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Continuous Patient State Attention Models
Vinod K. Chauhan, Anshul Thakur, Odhran O’Donoghue, Omid Rohanian, and David A. Clifton

Abstract— Irregular time-series (ITS) are prevalent in the
electronic health records (EHR) as the data is recorded
in EHR system as per the clinical guidelines/requirements
but not for research and also depends on the patient
health status. ITS present challenges in training of ma-
chine learning algorithms, which are mostly built on as-
sumption of coherent fixed dimensional feature space. In
this paper, we propose a computationally efficient variant
of the transformer based on the idea of cross-attention,
called Perceiver, for time-series in healthcare. We further
develop continuous patient state attention models, using
the Perceiver and the transformer to deal with ITS in EHR.
The continuous patient state models utilise neural ordinary
differential equations to learn the patient health dynamics,
i.e., patient health trajectory from the observed irregular
time-steps, which enables them to sample any number of
time-steps at any time. The performance of the proposed
models is evaluated on in-hospital-mortality prediction task
on Physionet-2012 challenge and MIMIC-III datasets. The
Perceiver model significantly outperforms the baselines
and reduces the computational complexity, as compared
with the transformer model, without significant loss of
performance. The carefully designed experiments to study
irregularity in healthcare also show that the continuous
patient state models outperform the baselines. The code
is publicly released and verified at https://codeocean.
com/capsule/4587224.

Index Terms— deep learning, electronic health records,
irregular time-series, neural ordinary differential equations,
in-hospital-mortality and MIMIC-III.

I. BACKGROUND

Uneven time intervals between measurements of a patient’s
attributes, such as heart rate, lead to irregularity in the elec-
tronic health records (EHR), which results in missing values
while preparing the data for processing with machine learning
models [2]. In EHR, irregular time-series (ITS) occur due
to several reasons. For example, the data in EHR system is
not recorded for the research purposes but is recorded as
per the guidelines, medical requirements and for supporting
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medical claims etc., and all the measurements and treatments
are dependent on the patient health status [3]. ITS are widely
prevalent in primary and secondary care, including critical
care, e.g., the MIMIC-III dataset has a missing rate of over
90% for hourly sampled ITS [4].

The adoption of EHRs in healthcare has presented great
opportunities to develop machine learning (ML) models and
artificial intelligence (AI) techniques to reduce the workload
on an already burdened healthcare system, guide clinical de-
cision making and increase efficiency of healthcare resources
[5], [6]. However, ML models are, mainly, based on as-
sumption of coherent fixed-dimensional feature space and the
presence of irregularity in EHRs invalidates that assumption.
The irregularity presents challenges to train the ML models
without affecting performance on downstream tasks [7]. As
a result, it is crucial to develop techniques for the correct
imputation of missing time-steps in EHR for a number of
reasons, including resource management, triaging, diagnosis,
treatment, and prognosis.

Due to the importance and wide prevalence of ITS in health-
care, ITS and the resulting missing values in EHR have re-
ceived increasing attention from the research community, and
there has been extensive research to address the irregularity,
e.g., [2], [3], [8]–[10]. A wide variety of techniques have been
proposed to handle ITS, e.g., from the traditional statistical
techniques for replacement of missing values (such as using
mean and median values etc.), imputation, interpolation, and
matrix completion-based techniques [11] to advanced meth-
ods, such as neural processes [3], modification of recurrent
neural networks [12], neural ordinary differential equations
(NODE) [8], and attention based techniques [9] etc.

Traditional basic statistical techniques for replacing missing
values, such as zero, mean, median, and carry forward, are
biased and make strong assumptions about the underlying
data generation process. This is reported to result in loss
of performance in downstream prediction tasks [13]. Many
other modern techniques for modelling fail to capture feature-
correlations in time-series [12], separate the modelling of
missingness from the downstream task, and fail to learn the
missingness pattern, or are not adequately efficient to handle
long sequences, noise and multi-modality of the data [11]
etc. Moreover, there are scarce techniques that can handle
completely missing time-steps, such as in [8] and others
mostly handle partially missing values, such as in [2].

