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Abstract

In spite of their highly-publicized achievements in disparate applications, neural
networks are yet to be widely deployed in safety-critical applications. In fact,
fundamental concerns exist on the robustness, fairness, privacy and explainability
of deep learning systems. In this thesis, we strive to increase trust in deep learning
systems by presenting contributions pertaining to neural network verification and
training. First, by designing dual solvers for popular network relaxations, we provide
fast and scalable bounds on neural network outputs. In particular, we present two
solvers for the convex hull of element-wise activation functions, and two algorithms
for a formulation based on the convex hull of the composition of ReLU activations
with the preceding linear layer. We show that these methods are significantly faster
than off-the-shelf solvers, and improve on the speed-accuracy trade-offs of previous
dual algorithms. In order to efficiently employ them for formal neural network
verification, we design a massively parallel Branch-and-Bound framework around
the bounding algorithms. Our contributions, which we publicly released as part of
the OVAL verification framework, improved on the scalability of existing network
verifiers, and proved to be influential for the development of more recent algorithms.
Second, we present an intuitive and inexpensive algorithm to train neural networks
for verifiability via Branch-and-Bound. Our method is shown to yield state-of-the-
art performance on verifying robustness to small adversarial perturbations while
reducing the training costs compared to previous algorithms. Finally, we conduct
a comprehensive experimental evaluation of specialized training schemes to train
networks for multiple tasks at once, showing that they perform on par with a simple
baseline. We provide a partial explanation of our surprising results, aiming to stir
further research towards the understanding of deep multi-task learning.
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1.1 Preamble: Trustworthy Deep Learning

In the last few years, neural networks have achieved remarkable performance in

a variety of high-profile applications, from protein folding (Senior et al., 2020;

Jumper et al., 2021) to fast matrix multiplication (Fawzi et al., 2022). Owing to

the publicity surrounding these achievements, neural-networks-based systems now

regularly appear in mainstream information outlets (Geddes, 2022; Larousserie,

2022; Iannaccone, 2022), leading to an always-increasing media exposure. As a direct

consequence, there has been a surge in interest around trustworthiness of machine

learning algorithms (Varshney, 2022). In particular, efforts have been directed

towards ensuring the fairness (Du et al., 2020), explainability (Angelov and Soares,

2020), robustness (Carlini and Wagner, 2017), and privacy (Abadi et al., 2016)

of neural networks. Progress in deep learning has advanced at a particularly fast

pace in computer vision (Krizhevsky et al., 2012; Voulodimos et al., 2018), where

it has long achieved super-human performance on standardized tasks (O’Mahony

et al., 2019). However, the discovery of adversarial examples (Szegedy et al., 2014;

Goodfellow et al., 2015), human-imperceptible perturbations that can dramatically

alter network predictions, has cast serious doubts on the foundations of this progress.

As a result, increasing attention has been devoted to providing formal guarantees

concerning neural network behaviour (Liu et al., 2021b). Furthermore, deep learning

practices have been noted to be often based on folklore observations and consolidated

pipelines, rather than on rigorous understanding of the complex algorithms being

employed (Sculley et al., 2018; Hutson, 2018). Luckily, a number of works has

sought to provide thorough evaluations of pre-existing algorithms (Greff et al.,

2017; Lucic et al., 2018), often revealing the competitive performance of simpler

baselines (Brockschmidt, 2020; Narang et al., 2021).

In this thesis, we take a step towards trustworthy deep learning by developing

or providing support for efficient algorithms for neural network verification and

training. Before outlining the individual contributions presented in this thesis (§1.4),

we now provide an introduction to neural network verification (§1.2) and neural

network training in the contexts of interest (§1.3).
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1.2 Neural Network Verification

Neural networks have the potential to be employed in a variety of safety-critical

contexts, including healthcare (Jiang et al., 2017), autonomous driving (Wu et al.,

2017) and collision avoidance for commercial aircraft (Julian et al., 2016). It is

therefore crucial that these systems are robust and verify a number of desirable

properties. The field of neural network verification aims to provide formal guarantees

on the behaviour of deep learning systems by focusing on input-output specifications:

proving that, if the network input lies in a certain domain C, all the network output

will satisfy a given property P . Typically, C is a compact set, and P is a Boolean

formula over linear inequalities, common examples of properties being robustness

to adversarial examples, open-loop control specifications (Ehlers, 2017; Katz et al.,

2017), or safety properties for use within computer systems (He et al., 2022).

Verifying a specification is equivalent to provably finding the sign of the minimum

of a non-convex optimization problem (Bunel et al., 2018).

1.2.1 Neural Network Bounds

While solving a non-convex problem is notoriously hard, bounds on the minimum

can provide an answer for a subset of the specifications at hand: the tighter the

bounds, the fewer the properties that will lack a definite answer. Upper bounds to

the original problem can be obtained by running a local optimization algorithm: in

the context of adversarial robustness, this corresponds to running an adversarial

attack (Goodfellow et al., 2015; Carlini and Wagner, 2017; Madry et al., 2018). In

other words, computing upper bounds amounts to looking for counter-examples to

the property, yielding an unsound verification algorithm: some of the false properties

can be proved false. Lower bounds can be computed via Lagrangian duality (Wong

and Kolter, 2018; Dvijotham et al., 2018b) or by replacing the problem with a

convex outer-approximation (Ehlers, 2017; Zhang et al., 2018; Raghunathan et al.,

2018; Singh et al., 2018, 2019b,a; Anderson et al., 2020). These yield an incomplete

verification algorithm, meaning that some of the true properties can be proved true.
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A wide variety of incomplete verifiers exist, with radically different speed-

accuracy trade-offs. Given that any piecewise-linear network can be represented by

means of ReLU activations (Bunel et al., 2020b), much attention has been devoted

to computing bounds on these activations. Interval bound propagation (Gowal et al.,

2018a; Mirman et al., 2018) outer-approximate the ReLU via a rectangle, yielding

very loose yet efficient bounds. A popular family of methods replaces activation

functions by a pair of linear lower and upper bounds (bound propagation algorithms).

The slopes of the linear functions can be parallel (Wong and Kolter, 2018; Singh

et al., 2018), or vary to minimize the area of the resulting relaxation (Zhang

et al., 2018; Singh et al., 2019b), yielding effective speed-accuracy trade-offs. While

most of these algorithms are usually restricted to standard feed-forward networks,

recent work has sought to extend these techniques to more general computational

graphs (Xu et al., 2020). A tighter approximation replaces the ReLU by its

triangle-shaped convex hull (Ehlers, 2017), and has been commonly been employed

as a benchmark for relaxation tightness, to the point of being referred to as

the convex barrier for neural network verification (Salman et al., 2019b). This

relaxations is amenable to custom dual solvers (Dvijotham et al., 2018b), such as

those we present in §2. In order to overcome the convex barrier, some bounding

algorithms represent the convex hull of the composition of the activation with

the preceding linear layer (Anderson et al., 2020; Tjandraatmadja et al., 2020),

cross-ReLU interactions (Singh et al., 2019a), or rely on Semi-Definite Programming

(SDP) (Raghunathan et al., 2018; Dvijotham et al., 2020). We present custom

solvers for the relaxation by Anderson et al. (2020) in §3.

1.2.2 Verification via Branch-and-Bound

The methods that can verify any given specification (complete verification) tend

to adhere to the Branch-and-Bound (BaB) paradigm, either implicitly or explic-

itly (Bunel et al., 2020b). In other words, they recursively divide the original

verification problem into subproblems (branching), on which bounds are computed

(bounding: §1.2.1) until a definite answer can be provided. In the following, we will
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mostly focus on piecewise-linear networks, for which a solution can be found in a

finite number of steps: in the worst-case, which is NP-complete (Katz et al., 2017),

branching will proceed until all subproblems correspond to a linear piece of the

function that the network represents. At that point, the solution of the original non-

convex problem can be found by solving each of the resulting Linear Programs (LP).

Seminal works in the area cast verification as a Mixed Integer Linear Program

(MILP) (Maganti, 2017; Tjeng et al., 2019) or as a Satisfiability Modulo Theory

(SMT) problem (Ehlers, 2017; Katz et al., 2017), which are commonly tackled

via black-box solvers. In order to improve on the scalability of black-box solvers,

another line of work pairs inexpensive over-approximations (network relaxations)

with custom branching strategies (Wang et al., 2018a,b). However, these methods

are outperformed by the use of commercial LP solvers (Gurobi Optimization, 2020)

on the triangle relaxation within custom Branch-and-Bound frameworks (Bunel

et al., 2020b). For problems with a low-dimensional input size, branching can be

performed by performing binary splits on the input domain (Bunel et al., 2018;

Wang et al., 2018a). For higher-dimensional inputs, as it is often the case when

verifying adversarial robustness, branching is more effectively executed by dividing

activation functions into their linear building blocks (activation splitting) (Bunel

et al., 2020b; Lu and Kumar, 2020). We present effective activation splitting

algorithms in §2 and §4.

In the last two to three years, many toolboxes for neural network verification

have been publicly released (Bak et al., 2020; Henriksen and Lomuscio, 2020; Singh

et al., 2020; Katz et al., 2019). Furthermore, as exemplified by the iterations

of the International Competition on the Verification of Neural Networks (VNN-

COMP) (VNN-COMP, 2020; Bak et al., 2021), complete verifiers have achieved

substantial speed-ups, easily scaling to networks with tens of thousands of neurons.

These improvements, spearheaded by some of the contributions presented in this

thesis (see §2, §3), are linked to the use of fast, yet tight, dual bounds within

custom Branch-and-Bound frameworks running on specialized hardware such as
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GPUs (Bunel et al., 2020a; De Palma et al., 2021a,b; Xu et al., 2021; De Palma

et al., 2021c; Wang et al., 2021a).

1.3 Neural Network Training

Neural network verification focuses on providing guarantees on pre-trained neural

networks. However, trustworthiness can and should be also achieved from the

training process itself. In this thesis, we focus on two specific training problems

that are related to trustworthiness. The first, which is tightly linked to our

contributions on neural network verification, is to train a network for robustness

and verifiability (§1.3.1). The second, which is more distinct from the remainder

of the contributions presented in this thesis, is the problem of training a network

to perform multiple tasks at once (§1.3.2). Deep multi-task learning has recently

seen a surge in complexity and variety of training schemes. We are interested in

understanding and evaluating their performances compared to simpler baselines (see

our contribution in §5), hoping to increase trust in deep multi-task learning systems.

1.3.1 Training for Verifiability

Neural networks are trained to maximize performance by minimizing a corresponding

surrogate loss. In order to enforce a property during the training process, the

surrogate loss must contain terms related the desired specification. Ideally, this

could be done by employing the output of a neural network verifier in the training

process. However, owing to the complexity of complete neural network verification

(see §1.2), training typically relies on inexpensive neural network bounds (see §1.2.1).

A family of training schemes, named adversarial training, looks for counter-

examples (upper bounds) to the desired property, and computes the training loss

on the output of the counter-example search (Madry et al., 2018). As the search is

typically run for few iterations, adversarial training algorithms scale relatively well

with network sizes. Furthermore, they produce so-called “empirical" robustness:

they drastically reduce the possibility of empirically finding counter-examples to

the desired property. Nevertheless, the empirical robustness resulting from these



1. Introduction and Related Work 7

schemes is associated with poor verifiability, meaning that it is hard to provide

guarantees on the absence of counter-examples. In order to address this shortcoming,

verified training schemes use the output of inexpensive incomplete verifiers (lower

bounds) as training signals (Wong and Kolter, 2018; Gowal et al., 2018a; Zhang

et al., 2020). As a result, the networks verifiably satisfy the desired properties, but

at the cost of expensive training and inferior standard performance. Finally, a line

of work has sought to combine the benefits of both approaches by suitably adapting

adversarial training for verifiability (Xiao et al., 2019; Balunovic and Vechev, 2020).

In chapter 4 we present a training algorithm belonging to the last category. While

the discussed methods were proposed in the context of training for adversarial

robustness, they are all applicable to general input-output specifications.

1.3.2 Deep Multi-Task Learning

Deep Multi-Task Learning (MTL) proposes to leverage commonalities across tasks

to increase performance while reducing memory and compute. These tasks can be

homogeneous (have the same loss function for each task), as for instance in the

case of multi-label classification (Liu et al., 2015), or heterogeneous, as common

in datasets for scene understanding (Cordts et al., 2016). The predominant

approach is hard parameter sharing, which involves using the same network

parameters across tasks, possibly with task-specific predictive heads. Applications

of deep MTL range from natural language processing (Collobert and Weston, 2008;

Chen et al., 2021), to computer vision (Misra et al., 2016) and reinforcement

learning (Kalashnikov et al., 2021).

Popular research avenues in deep MTL include specialized architectures (Misra

et al., 2016; Guo et al., 2020), and training schemes (Kendall et al., 2018; Chen and

Gu, 2018). In this thesis, we focus on what we call Specialized Multi-Task Optimizers

(SMTO): algorithms that operate complex and expensive gradient manipulations

aimed at facilitating the multi-task training process (Sener and Koltun, 2018; Yu

et al., 2020; Chen et al., 2020; Liu et al., 2021c; Wang et al., 2021b; Liu et al.,

2021a). In chapter §5, we present a critical reevaluation of progress in the area.
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1.4 Thesis Outline and Contributions

This thesis adheres to the integrated format, whereby each chapter from 2 to 5

corresponds to a separate paper for which the author of the present thesis is a

(possibly joint) first author. We now provide an overview of the overall thesis’

content. We then end this section by providing a per-chapter summary of this

thesis’ contributions.

The bulk of the content of this thesis pertains to the topic of neural network

verification. Chapters 2 and 3 provide bounding algorithms that improve on the

tightness/scalability trade-offs of the methods available at the time of each paper’s

submission (Bunel et al., 2020a; De Palma et al., 2021a,b), hence allowing for the

verification of more properties in a given time. All our algorithms leverage the

parallelism of specialized hardware like GPUs (relying on popular deep learning

frameworks such as PyTorch (Paszke et al., 2019)), and are suitable for a wide

range of computational budgets. These bounding algorithms are integrated within

a massively parallel Branch-and-Bound framework, whose branching strategy is

improved in chapter 4, allowing for the efficient use of the bounds for complete

neural network verification (De Palma et al., 2021c). These contributions were all

publicly released as part of the OVAL complete verification framework, available at

https://github.com/oval-group/oval-bab. Our verification work laid the basis

for our participation to the first and second iterations of VNN-COMP (VNN-COMP,

2020; Bak et al., 2021), co-hosted at International Conference on Computer Aided

Verification (CAV). The OVAL framework finished in a joint third place at the second

VNN-COMP, where the top-ranking entry incorporated some of our contributions:

our branching strategy presented in chapter 2. Furthermore, chapter 4 presents

an efficient and simple algorithm to train neural networks for verifiability, yielding

state-of-the-art results on robustness to small adversarial perturbations.

Finally, chapter 5 presents a critical evaluation of deep multi-task optimizers:

we demonstrate that a simple baseline outperforms complex specialized methods,

and provide a partial explanation of our surprising results.

https://github.com/oval-group/oval-bab
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1.4.1 Improved Branch and Bound for Neural Network Verifica-
tion via Lagrangian Decomposition

Chapter 2 extends Bunel et al. (2020a), which was published in the proceedings of

the 36th conference on Uncertainty in Artificial Intelligence (UAI 2020).

Contributions. By applying Lagrangian Decomposition (Guignard and Kim, 1987)

to a neural network relaxation associated to the element-wise convex hull of the

activation function (see §1.2.1), the UAI paper presents two efficient incomplete

verifiers. It is shown that the presented methods improve on the speed-accuracy

trade-offs of previous solvers for the same relaxation (Dvijotham et al., 2018b).

The extended version presented in this thesis, which was publicly released on

arXiv (De Palma et al., 2021c), designs an efficient branch and bound framework

around the bounding algorithms, leading to substantial complete verification speed-

ups. In particular, it differs from the conference version by (i) presenting a new

heuristic branching scheme for activation splitting (§2.4); (ii) improving on various

components of the branch and bound framework employed in the preliminary version

(§2.5.1), resulting in large complete verification improvements; (iii) refining the

analysis linking our dual problem to previous dual approaches (§2.2.2, §2.3.4), which

now includes initialization via any propagation-based algorithm and a geometric

explanation of the effectiveness of our dual compared to the one by Dvijotham

et al. (2018b); and (iv) expanding the experimental analysis to include both new

benchmarks, and new baselines such as CROWN (Zhang et al., 2018), ERAN (Singh

et al., 2020), nnenum (Bak et al., 2020) and VeriNet (Henriksen and Lomuscio, 2020).

1.4.2 Scaling the Convex Barrier with Sparse Dual Algorithms

Chapter 3 is based on De Palma et al. (2021b), which is currently under re-

view. De Palma et al. (2021b) extends De Palma et al. (2021a), which was

published in the proceedings of the 9th International Conference on Learning

Representations (ICLR 2021).
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Contributions. In order to overcome the convex barrier for neural network bounds

(see §1.2.1), Anderson et al. (2020) present a novel formulation capturing the convex

hull of the composition of a linear operator with piecewise-linear activation functions.

While the relaxation comes at the cost of exponentially many constraints, Anderson

et al. (2020) show that the most violated constraint at a given point can be computed

in linear time (separation oracle) and present a primal solver. Chapter 3 presents

two memory-efficient dual solvers for the formulation by Anderson et al. (2020)

which, by appropriately resorting to the separation oracle, achieve tighter bounds

than the primal solver in a fraction of the time. As a result, we show that we

can accelerate the formal verification of hard specifications within a Branch-and-

Bound framework. The first proposed solver operates by maintaining an active set

of dual variables, incurring a memory cost proportional to the target relaxation

tightness (De Palma et al., 2021a). By casting the bounding task as a saddle-point

problem, we present a second solver (De Palma et al., 2021b) that can attain a

memory footprint that is linear and independent of the target tightness, yielding

large bounding improvements on memory-intensive settings.

1.4.3 IBP Regularization for Verified Adversarial Robustness via
Branch-and-Bound

The subject of chapter 4 is De Palma et al. (2022), which was presented at the

ICML 2022 Workshop on Formal Verification of Machine Learning, where it won

the best paper award.

Contributions. We present IBP-R, a simple and effective algorithm to train neural

networks for verifiability of adversarial robustness specifications (see § 1.3.1). In

order to increase the verifiability of adversarially-trained networks, IBP-R proposes

to run the adversarial attacks (counter-example search) over domains significantly

larger than those to be verified. Intuitively, doing so increases the margin by which

a network is robust. Furthermore, it adds a regularization term that minimizes the

area of the commonly-employed triangle ReLU relaxation (see §1.2.1) in order to

reduce network over-approximation at verification time. As a result, the trained
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networks are amenable to fast verification via the OVAL verification framework,

which is modified to include a less computationally intensive branching strategy. In

chapter 4, we show that IBP-R obtains state-of-the-art results on small adversarial

perturbations on CIFAR-10, while reducing training times.

1.4.4 In Defense of the Unitary Scalarization for Deep Multi-Task
Learning

Chapter 5 is taken from Kurin et al. (2022), which was published in the proceedings

of the 36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Contributions. Deep MTL is commonly assumed to pose additional training

challenges compared to the single-task scenario. Popular explanations include

conflicting gradient directions across tasks Yu et al. (2020); Chen et al. (2020),

task imbalances (Kendall et al., 2018; Chen and Gu, 2018), and inter-task com-

petition Sener and Koltun (2018). As a consequence, recent research has argued

against unitary scalarization, where training simply minimizes the sum of the task

losses, and proposed several specialized optimizers, each addressing some of the

hypotheses behind the complexity of the multi-task scenario (SMTOs, see §1.3.2).

These optimizers are complex to implement, and involve additional computation and

memory costs, often linked to the requirement of per-task gradients. In chapter 5,

we present a unified evaluation of the performance of SMTOs on popular MTL

benchmarks. Surprisingly, our analysis shows that, taking experimental variability

into account and possibly employing appropriate regularization and stabilization

techniques from the single-task literature, unitary scalarization performs on par with

specialized optimizers while often significantly reducing training times. As a partial

explanation, we suggest that SMTOs reduce overfitting on the sum of per-task losses,

and provide theoretical and empirical evidence to support our claim. We hope our

results will drive further research towards a better understanding of deep MTL.
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Abstract

We improve the scalability of Branch and Bound (BaB) algorithms for formally
proving input-output properties of neural networks. First, we propose novel
bounding algorithms based on Lagrangian Decomposition. Previous works have used
off-the-shelf solvers to solve relaxations at each node of the BaB tree, or constructed
weaker relaxations that can be solved efficiently, but lead to unnecessarily weak
bounds. Our formulation restricts the optimization to a subspace of the dual domain
that is guaranteed to contain the optimum, resulting in accelerated convergence.
Furthermore, it allows for a massively parallel implementation, which is amenable
to GPU acceleration via modern deep learning frameworks. Second, we present a
novel activation-based branching strategy. By coupling an inexpensive heuristic
with fast dual bounding, our branching scheme greatly reduces the size of the BaB
tree compared to previous heuristic methods. Moreover, it performs competitively
with a recent strategy based on learning algorithms, without its large offline training
cost. Finally, we design a BaB framework, named Branch and Dual Network
Bound (BaDNB), based on our novel bounding and branching algorithms. We
show that BaDNB outperforms previous complete verification systems by a large
margin, cutting average verification times by factors up to 50 on adversarial
robustness properties.



2.1 Introduction

As deep learning powered systems become more and more common, the lack of

robustness of neural networks and their reputation for being “black boxes" has

become increasingly worrisome. In order to deploy them in critical scenarios where

safety and robustness would be a prerequisite, techniques that can prove formal

guarantees for neural network behavior are needed. A particularly desirable property

is resistance to adversarial examples (Goodfellow et al., 2015; Szegedy et al., 2014):

perturbations maliciously crafted with the intent of fooling even extremely well

performing models. After several defenses were proposed and subsequently broken

(Athalye et al., 2018; Uesato et al., 2018), some progress has been made in being able

to formally verify whether there exist any adversarial examples in the neighborhood

of a data point (Tjeng et al., 2019; Wong and Kolter, 2018).

Verification algorithms fall into three categories: unsound (some false properties

are proven false), incomplete (some true properties are proven true), and complete

(all properties are correctly verified as either true or false). Unsound verification,

which relies on approximate non-convex optimization, is not related to the topic

of this work. Instead, we focus on incomplete verification and its role in complete

verification. An incomplete verifier can be obtained via the computation of lower

and upper bounds on the output of neural networks. Many complete verifiers can

be seen as branch and bound algorithms (Bunel et al., 2018), which operate by

dividing the property into subproblems (branching) for which incomplete verifiers

are more likely to provide a definite answer (bounding). Bunel et al. (2020b) have

recently proposed a branch and bound framework that scales to medium-sized

convolutional networks, outperforming state-of-the-art complete verifiers (Katz

et al., 2017; Wang et al., 2018b; Tjeng et al., 2019). The aim of this work is to

significantly improve their design choices, in order to scale up the applicability of

complete verifiers to larger networks. In the remainder of this section, we provide

a high-level overview of our proposed improvements.
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Bounding Most previous algorithms for computing bounds are either computa-

tionally expensive (Ehlers, 2017) or sacrifice tightness in order to scale (Gowal

et al., 2018b; Mirman et al., 2018; Wong and Kolter, 2018; Singh et al., 2018;

Zhang et al., 2018). Within complete verification Bunel et al. (2018, 2020b) chose

tightness over scalability, employing off-the-shelf solvers (Gurobi Optimization,

2020) to solve a network relaxation obtained by replacing activation functions by

their convex hull (Ehlers, 2017). In the context of incomplete verification, better

speed-accuracy trade-offs were achieved by designing specialized solvers for such

relaxation (Dvijotham et al., 2018b). In this work, we design a novel dual formulation

for the bounding problem and two corresponding solvers, which we employ as a

branch and bound subroutine. Our approach offers the following advantages:

• While previous bounding algorithms operating on the same network relax-

ation (Dvijotham et al., 2018b) are based on Lagrangian relaxations, we

derive a new family of optimization problems for neural network bounds

through Lagrangian Decomposition, which in general yields duals at least

as strong as those obtained through Lagrangian relaxation (Guignard and

Kim, 1987). For our bounding problem, the optimal solutions of both the

Lagrangian Decomposition and Lagrangian relaxation will match. However

we prove that, in the context of ReLU networks, for any dual bound from

the approach by Dvijotham et al. (2018b) obtained in the process of dual

optimization, the corresponding bounds obtained by our dual are at least as

tight. Geometrically, our dual corresponds to a reduction of the dual space of

the Lagrangian relaxation that always contains the optimum. We demonstrate

empirically that our derivation computes tighter bounds in the same time when

using supergradient methods, improving the quality of incomplete verification.

We further refine performance by devising a proximal solver for the problem,

which decomposes the task into a series of strongly convex subproblems. For

each subproblem, we use an iterative method that lends itself to analytical

optimal step sizes, thereby resulting in faster convergence.
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• Both the supergradient and the proximal method hinge on linear operations

similar to those used during network forward/backward passes. As a conse-

quence, we can leverage the convolutional structure when necessary, while

standard solvers are often restricted to treating it as a general linear operation.

Moreover, both methods are easily parallelizable: when computing bounds on

the activations at layer k, we need to solve two problems for each hidden unit

of the network (for the upper and lower bounds). These can all be solved in

parallel. Within branch and bound, we need to compute bounds for several

different problem domains at once: we solve these problems in parallel as well.

Our GPU implementation thus allows us to solve several hundreds of linear

programs at once on a single GPU, a level of parallelism that would be hard

to match on CPU-based systems.

Branching While bounding is often the computational bottleneck within each

branch and bound iteration, a high quality branching strategy is crucial to reduce

the branch and bound search tree (Achterberg and Wunderling, 2013). Strategies

used for neural network verification typically split the domain on a coordinate of

the network input (Wang et al., 2018a; Bunel et al., 2018; Royo et al., 2019), or on a

given network activation (Ehlers, 2017; Katz et al., 2017; Wang et al., 2018b). It was

recently shown (Bunel et al., 2020b) that, for convolutional networks with around

one thousand neurons, it is preferable to split on the network activations (activation

splitting). As this search space is significantly larger, the best-performing heuristic

strategy favors computational efficiency over accuracy (Bunel et al., 2020b). In order

to improve performance without significantly increasing branching costs, strategies

based on learning algorithms were proposed recently (Lu and Kumar, 2020). We

present a novel branching strategy that, by coupling an inexpensive heuristic with

fast dual bounds, greatly improves upon previous approaches strategies (Bunel

et al., 2020b) and performs competitively with learning algorithms without incurring

large training costs.
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BaDNB We design a massively parallel, GPU-accelerated, branch and bound

framework around our bounding and branching algorithms. We conduct detailed

ablation studies over the various components of the framework, named BaDNB, and

show that it yields substantial complete verification speed-ups over the state-

of-the-art algorithms.

The chapter is organized as follows: in section 2.2, we state the neural network

verification problem and describe the technical background necessary for the

understanding of our approach. Section 2.3 presents our novel formulation for

neural network bounding, yielding efficient incomplete verifiers. Section 2.4 presents

our branching scheme, to be used within branch and bound for complete verification.

Technical and implementation details of BaDNB are outlined in section 2.5. In

section 2.6, we discuss related work in the context of our contributions. Finally,

sections 2.7 and 2.8 present an experimental evaluation of both our bounding

algorithms and the branch and bound framework.

2.2 Neural Network Verification

Throughout this chapter, we will use bold lower case letters (for example, x) to

represent vectors and upper case letters (for example, W ) to represent matrices.

Brackets are used to indicate intervals ([̂lk, ûk]) and vector or matrix entries (x[i]

or W [i, j]). Moreover, we use � for the Hadamard product, J·, ·K for integer

ranges, 1a for the indicator vector on condition a. Finally, we write Conv(f, a,b)

and Conv(S) respectively for the convex hull of function f defined in [a,b], and

for the convex hull of set S.

We begin by formally introducing the problem of neural network verification

(§2.2.1), followed by an outline of two popular solution strategies (§2.2.2, §2.2.3).

2.2.1 Problem Specification

Given a d-layer feedforward neural network f : Rn0 → Rnd , an input domain C, and

a property P , verification problem (f, C, P ) is defined as follows:

x0 ∈ C ∧ xd = f(x0) =⇒ P (xd).
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Under the assumption that P is a Boolean formula over linear inequalities (for

instance, robustness to adversarial examples), we can represent both f and P as

an n-layer neural network fP : Rn0 → R, which is said to be in canonical form

if, for any x0 ∈ Rn0 , P (f(x0)) =⇒ fP (x0) ≥ 0 (Bunel et al., 2018, 2020b).

Verifying (f, C, P ) then reduces to finding the sign of the minimum of the following

optimization problem:

min
x,x̂

x̂n s.t. x0 ∈ C, (2.1a)

x̂k+1 = Wk+1xk + bk+1 k ∈ J0, n− 1K , (2.1b)

xk = σk (x̂k) k ∈ J1, n− 1K , (2.1c)

where constraints (2.1b) implement the linear layers of fP (fully connected or

convolutional), while constraints (2.1c) implement its non-linear activation functions.

We call x̂k ∈ Rnk pre-activations at layer k and nk denotes the layer’s width. In

line with Dvijotham et al. (2018b), we assume that linear functions can be easily

optimized over C. In the following, we will first describe how to solve problem

(2.1) approximately (§2.2.2), then exactly (§2.2.3).

2.2.2 Neural Network Bounding

The non-linearity of constraint (2.1c) makes problem (2.1) non-convex and NP-

HARD (Katz et al., 2017). Therefore, many authors (Wong and Kolter, 2018;

Dvijotham et al., 2018b; Zhang et al., 2018; Raghunathan et al., 2018; Singh et al.,

2019b) have instead focused on the computation of a lower bound on the minimum,

which significantly simplifies the optimization problem thereby yielding an efficient

incomplete verification method. Here, we are concerned with approaches that allow

for a dual interpretation (see §2.6 for an overview).

2.2.2.1 Propagation-based methods

Assume we have access to upper and lower bounds (respectively ûk and l̂k) on

the value that x̂k can take, for k ∈ J1, n− 1K. We call these intermediate bounds:

we detail how to compute them in §2.2.2.3. Moreover, let
¯
σk(x̂k) =

¯
ak � x̂k +

¯
bk
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and σ̄k(x̂k) = āk � x̂k + b̄k be two linear functions that bound σk(x̂k) from below

and above, respectively. Then, problem (2.1) can be replaced by the following

convex outer approximation:

min
x,x̂

x̂n s.t. x0 ∈ C,

x̂k+1 = Wk+1xk + bk+1 k ∈ J0, n− 1K ,

¯
σk(x̂k) ≤ xk ≤ σ̄k(x̂k) k ∈ J1, n− 1K ,

x̂k ∈ [̂lk, ûk] k ∈ J1, n− 1K .

(2.2)

A popular and inexpensive class of bounding algorithms solves a relaxation of

problem (2.2) by back-propagating
¯
σk(x̂k) and σ̄k(x̂k) through the network (Wong

and Kolter, 2018; Weng et al., 2018; Singh et al., 2018; Zhang et al., 2018; Singh et al.,

2019b). In the dual space, these methods correspond to evaluating the Lagrangian

relaxation of problem (2.2) at a specific dual point. Let us denote [a]− = min(0, a),

[a]+ = max(0, a). The Lagrangian relaxation of problem (2.2) can be written in

the following unconstrained form (Salman et al., 2019b, equations (8), (9), (38)):

max
µ,λ

dP (µ,λ), where:

dP (µ,λ) = min
x,x̂

[
Wnxn−1 + bn +∑n−1

k=1 µ
T
k (x̂k −Wkxk−1 − bk)

+∑n−1
k=1 [λk]T− (xk − ¯

σk(x̂k)) +∑n−1
k=1 [λk]T+ (xk − σ̄k(x̂k))

s.t. x0 ∈ C,

x̂k ∈ [̂lk, ûk] k ∈ J1, n− 1K .

(2.3)

Salman et al. (2019b) show that propagation-based bounding algorithms are

equivalent to evaluating problem (2.3) at a suboptimal point (µ̄, λ̄), given by:

λ̄n−1 = −W T
n ,

µ̄k = āk � [λ̄k]+ +
¯
ak � [λ̄k]− k ∈ J1, n− 1K ,

λ̄k−1 = W T
k µ̄k k ∈ J2, n− 1K .

(2.4)

The dual assignment (2.4) is obtained via a single backward pass through the

network, an operation analogous to the gradient backpropagation employed for

neural network training. Moreover, exploiting the structure of equation (2.4), the

objective value of problem (2.3) at such dual point can be conveniently computed as:

dP (µ̄, λ̄) = min
x0∈C

(
−µ̄T1W1x0

)
+ bn −

n−1∑
k=1

(
[λ̄k]T−¯

bk + [λ̄k]T+b̄k + µ̄Tkbk
)
. (2.5)
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2.2.2.2 Lagrangian Relaxation of the non-convex formulation

Propagation-based methods provide a lower bound to problem (2.2), which is a

rather loose approximation to problem (2.1). An alternative approach, presented

by Dvijotham et al. (2018b), relies on taking the dual of non-convex problem

(2.1) directly and solving it via supergradient methods. By relaxing (2.1b) and

(2.1c) via Lagrangian multipliers, and exploiting intermediate bounds, Dvijotham

et al. (2018b) obtain the following dual:

max
µ,λ

dO(µ,λ), where:

dO(µ,λ) = min
x,x̂

[ ∑n−1
k=1 µ

T
k (x̂k −Wkxk−1 − bk) +∑n−1

k=1 λ
T
k (xk − σk(x̂k))

+Wnxn−1 + bn

s.t. x0 ∈ C,

(xk, x̂k) ∈ [σk (̂lk), σk(ûk)]× [̂lk, ûk] k ∈ J1, n− 1K .

(2.6)

For σk(x̂k) = max(x̂k, 0), Dvijotham et al. (2018b), prove that problem (2.6) is

equivalent to a dual of the following convex problem1:

min
x,x̂

x̂n s.t. x0 ∈ C,

x̂k+1 = Wk+1xk + bk+1 k ∈ J0, n− 1K ,

(xk, x̂k) ∈ Conv(σ, l̂k, ûk) k ∈ J1, n− 1K ,

(xk, x̂k) ∈ [σk (̂lk), σk(ûk)]× [̂lk, ûk] k ∈ J1, n− 1K ,

(2.7)

where Conv(σk, l̂k, ûk) is the convex hull of constraint (2.1c). Salman et al. (2019b)

generalize the result to any activation function that acts element-wise on x̂k
and prove that, under mild assumptions, strong duality holds for problem (2.7).

Therefore, as Conv(σk, l̂k, ûk) ⊆ {(xk, x̂k) |¯
σk(x̂k) ≤ xk ≤ σ̄k(x̂k)}, the bounding

algorithm by Dvijotham et al. (2018b) will converge to tighter bounds than

propagation-based algorithms.

2.2.2.3 Intermediate bounds

Convex relaxations (for instance, problems (2.2), (2.7)) and dual problems (for

instance, problem (2.6)) are often defined as a function of intermediate bounds
1Dvijotham et al. (2018b) write Conv(σk, l̂k, ûk) = {(xk, x̂k) |

¯
σk,opt(x̂k) ≤ xk ≤ σ̄k,opt(x̂k)},

and consider the dual that results from relaxing both inequalities, along with equality (2.1b).
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l̂j and ûj on the values of x̂j ∈ Rnj . These values are computed by running a

bounding algorithm over subnetworks. Specifically, we are looking for bounds to

versions of problem (2.1) for which, instead of defining the objective function on the

activation of layer n, we define it over x̂j[i]. As we need to repeat this process for

j ∈ J1, n− 1K and i ∈ J1, njK, intermediate bound computations can easily become

the computational bottleneck for neural network bounding. Therefore, typically,

intermediate bounds are computed with inexpensive propagation-based algorithms

(§2.2.2.1), whereas the lower bounding of the network output x̂n relies on more

costly convex relaxations (outlined in §2.2.2.2) (Bunel et al., 2020b).

2.2.3 Branch and Bound

Neural network bounding is concerned with solving an approximation of problem

(2.1), and may verify a subset of the properties: those for which the computed

lower bound is positive. However, in order to guarantee that any given property

will be verified, we need to solve problem (2.1) exactly. The lack of convexity

rules out local optimization algorithms such as gradient descent, which will not

provably converge to the global optimum. Therefore, many complete verification

methods are akin to global optimization algorithms such as branch and bound

(see §2.6) (Bunel et al., 2018).

2.2.3.1 Operating principle

In the context of our verification problem (2.1), branch and bound starts by

computing bounds on the minimum: a lower bound is obtained via a bounding

algorithm (see §2.2.2), while an upper bound can be determined heuristically, as

any feasible point yields a valid upper bound. If the property cannot yet be verified

(that is, the lower bound is negative and the upper bound is positive), the property’s

feasible domain is divided into a number of smaller problems via some branching

strategy. The algorithm then proceeds by computing bounds for each subproblem,

exploiting the fact that a subproblem’s lower bound is guaranteed to be at least as

tight as the one for its parent problem (that is, before the branching). Subproblems
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which cannot contain the global lower bound are progressively discarded: in the

canonical form (see §2.2.1), this happens if a local lower bound is positive. An

incumbent solution to problem (2.1) is defined as the smallest encountered upper

bound. The order in which subproblems are explored is determined by a search

strategy. Finally, the verification procedure terminates when either no subproblem

has a negative lower bound, or when the incumbent becomes positive.

2.2.3.2 Branch and bound for piecewise-linear networks

We now turn our attention to the class of piecewise-linear networks. For simplicity,

we assume all the activation functions are ReLUs, as other common piecewise-linear

activations such as MaxPooling units can be converted into a series of ReLU-based

layers (Bunel et al., 2020b). We describe BaBSR from Bunel et al. (2020b), a

specific instantiation of branch and bound that proved particularly effective in

the context of larger piecewise-linear networks.

Let us classify ReLU activations depending on the signs of pre-activation bounds

l̂k and ûk. A given ReLU σk(x̂k[i]) = max(x̂k[i], 0) is passing if l̂k[i] ≥ 0, blocking

if ûk[i] ≤ 0, and ambiguous otherwise. Note that non-ambiguous ReLUs can be

replaced by linear functions. At every iteration, BaSBR picks the subproblem with

the lowest lower bound, and branches by separating an ambiguous ReLU into its

two linear phases (ReLU branching). The ReLU on which to branch is selected

according to a heuristic that estimates the effect of the split on the subproblem

lower bound, based on an inexpensive approximation of the bounding algorithm by

Wong and Kolter (2018) (for details, see §2.4). Lower bounding is performed by

solving the Linear Program (LP) corresponding to the ReLU version of problem

l̂k[j] ûk[j]
x̂k[j]

xk[j]

Figure 2.1: Feasible domain of the convex hull for an ambiguous ReLU. Red circles
indicate the vertices of the feasible region.
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(2.7), where the convex hull is defined as follows (Ehlers, 2017):

Conv(σk, l̂k, ûk) :=



xk ≥ 0, xk ≥ x̂k
xk ≤ ûk�(x̂k−l̂k)

ûk−l̂k

if l̂k ≤ 0 and ûk ≥ 0, (2.8a)

xk = 0 if ûk ≤ 0, (2.8b)

xk = x̂k if l̂k ≥ 0. (2.8c)

Upper bounds are computed by evaluating the neural network at the solution of

the LP. Finally, the intermediate bounds for each LP are obtained by taking the

layer-wise best bonds between interval bound propagation (Gowal et al., 2018b;

Mirman et al., 2018) and the propagation-based method by Wong and Kolter (2018).

In the remainder of this chapter, we present improvements to both the bounding

algorithm (§2.3) and the branching strategy (§2.4), then outline the details of the

resulting branch and bound framework (§2.5).

2.3 Better Bounding: Lagrangian Decomposition

We will now describe a novel dual approach to obtain a lower bound to problem (2.1)

and relate it to the duals described in section 2.2.2. We present two bounding

algorithms: a supergradient method (§2.3.2), and a solver based on proximal

maximization (§2.3.3).

2.3.1 Problem Derivation

Our approach is based on Lagrangian Decomposition, also known as variable

splitting (Guignard and Kim, 1987). Due to the compositional structure of neural

networks, most constraints involve only a limited number of variables. As a result,

we can split the problem into meaningful, easy to solve subproblems. We then

impose constraints that the solutions of the subproblems should agree.

We start from problem (2.7), a convex outer approximation of the original

non-convex problem (2.1) where activation functions are replaced by their convex

hull. In the following, we will use ReLU activation functions as an example: their

convex hull is defined in equation (2.8). We stress that the derivation can be
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extended to other non-linearities. For example, appendix A.3 describes the case

of sigmoid activation function. In order to obtain an efficient decomposition, we

divide the constraints into subsets that allow for easy optimization subtasks. Each

subset will correspond to a pair of an activation layer, and the linear layer coming

after it. The only exception is the first linear layer which is combined with the

restriction of the input domain to C. Using this grouping of the constraints, we

can concisely write problem (2.7) as:

min
x,x̂

x̂n s.t. P0(x0, x̂1),

Pk(xk, x̂k, x̂k+1) k ∈ J1, n− 1K ,
(2.9)

where the constraint subsets are defined as:

P0(x0, x̂1) :=
x0 ∈ C

x̂1 = W1x0 + b1,

Pk(xk, x̂k, x̂k+1) :=


(xk, x̂k) ∈ Conv(σk, l̂k, ûk),
(xk, x̂k) ∈ [σk (̂lk), σk(ûk)]× [̂lk, ûk],
x̂k+1 = Wk+1xk + bk.

To obtain a Lagrangian Decomposition, we duplicate the variables so that each

subset of constraints has its own copy of the variables in which it is involved.

Formally, we rewrite problem (2.9) as follows:

min
x,x̂

x̂n s.t. P0(x0, x̂A,1), (2.10a)

Pk(xk, x̂B,k, x̂A,k+1) k ∈ J1, n− 1K , (2.10b)

x̂A,k = x̂B,k k ∈ J1, n− 1K . (2.10c)

The additional equality constraints (2.10c) impose agreements between the various

copies of variables. We introduce the dual variables ρ and derive the Lagrangian dual:

max
ρ

q(ρ), where: q (ρ) = min
x,x̂

x̂A,n +
n−1∑
k=1
ρTk (x̂B,k − x̂A,k)

s.t. P0(x0, x̂A,1),

Pk(xk, x̂B,k, x̂A,k+1) k ∈ J1, n− 1K .

(2.11)

Any value of ρ provides a valid lower bound by virtue of weak duality. While we

will maximize over the choice of dual variables in order to obtain as tight a bound
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as possible, we will be able to interrupt the optimization process at any point and

obtain a valid bound by evaluating q. It remains to show how to solve problem (2.11)

efficiently in practice: this is the subject of §2.3.2 and §2.3.3. In §2.3.4, we analyze the

relationship between our dual (2.11), propagation-based methods and problem (2.6).

2.3.2 Supergradient Solver

In line with the work by Dvijotham et al. (2018b), who use supergradient methods

on their dual (2.6), we present a supergradient-based solver (Algorithm 1) for

problem (2.11).

At a given point ρ, obtaining the supergradient requires us to know the values

of x̂A and x̂B for which the inner minimization is achieved. Based on the identified

values of x̂∗A and x̂∗B, we can then compute the supergradient ∇ρq = x̂∗B − x̂∗A
and move in its direction:

ρt+1 = ρt + αt∇ρq(ρt), (2.12)

where αt corresponds to a step size schedule that needs to be provided. It is also

possible to use any variant of gradient descent, such as Adam (Kingma and Ba, 2015).

