 1” is satisfied since l1 is negative. For
the first one, the left inequality is satisfied by definition of l1, whilst the right inequality because
γ ≤
√

λ1 ≤
√

λ1/q11.

• (≤≤≤) In this case it is easy to see that we can take the origin.

In all the cases we have studied the “Solution 1”, however, for the “Solution 2” we can take −(l1, l2). This
concludes the proof for the case a = 0.

For a general a ∈ Rd we can build for any γ > 0 a random variable Ỹ with support on γZd such that
EỸ = a. This follows from Carathéodory’s Theorem 2, considering the smallest hypercube with vertices
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in γZd that contains a, that is of the 2d possible choices of ∼∈ {≤,≥}d determines a point y∼ on the
hypercube around a s.t.

y∼ ∈ γZd and y∼ ∼ a.

We denote the resulting 2d points as y1, . . . ,y2d and now estimate the variance V[Ỹ ],

∣∣V[Ỹ ]∣∣= ∣∣∣E[(Ỹ −a
)⊗2
]∣∣∣= ∣∣∣∣∣∑i

p̃i (yi−a)⊗2

∣∣∣∣∣≤∑
i

p̃i|yi−a|2 ≤ dγ
2.

We now build a random variable Y? supported on γZ2 (d = 2) that is independent of Y and has mean
and variance EY? = 0 and VY? = EY⊗2

? = B−VỸ . It follows that Y := Ỹ +Y? has mean and variance
EY = a and VY = B. To build Y? we use the first part of this proof. Therefore we need to verify that
the eigenvalues of B−VỸ are strictly positive. Since VỸ and B are symmetric it follows from the
Hoffman–Wielandt Theorem, Theorem 5, that there exists a permutation π such that for any k

−|VỸ | ≤ λk [B −VỸ
]
−λπ(k) [B]≤ |VỸ |,

where λk[B−VỸ ] indicates the k-th eigenvalue of B−VỸ . Therefore,

λmin[B−VỸ ]≥ λπ(min) [B]−|VỸ | ≥ λmin−2γ
2.

Hence, choosing γ ≤
√

λmin/3 guarantees γ ≤
√

λmin[B−VỸ ] since

λmin−2γ
2 ≥ γ

2⇐⇒ γ ≤
√

λmin/3.

Note that the cardinality of the support of Y = Ỹ +Y?, eventually, can be reduced using the Caratheodory’s
Theorem 2. We have proved that, by construction, the support of the r.v. Y? is included in

supp(Y?)⊂ {y ∈ γZ2 : |y|∞ ≤
√

2λ1[B−VỸ ]+
√

2λ2[B−VỸ ]+2γ}.

Thanks again to the Hoffman–Wielandt Theorem, Theorem 5 we have that√
2λ1[B−VỸ ]+

√
2λ2[B−VỸ ]≤

√
2
(
|VỸ |+λπ(1) [B]

)
+

√
2
(
|VỸ |+λπ(2) [B]

)
≤
√

2λπ(1)[B]+
√

2λπ(2)[B]+2
√

2|VỸ |

≤
√

2λ1[B]+
√

2λ2[B]+2γ
√

2d.

This implies that the support of Y = Ỹ +Y? is included in

supp(Y )⊂ {y ∈ γZ2 : |y|∞ ≤ |a|∞ +
√

2λ1[B]+
√

2λ2[B]+6γ}.

Remark 3. We conjecture that Theorem 7 generalizes to dimensions higher than d = 2, however the
above brute-force proof strategy is not helpful, since it is infeasible to solve all the inequalities one by one
for the equivalent of System (4) in higher dimensions. Concretely, we believe that for a ∈ Rd , B ∈ Rd×d

symmetric and positive definite, λmin > 0, then for every γ such that 0 < γ ≤
√

λmin/(d +1) there exists a
random variable Y such that

1. E[Y ] = a and E[Y⊗2] = a⊗2 +B;

2. supp(Y )⊂ {y ∈ γZ2 : |y|∞ ≤ |a|∞ +∑
d
i=1
√

2λi + cdγ}.
Note that it only remains to show the existence of a random variable Y?, such that E[Y?] = 0 and E[Y⊗2

? ] = B
for any positive definite matrix B, since this allows to simply proceed as in the second part of the proof of
Theorem 7.
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Constructing the Lattice-Tree Model
Now we are ready to build the Markov chain Xn, which approximates X for the 2-dimensional case and
such that the state space recombines if the SDE coefficients are bounded. We denote Σ = σ(x)σ(x)T and
with λi(x) its eigenvalues.

Theorem 8. Let µ,σ ∈ C4
b , d = 2, ε := infx λmin(x) > 0 and γn = n−1/2

√
ε/3. There exists a lattice

approximation (Xn)n≥1 to X on Xn
0 ∪ γnZ2 with respect to the class of functions f ∈ C3

P with rate 1/2.
Moreover, {

card[supp(Xn
i )]≤ ci2 , if µ,σ are bounded,

card[supp(Xn
i )]≤ ci2exp(2cin−1/2) , if µ,σ have linear growth.