In this paper, our contributions are two-fold: first we propose
a computationally efficient variant of the transformer [15]
based on the idea of cross-attention [16], [16], [17], called
Perceiver, to process long time-series in EHR, and second, we
propose a continuous variant of these attention based models,
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i.e., the Perceiver and the transformer to deal with ITS and
address the above limitations of ITS techniques. The proposed
continuous patient state attention models learn the patient
health trajectory for end-to-end learning from the ITS in
EHRs, which can handle long sequences, noise and completely
missing time-steps, including the sparse time-series.

The transformer based models are one of the most success-
ful deep learning techniques, which have shown great results
across different domains [2], [18]. However, the quadratic
dependence of the transformer based models on the input
limits their application to long sequences. To address this
issue, recently, Perceiver based models [16], [16], [17] pro-
posed the idea of cross-attention to squeeze the large inputs
to tighter learnable latents, which are then followed by self-
attention operations (the transformer) on the squeezed inputs.
We also utilise the idea of cross-attention to propose Perceiver
model for EHR to handle the long sequences of time-series,
as discussed in the Section II. The Perceiver could be very
valuable in healthcare since EHRs data represent a lot of
information about the patients, and working with the complete
and long trajectory of patient health status can yield very good
results.

To address the irregularity in EHR data, we propose con-
tinuous variants of the Perceiver and the transformer for the
patient health status, called as COntinuous Patient state PER-
ceiver (COPER) and Continuous Transformer (CTransformer),
respectively. These continuous state models learn the patient
health dynamics, i.e., patient trajectory from the observed
irregular time-steps from which any point can be sampled
and used to generate a regular time-series to be processed
with the Perceiver/transformer model. COPER/CTransformer
can handle the completely missing time-steps, i.e., time-
steps where no data is recorded, as well as small noise in
the observations because it can generate the complete time-
series after learning from the observed irregular time-steps.
COPER/CTransformer achieve continuity in the patient health
status using embedding and NODE. The continuous patient
states could be helpful in a wide range of tasks including
diagnosis, prognosis and treatment and in disease progression
modelling.

The proposed work have some similarities to [8], [14] and
[16], [17], [19]. The work in [8], [14], specifically [8] proposed
latent ODE (LODE) based on recurrent neural networks and
develops an encoder and decoder based architecture employing
NODE in both to address the irregularity. LODE learns the
dynamics of hidden state. Thus, our work is different from
the LODE, in terms of using non-recurrent neural networks,
using one NODE and using NODE for continuity of patient
state rather than hidden state of the neural network. Moreover,
the works in [16], [17], [19] are based on the idea of cross-
attention of inputs with learnable latents for reducing the
complexity of the transformer based architectures. Our work
also borrows the idea of cross-attention but is architecturally
different (refer to Section II for details) from the existing work,
and also used for solving a different problem.

To evaluate the empirical performance of the proposed tech-
niques, we have used in-hospital-mortality (IHM) prediction
task using MIMIC-III and Physionet-2012 datasets, which

contain time-series data from the intensive care unit (ICU), and
using area under the receiver operating curve (AUROC) and
area under precision recall curve (AUPRC) as the performance
metrics. The Perceiver is compared with the long short-term
memory (LSTM) and temporal convolutional network (TCN)
as baselines. For evaluating the performance of the continuous
patient state models, we have designed experiments to study
the irregularity at 25%, 50% and 75% missing time-steps by
randomly removing the time-steps, and compared them with
simple baselines, like LSTM and Perceiver with carry forward,
and advanced state-of-the-art techniques, like LODE [8] and
Multi-Time Attention Network (mTAND) [9].

The contributions of the paper are summarised below.

• A computationally efficient variant of the transformer,
called Perceiver, is proposed for time-series in EHR data,
which is based on the idea of cross-attention of the
inputs with tighter learnable latents. The cross-attention
operation helps to reduce the computations by squeezing
the long sequences to smaller latents. Perceiver presents
another potential alternative for processing time-series in
EHR and enables the processing of long patient trajecto-
ries.

• To address the irregularity in EHR data, continuous
variants of the Perceiver and the transformer, called
COPER and CTransformer, respectively, are proposed,
which learn the dynamics of the patient health status from
the irregular observed time-steps using neural ordinary
differential equations. The proposed continuous patient
state attention models can handle long sequences, noise
and completely missing time-steps, including the sparse
time-series. The continuous patient states could be helpful
in a wide range of tasks including diagnosis, prognosis
and treatment and in disease progression modelling.