It remains to show how to perform the inner minimization over the primal

variables. By design, each of the variables is only involved in one subset of constraints.

As a result, the computation completely decomposes over the subproblems, each

corresponding to one of the subset of constraints. We therefore simply need to

optimize linear functions over one subset of constraints at a time.

Algorithm 1 Supergradient method
1: function supergradient_compute_bounds(Problem (2.7))
2: Initialize dual variables ρ0 via proposition 2
3: for t ∈ J0, T − 1K do
4: x̂∗,t ∈ argminx,x̂ q(ρ) as detailed in §2.3.2.1 and §2.3.2.2 . inner minimization
5: ∇ρq(ρt)← x̂∗,tB − x̂∗,tA . compute supergradient
6: ρt+1 ← ρt + αt∇ρq(ρt) . supergradient step
7: return q(ρT )
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2.3.2.1 Inner minimization: P0 subproblems

To minimize over x0, x̂A,1, the variables constrained by P0, we need to solve:

(x∗0, x̂∗A,1) = argmin
x0,x̂A,1

−ρT1 x̂A,1

s.t x0 ∈ C, x̂A,1 = W1x0 + b0.
(2.13)

Rewriting the problem as a linear function of x0 only, problem (2.13) is simply

equivalent to minimizing −ρT1W1x0 over C. We assumed that the optimization of

a linear function over C was efficient. We now give examples of C where problem

(2.13) can be solved efficiently.

Bounded Input Domain If C is defined by a set of lower bounds l0 and upper

bounds u0 (as in the case of `∞ adversarial examples), optimization will simply

amount to choosing either the lower or upper bound depending on the sign of

the linear function. The optimal solution is:

x0 = 1ρT1 W1<0 � l̂0 + 1ρT1 W1≥0 � û0, x̂A,1 = W1x0 + b1. (2.14)

`2 Balls If C is defined by an `2 ball of radius ε around a point x̄ (‖x0 − x̄‖2 ≤ ε),

optimization amounts to choosing the point on the boundary of the ball such

that the vector from the center to it is opposed to the cost function. Formally,

the optimal solution is given by:

x̂A,1 = W1x0 + b1, x0 = x̄ + (ε/‖ρ1‖2)ρ1. (2.15)

2.3.2.2 Inner minimization: Pk subproblems

For the variables constrained by subproblem Pk (xk, x̂B,k, x̂A,k+1), we need to solve:

(x̂∗B,k, x̂∗A,k+1) = argmin
x̂B,k,x̂A,k+1

ρTk x̂B,k − ρTk+1x̂A,k+1

s.t (xk, x̂B,k) ∈ Conv(σk, l̂k, ûk),

(xk, x̂B,k) ∈ [σk (̂lk), σk(ûk)]× [̂lk, ûk],

x̂A,k+1 = Wk+1xk + bk+1.

(2.16)
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We outline the minimization steps for the case of ReLU activation functions. How-

ever, the following can be generalized to other activations. For example, appendix

A.3 describes the solution for the sigmoid function. For σk(x̂k) = max(0, x̂k),

Conv(σk, l̂k, ûk) is given by equation (2.8), and we can find a closed form solution.

Using the last equality of the problem, and omitting constant terms, we can start by

rewriting the objective function as ρTk x̂B,k − ρTk+1Wk+1xk. The optimization can be

performed independently for each of the coordinates, over which both the objective

function and the constraints decompose completely. The ensuing minimization will

then depend on whether a given ReLU is ambiguous or equivalent to a linear function.

Ambiguous ReLUs If the ReLU is ambiguous, the shape of the convex hull is

represented in Figure 2.1. For each dimension i, problem (2.16) is a linear program,

which means that the optimal point will be a vertex. The possible vertices for

(x̂B,k[i],xk[i]) are (̂lk[i], 0), (0, 0), and (ûk[i], ûk[i]). In order to find the minimum,

we can therefore evaluate the objective function at these three points and keep the

one with the smallest value. Denoting the vertex set by Vk,i:

argmin
(x̂B,k[i],xk[i])∈Vk,i

(
ρk[i]x̂B,k[i]− (ρTk+1Wk+1)[i]xk[i]

)
. (2.17)

Non-ambiguous ReLUs If for a ReLU we have lk[i] ≥ 0 or uk[i] ≤ 0, Conv(σk, l̂k, ûk)

is a simple linear equality constraint. For those coordinates, the problem is analogous

to the one solved by equation (2.14), with the linear function being minimized

over the x̂B,k[i] box bounds being ρTk [i]x̂B,k[i] in the case of blocking ReLUs or(
ρTk − ρTk+1Wk+1

)
[i]x̂B,k[i] in the case of passing ReLUs.

2.3.3 Proximal Solver

We now present a second solver (Algorithm 2) for problem (2.11), relying on proximal

maximization rather than supergradient methods (as in §2.3.2).
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2.3.3.1 Augmented Lagrangian

Applying proximal maximization to the dual function q results in the Augmented

Lagrangian Method, which is also known as the method of multipliers. Let us

indicate the value of a variable at the t-th iteration via superscript t. For our

problem2, the method of multipliers will correspond to alternating between the

following updates to the dual variables ρ:

ρt+1
k = ρtk +

x̂tB,k − x̂tA,k
ηk

, (2.18)

and updates to the primal variables x̂, which are carried out as follows:(
xt, x̂t

)
= argmin

x,x̂
L
(
x̂,ρt

)
, where:

L
(
x̂,ρt

)
:= x̂A,n +

n−1∑
k=1
ρTk (x̂B,k − x̂A,k) +

n−1∑
k=1

1
2ηk
‖x̂B,k − x̂A,k‖2

s.t. P0(x0, x̂A,1),

Pk(xk, x̂B,k, x̂A,k+1) k ∈ J1, n− 1K .

(2.19)

The term L (x̂,ρ) is the Augmented Lagrangian of problem (2.10). The additional

quadratic term in (2.19), compared to the objective of q(ρ), arises from the proximal

terms on ρ. It has the advantage of making the problem strongly convex, and hence

easier to optimize. Later on, we will show that this allows us to derive optimal

step-sizes in closed form. The weight ηk is a hyperparameter of the algorithm. A

high value will make the problem more strongly convex and therefore quicker to

solve, but it will also limit the ability of the algorithm to perform large updates.

While obtaining the new values of ρ is trivial using equation (2.18), prob-

lem (2.19) does not have a closed-form solution. We show how to solve it ef-

ficiently nonetheless.

2.3.3.2 Frank-Wolfe Algorithm

Problem (2.19) can be optimized using the conditional gradient method, also known

as the Frank-Wolfe algorithm (Frank and Wolfe, 1956). The advantage it provides

is that there is no need to perform a projection step to remain in the feasible
2We refer the reader to Bertsekas and Tsitsiklis (1989) for the derivation of the update steps.
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Algorithm 2 Proximal method
1: function Proximal_compute_bounds(Problem (2.7))
2: Initialize dual variables ρ0 via proposition 2
3: x̂0 ∈ argminx,x̂ q(ρ0) as detailed in §2.3.2.1 and §2.3.2.2 . initialize primals
4: for t ∈ J0, T − 1K do
5: for j ∈ J0, J − 1K do . inner minimization loop
6: for k ∈ J0, n− 1K do . block-coordinate loop

7: (x̂j
B,k

, x̂j
A,k+1) ∈ argminx̂B,k,x̂A,k+1

q(ρtk +
x̂t

B,k
−x̂t

A,k

ηk
) . conditional gradient

8: Compute layer optimal step size γ∗k using (2.21)
9: (x̂tB,k, x̂

t
A,k+1)← γ∗k(ẑj

B,k
, ẑj
A,k+1) + (1− γ∗k)(x̂tB,k, x̂

t
A,k+1)

10: Compute ρt+1 using equation (2.18) or (A.19) . dual update
11: return q(ρT )

domain. Indeed, the different iterates remain in the feasible domain by construction

as convex combination of points in the feasible domain. At each time step, we

replace the objective by a linear approximation and optimize this linear function

over the feasible domain to get an update direction, named conditional gradient.

We then take a step in this direction. As the Augmented Lagrangian is smooth

over the primal variables, there is no need to take the Frank-Wolfe step for all the

network layers at once. We can in fact do it in a block-coordinate fashion, where a

block is a network layer, with the goal of speeding up convergence.

Conditional Gradient Computation Let us denote iterations for the inner problem

by the superscript j. Obtaining the conditional gradient requires minimizing a

linearization of L (x̂,ρ) on the primal variables, restricted to the feasible domain:
(
zj, ẑj

)
= argmin

x,x̂
∇x̂L

(
x̂,ρt

)T
x̂

s.t. P0(x0, x̂A,1),

Pk(xk, x̂B,k, x̂A,k+1) k ∈ J1, n− 1K .

This computation corresponds exactly to the one we do to perform the inner

minimization of problem (2.11) over x and x̂ in order to compute the supergradient

(cf. §2.3.2.1, §2.3.2.2). To make this equivalence clearer, we point out that the linear

coefficients of the primal variables will maintain the same form (with the difference

that the dual variables are represented as their closed-form update for the following

iteration), as ∇x̂B,kL (x̂,ρt) = ρt+1
k and ∇x̂A,k+1L (x̂,ρt) = −ρt+1

k . The equivalence
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of conditional gradient and supergradient is not particular to our problem. A more

general description can be found in the work of Bach (2015).

Block-Coordinate Steps As the Augmented Lagrangian (2.19) is smooth in the

primal variables, we can perform the Frank-Wolfe steps in a block-coordinate fashion

(Lacoste-Julien et al., 2013). The conditional gradient computation decomposes

over the subproblems (2.16), it is therefore natural to consider each (x̂B,k, x̂A,k+1)

as a separate variable block. As the values of the primals at following layers

are inter-dependent through the gradient of the Augmented Lagrangian, these

block-coordinate updates will result in faster convergence. For each k ∈ J0, n− 1K,

denoting again conditional gradients as ẑ, the Frank-Wolfe steps for the k-th

block take the following form:

(x̂jB,k, x̂
j
A,k+1) = γk(ẑjB,k, ẑ

j
A,k+1) + (1− γk)(x̂j−1

B,k , x̂
j−1
A,k+1). (2.20)

Let us denote by xjγk a vector of all 0s, except for the x̂A and x̂B entries of the k-th

block, which are set to equation (2.20). Due to the structure of problem (2.19), we

can compute an optimal step size γ∗k by solving a one dimensional quadratic problem:

γ∗k ∈ argmin
γk∈[0,1]

L(xjγk ,ρ
t).

Let us denote by Clip[0,1] an operator clipping a value into [0, 1], and let us cover

corner cases through dummy assignments: ηn = ∞, and x̂B,0 = ẑB,0 = 0. Then,

γ∗k is given by:

γ∗k = Clip
[0,1]

(
∇x̂B,kL(x̂j ,ρt)T (x̂j−1

B,k
−ẑj

B,k
)+∇x̂A,k+1L(x̂j ,ρt)T (x̂j−1

A,k+1−ẑj
A,k+1)

1
ηk
‖ẑj

B,k
−x̂j−1

B,k‖
2
+ 1
ηk+1
‖ẑj

A,k+1−x̂j−1
A,k+1‖

2

)
(2.21)

Finally, inspired by previous work on accelerating proximal methods (Lin et al.,

2017; Salzo and Villa, 2012), we apply momentum on the dual updates to accelerate

convergence; for details we refer the reader to appendix A.4.

2.3.4 Comparison to Previous Dual Problems

We conclude this section by comparing our dual problem (2.11) to the duals

presented in §2.2.2, focusing on ReLU activation functions.
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2.3.4.1 Lagrangian Relaxation of the non-convex formulation

We first consider problem (2.6) by Dvijotham et al. (2018b). From the high level

perspective, our decomposition considers larger subsets of constraints and hence

results in a smaller number of dual variables to optimize over.

Proposition 1. Assume σk(x̂k) = max(0, x̂k) ∀ k ∈ J1, n− 1K. Then,

maxµ,λ dO(µ,λ) = maxρ q(ρ), that is, the dual solutions of problem (2.11) and

problem (2.6) coincide. Additionally, both dual solutions coincide with the solution

of problem (2.7).

Proof. Recall that the ReLU version of problem (2.7) is an LP (see (2.8)). Due

to linear programming duality (Lemaréchal, 2001), maxρ q(ρ) = p∗, where p∗

denotes the solution of problem (2.7). Moreover, Theorem 2 by Dvijotham et al.

(2018b) shows that problem (2.6) corresponds to the Lagrangian dual of problem

(2.7). Therefore, invoking linear programming duality again, maxµ,λ dO(µ,λ) =

maxρ q(ρ) = p∗.

While proposition 1 states that problems (2.11) and (2.6) will yield the same

bounds at optimality, this does not imply that the two derivations yield solvers

with the same efficiency. In fact, we will next prove that, for ReLU-based networks,

our formulation dominates problem (2.6), producing bounds at least as tight based

on the same dual variables. In fact, problem (2.11) operates on a subset of the dual

space of problem (2.6) that always contains the dual optimum.

Theorem 1. Let us assume σk(x̂k) = max(0, x̂k) ∀ k ∈ J1, n− 1K. For dual point

(µ,λ) of problem (2.6) by Dvijotham et al. (2018b) yielding bound d(µ,λ), it holds

that q(µ) ≥ d(µ,λ). Furthermore, if λ′n−1 = −W T
n 1 and λ′k−1 = W T

k µk for

k ∈ J2, n− 1K, then q(µ) = d(µ,λ′).

Proof. See appendix A.1.

Theorem 1 motivates the use of dual (2.11) over the general form of problem

(2.6). Moreover, it shows that, for ReLU activations, this application of Lagrangian
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Decomposition coincides with a modified version of problem (2.6) with additional

equality constraints. Such a modification can be also found in the work by

Salman et al. (2019b, appendix G.1). However, its advantages for iterative

bounding algorithms and connections to Lagrangian Decomposition were not

investigated in their work.

2.3.4.2 Propagation-based methods

We now turn our attention to propagation-based methods (see §2.2.2.1).

Proposition 2. Let d̄P be a lower bound to problem (2.1) obtained via a propagation-

based bounding algorithm. Then, if σk(x̂k) = max(0, x̂k) ∀ k ∈ J1, n− 1K, there

exist some dual points ρ̄ and
(
µ̄, λ̄

)
such that q(ρ̄) = dO

(
µ̄, λ̄

)
= d̄P , and both ρ̄

and
(
µ̄, λ̄

)
can be computed at the cost of a backward pass through the network.

Proof. See appendix A.2.

Proposition 2 shows that both problem (2.6) and problem (2.11) can be inex-

pensively initialized via propagation-based algorithms such as CROWN (Zhang

et al., 2018) or the one by Wong and Kolter (2018). We exploit this result in

our computational evaluation (§2.7, §2.8).

2.4 Better Branching

In this section, we present a novel branching strategy aimed at branch and bound

for neural network verification.

2.4.1 Preliminaries: Approximations of Strong Branching

Recall that branch and bound discards subproblems when the available lower bound

on their minimum becomes positive (see §2.2.3). Let us denote the employed

bounding algorithm by A, and its lower bound for subproblem p as lA(p). Moreover,

let cd{h}(p) be the h-th children of p according to branching decision d. Ideally,

we would like to take the branching decision that maximizes the chances that

some cd{h}(p) is discarded, in order to minimize the size of the branch and bound
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tree. In order to do so, we could compute lA(cd{h}(p)) according to every possible

branching decision d and each relative child h. In the context of branch and bound

for integer programming, this branching strategy is traditionally referred to as full

strong branching (Morrison et al., 2016). As full strong branching is impractical

on the large search spaces encountered in neural network verification, it is usually

replaced by an approximation. For branching based on input domain splitting, each

branching decision d corresponds to an index of the input space, that is: d := i ∈ Rn0 .

In this context, Bunel et al. (2018) replace A (the bounding algorithm used for

subproblem lower bounds3) by a looser yet inexpensive method. Specifically, they

rely on the bounding algorithm by Wong and Kolter (2018), denoted WK, which

is a propagation-based method for ReLUs, where σ̄k(x̂k) = [ûk]+�(x̂k−[̂lk]−)
[ûk]+−[̂lk]−

, and

¯
σk(x̂k) = [ûk]+�x̂k

[ûk]+−[̂lk]−
(see §2.2.2.1). The resulting branching strategy, termed Smart

Branching (SB) by Bunel et al. (2018), branches on the input coordinate i such that:

i ∈ argmax
i∈Rn0

(
min
h∈J1,2K

{
lWK(ci{h}(p))

})
.

However, input-based branching was found to be ineffective on large convolutional

networks (Bunel et al., 2020b). With this in mind, in BaBSR, Bunel et al. (2020b)

rely on a branching strategy that operates by splitting a ReLU into its two linear

phases (see §2.2.3.2). The original SB heuristic is unsuitable for ReLU branching, as

it requires a number of backward passes linear in the size of the space of branching

decisions: in general,
(∑n−1

k=1 nk
)
� n0. Therefore, Smart ReLU (SR) branching,

the heuristic adopted within BaBSR, approximates strong branching even further.

At the cost of a single backward pass, it assigns scores sSR and tSR to all possible

branching decisions (that is, to each ReLU):

λ̄n−1 = −W T
n 1, λ̄k−1 = W T

k

(
[ûk]+

[ûk]+ − [̂lk]−
� λ̄k

)
k ∈ J2, n− 1K ,

sSR,k =
∣∣∣∣∣∣

max
{

0, λ̄k � bk
}

− ûk
ûk−l̂k

� λ̄k � bk + ûk�l̂k
ûk−l̂k

� [λ̄k]+

∣∣∣∣∣∣� 1l̂k<0,ûk>0 k ∈ J1, n− 1K ,

tSR,k = −ûk�l̂k
ûk−l̂k

� [λ̄k]+ � 1l̂k<0,ûk>0 k ∈ J1, n− 1K .

(2.22)

3in the case of Bunel et al. (2018), this means solving the LP in problem (2.7).
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Then, SR branches on the ReLU having the largest sSR,k scores or, if such a ReLU’s

score is below a threshold, the largest backup scores tSR,k. This strategy can be seen

as an approximation of SB. In fact, scores sSR,k approximate the change in the bounds

by Wong and Kolter (2018) that would arise from splitting on the ambiguous ReLUs

at layer k. In more detail, they consider the effect of splitting within equation (2.5),

without backpropagating the effect on λ̄j for j ∈ J1, k − 1K via equation (2.4). The

two arguments of the maximum in equation (2.22) correspond to the blocking and

passing cases, whereas the remaining terms represent the ambiguous case. Backup

scores tSR,k, instead, correspond to the product of the Lagrangian multiplier for

xk ≤ σ̄k(x̂k), and the maximum distance of σ̄k(x̂k) from σ(x̂k) (in fact, b̄k = −ûk�l̂k
ûk−l̂k

).

They hence provide a second estimation of the effect that a given ReLU split, through

its associated reduction of the feasible space, would have on bounding.

2.4.2 Filtered Smart Branching

We now present Filtered Smart Branching (FSB), our novel strategy for activation

splitting. Bunel et al. (2020b) show that, in spite of its rougher approximation of

strong branching, SR significantly outperforms SB on larger networks. Therefore,

it is natural to investigate whether improving SR’s approximation quality would

further reduce the size of the branch and bound tree. First, inspired by SB,

we replace the maximization within sSR,k with a minimization. Keeping λ̄ as

in equation (2.22), we obtain:

sFSB,k =
∣∣∣∣∣∣

min
{

0, λ̄k � bk
}

− ûk
ûk−l̂k

� λ̄k � bk + ûk�l̂k
ûk−l̂k

� [λ̄k]+

∣∣∣∣∣∣�1l̂k<0,ûk>0 k ∈ J1, n− 1K . (2.23)

Compared to sSR,k, sFSB,k is designed to balance the branch and bound tree,

prioritizing branching decisions that yield bounding improvements in both children,

rather than one of them. As for sSR,k, the sFSB,k scores owe their computational

efficiency to their shortsightedness and can be computed at the cost of a single

gradient backpropagation. However, considering that our bounding algorithms

(§2.3) require multiple forward/backward passes over the network, we can afford

to marginally increase the branching cost if doing so benefits the quality of split.
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We propose a layered approach: we employ scores sFSB,k and tSR,k to select the

most promising candidate branching choices for each layer. Denoting a branching

choice by a pair (k, i) ∈ J1, n− 1K × Rnk , we create a set of O(n) candidate

choices DFSB := ∪kDFSB,k, where:

DFSB,k =
{(

k, argmax
i∈Rnk

sFSB,k[i]
)
,

(
k, argmax

i∈Rnk
tSR,k[i]

)}
k ∈ J1, n− 1K . (2.24)

As, in general, O(n) <
(∑n−1

k=1 nk
)
, we can then afford to compute lower bounds

for each of the candidates using a fast dual bounding algorithm AFSB. In our

implementation, AFSB returns the tightest bounds between CROWN4 (Zhang

et al., 2018) and the algorithm by Wong and Kolter (2018). FSB splits on the

activation determined by:

dFSB ∈ argmax
d∈DFSB

(
min
h∈J1,2K

{
lAFSB(cd{h}(p))

})
, (2.25)

where the DFSB candidate set is determined via equation (2.24). FSB is both

conceptually simple and effective in practice. In fact, we will show in section 2.8

that FSB significantly improves on SR (Bunel et al., 2020b). Moreover, it is strongly

competitive with a strategy that mimics strong branching via learning algorithms (Lu

and Kumar, 2020), without its training costs. Finally, we point out that, while FSB

was presented in the context of ReLU branching, the technique generalizes to other

activation functions. Let us divide an activation’s domain into intervals: [̂lk, ûk] =

∪j [̂ljk, û
j
k]. It is convenient to branch on the intervals if Conv(σk, l̂k, ûk) satisfies:

∪j
{
Conv(σk, l̂jk, û

j
k)
}
⊂ Conv(∪j

{
Conv(σk, l̂jk, û

j
k)
}

) = Conv(σk, l̂k, ûk). (2.26)

Then, in order to apply FSB, it suffices to: (i) adapt sFSB,k and tSR,k to the

chosen activation’s linear bounding functions σ̄k(x̂k) and
¯
σk(x̂k), (ii) choose an

appropriate bounding algorithm AFSB. For instance, the work by Zhang et al.

(2018) provides suitable σ̄k(x̂k), ¯
σk(x̂k) and AFSB for both the hyperbolic tangent

and sigmoid, which satisfy equation (2.26).
4As mentioned in §2.2.2.1, CROWN is a propagation-based bounding algorithm. In particular,

for ReLU activations, it employs σ̄k(x̂k) = [ûk]+�(x̂k−[̂lk]−)
[ûk]+−[̂lk]−

and
¯
σk(x̂k) =

(
1−l̂k≤ûk

+ 1l̂k≥0

)
x̂k.
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2.5 Improved Branch and Bound

Having presented the building blocks of our branch and bound framework (§2.3, §2.4),

we now present further technical and implementation details.

2.5.1 Additional Branch and Bound Improvements

This section presents the remaining details for Branch and Dual Network Bound

(BaDNB), our branch and bound framework for neural network verification designed

around dual bounding algorithms (§2.3) and Filtered Smart Branching (§2.4). We

start from the treatment of intermediate bounds (§2.5.1.1), then present a simple

heuristic to dynamically adapt the bounding tightness within the branch and

bound tree (§2.5.1.2), and describe how to obtain upper bounds on the minimum

of each subproblem (§2.5.1.3).

2.5.1.1 Intermediate Bounds

Branching on a ReLU at layer k will potentially influence all l̂j and ûj for j ∈

Jk + 1, n− 1K. Therefore, BaBSR by Bunel et al. (2020b) updates the relevant

intermediate bounds after every branching decision, leading to ∑n−1
k=2 2nk bounding

computations per subproblem in the worst case (that is, when the branching is

performed on the first layer). For medium-sized convolutional networks, ∑n−1
k=2 2nk

will be in the order of thousands. In order to compensate for the large computational

expense, BaBSR relies on relatively loose bounding algorithms for intermediate

bounds, taking the layer-wise best bounds between the method by Wong and Kolter

(2018) and Interval Bound Propagation (Mirman et al., 2018).

Dual bounding algorithms such as ours (§2.3) or the one by Dvijotham et al.

(2018b) are significantly less expensive than solving the convex hull LP (2.7) to

optimality. Nevertheless, the use of dual iterative algorithms for intermediate

bounds would be the bottleneck of each branch and bound iteration. In order to

tighten intermediate bounds without incurring significant expenses, and considering

its remarkable performance at the cost of a single backward pass (for instance, see

§2.7), we propose to employ CROWN (Zhang et al., 2018). In particular, we use
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the layer-wise best bounds between CROWN and the method by Wong and Kolter

(2018). Furthermore, as BaDNB employs cheaper last layer bounding than BaBSR,

even inexpensive intermediate bounding can make up a large portion of a branch

and bound iteration’s runtime. Therefore, in order to maximize the number of

visited nodes within a given time, we only compute intermediate bounds at the

root of the branch and bound tree. In §2.8, we will show that, while it sacrifices

the tightness of the bounds, such a choice pays off experimentally.

2.5.1.2 Dynamically Adjusting the Tightness of Bounds

BaDNB relies on dual bounding algorithms, whose advantage over black-box LP

solvers is to quickly reach close-to-optimal bounds (see §2.7). In addition, they allow

for massively parallel implementations, which we exploit by computing bounds for

a batch of branch and bound subproblems at once (§2.5.2). However, the level of

tightness required for a batch of possible heterogeneous subproblems is not clear in

advance. Due to the structure of duals (2.6) and (2.11), the bounding improvement

per iteration will decrease as the solver approaches optimality, both in theory and

in practice. Therefore, a straightforward solution is to choose a fixed number

iterations near the “knee point" of the curve plotting bounds over iterations for

the root of the branch and bound tree. However, a similar “diminishing returns"

law holds for the bounding improvement caused by branching as one moves deeper

in the branch and bound tree. Therefore, at some depth in the tree, it will be

more convenient to invest the computational resources in tighter bounding rather

than branching. In order to take this into account, we devise a simple heuristic

to dynamically adjust tightness for last layer bounding.

Let us again denote by A the bounding algorithm used for the subproblem

lower bounds, adding a subscript to indicate the employed number of iterations.

We denote by t(AT ) the cost of running A with T iterations. We start from a

relatively inexpensive setting AT0 , and choose m different speed-accuracy trade-offs:

AT0 ,AT1 , . . . ,ATm−1 , with t(ATj) < t(ATj+1) for j ∈ J0,m− 2K. Let us denote by

c−1(p) the parent of subproblem p and keep an exponential moving average i(p) of the
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lower bound improvement from parent to child: i(p) := α
(
lATj (p)− lATj (c

−1(p))
)

+

(1− α)i(c−1(p)), where α ∈ [0, 1]. Furthermore, let us estimate the tightness of the

bounds given by each ATj on some test subproblem5 r. We update the bounding

algorithm from ATj to ATj+1 when the following condition is satisfied:

i(pmin) <
(
lATj+1

(r)− lATj (r)
) t(ATj)
t(ATj+1) ,

where pmin denotes the subproblem with the smallest lower bound within the current

subproblem batch. In other words, we increase the number of iterations when an

estimation of the associated bounds tightening, normalized by its runtime overhead,

exceeds the current expected branching improvement.

2.5.1.3 Upper Bounds

Similarly to BaBSR (Bunel et al., 2020b), we compute an upper bound on the

minimum of the current subproblem by evaluating the network at an input point

x0 from the lower bound computation. BaBSR’s use of LP solvers allows them to

evaluate the network at the primal optimal solution of problem (2.7). However, as

explained in §2.5.1.2, in general BaDNB will not run the dual iterative algorithms

presented in §2.3 to convergence. Therefore, we will evaluate the network at

some feasible yet suboptimal x0. In practice, for supergradient-type methods like

algorithm 1, we evaluate the network at the last computed inner minimizer from

problem (2.13). For Algorithm 2, instead, we evaluate the network at the last

x0 found while optimizing problem (2.19).

2.5.2 Implementation Details

The calculations involved in the various components of our branch and bound

framework correspond to standard linear algebra operations commonly employed

during the forward and backward passes of neural networks. For instance, operations

of the form x̂k+1 = Wk+1xk + bk+1 are exactly forward passes of the network, while

operations like ρTk+1Wk+1 are analogous to the backpropagation of gradients. This
5In our implementation, in order to capture the effect of activation splits (see §2.4), we set r to

the first encountered subproblem at a depth of 4 in the branch and bound tree.
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makes it possible for us to leverage the engineering efforts made to enable fast

training and evaluation of neural networks, and easily take advantage of GPU

accelerations. As an example, when dealing with convolutional layers, we can

employ specialized implementations rather than building the equivalent Wk matrix,

which would contain a lot of redundancy.

2.5.2.1 Bounding Algorithms

We implement propagation-based algorithms (§2.2.2.1), the algorithm by Dvijotham

et al. (2018b), and our methods based on Lagrangian Decomposition (§2.3) within

a unified framework, exploiting their common building blocks. One of the benefits

of these dual bounding algorithms is that they are easily parallelizable. In fact,

when computing the upper and lower bounds for all the neurons of a layer, there

is no dependency between the different problems, so we are free to solve them all

simultaneously in a batched mode. The approach closely mirrors the batching over

samples commonly employed for training neural networks.

2.5.2.2 Branch and Bound

For complete verification, the use of branch and bound opens up yet another stream

of parallelism. In fact, it is possible to batch over subproblems as well, for both

branching and bounding. In detail, a batch is formed by the B subproblems having

the lowest lower bound (in §2.8, B ranges from 100 to 1600, depending on the given

experiment). We first compute and execute branching decisions for the batch, then

move on to the batch of children, whose size is 2B (the branching is binary for

ReLU activations). Then, for the branch and bound specifications which require

it, intermediate bounds are updated for the entire batch, parallelizing both over

the 2B subproblems and the neurons of a layer (leading to up to 45000 bounding

computations at once, in our experiments). Finally, we compute lower bounds for

the 2B subproblems, and get upper bounds as detailed in §2.5.1.3.
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2.6 Related Work

The work by Bunel et al. (2018, 2020b) presented an unified view of neural network

verification, providing an interpretation of state-of-the-art complete verification

methods as branch and bound algorithms (see §2.2.3). Such interpretation holds for

a wide array of approaches, including SMT solvers (Ehlers, 2017; Katz et al., 2017),

Mixed Integer Programming (MIP) formulations (Tjeng et al., 2019), ReLUVal and

Neurify (Wang et al., 2018a,b). By presenting modifications to the search strategy,

the bounding process and the branching algorithm, the methods by Bunel et al.

(2020b) outperform previous complete verifiers by a significant margin, on a variety

of standard datasets such as those from Ehlers (2017); Katz et al. (2017). Therefore,

building upon its success, we started from the framework by Bunel et al. (2020b)

and presented various improvements to improve its scaling capabilities.

While many of our contributions (§2.4, §2.5) are to be employed within branch

and bound, bounding algorithms (§2.3) can be additionally seen as stand-alone

incomplete verifiers (see §2.2). Although they cannot verify properties for all

problem instances, incomplete verifiers scale significantly better, as they trade

speed for completeness. So far, we have focused on approaches presenting a dual

interpretation. However, incomplete verifiers can be more generally described as

solvers for relaxations of problem (2.1). In fact, explicitly or implicitly, these

are all equivalent to propagating a convex domain through the network to over-

approximate the set of reachable values. Some approaches (Ehlers, 2017; Salman

et al., 2019b) rely on off-the-shelf solvers to solve accurate relaxations such as Planet

(equation (2.8)) (Ehlers, 2017), which is the best known linear-sized approximation

of the problem. On the other hand, as Planet and other more complex relaxations

do not have closed form solutions, some researchers have also proposed easier to

solve, looser formulations. Many of these fall into the category of propagation-

based methods (§2.2.2.1) (Wong and Kolter, 2018; Weng et al., 2018; Singh et al.,

2018; Zhang et al., 2018; Singh et al., 2019b), which solve linear relaxations with

only two constraints per activation function, yielding large yet inexpensive over-

approximations. Others relaxed the problem even further in order to obtain faster
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solutions, either by propagating intervals (Gowal et al., 2018b), or through abstract

interpretation (Mirman et al., 2018). Our bounding algorithms and the one by

Dvijotham et al. (2018b) are custom dual solvers for the convex hull of the element-

wise activation function (Planet, in the ReLU case). Finally we point out that,

while tighter convex relaxations exist, they involve a quadratic number of variables

or exponentially many constraints. The semi-definite programming method of

Raghunathan et al. (2018), or the relaxation by Anderson et al. (2020), obtained

from relaxing strong Mixed Integer Programming formulations, fall in this category.

We do not address them here.

2.7 Incomplete Verification Experiments

In this section, we test the speed-accuracy trade-offs of our bounding algorithms

in an incomplete verification setting. In particular, we compare them with various

bounding algorithms on an adversarial robustness task, for images of the CIFAR-10

test set (Krizhevsky, 2009).

2.7.1 Experimental Setup

For each test image, we compute an upper bound on the vulnerability of a network

to each possible misclassification. In other words, we upper bound the difference

between the 9 logits associated to incorrect classes, and the ground truth logit, under

an allowed perturbation εver in infinity norm of the inputs. If for any class the upper

bound on the difference is negative, then we are certain that the network is robust

against that adversarial perturbation. We employ a ReLU-based convolutional

network used by Wong and Kolter (2018) and whose structure corresponds to

the “Wide" architecture in table 2.1. We train the network against perturbations

of a size up to εtrain = 2/255 in `∞ norm, and test for adversarial vulnerability

on εver = 2.7/255. Adversarial training is performed via the method by Madry

et al. (2018), based on an attacker using 50 steps of projected gradient descent to

obtain the samples. Additional experiments for a network trained using standard
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stochastic gradient descent and cross entropy, with no robustness-related term in

the objective, can be found in appendix A.5.

2.7.2 Bounding Algorithms

We consider the following bounding algorithms:

• IBP Interval Bound Propagation (Gowal et al., 2018b; Mirman et al., 2018),

whose bounds correspond to setting all dual variables to 0 in dual problems

(2.6) and (2.11).

• WK and CROWN, the propagation-based methods by respectively Wong and

Kolter (2018) and Zhang et al. (2018). Exploiting proposition 2, the bounds

by both algorithms correspond to a specific dual assignment for both problem

(2.6) and problem (2.11).

• DSG+ uses supergradient methods on dual (2.6), the method by Dvijotham

et al. (2018b). We use the Adam (Kingma and Ba, 2015) updates rules and

decrease the step size linearly between two values, similarly to the experiments

of Dvijotham et al. (2018b). We experimented with other step size schedules,

like constant step size or 1
t
schedules, which all performed worse.

• Dec-DSG+ is a direct application of Theorem 1: it obtains a dual point

(µ,λ) by optimizing problem (2.6) via DSG+ and then evaluates q(µ) in

problem (2.11) to obtain the final bounds.

• Supergradient is the first of the two solvers presented (§2.3.2), using a

supergradient method on problem (2.11). As for DSG+, we use Adam updates

and linearly decay the step size.

• Proximal is the solver presented in §2.3.3, performing proximal maximization

on problem (2.11). We use a small fixed number of iterations for the inner

problems (specifically, we set J = 2 in algorithm 2).
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• Gurobi is our gold standard method. It employs the commercial black box

solver Gurobi to solve problem (2.7) to optimality. We make use of LP

incrementalism (warm-starting): as the experiment involves computing 9

different output upper bounds, we warm-start each LP from the LP of the

previous neuron.

• Gurobi-TL is the time-limited version of the above, which stops at the first

dual simplex iteration for which the total elapsed time exceeded that required

by 400 iterations of the proximal method.

Exploiting proposition 2, all dual iterative algorithms (Proximal, Supergradient, and

DSG+) are initialized from CROWN, which usually outperforms other propagation-

based algorithms on ReLU networks (Zhang et al., 2018). In all cases, we pre-

compute intermediate bounds (see §2.2.2.3) using the layer-wise best amongst
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Figure 2.2: Distribution of runtime and gap to optimality on a network adversarially
trained with the method by Madry et al. (2018), on CIFAR-10 images. In both cases,
lower is better. The width at a given value represents the proportion of problems for
which this is the result. Gurobi Planet always returns the optimal solution to problem
(2.7), at a large computational cost.
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CROWN and WK. This reflects the bounding schemes used within branch and

bound for networks of comparable size (Bunel et al., 2020b; Lu and Kumar, 2020).

Hyper-parameters were tuned on a small subset of the CIFAR-10 test set. For

both supergradient methods (Supergradient, and DSG+), we decrease the step

size linearly from 10−2 to 10−4. For Proximal, we employ momentum coefficient

µ = 0.3 (see appendix A.4) and, for all layers, linearly increase the weight of the

proximal terms from 101 to 5× 102. Because of their small cost per iteration, dual

iterative methods allow the user to choose amongst a variety of trade-offs between

tightness and speed. In order to perform a fair comparison, we fixed the number of

iterations for the various methods so that each of them would take the same average

time,. This was done by tuning the iteration ratios on a subset of the images. We

report results for three different computational budgets. Note that the Lagrangian

Decomposition has a higher cost per iteration due to its more complex primal feasible

set. The cost of the proximal method is even larger, as it requires an iterative

procedure for the inner minimization (2.19). All methods were implemented in

PyTorch (Paszke et al., 2019) and run on a single Nvidia Titan V GPU, except those

based on Gurobi, which were run on 4 cores of i9-7900X CPUs. The amenability of

dual methods do GPU acceleration is a big part of their advantages over off-the-shelf

solvers. Experiments were run under Ubuntu 16.04.2 LTS.

2.7.3 Results

We measure the time to compute last layer bounds, and report the gap to the

optimal solution of problem (2.7), which is based on the Planet relaxation (2.8)

for our ReLU benchmark. Figure 2.2 presents the distribution of results for all

bounding algorithms. The fastest method is by IP, which requires only a few linear

algebra operations over the last network layer. However, the bounds it returns are

consistently very loose. WK and CROWN have a similarly low computational cost:

they both require a single backward pass through the network per optimization

problem. Nevertheless, CROWN generates much tighter average bounds, and is

therefore the best candidate for the initialization of dual iterative algorithms. At
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Figure 2.3: Pointwise comparison for a subset of the methods on the data presented in
Figure 2.2. Each datapoint corresponds to a CIFAR image, darker color shades mean
higher point density in a logarithmic scale. The dotted line corresponds to the equality
and in both graphs, lower is better along both axes.

the opposite end of the spectrum, Gurobi is extremely slow but provides the best

achievable bounds. Furthermore, time-limiting the LP solver significantly worsens

the produced bounds without a noticeable cut in runtimes. This is due to the

high cost per iteration of the dual simplex algorithm. For DSG+, Supergradient

and Proximal, the improved quality of the bounds as compared to IP, WK and

CROWN shows that there are benefits in actually solving the relaxation rather

than relying on approximations. In particular, a few iterations of the iterative

algorithms cuts away the looser part of CROWN’s bounds distribution, and an

increased computational budget leads to significantly better average bounds. While

the relative cost of dual solvers over CROWN (three order of magnitudes more

time) might seem disproportionate, we will see in §2.8.2 that the gain in tightness

is crucial for faster complete verification. Furthermore, by looking at the point-wise

comparisons in Figure 2.3, we can see that Supergradient yields consistently better

bounds than DSG+. As both methods employ the Adam update rule (and the same

hyper-parameters, which are optimal for both), we can conclude that operating on

the Lagrangian Decomposition dual (2.1) produces better speed-accuracy trade-offs

compared to the dual (2.6) by Dvijotham et al. (2018b). This is in line with the



2. Improved BaB for NN Verification via Lagrangian Decomposition 47

Network Specifications Verification Properties Network Architecture

Name: Base
Activation: ReLU
Training method: WK
Total activations: 3172

100 properties

εver ∈
[

3.5
255 ,

14.5
255

] Conv2d(3,8,4, stride=2, padding=1)
Conv2d(8,16,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

Name: Wide
Activation: ReLU
Training method: WK
Total activations: 6244

100 properties

εver ∈
[

3.5
255 ,

12.4
255

] Conv2d(3,16,4, stride=2, padding=1)
Conv2d(16,32,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

Name: Deep
Activation: ReLU
Training method: WK
Total activations: 6756

100 properties

εver ∈
[

3.5
255 ,

14.9
255

]
Conv2d(3,8,4, stride=2, padding=1)
Conv2d(8,8,3, stride=1, padding=1)
Conv2d(8,8,3, stride=1, padding=1)
Conv2d(8,8,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

Table 2.1: Specifications of the OVAL dataset, a subset of the CIFAR-10 complete
verification dataset from Lu and Kumar (2020). Each property is associated to a different
εver value. WK denotes the verified training algorithm by Wong and Kolter (2018).

expectations from Theorem 1. Moreover, while a direct application of the Theorem

(Dec-DSG+) does improve on the DSG+ bounds, operating on the Decomposition

dual (2.1) is empirically more effective. Finally, on average, the Proximal yields

better bounds than those returned by Supergradient, further improving on the DSG+

baseline. In particular, we stress that the support of optimality gap distribution

is larger for Proximal, with a heavier tail towards better bounds.

2.8 Complete Verification

We now evaluate our branch and bound framework and its building blocks within

complete verification. As detailed in §2.8.1, we focus on proving (or disproving)

a network’s adversarial robustness. We first study the effect of each presented

branch and bound component (§2.8.2, §2.8.3, §2.8.4), then compare BaDNB with

state-of-the-art complete verifiers in §2.8.5.

2.8.1 Experimental Setup

Tables 2.1 and 2.2 present the details of the two verification datasets on which we

conduct our experimental evaluation. For both, the goal is to verify whether a
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network is robust to `∞ norm perturbations of radius εver on images of the CIFAR-

10 (Krizhevsky, 2009) test set. For each complete verifier, we measure the time

to termination, limited at one hour. In case of timeouts, the runtime is replaced

by such time limit. All experiments were run under Ubuntu 16.04.2 LTS. The

dataset by Lu and Kumar (2020), which we name “OVAL", was introduced to

test their novel GNN-based branching algorithm (table 2.1). It consists of three

different ReLU-based convolutional networks of varying size, which were robustly

trained with εtrain = 2/255 using the algorithm by Wong and Kolter (2018). For

each network, it associates an incorrect class and a perturbation radius εver to a

subset of the CIFAR-10 test images. The radii εver are found via a binary search,

and are designed to ensure that each problem meets a certain problem difficulty

when verified by BaBSR (Bunel et al., 2020b). As a consequence, the dataset lacks

properties that are easily verifiable regardless of the employed algorithm, or that

are hardly verified by any method. Therefore, we believe it is an effective testing

ground for complete verifiers. These properties can be represented in the canonical

form of problem (2.1) by setting x̂n to be the difference between the ground truth

logit and the target logit. In order to complement the dataset by Lu and Kumar

(2020), we additionally experiment on two larger networks trained using COLT,

the recent adversarial training scheme by Balunovic and Vechev (2020) (table 2.2).

In this case, we employ a fixed εver, chosen to be the radius employed for training.

We focus on the first 100 elements of the CIFAR-10 testset, excluding misclassified

Network Specifications Verification Properties Network Architecture

Name: 2/255
Activation: ReLU
Training method: COLT
Total activations: 49411

82 properties

εver = 2
255

Conv2d(3, 32, 3, stride=1, padding=1)
Conv2d(32,32,4, stride=2, padding=1)
Conv2d(32,128,4, stride=2, padding=1)

linear layer of 250 hidden units
linear layer of 10 hidden units

Name: 8/255
Activation: ReLU
Training method: COLT
Total activations: 16643

56 properties

εver = 8
255

Conv2d(3, 32, 5, stride=2, padding=2)
Conv2d(32,128,4, stride=2, padding=1)

linear layer of 250 hidden units
linear layer of 10 hidden units

Table 2.2: Specifications of the COLT-based (Balunovic and Vechev, 2020) CIFAR-10
complete verification dataset.
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images. Differently from the dataset by Lu and Kumar (2020), the goal is to verify

robustness with respect to any misclassification. The properties can be converted

to the canonical form by suitably adding auxiliary layers (Bunel et al., 2020b).