Proof. We argue as in Theorem 4, but using Theorem 7 above. In contrast to the one-dimensional case, the
support of the random variable Yx that gives the increment Xn

i+1−Xn
i when Xn

i = x now depends also on
the eigenvalues of Σ. However, the Gerschgorin’s Circle Theorem [18], Theorem 6, bounds the eigenvalues
of Σ. We conclude by noting that the number of points of the lattice γnZ2 in a square of side c are (c/γn)

2,
which yields the square factor in the cardinality of the support.
If Xn

0 is not in the lattice γnZ2 more care is needed: for Xn
1 to be supported on γnZ2 it is necessary to

build the random variable YXn
0

with support on the lattice γnZ2−Xn
0 , indeed Xn

1 = Xn
0 +YXn

0
would be

in γnZ2. This is equivalent to build the random variable ỸXn
0

on γnZ2 such that EỸXn
0
= µ(Xn

0 )+Xn
0 and

EỸ 2
Xn

0
= Σ(Xn

0 )+(µ(Xn
0 )+Xn

0 )
⊗2. We define YXn

0
:= ỸXn

0
−Xn

0 with support on γnZ2−X0 s.t. EYXn
0
= µ(Xn

0 )

and VYXn
0
= Σ(Xn

0 ). To build ỸXn
0

using Theorem 7, we need to bound the eigenvalues of Σ(Xn
0 )+(µ(Xn

0 )+

Xn
0 )
⊗2 using that

λmin[Σ(Xn
0 )+(µ(Xn

0 )+Xn
0 )
⊗2] = inf

d 6=0

dT [Σ(Xn
0 )+(µ(Xn

0 )+Xn
0 )
⊗2]d

dtd

≥ inf
d 6=0

dT Σ(Xn
0 )d

dT d
+ inf

e6=0

eT (µ(Xn
0 )+Xn

0 )
⊗2e

eT e

≥λmin[Σ(Xn
0 )]+λmin[(µ(Xn

0 )+Xn
0 )
⊗2]

≥λmin[Σ(Xn
0 )],

noting that λmin[(µ(Xn
0 )+Xn

0 )
⊗2]≥ 0, which concludes the proof.

5 Lattice-Tree Models for Multi-Dimensional Diffusions
We now carry out the same procedure in the multi-dimensional case. In this case, our assumptions will be
more stringent and we will consider the lattice to depend on the structure of the matrix B.

Matching the Moments
In this Subsection we solve System (2) for a general dimension d, but on pre-specified lattice. We call
Q ∈ O(d) the orthonormal matrix such that B = QΛQT , with Λ the diagonal matrix consisting of the
eigenvalues of B.

Theorem 9. Let B∈Rd×d symmetric and positive semi-definite, γ > 0, then there exists a random variable
Y such that

1. E[Y ] = 0 and E[Y⊗2] = B;
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2. supp(Y )⊂ {y ∈ γQZd : |y|∞ ≤
√

∑i λi ·maxi |Qei|+ γ}.

Proof. If all the eigenvalues λi of B are 0, then Y = 0 a.s. is a solution, so let us suppose that at least one
eigenvalue is strictly positive.

Recall that, from the proof of Theorem 7, if Ȳ is a discrete random variable that matches the second
moment, EȲ⊗2 = B and Z is a Bernoulli random variable independent of Ȳ , P(Z = ±1) = 1

2 , then the
random variable Y := Z · Ȳ has mean E[Y ] = 0 and E[Y⊗2] = B. Hence, solving the system (2) reduces to
find l̄i ∈ γQZd s.t.

∑
i

p̄i l̄i l̄T
i = B, p̄i > 0, ∑

i
p̄i = 1,

then the measure on the points l̄i, −l̄i with weights respectively pi = p̄i/2 represents the r.v. Y we are
looking for. Since we suppose B to be positive semi-definite and symmetric, there exists an orthonormal
matrix Q such that B = QΛQT , whose columns are the eigenvectors of B, and Λ is a diagonal matrix whose
values are the non-negative eigenvalues. If we indicate l̄i = γQz̄i, z̄i ∈ Zd , we have that

r

∑
i

p̄i l̄i l̄T
i = B = QΛQT ⇔

r

∑
i

p̄iγ
2Qz̄iz̄T

i QT = QΛQT ⇔
r

∑
i

p̄iγ
2z̄iz̄T

i = Λ.

Therefore, rearranging the last equation we obtain

r

∑
i

piγ
2z̄iz̄T

i =
d

∑
j=1

λ j

∑
d
k=1 λk


√√√√ d

∑
k=1

λk · e j


⊗2

.

Since r is a free parameter for us, we can take r = d∗+1, where d∗ is the number of different eigenvalues
not equal to 0, and we can solve the problem independently for any eigenvalue, then we merge together all
the solutions. Thus, we obtain

l̄d∗+1 =0, p̄d∗+1 =1−


∑

d
j=1 λ j⌈√

∑
d
j=1 λ j

⌉2

γ

 ,

l̄i =Q


√√√√ d

∑
j=1

λ j


γ

ei, p̄i =
m(λi)λi

∑
d
j=1 λ j


∑

d
j=1 λ j⌈√

∑
d
j=1 λ j

⌉2

γ

 ,

where m(λi) is the algebraic multiplicity of the eigenvalue λi. At this point we have a probability measure
comprising the d∗+1 weights p̄i and the points l̄1, ..., l̄d∗ ,0 ∈ γQZd and we refer to this random variable
by Ȳ . We can now build the r.v. Y taking the 2d∗+1 points {l̄i,−l̄i} with probability pi = p̄i/2, such that
EY = 0 and EY⊗2 = B.