• Empirical evaluation of the proposed techniques is per-
formed on in-hospital-mortality prediction task using
MIMIC-III and Physionet-2012 datasets with AUROC
and AUPRC as performance metrics. The experiments
show that the Perceiver can be used as a potential alterna-
tive for processing time-series in EHR, and significantly
reduces the computations as compared to the transformer
without significant loss of performance. The specifically
designed experiments for continuous patient state models
also show their efficacy to deal with the irregular time-
series in EHR. Moreover, the proposed techniques also
employ predictive uncertainty to improve transparency
and trustworthiness, and is used to communicate un-
certain cases to the experts to avoid making uncertain
decisions.

The preliminary idea and the results of the present work
were published in a four page paper [1]. This paper revises the
idea and the empirical evaluation of [1] in a number of ways:
(i) methodology is discussed in details, with the addition of
algorithmic details, (ii) the architecture/idea is revised to have
continuity only in the patient health state as this is sufficient
to address the irregularity in EHR, which also improves the
results than having continuity in the input as well as output
spaces. Moreover, in the style of the continuous Perceiver,
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Fig. 1: Architecture of COPER: An embedding of the irregular time-series is passed through the NODE, which captures the
patient dynamics from the observed time-steps, and is used to generate a regular time-series. The generated regular time-series
is then fed to the Perceiver model which first squeezes the long sequence of T time-steps to a l < T latents using the
cross-attention and then followed by self-attention operations.

continuous version of the transformer is also proposed, (iii)
new experiments are added to show the utility of the Perceiver
over the transformer architecture, (iv) additional dataset and
metric are considered to evaluate the proposed techniques,
and (v) experiments are added to utilise the uncertainty of
the proposed techniques to improve transparency and hence
trustworthiness.

II. METHODS

In this section, we discuss the architecture and algorithmic
details of the proposed Perceiver and the continuous patient
state models.

A. Perceiver
Transformer [15] based models have been successful across

different domains with different modalities, including time-
series in healthcare [20]. However, the main limitation of
these models is their quadratic dependence on the input size,
which results in large computational complexity when dealing
with long context inputs, limiting their applicability to such
problems that are quite common in healthcare time-series data
[21].

Perceiver [16] based models are recent advancements to
the transformer [15] based models and they address the issue
of quadratic dependence of the transformers on the input by
introducing cross-attention operation of learnable smaller la-
tents with inputs. The cross-attention distils the long sequence
input to smaller latents which is followed by self-attentions
(transformer) on the squeezed latents, as given below. In our
time-series settings, a long sequence of time-steps can be
squeezed into a customised number of latents for processing
with the transformer based models, which otherwise could be
computationally very expensive or even infeasible in some
cases to use the transformers directly on the input data.

The architecture of the COPER model, and the Perceiver
as a component of the COPER, is presented in Fig. 1. The
proposed Perceiver model borrows the idea of cross-attention
from the original Perceiver based models [16], [17], [19] but
has different architecture as shown in the Fig. 1. The Perceiver
uses cross-attention operation to squeeze the input sequence
length from T time-steps into l < T number of latents of same
feature dimension as original sequence. The cross-attention is
applied M -times on the input and the outputs are averaged,
which then can be processed using transformer (self-attention)
layers leading to lower computations as compared with pro-
cessing the original input directly with the transformers.

Suppose {Xi, yi}ni=1 be the training dataset with n patients
where Xi ∈ Rtd×D represents ITS of a patient i having
D features for uneven td time-steps recorded for feature d,
where each time-step represents the health status of the patient.
yi ∈ {0, 1} represents the patient outcomes (say in-hospital-
mortality where 0 refers to patient lives to be discharged
otherwise dies in the hospital). First, let’s define the attention
operation [15], which is a scaled dot product attention between
a set of queries (Q), keys (K) and values (V), as given below.