2.8.2 Bounding Algorithms

The computational bottleneck of BaBSR was found to be bounding algorithm (Bunel

et al., 2020b). Therefore, we start our experimental evaluation by examining the

effect of replacing Gurobi Planet, the bounding algorithm from BaBSR, with

some of the dual methods evaluated in §2.7. Specifically, we will employ DSG+,

Supergradient and Proximal amongst dual iterative algorithms. For each of these

three methods, we initialize the problem relative to each subproblem with the dual

variables from the parent’s bounding, and with CROWN for the root subproblem.

Additionally, we compare against WK + CROWN, which returns the best bounds

amongst WK and CROWN, as representative of propagation-based methods. As

explained in section 2.5.2, due to the highly parallelizable nature of the dual

algorithms, we are able to compute lower bounds for multiple subproblems at once

for DSG+, Supergradient, Proximal, and WK + CROWN. In detail, the number

of simultaneously solved subproblems is 300 for the Base network, and 200 for the

Wide and Deep networks. For Gurobi, which does not support GPU acceleration,

we improve on the original BaBSR implementation by Bunel et al. (2020b) by

computing bounds relative to different subproblems in parallel over the CPUs. For

both supergradient methods (our Supergradient, and DSG+), we decrease the step

size linearly from α = 10−3 to α = 10−4: the initial step size is smaller than in §2.7

to account for the parent initialization. For Proximal, we do not employ momentum

and keep the weight of the proximal terms fixed to η = 102 for all layers throughout

the iterations. As in the previous section, the number of iterations for the bounding

algorithms are tuned to employ roughly the same time: we use 100 iterations for

Proximal, 160 for Supergradient, and 260 for DSG+. Dual bounding computations

(for both intermediate and subproblem bounds) were run on a single Nvidia Titan

Xp GPU. Gurobi was run on i7-6850K CPUs, using 6 cores.
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Figure 2.4 shows that the use of GPU-accelerated dual iterative algorithms is

highly beneficial within complete verification. In fact, in spite of the loss in tightness

compared to Gurobi, the efficiency of the implementation and the convenient

speed-accuracy trade-offs significantly speed up the verification process. On the

other hand, the bounds returned by propagation-based methods are too loose

to be effectively employed for the last layer bounding, and lead to a very large

number of timed out properties. The larger performance difference with respect to

incomplete verification (§2.7) is explained by the fact that dual information cannot

be propagated from parent to child. Dual solvers, instead, compared to one-off

approximations like WK + CROWN, can more effectively exploit the change in

subproblem specifications linked to activation splitting. Furthermore, consistently

with the incomplete verification results in the last section, Figure 2.4 shows that the

Supergradient outperforms DSG+ on average, thus confirming the benefits of our

Lagrangian Decomposition approach. Furthermore, Proximal provides an additional

increase in average performance over DSG+ on the larger networks, which is visible

especially over the properties that are easier to verify. The gap between competing

bounding methods increases with the size of the employed network, both in terms

of layer width and network depth. We have seen that, by exploiting dual bounding

algorithms, the performance of BaBSR can be significantly improved. We will now

move on to studying the role of other branch and bound components.

2.8.3 Branching

The use of our Proximal solver improves the average verification performance within

BaBSR (see §2.8.2). We now keep the bounding algorithm fixed to Proximal and

study the effect of various branching strategies on verification time. As in BaBSR,

we update intermediate bounds after each activation split with the best bounds

between IBP and WK. We consider the following branching schemes:

• SR denotes the original branching scheme from BaBSR (Bunel et al., 2020b),

relying on the activation scores found in equation (2.22).
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Base Wide Deep
Method time [s] subproblems %Timeout time [s] subproblems %Timeout time [s] subproblems %Timeout
DSG+ 812.84 135 686.10 20.00 638.63 73 591.82 13.00 257.01 21 928.52 4.00

Supergradient 776.35 147 347.26 19.00 561.50 74 274.48 12.00 228.67 14 851.40 3.00
Proximal 808.62 166 478.44 20.00 498.69 80 703.96 10.00 206.54 18 139.62 3.00

wk + crown 2417.83 725 627.96 66.00 3042.91 736 415.20 84.00 2055.09 382 353.30 53.00
Gurobi Planet 1352.15 7013.72 25.00 1236.54 2737.36 17.00 782.84 848.32 7.00

(a) Comparison of average solving time, average number of solved subproblems and the
percentage of timed out properties. The best performing method is highlighted in bold.
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(b) Cactus plots: percentage of solved properties as a function of runtime. Baselines are
represented by dotted lines.

Figure 2.4: Complete verification performance of different bounding algorithms within
BaBSR, on the OVAL dataset.

• mSR denotes our modification of the SR branching scheme (min-based SR),

in which sSR scores are replaced by sFSB as seen in equation (2.23).

• GNN is the learning-based approach from Lu and Kumar (2020). It exploits

a trained Graph Neural Network, which takes the topology of the network

to be verified as input, to perform the branching decision, and falls back

to SR whenever the decision from the GNN is deemed unsatisfactory. We

re-train the network using Proximal as bounding algorithm, omitting the

online fine-tuning due to its modest empirical impact (Lu and Kumar, 2020).

• FSB is our novel branching scheme (see §2.4), which exploits the mSR scores

to select a subset of the branching choices, and then approximates strong

branching using bounds from WK + CROWN.

Similarly to dual bounding, branching computations were parallelized over batches of

subproblems, and run on a single Nvidia Titan Xp GPU for all considered methods.

In the context of our implementation, the time required for branching is negligible
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Base Wide Deep
Method time [s] subproblems %Timeout time [s] subproblems %Timeout time [s] subproblems %Timeout

SR 822.61 146 700.30 20.00 524.24 67 495.74 11.00 234.23 15 443.30 4.00
mSR 704.39 125 989.32 17.00 299.59 38 477.18 6.00 256.17 13 573.06 4.00
GNN 633.71 92 904.44 14.00 274.57 25 337.36 6.00 88.43 3959.28 1.00
FSB 546.22 85 433.94 12.00 247.13 20 324.06 6.00 32.29 1702.02 0.00

(a) Comparison of average runtime, average number of solved subproblems and the
percentage of timed out properties. The best performing method is highlighted in bold.
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(b) Cactus plots: percentage of solved properties as a function of runtime. Baselines are
represented by dotted lines.

Figure 2.5: Using Proximal as bounding algorithm, complete verification performance of
different branching strategies, on the OVAL dataset.

with respect to the cost of the bounding procedure, for all considered branching

schemes. For this set of experiments, Proximal is additionally employed to compute

upper bounds to a modified version of problem (2.1), where the minimization

is replaced by a maximization, for each subproblem. This maximizes the dual

information available to the GNN, and provides an additional infeasibility check6

for all methods. In fact, as infeasible subproblems will result in an unbounded

dual, the subproblem can be discarded whenever the values of the upper and lower

bounds cross. Empirically, this results in a modest decrease in the size of the

enumeration tree and a minor increase in runtime (compare the results for SR in

figure 2.5, with those for Proximal in figure 2.4).

Figure 2.5 shows that our simple modification of SR successfully reduces the

average number of subproblems to termination. This results in faster verification

for both the Base and Wide network. For the Deep network, however, mSR tends

to branch on earlier layers, thus involving a larger average number of intermediate

bounding computations (see §2.5.1.1). This overhead is not matched by a significant
6A given activation split might empty the feasible region of problem (2.7).
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reduction of the enumeration tree, slowing down overall verification. The results for

FSB demonstrate that coupling the mSR scores with fast dual algorithms yields

a larger and more consistent reduction of subproblems with respect to SR. As a

consequence, FSB produces significant verification speed-ups to SR, which range

from roughly 35% on the Base network to an order of magnitude on the Deep network.

Furthermore, FSB is strongly competitive with GNN. On the considered networks,

FSB outperforms the learned approach both in terms of average verification time

and number of subproblems. Differently from GNN, strong verification performance

is achieved without incurring large training-related offline costs.

2.8.4 Intermediate Bounds

In this section, we consider the effect of various intermediate bounding strategies

(see §2.2.2.3) on final verification performance. For this set of experiments, we use

Proximal as bounding algorithm (for the subproblem bounds), and FSB for the

branching strategy, computing intermediate bounds with the following algorithms:

• IBP + WK denotes the layer-wise best bounds returned by IBP and WK

(see §2.7), updated after each activation split (see §2.5.1.1). This is the

intermediate bounding strategy employed in BaBSR (Bunel et al., 2020b).

• WK + CROWN denotes the layer-wise best bounds returned by WK and

CROWN, updated after each activation split.

• WK + CROWN @root restricts WK + CROWN to the root of the branch

and bound tree, foregoing any possible tightening after activation splits.

As expected from the incomplete verification experiments in §2.7, replacing

IBP with CROWN markedly tightens intermediate bounds. This is testified by

the decrease in the number of average subproblems to termination visible in figure

2.6. As a consequence, WK + CROWN reduces verification time for all the

three considered networks. Moreover, restricting WK + CROWN to the branch

and bound root results in an increase in the average number of subproblems to

termination. This is due to both the reduced cost per branch and bound iteration,
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Base Wide Deep
Method time [s] subproblems %Timeout time [s] subproblems %Timeout time [s] subproblems %Timeout

IBP + WK 526.77 94 959.20 11.00 245.67 21 429.28 6.00 31.46 1704.10 0.00
WK + CROWN 384.60 56 823.50 7.00 248.23 15 750.48 6.00 17.95 490.16 0.00

WK + CROWN @root 329.46 97 219.08 7.00 230.30 43 952.94 6.00 11.41 533.90 0.00

(a) Comparison of average runtime, average number of solved subproblems and the
percentage of timed out properties. The best performing method is highlighted in bold.
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(b) Cactus plots: percentage of solved properties as a function of runtime. Baselines are
represented by dotted lines.

Figure 2.6: Using Proximal for the last layer bounding, complete verification performance
of different intermediate bounding schemes, on the OVAL dataset.

and a loss in bounding tightness. As evidenced by the decrease in verification

time on all the three considered networks, WK + CROWN @root produces better

speed-accuracy trade-offs than the other intermediate bounding strategies, and

is particularly convenient for larger networks.

2.8.5 Comparison of Complete Verifiers

In §2.8.2, §2.8.3, and §2.8.4, we have studied the effect of isolated branch and

bound components on the OVAL dataset. We conclude our experimental evaluation

by comparing our branch and bound framework with state-of-the-art complete

verifiers on both the OVAL and COLT datasets. For both benchmarks, we consider

the following algorithms:

• MIP solves problem (2.1) as a Mixed-Integer linear Program (MIP) via Gurobi,

exploiting the representation of ReLU activations used by (Tjeng et al., 2019).

Gurobi was run on i7-6850K CPUs, using 6 cores. In order to minimize pre-

processing time, intermediate bounds are pre-computed with the layer-wise

best bounds between IBP and WK, on an Nvidia Titan Xp GPU.
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• Gurobi BaBSR is a multi-core adaptation of the BaBSR branch and bound

framework (Bunel et al., 2020b). Gurobi is run on 6 cores from i7-6850K

CPUs (see “Gurobi Planet" in §2.8.2), branching and intermediate bounding

were run on an Nvidia Titan Xp GPU.

• Proximal BaBSR replaces the Gurobi-based Planet solver used in BaBSR

with our Proximal bounding algorithm (see “Proximal" in §2.8.2), run on an

Nvidia Titan Xp GPU.

• BaDNB is our novel branch and bound framework (see §2.5). Compared

to Proximal BaBSR, it employs FSB as branching strategy, dynamically

determines the number of Proximal iterations, and computes intermediate

bounds via WK + CROWN @root (see §2.8.4). BaDNB was run on an Nvidia

Titan Xp GPU.

• ERAN is the complete verification toolbox by Singh et al. (2020), based on

several works combining abstract interpretation, propagation-based methods,

LP and MILP solvers (Singh et al., 2018, 2019a,b,c). Results are taken from the

recent VNN-COMP competition (VNN-COMP, 2020). On the OVAL dataset,

ERAN was executed on a 2.6 GHz Intel Xeon CPU E5-2690, using 14 cores.

On the COLT dataset, it was run on a 10 Core Intel i9-7900X Skylake CPU.

2.8.5.1 OVAL Dataset

Figure 2.7 reports results for the OVAL dataset. MIP, which relies on a black-box

MIP solver, is the slowest verification method in all three cases, highlighting the

importance of specialized algorithms for neural network verification. Gurobi BaBSR

improves upon MIP, thus demonstrating the benefits of a customized branch-and-

bound framework. However, as seen in §2.8.2, the use of Gurobi as bounding

algorithm severely hinders scalability. Proximal BaBSR showcases the benefits of

specialized solvers for the Planet relaxation: it significantly outperforms Gurobi

BaBSR and is faster than ERAN on the larger networks. Furthermore, BaDNB

manages to further cut verification times, yielding speed-ups to Proximal BaBSR
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Base Wide Deep
Method time [s] subproblems %Timeout time [s] subproblems %Timeout time [s] subproblems %Timeout
BaDNB 309.30 38 496.52 7.00 165.54 11 258.56 4.00 10.50 368.16 0.00

Proximal BaBSR 808.62 166 478.44 20.00 498.69 80 703.96 10.00 206.54 18 139.62 3.00
MIP 2582.30 13 929.44 57.00 1702.88 4170.95 38.00 1831.44 6268.08 25.00

Gurobi BaBSR 1352.15 7013.72 25.00 1236.54 2737.36 17.00 782.84 848.32 7.00
ERAN 805.89 - 5.00 632.12 - 9.00 545.72 - 0.00

(a) Comparison of average runtime, average number of solved subproblems and the
percentage of timed out properties. The best performing method is highlighted in bold.
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(b) Cactus plots: percentage of solved properties as a function of runtime. Baselines are
represented by dotted lines.

Figure 2.7: Performance of different complete verification algorithms, on the OVAL
dataset.

that reach an order of magnitude on the Deep network. This testifies the advantages

of Filtered Smart Branching and of the other design choices presented in §2.5.1. In

addition to the results presented in §2.8.3, and §2.8.4, a comparison of BaDNB in

table 2.7(a) with WK + CROWN @root in table 2.6(a) shows that, by automatically

adjusting the number of dual iterations (§2.5.1.2), we can obtain a further 40%

reduction in average verification time on the Wide network.

2.8.5.2 COLT Dataset

We now report results for the COLT dataset, which offer insight into the scalability

of the various complete verifiers on larger networks. Owing to the wider participation

to this benchmark within VNN-COMP (VNN-COMP, 2020), we additionally report

results for the two best-performing algorithms within the competition:

• nnenum by Bak et al. (2020), which pairs propagation-based methods and

LP solvers with path enumeration techniques (Tran et al., 2019). nenum was

executed on an Amazon EC2 m4.10xlarge cloud instance, with a 40-core 2.4

GHz Intel Xeon E5-2676 v3 CPU.
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2/255 8/255
Method time [s] subproblems %Timeout time [s] subproblems %Timeout
BaDNB 211.06 2064.02 4.88 667.29 17 254.61 14.29

Proximal BaBSR 842.00 17 979.17 21.95 1249.02 55 653.04 33.93
MIP 1353.07 103.11 25.61 1611.46 461.70 37.50

Gurobi BaBSR 1313.88 32.44 25.61 1461.48 310.18 35.71
ERAN∗ 1136.76 - 28.05 1541.98 - 41.07

nnenum∗ 1081.02 - 29.27 1431.46 - 39.29
VeriNet∗ 845.57 - 23.17 1225.24 - 33.93

(a) Comparison of average runtime, average number of solved subproblems and the
percentage of timed out properties. The best performing method is highlighted in bold.
∗the method was run with a 5-minute time limit, within VNN-COMP (2020).
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(b) Cactus plots: percentage of solved properties as a function of runtime. Baselines are
represented by dotted lines. The red vertical line marks the time limit for the ERAN,
nnenum and VeriNet experiments from VNN-COMP (VNN-COMP, 2020).

Figure 2.8: Performance of different complete verifiers on adversarial robustness verifica-
tion of larger, COLT-trained convolutional, networks (Balunovic and Vechev, 2020).

• VeriNet from Henriksen and Lomuscio (2020), which presents modifications

to the branch and bound algorithm from Neurify (Wang et al., 2018b). In

particular, both the subproblem upper bounding strategy and the activation-

based branching schemes are improved upon. VeriNet was run on a Ryzen

3700X 3.6 GHz 8-core CPU.

Due to the specifications of VNN-COMP the experiments for ERAN, nnenum

and VeriNet were run with a 5-minute time limit on this dataset. In line with

the time-limit for the other methods, Table 2.8(a) reports a runtime of 1 hour

for all timed-out properties.

The performance of MIP in figure 2.8 demonstrates that black-box MIP solvers

are unsuitable for larger networks. In fact MIP can rarely verify any property in

less than hundreds of seconds. Furthermore, Gurobi’s scaling problems are further

evidenced by the results for Gurobi BaBSR, which hardly improves upon MIP’s
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performance. As seen on the OVAL dataset (figure 2.8), the use of our dual bounding

algorithm greatly improves upon the original BaBSR implementation (Bunel et al.,

2020b): Proximal BaBSR consistently outperforms ERAN and nnenum, and it is

competitive with VeriNet. However, Proximal BaBSR still times out on a relatively

large share of the considered properties, underscoring the limitations of BaBSR’s

design. The superior performance of BaDNB demonstrates that a scrupulous

deployment of fast dual bounds throughout the branch and bound procedure is

key to effective neural network verification.

2.9 Discussion

We have presented BaDNB, a novel branch and bound framework for neural

network verification, and empirically demonstrated its advantages to state-of-

the-art verification systems.

As part of BaDNB, we proposed a novel dual approach to neural network

bounding, based on Lagrangian Decomposition. Our bounding algorithms provide

significant benefits compared to off-the-shelf solvers and improve on both looser

relaxations and on a previous method based on Lagrangian relaxation. While we

have focused on the convex hull of element-wise activation functions, our dual

approach is far more general. In fact, we believe that Lagrangian Decomposition

has the potential to scale up tighter relaxations from the Mixed Integer Linear

Programming literature (Sherali and Adams, 1994). We have furthermore shown

that inexpensive dual algorithms can significantly speed up verification if employed

to select branching decisions and to tighten intermediate bounds. We decided

to keep costs low for these branch and bound components in order to obtain a

well-rounded complete verifier. However, we are convinced that further verification

improvements can be obtained by selectively employing solvers for Lagrangian

Decomposition in this context.
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Abstract

Tight and efficient neural network bounding is crucial to the scaling of neural network
verification systems. Many efficient bounding algorithms have been presented
recently, but they are often too loose to verify more challenging properties. This is
due to the weakness of the employed relaxation, which is usually a linear program of
size linear in the number of neurons. While a tighter linear relaxation for piecewise-
linear activations exists, it comes at the cost of exponentially many constraints
and currently lacks an efficient customized solver. We alleviate this deficiency by
presenting two novel dual algorithms: one operates a subgradient method on a
small active set of dual variables, the other exploits the sparsity of Frank-Wolfe type
optimizers to incur only a linear memory cost. Both methods recover the strengths
of the new relaxation: tightness and a linear separation oracle. At the same time,
they share the benefits of previous dual approaches for weaker relaxations: massive
parallelism, GPU implementation, low cost per iteration and valid bounds at any
time. As a consequence, we can obtain better bounds than off-the-shelf solvers in only
a fraction of their running time, attaining significant formal verification speed-ups.



3.1 Introduction

Verification requires formally proving or disproving that a given property of a neural

network holds over all inputs in a specified domain. We consider properties in

their canonical form (Bunel et al., 2018), which requires us to either: (i) prove that

no input results in a negative output (property is true); or (ii) identify a counter-

example (property is false). The search for counter-examples is typically performed

by efficient methods such as random sampling of the input domain (Webb et al.,

2019), or projected gradient descent (Kurakin et al., 2017; Carlini and Wagner, 2017;

Madry et al., 2018). In contrast, establishing the veracity of a property requires

solving a suitable convex relaxation to obtain a lower bound on the minimum output.

If the lower bound is positive, the given property is true. If the bound is negative

and no counter-example is found, either: (i) we make no conclusions regarding the

property (incomplete verification); or (ii) we further refine the counter-example

search and lower bound computation within a branch-and-bound framework until

we reach a concrete conclusion (complete verification).

The main bottleneck of branch and bound is the computation of the lower

bound for each node of the enumeration tree via convex optimization. While

earlier works relied on off-the-shelf solvers (Ehlers, 2017; Bunel et al., 2018), it

was quickly established that such an approach does not scale-up elegantly with the

size of the neural network. This has motivated researchers to design specialized

dual solvers (Dvijotham et al., 2020; Bunel et al., 2020a), thereby providing initial

evidence that verification can be realised in practice. However, the convex relaxation

considered in the dual solvers is itself very weak (Ehlers, 2017), hitting what is

now commonly referred to as the “convex barrier” (Salman et al., 2019b). In

practice, this implies that either several properties remain undecided in incomplete

verification, or take several hours to be verified exactly.

Multiple works have tried to overcome the convex barrier for piecewise linear

activations (Raghunathan et al., 2018; Singh et al., 2019a). Here, we focus on

the single-neuron Linear Programming (LP) relaxation by Anderson et al. (2020).

Unfortunately, its tightness comes at the price of exponentially many (in the
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number of variables) constraints. Therefore, existing dual solvers (Dvijotham

et al., 2018b; Bunel et al., 2020a) are not easily applicable, limiting the scaling

of the new relaxation.

We address this problem by presenting two specialized dual solvers for the

relaxation by Anderson et al. (2020), which realize its full potential by meeting

the following desiderata:

• Relying on an active set of dual variables, we present a unified dual treatment

that includes both a linearly sized LP relaxation (Ehlers, 2017) and the tighter

formulation. As a consequence, we obtain an inexpensive dual initializer,

named Big-M, which is competitive with dual approaches on the looser

relaxation (Dvijotham et al., 2018b; Bunel et al., 2020a). Moreover, by

dynamically extending the active set, we obtain a subgradient-based solver,

named Active Set, which rapidly overcomes the convex barrier and yields

much tighter bounds if a larger computational budget is available.

• The tightness of the bounds attainable by Active Set depends on the memory

footprint through the size of the active set. By exploiting the properties of

Frank-Wolfe style optimizers (Frank and Wolfe, 1956), we present Saddle

Point, a solver that deals with the exponentially many constraints of the

relaxation by Anderson et al. (2020) while only incurring a linear memory cost.

Saddle Point eliminates the dependency on memory at the cost of a potential

reduction of the dual feasible space, but is nevertheless very competitive with

Active Set in settings requiring tight bounds.

• Both solvers are sparse and recover the strengths of the original primal

problem (Anderson et al., 2020) in the dual domain. In line with previous dual

solvers, both methods yield valid bounds at anytime, leverage convolutional

network structure and enjoymassive parallelism within a GPU implementation,

resulting in better bounds in an order of magnitude less time than off-the-shelf

solvers (Gurobi Optimization, 2020). Owing to this, we show that both solvers
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can yield large complete verification gains compared to primal approaches

(Anderson et al., 2020) and previous dual algorithms.

Code implementing our algorithms is available at https://github.com/oval-group/

oval-bab as part of the OVAL neural network verification framework.

A preliminary version of this work appeared in the proceedings of the Ninth

International Conference on Learning Representations (De Palma et al., 2021a).

The present article significantly extends it by:

1. Presenting Saddle Point (§3.5), a second solver for the relaxation by Anderson

et al. (2020), which is more memory efficient than both Active Set and the

original cutting plane algorithm by Anderson et al. (2020).

2. Providing a detailed experimental evaluation of the new solver, both for

incomplete and complete verification.

3. Presenting an adaptive and more intuitive scheme to switch from looser to

tighter bounding algorithms within branch and bound (§3.6.2).

4. Investigating the effect of different speed-accuracy trade-offs from the presented

solvers in the context of complete verification.

3.2 Preliminaries: Neural Network Relaxations

We denote vectors by bold lower case letters (for example, x) and matrices by

upper case letters (for example, W ). We use � for the Hadamard product, J·K for

integer ranges, 1a for the indicator vector on condition a and brackets for intervals

([lk,uk]) and vector or matrix entries (x[i] or W [i, j]). In addition, coli(W ) and

rowi(W ) respectively denote the i-th column and the i-th row of matrix W . Finally,

given W ∈ Rm×n and x ∈ Rm, we will employ W � x and W @ x as shorthands

for respectively ∑i coli(W ) � x and ∑
i coli(W )Tx.

Let C be the network input domain. Similar to Dvijotham et al. (2018b); Bunel

et al. (2020a), we assume that the minimization of a linear function over C can be

performed efficiently. For instance, this is the case for `∞ and `2 norm perturbations.

https://github.com/oval-group/oval-bab
https://github.com/oval-group/oval-bab
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Our goal is to compute bounds on the scalar output of a piecewise-linear feedforward

neural network. The tightest possible lower bound can be obtained by solving the

following optimization problem:

min
x,x̂

x̂n s.t. x0 ∈ C, (3.1a)

x̂k+1 = Wk+1xk + bk+1 k ∈ J0, n− 1K , (3.1b)

xk = σ (x̂k) k ∈ J1, n− 1K , (3.1c)

where the activation function σ (x̂k) is piecewise-linear, x̂k,xk ∈ Rnk denote the

outputs of the k-th linear layer (fully-connected or convolutional) and activation

function respectively, Wk and bk denote its weight matrix and bias, nk is the

number of activations at layer k. We will focus on the ReLU case (σ (x) =

max (x, 0)), as common piecewise-linear functions can be expressed as a composition

of ReLUs (Bunel et al., 2020b).

Problem (3.1) is non-convex due to the activation function’s non-linearity,

that is, due to constraint (3.1c). As solving it is NP-hard (Katz et al., 2017),

it is commonly approximated by a convex relaxation (see §3.7). The quality of

the corresponding bounds, which is fundamental in verification, depends on the

tightness of the relaxation. Unfortunately, tight relaxations usually correspond

to slower bounding procedures. We first review a popular ReLU relaxation in

§3.2.1. We then consider a tighter one in §3.2.2.

3.2.1 Planet Relaxation

The so-called Planet relaxation (Ehlers, 2017) has enjoyed widespread use due

to its amenability to efficient customised solvers (Dvijotham et al., 2018b; Bunel

et al., 2020a) and is the “relaxation of choice" for many works in the area (Salman

et al., 2019b; Singh et al., 2019c; Bunel et al., 2020b; Balunovic and Vechev,

2020; Lu and Kumar, 2020). Here, we describe it in its non-projected formMk,

corresponding to the LP relaxation of the Big-M Mixed Integer Programming
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(MIP) formulation (Tjeng et al., 2019). Applying Mk to problem (3.1) results

in the following linear program:

min
x,x̂,z

x̂n s.t. x0 ∈ C

x̂k+1 = Wk+1xk + bk+1 k ∈ J0, n− 1K ,
xk ≥ x̂k, xk ≤ ûk � zk,
xk ≤ x̂k − l̂k � (1− zk),
(xk, x̂k, zk) ∈ [lk,uk]× [̂lk, ûk]× [0, 1]

 :=Mk k ∈ J1, n− 1K ,

(3.2)

where l̂k, ûk and lk,uk are intermediate bounds respectively on pre-activation

variables x̂k and post-activation variables xk. These constants play an important

role in the structure ofMk and, together with the relaxed binary constraints on z,

define box constraints on the variables. We detail how to compute intermediate

bounds in appendix B.5. Projecting out auxiliary variables z results in the Planet

relaxation (cf. appendix B.2.1 for details), which replaces (3.1c) by its convex hull.

Problem (3.2), which is linearly-sized, can be easily solved via commercial black-

box LP solvers (Bunel et al., 2018). This does not scale-up well with the size of

the neural network, motivating the need for specialized solvers. Customised dual

solvers have been designed by relaxing constraints (3.1b), (3.1c) (Dvijotham et al.,

2018b) or replacing (2.1c) by the Planet relaxation and employing Lagrangian

Decomposition (Bunel et al., 2020a). Both approaches result in bounds very close to

optimality for problem (3.2) in only a fraction of the runtime of off-the-shelf solvers.

3.2.2 A Tighter Relaxation

A much tighter approximation of problem (3.1) than the Planet relaxation (§3.2.1)

can be obtained by representing the convex hull of the composition of constraints

(3.1b) and (3.1c) rather than the convex hull of constraint (3.1c) alone. A formulation

of this type was recently introduced by Anderson et al. (2020). In order to represent

the interaction between xk and all possible subsets of the activations of the previous

layer, the formulation relies on a number of auxiliary matrices, which we will now

introduce. Weight matrices are masked entry-wise via Ik, binary masks belonging to

the following set: 2Wk = {0, 1}nk×nk−1 . We define Ek := 2Wk \ {0, 1}, to exclude the
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all-zero and all-one masks, which we treat separately (see §3.2.2.1). In addition, the

formulation requires bounds on the subsets of xk−1 selected via the masking. In order

to represent these bounds, the formulation exploits matrices Ľk−1, Ǔk−1 ∈ Rnk×nk−1 ,

which are also masked via Ik and computed via interval arithmetic as follows:

Ľk−1[i, j] = lk−1[j]1Wk[i,j]≥0 + uk−1[j]1Wk[i,j]<0,

Ǔk−1[i, j] = uk−1[j]1Wk[i,j]≥0 + lk−1[j]1Wk[i,j]<0.

The new representation results in the following primal problem:

min
x,x̂,z

x̂n s.t.

x0 ∈ C
x̂k+1 = Wk+1xk + bk+1 k ∈ J0, n− 1K ,

(xk, x̂k, zk) ∈Mk

xk ≤


(Wk � Ik) xk−1 + zk � bk +
−
(
Wk � Ik � Ľk−1

)
� (1− zk) +

+
(
Wk � (1− Ik)� Ǔk−1

)
� zk

 ∀Ik ∈ Ek
 := Ak k ∈ J1, n− 1K .

(3.3)

BothMk and Ak yield valid MIP formulations for problem (3.1) when imposing

integrality constraints on z. However, the LP relaxation of Ak will yield tighter

bounds. In the worst case, this tightness comes at the cost of exponentially many

constraints: one for each Ik ∈ Ek. On the other hand, given a set of primal

assignments (x, z) that are not necessarily feasible for problem (3.3), one can

efficiently compute the most violated constraint (if any) at that point. Denoting

by AE,k = Ak \Mk the exponential family of constraints, the mask associated to

the most violated constraint in AE,k can be computed in linear-time (Anderson

et al., 2020) as:

Ik[i, j] = 1T((1−zk[i])�Ľk−1[i,j]+zk[i]�Ǔk−1[i,j]−xk−1[j])Wk[i,j]≥0. (3.4)

The most violated constraint in Ak is then obtained by comparing the constraint

violation from the output of oracle (3.4) to those from the constraints inMk.
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3.2.2.1 Pre-activation bounds

Set Ak defined in problem (3.3) slightly differs from the original formulation

of Anderson et al. (2020), as the latter does not exploit pre-activation bounds

l̂k, ûk within the exponential family. In particular, constraints xk ≤ ûk � zk, and

xk ≤ x̂k− l̂k� (1− zk), which we treat viaMk, are replaced by looser counterparts.

While this was implicitly addressed in practical applications (Botoeva et al., 2020),

not doing so has a strong negative effect on bound tightness, possibly to the point

of yielding looser bounds than problem (3.2). In appendix B.6, we provide an

example in which this is the case and extend the original derivation by Anderson

et al. (2020) to recover Ak as in problem (3.3).

3.2.2.2 Cutting plane algorithm

Owing to the exponential number of constraints, problem (3.3) cannot be solved as it

is. As outlined by Anderson et al. (2020), the availability of a linear-time separation

oracle (3.4) offers a natural primal cutting plane algorithm, which can then be

implemented in off-the-shelf solvers: solve the Big-M LP (3.2), then iteratively add

the most violated constraints from Ak at the optimal solution. When applied to

the verification of small neural networks via off-the-shelf MIP solvers, this leads to

substantial gains with respect to the looser Big-M relaxation (Anderson et al., 2020).

3.3 A Dual Formulation for the Tighter Relaxation

Inspired by the success of dual approaches on looser relaxations (Bunel et al., 2020a;

Dvijotham et al., 2020), we show that the formal verification gains by Anderson

et al. (2020) (see §3.2.2) scale to larger networks if we solve the tighter relaxation

in the dual space. Due to the particular structure of the relaxation, a customised

solver for problem (3.3) needs to meet a number of requirements.

Fact 1. In order to replicate the success of previous dual algorithms on looser

relaxations, we need a solver for problem (3.3) with the following properties: (i)

sparsity: a memory cost linear in the number of network activations in spite of
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exponentially many constraints, (ii) tightness: the bounds should reflect the quality

of those obtained in the primal space, (iii) anytime: low cost per iteration and valid

bounds at each step.

The anytime requirement motivates dual solutions: any dual assignment yields a

valid bound due to weak duality. Unfortunately, as shown in appendix B.1, neither

of the two dual derivations by Bunel et al. (2020a); Dvijotham et al. (2018b) readily

satisfy all desiderata at once. Therefore, we need a completely different approach.

Starting from primal (3.3), we relax all constraints in Ak except box constraints (see

§3.2.1). In order to simplify notation, we employ dummy variables α0 = 0, β0 = 0,

αn = I, βn = 0, obtaining the following dual problem (derivation in appendix B.4):

max
(α,β)≥0

d(α,β) where: d(α,β) := min
x,z
L(x, z,α,β),

L(x, z,α,β) =
[ ∑n−1

k=1 bTkαk −
∑n−1
k=0 fk(α,β)Txk −

∑n−1
k=1 gk(β)Tzk

+∑n−1
k=1

(∑
Ik∈Ek(Wk � Ik � Ľk−1) @ βk,Ik + βTk,1(̂lk − bk)

)
s.t. x0 ∈ C, (xk, zk) ∈ [lk,uk]× [0, 1] k ∈ J1, n− 1K,

(3.5)

where functions fk, gk are defined as follows:

fk(α,β) = αk −W T
k+1αk+1 −

∑
Ik βk,Ik +∑

Ik+1(Wk+1 � Ik+1)Tβk+1,Ik+1 ,

gk(β) =
 ∑Ik∈Ek

(
Wk � (1− Ik)� Ǔk−1

)
� βk,Ik + βk,0 � ûk + βk,1 � l̂k

+∑
Ik∈Ek

(
Wk � Ik � Ľk−1

)
� βk,Ik +∑

Ik∈Ek βk,Ik � bk.
(3.6)

We employ ∑Ik as a shorthand for ∑Ik∈2Wk . Both functions therefore include

sums over an exponential number of βk,Ik variables.

This is again a challenging problem: the exponentially many constraints in

the primal (3.3) are associated to an exponential number of variables, as β =

{βk,Ik∀Ik ∈ 2Wk , k ∈ J1, n − 1K}. Nevertheless, we show that the requirements of

Fact 1 can be met by operating on restricted versions of the dual. We present

two specialized algorithms for problem (3.5): one considers only a small active set

of dual variables (§3.4), the other restricts the dual domain while exploiting the

sparsity of Frank-Wolfe style iterates (§3.5). Both algorithms are sparse, anytime

and yield bounds reflecting the tightness of the new relaxation.
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Algorithm 3 Active Set
1: function activeset_compute_bounds(Problem (3.5))
2: Initialise duals α0,β0

0 ,β
0
1 using Algorithm (5)

3: Set β0
k,Ik

= 0, ∀ Ik ∈ Ek
4: B = ∅
5: for nb_additions do
6: for t ∈ J0, T − 1K do
7: x∗,t, z∗,t ∈ argminx,z LB(x, z,αt,βtB) using (3.8),(3.9) . inner minimization
8: if t ≤ nb_vars_to_add then
9: For each layer k, add output of (3.4) called at (x∗, z∗) to Bk . active set extension

10: αt+1,βt+1
B ← (αt,βt) +H(∇αd(α,β),∇βBd(α,β)) . supergradient step, using (3.10)

11: αt+1,βt+1
B ← max(αt+1, 0),max(βt+1

B , 0) . dual projection
12: return minx,z LB(x, z,αT ,βTB )

We conclude this section by pointing out that, as stated in §3.2, the only

assumption for C in problem (3.5) is that it allows for efficient linear minimization.

This is the case for both `∞ and `2 norm perturbations, which are hence supported

by our solvers.

3.4 Active Set

We present Active Set (Algorithm 3), a supergradient-based solver that operates

on a small active set of dual variables βB. Starting from the dual of problem (3.2),

Active Set iteratively adds variables to βB and solves the resulting reduced version

of problem (3.5). We first describe our solver on a fixed βB (§3.4.1) and then outline

how to iteratively modify the active set (§3.4.2).

3.4.1 Solver

We want to solve a version of problem (3.5) for which Ek, the exponentially-sized

set of Ik masks for layer k, is restricted to some constant-sized set1 Bk ⊆ Ek,

with B = ∪k∈J1,n−1KBk. By keeping B = ∅, we recover a novel dual solver for the

Big-M relaxation (3.2) (explicitly described in appendix B.2), which is employed

as initialisation. Setting βk,Ik = 0,∀ Ik ∈ Ek \ Bk in (3.6), (3.5) and removing

these from the formulation, we obtain:
1As dual variables βk,Ik

are indexed by Ik, B = ∪kBk implicitly defines an active set of
variables βB.



3. Scaling the Convex Barrier with Sparse Dual Algorithms 70

fB,k(α,βB) =
[
αk −W T

k+1αk+1 −
∑
Ik∈Bk∪{0,1} βk,Ik ,

+∑Ik+1∈Bk+1∪{0,1}(Wk+1 � Ik+1)Tβk+1,Ik+1

gB,k(βB) =
 ∑Ik∈Bk

(
Wk � (1− Ik)� Ǔk−1

)
� βk,Ik + βk,0 � ûk + βk,1 � l̂k

+∑
Ik∈Bk

(
Wk � Ik � Ľk−1

)
� βk,Ik +∑

Ik∈Bk βk,Ik � bk,

along with the reduced dual problem:

max
(α,βB)≥0

dB(α,βB) where: dB(α,βB) := min
x,z
LB(x, z,α,βB),

LB(x, z,α,βB) =
[ ∑n−1

k=1 bTkαk −
∑n−1
k=0 fB,k(α,βB)Txk −

∑n−1
k=1 gB,k(βB)Tzk

+∑n−1
k=1

(∑
Ik∈Bk(Wk � Ik � Ľk−1) @ βk,Ik + βTk,1(̂lk − bk)

)
s.t. x0 ∈ C, (xk, zk) ∈ [lk,uk]× [0, 1] k ∈ J1, n− 1K.

(3.7)

We can maximize dB(α,βB), which is concave and non-smooth, via projected

supergradient ascent or variants thereof, such as Adam (Kingma and Ba, 2015). In

order to obtain a valid supergradient, we need to perform the inner minimisation

over the primals. Thanks to the structure of problem (3.7), the optimisation

decomposes over the layers. For k ∈ J1, n− 1K, we can perform the minimisation

in closed-form by driving the primals to their upper or lower bounds depending

on the sign of their coefficients:

x∗k = 1fB,k(α,βB)≥0 � ûk + 1fB,k(α,βB)<0 � l̂k, z∗k = 1gB,k(βB)≥0 � 1. (3.8)

The subproblem corresponding to x0 is different, as it involves a linear mini-

mization over x0 ∈ C:

x∗0 ∈ argminx0 fB,0(α,βB)Tx0 s.t. x0 ∈ C. (3.9)

We assumed in §3.2 that (3.9) can be performed efficiently. We refer the reader

to Bunel et al. (2020a) for descriptions of the minimisation when C is a `∞ or

`2 ball, as common for adversarial examples.

Given (x∗, z∗) as above, the supergradient of dB(α,βB) is a subset of the
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one for d(α,β), given by:

∇αkd(α,β) = Wkx∗k−1 + bk − x∗k, ∇βk,0d(α,β) = x∗k − z∗k � ûk,

∇βk,1d(α,β) = x∗k −
(
Wkx∗k−1 + bk

)
+ (1− z∗k)� l̂k,

∇βk,Ikd(α,β) =


x∗k − (Wk � Ik) x∗k−1+
+
(
Wk � Ik � Ľk−1

)
� (1− z∗k) +

−z∗k � bk +
(
Wk � (1− Ik)� Ǔk−1

)
� z∗k

 Ik ∈ Bk,
(3.10)

for each k ∈ J1, n− 1K (dual “variables" α0,αn,β0,βn are constants employed to

simplify the notation: see appendix B.4). At each iteration, after taking a step in

the supergradient direction, the dual variables are projected to the non-negative

orthant by clipping negative values.

3.4.2 Extending the Active Set

We initialise the dual (3.5) with a tight bound on the Big-M relaxation by solving

for d∅(α,β∅) in (3.7) (appendix B.2). To satisfy the tightness requirement in

Fact 1, we then need to include constraints (via their Lagrangian multipliers) from

the exponential family of Ak into Bk. Our goal is to tighten them as much as

possible while keeping the active set small to save memory and compute. The

active set strategy is defined by a selection criterion for the I∗k to be added2 to

Bk, and the frequency of addition. In practice, we add the variables maximising

the entries of supergradient ∇βk,Ikd(α,β) after a fixed number of dual iterations.

We now provide motivation for both choices.

3.4.2.1 Selection criterion

The selection criterion needs to be computationally efficient. Thus, we proceed

greedily and focus only on the immediate effect at the current iteration. Let

us map a restricted set of dual variables βB to a set of dual variables β for

the full dual (3.5). We do so by setting variables not in the active set to 0:

βB̄ = 0, and β = βB ∪ βB̄. Then, for each layer k, we add the set of variables
2adding a single I∗k mask to Bk extends βB by nk variables: one for each neuron at layer k.
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βk,I∗
k
maximising the corresponding entries of the supergradient of the full dual

problem (3.5), excluding those pertaining to Mk:

βk,I∗
k
∈ argmax
βk,Ik∈ βk\β∅,k

{∇βk,Ikd(α,β)T1}. (3.11)

Therefore, we use the subderivatives as a proxy for short-term improvement on the

full dual objective d(α,β). Under a primal interpretation, our selection criterion

involves a call to the separation oracle (3.4) by Anderson et al. (2020).

Proposition 3. βk,I∗
k
as defined in equation (3.11) represents the Lagrangian multi-

pliers associated to the most violated constraints from AE,k at

(x∗, z∗) ∈ argmin
x,z

LB(x, z,α,βB),

the primal minimiser of the current restricted Lagrangian.

Proof. The result can be obtained by noticing that ∇βk,Ikd(α,β) (by definition

of Lagrangian multipliers) quantifies the corresponding constraint’s violation at

(x∗, z∗). Therefore, maximizing ∇βk,Ikd(α,β) will amount to maximizing constraint

violation. We demonstrate analytically that the process will, in fact, correspond to

a call to oracle (3.4). Recall the definition of ∇βk,Ikd(α,β) in equation (3.8), which

applies beyond the current active set:

∇βk,Ikd(α,β) =


x∗k − (Wk � Ik) x∗k−1+
+
(
Wk � Ik � Ľk−1

)
� (1− z∗k) +

−z∗k � bk +
(
Wk � (1− Ik)� Ǔk−1

)
� z∗k

 Ik ∈ Ek.