Constructing the Lattice-Tree Model
Although we have not proved Theorem 8 for general dimension d, we can still prove one particular case.
We are ready to build the Markov chain Xn which approximates X in the multi-dimensional case under
more stringent conditions than before.
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Theorem 10. Let µ(x) = 0,σ ∈C4
b , d ≥ 2, Σ(x) = QΛ(x)QT , Λ(x) ∈ Rd×d a diagonal matrix and Q an

orthogonal matrix. For any c > 0, set γn = cn−1/2 and let us suppose that Xn
0 ∈ γnQZd . There exists

a lattice approximation (Xn)n≥1 to X on γnQZd respect to the class of functions f ∈C3
P with rate 1/2.

Moreover, {
card[supp(Xn

i )]≤ idc. , if µ,σ are bounded,
card[supp(Xn

i )]≤ cidexp(dcin−1/2) , f µ,σ have linear growth.

Proof. The proof follows the same reasoning used in Theorem 4 and 8, but using Theorem 9. The bounds
on the cardinality of the support can be obtained as explained in the proof of Theorem 8

It is relevant to recall that to obtain µ(x) = 0 the Girsanov Theorem can be helpful.

6 Variations and Extensions
We briefly discuss variations and possible extensions.

6.1 Combining State-Space Transformations and Recombination
The classical transformation approach and the recombination approach we present here are not mutually
exclusive and can be combined in way that leverages their strengths. To demonstrate this, we revisit the
problem of approximating an SDE with drift and volatility that are not bounded but have linear growth.
Our Theorem 4 guarantees under ellipticity assumptions on σ , thatcard [support(Xn

i ) ]≤ c
(

i× en−1/2i
)
, if µ and σ2 have linear growth,

card [support(Xn
i ) ]≤ ci, if µ and σ2 are bounded,

which in the case of linear growth leads to exponential growth in time. However, inspired by Nelson and
Ramaswamy [47],we can look for a state-space transformation to first turn the SDE into an SDE with
bounded vector fields and subsequently apply Theorem 4, but now for the case of bounded vector fields.
Formally, this means that we look for a state-space transformation given by smooth function f such that
Yt = f (Xt), where Xt is the solution of the SDE (2), with bounded µ,σ . Thus, using the Ito’s lemma, Y
solves

dYt =

[
µ(Xt)∂ f (Xt)+

σ(Xt)
2

2
∂

2 f (Xt)

]
dt +σ(Xt)∂ f (Xt)dWt . (21)

Going back to Equation (6.1) we can see that9

Et [Yt+n−1 −Yt ] =

[
µ(Xt)∂ f (Xt)+

σ(Xt)
2

2
∂

2 f (Xt)

]
n−1 +O(n−2),

Et [Yt+n−1 −Yt ]
2 =
[
σ(Xt)∂ f (Xt)

]2 n−1 +O(n−2).

Now, if we suppose to have built the Markov chain approximation Xn
i as in Theorem 4, then we want to

see if Y n
i = f (Xn

i ) satisfy Lemma 1-Item (1), respect to Y . Using a Taylor expansion we get

EiY n
i+1−Y n

i =Ei
[

f (Xn
i+1)− f (Xn

i )
]

9We have to suppose Et
∫ t+n−1

t σ(Xs)∂ f (Xs)dWs = 0, which is for example satisfied when the integrand is (locally) square
integrable.
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=Ei

[
∂ f (Xn

i )∆Xn
i +

1
2

∂
2 f (Xn

i )(∆Xn
i )

2 +O(|∆Xn
i |3)

]
=∂ f (Xn

i )Ei
[
∆Xn

i
]
+

1
2

∂
2 f (Xn

i )Ei
[
∆Xn

i
]2
+O(n−3/2),

where ∆Xn
i = Xn

i+1−Xn
i and by construction EiO(|∆Xn

i |3) ≤ c∑ j p j

∣∣∣n−1/2z j

∣∣∣3 ≤ cn−3/2, z j ∈ Z. Given

that Xn
i satisfies Lemma 1-Item (1) respect to X , we have that Ei[Y n

i+1−Y n
i ] = Eti [Yt+n−1 −Yt ]+O(n−3/2).