α(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (1)

where α denotes the attention function and dk is the dimension
of the key vector. The self-attention operation has Q = K =
V = Xi while cross-attention operation has Q = Z and K =
V = Xi, where Xi ∈ RT×e represents a data point (a patient
in our case) with e features having T time-steps, and Z ∈ Rl×e
for 1 ≤ l ≤ T number of latents. Algorithm 1 provides details
about the flow of information through the COPER and the
Perceiver, which is explained in the next subsection.
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Algorithm 1 COntinuous Patient state PERceiver

1: Input: Dataset {Xi, yi}ni=1 and hyperparameters, like number of latents l, number of epochs and optimiser etc.
2: while Convergence do
3: Xtd,e = Embedding(Xtd,D) . implemented with an MLP
4: XT,e = NeuralODE(Xtd,e) . generates regular time-series
5: XT,e = XT,e + PositionalEncoding . uses sine and cosine functions

6: Zl,e =
1

M

∑M
i=1 α(Zl,e,i, XT,e, XT,e) . Average over M -cross-attention with latents

7: for i=1,2,..,N do . N successive self-attentions
8: Zl,e = α(Zl,e, Zl,e, Zl,e) . self-attention
9: end for

10: ŷ = FullyConnected(Zl,e) . prediction probabilities
11: L = Loss(y, ŷ) . cross-entropy loss
12: L.backward()) . calculate gradients as per the prediction errors
13: optimiser.step() . update weights using optimiser as per the gradients
14: end while
15: Output: ŷtest . predictions on the test dataset

B. Continuous Patient State Attention

Continuous patient state attention models are an advanced
deep learning models to handle irregular time-series data
in EHRs. They learn the patient health trajectory from the
observed time-steps, i.e., observations of the patient health
status at uneven time-steps. By learning the patient health
dynamics, they can handle the irregularity as well as noise
to some extent in the patient health status for successfully
predicting the patient health outcomes.

COPER is based on the recent advancements of neural
ordinary differential equations (NODE) and the Perceiver
models to handle the ITS in EHRs, and can be applied to
different tasks. The overall architecture of the COPER model
is represented in Fig. 1 and the pseudocode for the representing
the flow of information is given in the Algorithm 1.

As described in the algorithm, COPER processes the input
ITS Xtd,D, having D features with td time-steps for feature d,
by first learning an optional embedding Xtd,e of size e for each
time-step, using a single layer multilayer perceptron (MLP).
These embeddings are then processed with the NODE [14],
which are another recently developed class of neural networks.
NODE helps to capture the dynamics of patient health status
from which patient health status can be inferred at any time
and a regular time-series can be generated. NODE consists of a
neural network and a black-box ordinary differential equation
(ODE) solver. The neural network outputs derivative of the
patient health status, which is fed to an ODE solver. The ODE
solver enables the model to calculate the patient health status
at any time step, resulting in a continuous space, as described
below.

dZ

dt
= fθ (Z(t), t) , (2)

Z0, ..., ZN = ODESOLVER (fθ, Z0, (t0, ..., tN )) , (3)

where Z is a patient state, fθ is a neural network which
parameterises the derivative of patient state. The ODESolver
takes the derivative from the fθ and initial patient state Z0 and
calculates the patient state at the desired time-steps (t0, ..., tN ).

Steps 5-10 are part of the Perceiver model, which first adds
positional encoding to the input for maintaining the order
information of the time-steps using sine and cosine functions,
as given below [15]:

PositionalEncoding(pos,2i) = sin(pos/100002i/dmodel),

PositionalEncoding(pos,2i+1) = cos(pos/100002i/dmodel).
(4)

As shown in the Fig 1, the Perceiver applies M cross-
attentions on the encoded input with the latents Z, followed by
N successive self-attention operations on the average of cross-
attention operations (M = 1, N = 1 in our experiments). The
resulting output is then passed through a fully connected layer
to predict the output probabilities, and followed by a standard
machine learning process to update the parameters.

An architecture and algorithm for CTransformer can be
obtained by replacing the cross-attention operation with the
self-attention in the architecture and algorithm of COPER.

III. RESULTS

This section presents details about prediction task, datasets,
performance metrics, baselines and experiments.