We want to compute I∗k ∈ argmaxIk∈Ek{∇βk,Ikd(α,β)T1}, that is:

I∗k ∈ argmax
Ik∈Ek

 x∗k − (Wk � Ik) x∗k−1 +
(
Wk � Ik � Ľk−1

)
� (1− z∗k) +

−z∗k � bk +
(
Wk � (1− Ik)� Ǔk−1

)
� z∗k

T 1.

By removing the terms that do not depend on Ik, we obtain:

max
Ik∈Ek

 − (Wk � Ik) x∗k−1 +
(
Wk � Ik � Ľk−1

)
� (1− z∗k) +

+
(
Wk � Ik � Ǔk−1

)
� z∗k

T 1.

Let us denote the i-th row of Wk and Ik by wi,k and ii,k, respectively, and define

Ek[i] = 2wi,k \ {0, 1}. The optimisation decomposes over each such row: we thus
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focus on the optimisation problem for the supergradient’s i-th entry. Collecting the

mask, we get:

max
ii,k∈Ek[i]

∑
j

((
(1− z∗k[i])� Ľk−1[i, j] +
+ z∗k[i]� Ǔk−1[i, j]− x∗k−1[i]

)
Wk[i, j]

)
Ik[i, j].

As the solution to the problem above is obtained by setting I∗k [i, j] = 1 if its

coefficient is positive and I∗k [i, j] = 0 otherwise, we can see that the optimal Ik
corresponds to calling oracle (3.4) by Anderson et al. (2020) on (x∗, z∗). Hence,

in addition to being the mask associated to βk,I∗
k
, the variable set maximising the

supergradient, I∗k corresponds to the most violated constraint from AE,k at (x∗, z∗).

3.4.2.2 Frequency of addition

Finally, we need to decide the frequency at which to add variables to the active set.

Fact 2. Assume we obtained a dual solution (α†,β†B) ∈ argmax dB(α,βB) using

Active Set on the current B. Then (x∗, z∗) ∈ argminx,z LB(x, z,α†,β
†
B) is not in

general an optimal primal solution for the primal of the current variable-restricted

dual problem (Sherali and Choi, 1996).

The primal of dB(α,βB) (restricted primal) is the problem obtained by setting

Ek ← Bk in problem (3.3). While the primal cutting plane algorithm by Anderson

et al. (2020) calls the separation oracle (3.4) at the optimal solution of the current

restricted primal, Fact 2 shows that our selection criterion leads to a different

behaviour even at dual optimality for dB(α,βB). Therefore, as we have no theoretical

incentive to reach (approximate) subproblem convergence, we add variables after

a fixed tunable number of supergradient iterations. Furthermore, we can add

more than one variable “at once" by running the oracle (3.4) repeatedly for a

number of iterations.

We conclude this section by pointing out that, provided the algorithm is

run to dual convergence on each variable-restricted dual problem (3.7), primal

optima can be recovered by suitable modifications of the optimization routine
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(Sherali and Choi, 1996). Then, if the dual variables corresponding to the most

violated constraint at the primal optima are added to Bk, Active Set mirrors

the primal cutting plane algorithm, guaranteeing convergence to the solution of

problem (3.5). In practice, as the main advantage of dual approaches (Dvijotham

et al., 2018b; Bunel et al., 2020a) is their ability to quickly achieve tight bounds

(rather than formal optimality), we rely on the heuristic strategy in Algorithm 3.

3.5 Saddle Point

For the Active Set solver (§3.4), we only consider settings in which βB is composed

of a (small) constant number of variables. In fact, both its memory cost and time

complexity per iteration are proportional to the cardinality of the active set. This

mirrors the properties of the primal cutting algorithm by Anderson et al. (2020),

for which memory and runtime will increase with the number of added constraints.

As a consequence, the tightness of the attainable bounds will depend both on the

computational budget and on the available memory. We remove the dependency

on memory by presenting Saddle Point (Algorithm 4), a Frank-Wolfe type solver.

By restricting the dual feasible space, Saddle Point is able to deal with all the

exponentially many variables from problem (3.5), while incurring only a linear

memory cost. We first describe the rationale behind the reduced dual domain

(§3.5.1), then proceed to describe solver details (§3.5.2).

3.5.1 Sparsity via Sufficient Statistics

In order to achieve sparsity (Fact 1) without resorting to active sets, it is crucial to

observe that all the appearances of β variables in L(x, z,α,β), the Lagrangian of the

full dual (3.5), can be traced back to the following linearly-sized sufficient statistics:

ζk(βk) =


∑
Ik βk,Ik∑
IK+1(Wk+1 � Ik+1)Tβk+1,Ik+1∑
Ik∈Ek(Wk � Ik � Ľk−1) � βk,Ik + βk,1 � (̂lk − bk)∑
Ik∈Ek(Wk � Ik � Ǔk−1) � βk,Ik + βk,0 � (ûk − bk)

 . (3.12)
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Therefore, by designing a solver that only requires access to ζk(βk) rather than

to single βk entries, we can incur only a linear memory cost.

In order for the resulting algorithm to be computationally efficient, we need to

meet the anytime requirement in Fact 1 with a low cost per iteration. Let us refer

to the evaluation of a neural network at a given input point x0 as a forward pass,

and the backpropagation of a gradient through the network as a backward pass.

Fact 3. The full dual objective d(α,β) can be computed at the cost of a backward

pass over the neural network if sufficient statistics ζ(β) = ∪k∈J1,n−1Kζk(βk) have

been pre-computed.

Proof. If ζ(β) is up to date, the Lagrangian L(x, z,α,β) can be evaluated using a

single backward pass: this can be seen by replacing the relevant entries of (3.12) in

equations (3.6) and (3.5). Similarly to the gradient backpropagation through the

network, the bottleneck of the Lagrangian computation is then the layer-wise use

of transposed linear operators over the α dual variables. The minimization of the

Lagrangian over primals can then be computed in linear time (less than the cost of

a backward pass) by using equations (3.8), (3.9) with Bk = Ek for each layer k.

From Fact 3, we see that the full dual can be efficiently evaluated via ζ(β).

On the other hand, in the general case, ζ(β) updates have an exponential time

complexity. Therefore, we need a method that updates the sufficient statistics

while computing a minimal number of terms of the exponentially-sized sums in

(3.12). In other words, we need sparse updates in the β variables. With this goal

in mind, we consider methods belonging to the Frank-Wolfe family (Frank and

Wolfe, 1956), whose iterates are known to be sparse (Jaggi, 2013). In particular, we

now illustrate that sparse updates can be obtained by applying the Saddle-Point

Frank-Wolfe (SP-FW) algorithm by Gidel et al. (2017) to a suitably modified

version of problem (3.5). Details of SP-FW and the solver resulting from its

application are then presented in §3.5.2.
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Fact 4. Dual problem (3.5) can be seen as a bilinear saddle point problem. By

limiting the dual feasible region to a compact set, a dual optimal solution for this

domain-restricted problem can be obtained via SP-FW (Gidel et al., 2017). Moreover,

a valid lower bound to (3.3) can be obtained at anytime by evaluating d(α,β) at the

current dual point from SP-FW.

We make the feasible region of problem (3.5) compact by capping the cumulative

price for constraint violations at some constants µ. In particular, we bound the

`1 norm for the sets of β variables associated to each neuron. As the `1 norm is

well-known to be sparsity inducing (Candès et al., 2008), our choice reflects the

fact that, in general, only a fraction of the Ak constraints will be active at the

optimal solution. Denoting by 4(µ) = ∪k∈J1,n−1K4k(µk) the resulting dual domain,

we obtain domain-restricted dual max(α,β)∈4(µ) d(α,β), which can be written as

the following saddle point problem:

max
α,β

min
x,z
L(x, z,α,β)

s.t. x0 ∈ C,

(xk, zk) ∈ [lk,uk]× [0, 1] k ∈ J1, n− 1K ,

αk ∈ [0,µα,k]
βk ≥ 0, ‖βk‖1 ≤ µβ,k

}
:= 4k(µk) k ∈ J1, n− 1K ,

(3.13)

where L(x, z,α,β) was defined in equation (3.5) and ‖·‖1 denotes the `1 norm.

Frank-Wolfe type algorithms move towards the vertices of the feasible region.

Therefore, the shape of 4k(µk) is key to the efficiency of ζk updates. In our case,

4k(µk) is the Cartesian product of a box constraint on αk and nk exponentially-

sized simplices: one for each set βk[i] = {βk,rowi(Ik)[i] ∀ rowi(Ik) ∈ 2rowi(Wk)}. As

a consequence, each vertex of 4k(µk) is sparse in the sense that at most nk + 1

variables out of exponentially many will be non-zero. In order for the resulting

solver to be useful in practice, we need to efficiently select a vertex towards which

to move: we show in section 3.5.2 that our choice for 4k(µk) allows us to recover

the linear-time primal oracle (3.4) by Anderson et al. (2020).

Before presenting the technical details of our Saddle Point solver, it remains to

comment on the consequences of the dual space restriction on the obtained bounds.
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Algorithm 4 Saddle Point
1: function saddlepoint_compute_bounds(Problem (3.5))
2: Initialise duals α0,β0

B using algorithm (5) or algorithm (3)
3: Set β0

B̄ = 0, β0 = β0
B ∪ β

0
B̄, and replace β0 by its sufficient statistics ζ(β0

k) using (3.12)
4: Initialise primals x0, z0 according to §B.3.2
5: Set price caps µ heuristically as outlined in §B.3.1
6: for t ∈ J0, T − 1K do
7: x̄t, z̄t ← using (3.8),(3.9) with Bk = Ek . compute primal conditional gradient
8: ᾱt, ζ(β̄t)← (3.14), (3.15) + (3.12) . compute dual conditional gradient
9: xt+1, zt+1,αt+1, ζ(βt+1) = (1− γt)[xt, zt,αt, ζ(βt)] + γt[x̄t, z̄t, ᾱt, ζ(β̄t)]

10: return minx,z L(x, z,αT , ζ(βT ))

Let us define d∗µ = max(α,β)∈4(µ) d(α,β), the optimal value of the restricted dual

problem associated to saddle point problem (3.13). Value d∗µ is attained at the

dual variables from a saddle point of problem (3.13). As we restricted the dual

feasible region, d∗µ will in general be smaller than the optimal value of problem (3.5).

However, owing to the monotonicity of d∗µ over µ and the concavity of d(α,β),

we can make sure 4(µ) contains the optimal dual variables by running a binary

search on µ. In practice, we heuristically determine the values of µ from our dual

initialisation procedure (see appendix B.3.1).

3.5.2 Solver

Algorithms in the Frank-Wolfe family proceed by taking convex combinations

between the current iterate and a vertex of the feasible region. This ensures

feasibility of the iterates without requiring projections. For SP-FW (Gidel et al.,

2017), the convex combination is performed at once, with the same coefficient,

for both primal and dual variables.

In the general case, denoting primal variables as x, and dual variables as y,

each iteration of the SP-FW algorithm proceeds as follows: first, we compute the

vertex [x̄, ȳ] towards which we take a step (conditional gradient). This is done

by maximizing the inner product between the gradient and the variables over the

feasible region for the dual variables, and by minimizing the inner product between

the gradient and the variables over the feasible region for the primal variables.

This operation is commonly referred to as the linear maximization oracle for dual

variables, and linear minimization oracle for primal variables. Second, a step
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size γt ∈ [0, 1] is determined according to the problem specification. Finally, the

current iterate is updated as [x,y]← (1− γt)[x,y] + γt[x̄, ȳ]. We will now provide

details for the instantiation of SP-FW in the context of problem (3.13), along with

information concerning the solver initialization.

While Saddle Point relies on a primal-dual method operating on problem (3.13),

our main goal is to compute anytime bounds to problem (3.3). As explained

in §3.3, this is typically achieved in the dual domain. Therefore, as per Fact 4,

we discard the primal variables from SP-FW and use the current dual iterate to

evaluate d(α,β) from problem (3.5).

3.5.2.1 Conditional gradient computations

Due to the bilinearity of L(x, z,α,β), the computation of the conditional gradient

for the primal variables coincides with the inner minimisation in equations (3.8)-

(3.9) with Bk = Ek ∀ k ∈ J1, n − 1K.

Similarly to the primal variables, the linear maximisation oracle for the dual

variables decomposes over the layers. The gradient of the Lagrangian over the

duals, ∇α,β L, is given by the supergradient in equation (3.10) if Bk = Ek and the

primal minimiser (x∗, z∗) is replaced by the primals at the current iterate. As dual

variables α are box constrained, the linear maximisation oracle will drive them

to their lower or upper bounds depending on the sign of their gradient. Denoting

conditional gradients by bars, for each k ∈ J1, n − 1K:

ᾱk = µα,k � 1(Wkxk−1+bk−xk)≥0. (3.14)

The linear maximization for the exponentially many βk variables is key to the

solver’s efficiency and is carried out on a Cartesian product of simplex-shaped

sub-domains (see definition of 4k(µk) in (3.13)). Therefore, conditional gradient

β̄k can be non-zero only for the entries associated to the largest gradients of each
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simplex sub-domain. For each k ∈ J1, n − 1K, we have:

β̄k =


β̄k,I†

k
= µβ,k � 1∇β

k,I
†
k

L(x,z,α,β)≥0

β̄k,Ik = 0 ∀ Ik ∈ 2Wk \ I†k

 ,
where: βk,I†

k
∈ argmax

βk,Ik∈βk

{
∇βk,Ik L(x, z,α,β)T1

}
.

(3.15)

We can then efficiently represent β̄k through sufficient statistics as ζ̄k = ζk(β̄k),

which will require the computation of a single term of the sums in (3.12).

Proposition 4. βk,I†
k
as defined in (3.15) represents the Lagrangian multipliers

associated to the most violated constraints from Ak at (x, z), the current SP-FW

primal iterate. Moreover, the conditional gradient β̄k can be computed at the cost

of a single call to the linear-time oracle (3.4) by Anderson et al. (2020).

Proof. Let us define βk,I∗
k
as:

βk,I∗
k
∈ argmax
βk,Ik∈ βk\β∅,k

{∇βk,IkL(x, z,α,β)T1}.

Proceeding as the proof of proposition 3, with (x, z) in lieu of (x∗, z∗), we obtain

that βk,I∗
k
is the set of Lagrangian multipliers for the most violated constraint from

AE,k at (x, z) and can be computed through the oracle (3.4) by Anderson et al.

(2020).

Then, βk,I†
k
is computed as:

βk,I†
k
∈ argmax
βk,Ik∈ {βk,I∗k

, βk,0, βk,1}
∇βk,IkL(x, z,α,β)T1.

As pointed out in the proof of proposition 3, the dual gradients of the Lagrangian

correspond (by definition of Lagrangian multiplier) to constraint violations. Hence,

βk,I†
k
is associated to the most violated constraint in Ak .

3.5.2.2 Convex combinations

The (t + 1)-th SP-FW iterate will be given by a convex combination of the t-th

iterate and the current conditional gradient. Due to the linearity of ζ(β), we can
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perform the operation via sufficient statistics. Therefore, all the operations of

Saddle Point occur in the linearly-sized space of (x, z,α, ζ(β)):

[xt+1, zt+1,αt+1, ζ(βt+1)] = (1− γt)[xt, zt,αt, ζ(βt)] + γt[x̄t, z̄t, ᾱt, ζ̄(βt)],

where, for our bilinear objective, SP-FW prescribes γt = 1
1+t (Gidel et al., 2017,

section 5). Extensions of SP-FW, such as its away or pairwise step variants, require

a worst-case memory cost that is linear in the number of iterations. In other words,

as for Active Set, the attainable tightness would depend on the available memory,

voiding one of the main advantages of Saddle Point (we provide empirical evidence

of its memory efficiency in §3.8.2.2). Furthermore, the worst-case memory cost

would increase more rapidly than for Active Set, which infrequently adds a few

variables to B (in our experiments, B contains at most 7 variables per neuron: see

§3.8.2). Finally, due to the bilinearity of the objective, these SP-FW variants do

not correspond to an improved convergence rate (Gidel et al., 2017).

3.5.2.3 Initialisation

As for the Active Set solver (§3.4), dual variables can be initialised via supergradient

ascent on the set of dual variables associated to the Big-M relaxation (cf. appendix

B.2). Additionally, if the available memory permits it, the initialization can be

tightened by running Active Set (algorithm 3) for a small fixed number of iterations.

We mirror this strategy for the primal variables, which are initialized by

performing subgradient descent on the primal view of saddle point problem (3.13).

Analogously to the dual case, the primal view of problem (3.13) can be restricted

to the Big-M relaxation for a cheaper initialization. Our primal initialization

strategy is detailed in in appendix B.3.2.

3.6 Implementation Details, Technical Challenges

In this section, we present details concerning the implementation of our solvers. In

particular, we first outline our parallelisation scheme and the need for a specialised

convolutional operator (§3.6.1), then describe how to efficiently employ our solvers

within branch and bound (§3.6.2).



3. Scaling the Convex Barrier with Sparse Dual Algorithms 81

3.6.1 Parallelism, masked forward/backward passes

Analogously to previous dual algorithms (Dvijotham et al., 2018b; Bunel et al.,

2020a), our solvers can leverage the massive parallelism offered by modern GPU

architectures in three different ways. First, we execute in parallel the computations

of lower and upper bounds relative to all the neurons of a given layer. Second, in

complete verification, we can batch over the different Branch and Bound (BaB)

subproblems. Third, as most of our solvers rely on standard linear algebra operations

employed during the forward and backward passes of neural networks, we can

exploit the highly optimized implementations commonly found in modern deep

learning frameworks.

An exception are what we call “masked" forward and backward passes. Writing

convolutional operators in the form of their equivalent linear operator (as done in

previous sections, see §3.2), masked passes take the following form:

(Wk � Ik) ak, (Wk � Ik)T ak+1,

where ak ∈ Rnk , ak+1 ∈ Rnk+1 . Both operators are needed whenever dealing with

constraints from Ak. In fact, they appear in both Saddle Point (for instance, in the

sufficient statistics (3.12)) and Active Set (see equations (3.7), (3.10)), except for

the dual initialization procedure based on the easier Big-M problem (3.2).

Masked passes can be easily implemented for fully connected layers via Hadamard

products. However, a customized lower-level implementation is required for a proper

treatment within convolutional layers. In fact, from the high-level perspective,

masking a convolutional pass corresponds to altering the content of the convolutional

filter while it is being slided through the image. Details of our implementation

can be found in appendix B.7.

3.6.2 Stratified bounding for branch and bound

In complete verification, we aim to solve the non-convex problem (3.1) directly,

rather than an approximation like problem (3.3). In order to do so, we rely on

branch and bound, which operates by dividing the problem domain into subproblems
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(branching) and bounding the local minimum over those domains. The lower bound

on the minimum is computed via a bounding algorithm, such as our solvers (§3.4,

§3.5). The upper bound, instead, can be obtained by evaluating the network at

an input point produced by the lower bound computation3. Any domain that

cannot contain the global lower bound is pruned away, whereas the others are

kept and branched over. The graph describing branching relations between sub-

problems is referred to as the enumeration tree. As tight bounding is key to

pruning the largest possible number of domains, the bounding algorithm plays a

crucial role. Moreover, it usually acts as a computational bottleneck for branch

and bound (Lu and Kumar, 2020).

In general, tighter bounds come at a larger computational cost. The overhead

can be linked to the need to run dual iterative algorithms for more iterations, or

to the inherent complexity of tighter relaxations like problem (3.3). For instance,

such complexity manifests itself in the masked passes described in appendix B.7,

which increase the cost per iteration of Active Set and Saddle Point with respect

to algorithms operating on problem (3.2). These larger costs might negatively

affect performance on easier verification tasks, where a small number of domain

splits with loose bounds suffices to verify the property. Therefore, as a general

complete verification system needs to be efficient regardless of problem difficulty,

we employ a stratified bounding system within branch and bound. Specifically,

we devise a simple adaptive heuristic to determine whether a given subproblem is

“easy" (therefore looser bounds are sufficient) or whether it is instead preferable

to rely on tighter bounds.

Given a bounding algorithm a, let us denote its lower bound for subproblem

s as la(s). Assume two different bounding algorithms, al and at, are available:

one inexpensive yet loose, the other tighter and more costly. At the root r of the

branch and bound procedure, we estimate lat−al = lat(r) − lal(r), the extent to
3For subgradient-type methods like Active Set, we evaluate the network at x∗,T0 (see algorithm 3),

while for Frank-Wolfe-type methods like Saddle Point at xT
0 (see algorithm 4). Running the

bounding algorithm to get an upper bound would result in a much looser bound, as it would imply
having an upper bound on a version of problem (3.1) with maximisation instead of minimisation.
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which the lower bounds returned by al can be tightened by at. While exploring the

enumeration tree, we keep track of the lower bound increase from parent to child

(that is, after splitting the subdomain) through an exponential moving average.

We write i(s) for the average parent-to-child tightening until subproblem s. Then,

under the assumption that each subtree is complete, we can estimate |s|al and |s|at ,

the sizes of the enumeration subtrees rooted at s that would be generated by each

bounding algorithm. Recall that, for verification problems the canonical form (Bunel

et al., 2018), subproblems are discarded when their lower bound is positive. Given

p, the parent of subproblem s, we perform the estimation as: |s|al = 2
−lal (p)
i(s) +1 − 1,

|s|at = 2
−(lal (p)+lat−al)

i(s) +1− 1. Then, relying on cat/al , a rough estimate of the relative

overhead of running at over al, we mark the subtree rooted at s as hard if the

reduction in tree size from using at exceeds its overhead. That is, if
|s|al
|s|at

> cat/al , the

lower bound for s and its children will be computed via algorithm at rather than al.

3.7 Related Work

In addition to those described in §3.2, many other relaxations have been proposed in

the literature. In fact, all bounding methods are equivalent to solving some convex

relaxation of a neural network. This holds for conceptually different ideas such

as bound propagation (Gowal et al., 2018a), specific dual assignments (Wong and

Kolter, 2018), dual formulations based on Lagrangian Relaxation (Dvijotham et al.,

2018b) or Lagrangian Decomposition (Bunel et al., 2020a). The degree of tightness

varies greatly: from looser relaxations associated to closed-form methods (Gowal

et al., 2018a; Weng et al., 2018; Wong and Kolter, 2018) to tighter formulations

based on Semi-Definite Programming (SDP) (Raghunathan et al., 2018).

The speed of closed-form approaches results from simplifying the triangle-shaped

feasible region of the Planet relaxation (§3.2.1) (Singh et al., 2018; Wang et al.,

2018b). On the other hand, tighter relaxations are more expressive than the linearly-

sized LP by Ehlers (2017). The SDP formulation by Raghunathan et al. (2018) can

represent interactions between activations in the same layer. Similarly, Singh et al.

(2019a) tighten the Planet relaxation by considering the convex hull of the union of
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polyhedra relative to k ReLUs of a given layer at once. Alternatively, tighter LPs

can be obtained by considering the ReLU together with the affine operator before it:

standard MIP techniques (Jeroslow, 1987) lead to a formulation that is quadratic

in the number of variables (see appendix B.6.2). The relaxation by Anderson et al.

(2020) detailed in §3.2.2 is a more convenient representation of the same set.

By projecting out the auxiliary z variables, Tjandraatmadja et al. (2020) recently

introduced another formulation equivalent to the one by Anderson et al. (2020),

with half as many variables and a linear factor more constraints compared to

what described in §3.2.2. Therefore, the relationship between the two formulations

mirrors the one between the Planet and Big-M relaxations (see appendix B.2.1).

Our dual derivation and solvers can be adapted to operate on the projected

relaxations. Furthermore, the formulation by Tjandraatmadja et al. (2020) allows

for a propagation-based method (“FastC2V"). However, such an algorithm tackles

only two constraints per neuron at once and might hence yield looser bounds than

the Planet relaxation. In this work, we are interested in designing solvers that can

operate on strict subsets of the feasible region from problem (3.2).

Specialized dual solvers significantly improve in bounding efficiency with respect

to off-the-shelf solvers for both LP (Bunel et al., 2020a) and SDP formulations (Dvi-

jotham et al., 2020). Therefore, the design of similar solvers for other tight

relaxations is an interesting line of future research. We contribute with two

specialized dual solvers for the relaxation by Anderson et al. (2020). In what

follows, we demonstrate empirically that by meeting the requirements of Fact 1 we

can obtain large incomplete and complete verification improvements.

3.8 Experiments

We empirically demonstrate the effectiveness of our methods under two settings.

First, we assess the speed and quality of our bounds compared to other bounding

algorithms on incomplete verification (§3.8.2). Then, we examine whether our

speed-accuracy trade-offs pay off within branch and bound (§3.8.3). Our imple-

mentation, which is available at https://github.com/oval-group/oval-bab as

https://github.com/oval-group/oval-bab
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part of the OVAL neural network verification framework, is based on Pytorch

(Paszke et al., 2017).

3.8.1 Experimental Setting

We compare both against dual iterative methods and Gurobi, which we use as gold

standard for LP solvers. The latter is employed for the following two baselines:

• Gurobi Planet means solving the Planet Ehlers (2017) relaxation of the

network (a version of problem (3.2) for which z have been projected out).

• Gurobi cut starts from the Big-M relaxation and adds constraints from Ak in

a cutting-plane fashion, as the original primal algorithm by Anderson et al.

(2020).

Both Gurobi-based methods make use of LP incrementalism (warm-starting) when

possible. In the experiments of §3.8.2, where each image involves the computation

of 9 different output upper bounds, we warm-start each LP from the LP of the

previous neuron. For “Gurobi 1 cut”, which involves two LPs per neuron, we first

solve all Big-M LPs, then proceed with the LPs containing a single cut. In addition,

our experimental analysis comprises the following dual iterative methods:

• BDD+, the recent proximal-based solver by Bunel et al. (2020a), operating

on a Lagrangian Decomposition dual of the Planet relaxation.

• Active Set denotes our supergradient-based solver for problem (3.3) (§3.4).

• Saddle Point, our Frank-Wolfe-based solver for problem (3.3) (§3.5).

• By keeping B = ∅, Active Set reduces to Big-M, a solver for the non-projected

Planet relaxation (appendix B.2), which is employed as dual initialiser to

both Active Set and Saddle Point.

• AS-SP is a version of Saddle Point whose dual initialization relies on a few

iterations of Active Set rather than on the looser Big-M solver, hence combining

both our dual approaches.
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As we operate on the same datasets employed by Bunel et al. (2020a), we omit

both their supergradient-based approach and the one by Dvijotham et al. (2018b),

as they both perform worse than BDD+ (Bunel et al., 2020a). For the same

reason, we omit cheaper (and looser) methods, like interval propagation (Gowal

et al., 2018a) and the one by Wong and Kolter (2018). In line with previous

bounding algorithms (Bunel et al., 2020a), we employ Adam updates (Kingma and

Ba, 2015) for supergradient-type methods due to their faster empirical convergence.

While dual iterative algorithms are specifically designed to take advantage of GPU

acceleration (see §3.6.1), we additionally provide a CPU implementation of our

solvers in order to complement the comparison with Gurobi-based methods.

Unless otherwise stated, experiments were run under the following setup: Ubuntu

16.04.2 LTS, on a single Nvidia Titan Xp GPU, except those based on Gurobi

and the CPU version of our solvers. The latter were run on i7-6850K CPUs,

utilising 4 cores for the incomplete verification experiments, and 6 cores for the

more demanding complete verification setting.

3.8.2 Incomplete Verification

We evaluate the efficacy of our bounding algorithms in an incomplete verification

setting by upper bounding the vulnerability to adversarial perturbations (Szegedy

et al., 2014), measured as the difference between the logits associated to incorrect

classes and the one corresponding to the ground truth, on the CIFAR-10 test

set (Krizhevsky and Hinton, 2009). If the upper bound is negative, we can certify

the network’s robustness to adversarial perturbations.

3.8.2.1 Speed-Accuracy Trade-Offs

Here, we replicate the experimental setting from Bunel et al. (2020a). The networks

correspond to the small network architecture from Wong and Kolter (2018), and

to the “Wide" architecture, also employed for complete verification experiments in

§3.8.3.1, found in Table 3.1. Due to the additional computational cost of bounds

obtained via the tighter relaxation (3.3), we restricted the experiments to the first
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2567 CIFAR-10 test set images for the experiments on the SGD-trained network

(Figures 3.1, 3.2), and to the first 4129 images for the network trained via the

method by Madry et al. (2018) (Figures B.3, B.4).

Here, we present results for a network trained via standard SGD and cross

entropy loss, with no modification to the objective for robustness. Perturbations

for this network lie in a `∞ norm ball with radius εver = 1.125/255 (which is hence

lower than commonly employed radii for robustly trained networks). In appendix

B.8, we provide additional CIFAR-10 results on an adversarially trained network

using the method by Madry et al. (2018), and on MNIST (LeCun et al., 1998), for

a network trained with the verified training algorithm by Wong and Kolter (2018).

Solver hyper-parameters were tuned on a small subset of the CIFAR-10 test set.

BDD+ is run with the hyper-parameters found by Bunel et al. (2020a) on the same

datasets, for both incomplete and complete verification. For all supergradient-based

methods (Big-M, Active Set), we employed the Adam update rule (Kingma and

Ba, 2015), which showed stronger empirical convergence. For Big-M, replicating

the findings by Bunel et al. (2020a) on their supergradient method, we linearly

decrease the step size from 10−2 to 10−4. Active Set is initialized with 500 Big-

M iterations, after which the step size is reset and linearly scaled from 10−3 to

10−6. We found the addition of variables to the active set to be effective before

convergence: we add variables every 450 iterations, without re-scaling the step

size again. Every addition consists of 2 new variables (see algorithm 3) and we

cap the maximum number of cuts to 7. This was found to be a good compromise

between fast bound improvement and computational cost. For Saddle Point, we

use 1/(t + 10) as step size to stay closer to the initialization points. The primal

initialization algorithm (see appendix B.3.2) is run for 100 steps on the Big-M

variables, with step size linearly decreased from 10−2 to 10−5.

Figure 3.1 shows the distribution of runtime and the bound improvement with

respect to Gurobi cut for the SGD-trained network. For Gurobi cut, we only add the

single most violated cut from Ak per neuron, due to the cost of repeatedly solving

the LP. We tuned BDD+ and Big-M, the dual methods operating on the weaker
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(b) Speed-accuracy trade-offs of Saddle Point for different iteration ranges and comput-
ing devices.

Figure 3.1: Upper bounds to the adversarial vulnerability for the SGD-trained network
from Bunel et al. (2020a). Box plots: distribution of runtime in seconds. Violin plots:
difference with the bounds obtained by Gurobi with a cut from Ak per neuron; higher is
better, the width at a given value represents the proportion of problems for which this is
the result. On average, both Active Set and Saddle Point achieve bounds tighter than
Gurobi 1 cut with a smaller runtime.

relaxation (3.2), to have the same average runtime. They obtain bounds comparable

to Gurobi Planet in one order less time. Initialised from 500 Big-M iterations, at

600 iterations, Active Set already achieves better bounds on average than Gurobi

cut in around 1/20th of the time. With a computational budget twice as large (1050

iterations) or four times as large (1650 iterations), the bounds significantly improve

over Gurobi cut in a fraction of the time. Similar observations hold for Saddle

Point which, especially when using fewer iterations, also exhibits a larger variance

in terms of bounds tightness. In appendix B.8, we empirically demonstrate that the

tightness of the Active Set bounds is strongly linked to our active set strategy (see

§3.4.2). Remarkably, even if our solvers are specifically designed to take advantage
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of GPU acceleration, executing them on CPU proves to be strongly competitive

with Gurobi cut. Active Set produces better bounds in less time for the benchmark

of Figure 3.1, while Saddle Point yields comparable speed-accuracy trade-offs.

Small computational budget Figure 3.2 shows pointwise comparisons for the less

expensive methods from figure 3.1, on the same data. Figure 3.2(a) shows the

gap to the (Gurobi) Planet bound for BDD+ and our Big-M solver. Surprisingly,

our Big-M solver is competitive with BDD+, achieving on average better bounds

than BDD+, in the same time. Figure 3.2(b) shows the improvement over Planet

bounds for Big-M compared to those of few (80) Active Set and Saddle Point

iterations. Active Set returns markedly better bounds than Big-M in the same

time, demonstrating the benefit of operating (at least partly) on the tighter dual

(3.5). On the other hand, Saddle Point is rarely beneficial with respect to Big-M

when running it for a few iterations.

Larger computational budget Figure 3.3 compares the performance of Active Set

and Saddle Point for different runtimes, once again on the data from figure 3.1.
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Figure 3.2: Pointwise comparison for a subset of the methods on the data presented in
figure 3.1. Darker colour shades mean higher point density (on a logarithmic scale). The
oblique dotted line corresponds to the equality.



3. Scaling the Convex Barrier with Sparse Dual Algorithms 90

10 20 30 40
Active Set 600 steps

5

10

15

20

25

30

35

40

Sa
dd

le
 P

oi
nt

 1
00

0 
st

ep
s

Timing (in s)

0.5 0.0 0.5 1.0
Active Set 600 steps

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Sa
dd

le
 P

oi
nt

 1
00

0 
st

ep
s

Improvement from 1 cut

10 20 30 40
Active Set 1050 steps

5

10

15

20

25

30

35

40

Sa
dd

le
 P

oi
nt

 2
00

0 
st

ep
s

Timing (in s)

0.5 0.0 0.5 1.0
Active Set 1050 steps

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Sa
dd

le
 P

oi
nt

 2
00

0 
st

ep
s

Improvement from 1 cut

10 20 30 40
Active Set 1650 steps

5

10

15

20

25

30

35

40

Sa
dd

le
 P

oi
nt

 4
00

0 
st

ep
s

Timing (in s)

0.5 0.0 0.5 1.0
Active Set 1650 steps

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Sa
dd

le
 P

oi
nt

 4
00

0 
st

ep
s

Improvement from 1 cut

10 20 30 40
Active Set 1650 steps

5

10

15

20

25

30

35

40

AS
-S

P 
60

0 
+ 

30
00

 st
ep

s

Timing (in s)

0.5 0.0 0.5 1.0
Active Set 1650 steps

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

AS
-S

P 
60

0 
+ 

30
00

 st
ep

s

Improvement from 1 cut

Figure 3.3: Pointwise comparison between our proposed solvers on the data presented in
figure 3.1. Darker colour shades mean higher point density (on a logarithmic scale). The
oblique dotted line corresponds to the equality.

While Active Set yields better average bounds when fewer iterations are employed,

the performance gap shrinks with increasing computational budgets, and AS-SP

(Active Set initialization to Saddle Point) yields tighter average bounds than Active

Set in the same time. Differently from Active Set, the memory footprint of Saddle

Point does not increase with the number of iterations (see §3.5). Therefore, we

believe the Frank-Wolfe-based algorithm is particularly convenient in incomplete

verification settings that require tight bounds.

3.8.2.2 Memory efficiency

As stated in §3.5, one of the main advantages of Saddle Point is its memory

efficiency. In fact, differently from Active Set, the attainable bounding tightness

will not depend on the available memory. In order to illustrate this, we present

results on a large fully connected network with two hidden layers of width 7000.

The network was adversarially (Madry et al., 2018) trained against perturbations

of size ε = 2/255, which is the same radius that we employ at verification time. On

the Nvidia Titan Xp GPU employed for our experiments, Active Set is only able to

include a single constraint from AE,k per neuron without running out of memory.

Except the maximum allowed number of cuts for Active Set, we run all algorithms
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Figure 3.4: Upper bounds to the adversarial vulnerability of a fully connected network
with two hidden layers of width 7000. Box plots: distribution of runtime in seconds.
Violin plots: difference with the bounds obtained by Gurobi with a cut from Ak per
neuron; higher is better. When run for enough iterations, Saddle Point achieves bounds
tighter than both Gurobi 1 cut and Active Set, whose tightness is constrained by memory,
in less time.

with the same hyper-parameters as in §3.8.2.1. We conduct the experiment on the

first 500 images of the CIFAR-10 test set. Figure 3.4 shows that, while Active Set is

competitive with Saddle Point when both are run for a few iterations, Saddle Point

yields significantly better speed-accuracy trade-offs when both algorithms are run for

longer. Indeed, the use of a single tightening constraint per neuron severely limits

the tightness attainable by Active Set, which yields looser bounds than Gurobi cut

on average. This is dissimilar from Figure 3.1, where Active Set rapidly overcomes

Gurobi cut in terms of bounding tightness. On the other hand, Saddle Point returns

bounds that are markedly tighter than those from the primal baselines in a fraction

of their runtime, highlighting its benefits in memory-intensive settings.

3.8.3 Branch and Bound

We now assess the effectiveness of our algorithms within branch and bound (see

§3.6.2). In particular, we will employ them within BaBSR (Bunel et al., 2020b).

In BaBSR, branching is carried out by splitting an unfixed ReLU into its passing

and blocking phases (see §3.6.2 for a description of branch and bound). In order

to determine which ReLU to split on, BaBSR employs an inexpensive heuristic

based on the bounding algorithm by Wong and Kolter (2018). The goal of the
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Network Name No. of Properties Network Architecture

BASE
Model 100

Conv2d(3,8,4, stride=2, padding=1)
Conv2d(8,16,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 3172)

WIDE 100

Conv2d(3,16,4, stride=2, padding=1)
Conv2d(16,32,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 6244)

DEEP 100

Conv2d(3,8,4, stride=2, padding=1)
Conv2d(8,8,3, stride=1, padding=1)
Conv2d(8,8,3, stride=1, padding=1)
Conv2d(8,8,4, stride=2, padding=1)

linear layer of 100 hidden units
linear layer of 10 hidden units

(Total ReLU activation units: 6756)

Table 3.1: For each complete verification experiment, the network architecture used and
the number of verification properties tested, a subset of the dataset by Lu and Kumar
(2020). Each layer but the last is followed by a ReLU activation function.

heuristic is to assess which ReLU induces maximum change in the domain’s lower

bound when made unambiguous.

3.8.3.1 Complete Verification

We evaluate the performance on complete verification by verifying the adversarial

robustness of a network to perturbations in `∞ norm on a subset of the dataset by Lu

and Kumar (2020). We replicate the experimental setting from Bunel et al. (2020a).

Dataset Lu and Kumar (2020) provide, for a subset of the CIFAR-10 test set, a

verification radius εver defining the small region over which to look for adversarial

examples (input points for which the output of the network is not the correct class)

and a (randomly sampled) non-correct class to verify against. The verification

problem is formulated as the search for an adversarial example, carried out by

minimizing the difference between the ground truth logit and the target logit. If the

minimum is positive, we have not succeeded in finding a counter-example, and the
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network is robust. The εver radius was tuned to meet a certain “problem difficulty"

via binary search, employing a Gurobi-based bounding algorithm (Lu and Kumar,

2020). In particular, Lu and Kumar (2020) chose perturbation radii to rule out

properties for which an adversarial example can be rapidly found, and properties

for which Gurobi Planet would be able to prove robustness without any branching.

This characteristic makes the dataset an appropriate testing ground for tighter

relaxations like the one by Anderson et al. (2020) (§3.2.2). The networks are robust

on all the properties we employed. Three different network architectures of different

sizes are used, all robustly trained for εtrain = 2/255 with the algorithm by Wong

and Kolter (2018). A “Base” network with 3172 ReLU activations, and two networks

with roughly twice as many activations: one “Deep”, the other “Wide”. Details

can be found in Table 3.1. We restricted the original dataset to 100 properties per

network so as to mirror the setup of the recent VNN-COMP competition (VNN-

COMP, 2020). The properties have an average perturbation radius of εver = 10.1/255,

εver = 6.9/255, εver = 7.1/255 for the Base, Wide, and Deep networks, respectively.

Complete Verifiers We compare the effect on final verification time of using

the different bounding methods in §3.8.2 within BaBSR. When stratifying two

bounding algorithms (see §3.6.2) we denote the resulting method by the names of

both the looser and the tighter bounding method, separated by a plus sign (for

instance, Big-M + Active Set). In addition, we compare against the following

complete verification algorithms:

• MIP Ak encodes problem (3.1) as a Big-M MIP (Tjeng et al., 2019) and solves

it in Gurobi by adding cutting planes from Ak. This mirrors the original

experiments from Anderson et al. (2020).

• ERAN (Singh et al., 2020), a state-of-the-art complete verification toolbox.

Results on the dataset by Lu and Kumar (2020) are taken from the recent

VNN-COMP competition4 (VNN-COMP, 2020).
4These were executed by Singh et al. (2020) on a 2.6 GHz Intel Xeon CPU E5-2690 with 512

GB of main memory, utilising 14 cores.
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Base Wide Deep
Method time(s) sub-problems %Timeout time(s) sub-problems %Timeout time(s) sub-problems %Timeout

BDD+ BaBSR 883.55 82 699.40 22.00 568.25 43 751.88 13.00 281.47 10 763.48 5.00
Big-M BaBSR 826.60 68 582.00 19.00 533.79 35 877.24 12.00 253.37 9346.78 4.00

A. Set 100 it. BaBSR 422.32 9471.90 7.00 169.73 1873.36 3.00 227.26 2302.16 2.00
Big-M + A. Set 100 it. BaBSR 415.20 10 449.10 7.00 163.02 2402.28 3.00 199.70 2709.60 2.00
G. Planet + G. 1 cut BaBSR 949.06 1572.10 15.00 762.42 514.02 6.00 799.71 391.70 2.00

MIP Ak 3227.50 226.24 82.00 2500.70 100.93 64.00 3339.37 434.57 91.00
ERAN 805.89 - 5.00 632.12 - 9.00 545.72 - 0.00

Fast-and-Complete 711.63 9801.22 16.00 350.57 8699.74 8.00 56.52 2238.52 1.00

Table 3.2: We compare average solving time, average number of solved sub-problems and
the percentage of timed out properties on data from Lu and Kumar (2020). The best
dual iterative method is highlighted in bold.

• Fast-and-Complete (Xu et al., 2021): a recent complete verifier based on

BaBSR that pairs fast dual bounds with Gurobi Planet to obtain state-of-the-

art performance.

We use 100 iterations for BDD+ (as done by Bunel et al. (2020a)) and 180 for

Big-M, which was tuned to employ roughly the same time per bounding computation

as BDD+. We re-employed the same hyper-parameters for Big-M, Active Set and

Saddle Point, except the number of iterations. For dual iterative algorithms, we solve

300 subproblems at once for the base network and 200 for the deep and wide networks

(see §3.6.1). Additionally, dual variables are initialised from their parent node’s

bounding computation. As in Bunel et al. (2020a), the time-limit is kept at one hour.

Inexpensively overcoming the convex barrier Figure 3.2(b) in the previous sec-

tion shows that Active Set can yield a relatively large improvement over Gurobi

Planet bounds, the convex barrier as defined by Salman et al. (2019b), in a few
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Figure 3.5: Cactus plots on properties from Lu and Kumar (2020), displaying the
percentage of solved properties as a function of runtime. Baselines are represented by
dotted lines.
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iterations. In light of this, we start our experimental evaluation by comparing

the performance of 100 iterations of Active Set (within BaBSR) with the relevant

baselines. Figure 3.5 and Table 3.2 show that Big-M performs competitively with

BDD+. With respect to BDD+ and Big-M, which operate on the looser formulation

(3.2), Active Set verifies a larger share of properties and yields faster average

verification. This demonstrates the benefit of tighter bounds (§3.8.2) in complete

verification. On the other hand, the poor performance of MIP + Ak and of Gurobi

Planet + Gurobi 1 cut, tied to scaling limitations of off-the-shelf solvers, shows that

tighter bounds are effective only if they can be computed efficiently. Nevertheless,

the difference in performance between the two Gurobi-based methods confirms

that customised Branch and Bound solvers (BaBSR) are preferable to generic

MIP solvers, as observed by Bunel et al. (2020b) on the looser Planet relaxation.