For the second moment we proceed similarly

Ei
[
Y n

i+1−Y n
i
]2

=Ei
[

f (Xn
i+1)− f (Xn

i )
]2

=Et

[
∂ f (Xn

i )∆Xn
i +O(|∆Xn

i |2)
]2

=∂ f (Xn
i )

2Et
[
∆Xn

i
]2
+2∂ f (Xn

i )Et

[
∆Xn

i ×O(|∆Xn
i |2)

]
+EtO(|∆Xn

i |4),

note that |Et [∆Xn
i ×O(|∆Xn

i |2)]| ≤ cn−3/2. Since

Ei
[
∆Xn

i
]2

= µ(Xn
i )

2n−2 +σ(Xn
i )

2n−1 +O(n−3/2) = σ(Xn
i )

2n−1 +O(n−2),

we can conclude that Ei[Y n
i+1−Y n

i ]
2 = Eti [Yti+n−1−Yti ]

2 +O(n−3/2). In the same way we obtain Ei|Y n
i+1−

Y n
i |3 = O(n−3/2), therefore we can conclude that Y n satisfies Lemma 1-Item (1) respect to Y for α = 1/2.

Already the example of Y a Geometric Brownian Motion is interesting where f (x) = ex yields that X is a
Brownian Motion with a bounded mean and variance, i.e.

dYt

Yt
= µ dt +σ dWt , dXt =

[
µ− σ2

2

]
dt +σ dWt .

The state space is not any more a lattice a priori, indeed it is a non linear transformation of a lattice. To
sum up, this simple variation allows to treat linear growth vector fields by a MC.

6.2 Optimal Control and Optimal Stopping
In Section 6.2 we cited optimal stopping as one of the motivations to consider MC approximations. How-
ever, in general the topology of weak convergence is too coarse to provide robustness of the discretizaton
procedures; for example, the solution of the optimal stopping problem for the MC does in general not
converge to the solution of the stopping problem for the SDE; see [27]. Nevertheless, we can mimic the
arguments in [31, 32] to show that solving the optimal stopping for MC produces by DISCRETIZEn
yields solutions that are close to the continuous time optimal stopping problem.

Theorem 11. ([32, Chapter 10, Theorem 6.2]) Let X be the solution of the SDE (2) and Xn be one of the
schemes built in Theorems 4, 8, 10. Denote with T and T n the set of almost sure finite stopping times
with respect to the natural filtrations of the SDE (2) resp. the filtration generated by Xn. Define the value
functions

V(x):=min
τ∈T

E

[∫
τ∧1

0
k(Xs)ds+g(Xτ∧1)

∣∣∣X0=x

]
and V n(x):= min

τn∈T n
E

[
1
n

τn∧n

∑
i=0

k(Xn
i )+g(Xτn∧n)

∣∣∣Xn
0 =x

]
.

If µ,σ ,g,k are bounded Lipschitz continuous10, then V n(x)→V (x), as n→ ∞.

10Other rather general and technical assumptions on V are needed.
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Proof. Thanks to [32, Chapter 10, Theorem 6.2], it is enough to check that the conditions in [32, Equation
(1.3), page 71] are satisfied for the approximation schemes of Theorems 4, 8, 10. [32, Equation (1.3), page
71] has two different types of conditions: the first type of conditions is equivalent to Lemma 1-(1); the
second type of conditions requires that a.s. supi |Xn

i+1−Xn
i | → 0, as n→ ∞, but this is a consequence of

the fact that the r.v. Y(·) built in the proof of Theorems 4, 8, 10 are bounded by the bounds of Theorems 3,
7, 9.

For brevity we do not pursue this further here, but note that the same logic extends to more general
control problems, at least in principle: one needs to introduce controls in the coefficients µ and σ and
define the related value functions V,V n; see [31, 32]. In this case, one would need to construct the random
variable Y(·) for the different controls to allow for effective computation.

6.3 Extensions.
Hypo-elliptic SDEs. If we do not know a priori if Σ is elliptic, we can take a γ > 0 reasonably small

and then start building the random variables Y(·) for the lattice γZd . If we arrive in a point x where√
λmin[Σ(x)]≤ γ , then it is enough to add to the lattice γZd some points in the lattice µ(x)+ γQZd ,

where Q depends as usual from Σ(x).

Switching SDEs Switching diffusions can be treated in a straightforward manner. Suppose that the
functions Σ and µ depend on one (or more) independent dynamic process θ(t), the “switch”, in a
Markovian way. For simplicity, let us suppose that θ(t) ∈ {0,1}. We consider four functions Σ0,µ0
and Σ1,µ1:

Et [Xt+n−1 −Xt ]≈

{
µ1(Xt) if θt = 1
µ0(Xt) if θt = 0

, Vt [Xt+n−1 −Xt ]≈

{
Σ1(Xt) if θt = 1
Σ0(Xt) if θt = 0

.

Thus, we can approximate two different processes defined by Σ0,µ0 and Σ1,µ1 independently,
assuming to know or to be able to build a “good” discrete time approximation θ n of θ(t).

Time-inhomogenuous SDEs. We have presented the case of time-homogeneous SDEs, but the conver-
gence results in [30] apply to time-inhomogeneous SDEs, hence the same approach extends to
time-inhomogenuous SDEs. Nevertheless, from a computational perspective, time-inhomogeneous
SDEs are more challenging since if lattice points are re-visited then the recombination computation
has to be redone because time has increased since the last visit. In principle, it is also possible to
go beyond SDEs, but the bottleneck there is to find suitable conditions to replace those given in
Definition 3 to guarantee the weak convergence.