A. Datasets and Baselines
The proposed models are evaluated for in-hospital mortality

(IHM) prediction task using two publicly available datasets,
i.e., Physionet Challenge 2012 dataset (hereon referred to
as Physionet) [22], [23] and Medical Information Mart for
Intensive Care (MIMIC-III) dataset (hereon referred to as
MIMIC) [24]. These are time-series dataset based in the
intensive care unit (ICU) setting. IHM is a binary classification
task to predict from the first 48 hours of ICU admission for
hourly data if patient will die in the hospital or live to be
discharged. IHM prediction is very important for resource
management, triage, initial risk assessment and designing
effective treatment plans [12]. For preprocessing of MIMIC
dataset, we have followed [25] to get a dataset with 76 features
and 14,681, 3,236 and 3,222 samples in train, validation and
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test datasets1, respectively. For Physionet dataset, we follow
the preprocessing as used in [8]. The dataset has 47 features
and a total 8,000 samples. Due to smaller size, we have used
5-fold cross-validation in our experiments. Furthermore, the
validation data is taken as 20% of the training data.

Two sets of experiments are designed as follows: first set
presents the Perceiver model – a computationally efficient
variant of the transformer – as a potential alternative for
learning from time-series data. The experiments compared
the model with Long Short-Term Memory (LSTM) [26] and
Temporal Convolutional Network (TCN) [27] – the widely
used techniques for handling time-series data. Experiments are
also designed to show how the latents in Perceiver can be
used to squeeze the long sequences into tight smaller number
of latents to reduce the computational cost. Second set of
experiments present continuous patient state attention models
for handling the irregularity in EHRs. Since our proposed work
is based on attention and NODE so for comparative study,
we have chosen simple baselines as well as baselines based
on state-of-the-art attention and NODE based techniques. The
selected baselines are LSTM and Perceiver with carry forward
to deal with the missing steps, and Multi-Time Attention
Network (mTAND) [9], and latent ODE (LODE) [8] which are
advanced state-of-the-art techniques for handling irregularity
and are based on attention and NODE, respectively. To study
the irregularity, we have designed experiments at 0%, 25%,
50% and 75% irregularity by randomly removing the time
steps. Area under the receiver operating curve (AUROC) and
area under the precision recall curve (AUPRC) are used as
performance metric for the comparative study.

B. Experimental Settings
Parameters of COPER are selected using a random search,

and trial and error over a range of values: embedding layer is
implemented using a multi-layer perceptron (MLP) with single
hidden layer of 32 (16, 32, 64, 128) neurons (where values
inside parenthesis represent the set of values tried), NODE
are implemented using an MLP with three hidden layers of
128 (50, 100, 128) neurons for each NODE, cross- and self-
attention heads have 128 (32, 64, 128, 256) dimensions, latents
have 64 (32, 64, 128, 256) dimensions, dropout for attentions
and NODE networks are set to 0.5 (0.2, 0.3, 0.4, 0.5, 0.6). The
number of latents, unless specified, are set equal to number
of time-steps. Number of cross-attention operation is set to
one, i.e., M = 1 for simplicity, and number of self-attention
operations are N = 1(1, 2, 3, 4, 5). For LSTM, number of
layers are set to two (one, two) each with hidden state of size
50 (16, 32, 50, 64, 128), dropout rate is set to 0.5 (0.2, 0.3,
0.4, 0.5, 0.6) and single-directional (single, bi). The TCN im-
plementation and hyperparameter setting is followed from [27]
with a dropout rate of 0.70%2. For mTAND3, we follow the
source paper and have set the hyperparameters as (Physionet,
MIMIC): alpha (100, 5), learning rate (0.0001, 0.0001), rec-
hidden dimension (256, 256), gen-hidden dimension (50, 50),

1https://github.com/YerevaNN/mimic3-benchmarks
2https://github.com/locuslab/TCN
3https://github.com/reml-lab/mTAN

latent-dimension (20, 128), norm (true, true), kl (true, true),
learn-emb (true, true), k-iwae (1, 1), and number of epochs are
set to 300. For the LODE4, we follow the source paper and
have set the hyperparameters as (Physionet, MIMIC): latent-
dimension (20, 40), rec-dimension (40, 80), poisson (true,
true), and number of epochs are set to 300.