Moreover, the stratified bounding system allows us to retain some of the speed of

Big-M on easier properties, without sacrificing Active Set’s gains on the harder

ones. While ERAN verifies 2% more properties than Active Set on two networks,

BaBSR (with any dual bounding algorithm) is faster on most of the properties.

Fast-and-Complete performs particularly well on the easier properties and on the

Deep model, where it is the fastest algorithm. Nevertheless, it struggles on the

harder properties, leading to larger average verification times and more timeouts

than Active Set on the Base and Wide models. We believe that stratifying Active

Set on the inexpensive dual bounds from Fast-and-Complete, which fall short of

the convex barrier yet jointly tighten the intermediate bounds, would preserve the

advantages of both methods. BaBSR-based results could be further improved by

employing the learned branching strategy presented by Lu and Kumar (2020): in

this work, we focused on the bounding component of branch and bound.

Varying speed-accuracy trade-offs The results in Figure 3.5 demonstrate that

a small yet inexpensive tightening of the Planet bounds yields large complete

verification improvements. We now investigate the effect of employing even

tighter, yet more costly, bounds from our solvers. To this end, we compare 100
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Figure 3.6: Cactus plots on properties from Lu and Kumar (2020), displaying the
percentage of solved properties as a function of runtime. Comparison of best performing
method from figure 3.5 with tighter bounding schemes.

iterations of Active Set with more expensive bounding schemes from our incomplete

verification experiments (§3.8.2). All methods were stratified along Big-M to improve

performance on easier properties (see §3.6.2) and employed within BaBSR. Figure

3.6 and Table 3.3 show results for two different bounding budgets: 600 iterations of

Active Set or 1000 of Saddle Point, 1650 iterations of Active Set or 4000 of Saddle

Point (see figure 3.3). Despite their ability to prune more subproblems, due to their

large computational cost, tighter bounds do not necessarily correspond to shorter

overall verification times. Running Active Set for 600 iterations of Active Set leads

to faster verification of the harder properties while slowing it down for the easier

ones. On the base and deep model, the benefits lead to a smaller average runtime

(Table 3.3). This does not happen on the wide network, for which not enough

subproblems are pruned. On the other hand, 1650 Active Set iterations do not prune

enough subproblems for their computational overhead, leading to slower formal

verification. The behavior of Saddle Point mirrors what was seen for incomplete

Base Wide Deep
Method time(s) sub-problems %Timeout time(s) sub-problems %Timeout time(s) sub-problems %Timeout

Big-M + Active Set 100 it. 415.20 10 449.10 7.00 163.02 2402.28 3.00 199.70 2709.60 2.00
Big-M + Active Set 600 it. 360.16 4806.14 6.00 181.27 1403.90 3.00 148.06 1061.90 1.00

Big-M + Saddle Point 1000 it. 382.15 5673.04 7.00 417.41 1900.90 7.00 540.68 2551.62 7.00
Big-M + Active Set 1650 it. 463.00 7484.54 6.00 285.99 1634.98 3.00 250.52 1119.00 1.00

Big-M + Saddle Point 4000 it. 434.92 4859.68 7.00 402.86 1703.48 3.00 482.93 1444.20 4.00

Table 3.3: We compare average solving time, average number of solved sub-problems and
the percentage of timed out properties on data from Lu and Kumar (2020). The best
result is highlighted in bold. Comparison of best performing method from figure 3.5 with
tighter bounding schemes within BaBSR.
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verification: while it does not perform as well as Active Set for small computational

budgets, the gap shrinks when the algorithms are run for more iterations and it

is very competitive with Active Set on the base network. Keeping in mind that

the memory cost of each variable addition to the active set is larger in complete

verification due to subproblem batching (see 3.6.1), Saddle Point constitutes a valid

complete verification alternative in settings where memory is critical.

3.8.3.2 Branch and Bound for Incomplete Verification

When run for a fixed number of iterations, branch and bound frameworks can be

effectively employed for incomplete verification. As shown in §3.8.3.1, one of the

main advantages of our algorithms is their performance within branch and bound.

We provide further evidence of this by comparing them with previous algorithms

that overcame the convex barrier, but which were not designed for employment

within branch and bound: kPoly by Singh et al. (2019a), Fast2CV and Opt2CV

by Tjandraatmadja et al. (2020). In particular, we compute the number of verified

images on the first 1000 examples of the CIFAR-10 test set for the ConvSmall

network from the ERAN (Singh et al., 2020) dataset, excluding misclassified images.

We test different speed-accuracy trade-offs within branch and bound: BDD+ BaBSR

is run for 400 iterations, and at most 5 branch and bound batches. Active Set and

Saddle Point are run for 200 and 4000 iterations, respectively, with at most 10

batches within BaBSR. Hyper-parameters are kept as in §3.8.2. This experiment is

run on a single Nvidia Titan V GPU. Table 3.4 shows that, regardless of the employed

speed-accuracy trade-off, the use of branch and bound is beneficial with respect

to kPoly, Fast2CV, and Opt2CV. Therefore, the use of relaxations tighter than

kPoly FastC2V OptC2V BDD+ BaBSR Active Set BaBSR Saddle Point BaBSR
Verified Properties 399 390 398 401 434 408
Average Runtime [s] 86 15.3 104.8 2.5 7.0 43.16

Table 3.4: Number of verified properties and average runtime on the adversarially
trained (Madry et al., 2018) ConvSmall network from the ERAN (Singh et al., 2020)
dataset, on the first 1000 images of the CIFAR-10 test set. Results for FastC2V and
OptC2V are taken from Tjandraatmadja et al. (2020), results for kPoly are taken from
Singh et al. (2019a).
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Planet does not necessarily improve incomplete verification performance. Increasing

the computational budget of branch and bound increases the number of verified

properties, as demonstrated by the performance of Active Set and Saddle Point.

3.9 Discussion

The vast majority of neural network bounding algorithms focuses on (solving or

loosening) a popular triangle-shaped relaxation, referred to as the “convex barrier"

for verification. Relaxations that are tighter than this convex barrier have been

recently introduced, but the complexity of the standard solvers for such relaxations

hinders their applicability. We have presented two different sparse dual solvers for one

such relaxation, and empirically demonstrated that they can yield significant formal

verification speed-ups. Our results show that tightness, when paired with scalability,

is key to the efficiency of neural network verification and instrumental in the

definition of a more appropriate “convex barrier". We believe that new customised

solvers for similarly tight relaxations are a crucial avenue for future research in the

area, possibly beyond piecewise-linear networks. Finally, as it is inevitable that

tighter bounds will come at a larger computational cost, future verification systems

will be required to recognise a priori whether tight bounds are needed for a given

property. A possible solution to this problem could rely on learning algorithms.
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Abstract

Recent works have tried to increase the verifiability of adversarially trained networks
by running the attacks over domains larger than the original perturbations and
adding various regularization terms to the objective. However, these algorithms
either underperform or require complex and expensive stage-wise training procedures,
hindering their practical applicability. We present IBP-R, a novel verified training
algorithm that is both simple and effective. IBP-R induces network verifiability
by coupling adversarial attacks on enlarged domains with a regularization term,
based on inexpensive interval bound propagation, that minimizes the gap between
the non-convex verification problem and its approximations. By leveraging recent
branch-and-bound frameworks, we show that IBP-R obtains state-of-the-art verified
robustness-accuracy trade-offs for small perturbations on CIFAR-10 while training
significantly faster than relevant previous work. Additionally, we present UPB, a
novel branching strategy that, relying on a simple heuristic based on β-CROWN,
reduces the cost of state-of-the-art branching algorithms while yielding splits of
comparable quality.



4.1 Introduction

The existence of adversarial examples (Szegedy et al., 2014; Goodfellow et al.,

2015) has raised widespread concerns on the robustness of neural networks. As a

consequence, many authors have promptly devised algorithms to formally prove

the robustness of trained networks (Katz et al., 2017; Ehlers, 2017; Bunel et al.,

2018; Zhang et al., 2018; Raghunathan et al., 2018). At the same time, a number

of works have focused on training networks for adversarial robustness: first by

defending against specific attacks (adversarial training) (Madry et al., 2018),

then providing formal guarantees about attack-independent robustness (verified

training) (Dvijotham et al., 2018a; Wong and Kolter, 2018; Mirman et al., 2018).

The vast majority of verified training methods operate by backpropagating over

over-approximations of the network’s loss under adversarial perturbations, and

obtain state-of-the-art results for large perturbations (Zhang et al., 2020; Xu et al.,

2020; Lyu et al., 2021). However, these training schemes are typically unable

to benefit from tight over-approximations at verification time, hence requiring

relatively large networks to perform at their best. A recent line of work has better

leveraged network capacity by enhancing the verifiability of adversarially-trained

networks. These algorithms can exploit tighter over-approximations but they either

underperform (Xiao et al., 2019) or require expensive procedures in order to reach

state-of-the-art performance on small perturbations (Balunovic and Vechev, 2020).

The recent VNN-COMP-21, an international competition on neural network

verification (Bak et al., 2021) highlighted significant scaling improvements in exact

verification algorithms (Henriksen and Lomuscio, 2021; Serre et al., 2021; De Palma

et al., 2021c; Wang et al., 2021a). We aim to leverage these developments by present-

ing IBP-R, a novel and inexpensive verified training algorithm that induces network

verifiability by: (i) running adversarial attacks over domains that are significantly

larger than the target perturbations, (ii) exploiting IBP (Mirman et al., 2018; Gowal

et al., 2018b) to minimize the area of the convex hull of the activations, a commonly

employed relaxation within recent verification frameworks. We show that, in spite

of its speed and conceptual simplicity, IBP-R yields state-of-the-art results under
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small perturbations on CIFAR-10. In particular, under `∞ perturbations of radius

εver = 2/255, networks trained via IBP-R attain, on average: a verified accuracy of

61.97%, a robust accuracy of 66.39% under MI-FGSM attacks (Dong et al., 2018)

and a natural accuracy of 78.19%. In this setting, IBP-R trains in less than a third of

the runtime of COLT (Balunovic and Vechev, 2020). Furthermore, for εver = 8/255,

IBP-R performs competitively with COLT while almost halving its runtime.

Finally, motivated by the task of evaluating the verifiability of networks trained

via IBP-R, we present a simple and novel branching strategy, named UPB, for

complete verification via branch-and-bound (Bunel et al., 2018). UPB leverages

dual information from the recent β-CROWN algorithm (Wang et al., 2021a) to

heuristically rank the quality of the possible branching decisions. We show that,

at a cost equivalent to a single gradient backpropagation through the network,

UPB obtains a verification performance comparable to the more expensive and

state-of-the-art FSB strategy (De Palma et al., 2021c).

4.2 Background

In the following, we will use boldface letters to denote vectors (for example, x),

uppercase letters to denote matrices (for example, Wk), and brackets for intervals

(for example, [lk,uk]). Furthermore, we will write � for the Hadamard product,

1c for the indicator vector on condition c, J·K for integer ranges, and employ the

following shorthand: [x]+ := max(x,0).

Let us define the data distribution D, yielding points (x,y) ∈ Rd × Ro and

let us denote by θ ∈ RS the network parameters. Robust training is concerned

with training a neural network f : RS × Rd → Ro so that a given property

P : Ro × Ro → {0, 1} is satisfied in a region around each input point x, denoted

C(x). In other words, the parameters θ must satisfy the following:

x0 ∈ C(x) =⇒ P (f(θ,x0),y) ∀ (x,y) ∈ D. (4.1)
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In this work, we will focus on robustness to adversarial perturbations around the

input images. Specifically, C(x) := {x0 : ‖x0 − x‖p ≤ εver} and P amounts to

checking that the predicted and ground truth classification labels match.

4.2.1 Neural Network Verification

Before delving into the task of training a robust network, we first consider the

problem of determining whether a given network is robust or not. This involves the

formal verification of condition (4.1) on the given network, which is generally NP-

HARD (Katz et al., 2017). Therefore, its exact verification is often replaced by less

expensive approximations, which nevertheless provide formal guarantees for a subset

of the properties (incomplete verification). By means of simple transformations,

one can represent both f and P from condition (4.1) via a single network f ′ of

depth n (Bunel et al., 2020b), so that incomplete verification corresponds to the

following optimization problem:

min
x,x̂

x̂n s.t. x0 ∈ C(x),

x̂k+1 = Wk+1xk + bk+1 k ∈ J0, n− 1K ,

(xk, x̂k) ∈ Rel(σ, l̂k, ûk) k ∈ J1, n− 1K ,

x̂k ∈ [̂lk, ûk] k ∈ J1, n− 1K ,

(4.2)

where σ denotes the activation function,Wk the weight matrix of the k-th layer of f ′,

bk its bias. The use of Rel(σ, l̂k, ûk), a convex relaxation of σ, ensures that problem

(4.2) is convex, greatly simplifying its solution. In general, Rel(σ, l̂k, ûk) is a function

of intermediate bounds l̂k, ûk, which provide ranges on the network pre-activation

variables (for details, see appendix C.3). In the context of ReLU networks, which

are the focus of this work, a popular relaxation choice is the convex hull of the

activation, commonly referred to as the Planet relaxation (Ehlers, 2017). If l̂k < 0

and ûk > 0 (ambiguous ReLU), its shape is given by Figure 4.1. If either l̂k > 0

or ûk < 0, the activation is said to be stable and its convex hull can be represented

by a line, greatly improving the tightness of the overall network approximation.

When verifying all properties is a requirement (complete verification), problem

(4.2) is employed as a sub-routine for a global optimization algorithm equivalent to
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l̂k[j] ûk[j]
x̂k[j]

xk[j]

Figure 4.1: Convex hull for an ambiguous ReLU (Ehlers, 2017).

branch-and bound (Bunel et al., 2018). The goal is to find the sign of the minimum

of a non-convex problem (reported in appendix C.2) whose domain is a subset of the

feasible region from problem (4.2). Complete verifiers hence proceed by recursively

splitting the domain (branching) and solving the resulting convex sub-problems

(bounding) until a definite answer can be provided. For ReLU activations, the

branching is usually performed by splitting the domain of an ambiguous ReLU

into its two stable subdomains.

4.2.2 Training via the Robust Loss

In order to enforce condition (4.1) during training, one typically defines a surrogate

loss L : Ro×Ro → R, and seeks to minimize the worst-case empirical risk within C(x),

referred to as the robust loss:

min
θ

E
(x,y)∈D

[
max

x′∈C(x)
L(f(θ,x′),y)

]
. (4.3)

The exact computation of maxx′∈C(x) L(f(θ,x′),y) entails the use of a complete

verification algorithm (§4.2.1), which is too expensive to be employed during

training. Therefore, the robust loss is typically replaced by an approximation:

adversarial training algorithms (Madry et al., 2018) rely on lower bounds, while

certified training algorithms (Gowal et al., 2018b; Zhang et al., 2020) employ

upper bounds. Lower bounds are computed by using so-called adversarial attacks:

algorithms, such as PGD (Madry et al., 2018), that heuristically search for mis-

classified (adversarial) examples in the input space. Upper bounds are instead

computed by solving an instance of problem (4.2) where Rel(σ, l̂k, ûk) typically

represents the IBP hyper-rectangle (Mirman et al., 2018) or linear bounds on the

activation (Wong and Kolter, 2018; Zhang et al., 2018). Adversarial training yield

models with strong standard accuracy and empirical robustness. However, such
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robustness is often hard to demonstrate via a formal verification method, and

might potentially break under stronger attacks. Stronger robustness guarantees are

instead provided by certified training algorithms, at the expense of the standard

network accuracy and with longer training times.

4.2.3 Hybrid Training Methods

A line of recent work seeks to bridge the gap between adversarial and certified

training by modifying the regions over which the attacks are performed and adding

specialized regularization terms.

Xiao et al. (2019) demonstrate that the verified robust accuracy of PGD-trained

networks (Madry et al., 2018) can be increased by adding `1 regularization and

a term encouraging ReLU stability to problem (4.3):

min
θ

E
(x,y)∈D

 max
x′∈C(x)

L(f(θ,x′),y) + λ ‖θ‖1 + ρ
k∑
j=1

tanh(1− l̂k(θ)� ûk(θ))T1

 ,
where l̂k(θ) and ûk(θ), which depend on the network parameters, are computed

via a tightened version of IBP.

Balunovic and Vechev (2020) propose to employ adversarial training layer-wise,

running the attacks over convex outer-approximations of frozen subsets of the

network. Let us denote by f j a subset of network f that starts at the j-th layer, and

by θj its parameters. Furthermore, let Cj(x) represent an outer-approximation of the

j-th latent space obtained via the zonotope relaxation (Zhang et al., 2018), relying

on zonotope intermediate bounds approximated via Cauchy random projections (Li

et al., 2007). Convex Layer-wise Adversarial Training (COLT), operates on the

following objective at the j-th stage of the training:

min
θj

E
(x,y)∈D


κ

 maxx′∈Cj(x) L(f j(θj,x′),y)
+ρj

[
−l̂j+1(θj)

]T
+

[ûj+1(θj)]+


+(1− κ) max

x′∈Cj−1(x)
L(f j−1(θj−1,x′),y)

+λ ‖θj‖1 ,

(4.4)

where [−l̂j+1]T+ [ûj+1]+ is a regularizer for the (j + 1)-th latent space, inducing

ReLU stability and minimizing the area of the zonotope relaxation for ambiguous



4. IBP Regularization for Verified Adversarial Robustness via BaB 106

ReLUs. As when computing intermediate bounds for Cj(x), the regularizer is

computed via approximate zonotope bounds. In order to gradually transition

from one training stage to the other, κ is linearly increased from 0 to 1 in the

first phase of the training. At the first stage (j = 0), the loss transitions from

the natural loss (without any adversarial component) to the regularized PGD

loss. COLT performs particularly well for smaller perturbation radii, for which

it yields state-of-the-art results. However, its complexity and stage-wise nature

make it relatively hard to deploy in practice. For instance, Balunovic and Vechev

(2020) employ a different value for both ρj and the train-time perturbation radius,

which affects both Cj(x) and intermediate bounds, at each training stage. Further

details are provided in appendix C.1.

4.3 Training via IBP Regularization

Certified training algorithms that directly employ upper bounds to the robust loss

(4.3) do not typically benefit from the use of more accurate verification algorithms

than those they were trained with Zhang et al. (2020). On the other hand, the

hybrid training methods from §4.2.3 are designed to be verified with tighter bounds,

potentially encoding (part of) the network as a MILP (Tjeng et al., 2019). In light of

the recent scaling improvements of complete verifiers (Bak et al., 2021), we present a

robust training method designed for recent branch-and-bound frameworks (De Palma

et al., 2021c; Wang et al., 2021a), capable of preserving COLT’s effectiveness while

simplifying its training procedure.

Training objective Intuitively, verification is easier if the network is robust by a

large margin, and if the employed relaxation accurately represents the network,

Therefore, we propose a simple training scheme revolving around the following two

features: (i) adversarial attacks run over significantly larger domains than those

employed at test time, (ii) a term minimizing the gap between the relaxations

used for verification and the original neural network domain. Given its flexibility,

small cost, and widespread usage, we aim to exclusively rely on IBP for bounding
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computations. Details for IBP can be found in appendix C.4. We name the resulting

method IBP Regularization (IBP-R), which operates on the following objective:

min
θ

E
(x,y)∈D

κ
 maxx∈C+(x) L(f(θ,x),y) +

ρ
2
∑n
j=1

[
−l̂j(θ)

]T
+

[ûj(θ)]+

+ (1− κ)L(f(θ,x),y) + λ ‖θ‖1 ,

(4.5)

where 1
2 [−l̂j(θ)]T+ [ûj(θ)]+ represents the area of the widely-employed ReLU convex

hull represented in Figure 4.1, and C+(x) is a superset of the original input speci-

fication from condition (4.1). For adversarial robustness specifications, C+(x) :=

{x0| ‖x0 − x‖p ≤ αεver}, with α ≥ 1.6 in our experiments (see §4.6). Note that we

regularize over all the activations of the network at once, with the same regularization

coefficient. An in-depth comparison with COLT is available in appendix C.1.

Regularization masking When a property holds, the tightness of the employed

relaxations is fundamental in order to swiftly provide a formal guarantee via branch-

and-bounds methods. On the other hand, verifying that the property does not

hold typically implies finding counter-examples via adversarial attacks (Bak et al.,

2021). As a consequence, there is no need to encourage tightness by minimizing
1
2 [−l̂j(θ)]T+ [ûj(θ)]+ when P (f(θ,x0),y) ∀ x0 ∈ C(x) is unlikely to hold after training.

In order to take this observation into account, we propose to mask the convex hull

regularizer when a counter-example is found for the current sample. Denoting by

x̃ the point found by the train-time adversarial attack, we perform the following

substitution in objective (4.5):

1
2[−l̂j(θ)]T+ [ûj(θ)]+→

1P (f(θ,x̃),y)

2 [−l̂j(θ)]T+ [ûj(θ)]+ .

Training details As common for recent certified training algorithms (Balunovic

and Vechev, 2020; Zhang et al., 2020), κ is linearly increased from 0 to 1 at the

beginning of training (mixing). Similarly to IBP Gowal et al. (2018b) and CROWN-

IBP (Zhang et al., 2020), we also linearly increase the effective perturbation radius

from 0 to αεver while mixing the objectives.
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4.4 Verification Framework

As explained in §4.3, IBP-R is designed to facilitate the verification of trained

networks via recent branch-and-bound frameworks. We will now first present the

details of the employed complete verifier (§4.4.1), then present a novel branching

strategy in §4.4.2.

4.4.1 Branch–and-Bound Setup

Owing to its modularity and performance on large COLT-trained networks (Bak

et al., 2021, cifar2020 benchmark), we base our verifier on the OVAL branch-and-

bound framework (Bunel et al., 2020a,b; De Palma et al., 2021c) from VNN-COMP-

2021 (Bak et al., 2021). Given that IBP-R explicitly seeks to minimize the area

of the ReLU convex hull (see Figure 4.1), we instantiate the framework so as to use

β-CROWN (Wang et al., 2021a) for the bounding (see §4.2.1), a state-of-the-art

solver for the employed relaxation, designed for use within branch-and-bound. In

line with De Palma et al. (2021c), intermediate bounds are never updated after

branching, and they are individually computed via α-CROWN Xu et al. (2021).

Furthermore, the dual variables of each bounding computation are initialized to

the values associated to the parent node (that is, the bounding performed before

the last split), and the number of dual iterations is dynamically adjusted to reduce

the bounding time (De Palma et al., 2021c). Counter-examples are found using

the MI-FGSM Dong et al. (2018) adversarial attack, which is run repeatedly for

each property, using a variety of hyper-parameter settings. Verification is run with

a timeout of 1800 seconds, and terminated early when the property is likely to

time out. We now present the employed branching strategy.

4.4.2 UPB Branching

In spite of its strong empirical performance on COLT-trained networks (Bak

et al., 2021), the FSB branching strategy (De Palma et al., 2021c), commonly

employed for β-CROWN (Wang et al., 2021a), requires O(n) CROWN-like bounding

computations per split. In order to reduce the branching overhead, we present Upper
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Planet Bias (UPB), a novel and simpler branching strategy that yields splitting

decisions of comparable quality at the cost of a single gradient backpropagation

through the network.

The popular SR (Bunel et al., 2020b) and FSB branching strategies partly rely on

estimates of the sensitivity of CAP bounds (Wong and Kolter, 2018) to the splitting

of an ambiguous ReLUs (De Palma et al., 2021c). As the employed relaxation for

the output bounding is typically much tighter, these estimates are often unreliable.

In order to improve branching performance, FSB couples these estimates with an

expensive bounding step. We propose to remove the need to compute bounds at

branching time by re-using dual information from branch-and-bound’s bounding

step, which we perform using β-CROWN (see §4.4.1). Specifically, we propose to

score branching decisions according to a dual term associated to the bias of the upper

linear constraint from the Planet relaxation (Figure 4.1) for each ambiguous neuron:

sUPB,k = [−l̂j]T+[ûj ]+
(ûk−l̂k) � [λ̄k]+ k ∈ J1, n− 1K , (4.6)

where [λ̄k]+ is computed by evaluating equation (C.8) in appendix C.5 on the

dual variables computed for the branch-and-bound bounding step. Therefore,

the cost of computing scores (4.6) for all neurons corresponds to that of a single

gradient backpropagation. Intuitively, as sUPB,k will disappear from the dual

objective after splitting, we employ it as a proxy for a branching decision’s potential

bounding improvement. See appendix C.5 for further details.

4.5 Related Work

Many popular certified training algorithms work by upper bounding the robust loss

(4.3) via some combination of IBP and linear bounds on the activation function.

IBP (Gowal et al., 2018b; Mirman et al., 2018), CAP (Wong and Kolter, 2018;

Wong et al., 2018), and CROWN-IBP (Zhang et al., 2020) all fall in this category.

Shi et al. (2021) recently proposed a series of techniques to shorten the usually long

training schedules of these algorithms. Xu et al. (2020) provide minor improvements

on CROWN-IBP by changing the way the loss function is incorporated into problem



4. IBP Regularization for Verified Adversarial Robustness via BaB 110

(4.2). The above family of methods produce state-of-the-art results for larger

perturbation radii. Regularization-based techniques, instead, tend to perform better

on smaller radii (see §4.2.3). Further works have focused on achieving robustness

via specialized network architectures (Lyu et al., 2021; Zhang et al., 2021), Lipschitz

constant estimation for perturbations in the `2 norm (Huang et al., 2021), or under

randomized settings (Cohen et al., 2019; Salman et al., 2019a): these methods

are out of the scope of the present work.

As outlined in §4.2, widely-employed neural network relaxations model the

convex hull of the activation function, referred to as the convex barrier due to its

popularity (Salman et al., 2019b), or on even looser convex outer-approximations

such as CAP (Wong and Kolter, 2018), CROWN (Zhang et al., 2018), DeepZ (Singh

and Shawe-Taylor, 2018), or DeepPoly (Singh et al., 2019b). These relaxations are

relatively inexpensive yet very effective when adapted for complete verification via

branch-and-bound, and are hence at the core of the α-β-CROWN (Xu et al., 2021;

Wang et al., 2021a) and OVAL frameworks (Bunel et al., 2020a; De Palma et al.,

2021c). A number of works have recently focused on devising tighter neural network

relaxations (Singh et al., 2019a; Anderson et al., 2020; Tjandraatmadja et al., 2020;

Müller et al., 2022). These have been integrated into recent branch-and-bound

verifiers (De Palma et al., 2021a,b; Ferrari et al., 2022) and yield strong results

for harder verification properties on medium-sized networks.

While the employed relaxations are a fundamental component of a complete

verifier, the overall speed-accuracy trade-offs are greatly affected by the employed

branching strategy. Small networks with few input dimensions can be quickly verified

by recursively splitting the input region (Bunel et al., 2018; Royo et al., 2019). On the

other hand, activation splitting (Ehlers, 2017; Katz et al., 2017) (see §4.2.1, §4.4.2)

performs better for larger convolutional networks (Bunel et al., 2020b; De Palma

et al., 2021c) and enjoyed recent developments based on graph neural networks (Lu

and Kumar, 2020) or for use with tighter relaxations (Ferrari et al., 2022).
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Perturbation Method Standard accuracy [%] Robust accuracy [%] Verified accuracy [%] Runtime [s]

εver = 2/255

COLT 78.37± 0.24 65.66± 0.13 61.88± 0.11 3.05× 104 ± 1.21× 102 ‡

IBP-R 78.19± 0.52 66.39± 0.12 61.97± 0.18 9.34× 103 ± 2.95× 101

IBP-R w/ Masking 78.22± 0.26 66.28± 0.17 61.69± 0.29 9.63× 103 ± 4.42× 101

Literature Results
(Shi et al., 2021)∗ 66.84 / 52.85

(Zhang et al., 2020)∗ 71.52 59.72 53.97 9.13× 104 †

(Balunovic and Vechev, 2020) 78.4 / 60.50
(Xiao et al., 2019) 61.12 49.92 45.93

εver = 8/255

COLT 51.94± 0.14 31.68± 0.23 28.73± 0.23 1.03× 104 ± 1.70× 101 ‡

IBP-R 51.43± 0.21 31.89± 0.11 27.87± 0.01 5.92× 103 ± 2.95× 101

IBP-R w/ Masking 52.74± 0.30 32.78± 0.33 27.55± 0.22 5.89× 103 ± 3.38× 101

Literature Results
(Shi et al., 2021)∗ 48.28± 0.40 / 34.42± 0.32 9.51× 103 �

(Zhang et al., 2020)∗ 54.50 34.26 30.50 9.13× 104 †

(Balunovic and Vechev, 2020) 51.70 / 27.50
(Xiao et al., 2019) 40.45 26.78 20.27

∗ the employed 7-layer network has 17.2 × 106 parameters, as opposed to the 2.1 × 106 parameters of the 5-layer and
4-layer networks respectively used for our εver = 2/255 and εver = 8/255 experiments. Differently from our work, data
augmentation (random horizontal flips and croppings) is used.
� the training is performed on an Nvidia RTX 2080 Ti GPU, which is significantly faster than that employed in our
experiments.
† the training is performed on 4 Nvidia RTX 2080 Ti GPUs.
‡ on the same setup, the original PyTorch implementation runs in 1.74× 105 seconds for εver = 2/255, and 4.49× 104

seconds for εver = 8/255.

Table 4.1: Performance of different verified training algorithms under `∞ norm perturba-
tions on the CIFAR10 dataset. The table reports mean and sample standard deviation over
3 repetitions for our experiments, over 5 repetitions for (Shi et al., 2021) on εver = 8/255.
The remaining results from the literature were executed with a single seed. The method
with the best average performance for each perturbation radius is highlighted in bold.

4.6 Experiments

In this section, we present an experimental evaluation of the IBP-R certified training

algorithm (§4.6.1), then evaluate the performance of our UPB branching strategy

(§4.6.2). The implementation of our training algorithm is based on Jax (Bradbury

et al., 2018), while verification is performed post-training by using a modified version

(see §4.4) of the OVAL framework, implemented in PyTorch (Paszke et al., 2019).

4.6.1 Verified Training

We evaluate the efficacy of our IBP-R algorithm (§4.3) by replicating the CIFAR-

10 (Krizhevsky and Hinton, 2009) experiments from Balunovic and Vechev (2020)

and comparing against COLT, which we ported to Jax for fairness (resulting in

significant speed-ups as shown in table 4.1, see appendix C.6.2 for details). We focus

our comparison on COLT, as it is the best-performing instance of the hybrid training

algorithms detailed in §4.2.3, family to which IBP-R belongs. Furthermore, to the

best of our knowledge, it yields state-of-the-art results for small perturbations and

ReLU networks. Details concerning the employed architecture, hyper-parameters,
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and the computational setup can be found in appendix C.6. Timing results were

executed on a Nvidia Titan V GPU.

Table 4.1 reports the results of our experiment, as well as relevant results from

the literature. Specifically, we report results for: (i) CROWN-IBP (Zhang et al.,

2020) and the improved IBP algorithm by Lyu et al. (2021), representing state-of-

the-art certified training algorithms based on upper bounding the robust loss (see

§4.2.2), (ii) Xiao et al. (2019), sharing many similarities with IBP-R (see §4.2.3),

and (iii) the original COLT experiments from Balunovic and Vechev (2020). IBP-R

excels on the smaller `∞ perturbation radius (εver = 2/255), displaying verified and

standard accuracies comparable (given the experimental variability) to COLT, and

a larger empirically robust accuracy (for details on the employed attack, see §4.4.1).

Furthermore, IBP-R training is more than three times faster than COLT, making its

use particularly convenient on this setup. The masking (see §4.3) does not appear

to be beneficial on smaller perturbations. Relevant results from the literature all

underperform compared to IBP-R, which hence achieves state-of-the-art results

on this benchmark. On the larger perturbation radius (εver = 8/255), masking

the regularization has a positive effect. The masked version of IBP-R performs

comparably with COLT in ≈ 57% of its runtime, attaining larger standard and

empirically robust accuracies, and smaller verified accuracy. However, in this context,

all regularization-based methods (including IBP-R) are outperformed by algorithms

upper bounding the robust loss (Zhang et al., 2020; Lyu et al., 2021). Nevertheless,

these works employ data augmentation and significantly larger networks than the

one used in our experiments. We therefore conjecture that IBP-R, which scales

better than COLT with the network depth (see runtimes in table 4.1), will become

more competitive when evaluated on comparable settings.

4.6.2 Branching

In order to test the efficacy of our UPB branching strategy (§4.4.2), we time

verification for the first 500 CIFAR-10 test samples on two IBP-R-trained networks

(one per perturbation radius) from the experiment of §4.6.1. Images that are
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εver = 2/255 IBP-R εver = 8/255 IBP-R w/ Masking
Method time [s] subproblems∗ %Timeout time [s] subproblems∗ %Timeout
UPB 113.42 930.83 5.70 237.24 935.80 12.55
FSB 127.65 1244.01 6.22 243.29 795.22 12.92
SR 215.89 5185.27 11.66 303.76 6744.72 15.13
∗computed on the properties that did not time out for neither UPB nor FSB. The inclusion of timed-out results in the average leads to
an overestimation of the number of subproblems for the less expensive branching strategy.

(a) Comparison of average runtime, average
number of solved subproblems and the per-
centage of timed out properties. The best
performing method is highlighted in bold.

100 101 102 103

Computation time [s]
0

20

40

60

80

100

%
 o

f p
ro

pe
rti

es
 v

er
ifi

ed

2/255 IBP-R

UPB
FSB
SR

100 101 102 103

Computation time [s]
0

20

40

60

80

100

%
 o

f p
ro

pe
rti

es
 v

er
ifi

ed

8/255 IBP-R w/ Masking

UPB
FSB
SR

(b) Cactus plots: percentage of solved prop-
erties as a function of runtime. Baselines
are represented by dotted lines.

Figure 4.2: Complete verification performance of different branching strategies on two
IBP-R-trained CIFAR-10 networks from §4.6.1.

incorrectly classified are discarded. We keep the branch-and-bound settings fixed

to those of §4.4.1, and benchmark against the following branching strategies:

FSB (De Palma et al., 2021c), and SR (Bunel et al., 2020b). Appendix C.7

replicates the experiment on two COLT-trained networks.

Figure 4.2 shows that UPB improves average verification times compared to

FSB (by roughly 13% and 2.5% for the εver = 2/255 and εver = 8/255 networks,

respectively). On the larger perturbation radius, this holds in spite of a larger

average number of visited subproblems, highlighting the cost of FSB’s bounding-

based selection step. On the other hand, UPB verifies more properties within

the timeout on both networks. Furthermore, it reduces the number of visited

subproblems on the smaller perturbation, testifying the efficacy of the selected

domain splits. Both UPB and FSB yield significantly faster verification than SR on

the considered problems. The results show that UPB is less expensive than the state-

of-the-art FSB algorithm, while producing branching decisions of comparable quality.

4.7 Conclusions

Many state-of-the-art verified training algorithms require very large networks to ob-

tain good robustness-accuracy trade-offs. Methods designed to exploit tight bounds

at verification-time better exploit network capacity but they either underperform

or involve extremely complex training procedures. We introduced IBP-R, a simple

and intuitive robust training algorithm designed to induce verifiability via recent
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branch-and-bound algorithms. We show that, by minimizing the area of the Planet

relaxation via IBP bounds for all network activations, and using PGD attacks

over larger perturbations, one can obtain state-of-the-art certified accuracy results

on small perturbations without large compromises in standard accuracy. Finally,

in order to ease the task of verifying the trained networks, we presented UPB, a

straightforward and inexpensive branching strategy that yields branching decisions

as effective as the state-of-the-art. We believe our results could be further improved

by leveraging recent improvements on standard IBP training (Shi et al., 2021), as

well as larger network architectures: these are interesting avenues for future work.
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Abstract

Recent multi-task learning research argues against unitary scalarization, where
training simply minimizes the sum of the task losses. Several ad-hoc multi-
task optimization algorithms have instead been proposed, inspired by various
hypotheses about what makes multi-task settings difficult. The majority of these
optimizers require per-task gradients, and introduce significant memory, runtime,
and implementation overhead. We show that unitary scalarization, coupled with
standard regularization and stabilization techniques from single-task learning,
matches or improves upon the performance of complex multi-task optimizers in
popular supervised and reinforcement learning settings. We then present an analysis
suggesting that many specialized multi-task optimizers can be partly interpreted as
forms of regularization, potentially explaining our surprising results. We believe
our results call for a critical reevaluation of recent research in the area.



5.1 Introduction

Multi-Task Learning (MTL) (Caruana, 1997a) exploits similarities between tasks

to yield models that are more accurate, generalize better and require less training

data. Owing to the success of MTL on traditional machine learning models (Heskes,

2000; Bakker and Heskes, 2003; Evgeniou and Pontil, 2004) and of deep single-task

learning across a variety of domains, a growing body of research has focused on

deep MTL. The most straightforward way to train a neural network for multiple

tasks at once is to minimize the sum of per-task losses. Adopting terminology from

multi-objective optimization, we call this approach unitary scalarization.

While some work shows that multi-task networks trained via unitary scalarization

exhibit superior performance to independent per-task models (Kokkinos, 2017;

Kalashnikov et al., 2021), others suggest the opposite (Teh et al., 2017b; Kendall

et al., 2018; Sener and Koltun, 2018). As a result, many explanations for the

difficulty of MTL have been proposed, each motivating a new SMTO (Sener and

Koltun, 2018; Liu et al., 2021c; Yu et al., 2020; Chen et al., 2020; Wang et al.,

2021b). These works typically claim that the proposed SMTO outperforms unitary

scalarization, in addition to relevant prior work. However, SMTOs usually require

access to per-task gradients either with respect to the shared parameters, or to

the shared representation. Therefore, their reported performance gain comes at

significant computation and memory cost, the overhead scaling linearly with the

number of tasks. By contrast, unitary scalarization requires only the average of the

gradients across tasks, which can be computed via a single backpropagation.

Existing SMTOs were introduced to solve challenges related to the optimization

of the deep MTL problem. We instead postulate that the reported weakness of

unitary scalarization is linked to experimental variability or to a lack of regularization,

leading to the following contributions:

• A comprehensive experimental evaluation (§5.4) of recent SMTOs on popular

multi-task benchmarks, showing that no SMTO consistently outperforms unitary

scalarization in spite of the added complexity and overhead. In particular, either
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the differences between unitary scalarization and SMTOs are not statistically

significant, or they can be bridged by standard regularization and stabilization

techniques from the single-task literature. Our RL experiments include optimizers

previously applied only to supervised learning.

• An empirical and technical analysis of the considered SMTOs, suggesting that

they reduce overfitting on the multi-task problem and hence act as regularizers

(§5.5). We conduct an ablation study and provide a collection of novel and

existing technical results that support this hypothesis.

• Code to reproduce the experiments, including a unified PyTorch (Paszke et al.,

2019) implementation of the considered SMTOs, is available at https://github.

com/yobibyte/unitary-scalarization-dmtl.

We believe that our results suggest that the considered SMTOs can be often replaced

by less expensive techniques. We hope that these surprising results stimulate the

search for a deeper understanding of MTL.

5.2 Related Work

Before diving into details of specific SMTOs in Section 5.5, we provide a high-level

overview of the deep MTL research. Seminal work in MTL includes hard parameter

sharing (Caruana, 1997b): sharing neural network parameters between all tasks with,

possibly, a separate part of the model for each task. Hard parameter sharing is still

the major MTL approach adopted in natural language processing (Collobert and

Weston, 2008; Chen et al., 2021), computer vision (Misra et al., 2016), and speech

recognition (Seltzer and Droppo, 2013). In this work, we implicitly assume that each

parameter update employs information from all tasks. However, not all works satisfy

this assumption, either due to a large number of tasks (Cappart et al., 2021; Kurin

et al., 2020), or simply as an implementation decision (Huang et al., 2020; Kurin

et al., 2021). In this setting, MTL resembles other problems dealing with multiple

tasks, i.e., continual (Khetarpal et al., 2020), curriculum (Narvekar et al., 2020),

and meta-learning (Hospedales et al., 2020), which are not the focus of this work.

https://github.com/yobibyte/unitary-scalarization-dmtl
https://github.com/yobibyte/unitary-scalarization-dmtl
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Many works strive to improve the performance of deep multi-task models. One

line of research hypothesizes that conflicting per-task gradient directions lead to

suboptimal models, and focuses on explicitly removing such conflicts Yu et al. (2020);

Chen et al. (2020); Liu et al. (2021c); Wang et al. (2021b); Javaloy and Valera (2022);

Liu et al. (2021a). Some authors postulate that loss imbalances across tasks hinder

learning, proposing loss reweighting methods (Kendall et al., 2018; Chen and Gu,

2018; Lin et al., 2022). Sener and Koltun (2018) and Navon et al. (2022) propose that

tasks compete for model capacity and interpret MTL as multi-objective optimization

in order to cope with inter-task competition. Here, we focus on algorithms that

explicitly rely on per-task gradients to try to outperform unitary scalarization

(§5.5). Research on multi-task architectures (Misra et al., 2016; Guo et al., 2020) or

MTL algorithms exclusively motivated by deterministic loss reweighting (Kendall

et al., 2018; Guo et al., 2018; Liu et al., 2019) are orthogonal to our work. Both

topics are investigated by a recent survey on pixel-level multi-task computer vision

problems (Vandenhende et al., 2021), which found that the minimization of tuned

weighted sums of losses (scalarizations) is empirically competitive with deterministic

loss reweighting and MGDA in the considered settings. These results are extended

to popular SMTOs by a critical review from Xin et al. (2022), concurrent to

our work, which argues that the optimization and generalization performance of

SMTOs can be matched by tuning scalarization coefficients. Our work reaches a

similar conclusion, demonstrating that unitary scalarization performs on par with

SMTOs when coupled with standard and inexpensive regularization or stabilization

techniques. In other words, Xin et al. (2022) provide complementary support for

the link between SMTOs and regularization by showing that tuning scalarization

weights positively affects generalization.

In addition to the common supervised settings, we also consider multi-task RL,

whose research can be grouped into three categories: the first adds auxiliary

tasks providing additional inductive biases to speed up learning (Jaderberg et al.,

2017) on a target task. The second, based on policy distillation, uses per-task

teacher models to provide labels for a multi-task model or per-task policies as
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regularizers (Rusu et al., 2016; Parisotto et al., 2016; Teh et al., 2017a). The

third directly learns a shared policy (Kalashnikov et al., 2021), possibly via an

SMTO (Yu et al., 2020). We focus on the third category, whose literature reports

varying performance for unitary scalarization (better (Kalashnikov et al., 2021) or

worse (Yu et al., 2020) than per-task models), indicating confounding factors in

evaluation pipelines and further motivating our work. PopArt (van Hasselt et al.,

2016; Hessel et al., 2019) performs scale-invariant value function updates in order

to address differences in returns across environments, showing improvements in the

multi-task setting while still using unitary scalarization. PopArt does not require per-

task gradients but introduces additional hyperparameters. In our work, we address

the differences in rewards by normalizing them at the replay buffer level. However, we

believe both unitary scalarization and SMTOs might equally benefit from PopArt.