7 Algorithm and Experiments
First, let us state the pseudo-code of the algorithm for the construction of the Transition Matrix. We
suppose for simplicity X0 = 0, so that Xn

0 ∈ γnQZd for any n, Q. Remember that, if Xn
0 is not in the lattice,

Xn
1 must be built directly to be in the considered lattice, see the proof of Theorem 4.

Step 7: Solving a non-linear Moment System. Step 7 is the computationally most challenging step of
Algorithm DISCRETIZE since it requires to solve the non-linear lattice-constrained system (2). We now
show that previous work on recombination allows to do this step efficiently. Since our experiments are in
dimension d = 2, we provide the details for the two-dimensional case, but the same approach works for
general dimension d under minor modifications. Assuming the assumptions of Theorem 7, 8 are met, then
one can replace both ≈ signs in (2) by = and solve the resulting system by either
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Algorithm DISCRETIZE Lattice-Tree Markov Chain Approximation
Inputs: µ , σ , x0, n

1: Choose γn and Q as prescribed by Theorem 4, 8, 10
2: queue_todo.append[x0]
3: i← 1
4: while i≤ n do
5: while queue_todo is not empty do
6: x←queue_todo[0]
7: Solve the non-linear moment matching system (2) to get (p j, l j) j ⊂ R+× γnQZd

8: Transition Matrix Mn←{x can go to {x+ l j} with probabilities {p j} }
9: queue_todo_nextstep.append[ for any j, x + l j such that x + l j 6∈ queue_done ∪

queue_todo_nextstep ]
10: queue_todo.remove[x]
11: queue_done.append[x]
12: end while
13: queue_todo←queue_todo_nextstep
14: queue_todo_nextstep.remove[all elements]
15: i← i+1
16: end while
17: Return Transition Matrix Mn and starting value xn

(i) following the proof of Theorem 7, or

(ii) by using the randomized recombination Algorithm 2 in Cosentino et al. [6].

The approach (i) has two disadvantages: firstly the number r of weight-point tuples (w j, l j) j=1,...,r it returns
is in general larger than needed whereas (ii) returns the smallest number of tuples that is guaranteed by
Carathéodory’s theorem; secondly, and more importantly in practice, is that approach (i) is slower than the
optimized recombination Algorithm 2 used in approach (ii).

Remark 4. There are other recombination algorithms [20, 21, 22, 37, 43, 53] besides Algorithm 2 from[6].
However, what makes Algorithm 2 especially attractive in the current situation is that it can take as input a
sequence of points – in our case, points sampled uniformly on the lattice – and the moments that need
to be matched. This is in contrast to all the other mentioned algorithms, which need as input a discrete
measure, that is a collection of points and weights. Although subtle, this is an important difference that
adds to the efficiency of the resulting algorithm.

If the assumptions of Theorem 8 are not met, one could still follow the approach “in spirit”, by trying
to construct a discrete probability measure with a small support that approximates the first and second
moments. Formally, this means we

(iii) try to solve the constrained minimization problem

(w j, l j) j :=argmin

∣∣∣∣∣∣∑j

(
z j ·w j

z⊗2
j ·w j

)
−

(
n−1µ(x)

n−2µ(x)⊗2 +n−1Σ(x)

)∣∣∣∣∣∣
2

(22)

s.t. l j ∈ γZ2, |l j| ≤ c

0≤ w j ≤ 1, ∑
j

w j = 1,
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and then reduce the discrete probability measure obtained by (iii) further by using any of the
recombination algorithms in [20, 21, 22, 37, 43, 53].

We re-emphasize that in the case of (iii) none of the theoretical guarantees of the previous sections apply;
in fact, it is not even guaranteed that the minimum of the optimization problem (iii) is small enough.
Nevertheless, highly optimized optimization software exists for such constrained problems and the intuition
remains that the resulting MC is a good approximation in view of its construction. In fact, our numerical
example below suggests that this procedure is quite robust.

We have implemented the above algorithms and below we apply it two concrete problems: Section 7.1
applies DISCRETIZE to a two-dimensional SDE and Section 7.2 studies the robustness of DISCRETIZE
by applying it to a Heston model where the assumptions of Theorem 8 are not met and we use case (iii)
above to solve a constrained minimization problem. Python code to replicate the two experiments in the
next Subsections is publicly available11; see also Section B.

7.1 Example: toy model
We consider the following toy model

d

(
X
Y

)
=

(
sin(X)
cos(Y )

)
dt +

(
cos(Y )+2 0

0 sin(X)+2

)
dWt ,

X0 = Y0 =0.

Figure 2: Construction of the transition matrix. Starting from x0 we consider to build the random variable
X1, such that it has support on the grey points and the first two moments are matched exactly. In the top-left
plot, X1 has support on the yellow points. Then this procedure is iterated for all the possible points in the
support of the measure, following Algorithm DISCRETIZE.