For all the models, we have set the optimiser to Adam [28]
with a constant learning rate of 0.0001. To avoid overfitting,
in addition to dropout, we have used early stopping with a
patience of 10 epochs. Total number of epochs are set to 100
unless provided by the baseline paper. The batch size is set
to 64 for all the models except LODE where it is set to 32
with MIMIC dataset because LODE is memory intensive and
the machine crashes with 64 data points. Each experiment
is executed with five seed values. All the experiments are
implemented in Pytorch [29] and executed on an Ubuntu
machine (64GB RAM, 1 NVIDIA GeForce GPU 12 GB).
The code is publicly released and verified at https://
codeocean.com/capsule/4587224.

C. Perceiver
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Fig. 2: Comparative study of Perceiver against the baselines on
Physionet dataset using AUPRC (upper) and AUROC (lower).

We compared the Perceiver model against LSTM and TCN
– the widely used techniques for the time-series data. Fig. 2
presents the comparative study on Physionet dataset using
the AUPRC and AUROC as the performance metrics. Upper
panel presents results using the AUPRC, and we observe that
Perceiver significantly outperforms the LSTM (p < 0.001).
TCN performs the worst in terms of AUPRC on Physionet.
The outlier performance in all the models are present due to

4https://github.com/YuliaRubanova/latent ode
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Fig. 3: Comparative study of the Perceiver with varying number of latents and the transformer (TF) models, in terms of FLOPS
(left), AUPRC (middle) and AUROC (right).

cross-validation, as the performance of the models is better
on one of the folds compared to the rest. Lower panel of the
figure, presents results for the AUROC metric, and we observe
results similar to the AUPRC. We find that Perceiver signif-
icantly outperforms the LSTM (p < 0.001) and TCN, once
again, performs the worst. The variance in the values of the
Perceiver model is the least among all the models. Thus, the
Perceiver model exhibits significantly better performance on
the Physionet dataset for the in-hospital-mortality prediction
task.

The comparative study of the Perceiver with the baselines
on MIMIC dataset is presented in Fig. 4. The upper panel
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Fig. 4: Comparative study of Perceiver against the baselines on
MIMIC dataset using AUPRC (upper) and AUROC (lower).

compares the AUPRC and as it is clear from the figure,
the Perceiver slightly outperforms the baselines. Moreover, as
observed earlier for the Physionet dataset, LSTM performs
better than the TCN. The lower panel compares the per-

formance using the AUROC and has results different from
those observed with the Physionet as well as the AUPRC on
MIMIC. All the models perform very close to each other as the
maximum variation in the performance was around 0.01, and
TCN performs best on average. AUROC is similar for MIMIC
and Physionet datasets, although AUPRC is slightly better for
Physionet than the MIMIC. The performance differences for
two datasets could be attributed to the difference in number
of features, data points and missingness.

Next, we present experiments to show the utility of the
Perceiver over the transformer. The key idea of the Perceiver is
the use of the cross-attention operation (Step 6 of Algorithm 1)
to squeeze the long sequence to customised smaller learnable
latents. This helps the Perceiver to manage the computational
complexity as compared with the self-attention operation of
the transformers, which have quadratic dependence on the
input sequence and may not be able to handle the large inputs.

Fig. 3 compares the computational requirements and perfor-
mance of the Perceiver and the transformer on Physionet and
MIMIC datasets. The left panel presents floating-point oper-
ations per second (FLOPS), middle and right panel compare
AUPRC and AUROC, for the transformer and the Perceiver
with varying number of latents from one to length of the input,
i.e., number of time-steps in the input (48 in our case). From
the figure, we observe that by controlling the number of latents
in the Perceiver, we can reduce the computations as compared
with the transformer. We can reduce computations by around
nine times on MIMIC and Physionet datasets, without any
significant drop in the performance except AUPRC on MIMIC
dataset. Transformer and the Perceiver have exactly the same
architecture except for the latents introduced by the Perceiver,
and because of those latents, the Perceiver takes more FLOPS
for 30 to 48 latents.