5.3 Multi-Task Learning Optimizers

We will now describe the deep MTL training problem and popular algorithms

employed for its solution. Let (X, Y ) ∈ Rd×n×Ro×n be the training set, composed of

n d-dimensional points and o-dimensional labels. In addition, Li : Ro×n×Ro×n → R

denotes the loss for the i-th task, θ ∈ RS the parameter space, T := {1, . . . ,m}

the set of m tasks. The goal of MTL is to learn a single (generally task-aware)

parametrized model f : RS × Rd×n × T → Ro×n that performs well on all tasks

T . The parameter space is often split into a set of shared parameters across tasks

(generally the majority of the architecture), denoted θ‖, and (possibly empty) task-

specific parameters, denoted θ⊥, so that θ := [θ‖,θ⊥]T . In this context, the model f

often takes on an encoder-decoder architecture, where the encoder g learns a shared

representation across tasks, and the decoders hi are task-specific predictive heads:

f(θ, X, i) = hi(g(θ‖, X),θ⊥). In this case, we denote by z = g(θ‖, X) ∈ Rr×n

the r-dimensional shared representation of X.

The training problem for MTL is typically formulated as the sum of the per-task

losses (Sener and Koltun, 2018; Yu et al., 2020; Chen et al., 2020):

min
θ

[
LMT(θ) := ∑

i∈T Li(f(θ, X, i), Y )
]
. (5.1)
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Unitary Scalarization The obvious way to minimize the multi-task training objec-

tive in equation (5.1) is to rely on a standard gradient-based algorithm. While, for

simplicity, we focus on standard gradient descent rather than mini-batch stochastic

gradient descent, the notation can be adapted by replacing the dataset size n by

the mini-batch size b. Equation (5.1) corresponds to a linear scalarization with

unitary weights under a multi-objective interpretation of MTL; hence, we call the

direct application of gradient descent on equation (5.1) unitary scalarization. For

vanilla gradient descent, this corresponds to taking a step in the opposite direction

as the one given by the sum of per-task gradients: ∇θLMT = ∑
i∈T ∇θLi. Per-task

gradients are not required, as it suffices to directly compute the gradient of the

sum LMT. Hence, when relying on deep learning frameworks based on reverse-

mode differentiation, such as PyTorch (Paszke et al., 2019), the backward pass is

performed once per iteration (rather than m times). Furthermore, the memory

cost is a factor m less than most SMTOs, which require access to each ∇θLi. As

a consequence, unitary scalarization is simple, fast, and memory efficient. Our

experiments demonstrate that, when possibly coupled with single-task regularization

such as early stopping, `2 penalty or dropout layers (Srivastava et al., 2014), this

simple optimizer is strongly competitive with SMTOs.

MGDA Sener and Koltun (2018) point out that equation (5.1) can be cast as

a multi-objective optimization problem with the following objective: LMT(θ) :=

[L1(θ), . . . ,Lm(θ)]T . A commonly employed solution concept in multi-objective

optimization is Pareto optimality. A point θ∗ is called Pareto-optimal if, for any

another point θ† such that ∃i ∈ T : Li(θ†) < Li(θ∗), then ∃j ∈ T : Lj(θ†) > Lj(θ∗).

A necessary condition for Pareto optimality at a point is Pareto stationarity, defined

as the lack of a shared descent direction across all losses at that point. Sener and

Koltun (2018) rely on MGDA (Désidéri, 2012) to reach a Pareto-stationary point

for shared parameters θ‖. Intuitively, MGDA proceeds by repeatedly stepping in

a shared descent direction (Fliege and Svaiter, 2000; Désidéri, 2012), which can
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be found by solving the following optimization problem:

min
g,ε

[
ε+ 1/2 ‖g‖2

2

]
s.t. ∇θ‖L

T
i g ≤ ε ∀ i ∈ T , (5.2)

whose dual takes the following form (corresponding to the formulation from

Désidéri (2012)):

max
α≥0
−1/2 ‖g‖2

2 s.t.
∑
i

αi∇θ‖Li = −g,
∑
i∈T

αi = 1. (5.3)

In other words, MGDA takes a step in a direction g given by the negative convex

combination of per-task gradients, whose coefficients are given by solving equation

(5.3). In practice, per-task gradients are rescaled before applying MGDA: the

original authors’ implementation (Sener and Koltun, 2018) relies on ∇θ‖Li ←
∇θ‖Li/

∥∥∥∇θ‖Li
∥∥∥Li(θ). The convergence of MGDA to a Pareto-stationary point is still

guaranteed after normalization (Désidéri, 2012).

IMTL IMTL (Liu et al., 2021c) is presented as an SMTO that is not biased

against any single task. It is composed of two complementary algorithmic blocks:

IMTL-L, acting on task losses, and IMTL-G, acting on per-task gradients. IMTL-G

follows the intuition that a multi-task optimizer should proceed along a direction

g = −∑i αi∇θ‖Li that equally represents per-task gradients. This is formulated

analytically by requiring that the cosine similarity between g and each ∇θ‖Li be

the same. To prevent the resulting problem from being underdetermined, Liu

et al. (2021c) add the constraint ∑i∈T αi = 1, resulting in a problem that admits

a closed-form solution for g:

gT
∇θ‖L1∥∥∥∇θ‖L1

∥∥∥ = gT
∇θ‖Li∥∥∥∇θ‖Li

∥∥∥ ∀ i ∈ T \ {1},
g = −

∑
i

αi∇θ‖Li,
∑
i∈T

αi = 1.
(5.4)

IMTL-L, instead, aims to reweight task losses so that they are all constant

over time, and equal to 1. In order to limit oscillations of the scaling factors,

the authors propose to learn them jointly with the network by minimizing a

common objective via gradient descent. In particular, given si ∈ R ∀i ∈ T ,
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Liu et al. (2021c) derive the following form for the joint minimization problem:

mins,θ [∑i (esiLi(θ)− si)] . As proved by Liu et al. (2021c), IMTL-L only has a

rescaling effect on the update direction of IMTL-G. Unlike IMTL-G and the other

SMTOs presented in this section, IMTL-L rescaling is designed to affect the

updates for task-specific parameters θ⊥ as well.

PCGrad Let us write cos(x, z) for the cosine similarity between vectors x and

z. Yu et al. (2020) postulate that multi-task convergence is severely slowed

down if the following three conditions (named the tragic triad) hold at once:

(i) conflicting gradient directions: cos(∇θ‖Li,∇θ‖Lj) < 0 for some i, j ∈ T ; (ii)

differing gradient magnitudes:
∥∥∥∇θ‖Li

∥∥∥� ∥∥∥∇θ‖Lj
∥∥∥ for some i, j ∈ T ; and (iii) the

unitary scalarization LMT has high curvature along ∇θ‖LMT. The PCGrad (Yu

et al., 2020) SMTO is presented as a solution to the tragic triad, targeted at the

first condition. Consistent with the previous sections, let us denote the update

direction by g. Furthermore, let [x]+ := max(x,0). Given per-task gradients

∇θ‖Li, PCGrad iteratively projects each task gradient onto the normal plane of

all the gradients with which it conflicts:gi ← ∇θ‖Li, gi ← gi +

−gTi ∇θ‖Lj(x)∥∥∥∇θ‖Lj
∥∥∥2


+

∇θ‖Lj ∀j ∈ T \ {i}

∀i ∈ T ,
g = −

∑
i∈T

gi,
(5.5)

where the iterative updates of gi with respect to task gradient ∇θ‖Lj are performed

in random order.

GradDrop Chen et al. (2020) focus on conflicting signs across task gradient

entries, arguing that such conflicts lead to gradient “tug-of-wars". The GradDrop

SMTO (Chen et al., 2020), presented as a solution to this problem, proposes

to randomly mask per-task gradients ∇θ‖Li so as to minimize such conflicts.

Specifically, GradDrop computes the “positive sign purity" pj for the task gradient’s

j-th entry and then masks the j-th entry of each per-task gradient with probability

increasing with pj, if the entry is negative, or decreasing with pj, if the entry
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is positive. Let us write p := [p1, . . . , pS], where S is the dimensionality of the

parameter space (see §5.3), � for the Hadamard product and 1a for the indicator

vector on condition a. Given a vector ui, uniformly sampled in [0,1] at each

iteration, GradDrop takes a step in the direction given by:

g =
∑
i∈T


−∇θ‖Li � 1(∇θ‖Li>0

) � 1(ui>p)

− ∇θ‖Li � 1(∇θ‖Li<0
) � 1(ui<p)

 ,

with p = 1
2

1 +
∑
i∈T ∇θ‖Li∑
i∈T

∣∣∣∇θ‖Li
∣∣∣
 .

(5.6)

5.4 Experimental Evaluation

Relying on a unified experimental pipeline, we present an empirical evaluation on

common MTL benchmarks of unitary scalarization (§5.3), of the popular SMTOs

presented in §5.3, and of the recent RLW algorithms (Lin et al., 2022) due to

their similarities with PCGrad and GradDrop (see §5.5.2). We benchmark against

the two RLW instances that showed the best average performance in the original

paper: RLW with weights sampled from a Dirichlet distribution (“RLW Diri.”),

and RLW with weights sampled from a Normal distribution (“RLW Norm.”). The

goal of this section is to assess the efficacy of a popular line of previous work,

focusing on a few representative or well-established optimizers. Therefore, we forego

comparison with more recent SMTOs (Navon et al., 2022; Javaloy and Valera,

2022; Liu et al., 2021a). Nevertheless, we point out that these algorithms often

lack significant enough improvements over the optimizers we consider, or may

have substantial commonalities with them (see §5.5.2 for Nash-MTL (Navon et al.,

2022), which was published concurrently to the finalization of this work). Whenever

appropriate, we employ “Unit. Scal.” as shorthand for unitary scalarization. We first

present supervised learning experiments (§5.4.1), and then evaluate on a popular

reinforcement learning benchmark (§5.4.2).

Our experiments indicate that the performance of unitary scalarization has been

consistently underestimated in the literature. By showing the variability between
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Unit. Scal. IMTL MGDA GradDrop PCGrad RLW Diri. RLW Norm.
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(b) Box plots for the training time of an
epoch (10 runs).

Figure 5.1: No algorithm outperforms unitary scalarization on the Multi-MNIST dataset.

runs and by relying on standard regularization and stabilization techniques from

the single-task literature, we demonstrate that no SMTO consistently outperforms

unitary scalarization across the considered settings. This result holds in spite of

the added complexity and computational overhead associated with most SMTOs.

We provide a potential explanation of our results in §5.5.

5.4.1 Supervised Learning

All the architectures employed in the supervised learning experiments conform to

the encoder-decoder structure detailed in §5.3. Whenever suggested by the original

authors for this context, the SMTO implementations rely on per-task gradients

with respect to the last shared activation, ∇z, rather than on the usually more

expensive ∇θLi. In particular, this is the case for MGDA, IMTL and GradDrop. See

appendix D.2 for details concerning each individual algorithm. Surprisingly, several

MTL works (Yu et al., 2020; Chen et al., 2020; Liu et al., 2021c; Lin et al., 2022)

report validation results, making it easier to overfit. Instead, following standard

machine learning practice, we select a model on the validation set, and later report

test metrics for all benchmarks. Validation results are also available in appendix D.4.

Appendix D.3.1 reports the computational setup, hyperparameter and tuning details.

5.4.1.1 Multi-MNIST

We present results on the Multi-MNIST dataset, a simple two-task supervised

learning benchmark. Multi-MNIST, originally introduced by Sabour et al. (2017)

and as modified by Sener and Koltun (2018), is constructed by uniformly sampling

MNIST (LeCun et al., 1998) images, and placing one in the top-left corner, the

other in the bottom-right corner. Each of the two overlaid images corresponds to a
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10-class (one per digit) classification task. Using the above procedure, we generate

the Multi-MNIST training set from the first 50000 MNIST training images, the

validation set from the last 10000 training images, and the test set from the original

MNIST test set. We employ a popular architecture from previous work (Sener

and Koltun, 2018; Yu et al., 2020) (see appendix D.3.1), where a single dropout

layer (Srivastava et al., 2014) (with dropout probability 0.5) is employed in both the

encoder and the decoder. `2 regularization did not improve validation performance

and was therefore omitted. Figure 5.1 reports the average task test accuracy, and

the training time per epoch. For each run, the test model was selected as the

model with the largest average task validation accuracy across the training epochs.

Appendix D.4 presents the results of Figure 5.1 in tabular form, as well as the

average task validation accuracy per epoch. As seen from the overlapping confidence

intervals, none of the considered algorithms clearly outperforms the others. However,

GradDrop displays higher experimental variability. Finally, Figure 5.1(b) shows

that unitary scalarization also has among the lowest training times.

5.4.1.2 CelebA

We now show results for the CelebA (Liu et al., 2015) dataset, a challenging 40-

task multi-label classification problem. The dataset consists of 200, 000 celebrity

headshots (with standard training, validation and test splits) labelled for the presence

or absence of 40 separate attributes (e.g., beard, eyeglasses), each corresponding to

a binary classification task in the MTL literature. We employ the same architecture

as many previous studies (Sener and Koltun, 2018; Yu et al., 2020; Lin et al., 2022;

Liu et al., 2021c) (see appendix D.3.1). We tuned `2 regularization terms λ for all
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(b) Box plots for the training time of an
epoch (10 runs).

Figure 5.2: While SMTOs display larger runtimes, none of them outperforms the unitary
scalarization on the CelebA dataset.
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SMTOs in the following grid: λ ∈ {0, 10−4, 10−3}. The best validation performance

was attained with λ = 10−3 for unitary scalarization, IMTL and PCGrad, and

with λ = 10−4 for MGDA, GradDrop, and RLW. Validation performance was

further stabilized by the addition of several dropout layers (see Figure 5.5), with

dropout probabilities from 0.25 to 0.5. We present an ablation study on the effect

of regularization on this experiment in §5.5.1. Figure D.4 (appendix D.4.2) shows

that regularization improves the peak average validation performance for all the

considered methods. Analogously to our Multi-MNIST results, Figure 5.2 plots the

distribution of the training time per epoch, and the average test task accuracy. As

with Multi-MNIST, the test model for each run was the one with maximal average

validation task accuracy across epochs. In other words, if the peak is attained

before the last epoch, we perform early stopping: as shown in Figure D.2(a) in

appendix D.4 this is the case for most methods. Due to the large number of tasks,

Figure 5.2(b) shows relatively large runtime differences across methods. PCGrad is

the slowest (roughly 35 times slower than unitary scalarization). In fact, amongst

the considered algorithms, it is the only one that computes per-task gradients over

the parameters (∇θLi ∀i ∈ T ) at each iteration. GradDrop, MGDA and IMTL

have overhead factors (compared to unitary scalarization) ranging from roughly

1.05 to 2.4 due to the relatively small size of z for the employed architecture. The

overhead of RLW is negligible: roughly 5%. Nevertheless, due to largely overlapping

confidence intervals in Figure 5.2(a), none of the methods consistently outperforms

unitary scalarization. In fact, owing to our adoption of explicit regularization

techniques (see §5.5.1) its average performance is superior to that reported in the

literature (Sener and Koltun, 2018; Liu et al., 2021c).

5.4.1.3 Cityscapes

In order to complement the multi-task classification experiments for Multi-MNIST

and CelebA, we present results for Cityscapes (Cordts et al., 2016), a dataset for

semantic understanding of urban street scenes. We rely on the version of the dataset

pre-processed by Liu et al. (2019), which consists of 2, 975 training and 500 test
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(e) Box plots for the training time of an
epoch (10 runs).

Figure 5.3: On Cityscapes, none of the
SMTOs outperforms unitary scalariza-
tion, which proves to be the most cost-
effective algorithm. Subfigures (a)-(d)
report means for three runs, and their
95% CIs.

images and presents two tasks: semantic segmentation on 7 classes (e.g., human,

vehicle), and depth estimation. We further split the original training set into a

validation set of 595 images, employed to tune hyper-parameters, and a training set

of 2380 images. We rely on a common encoder architecture from the literature (Liu

et al., 2021c; Lin et al., 2022) (see appendix D.3.1), with a single dropout layer in the

task-specific heads (Lin et al., 2022). As for CelebA, unitary scalarization, IMTL,

and PCGrad benefit from more regularization than the other optimizers: we employ

λ = 10−5 for these three algorithms, as it resulted in better validation performance

on the majority of metrics, and λ = 0 for the remaining methods. Cityscapes is a

heterogeneous MTL problem: it contains tasks of different types whose validation

metrics cannot be averaged to perform model selection. Considering the lack of an

established procedure in this context, we potentially evaluate a different model for

each metric, chosen as the one with the best (maximal or minimal, depending on the

metric) validation performance across epochs (we perform per-run early stopping).

This procedure maximizes per-task performance, at the cost of increased inference

time. If inference time is a priority, an alternative model selection procedure could

rely on relative task improvement (Javaloy and Valera, 2022; Navon et al., 2022; Liu

et al., 2021a), assuming that per-metric improvements are to be weighted linearly.
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Nevertheless, any consistently applied model selection scheme serves the main goal

of our work: evaluating all SMTOs on a fair ground. Figure 5.3 shows test results

for two metrics per task, and the distribution of the training time per epoch. As

with Multi-MNIST and CelebA, no training algorithm clearly outperforms unitary

scalarization (significant overlaps across confidence intervals exist), which is again

the least expensive method. In contrast with a popular hypothesis (Kendall et al.,

2018; Chen and Gu, 2018; Liu et al., 2021c), this holds in spite of relatively large

loss imbalances. In fact, the loss for the depth task is roughly 10 times smaller

than that of the segmentation task: see figures D.10(f)-D.10(g). Unlike CelebA

(see Figure 5.2(b)), IMTL, MGDA and GradDrop are significantly slower than

unitary scalarization (factors from 1.6 to 2.3), due to the relatively (compared

to the parameter space) large size of z in the employed architecture. PCGrad,

instead, appears to be less expensive (30% more than the baseline), demonstrating

the benefits of working on ∇θLi on this model.

5.4.2 Reinforcement Learning

For RL experiments, we use Meta-World (Yu et al., 2019), which consists of

ten or fifty tasks (respectively MT10 and MT50) in which a simulated robot

manipulator has to perform various actions, e.g., pressing a button, opening a

door, or pushing a block. We rely on the Soft Actor-Critic (Haarnoja et al., 2018)

implementation from (Sodhani et al., 2021). Unlike §5.4.1, the employed network

architecture (see appendix D.3.1) is fully shared across tasks. Therefore, all SMTO

implementations for these experiments rely on per-task gradients with respect to

network parameters ∇θLi (see §5.5). Among the SMTOs we consider, PCGrad is

the only one developed with the RL setting in mind. For fairness and completeness,

we add all the other SMTOs from the supervised learning experiments, and are

the first to test these optimizers in the RL setting. To stabilize learning, we

increase the replay buffer size, a well known technique in single-task RL, add

actor l2 regularization, and modify the reward normalization employed by Sodhani

et al. (2021). The unitary scalarization performance reported by Yu et al. (2020)
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Figure 5.4: On Metaworld, none of the SMTOs significantly outperforms Unit. Scal.,
which is the least expensive method. Subfigures (a)-(b) report mean and 95% CI for the
best (over the updates) average success rate. Subfigures (c)-(d) show box plots for the
training time of 10,000 updates.

is considerably lower than that of Sodhani et al. (2021), which we believe is due

to the lack of reward normalization in the former. Sodhani et al. (2021) keep a

moving average of rewards in the environment, with a hyperparameter controlling

the speed of the moving average. As we show in Figure D.11, the learning algorithm

is sensitive to that hyperparameter. Moreover, such normalization might make

similar transitions have drastically different rewards stored in the replay buffer.

To alleviate these issues, we store the raw rewards in the buffer, and normalize

only when a mini-batch is sampled.

Figure 5.4 reports the best average success rate across the updates and the

runtime for 10,000 updates. In addition to these summary statistics, reported

for consistency with §5.4.1, the learning curves are shown in appendix D.5. Our

MT10 (10 tasks) results in Figure 5.4(a) show that by stabilizing the baseline using

standard RL techniques, unitary scalarization performs on par with other SMTOs,

mirroring our findings in §5.4.1. This is in contrast with the previous literature,

which reported that PCGrad outperforms unitary scalarization (Yu et al., 2020;

Sodhani et al., 2021). Figure 5.4(b) presents results on MT50 (50 tasks): similarly

to MT10, none of the SMTOs significantly outperforms unitary scalarization, with

PCGrad’s average being slightly above unitary scalarization. We speculate that

the stochastic loss rescaling performed by PCGrad (see Proposition 7) reduces

the differences in task return scales, and expect that methods like PopArt (van

Hasselt et al., 2016) would have a similar effect without requiring access to per-task
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gradients. While we did not tune hyperparameters for MT50 (we employed those

found for MT10), it would be much easier to do that for unitary scalarization due to

its lower runtime. In fact, Figure 5.4(d) shows that a single unitary scalarization run

takes roughly 15 hours, whereas PCGrad, MGDA and GradDrop require more than

a week. Similarly to MT10, actor regularization pushes the average performance of

unitary scalarization higher (see in appendix D.5.2). Overall, as in the supervised

learning setting, unitary scalarization performs comparably to SMTOs despite

being simpler and less demanding in both memory and compute. IMTL was unstable

on this RL benchmark and all of the runs crashed due to numerical overflow. We

hence omit IMTL results from this chapter and show its results in Figure D.7

in appendix D.5, which also describes a possible explanation. We hypothesize

that the instability of IMTL is due to lack of bounds on scaling coefficients. See

appendix D.3.2 for hyperparameter settings and ablation studies.

5.5 Regularization in Specialized MTL Optimizers

The empirical results presented in §5.4 motivate the need to carefully analyze

existing SMTOs. We make an initial attempt in this direction by viewing their

effects through the lens of regularization. Let us define a regularizer as a technique

to reduce overfitting (Dietterich, 1995). We first show that the SMTOs considered

in §5.4 empirically act as regularizers via an ablation study (§5.5.1). We then

take a closer look at their behavior, presenting technical results that support their

alternative interpretation as regularizers (§5.5.2). Finally, §5.5.3 provides additional

empirical backing for some of the technical results. Unless otherwise stated, we

assume that MTL methods apply only to θ‖ and that standard gradient-based

updates are employed for tasks-specific parameters θ⊥. We furthermore adopt the

following shorthands: Li(θ) for Li(f(θ, X, i), Y ), and ∇θLi for ∇θLi(f(θ, X, i), Y ).

5.5.1 Ablation Study

We repeat the experiment from §5.4.1.2 and remove explicit regularization: no

dropout layers are added to the encoder-decoder architecture, and λ = 0 for all
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optimizers. In addition, we examine the behavior of two different `2-regularized

instances of unitary scalarization: λ = 10−4 for “Unit. Scal. `2”, λ = 2× 10−3 for

“Unit. Scal. `2+”. Figure 5.5 shows that SMTOs behave similarly to an `2-penalized

unitary scalarization. Importantly, SMTOs delay overfitting, requiring less early

stopping compared to unitary scalarization to obtain comparable performance. In

other words, early stopping is sufficient for unitary scalarization to perform on

par with SMTOs. Moreover, overfitting is further reduced by “Unit. Scal. Reg.”,

which plots the regularized unitary scalarization from §5.4.1.2, with dropout layers

and a weight decay of λ = 10−3. Finally, Figure D.3(a) shows that unregularized

unitary scalarization and most SMTOs rapidly drive the training loss of each task

towards its global optimum. This suggests that the main difficulty of MTL is not

associated with the optimization of its training objective, but rather to incorporating

adequate regularization. Additional results are presented in appendix D.4.2.

5.5.2 Technical Results

All the methods considered in §5.5.1 regularize more than unitary scalarization.

While RLW was shown to reduce overfitting by the original authors (Lin et al.,

2022, theorem 2), we now provide a collection of novel and existing technical results

that potentially explain the regularizing behavior of each of the other algorithms,

complementing the presentation from §5.3. In particular, we show that MGDA,

IMTL and PCGrad have a larger convergence set than unitary scalarization,
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reducing the chances to land on sharp local minima (Dietterich, 1995). Furthermore,

GradDrop and PCGrad introduce significant stochasticity, which is often linked

to the same effect (Keskar et al., 2017; Kleinberg et al., 2018). We hope these

observations will steer further research.

MGDA Let us denote the convex hull of a set A by Conv(A). We now recall a

well-known property of MGDA (Désidéri, 2012) and relate it to the behavior

of unitary scalarization.

Proposition 5. The MGDA SMTO (Sener and Koltun, 2018) converges to a

superset of the convergence points of unitary scalarization. More specifically, it

converges to any point θ∗‖ such that: 0 ∈ Conv({∇θ∗‖Li | i ∈ T }).

See appendix D.2.1 for a simple proof. As a consequence of Proposition 5,

MGDA does not necessarily reach a stationary point for LMT (that is, a point for

which ∑i∈T ∇θ‖Li = 0) or for any of the losses Li (∇θ‖Li = 0). For example, any

point θ‖ for which two per-task gradients point in opposite directions is Pareto

stationary. On account of the well-known (Dietterich, 1995) relationship between

under-optimizing (e.g., early stopping (Caruana et al., 2000; Li et al., 2020)) and

overfitting, proposition 5 supports the interpretation of MGDA as a regularizer for

equation (5.1). Empirical evidence that MGDA under-optimizes is provided in §5.5.3,

Figure D.3(a), and Figure 5.5, which shows over-regularization. Proposition 5 can

be trivially extended to the recent Nash-MTL, which shares the same convergence

set (Navon et al., 2022, Theorem 5.4).

IMTL We now show that aggregating per-task gradients so that their cosine

similarity is the same (equation (5.4)) yields a constrained steepest-descent algorithm

(Proposition 6). This view on the update step of IMTL leads to a novel analysis

of its convergence points (corollary 1). Proofs can be found in appendix D.2.2.

We will denote by Aff(A) the affine hull of a set A.
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Proposition 6. IMTL by Liu et al. (2021c) updates θ‖ by taking a step in the

steepest descent direction whose cosine similarity with per-task gradients is the

same across tasks.

Corollary 1. IMTL by Liu et al. (2021c) converges to a superset of the Pareto-

stationary points for θ‖ (and hence of the convergence points of the unitary scalar-

ization). More specifically, it converges to any point θ∗‖ such that:

0 ∈ Aff
({
∇θ∗‖
Li/
∥∥∥∇θ∗‖

Li
∥∥∥ | i ∈ T }) .

As seen for MGDA, corollary 1 implies that, even if the employed model f

has the capacity to reach the minimal loss on LMT, IMTL may stop before

reaching a stationary point. Recalling the relationship between under-optimizing

and overfitting (Dietterich, 1995), this supports the interpretation of IMTL as

a regularizer for equation (5.1). This is empirically shown in §5.5.3, Figures 5.5,

D.3(a). In particular, unitary scalarization reaches the same average performance

of IMTL but requires earlier stopping.

PCGrad We provide an alternative characterization of the PCGrad update rule,

highlighting its stochasticity in the context of its interpretation as loss rescaling (Liu

et al., 2021c; Lin et al., 2022). See appendix D.2.3 for a proof.

Proposition 7. PCGrad is equivalent to a dynamic, and possibly stochastic, loss

rescaling for θ‖. At each iteration, per-task gradients are rescaled as follows:

∇θ‖Li ←
(
1 +∑

j∈T \{i} dji
)
∇θ‖Li, dji ∈

0,

∥∥∥∇θ‖Lj
∥∥∥∥∥∥∇θ‖Li
∥∥∥
.

Furthermore, if |T | > 2, dji is a random variable, and the above range contains

its support.

The results from proposition 7 can be easily extended to GradVac (Wang

et al., 2021b), which generalizes PCGrad’s projection onto the normal vector to

arbitrary target cosine similarities between per-task gradients. When |T | > 2,
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PCGrad corresponds to a stochastic loss re-weighting. As such, PCGrad bears

many similarities with Random Loss Weighting (RLW) (Lin et al., 2022). RLW

proposes to sample scalarization weights from standard probability distributions

at each iteration, and proves that this leads the better generalization (Lin et al.,

2022, theorem 2). Indeed, it is well-known that adding noise to stochastic gradient

estimations leads the optimization towards flatter minima, and that such minima

may reduce overfitting (Keskar et al., 2017; Kleinberg et al., 2018). In line with

the main technical results by Yu et al. (2020), we now restrict our focus to two-task

problems, which allow for an easy description of PCGrad’s convergence points.

The result is largely based on (Yu et al., 2020, theorem 1): we relax some of the

assumptions and provide a proof in appendix D.2.3.

Corollary 2. If |T | = 2, PCGrad will stop at any point where cos(∇θ‖L1,∇θ‖L2) =

−1. Furthermore, if L1 and L2 are differentiable, and ∇θ‖LMT is L-Lipschitz with

L > 0, PCGrad with step size t < 1
L
converges to a superset of the convergence

points of the unitary scalarization.

Corollary 2 implies that, when |T | = 2, PCGrad may under-optimize equation

(5.1) as MGDA and IMTL. In particular, if cos(∇θ‖L1,∇θ‖L2) = −1, then 0 ∈

Conv({∇θ‖L1,∇θ‖L2}) (see proposition 5). We believe that PCGrad’s stochasticity

and enlarged convergence set potentially explain its regularizing effect.

GradDrop While the motivation behind GradDrop is to avoid entry-wise gradient

conflicts across tasks, the main property of the method is to drive the optimization

towards “joint minima": points that are stationary for all the individual tasks at

once (Chen et al., 2020, proposition 1). In other words: ∇θ‖Li = 0 ∀ i ∈ T . While

this property is desirable, we show that it holds beyond GradDrop, and independently

of the gradient directions. Under strong assumptions on the model capacity,

the above property would trivially hold for unitary scalarization (proposition 10,

appendix D.2.4). Proposition 8 shows that it holds for a simple randomized version

of unitary scalarization, which we name Random Grad Drop (RGD).
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Proposition 8. Let LRGD(θ‖) := ∑
i∈T uiLi(θ‖), where ui ∼ Bernoulli(p) ∀i ∈ T

and p ∈ (0, 1]. The gradient ∇θ‖LRGD is always zero if and only if ∇θ‖Li = 0 ∀i ∈ T .

In other words, the result from (Chen et al., 2020, proposition 1) can be obtained

without any information on the sign of per-task gradients.

Proposition 8 (see appendix D.2.4 for a simple proof) shows that an inexpensive

sign-independent stochastic scalarization shares GradDrop’s main reported property.

LRGD can be directly cast an instance of RLW, and hence as a regularization

method (Keskar et al., 2017; Kleinberg et al., 2018). Furthermore, Figure D.6 in

appendix D.4.3 shows that the empirical results of GradDrop on CelebA (Liu et al.,

2015) are closely matched by a sign-agnostic gradient masking, partly undermining

the conflicting gradients assumption. We believe that the above results, along

with the authors’ original experiments showing that GradDrop delays overfitting on

CelebA (Chen et al., 2020, figure 3), suggest that GradDrop behaves as a regularizer.

5.5.3 Under-Optimization: Empirical Study

As seen in §5.5.2, MGDA and IMTL might under-optimize equation (5.1) compared

to unitary scalarization due to their larger convergence sets. In order to assess

whether this is empirically the case, we estimate
∥∥∥∑i∈T ∇θ‖Li

∥∥∥
2
, the norm of

the unitary scalarization update on shared parameters θ‖, for all optimizers

throughout the unregularized CelebA experiment from §5.5.1. Large magnitudes for∥∥∥∑i∈T ∇θ‖Li
∥∥∥

2
towards convergence would indicate that SMTOs steer optimization

far from stationary points of unitary scalarization, resulting in under-optimization.

We compute the update norm on the mini-batch loss every 100 updates, and report

the per-epoch average in Figure 5.6. Compared with unitary scalarization, most

SMTOs have smaller or comparable update magnitude in the first 15 epochs.

However, towards convergence, SMTOs display larger
∥∥∥∑i∈T ∇θ‖Li

∥∥∥
2
compared

to unitary scalarization. In particular, IMTL and MGDA have the largest norm,

denoting significant empirical under-optimization. The additional stochasticity of

RLW, PCGrad, and GradDrop also appears to lead to larger norm values than

unitary scalarization, yet to a lesser degree. Given that MGDA and IMTL
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incur a larger loss than unitary scalarization in later epochs (see Figure D.3(a) in

appendix D.4.2), we can conclude that they guide optimization towards regions

of the parameter space that under-optimize equation (5.1), providing empirical

support for our analysis.

5.6 Conclusions

This chapter made two main contributions. First, we evaluated popular SMTOs

using a single experimental pipeline, including previously unpublished results of

MGDA, IMTL, RLW, and GradDrop in the RL setting. Surprisingly, our evaluation

showed that none of the SMTOs consistently outperform unitary scalarization, the

simplest and least expensive method. Second, in order to explain our surprising

results, we postulate that SMTOs act as regularizers and present an analysis that

supports our hypothesis. We believe our work calls for further reevaluation of

progress in developing principled and efficient MTL algorithms.

We conclude by addressing the limitations of our work. While we covered a wide

range of popular benchmarks, we do not exclude the existence of settings where

unitary scalarization underperforms: discovering them is an interesting direction for

future work. Furthermore, our experimental results were obtained via grid searches

under limited compute resources: some of the methods might benefit from further

fine-tuning. Nevertheless, we remark that fine-tuning will be easier for unitary

scalarization due to its shorter runtimes. Finally, we presented the regularization

hypothesis only as a partial explanation of our results: we hope it will steer further

analysis and consequently improve the understanding of MTL.
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6.1 Summary

Despite their remarkable empirical success, deep learning systems are still far from

being deployable in safety-critical applications. This thesis attempts to move in

this direction by presenting contributions in the areas of neural network verification,

whose implementations are publicly available as part of the OVAL verification

framework at https://github.com/oval-group/oval-bab, and on two training

problems related to trustworthiness.

In chapter 2, we present two incomplete verifiers based on Lagrangian Decom-

position. The two algorithms solve a popular neural network relaxation, commonly

referred to as the convex barrier, representing the convex hull of element-wise

activation functions. We design a massively parallel Branch-and-Bound framework

around the solvers, demonstrating their efficacy for complete verification.

In chapter 3, we overcome the convex barrier on piecewise-linear networks by

designing two memory-efficient dual solvers for a recent tighter relaxation. We

demonstrate that these algorithms can yield better bounds in the same time with

respect to relevant primal approaches. Furthermore, we show their advantages for

harder verification properties compared to our solvers from chapter 2.

In chapter 4, we introduce an intuitive and inexpensive algorithm for verified

network training. Our approach successfully exploits tight bounds from Branch-and-

Bound-based verifiers, and attains state-of-the-art results on small perturbations

on CIFAR-10 without resorting to complex layer-wise training schemes (Balunovic

and Vechev, 2020). We additionally present a branching strategy that, by re-using

dual information from a recent bounding algorithm (Wang et al., 2021a), reduces

branching costs without affecting the quality of the splits.

In chapter 5, we conduct a comprehensive experimental evaluation of optimizers

for deep multi-task learning. We demonstrate that, in spite of the added complexity

and overhead, none of these optimizers consistently outperforms a simple baseline.

We provide a partial explanation of the results based on regularization, which

we back theoretically and empirically.

https://github.com/oval-group/oval-bab
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6.2 Discussion and Future Work

We conclude with a critical discussion of the contributions presented in this thesis,

possibly commenting on relevant work that appeared since their publication.

We highlight open challenges in the fields of interest and promising avenues

for future work.

6.2.1 Neural Network Verification

Bunel et al. (2020a) (presented in chapter 2) showed that dual iterative algorithms

operating on the triangle relaxation (see §1.2.1), coupled with activation splitting

and the parallelism of modern GPU architectures, could significantly improve on

the state-of-the-art for complete neural network verification. As a result, our

work spearheaded a successful line of work that replaced the decomposition-based

bounding with methods based on linear bound propagation. In particular, by

appropriately optimizing the slope of the bounding functions (which are usually

kept constant, see §2.2.2.1), it was shown that one can obtain a solver for the triangle

relaxation with better empirical speed-accuracy trade-offs than our methods based on

Lagrangian decomposition (Xu et al., 2021). The drawbacks of this approach when

applied for complete verification can be overcome by using Lagrangian multipliers

for the activation splits, obtaining a state-of-the-art complete verifier (Wang et al.,

2021a) when using our FSB branching strategy (see chapter 2) from De Palma et al.

(2021c). Our solvers for the tighter relaxation by Anderson et al. (2020), presented

in chapter 3 (De Palma et al., 2021a,b), show the benefits of using more accurate

relaxations on harder verification properties. However, their speed-accuracy trade-

offs could be potentially improved by adopting a formulation amenable to linear

bound propagation: doing so is an interesting avenue for future work. In chapter 2,

we demonstrate that our hand-designed heuristic branching strategy outperforms a

splitting method based on deep learning (Lu and Kumar, 2020). The efficacy of our

branching strategy and its adoption in the literature testify to the success of heuristic

methods for activation splitting. However, while branching heuristics focus on short-

term bounding improvement, an ideal splitting decision should take long-term
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effects into account. Hence, given the cardinality of set of the possible branching

decisions, we believe that large improvements could be potentially obtained via the

principled use of learning algorithms. In addition, further scalability improvements

could be obtained by leveraging machine learning in other components of complete

verification frameworks, an example being automatically deciding on the tightness

of the bounds required by a given subproblem.

Finally, most of the verification community so far has focussed on standard

feedforward networks and on local robustness specifications, where the input domain

is a `p ball around specific inputs and the output must satisfy a set of linear

inequalities. However, the verification of semantic specifications, such as those

that may occur in autonomous driving (for instance, ensuring right of way is

appropriately given) or scientific applications, remains a challenge, as does the

verification of global specifications (property holding for any possible network

input). Likewise, we are still far from the efficient complete verification of models

widespread in natural language processing, such as transformers. We believe that

future work should focus on incorporating of a wider range of verification properties,

which should be accompanied by the adoption of conceptually different benchmarks

inspired by real-world applications.

6.2.2 Training for Verifiability

In order to bridge the gap between state-of-the-art network architectures and those

commonly employed in the context of verification, progress in verifiers should be

complemented by advances in verified training algorithms. The performance of

current approaches (such as our work presented in chapter 4) suggests the existence of

fundamental trade-offs between standard network performance and verifiability. The

higher cost per-iteration compared to standard training approaches and the presence

of additional hyper-parameters severely limit the scalability of these training schemes.

To make things worse, robustness appears to have larger capacity requirements than

standard performance metrics (Madry et al., 2018). Furthermore, the algorithms

that perform well on small perturbations, based on enhancing adversarial training,
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are fundamentally different from state-of-the-art methods on large perturbations,

based on backpropagating through incomplete verifiers (see §4.6.1). The reasons for

this discrepancy are yet to be fully understood. We believe that significant research

efforts should be directed towards addressing these limitations, possibly resulting in

radically different approaches to verified network training. These advances would

likely require a deeper understanding of what makes a network easily verifiable

by recent Branch-and-Bound-based approaches.

6.2.3 Deep Multi-Task Learning

By highlighting the competitive performance of a simple baseline, in line with

prior work across various deep learning problems (Brockschmidt, 2020; Narang

et al., 2021), our work in chapter 5 casts doubts on the validity of the progress on

specialized multi-task optimizers. The concurrent presentation of similar results (Xin

et al., 2022) at the same venue as our original work (Kurin et al., 2022) evidences

the timeliness of our investigation. While our work relies on an analysis of the

regularizing properties of SMTOs to explain the results, Xin et al. (2022) focus on

the complementary aspect of scalarization coefficients. We hope that these findings

will stimulate further research in the area, so as to increase trust in MTL pipelines.

We conclude by pointing out that training for multiple tasks at once has been

demonstrated to improve a network’s robustness to adversarial examples (Mao et al.,

2020). Therefore, a natural extension of the work presented in this thesis would be

the investigation of topics at the intersection of MTL and verifiability. Potential

steps in this direction could include examining the effect, if any, of SMTOs on

verifiability, or incorporating MTL within existing verified training pipelines.
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A.1 Proof of theorem 1Theorem 1. Let us assume σk(x̂k) = max(0, x̂k) ∀ k ∈ J1, n− 1K. For dual point

(µ,λ) of problem (2.6) by Dvijotham et al. (2018b) yielding bound d(µ,λ), it holds

that q(µ) ≥ d(µ,λ). Furthermore, if λ′n−1 = −W T
n 1 and λ′k−1 = W T

k µk for

k ∈ J2, n− 1K, then q(µ) = d(µ,λ′).

Proof. We will show the relation between the dual problem by Dvijotham et al.

(2018b) and the one proposed in chapter 2. We will show that, in the context of

ReLU activation functions, from any dual point of their dual providing a given

bound, our dual provides a bound at least as tight. Moreover, our dual coincides with

the one by Dvijotham et al. (2018b) if the latter is modified to include additional

equality constraints.

Let us write σ(·) = max(0, ·). We start from problem1 (2.6) by Dvijotham et al.

(2018b). Decomposing it, in the same way that Dvijotham et al. (2018b) do it

in order to obtain their equation (7), and with the convention that µn = −1) we

obtain:

bn −
n−1∑
k=1
µTkbk +

n−1∑
k=1

min
x̂k∈[̂lk,ûk]

(
µTk x̂k − λTk σ(x̂k)

)

+
n−1∑
k=1

min
xk∈[σ(̂lk),σ(ûk)]

(
−µTk+1Wk+1xk + λTk xk

)
+ min

x0∈C
−µT1W1x0.

(A.1)

With the convention that ρn = −1, our dual (2.11) can be decomposed as:

q (ρ) =
n−1∑
k=1

 min
xk, x̂B,k, x̂A,k+1
∈ Pk (·, ·, ·)

ρTk x̂B,k − ρTk+1x̂A,k+1

+ min
x0, x̂A,1
∈ P0 (·, ·)

−ρT1 x̂A,1,

(A.2)

We will show that when we choose the dual variables such that

ρk = µk, (A.3)

we obtain a tighter bound than the ones given by (A.1).
1Our activation function σ is denoted h in their paper. The equivalent of z in their paper is x

in ours, while the equivalent of their x is x̂. Also note that their paper use the computation of
upper bounds as examples while ours use the computation of lower bounds.
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We will start by showing that the term being optimized over P0 is equivalent to

some of the terms in (A.1):

min
x0, x̂A,1
∈ P0 (·, ·)

−ρT1 x̂A,1 = min
x0, x̂A,1
∈ P0 (·, ·)

−µT1 x̂A,1 = −µT1 b1 + min
x0∈C
−µT1W1x0 (A.4)

The first equality is given by the replacement formula (A.3), while the second one

is given by performing the replacement of x̂A,1 with his expression in P0.

We will now obtain a lower bound of the term being optimized over Pk. Let’s

start by plugging in the values using the formula (A.3) and replace the value of

x̂A,k+1 using the equality constraint.

min
xk, x̂B,k, x̂A,k+1
∈ Pk (·, ·, ·)

(
ρTk x̂B,k − ρTk+1x̂A,k+1

)
=

= −µTk+1bk+1 + min
x̂B,k ∈ [̂lk, ûk]

(xk, x̂B,k) ∈ Conv(σ, l̂k, ûk)

(
µTk x̂B,k − µTk+1Wk+1xk

)

(A.5)

Focusing on the second term that contains the minimization over the convex hull,

we will obtain a lower bound. It is important, at this stage, to recall that, as seen

in section 2.3.2.2, the minimum of the second term can either be one of the three

vertices of the triangle in Figure 2.1 (ambiguous ReLU), the x̂B,k = xk line (passing

ReLU), or the (x̂B,k = 0,xk = 0) triangle vertex (blocking ReLU). We will write

(x̂B,k,xk) ∈ ReLU_sol(x̂B,k,xk, l̂k, ûk).