11https://github.com/FraCose/Tree-Recombination
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Figure 3: The left and middle plots show the growth of the cardinalities of the queues created by
Algorithm DISCRETIZE for fixed n as i increases. The right plot shows a comparison of the growth of
the number of states for different n as i increases.
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Figure 4: Relative errors for some functionals of X1,Y1. We compute the first and the second moments, the
variances and the probability that Y1 is greater than 0, respectively E[X1],E[Y1],E[X2

1 ],E[Y 2
1 ],V[X1],V[Y1]

and P[Y1 > 0]. As ground truth we consider an Euler scheme Monte Carlo simulation of the mode with
n = 1000 steps.

It is easy to check that this model satisfies the assumptions of Theorem 8, indeed the vector fields are
bounded and the SDE is strictly elliptic: ε = infx λmin(x) = infx eigenvalues(σσ>(x)) = 1, thus we can
consider γn = n−1/2

√
1/3.

Results. Figure 2 visualizes the iterative nature of the MC construction: starting from the initial point
x0 the algorithm selects at every time step a few possible attainable states on the two-dimensional lattice,
such that the local consistency condition is satisfied. As time progresses, new states get added and many
previous states are revisited (leading to a recombining tree). Figure 3 shows the growth of the state space
as a function of time for different values of n, and Figure 4 shows the relative error, Finally, Figure 5
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Figure 5: Representation as sparse matrix of the Probability Transition Matrix for different values of n.

shows the resulting sparse transition matrices. Unsurprisingly, the transition matrices are sparse, as seen in
Figure 5, since this is optimized by construction, see also Appendix B.

7.2 Example: Mean reverting Heston model
For the second experiment, we consider the Heston model (HM) [23], a popular stochastic volatility model
in mathematical finance

dPt =µPt dt +
√

VtPt dW P
t , (23)

dVt =λ (θ −Vt)dt +ξ
√

Vt dWV
t ,

where Pt is the price of an asset and Vt its instantaneous variance; W P
t ,WV

t are two standard Brownian
Motions with correlation parameter ρ and λ ,θ ,µ,ξ are all constants. We recall that if 2λθ > ξ 2, then
Vt is a.s. positive, see for example [10]. Tree approximations that are tailor-made to the HM model in
(7.2), e.g. Akyıldırım et al. [1], Zeng and Zhu [58], have been developed but, to the best of our knowledge,
these do not apply when V depends on P. The latter is a desirable model property since empirical
observation suggest the price and the volatility to be inversely related, and that V has a mean reverting
behaviour; for theoretical properties of such an SDE, see Romano and Touzi [48]. A simple example of
such price-variance relation that we use for our numerical experiment is

θt := θ(Pt) := c
1

Pt +1
+ k.

Indeed, one can check that in this case V is mean-reverting12, limt→∞EVt = Eθ∞. To sum up, we consider
the system

d

(
Pt
Vt

)
=

 µPt

λ

(
c

1+Pt
+ k−Vt

) dt+
√

Vt

(
Pt 0
0 ξ

)(
1 0
ρ

√
1−ρ2

)
d

(
W 1

t
W 2

t

)
,

where W 1
t ,W

2
t are two independent Brownian Motions. Moreover, in a finance context it is more natural

model logPt instead of Pt , and we reformulate the above system as

d

(
lnPt
Vt

)
=

 µ− 1
2Vt

λ

(
c

1+Pt
+ k−Vt

) dt +
√

Vt

(
1 0

ξ ρ ξ
√

1−ρ2

)
d

(
W (1)

t

W (2)
t

)
.
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Figure 6: Construction of the transition matrix. Starting from x0 we consider to build the random variable
X1 such that it has support on the grey points and the first two moments are matched exactly. In the top-left
plot, X1 has support on the yellow points. Then this procedure is iterated for all the possible points in
the support of the measure, following Algorithm DISCRETIZE. In contrast to Figure 2 of the previous
example, now also red points appear since we are in the situation of case (iii) discussed above.

0 5 10 15 20 25 30
Step

0

2

4

6

8

N
um

be
r o

f s
ta

te
s

×103 Number of states, n = 30
approx
queue_done
queue_todo
queue_tot

0 20 40 60 80 100
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
um

be
r 

of
 s

ta
te

s

×105 Number of states, n = 100
approx
queue_done
queue_todo
queue_tot

0 20 40 60 80 100
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

To
ta

l n
um

be
r 

of
 s

ta
te

s

×105 Number of states
n = 100
n = 80
n = 60
n = 50
n = 40
n = 30
n = 20
n = 10

Figure 7: The left and middle plots show the growth of the cardinalities of the queues created by
Algorithm DISCRETIZE for fixed n as i increases. The right plot shows a comparison of the growth of
the number of states for different n as i increases.

The assumptions of Theorem 8 are not met since the eigenvalues of the volatility are not bounded away
from 0 due to the presence of Vt . . Nevertheless, we can follow the approach outlined at the end of the
above section, that is step (iii) which aims to solve the constrained optimization problem (iii).