D. Continuous Patient State Attention
Here, we present results for the proposed continuous atten-

tion models, i.e., COPER and continuous transformer (CTrans-
former), to deal with the irregularity in EHR data. Continuous
attention models learn the patient health dynamics from the
observed irregular observations each of which representing the
patient health state at a given time. Once the patient health
dynamics is learned, any number of samples can be taken
and at any time-step. To study the continuous models, we

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 26, 2022. ; https://doi.org/10.1101/2022.12.23.22283908doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.23.22283908
http://creativecommons.org/licenses/by-nc/4.0/


CHAUHAN et al.: CONTINUOUS PATIENT STATE ATTENTION MODELS 7

specifically design experiments at irregularity of 0%, 25%,
50% and 75%, and study the performance of the proposed
models against the baselines, such as mTAND and LODE, as
well as LSTM and Perceiver using carry forward techniques.
In carry forward technique for dealing with the irregularity, we
simply replace the missing steps with the previous available
observation.
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Fig. 5: Comparative study using varying irregularity on the
Physionet dataset using AUPRC (upper) and AUROC (lower).

The comparative study of the proposed continuous patient
state models against the baselines on Physionet dataset is
presented in Fig. 5 using the AUPRC (upper) and AUROC
(lower). From the upper panel, we find that the CTrans-
former is the best model and performs slightly better than
the Perceiver model. Although, like LODE and mTAND,
CTransformer shows large variability in the performance as
compared with COPER and Perceiver models. LODE performs
the worst. With the increasing irregularity in EHR, mostly the
performance remains the same except a slight drop at 75%.
The lower panel of the figure, compares the AUROC and have
performance similar to the AUPRC. LODE and LSTM show
more variability than the rest of the models. Simple baselines
with carry forward, i.e., LSTM and Perceiver, also handle the
irregularity quite well, however the Perceiver performs better
than LSTM. This is in agreement with some of the literature
[30] which shows that the carry forward works well for EHR
in some settings.
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Fig. 6: Comparative study using varying irregularity on the
MIMIC dataset using AUPRC (upper) and AUROC (lower).

Fig. 6 presents the performance of different models with
varying degree of irregularity on the MIMIC dataset. The
performance trends on MIMIC are slightly different than the
Physionet. Overall, there is less variability in the results for all
the models, and the variability in performance increases on the
MIMIC with increasing irregularity. The proposed continuous
variant of transformer, i.e., CTransformer significantly (p <
0.01) outperforms all the baselines and relatively shows small
variability in the performance. LSTM performs the worst as
it has relatively more decrease in performance as well as has
more variability in the performance with increasing irregu-
larity. Although, the Perceiver, which also uses simple carry
forward mechanism like LSTM, performs with almost no drop
in performance until 50% irregularity and a slight drop at 75%
irregularity. Perceiver also performs better than its continuous
version COPER. One potential reason for this could be over
90% missingness in the MIMIC dataset [4]. LODE performs
better on the MIMIC dataset than the Physionet dataset, as
it observes very small drop in performance with increasing
irregularity.

The techniques which utilise NODE for handling the ir-
regularity in EHR, i.e., COPER, CTransformer and LODE
are computationally extensive due to the use of the MLP
in NODE. Among these, LODE uses two NODEs, one each
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in the encoder and decoder, and is the most computationally
expensive. For the MIMIC dataset, one run of the LODE can
take up to one and half day so it is not a good option for long
sequences.

During the evaluation for continuous attention models, we
have choice of either generating the entire time-series after
learning the dynamics from the ITS or keep the observed
time-steps and generate only the missing time-steps. For small
irregularity and noisy data, generating the entire time-series
could be helpful to reduce the effect of the noisy data.

E. Selective Predictions and Expert Referrals

The predictive uncertainty of a machine learning model
is useful in guiding the use of the model in high-stake
applications, such as healthcare. The models are used for
selective predictions and highly uncertain predictions of a
model are referred to the expert for further examination. This
will increase transparency and trust of the clinical users in the
machine learning techniques and will help in the adoption of
the machine learning in healthcare.
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Fig. 7: Utilisation of predictive uncertainty for selective pre-
dictions and refer the uncertain predictions to the experts:
upper panel presents the test accuracy of the Perceiver on
Physionet and lower panel presents the test accuracy of the
COPER on MIMIC dataset, against the proportion of uncertain
cases referred to the experts.