We can add a term λTk (σ (x̂k)− σ (x̂k)) = 0 and obtain:

min
x̂B,k ∈ [̂lk, ûk]

(xk, x̂B,k) ∈ Conv(σ, l̂k, ûk)

(
µTk x̂B,k − µTk+1Wk+1xk

)
(A.6)

= min
x̂B,k ∈ [̂lk, ûk]

ReLU_sol(x̂B,k,xk, l̂k, ûk)

(
µTk x̂B,k − µTk+1Wk+1xk

)

= min
x̂B,k ∈ [̂lk, ûk]

ReLU_sol(x̂B,k,xk, l̂k, ûk)

(
µTk x̂B,k − µTk+1Wk+1xk + λTk (σ (x̂B,k)− σ (x̂B,k))

)
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≥ min
x̂B,k ∈ [̂lk, ûk]

ReLU_sol(x̂B,k,xk, l̂k, ûk)

(
µTk x̂B,k − λTk σ (x̂B,k)

)

+ min
x̂B,k ∈ [̂lk, ûk]

ReLU_sol(x̂B,k,xk, l̂k, ûk)

(
−µTk+1Wk+1xk + λTk σ (x̂B,k)

)

≥ min
x̂B,k∈[̂lk,ûk]

(
µTk x̂B,k − λTk σ (x̂B,k)

)
+ min

xk∈[σ(̂lk),σ(ûk)]

(
−µTk+1Wk+1xk + λTk xk

)
.

Equality between the second line and the third comes from the fact that we are

adding a term equal to zero. The inequality between the third line and the fourth

is due to the fact that the sum of minimum is going to be lower than the minimum

of the sum. For what concerns obtaining the final line, the first term comes from

projecting xk out of the feasible domain and taking the convex hull of the resulting

domain. We need to look more carefully at the second term. Plugging in the ReLU

formula:

min
x̂B,k ∈ [̂lk, ûk]

ReLU_sol(x̂B,k,xk, l̂k, ûk)

(
−µTk+1Wk+1xk + λTk max{0, x̂B,k}

)

= min
x̂B,k ∈ [σ(̂lk), σ(ûk)]

ReLU_sol(x̂B,k,xk, l̂k, ûk)

(
−µTk+1Wk+1xk + λTk x̂B,k

)

≥ min
xk∈[σ(̂lk),σ(ûk)]

(
−µTk+1Wk+1xk + λTk xk

)
,

as (keeping in mind the shape of ReLU_sol and for the purposes of this specific

problem) excluding the negative part of the x̂B,k domain does not alter the minimal

value. The final line then follows by observing that forcing x̂B,k = x is a convex

relaxation of the positive part of ReLU_sol. Summing up the lower bounds for all

the terms in (A.2), as given by equations (A.4) and (A.6), we obtain the formulation

of Problem (A.1). We conclude that the bound obtained by the original dual by

Dvijotham et al. (2018b) is necessarily no larger than the bound derived using our

dual. Given that we are computing lower bounds, this means that their bound

is looser.
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Finally, we now prove that our dual (2.11) coincides with the following modified

version of problem (2.6):

max
µ,λ

dO(µ,λ)

s.t. x0 ∈ C,

(xk, x̂k) ∈ [σ(̂lk), σ(ûk)]× [̂lk, ûk] k ∈ J1, n− 1K ,

λ′n−1 = −W T
n 1, λ′k−1 = W T

k µk k ∈ J2, n− 1K ,

whose objective, keeping the convention that µn = −1, can be rewritten as:

d′O(µ) = min
x̂

n−1∑
k=1
µTk (x̂k − bk)−

n−1∑
k=1
µTkWkσ(x̂k)− µT1W1x0 + bn

s.t. x0 ∈ C, x̂k ∈ [̂lk, ûk] k ∈ J1, n− 1K .
(A.7)

Exploiting equations (A.4) and (A.5), and re-using the notation for

ReLU_sol(x̂B,k,xk, l̂k, ûk) and µn = −1, we obtain the following reformulation of q(µ):

q(µ) = min
x,x̂
−

n∑
k=1
µTkbk +

n−1∑
k=1

(
µTk x̂B,k − µTk+1Wk+1xk

)
− µT1W1x0

s.t. x0 ∈ C,

x̂B,k ∈ [̂lk, ûk] k ∈ J1, n− 1K ,

(x̂B,k,xk) ∈ ReLU_sol(x̂B,k,xk, l̂k, ûk) k ∈ J1, n− 1K .

In order for the above equation to be equal to (A.7), noting that we can substitute

x̂k = x̂B,k, we only need to prove the following for k ∈ J1, n− 1K:

min
x̂k ∈ [̂lk, ûk]

(x̂k,xk) ∈ ReLU_sol(x̂k,xk, l̂k, ûk)

(
µTk x̂k − µTk+1Wk+1xk

)

= min
x̂k ∈ [̂lk, ûk]

(
µTk x̂k − µTk+1Wk+1σ(x̂k)

)
,

which holds trivially for blocking or passing ReLUs. In the case of ambiguous ReLUs,

instead, it suffices to point out that, due to the piecewise-linearity of the objective,

the right hand side corresponds to: min{µTk [i]̂lk[i], 0,µTk [i]ûk[i]−(µTk+1Wk+1)[i]ûk[i]}.

Looking at equation (2.17), we can see that this minimization is hence identical to

the to the right hand side, proving the second part of the theorem.



A. Improved BaB for NN Verification via Lagrangian Decomposition 149

A.2 Proof of proposition 2Proposition 2. Let d̄P be a lower bound to problem (2.1) obtained via a propagation-

based bounding algorithm. Then, if σk(x̂k) = max(0, x̂k) ∀ k ∈ J1, n− 1K, there

exist some dual points ρ̄ and
(
µ̄, λ̄

)
such that q(ρ̄) = dO

(
µ̄, λ̄

)
= d̄P , and both ρ̄

and
(
µ̄, λ̄

)
can be computed at the cost of a backward pass through the network.

Proof. We will show that, for ReLU activations, the solution generated by propagation-

based methods (including amongst others, CROWN (Zhang et al., 2018), and

the algorithm by Wong and Kolter (2018), see §2.2.2.1), can be used to provide

initialization to both our dual (2.11) and dual (2.6) by Dvijotham et al. (2018b).

This holds in spite of the differences between the three dual derivations, which

consist of an application of Lagrangian Decomposition, and of the Lagrangian

relaxations of two different problems.

Recall that
¯
σk(x̂k) =

¯
akx̂k +

¯
bk and σ̄k(x̂k) = ākx̂k + b̄k are two linear functions

that bound σk(x̂k) respectively from below and above. Before proceeding with the

proof, we point out that, relying on the definition of the convex hull of the ReLU in

(2.8), the following is true for any
¯
σk(x̂k) and σ̄k(x̂k) which are not unnecessarily

loose (see Figure 2.1):

0 ≤ āk = ûk
ûk − l̂k

≤ 1, b̄k = −l̂k � ûk
ûk − l̂k

0 ≤
¯
ak ≤ 1 if l̂k ≤ 0 and ûk ≥ 0,

āk =
¯
ak = 0 if ûk ≤ 0,

āk =
¯
ak = 1 if l̂k ≥ 0,

¯
bk = 0 in all cases.

(A.8)

We start by proving that, by taking as our solution of (2.11):

ρ = µ̄, where µ̄ is defined as per equation (2.4), (A.9)

we obtain exactly the same bound given by plugging equation (2.4) into equa-

tion (2.5).
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Recall that, given a choice of ρ, the bound that we generate is:

min
x,x̂

x̂A,n +
n−1∑
k=1
ρTk (x̂B,k − x̂A,k)

s.t. P0(x0, x̂A,1),

Pk(xk, x̂B,k, x̂A,k+1) k ∈ J1, n− 1K ,

which, using the dummy variable ρn = −1 for ease of notation, can be decomposed

into several subproblems:

n−1∑
k=1

 min
xk, x̂B,k, x̂A,k+1

∈ Pk (xk, x̂B,k, x̂A,k+1)

ρTk x̂B,k − ρTk+1x̂A,k+1

+ min
x0, x̂A,1

∈ P0 (x0, x̂A,1)

−ρT1 x̂A,1.

(A.10)

Let’s start by replacing ρ1 by µ̄1, in accordance with (A.9). The problem over

P0 becomes:

min
x0,x̂A,1

− µ̄T1 x̂A,1

s.t. x̂1 = W1x0 + b1

x0 ∈ C.

Substituting the equality into the objective of the subproblem, we get equation

(A.4):

min
x0∈C

−µ̄T1W1x0 − µ̄T1 b1.

We will now evaluate the values of the problem over Pk. Recall that these

subproblems take the following form:

[x̂∗B,k, x̂∗A,k+1] = argmin
x̂B,k,x̂A,k+1

ρTk x̂B,k − ρTk+1x̂A,k+1

s.t (xk, x̂B,k) ∈ Conv(σk, l̂k, ûk),

(xk, x̂B,k) ∈ [σk (̂lk), σk(ûk)]× [̂lk, ûk],

x̂A,k+1 = Wk+1xk + bk+1.

Merging the last equality constraint into the objective function:

min
x̂B,k,xk

ρTk x̂B,k − ρTk+1Wk+1xk − ρTk+1bk+1

s.t (xk, x̂B,k) ∈ Conv(σk, l̂k, ûk),

(xk, x̂B,k) ∈ [σk (̂lk), σk(ûk)]× [̂lk, ûk].
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We now distinguish the different cases of ReLU: passing (I+), blocking I−, and

ambiguous (I), recalling that the problem above decomposes over the ReLUs of

layer k, the i-th ReLU being associated to the i-th entries of xk and x̂k.

If i ∈ I+, we have Conv(σk[i], l̂k[i], ûk[i]) ≡ {(xk[i], x̂B,k[i])|x̂B,k[i] = xk[i]}.

Then, the objective function term for j becomes:

min
x̂B,k[i]

(
ρTk [i]− ρTk+1[i]Wk+1

)
x̂B,k[i]− ρTk+1[i]bk+1[i]

s.t x̂B,k[i] ∈ [̂lk[i], ûk[i]].

Using equations (2.4) and (A.9), and pointing out that āk[i] =
¯
ak[i] = 1 for

j ∈ I+ due to equation (A.8), the minimum of the subproblem above simplifies to:

−µ̄Tk+1[i]bk+1[i].

If i ∈ I−, we have Conv(σk[i], l̂k[i], ûk[i]) ≡ {(xk[i], x̂B,k[i])|xk[i] = 0}. Replac-

ing xk[i] = 0:

min
x̂B,k[i]

ρTk [i]x̂B,k[i]− ρTk+1[i]bk+1[i]

s.t x̂B,k[i] ∈ [̂lk[i], ûk[i]].

Using equations (2.4) and (A.9), and pointing out that āk[i] =
¯
ak[i] = 0 for j ∈ I−

due to equation (A.8), the minimum of the subproblem above simplifies again to:

−µ̄Tk+1[i]bk+1[i].

The case for i ∈ I is more complex. We apply the same strategy that led to

equation (2.17), keeping all constant terms in the objective. This leads us to the

following subproblem:

argmin
(x̂B,k[i],xk[i])∈{(̂lk[i],0),(0,0),(ûk[i],ûk[i])}


(
ρk[i]x̂B,k[i]− (ρTk+1Wk+1)[i]xk[i]

)
+

−ρk+1[i]bk+1[i]

 ,
which amounts to:

min
{
ρk[i]̂lk[i],

(
ρTk − ρTk+1Wk+1

)
[i]ûk[i], 0

}
− ρk+1[i]bk+1[i].
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Using equation (A.9), equation (2.4) and µ̄n = −1, we obtain:

min


(
āk � [λ̄k]+ +

¯
ak � [λ̄k]−

)
[i]̂lk[i],((

āk � [λ̄k]+ +
¯
ak � [λ̄k]−

)
− λ̄k

)
[i]ûk[i],

0,

− µ̄Tk+1[i]bk+1[i]

using (A.8)= min


−b̄k[i][λ̄k]+[i] + l̂k[i]¯

ak[i][λ̄k]−[i],(
(āk − 1)� [λ̄k]+ + (

¯
ak − 1)� [λ̄k]−

)
[i]ûk[i],

0,

− µ̄Tk+1[i]bk+1[i]

Let us make the following observations: (i) due to equation (A.8) and ûk[i] > 0

(as i ∈ I), the second argument of the minimum is always non-negative, (ii)

−b̄k[i][λ̄k]+[i] ≤ 0, (iii) l̂k[i]¯
ak[i][λ̄k]−[i] ≥ 0 due to l̂k[i] ≤ 0 (as i ∈ I). Therefore,

the minimum evaluates to 0 if λ̄k ≤ 0, to −b̄k[i][λ̄k]+[i] otherwise. Hence, for

k ∈ J1, n− 1K:

min
{
ρk[i]̂lk[i],

(
ρTk − ρTk+1Wk+1

)
[i]ûk[i], 0

} using (A.9)→ −b̄k[i][λ̄k]+[i].

Plugging all the optimisation result into Equation (A.10), we obtain:

min
x0∈C

(
−µ̄T1W1x0

)
−

n∑
k=1
µ̄Tkbk −

n−1∑
k=1

[λ̄k]T+b̄k.

which is exactly equation (2.5), recalling that
¯
bk = 0 from (A.8) and that we had

set µ̄n = −1.

Having proved that (2.11) can be initialized with propagation-based methods,

the result for dual (2.6) then trivially follows from theorem 1. In fact, equation

(2.4) satisfies the conditions (namely, λ̄n−1 = −W T
n 1 and λ̄k−1 = W T

k µ̄k for k ∈

J2, n− 1K) under which the two duals yield the same bounds.

A.3 Sigmoid Activation function

This section describes the computation highlighted in chapter 2 in the context

where the activation function σ (x) is the sigmoid function:

σ (x) = 1
1 + e−x

(A.11)

A similar methodology to the one described in this section could be used to adapt

the method to work with other activation function such as hyperbolic tangent.
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Figure A.1: Convex hull of the Sigmoid activation function for different input bound
configurations.

We will start with a reminder about some properties of the sigmoid activation

function. It takes values between 0 and 1, with σ (0) = 0.5. We can easily

compute its derivatives:

σ′ (x) = σ (x)× (1− σ (x))

σ′′ (x) = σ (x)× (1− σ (x))× (1− 2σ (x))
(A.12)

If we limit the domain of study to the negative inputs ([−∞, 0]), then the

function x 7→ σ (x) is a convex function, as can be seen by looking at the sign of

the second derivative over that domain. Similarly, if we limit the domain of study

to the positive inputs ([0,∞]), the function is concave.

A.3.1 Convex hull computation

In the context of ReLU, the convex hull of the activation function is given by

equation (2.8), as introduced by Ehlers (2017). We will now derive it for sigmoid

functions. Upper and lower bounds will be dealt in the same way, so our description

will only focus on how to obtain the concave upper bound, limiting the activation

function convex hull by above. The computation to derive the convex lower

bound is equivalent.

Depending on the range of inputs over which the convex hull is taken, the form

of the concave upper bound will change. We distinguish two cases.
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Case 1: σ′ (ûk) ≥ σ(uk)−σ(lk)
uk−lk

. We will prove that in this case, the upper bound will

be the line passing through the points (̂lk, σ
(̂
lk
)
) and (ûk, σ

(̂
lk
)
). The equation

of it is given by:

φuk,lk(x) = σ (uk)− σ (lk)
uk − lk

(
x− l̂k

)
+ σ

(̂
lk
)

(A.13)

Consider the function d(x) = φuk,lk(x) − σ (x). To show that φuk,lk is a valid

upper bound, we need to prove that ∀x ∈
[̂
lk, ûk

]
, d(x) ≥ 0. We know that d(̂lk) = 0

and d(ûk) = 0, and that d is a continuous function. Its derivative is given by:

d′(x) = σ (uk)− σ (lk)
uk − lk

− σ (x) (1− σ (x)). (A.14)

To find the roots of d′, we can solve d′(x) = 0 for the value of σ (x) and then use

the logit function to recover the value of x. In that case, this is only a second

order polynomial, so it can admit at most two roots.

We know that limx→∞ d
′(x) ≥ 0, and our hypothesis tells us that d′(ûk) ≤ 0.

This means that at least one of the root lies necessarily beyond ûk and therefore, the

derivative of d change signs at most once on the
[̂
lk, ûk

]
interval. If it never changes

sign, it is monotonous. Given that the values taken at both extreme points are

the same, d being monotonous would imply that d is constant, which is impossible.

We therefore conclude that this means that the derivative change its sign exactly

once on the interval, and is therefore unimodal. As we know that d′(ûk) ≤ 0, this

indicates that d is first increasing and then decreasing. As both extreme points

have a value of zero, this means that ∀x ∈
[̂
lk, ûk

]
, d(x) ≥ 0.

From this result, we deduce that φuk,lk is a valid upper bound of σ. As a linear

function, it is concave by definition. Given that it constitutes the line between

two points on the curve, all of its points necessarily belong to the convex hull.

Therefore, it is not possible for a concave upper bound of the activation function

to have lower values. This means that φuk,lk defines the upper bounding part of

the convex hull of the activation function.
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Case 2: σ′ (ûk) ≤ σ(uk)−σ(lk)
uk−lk

. In this case, we will have to decompose the upper

bound into two parts, defined as follows:

φuk,lk(x)


σ (tk)− σ (lk)

tk − lk

(
x− l̂k

)
+ σ

(̂
lk
)

if x ∈
[̂
lk, tk

]
(A.15a)

σ (x) if x ∈ [tk, ûk], (A.15b)

where tk is defined as the point such that σ′ (tk) = σ(tk)−σ(lk)
tk−lk

and tk > 0. The value

of tk can be computed by solving the equation σ (tk) (1−σ (tk)) = σ(tk)−σ(lk)
tk−lk

, which

can be done using the Newton-Raphson method or a binary search. Note that this

needs to be done only when defining the problem, and not at every iteration of the

solver. In addition, the value of tk is dependant only on l̂k so it’s possible to start

by building a table of the results at the desired accuracy and cache them.

Evaluating both pieces of the function of equation(A.15) at tk show that φuk,lk

is continuous. Both pieces are concave (for x ≥ tk ≥ 0, σ is concave) and they

share a supergradient (the linear function of slope σ(tk)−σ(lk)
tk−lk

) in tk, so φuk,lk is a

concave function. The proof we did for Case 1 can be duplicated to show that the

linear component is the best concave upper bound that can be achieved over the

interval
[̂
lk, tk

]
. On the interval [tk, ûk], φuk,lk is equal to the activation function,

so it is also an upper bound which can’t be improved upon. Therefore, φuk,lk is

the upper bounding part of the convex hull of the activation function.

Note that a special case of this happens when l̂k ≥ tk. In which case, φuk,lk

consists of only equation (A.15b).

All cases are illustrated in Figure A.1. Case 1 is shown in A.1(a), where the

upper bound contains only the linear upper bound. Case 2 with both segments is

visible in FigureA.1(c), with the cutoff points tbk highlighted by a green dot, and

the special case with l̂k ≥ tk is demonstrated in Figure A.1(b).
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A.3.2 Solving the Pk subproblems over sigmoid activation

As a reminder, the problem that needs to be solved is the following (where

ck+1 = −ρk+1, ck = ρk):

[x̂B,k, x̂A,k+1] = argmin
x̂B,k,x̂A,k+1

cTk x̂B,k + cTk+1x̂A,k+1

s.t l̂k ≤ x̂B,k ≤ ûk

(xk, x̂B,k) ∈ Conv(σ, l̂k, ûk)

x̂A,k+1 = Wk+1xk + bk+1,

(A.16)

where cvx_hull is defined either by equations (A.13) or (A.15). In this case, we

will still be able to compute a closed form solution.

We will denote φuk,lk and ψuk,lk the upper and lower bound functions defining

the convex hull of the sigmoid function, which can be obtained as described in the

previous subsection. If we use the last equality constraint of Problem (A.16) to

replace the x̂A,k+1 term in the objective function, we obtain cTk x̂B,k + cTk+1Wk+1xk.

Depending on the sign of cTk+1Wk+1, xk will either take the value φuk,lk or ψuk,lk ,

resulting in the following problem:

min
x̂B,k

cTk x̂B,k +
[
cTk+1Wk+1

]
−
φuk,lk (x̂B,k) +

[
cTk+1Wk+1

]
+
ψuk,lk (x̂B,k)

s.t l̂k ≤ x̂B,k ≤ ûk.
(A.17)

To solve this problem, several observations can be made: First of all, at that

point, the optimisation decomposes completely over the components of x̂B,k so all

problems can be solved independently from each other. The second observation

is that to solve this problem, we can decompose the minimisation over the whole

range
[̂
lk, ûk

]
into a set of minimisation over the separate pieces, and then returning

the minimum corresponding to the piece producing the lowest value.

The minimisation over the pieces can be of two forms. Both bounds can be linear

(such as between the green dotted lines in Figure A.1(c)), in which case the problem

is easy to solve by looking at the signs of the coefficient of the objective function.

The other option is that one of the bound will be equal to the activation function
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(such as in Figures A.1(a) or A.1(b), or in the outer sections of Figure A.1(c)),

leaving us with a problem of the form:

min
x̂B,k

cTlinx̂B,k + cTσσ (x̂B,k)

l̂ ≤ x̂B,k ≤ û,
(A.18)

where l̂, û, clin and cσ will depend on what part of the problem we are trying to solve.

This is a convex problem so the value will be reached either at the extremum

of the considered domain (̂l or û), or it will be reached at the points where the

derivative of the objective functions cancels. This corresponds to the roots of

clin + cTσσ (x̂B,k) (1− σ (x̂B,k)). Provided that 1 + 4clin
cσ ≥ 0, the possible roots will

be given by σ−1

1±
√

1+ 4clin
cσ

2

, with σ−1 being the logit function, the inverse of

the sigmoid function
(
σ−1(x) = log

(
x

1−x

))
. To solve problem (A.18), we evaluate

its objective function at the extreme points (̂l and û) and at those roots if they

are in the feasible domain, and return the point corresponding to the minimum

score achieved. With this method, we can solve the Pk subproblems even when

the activation function is a sigmoid.

A.4 Momentum for the Proximal solver

Supergradient methods for both our dual (2.11) and for (2.6) by Dvijotham et al.

(2018b) can easily rely on acceleration techniques such as Adam (Kingma and Ba,

2015) to speed-up convergence. Therefore, inspired by its presence in Adam, and

by the work on accelerating proximal methods (Lin et al., 2017; Salzo and Villa,

2012), we apply momentum on the proximal updates.

By closely looking at equation (2.18), we can draw a similarity between dual

updates in the proximal algorithm and supergradient ascent. The difference is that

the former operation takes place after a closed-form minimization of the linear

inner problem in x̂A and x̂B, whereas the latter after some steps of an optimization

algorithm that solves the quadratic form of the Augmented Lagrangian (2.19).

Let us denote the (approximate) argmin of the Augmented Lagrangian at the

t-th iteration of the method of multipliers by x̂t,†. Thanks to the aforementioned
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similarity, we can keep an exponential average of the gradient-like terms with

parameter µ ∈ [0, 1] and adopt momentum for the dual updates, yielding:

πt+1
k = µπtk +

x̂t,†B,k − x̂t,†A,k
ηk

ρt+1
k = ρtk + πt+1

k

(A.19)

Under the proximal interpretation of the method of multipliers, the Augmented

Lagrangian can be derived by adding a (quadratic) proximal term on ρ in the stan-

dard Lagrangian, and plugging the closed-form solution of the resulting quadratic

problem, which corresponds to equation (2.18), into the objective (Bertsekas and

Tsitsiklis, 1989). In other words, we make the following modification to the

standard Lagrangian:

x̂A,n+
n−1∑
k=1

(x̂B,k − x̂A,k)T ρt+1
k → x̂A,n+

n−1∑
k=1

(x̂B,k − x̂A,k)T ρt+1
k −

ηk
2 ‖ρ

t+1
k −ρtk‖2,

and then plug in equation (2.18), which results from setting the dual gradient of

the quadratic function above to 0. If, rather than equation (2.18), we plug in

equation (A.19), incorporating momentum, the primal problem of the modified

method of multipliers becomes:[
xt, x̂t

]
= argmin

x,x̂
L
(
x̂,ρt

)
s.t. P0(x0, x̂A,1); Pk(xk, x̂B,k, x̂A,k+1) k ∈ J1, n− 1K

where: L
(
x̂,ρt

)
=

[
x̂A,n +∑n−1

k=1 (x̂B,k − x̂A,k)T ρtk +∑n−1
k=1

1
2ηk
‖x̂B,k − x̂A,k‖2

−∑n−1
k=1

ηk
2 ‖µπk‖

2. (A.20)

We point out that the Augmented Lagrangian’s gradients ∇x̂B,kL (x̂,ρ) and

∇x̂A,kL (x̂,ρ) remain unvaried with respect to the momentum-less solver. Therefore,

in practice, the only algorithmic change for the solver lies in the dual update

formula (A.19).
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A.5 Supplementary Incomplete Verification Experiments

We now complement the incomplete verification results presented in the chapter 2.

Figures A.2 and A.3 show experiments (see section 2.7) for a network trained using

standard stochastic gradient descent and cross entropy, with no robustness objective.

We employ εverif = 1.125/255, which is smaller than commonly employed verification

radii due to the network’s adversary-agnostic training. Most observations done

in chapter 2 for the adversarially trained network (Figures 2.2 and 2.3) still hold

true: in particular, the advantage of the Lagrangian Decomposition based dual

compared to the dual by Dvijotham et al. (2018b) is even more marked than in

Figure 2.3. In fact, for a subset of the properties, DSG+ returns rather loose

bounds even after 1040 iterations. The Proximal returns better bounds than the

Supergradient in this case as well, with Proximal displaying a much larger support
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Figure A.2: Comparison of the distribution of runtime and gap to optimality on an
SGD-trained network. In both cases, lower is better. The width at a given value represents
the proportion of problems for which this is the result. Gurobi Planet always returns the
optimal solution to problem (2.7), at a large computational cost.
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Figure A.3: Pointwise comparison for a subset of the methods on the data presented in
Figure A.2. Each datapoint corresponds to a CIFAR image, darker colour shades mean
higher point density in a logarithmic scale. The dotted line corresponds to the equality
and in both graphs, lower is better along both axes.

of the optimality gap distribution.



B
Scaling the Convex Barrier with Sparse

Dual Algorithms

Contents
B.1 Limitations of Previous Dual Approaches . . . . . . . . . . . . . 162
B.2 Dual Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . 163

B.2.1 Equivalence to Planet . . . . . . . . . . . . . . . . . . . . 163
B.2.2 Big-M Dual . . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.2.3 Big-M solver . . . . . . . . . . . . . . . . . . . . . . . . . 165

B.3 Implementation Details for Saddle Point . . . . . . . . . . . . . 166
B.3.1 Constraint Price Caps . . . . . . . . . . . . . . . . . . . . 166
B.3.2 Primal Initialization . . . . . . . . . . . . . . . . . . . . . 167

B.4 Dual Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
B.5 Intermediate Bounds . . . . . . . . . . . . . . . . . . . . . . . . 169
B.6 Pre-activation Bounds in Ak . . . . . . . . . . . . . . . . . . . . 170

B.6.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . 171
B.6.2 Derivation of Ak . . . . . . . . . . . . . . . . . . . . . . . 174

B.7 Masked Forward and Backward Passes . . . . . . . . . . . . . . 177
B.7.1 Convolution as matrix-matrix multiplication . . . . . . . 178
B.7.2 Masked convolution as matrix-matrix multiplication . . . 178

B.8 Experimental Appendix . . . . . . . . . . . . . . . . . . . . . . . 179
B.8.1 Adversarially-Trained CIFAR-10 Incomplete Verification . 179
B.8.2 Sensitivity of Active Set to selection criterion and frequency180
B.8.3 MNIST Incomplete Verification . . . . . . . . . . . . . . . 183

161



B. Scaling the Convex Barrier with Sparse Dual Algorithms 162

B.1 Limitations of Previous Dual Approaches

In this section, we show that previous dual derivations (Bunel et al., 2020a;

Dvijotham et al., 2018b) violate Fact 1. Therefore, they are not efficiently applicable

to problem (3.3), motivating our own derivation in section 3.3.

We start from the approach by Dvijotham et al. (2018b), which relies on

relaxing equality constraints (3.1b), (3.1c) from the original non-convex problem

(3.1). Dvijotham et al. (2018b) prove that this relaxation corresponds to solving

convex problem (3.2), which is equivalent to the Planet relaxation (Ehlers, 2017),

to which the original proof refers. As we would like to solve tighter problem

(3.3), the derivation is not directly applicable. Relying on intuition from convex

analysis applied to duality gaps (Lemaréchal, 2001), we conjecture that relaxing

the composition (3.1c) ◦ (3.1b) might tighten the primal problem equivalent to

the relaxation, obtaining the following dual:

max
µ

min
x

Wnxn−1 + bn +
n−1∑
k=1
µTk (xk −max {Wkxk−1 + bk, 0})

s.t. lk ≤ xk ≤ uk k ∈ J1, n− 1K ,

x0 ∈ C.

(B.1)

Unfortunately dual (B.1) requires an LP (the inner minimisation over x, which

in this case does not decompose over layers) to be solved exactly to obtain a

supergradient and any time a valid bound is needed. This is markedly different

from the original dual by Dvijotham et al. (2018b), which had an efficient closed-

form for the inner problems.

The derivation by Bunel et al. (2020a), instead, operates by substituting

(3.1c) with its convex hull and solving its Lagrangian Decomposition dual. The

Decomposition dual for the convex hull of (3.1c) ◦ (3.1b) (i.e., Ak) takes the

following form:

max
ρ

min
x,z

WnxA,n−1 + bn +
n−1∑
k=1
ρTk (xB,k − xA,k)

s.t. x0 ∈ C,

(xB,k,WnxA,n−1 + bn, zk) ∈ Adec,k k ∈ J1, n− 1K ,

(B.2)
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where Adec,k corresponds to Ak with the following substitutions: xk → xB,k, and

x̂k → WnxA,n−1 + bn. It can be easily seen that the inner problems (the inner

minimisation over xA,k,xB,k, for each layer k > 0) are an exponentially sized LP.

Again, this differs from the original dual on the Planet relaxation (Bunel et al.,

2020a), which had an efficient closed-form for the inner problems.

B.2 Dual Initialisation

Algorithm 5 Big-M solver

1: function bigm_compute_bounds({Wk,bk, lk,uk, l̂k, ûk}k=1..n)
2: Initialise duals α0,β0

M using interval bound propagation (Gowal et al., 2018a)
3: for t ∈ J1, T − 1K do
4: x∗,t, z∗,t ∈ argminx,z LM(x, z,αt,βtM) using (B.5)-(B.6)
5: αt+1,βt+1

M ← [αt,βt] +H[∇αdM(α,β),∇βMdM(α,β)] . supergradient step, using (B.7)
6: αt+1,βt+1

M ← max(αt+1, 0),max(βt+1
M , 0) . dual projection

7: return minx,z LM(x, z,αT ,βTM)

As shown in section 3.3, the Active Set solver reduces to a dual solver for the

Big-M relaxation (3.2) if the active set B is kept empty throughout execution.

We employ this Big-M solver as dual initialization for both Active Set (§3.4)

and Saddle Point (§3.5). We demonstrate experimentally in §3.8 that, when

used as a stand-alone solver, our Big-M solver is competitive with previous dual

algorithms for problem (3.2).

The goal of this section is to explicitly describe the Big-M solver, which is

summarised in algorithm 5. We point out that, in the notation of restricted variable

sets from section 3.4, βM := β∅. We now describe the equivalence between the

Big-M and Planet relaxations, before presenting the solver in section B.2.3 and

the dual it operates on in section B.2.2.

B.2.1 Equivalence to Planet

As previously shown (Bunel et al., 2018), the Big-M relaxation (Mk, when consid-

ering the k-th layer only) in problem (3.2) is equivalent to the Planet relaxation by

Ehlers (2017). Then, due to strong duality, our Big-M solver (section B.2.2) and

the solvers by Bunel et al. (2020a); Dvijotham et al. (2018b) will all converge to

the bounds from the solution of problem (3.2). In fact, the Decomposition-based
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method (Bunel et al., 2020a) directly operates on the Planet relaxation, while

Dvijotham et al. (2018b) prove that their dual is equivalent to doing so.

On the k-th layer, the Planet relaxation takes the following form:

Pk :=



if l̂k ≤ 0 and ûk ≥ 0 :
xk ≥ 0, xk ≥ x̂k,
xk ≤ ûk � (x̂k − l̂k)�

(
1/(ûk − l̂k)

)
.

if ûk ≤ 0 :
xk = 0.

if l̂k ≥ 0 :
xk = x̂k.

(B.3)

It can be seen that Pk = Projx,x̂ (Mk), where Projx,x̂ denotes projection on

the x, x̂ hyperplane. In fact, as zk does not appear in the objective of the primal

formulation (3.2), but only in the constraints, this means assigning it the value that

allows the largest possible feasible region. This is trivial for passing or blocking

ReLUs. For the ambiguous case, instead, Figure B.1 (on a single ReLU) shows

that zk = x̂k−l̂k
ûk−l̂k

is the correct assignment.

B.2.2 Big-M Dual

As evident from problem (3.3), Ak ⊆Mk. If we relax all constraints inMk (except,

again, the box constraints), we are going to obtain a dual with a strict subset of

the variables in problem (3.5). The Big-M dual is a specific instance of the Active

zk

xk

xk = x̂k − l̂k � (1− zk)

xk = ûk � zk

10 zk =
x̂k−l̂k
ûk−l̂k

Cσ(x̂k, zk)

Figure B.1: Mk plotted on the (zk,xk) plane, when l̂k ≤ 0 and ûk ≥ 0.
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Set dual (3.7) where B = ∅, and it takes the following form:

max
(α,β)≥0

dM(α,βM) where: dM(α,βM) := min
x,z
LM(x, z,α,βM),

LM(x, z,α,βM) =


−∑n−1

k=0

(
αk −W T

k+1αk+1 − (βk,0 + βk,1 −W T
k+1βk+1,1)

)T
xk

+∑n−1
k=1 bTkαk −

∑n−1
k=1

(
βk,0 � ûk + βk,1 � l̂k

)T
zk

+∑n−1
k=1 (̂lk − bk)Tβk,1

s.t. x0 ∈ C, (xk, zk) ∈ [lk,uk]× [0, 1] k ∈ J1, n− 1K.
(B.4)

B.2.3 Big-M solver

We initialise dual variables from interval propagation bounds (Gowal et al., 2018a):

this can be easily done by setting all dual variables except αn to 0. Then, we

can maximize dM(α,β) via projected supergradient ascent, exactly as described in

section 3.4 on a generic active set B. All the computations in the solver follow from

keeping B = ∅ in §3.4. We explicitly report them here for the reader’s convenience.

Let us define the following shorthand for the primal coefficients:

fM,k(α,βM) =
(
αk −W T

k+1αk+1 − (βk,0 + βk,1 −W T
k+1βk,1)

)
gM,k(βM) = βk,0 � ûk + βk,1 � l̂k.

The minimisation of the Lagrangian LM(x, z,α,β) over the primals for k ∈

J1, n − 1K is as follows:

x∗k = 1fM,k(α,βM)≥0 � ûk + 1fM,k(α,βM)<0 � l̂k z∗k = 1gM,k(βM)≥0 � 1 (B.5)

For k = 0, instead (assuming, as §3.4 that this can be done efficiently):

x∗0 ∈ argmin
x0

fM,k(α,βM)Tx0 s.t. x0 ∈ C. (B.6)

The supergradient over the Big-M dual variables α,βk,0,βk,1 is computed exactly

as in §3.4 and is again a subset of the supergradient of the full dual problem (3.5).

We report it for completeness. For each k ∈ J0, n − 1K:

∇αkd(α,β) = Wkx∗k−1 + bk − x∗k, ∇βk,0d(α,β) = xk − zk � ûk,

∇βk,1d(α,β) = xk − (Wkxk−1 + bk) + (1− zk)� l̂k.
(B.7)
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B.3 Implementation Details for Saddle Point

In this section, we present details of the Saddle Point solver that were omitted

from chapter 3. We start with the choice of price caps µk on the Lagrangian

multipliers (§B.3.1), and conclude with a description of our primal initialisation

procedure (§B.3.2).

B.3.1 Constraint Price Caps

Price caps µ containing the optimal dual solution to problem (3.5) can be found via

binary search (see §3.5.1). However, such a strategy might require running Saddle

Point to convergence on several instances of problem (3.13). Therefore, in practice,

we employ a heuristic to set constraint caps to a reasonable approximation.

Given duals (α0,β0) from the dual initialization procedure (algorithm 3 or

algorithm 5, depending on the computational budget), for each k ∈ J1, n− 1K

we set µk as follows:

µα,k =
α0

k if α0
k > 0

cα,k otherwise

µβ,k =

∑
Ik∈2Wk β

0
k if ∑

Ik∈2Wk β
0
k > 0

cβ,k otherwise,

(B.8)

where cα,k and cβ,k are small positive constants. In other words, we cap the (sums

over) dual variables to their values at initialization if these are non-zero, and we

allow dual variables to turn positive otherwise. While a larger feasible region (for

instance, setting µα,k = maxiαk[i]� 1, µβ,k = maxi
∑
Ik∈2Wk β

0
k[i]� 1) might yield

tighter bounds at convergence, we found assignment (B.8) to be more effective

on the iteration budgets employed in §3.8.2,§3.8.3.
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B.3.2 Primal Initialization

If we invert the minimization and maximization, our saddle-point problem (3.13)

can be seen as a non-smooth minimization problem (the minimax theorem holds):

min
x,z

max
α,β



∑n−1
k=1 α

T
k (Wkxk−1 + bk − xk) +∑n−1

k=1 β
T
k,0 (xk − zk � ûk)

+∑n−1
k=1

∑
Ik∈Ek β

T
k,Ik


(
Wk � Ik � Ľk−1

)
� (1− zk)

−bk � zk −
(
Wk � (1− Ik)� Ǔk−1

)
� zk

− (Wk � Ik) xk−1 + xk


+∑n−1

k=1 β
T
k,1

(
xk − (Wkxk−1 + bk) + (1− zk)� l̂k

)
+Wnxn−1 + bn

s.t. x0 ∈ C,

(xk, zk) ∈ [lk,uk]× [0, 1] k ∈ J1, n− 1K ,
αk ∈ [0,µk,α](
βk ≥ 0, ∑Ik∈Ek∪{0,1} βk,Ik ≤ µk,β

) k ∈ J1, n− 1K .

(B.9)

The “primal view"1 of problem (B.9) admits an efficient subgradient method, which

we employ as primal initialization for the Saddle Point solver.

Technical details The inner maximizers (α∗,β∗), which are required to obtain a

valid subgradient, will be given in closed-form by the dual conditional gradients

from equations (3.14), (3.15) (the objective is bilinear). Then, using the dual

functions defined in (3.6), the subgradient over the linearly-many primal variables

can be computed as fk(α∗,β∗) for xk and gk(β∗) for zk. After each subgradient

step, the primals are projected to the feasible space: this is trivial for xk and

zk, which are box constrained, and can be efficiently performed for C in the

common cases of `∞ or `2 balls.

Simplified initialization Due to the additional cost associated to masked forward-

backward passes (see appendix B.7), the primal initialization procedure can be

simplified by restricting the dual variables to the ones associated to the Big-M

relaxation (appendix B.2). This can be done by substituting Ek ← ∅ and βk ← β∅,k

1due to the restricted dual domain, problem (B.9) does not correspond to the original primal
problem in (3.3).
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(see notation in §3.4.1) in problem (B.9). A subgradient method for the resulting

problem can then be easily adapted from the description above.

B.4 Dual Derivations

We now prove that the dual of:

min
x,x̂,z

x̂n s.t.

x0 ∈ C
x̂k+1 = Wk+1xk + bk+1 k ∈ J0, n− 1K ,

(xk, x̂k, zk) ∈Mk

xk ≤


(Wk � Ik) xk−1 + zk � bk +
−
(
Wk � Ik � Ľk−1

)
� (1− zk) +

+
(
Wk � (1− Ik)� Ǔk−1

)
� zk

 ∀Ik ∈ Ek
 := Ak k ∈ J1, n− 1K .

(3.3)

corresponds to as:

max
(α,β)≥0

d(α,β) where: d(α,β) := min
x,z
L(x, z,α,β),

L(x, z,α,β) =
[ ∑n−1

k=1 bTkαk −
∑n−1
k=0 fk(α,β)Txk −

∑n−1
k=1 gk(β)Tzk

+∑n−1
k=1

(∑
Ik∈Ek(Wk � Ik � Ľk−1) @ βk,Ik + βTk,1(̂lk − bk)

)
s.t. x0 ∈ C, (xk, zk) ∈ [lk,uk]× [0, 1] k ∈ J1, n− 1K,

,

(3.5)

with:

fk(α,β) = αk −W T
k+1αk+1 −

∑
Ik βk,Ik +∑

Ik+1(Wk+1 � Ik+1)Tβk+1,Ik+1 ,

gk(β) =
 ∑Ik∈Ek

(
Wk � (1− Ik)� Ǔk−1

)
� βk,Ik + βk,0 � ûk + βk,1 � l̂k

+∑
Ik∈Ek

(
Wk � Ik � Ľk−1

)
� βk,Ik +∑

Ik∈Ek βk,Ik � bk.
(3.6)

The Active Set (equation (3.7)) and Big-M duals (equation (B.4)) can be

obtained by removing βk,Ik∀ Ik ∈ Ek \ Bk and βk,Ik∀ Ik ∈ Ek, respectively. We

employ the following Lagrangian multipliers:



B. Scaling the Convex Barrier with Sparse Dual Algorithms 169

xk ≥ x̂k ⇒ αk,

xk ≤ ûk � zk ⇒ βk,0,

xk ≤ x̂k − l̂k � (1− zk)⇒ βk,1,

xk ≤


(Wk � Ik) xk−1 + zk � bk
−
(
Wk � Ik � Ľk−1

)
� (1− zk)

+
(
Wk � (1− Ik)� Ǔk−1

)
� zk

⇒ βk,Ik ,

and obtain, as a Lagrangian (using x̂k = Wkxk−1 + bk):

L(x, z,α,β) =



∑n−1
k=1 α

T
k (Wkxk−1 + bk − xk) +∑n−1

k=1 β
T
k,0 (xk − zk � ûk)

+∑n−1
k=1

∑
Ik∈Ek β

T
k,Ik


(
Wk � Ik � Ľk−1

)
� (1− zk) +

− (Wk � Ik) xk−1 − bk � zk +
−
(
Wk � (1− Ik)� Ǔk−1

)
� zk + xk


+∑n−1

k=1 β
T
k,1

(
xk − (Wkxk−1 + bk) + (1− zk)� l̂k

)
+Wnxn−1 + bn

Let us use ∑Ik as shorthand for ∑Ik∈Ek∪{0,1}. If we collect the terms with

respect to the primal variables and employ dummy variables α0 = 0, β0 = 0,

αn = I, βn = 0, we obtain:

L(x, z,α,β) =



−∑n−1
k=0

(
αk −W T

k+1αk+1 −
∑
Ik βk,Ik

+∑Ik+1(Wk+1 � Ik+1)Tβk+1,Ik+1

)T
xk

−∑n−1
k=1


∑
Ik∈Ek βk,Ik � bk + βk,1 � l̂k + βk,0 � ûk

+∑
Ik∈Ek

(
Wk � Ik � Ľk−1

)
� βk,Ik

+∑
Ik∈Ek

(
Wk � (1− Ik)� Ǔk−1

)
� βk,Ik


T

zk

+∑n−1
k=1

(∑
Ik∈Ek(Wk � Ik � Ľk−1) @ βk,Ik + βTk,1(̂lk − bk)

)
+∑n−1

k=1 bTkαk

which corresponds to the form shown in problem (3.5).