12By using the differential form of d(etλVt) and Ito’s rule. We have to suppose the existence of Eθ∞.
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Figure 8: Relative errors for some functionals of P1,V1. For the option, we consider a European Option
with strike 100. We compute the first and the second moments, the variances and the probability that
Y1 is greater than 5, respectively E[(log(P1),V1)],E[(log(P1),V1)

⊗2],V[(log(P1),V1)] and P[V1 > 5]. The
formula for the option price is E[max(P1−100,0)]. As ground truth we consider an Euler scheme Monte
Carlo simulation of the mode with n = 1000 steps.

Figure 9: Representation as sparse matrix of the Probability Transition Matrix for different values of n.

Results. For our simulations we set log(P0) = log(100), V0 = 5, µ = 0, λ = 2, ρ = 0.2, ξ = 1, c = 2,
k = 5 and t ∈ [0,1]. The set of experiments is the same as those presented in the previous Subsection.
Figure 6 visualizes the iterative nature of the MC construction. It can be noticed that Figure 6 includes the
presence of red points, which represent approximated points, i.e. the ones “recombined” numerically using
the optimization problem iii, whilst in Figure 2 these are not present since the assumptions of Theorem 8
are satisfied. Figure 7 shows the growth of the state space as a function of time for different values of
n, and Figure 8 shows the relative error. Finally, Figure 9 shows the resulting sparse transition matrices.
Note that the approximations error, Figure 8, supports the intuition we have used in step (iii): although the
assumptions of Theorem 8 are not met, the model error resulting from using the MC is small. Again, it is
not surprising that the transition matrices are sparse, Figure 9, since this is optimized by construction.
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A Appendix - Lemmas
Lemma 2. If E|Xn

i |q ≤ c(q,T,X0), then Lemma 1-Item (1) implies Equation (1).

Proof. Let us recall [30] that if the coefficients µ,σ ∈C4
b , we have that for any x ∈Rd and for some q≥ 0

E[Xti+1 −Xti |Xti = x]−n−1
µ(x) =O

(
(1+ |x|q)n−2

)
,

E[(Xti+1 −Xti)
⊗2|Xti = x]−n−2

µ(x)⊗2 +n−1
Σ(x) =O

(
(1+ |x|q)n−2

)
,

in particular the second inequalities implies that

E[(Xti+1 −Xti)
⊗2|Xti = x]−n−1

Σ(x) = O
(
(1+ |x|q)n−2

)
From Lemma 1-Item (1), dividing by n−1, we obtain that

E
[

Xn
i+1−Xn

i

n−1

∣∣∣Xn
i

]
−µ(Xn

i ) =O
(
(1+ |Xn

i |q)n−α
)
,

E

[
(Xn

i+1−Xn
i )
⊗2

n−1

∣∣∣Xn
i

]
−Σ(Xn

i ) =O
(
(1+ |Xn

i |q)n−α
)
.

Taking the square on both sides and then the expectation, using that E|Xn
i |q ≤ c(q,T,X0), we obtain the

thesis.

Lemma 3. If Xn represents the schemes built in Theorem 4, 8, 10 and nγ2
n < c for some c > 0, then

E[max
i
|Xn

i |2q]≤c(1+ |X0|2q), for q≥ 1.

Proof. Let us first note that
Xn

i+1−Xn
i |Xn

i = x∼ Yx

In Theorems 4, 8 and 10 we have proved that if the SDE coefficients are bounded the r.v. Yx, can be built
such that |Yx| ≤ cµ,σ n−1/2 +kγn, whilst if the coefficients are linearly bounded then the r.v. Yx, can be built
s.t. |Yx| ≤ cµ,σ (1+ |x|)n−1/2 + kγn, for some k > 0. Since we are interested in the finite time horizon we
suppose for simplicity T = 1, which means i≤ n.
Let us define Y n

i = ∑
i−1
j=0 YXn

j
− n−1µ(Xn

j ). By construction, to satisfy Item Lemma 1-(1), we build

the r.v. Y(·) s.t. E jYXn
j
= n−1µ(Xn

j ), which implies that Y n
i is a martingale. Thus, we can apply the

Burkholder-Davis-Gundy (BDG) Inequality

E
[

max
i≤n

∣∣Y n
i
∣∣2q
]
≤ cqE

〈
Y n

n
〉q ≤cqE

n−1

∑
j=0

∣∣∣YXn
j
−n−1

µ(Xn
j )
∣∣∣2
q

≤cqnq−1
n−1

∑
j=0

E
∣∣∣YXn

j
−n−1

µ(Xn
j )
∣∣∣2q

≤cqnq−1

n−1

∑
j=0

cµ,σ (1+E|Xn
j |2q)n−q + kγ

2q
n


≤cqnq−1

nkγ
2q
n + cµ,σ n−qn+ cµ,σ n−q

n−1

∑
j=0

E|Xn
j |2q
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≤cq(nγ
2
n )

q + cq,µ,σ + cq,µ,σ n−1
n−1

∑
j=0

E|Xn
j |2q

≤cµ,σ ,q

1+n−1
n−1

∑
j=0

E|Xn
j |2q

 ,

where at the 4-th step (3-rd line) we have used the fact that |YXn
j
| ≤ cµ,σ (1+ |Xn

j |)n−1/2 + kγn and EYXn
j
=

n−1µ(Xn
j ), so n−1µ(Xn

j ) ∈ Convex Hull{supp(YXn
j
)}; at the last step we have used the assumption that

nγ2
n < c, for some c > 0.