We have used Monte Carlo (MC) dropout technique [31]
for calculating the model’s predictive uncertainty and is an
approximation of Bayesian techniques [31] which are difficult
to train. MC dropout is a simple but scalable technique and

does not require training multiple models or even retraining
rather trained models which use dropout for regularisation can
be used for the uncertainty quantification. MC dropout requires
to activate the dropout layers during the testing phase which
is otherwise turned off. So each evaluation of the model with
the same data point gives different prediction probabilities.
We evaluated our models 25 times on each sample of the test
dataset, and the mean and variance of these 25 predictions act
as actual predictions and predictive uncertainty of the model.

We refer the highly uncertain cases to the experts and
evaluate the model performance selectively on the remaining
test dataset. Fig. 7 presents the test accuracy against the
proportion of cases referred to the expert. Upper panel presents
the results for the Perceiver with Physionet and lower panel
presents results for the COPER with MIMIC dataset at 50%
irregularity (selected randomly). Both the figures show similar
behaviour and as expected, as the uncertain cases are removed,
the performance of the both the models improves. Thus, the
uncertainty quantification is useful and cases can be referred
to clinicians as per their availability.

IV. DISCUSSIONS

Based on the idea of cross-attention based architectures, we
proposed a computationally efficient variant of the transformer,
called Perceiver, as a potential alternative for processing time-
series data in EHR. The cross-attention operation helps to
squeeze the long sequences of time-series to a smaller number
of latents which then can be processed using self-attention op-
erations, requiring fewer computations than directly processing
the time-series with the transformer based models. Perceiver
outperforms LSTM and TCN, the widely used techniques
for time-series, and was able to reduce the computations by
around nine times, as compared with the transformers without
any significant loss of performance. We further extended the
Perceiver and the transformer models to learn the patient health
dynamics from the ITS. These continuous models employ
neural ordinary differential equation (NODE) to model the
patient health trajectory from which any number of points
at any time-step can be sampled, and hence addressing the
irregularity issue in EHR.

These continuous attention models can handle long se-
quences, completely missing time-steps, noisy observations
and employ end to end learning for handling the irregularity.
The experiments prove the efficacy of the proposed work
on in-hospital-mortality prediction task using Physionet and
MIMIC-III datasets. We also employ the uncertainty quan-
tification for calculating the predictive uncertainty of the
proposed models, which was used for selective predictions
and referring the uncertain cases to the expert. This helps in
improving the performance of the system, adjust the working
of the models as per the time availability of the clinicians, and
builds transparency and the trustworthiness of the proposed
techniques for adoption in healthcare.

LSTM with carry forward technique for handling the ir-
regularity does not perform well as it shows decrease in per-
formance with the increasing irregularity in EHR. Moreover,
the Perceiver with carry forward performs significantly better
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than the LSTM with carry forward for handling ITS. Overall,
CTransformer outperforms all other techniques. COPER also
shows competitive performance to deal with the irregularity
and is computationally less expensive than the CTransformer
and LODE models. Amongst all the techniques for handling
ITS, LODE is the most expensive and takes up to two days to
train on the MIMIC dataset. Thus, the Perceiver and the con-
tinuous patient state attention models provide computationally
efficient techniques for handling ITS in EHR.

The proposed attention based models are advanced deep
learning models so they share the same limitations as the other
models of the same type, such as requiring more data to train,
hyperparameter tuning and more computational resources than
the traditional machine learning approaches. Despite this, we
were able to reduce computations compared to the transformer,
and the proposed models to handle ITS are computationally
cheaper than state-of-the-art NODE-based models, such as
LODE. To further evaluate the performance of the Perceiver
and the continuous attention models, in future, we will study
more tasks and datasets.

V. CONCLUSIONS

The proposed Perceiver model provides a computationally
efficient potential alternative for time-series in EHR as com-
pared with the transformer and outperforms the commonly
used baselines, such as LSTM and TCN, for in-hospital-
mortality using MIMIC-III and Physionet-2012 datasets. The
continuous patient state attention models, i.e., COPER and
CTransformer, can handle completely missing time-steps, long
sequences and provide end-to-end learning for handling irreg-
ularity in EHR. The carefully designed experiments prove the
efficacy of the proposed techniques.
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