We can now proceed to bound E
[
maxi≤n |Xn

i |2q
]

E
[

max
i≤n
| Xn

i |2q
]
= E

max
i≤n

∣∣∣∣∣∣X0+
i−1

∑
j=0

YXn
j

∣∣∣∣∣∣
2q


=E

max
i≤n

∣∣∣∣∣∣X0+
i−1

∑
j=0

n−1
µ(Xn

j )+
i−1

∑
j=0

YXn
j
−n−1

µ(Xn
j )

∣∣∣∣∣∣
2q


≤cq

|X0|2q+E

max
i≤n

∣∣∣∣∣∣n−1
i−1

∑
j=0

µ(Xn
j )

∣∣∣∣∣∣
2q
+E

max
i≤n

∣∣∣∣∣∣
i−1

∑
j=0

YXn
j
−n−1

µ(Xn
j )

∣∣∣∣∣∣
2q



≤cq

|X0|2q+n−2qn2q−1
n−1

∑
j=0

E
∣∣∣µ(Xn

j )
∣∣∣2q

+E
[

max
i≤n

∣∣Y n
i
∣∣2q
]

≤cq

|X0|2q+n−1
n−1

∑
j=0

cq,µ,σ

(
1+E|Xn

j |2q
)
+cµ,σ ,q+cµ,σ ,qnq−1n−q

n−1

∑
j=0

E|Xn
j |2q


≤cq

|X0|2q+cq,µ,σ n−1
n−1

∑
j=0

E|Xn
j |2q+2cq,µ,σ+cq,µ,σ n−1

n−1

∑
j=0

E|Xn
j |2q


≤cq,µ,σ

|X0|2q+1+n−1
n−1

∑
j=0

E|Xn
j |2q

 .

It remains now to bound E|Xn
i |2q: applying the discrete Grönwall’s Lemma 4, from the previous equation

we know that

E|Xn
i |2q ≤E

[
max

1≤i≤n
|Xn

i |2q
]

≤cq,µ,σ

|X0|2q +1+n−1
n−1

∑
j=0

E|Xn
j |2q


≤cq,µ,σ

{
|X0|2q +1

}
+ cq,µ,σ

{
|X0|2q +1

} i−1

∑
j=0

n−1 exp

n−1

∑
j=0

n−1
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≤cq,µ,σ

{
|X0|2q +1

}
(1+ e).

To conclude the proof we can notice that using the Jensen Inequality and the sub-additivity of the root we
have that

E
[

max
i≤n
|Xn

i |q
]
≤

√
E
[

max
i≤n
|Xn

i |2q

]
≤
√

cq,µ,σ

{
|X0|2q +1

}
(1+ e)≤ cq,µ,σ

{
|X0|q +1

}
(1+ e).

We state here the discrete Grönwall’s Lemma that we have used in some previous proofs of this work.

Lemma 4. [Discrete Grönwall’s Lemma [26]] Let yn, fn, and gn be non-negative sequences such that for
n > 0, yn ≤ fn +∑

n
k=0 gkyk, then

yn ≤ fn +
n

∑
k=0

fkgk exp

 n

∑
j=k

g j

 .

B Appendix - Details on Experiments
In both the experiments we decided on the following strategy

(a) try to solve (2) using Algorithm 2 in [6];

(b) if after a specified maximal number of iterations, step (a) has not returned a solution, solve the
minimization problem (iii) and then we apply Algorithm 3 in [6], given the sequence of weights
solving (iii) and so (2). Remember that Algorithm 3 in [6] is a combination of the Algorithms in [53]
and [6].

The results in [6] can also help to reduce further the cardinality of the state space. [6, Theorem 3, item
3] tells us that given a solution of (2) we could possibly modify it changing the points (and therefore
the weights) if the new points satisfy a specified condition. The idea is thus to search if there are points
|l̄ j| ≤ c, l̄ j ∈ γZ2 such that l̄ j satisfies the condition explicited in [6, Theorem 3, item 3] and l̄ j have been
already used in the past - indeed let us recall that we build the tree recursively starting from the initial
point. Briefly, we indicate {l?j },{w?

j} a solution of (2), when the Caratheodory’s reduction has already
taken place, and C({·}) indicates the cone built from the points {·}. [6, Theorem 3, item 3] claims that
any point into the cone C({−l?j }\−l?1) can be exchanged with l?1 to have a new solution to (2). Namely,
considering that we want to find a solution in γZ2, we can look for any point l̄ in

{|l|< c, l ∈ γZ2}∩{l ∈ γZ2 : x+ l has been used to build previous r.v.}∩C({−l?j }\−l?1).

The points l̄∪{l?j }\ l?1 constitute another solution to (2), changing accordingly the weights. This can be
generalized for any l?i , not only l?1 and can be iteratively done for all of them. This procedure can help us to
reduce further the total number of states necessary to approximate the considered SDE, being able to re-use
points already used, and therefore increasing the “level of recombination” of the tree. As a drawback, this
procedure leads to a higher computational cost.
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