B.5 Intermediate Bounds

A crucial quantity in both ReLU relaxations (Mk and Ak) are intermediate pre-

activation bounds l̂k, ûk. In practice, they are computed by solving a relaxation

Ck (which might be Mk, Ak, or something looser) of (3.1) over subsets of the
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network (Bunel et al., 2020a). For l̂i, this means solving the following problem

(separately, for each entry l̂i[j]):

min
x,x̂,z

x̂i[j]

s.t. x0 ∈ C

x̂k+1 = Wk+1xk + bk+1, k ∈ J0, i− 1K ,

(xk, x̂k, zk) ∈ Ck k ∈ J1, i− 1K .

(B.10)

As (B.10) needs to be solved twice for each neuron (lower and upper bounds,

changing the sign of the last layer’s weights) rather than once as in (3.3), depending

on the computational budget, Ck might be looser than the relaxation employed

for the last layer bounds (in our case, Ak). In all our experiments, we compute

intermediate bounds as the tightest bounds between the method by Wong and

Kolter (2018) and Interval Propagation (Gowal et al., 2018a).

Once pre-activation bounds are available, post-activation bounds can be simply

computed as lk = max(̂lk, 0),uk = max(ûk, 0).

B.6 Pre-activation Bounds in Ak

We now highlight the importance of an explicit treatment of pre-activation bounds

in the context of the relaxation by Anderson et al. (2020). In §B.6.1 we will show

through an example that, without a separate pre-activation bounds treatment,

Ak could be looser than the less computationally expensive Mk relaxation. We

then (§B.6.2) justify our specific pre-activation bounds treatment by extending

the original proof by Anderson et al. (2020).

The original formulation by Anderson et al. (2020) is the following:

xk ≥ Wkxk−1 + bk

xk ≤


(Wk � Ik) xk−1 + zk � bk
−
(
Wk � Ik � Ľk−1

)
� (1− zk)

+
(
Wk � (1− Ik)� Ǔk−1

)
� zk

 ∀Ik ∈ 2Wk

(xk, x̂k, zk) ∈ [lk,uk]× [̂lk, ûk]× [0, 1]


= A′k. (B.11)

While pre-activation bounds regularly appear as lower and upper bounds to x̂k,

they do not appear in any other constraint. Indeed, the difference with respect to
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Ak as defined in equation (3.3) exclusively lies in the treatment of pre-activation

bounds within the exponential family. Set Ak explicitly employs generic l̂k, ûk in the

constraint set via xk ≤ ûk� zk, and xk ≤ x̂k− l̂k� (1− zk) fromMk. On the other

hand, A′k implicitly sets l̂k, ûk to the value dictated by interval propagation bounds

(Gowal et al., 2018a) via the constraints in Ik = 0 and Ik = 1 from the exponential

family. In fact, setting Ik = 0 and Ik = 1, we obtain the following two constraints:

xk ≤ x̂k −M−
k � (1− zk)

xk ≤M+
k � zk

where: M−
k := min

xk−1∈[lk−1,uk−1]
W T
k xk−1 + bk = Wk � Ľk−1 + bk

M+
k := max

xk−1∈[lk−1,uk−1]
W T
k xk−1 + bk = Wk � Ǔk−1 + bk

(B.12)

which correspond to the upper bounding ReLU constraints inMk if we set l̂k →

M−
k , ûk → M+

k . While l̂k, ûk are (potentially) computed solving an optimisation

problem over the entire network (problem B.10), the optimisation for M−
k ,M

+
k

involves only the layer before the current. Therefore, the constraints in (B.12)

might be much looser than those in Mk.

In practice, the effect of l̂k[i], ûk[i] on the resulting set is so significant that

Mk might yield better bounds than A′k, even on very small networks. We now

provide a simple example.

B.6.1 Motivating Example

Figure B.2 illustrates the network architecture. The size of the network is the

minimal required to reproduce the phenomenon. Mk and Ak coincide for single-

neuron layers (Anderson et al., 2020), and l̂k = M−
k , ûk = M+

k on the first hidden

layer (hence, a second layer is needed).

Let us write the example network as a (not yet relaxed, as in problem (3.1))
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Input - 0 Hidden -
1

Hidden -
2

Output -
3

x0[0] x1[0] x2[0]

x3[0]

x0[1] x1[1] x2[1]

(1)

−1

(−1)

(1)

+1(−1)

(−1)

−2

(2)

(−2)

(1)

(2)

(−1)

Figure B.2: Example network architecture in whichMk ⊂ A′k, with pre-activation bounds
computed with Ck =Mk. For the bold nodes (the two hidden layers) a ReLU activation
follows the linear function. The numbers between parentheses indicate multiplicative
weights, the others additive biases (if any).

optimization problem for the lower bound on the output node x3.

l3 = arg min x,x̂

[
2 −1

]
x2 (B.13a)

s.t. x0 ∈ [−1, 1]2 (B.13b)

x̂1 =
[
1 −1
1 −1

]
x0 +

[
−1
1

]
x1 = max(0, x̂1) (B.13c)

x̂2 =
[
−1 2
−2 1

]
x1 +

[
−2
0

]
x2 = max(0, x̂2) (B.13d)

x3 =
[
2 −1

]
x2 (B.13e)

Let us compute pre-activation bounds with Ck =Mk (see problem (B.10)). For

this network, the final output lower bound is tighter if the employed relaxation

is Mk rather than Ak (hence, in this case, Mk ⊂ A′k). Specifically: l̂3,A′
k

=

−1.2857, l̂3,Mk
= −1.2273. In fact:

• In order to compute l1 and u1, the post-activation bounds of the first-layer,

it suffices to solve a box-constrained linear program for l̂1 and û1, which at

this layer coincide with interval propagation bounds, and to clip them to be

non-negative. This yields l1 =
[
0 0

]T
, u1 =

[
1 3

]T
.

• ComputingM+
2 [1] = maxx1∈[l1,u1]

[
−2 1

]
x1 = 3 we are assuming that x1[0] =

l1[0] and x1[1] = u1[1]. These two assignments are in practice conflicting,
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as they imply different values for x0. Specifically, x1[1] = u1[1] requires

x0 =
[
u0[0] l0[1]

]
=
[
1 −1

]
, but this would also imply x1[0] = u1[0],

yielding x̂2[1] = 1 6= 3.

Therefore, explicitly solving a LP relaxation of the network for the value

of û2[1] will tighten the bound. Using Mk, the LP for this intermediate

pre-activation bound is:

û2[1] = arg min x,x̂,z

[
−2 1

]
x1 (B.14a)

s.t. x0 ∈ [−1, 1]2, z1 ∈ [0, 1]2, x1 ∈ R2
≥0 (B.14b)

x̂1 =
[
1 −1
1 −1

]
x0 +

[
−1
1

]
(B.14c)

x1 ≥ x̂1 (B.14d)

x1 ≤ û1 � z1 =
[
1
3

]
� z1 (B.14e)

x1 ≤ x̂1 − l̂1 � (1− z1) = x̂1 −
[
−3
−1

]
� (1− z1)

(B.14f)

Yielding û2[1] = 2.25 < 3 = M+
2 [1]. An analogous reasoning holds for M−

2 [1]

and l̂2[1].

• InMk, we therefore added the following two constraints:

x2[1] ≤ x̂2[1]− l̂2[1](1− z2[1])

x2[1] ≤ û2[1]z2[1]
(B.15)

that in A′k correspond to the weaker:

x2[1] ≤ x̂2[1]−M−
2 [1](1− z2[1])

x2[1] ≤M+
2 [1]z2[1]

(B.16)

As the last layer weight corresponding to x2[1] is negative (W3[0, 1] = −1),

these constraints are going to influence the computation of l̂3.

• In fact, the constraints in (B.15) are both active when optimizing for l̂3,Mk
,

whereas their counterparts for l̂3,A′
k
in (B.16) are not. The only active upper

constraint at neuron x2[1] for the Anderson relaxation is x2[1] ≤ x1[1],
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corresponding to the constraint from A′2 with I2[1, ·] = [0 1]. Evidently, its

effect is not sufficient to counter-balance the effect of the tighter constraints

(B.15) for I2[1, ·] = [1 1] and I2[1, ·] = [0 0], yielding a weaker lower bound for

the network output.

B.6.2 Derivation of Ak

Having motivated an explicit pre-activation bounds treatment for the relaxation

by Anderson et al. (2020), we now extend the original proof for A′k (equation

(B.11)) to obtain our formulation Ak (as defined in equation (3.3)). For simplicity,

we will operate on a single neuron xk[i].

A self-contained way to derive A′k is by applying Fourier-Motzkin elimination

on a standard MIP formulation referred to as the multiple choice formulation

(Anderson et al., 2019), which is defined as follows:

(xk−1,xk[i]) = (x0
k−1,x0

k[i]) + (x1
k−1,x1

k[i])
x0
k[i] = 0 ≥ wT

i,kx0
k−1 + bk[i](1− zk[i])

x1
k[i] = wT

i,kx1
k−1 + bk[i]zk[i] ≥ 0

lk−1(1− zk[i]) ≤ x0
k−1 ≤ uk−1(1− zk[i])

lk−1zk[i] ≤ x1
k−1 ≤ uk−1zk[i]

zk[i] ∈ [0, 1]


= S ′k,i (B.17)

Where wi,k denotes the i-th row ofWk, and x1
k−1 and x0

k−1 are copies of the previous

layer variables. Applying (B.17) to the entire neural network results in a quadratic

number of variables (relative to the number of neurons). The formulation can be

obtained from well-known techniques from the MIP literature (Jeroslow, 1987) (it

is the union of the two polyhedra for a passing and a blocking ReLU, operating in

the space of xk−1). Anderson et al. (2019) show that A′k = Projxk−1,xk,zk(S
′
k).

If pre-activation bounds l̂k, ûk (computed as described in section B.5) are

available, we can naturally add them to (B.17) as follows:

(xk−1,xk[i], zk[i]) ∈ S ′k,i
l̂k[i](1− zk[i]) ≤ wT

i,kx0
k−1 + bk[i](1− zk[i]) ≤ ûk[i](1− zk[i])

l̂k[i]� zk[i] ≤ wT
i,kx1

k−1 + bk[i]zk[i] ≤ ûk[i]zk[i]

 = Sk,i (B.18)
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We now prove that this formulation yields Ak when projecting out the copies of

the activations.

Proposition 9. Sets Sk from equation (B.18) and Ak from problem (3.3) are

equivalent, in the sense that Ak = Projxk−1,xk,zk(Sk).

Proof. In order to prove the equivalence, we will rely on Fourier-Motzkin elimination

as in the original Anderson relaxation proof (Anderson et al., 2019). Going along

the lines of the original proof, we start from (B.17) and eliminate x1
k−1, x0

k[i] and

x1
k[i] exploiting the equalities. We then re-write all the inequalities as upper or lower

bounds on x0
k−1[0] in order to eliminate this variable. As Anderson et al. (2019), we

assume wi,k[0] > 0. The proof generalizes by using Ľ and Ǔ for wi,k[0] < 0, whereas

if the coefficient is 0 the variable is easily eliminated. We get the following system:

x0
k−1[0] = 1

wi,k[0]

wT
i,kxk−1 −

∑
j>1
wi,k[j]x0

k−1[j] + bk[i]zk[i]− xk[i]
 (B.19a)

x0
k−1[0] ≤ − 1

wi,k[0]

∑
j>1
wi,k[j]x0

k−1[j] + bk[i](1− zk[i])
 (B.19b)

x0
k−1[0] ≤ 1

wi,k[0]

wT
i,kxk−1 −

∑
j>1
wi,k[j]x0

k−1[j] + bk[i]zk[i]
 (B.19c)

lk−1[0](1− zk[i]) ≤ x0
k−1[0] ≤ uk−1[0](1− zk[i]) (B.19d)

x0
k−1[0] ≤ xk−1[0]− lk−1[0]zk[i] (B.19e)

x0
k−1[0] ≥ xk−1[0]− uk−1[0]zk[i] (B.19f)

x0
k−1[0] ≤ 1

wi,k[0]

wT
i,kxk−1 −

∑
j>1
wi,k[j]x0

k−1[j] + (bk[i]− l̂k[i])zk[i]
 (B.19g)

x0
k−1[0] ≥ 1

wi,k[0]

wT
i,kxk−1 −

∑
j>1
wi,k[j]x0

k−1[j] + (bk[i]− ûk[i])zk[i]
 (B.19h)

x0
k−1[0] ≥ 1

wi,k[0]

(̂lk[i]− bk[i])(1− zk[i])−
∑
j>1
wi,k[j]x0

k−1[j]
 (B.19i)

x0
k−1[0] ≤ 1

wi,k[0]

(ûk[i]− bk[i])(1− zk[i])−
∑
j>1
wi,k[j]x0

k−1[j]
 (B.19j)

where only inequalities (B.19g) to (B.19j) are not present in the original proof.

We therefore focus on the part of the Fourier-Motzkin elimination that deals with
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them, and invite the reader to refer to Anderson et al. (2019) for the others. The

combination of these new inequalities yields trivial constraints. For instance:

(B.19i) + (B.19g) =⇒ l̂k[i] ≤ wT
i,kxk−1 + bk[i] = x̂k[i] (B.20)

which holds by the definition of pre-activation bounds.

Let us recall that xk[i] ≥ 0 and xk[i] ≥ x̂k[i], the latter constraint resulting from

(B.19a) + (B.19b). Then, it can be easily verified that the only combinations of

interest (i.e., those that do not result in constraints that are obvious by definition

or are implied by other constraints) are those containing the equality (B.19a). In

particular, combining inequalities (B.19g) to (B.19j) with inequalities (B.19d) to

(B.19f) generates constraints that are (after algebraic manipulations) superfluous

with respect to those in (B.21). We are now ready to show the system resulting

from the elimination:

xk[i] ≥ 0 (B.21a)

xk[i] ≥ x̂k[i] (B.21b)

xk[i] ≤ wi,k[0]xk−1[0]−wi,k[0]lk−1[0](1− zk[i]) +
∑
j>1
wi,k[j]x0

k−1[j] + bk[i]zk[i]

(B.21c)
xk[i] ≤ wi,k[0]uk−1[0]zk[i] +

∑
j>1
wi,k[j]x0

k−1[j] + bk[i]zk[i] (B.21d)

xk[i] ≥ wi,k[0]xk−1[0]−wi,k[0]uk−1[0](1− zk[i]) +
∑
j>1
wi,k[j]x0

k−1[j] + bk[i]zk[i]

(B.21e)
xk[i] ≥ wi,k[0]lk−1[0]zk[i] +

∑
j>1
wi,k[j]x0

k−1[j] + bk[i]zk[i] (B.21f)

lk−1[0] ≤ xk[i] ≤ uk−1[0] (B.21g)

xk[i] ≥ l̂k[i]zk[i] (B.21h)

xk[i] ≤ ûk[i]zk[i] (B.21i)

xk[i] ≤ x̂k[i]− l̂k[i](1− zk[i]) (B.21j)

xk[i] ≥ x̂k[i]− ûk[i](1− zk[i]) (B.21k)
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Constraints from (B.21a) to (B.21g) are those resulting from the original

derivation of A′k (see (Anderson et al., 2019)). The others result from the inclusion of

pre-activation bounds in (B.18). Of these, (B.21h) is implied by (B.21a) if l̂k[i] ≤ 0

and by the definition of pre-activation bounds (together with (B.21b)) if l̂k[i] > 0.

Analogously, (B.21k) is implied by (B.21b) if ûk[i] ≥ 0 and by (B.21a) otherwise.

By noting that no auxiliary variable is left in (B.21i) and in (B.21j), we can

conclude that these will not be affected by the remaining part of the elimination

procedure. Therefore, the rest of the proof (the elimination of x0
k−1[1], x0

k−1[2], . . . )

proceeds as in (Anderson et al., 2019), leading to Ak,i. Repeating the proof for each

neuron i at layer k, we get Ak = Projxk−1,xk,zk(Sk).

B.7 Masked Forward and Backward Passes

Crucial to the practical efficiency of our solvers is to represent the various operations

as standard forward/backward passes over a neural network. This way, we can

leverage the engineering efforts behind popular deep learning frameworks such as

PyTorch (Paszke et al., 2017). While this can be trivially done for the Big-M

solver (appendix B.2), both the Active Set (§3.4) and Saddle Point (§3.5) solvers

require a specialized operator that we call “masked" forward/backward pass. We

now provide the details to our implementation.

As a reminder from §3.6, masked forward and backward passes respectively

take the following forms (writing convolutional operators via their fully con-

nected equivalents):

(Wk � Ik) ak, (Wk � Ik)T ak+1,

where ak ∈ Rnk , ak+1 ∈ Rnk+1 . They are needed when dealing with the exponential

family of constraints from the relaxation by Anderson et al. (2020). Masked

operators are straightforward to implement for fully connected layers (via element-

wise products). We instead need to be more careful when handling convolutional

layers. Standard convolution relies on re-applying the same weights (kernel) to many
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different parts of the image. A masked pass, instead, implies that the convolutional

kernel is dynamically changing while it is being slided through the image. A naive

solution is to convert convolutions into equivalent linear operators, but this has a high

cost in terms of performance, as it involves much redundancy. Our implementation

relies on an alternative view of convolutional layers, which we outline next.

B.7.1 Convolution as matrix-matrix multiplication

A convolutional operator can be represented via a matrix-matrix multiplication if the

input is unfolded and the filter is appropriately reshaped. The multiplication output

can then be reshaped to the correct convolutional output shape. Given a filter

w ∈ Rc×k1×k2 , an input x ∈ Ri1×i2×i3 and the convolutional output convw(x) =

y ∈ Rc×o2×o3 , we need the following definitions:

[·]I,O : I → O, {·}j : Rd1×···×dn → Rd1×···×dj−1×dj+1×···×dn

unfoldw(·) : Ri1×i2×i3 → Rk1k2×o2o3 , foldw(·) : Rk1k2×o2o3 → Ri1×i2×i3
(B.22)

where the brackets simply reshape the vector from shape I to O, while the braces

sum over the j-th dimension. unfold decomposes the input image into the (possibly

overlapping) o2o3 blocks the sliding kernel operates on, taking padding and striding

into account. fold brings the output of unfold to the original input space. Let us

define the following reshaped versions of the filter and the convolutional output:

WR = [w]Rc×k1×k2 ,Rc×k1k2 , yR = [y]Rc×o2×o3 ,Rc×o2o3

The standard forward/backward convolution (neglecting the convolutional bias,

which can be added at the end of the forward pass) can then be written as:

convw(x) = [WR unfoldw(x)]Rc×o2o3 ,Rc×o2×o3

back_convw(y) = foldw(W T
R yR).

(B.23)

B.7.2 Masked convolution as matrix-matrix multiplication

We need to mask the convolution with a different scalar for each input-output

pair. Therefore, we employ a mask I ∈ Rc×k1k2×o2o3 , whose additional dimension

with respect to WR is associated to the output space of the convolution. Assuming
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vectors are broadcast to the correct output shape2 , we can write the masked forward

and backward passes by adapting equation (B.23) as follows:

convw,I(x) = [{WR � I � unfoldw(x)}2]Rc×o2o3 ,Rc×o2×o3

back_convw,I(y) = foldw({WR � I � yR}1).
(B.24)

Owing to the avoided redundancy with respect to the equivalent linear operation

(e.g., copying of the kernel matrix, zero-padding in the linear weight matrix), this

implementation of the masked forward/backward pass reduces both the memory

footprint and the number of floating point operations (FLOPs) associated to the

passes computations by a factor (i1i2i3)/(k1k2). In practice, this ratio might be

significant: on the incomplete verification networks (§3.8.2) it ranges from 16

to 64 depending on the layer.

B.8 Experimental Appendix

We conclude the appendix by presenting supplementary experiments with respect

to the presentation in chapter 3.

B.8.1 Adversarially-Trained CIFAR-10 Incomplete Verification

In addition to the SGD-trained network in §3.8.2, we now present results relative

to the same architecture, trained with the adversarial training method by Madry

et al. (2018) for robustness to perturbations of εtrain = 2/255. Each adversarial

sample for the training was obtained using 50 steps of projected gradient descent.

For this network, we upper bound the vulnerability to perturbations with εver =

2.7/255. Hyper-parameters are kept to the values tuned on the SGD-trained

network from section 3.8.2.

Figures B.3, B.4, B.5 confirm most of the observations carried out for the

SGD-trained network in §3.8.2, with fewer variability around the bounds returned

by Gurobi cut. Big-M is competitive with BDD+, and switching to Active Set
2if we want to perform an element-wise product a� b between a ∈ Rd1×d2×d3 and b ∈ Rd1×d3 ,

the operation is implicitly performed as a � b′, where b′ ∈ Rd1×d2×d3 is an extended version of b
obtained by copying along the missing dimension.
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after 500 iterations results in much better bounds in the same time. Increasing the

computational budget for Active Set still results in better bounds than Gurobi cut in

a fraction of its running time, even though the performance gap is on average smaller

than on the SGD-trained network. As in section 3.8.2 the gap between Saddle Point

and Active Set, though larger here on average, decreases with the computational

budget, and is further reduced when initializing with a few Active Set iterations.

B.8.2 Sensitivity of Active Set to selection criterion and frequency

In section 3.4.2, we describe how to iteratively modify B, the active set of dual

variables on which our Active Set solver operates. In short, Active Set adds

the variables corresponding to the output of oracle (3.4) invoked at the primal
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Figure B.3: Upper bounds to the adversarial vulnerability for the network adversarially
trained with the method by Madry et al. (2018), from Bunel et al. (2020a). Box plots:
distribution of runtime in seconds. Violin plots: difference with the bounds obtained
by Gurobi with a cut from Ak per neuron; higher is better, the width at a given value
represents the proportion of problems for which this is the result.
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Figure B.4: Pointwise comparison for a subset of the methods on the data presented in
figure 3.1. Darker colour shades mean higher point density (on a logarithmic scale). The
oblique dotted line corresponds to the equality.
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Figure B.5: Pointwise comparison between our proposed solvers on the data presented in
figure B.3. Darker colour shades mean higher point density (on a logarithmic scale). The
oblique dotted line corresponds to the equality.

minimiser of LB(x, z,α,βB), at a fixed frequency ω. We now investigate the

empirical sensitivity of Active Set to both the selection criterion and the frequency

of addition. We test against Ran. Selection, a version of Active Set for which the

variables to add are selected at random by uniformly sampling from the binary Ik
masks. As expected, Figure B.6 shows that a good selection criterion is key to the
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Figure B.6: Upper plot: distribution of runtime in seconds. Lower plot: difference with
the bounds obtained by Gurobi with a cut from Ak per neuron; higher is better. Results
for the SGD-trained network from Bunel et al. (2020a). Sensitivity of Active Set to
selection criterion (see §3.4.2).

efficiency of Active Set. In fact, random variable selection only marginally improves

upon the Planet relaxation bounds, whereas the improvement becomes significant

with our selection criterion from §3.4.2. In addition, we investigate the sensitivity

of Active Set (AS) to variable addition frequency ω. In order to do so, we cap the

maximum number of cuts at 7 for all runs, and vary ω while keeping the time budget

fixed (we test on three different time budgets). Figure B.7 compares the results for

ω = 450 (Active Set), which were presented in §3.8.2, with the bounds obtained by

setting ω = 300 and ω = 600 (respectively AS ω = 300 and AS ω = 600). Our

solver proves to be relatively robust to ω across all the three budgets, with the

difference in obtained bounds decreasing with the number of iterations. Moreover,
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Figure B.7: Upper plot: distribution of runtime in seconds. Lower plot: difference with
the bounds obtained by Gurobi with a cut from Ak per neuron; higher is better. Results
for the SGD-trained network from Bunel et al. (2020a). Sensitivity of Active Set to
variable addition frequency ω, with the selection criterion presented in §3.4.2.
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(a) Speed-accuracy trade-offs of Active Set for different iteration ranges and devices.
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(b) Speed-accuracy trade-offs of Saddle Point for different iteration ranges and devices.

Figure B.8: Upper bounds to the adversarial vulnerability for the MNIST network trained
with the verified training algorithm by Wong and Kolter (2018), from Lu and Kumar
(2020). Box plots: distribution of runtime in seconds. Violin plots: difference with the
bounds obtained by Gurobi with a cut from Ak per neuron; higher is better.

early cut addition tends to yield better bounds in the same time, suggesting that

our selection criterion is effective before subproblem convergence.

B.8.3 MNIST Incomplete Verification

We conclude the experimental appendix by presenting incomplete verification results

(the experimental setup mirrors the one employed in section 3.8.2 and appendix

B.8.1) on the MNIST dataset (LeCun et al., 1998). We report results on the “wide"

MNIST network from Lu and Kumar (2020), whose architecture is identical to the

“wide" network in Table 3.1 except for the first layer, which has only one input

channel to reflect the MNIST specification (the total number of ReLU activation

units is 4804). As those employed for the complete verification experiments (§3.8.3),
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and differently from the incomplete verification experiments in section 3.8.2 and

appendix B.8.1, the network was trained with the verified training method by Wong

and Kolter (2018). We compute the vulnerability to εver = 0.15 on the first 820

images of the MNIST test set. All hyper-parameters are kept to the values employed

for the CIFAR-10 networks, except the Big-M step size, which was linearly decreased

from 10−1 to 10−3, and the weight of the proximal terms for BDD+, which was

linearly increased from 1 to 50. As seen on the CIFAR-10 networks, Figures B.8,

B.9 show that our solvers for problem (3.3) (Active Set and Saddle Point) yield

comparable or better bounds than Gurobi 1 cut in less average runtime. However,

more iterations are required to reach the same relative bound improvement over

Gurobi 1 cut (for Active Set, 2500 as opposed to 600 in Figures 3.1, B.3). Finally,

the smaller average gap between the bounds of Gurobi Planet and Gurobi 1 cut

(especially with respect to Figure 3.1) suggests that the relaxation by Anderson

et al. (2020) is less effective on this MNIST benchmark.
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Figure B.9: Pointwise comparison for a subset of the methods on the data presented
in Figure B.8. Comparison of runtime (left) and improvement from the Gurobi Planet
bounds. For the latter, higher is better. Darker colour shades mean higher point density
(on a logarithmic scale). The oblique dotted line corresponds to the equality.
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C.1 Comparison between IBP-R and COLT

In this section, we provide a detailed comparison between COLT by Balunovic and

Vechev (2020) (§4.2.3) and IBP-R (§4.3) in the context of training for adversarial

robustness. Equation (C.1) pictorially highlights the differences between the two

algorithms, which are summarized in table C.1.

Training Detail COLT IBP-R

Stages

Proceeds in a stage-wise fashion: at
each stage, a subset of the network
parameters (all the θ that are not
in θj) is frozen, and the remaining
parameters are optimized over. The
number of training stages is O(n).

All network parameters are opti-
mized at once.

PGD domains

The attacks are carried out in the
space of the j-th activations (xj).
The frozen subset of the network is
replaced by a zonotope-based con-
vex outer-approximation, employed
to define Cj(x) and Cj−1(x), the
domains of the PGD attacks. At
each stage, the zonotope domains
are computed for train-time per-
turbations larger than those to be
verified: εtrain,j > εver. In practice,
the CIFAR-10 experiments from
Balunovic and Vechev (2020) use
1.05 ≤ εtrain,j ≤ 1.512. For the first
stage: C0(x) := C+(x), C−1(x) :=
x.

The attacks are performed in the
network input space, over a superset
of the perturbations employed at
verification. Our notation for C+(x)
corresponds to setting εtrain :=
αεver, with 1.6 ≤ α ≤ 2.1 in our ex-
periments (after the mixing phase).
Note that the first stage of COLT
displays the same attack structure,
with smaller employed α values.

Intermediate bounds

Computed via an approximation
of the zonotope relaxation based
on Cauchy random projections (Li
et al., 2007). These bounds, com-
puted for perturbation radius εtrain,j ,
are used both for the regulariza-
tion term and to define the zono-
tope outer-approximations (which
depend on intermediate bounds).

Computed via IBP, for perturba-
tion radius εtrain. Used for the
regularization term.

Bounds regularization

Minimizes the area of the zonotope
relaxation of ambiguous ReLUs for
a single later per stage. This term
produces a non-null gradient only
for the parameters of the (j + 1)-th
layer.

Minimizes the area of the Planet
relaxation (in practice, one half of
the area of the zonotope relaxation)
of ambiguous ReLUs for all layers
at once (including the output space
x̂n) .

Hyper-parameters

Each stage is potentially associated
to a different regularization coeffi-
cient ρj , to a different train-time
perturbation radius εtrain,j , and to
a different learning rate ηj . In prac-
tice, Balunovic and Vechev (2020)
tune the values for the first stage (ρ0,
εtrain,0, η0), and then respectively
decay ρ0 and εtrain,0, and increase
ρ0, by a fixed and tunable quantity
at each stage. Finally, Balunovic
and Vechev (2020) set ρn−2 = 0 in
all cases.

ρ, α, and η are not altered through-
out training.

Mixing phase At each stage, κ is linearly increased
from 0 to 1.

κ is linearly increased from 0 to 1,
εtrain is linearly increased from 0 to
αεver.

Table C.1: Main differences between COLT (§4.2.3) and IBP-R (§4.3).
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COLT:minθj E(x,y)∈D


κ

 maxx′∈Cj(x) L(f j(θj,x′),y)
+ρj

[
−l̂j+1(θj)

]T
+

[ûj+1(θj)]+


+(1− κ) max

x′∈Cj−1(x)
L(f j−1(θj−1,x′),y)

+λ ‖θj‖1 ,

 ∀j ∈ J0, n− 2K

IBP-R:

min
θ

E
(x,y)∈D


κ

 maxx∈C+(x) L(f(θ,x),y) +
ρ
2
∑n
j=1

[
−l̂j(θ)

]T
+

[ûj(θ)]+


+ (1− κ)L(f(θ,x),y) + λ ‖θ‖1 .

(C.1)

C.2 Complete Verification Problem

Provided the network is in canonical form (Bunel et al., 2020b), complete verification

amounts to finding sign of the minimum of the following problem, of which problem

(4.2) is a convex outer-approximation:

min
x,x̂

x̂n s.t. x0 ∈ C(x),

x̂k+1 = Wk+1xk + bk+1 k ∈ J0, n− 1K ,

xk = σ(x̂k) k ∈ J1, n− 1K .

(C.2)

C.3 Intermediate Bounds

As seen in §4.2.1, the network relaxations employed for incomplete verification

(and, hence, complete verification via branch-and-bound) are defined in terms of

bounds on the network pre-activations (intermediate bounds l̂k, ûk). Intermediate

bounds are computed by solving instances of problem (4.2) over subsets of the

network. For instance, for l̂i[j], the lower bound on x̂i[j]:

min
x,x̂

x̂i[j] x0 ∈ C(x),

x̂k+1 = Wk+1xk + bk+1 k ∈ J0, i− 1K ,

(xk, x̂k) ∈ Rel(σ, l̂k, ûk) k ∈ J1, i− 1K ,

x̂k ∈ [̂lk, ûk] k ∈ J1, i− 1K ,

(C.3)
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where intermediate bounds until the (i− 1)-th layer are needed. Overall, problem

(C.3) needs to be solved twice per neuron: once for the lower bound, once for the

upper bound, by flipping the sign of the last layer’s weights. Therefore, intermediate

bounds are often computed by relying on looser relaxations than for the output

bounding (that is, solving for minx,x̂ x̂n). See §4.4.1 for details on how we compute

intermediate bounds within branch-and-bound.

C.4 Interval Bound Propagation

Interval bound propagation (Gowal et al., 2018b; Mirman et al., 2018), a simple

application of interval arithmetic (Sunaga, 1958; Hickey et al., 2001) to neural

networks, implies solving a version of problem (4.2) where Rel(σ, l̂k, ûk) is the

hyper-rectangle depicted in Figure C.2. We will use B to denote the corresponding

feasible region. Furthermore, let us write [x]− := min(x,0) and

l̂n := min
x,x̂

x̂n s.t. (x, x̂) ∈ B.

Due to the simplicity of the relaxation, the problem enjoys the following closed

form solution:

l̂n := min
x,x̂

x̂n = [Wn]+ [̂ln−1]+ + [Wn]−[ûn−1]+ + bn.

Upper bounds can be computed by replacing l̂n−1 with ûn−1, and viceversa. Note

that the bounds at layer n only depend on the intermediate bounds at layer

(n− 1). Therefore, output bounds and all intermediate bounds can be computed

at once by forward-propagating the bounds from the first layers, at the total cost

of four network evaluations. Let d be the input dimensionality: x0 ∈ Rd. IBP

is significantly less expensive than relaxations based on linear bounds (Wong and

Kolter, 2018; Zhang et al., 2018), which incur a cost equivalent to O(d) network

evaluations for the same computation (Xu et al., 2020).
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C.5 UPB Branching: Beta-CROWN Dual and Planet
relaxation

Our UPB (see §4.4.2) branching strategy makes use of variables from the Beta-

CROWN (Wang et al., 2021a) dual objective. We will now describe the objective

as well as its relationship to the Planet relaxation (see §4.2.1).

C.5.1 Planet Relaxation

Let us denote by Conv(σ, l̂k, ûk) the element-wise convex hull of the activation

function, as a function of intermediate bounds. For ReLUs, this corresponds to

the Planet relaxation, which is depicted in Figure 2.1 for the ambiguous case. By

replacing Rel(σ, l̂k, ûk) with Conv(σ, l̂k, ûk) in problem (4.2), we obtain:

min
x,x̂

x̂n s.t. x0 ∈ C(x),

x̂k+1 = Wk+1xk + bk+1 k ∈ J0, n− 1K ,

(xk, x̂k) ∈ Conv(σ, l̂k, ûk) k ∈ J1, n− 1K ,

x̂k ∈ [̂lk, ûk] k ∈ J1, n− 1K .

(C.4)

Problem (C.4) can be alternatively written as:

max
α∈[0,1]

min
x,x̂

x̂n

s.t. x0 ∈ C,

x̂k+1 = Wk+1xk + bk+1 k ∈ J0, n− 1K ,

¯
ak(αk)� x̂k +

¯
bk ≤ xk ≤ āk � x̂k + b̄k k ∈ J1, n− 1K ,

x̂k ∈ [̂lk, ûk] k ∈ J1, n− 1K ,

(C.5)

where the coefficients are defined as follows:

¯
ak(αk) = αk, āk = ûk

ûk − l̂k
, b̄k = −l̂k � ûk

ûk − l̂k
if l̂k ≤ 0 and ûk ≥ 0,

āk =
¯
ak(αk) = 0 if ûk ≤ 0,

āk =
¯
ak = 1 if l̂k ≥ 0,

¯
bk = 0 in all cases.

(C.6)
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For ambiguous ReLUs, āk � x̂k + b̄k, represents the upper bounding constraint

of Figure 2.1. The bias of such constraint, b̄k = −l̂k�ûk
ûk−l̂k

, gives the name to our

branching strategy (Upper Planet Bias).

C.5.2 Beta-CROWN Dual

Within branch-and-bound for ReLU networks, the constraints of the form x̂k ∈

[̂lk, ûk] can be usually omitted from (C.5), except when they capture the additional

constraints associated to the domain splits (split constraints). For simplicity, we

will enforce split constraints on all stable neurons, regardless of whether stability

comes from actual split constraints or held before splitting. In this context, using

(Salman et al., 2019b, equations (8), (9), (38)), the Lagrangian relaxation of

problem (C.5) can be written as follows:

max
α∈[0,1],µ,λ,β

min
x,x̂


Wnxn−1 + bn +∑n−1

k=1 µ
T
k (x̂k −Wkxk−1 − bk)

+∑n−1
k=1 [λk]T− (xk − (

¯
ak(αk)� x̂k +

¯
bk))

+∑n−1
k=1 [λk]T+

(
xk − (āk � x̂k + b̄k)

)
+∑n−1

k=1 β
T
k xk1ûk≤0 −

∑n−1
k=1 β

T
k xk1l̂k≥0

s.t. x0 ∈ C.

(C.7)

By enforcing the coefficient of the unconstrained x and x̂ terms to be null, we

obtain the following:

dP = max
α∈[0,1], β≥0

{
min
x0∈C

(
−µ̄T1W1x0

)
+ bn −

n−1∑
k=1

(
[λ̄k]T−¯

bk + [λ̄k]T+b̄k + µ̄Tkbk
)}

s.t. λ̄n−1 = −W T
n ,

µ̄k = āk � [λ̄k]+ +αk � [λ̄k]− + sk � βk k ∈ J1, n− 1K ,

λ̄k−1 = W T
k µ̄k k ∈ J2, n− 1K ,

where: sk = 1l̂k≥0 − 1ûk≤0.
(C.8)

Problem (C.8) corresponds to the β-CROWN objective, as it can be easily seen by

comparing it with (Wang et al., 2021a, equation (20)) and pointing out that, in

their formulation, the input domain represents `∞ norm perturbations of radius ε.

The dual variables β, which give the name to the algorithm, are necessary only
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Network Specifications Network Architecture

Perturbation radius: εver = 2/255
Activation: ReLU
Total activations: 49402
Total parameters: 2133736

Conv2d(3, 32, 3, stride=1, padding=1)
Conv2d(32,32,4, stride=2, padding=1)
Conv2d(32,128,4, stride=2, padding=1)

linear layer of 250 hidden units
linear layer of 10 hidden units

Perturbation radius: εver = 8/255
Activation: ReLU
Total activations: 16643
Total parameters: 2118856

Conv2d(3, 32, 5, stride=2, padding=2)
Conv2d(32,128,4, stride=2, padding=1)

linear layer of 250 hidden units
linear layer of 10 hidden units

Figure C.1: Specifications of the employed network
architectures for the experiments of §4.6.

l̂k[j] ûk[j]

xk[j] = ûk[j]

x̂k[j]

xk[j]

Figure C.2: Depiction of
the IBP hyper-rectangle.

for the neurons whose domains have been split within branch-and-bound (Wang

et al., 2021a).

C.5.3 UPB Branching

The key observation behind our UPB branching strategy is that the [λ̄k]T+b̄k term is

present only for ambiguous neurons (see the coefficients in equation (C.6), note that

[λ̄k]T−¯
bk = 0). We can hence heuristically employ it as a proxy for the improvement

that a split constraint will have on dP from (C.8). Replacing
¯
bk with its definition

in [λ̄k]T+b̄k yields the branching scores sUPB,k in equation (4.6). Given the values for

α and β obtained in the last bounding step within branch-and-bound, [λ̄k]+, and

hence the scores, can be computed using their definition in problem (C.8), which

has a cost equivalent to a single gradient backpropagation through the network.

The UPB branching strategy then proceeds by enforcing split constraints on the

neuron associated to the largest sUPB,k score throughout the network.

C.6 Experimental Details

We now present experimental details that were omitted from §4.6. In particular,

we describe the computational setup, network architectures, employed hyper-

parameters, and details concerning the Jax porting of the COLT algorithm (Balunovic

and Vechev, 2020).
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C.6.1 Experimental Setting, Hyper-parameters

All the experiments were run on a single GPU, either an Nvidia Titan Xp, or

an Nvidia Titan V. The timing experiments for verified training were all run on

an Nvidia Titan V GPU, on a machine with a 20-core Intel i9-7900X CPU. The

branching experiments were instead consistently run on an Nvidia Titan XP GPU,

on a machine with a 12-core Intel i7-6850K CPU.

Training hyper-parameters COLT was run with the hyper-parameters provided

by the authors (Balunovic and Vechev, 2020), whereas the hyper-parameters for

IBP-R are listed in Figure C.3. Note that the learning rate is annealed, at each

epoch, only after the mixing phase of training. Please refer to equation (4.5) for

the meaning of the various hyper-parameters. We did not tune the parameters of

the PGD attacks, which were set as for COLT: we report them for convenience.

Verification hyper-parameters We now complement section §4.4.1 with omit-

ted details concerning the configuration of the OVAL branch-and-bound frame-

work (Bunel et al., 2020a,b; De Palma et al., 2021c). These details apply to both

the training and the branching experiments. The entire verification procedure is

run on a single GPU. For the UPB and SR branching strategies, the branching and

bounding steps are performed in parallel for batches of 600 and 1200 subproblems,

respectively. For the FSB branching strategy, these numbers were reduced to 500

and 1000 subproblems, respectively, in order to prevent PyTorch out-of-memory

errors. β-CROWN is run with a dynamically adjusted number of iterations (see

(De Palma et al., 2021c, section 5.1.2)) of the Adam optimizer (Kingma and Ba,

2015), with a learning rate of 0.1, decayed by 0.98 at each iteration. Similarly,

α-CROWN for the intermediate bounds is run with Adam for 5 iterations, a learning

rate of 1, decayed by 0.98 at each iteration. Early termination is triggered when

an exponential moving average of the expected branching improvement, computed

on the subproblem with the smallest lower bound within the current sub-problem

batch, suggests that the decision threshold will be crossed after the timeout. The
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Hyperparameter Value
IBP-R with and without masking
Optimizer SGD
Learning rate 10−2

Learning rate exponential decay 0.95
Batch size 100
Total training steps 800
Mixing steps 600
PGD attack steps 8
PGD attack step size 0.25
α 2.1
λ 2× 105
ρ
2 104

(a) εver = 2/255.

Hyperparameter Value
IBP-R with and without masking
Optimizer SGD
Learning rate 10−2

Learning rate exponential decay 0.95
Batch size 150
Total training steps 800
Mixing steps 600
PGD attack steps 8
PGD attack step size 0.25
λ 105

IBP-R
α 1.7
ρ
2 5× 103

IBP-R with Masking
α 1.6
ρ
2 102

(b) εver = 8/255.

Figure C.3: IBP-R hyper-parameters for the experiment of table 4.1.

time to deplete the sub-problem queue (estimated via the runtime per bounding

batch) is also added to the estimated time to termination.

Network architectures Figure C.1 reports the details of the employed network

architectures for both the training and the branching experiments.

C.6.2 Jax Porting of COLT

In order to ensure a fair timing comparison with our IBP-R, we ported COLT,

whose original implementation is in PyTorch (Paszke et al., 2019), to Jax (Bradbury

et al., 2018). The porting resulted in speed-up factors of around 5.7 and 4.4 for

the εver = 2/255 and εver = 8/255 experiments, respectively: see table 4.1. The

standard accuracy results were similar to the original implementation (see table 4.1),

testifying the validity of the porting. The verified accuracy of our experiments is

larger than the one reported in the literature: this is likely due to the different,

and arguably more effective, verification procedure that we employed. We conclude

this subsection by reporting the main functional difference of our Jax porting

with respect to the original implementation. COLT’s Cauchy random projections-

approximated zonotope intermediate bounds require extensive use of median values

computed over arrays. The median values are employed as estimators for the `1

norm (Li et al., 2007) of the zonotope propagation matrices. Unfortunately, these
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operations do not scale very well in Jax (Bradbury et al., 2020). Therefore, we rely

on a different `1 estimator, based on the geometric mean (Li et al., 2007), and we

clip the employed Cauchy samples to ensure numerical stability during training.

C.7 Supplementary Branching Experiments

We now complement the branching results in §4.6.2 by repeating the same complete

verification experiment on two COLT-trained networks from table 4.1. Figure C.4(a)

confirms the results from §4.6.2, albeit with reduced margins between UPB and

FSB. UPB yields small (< 6%) improvements on the average verification times

with respect to FSB. In addition, UPB increases the average number of visited

subproblems on the εver = 8/255 network, and reduces it for εver = 2/255, where

it also decreases the number of visited subproblems and timed-out properties. As

for the IBP-R-trained networks, UPB yields branching decisions competitive with

those of FSB while incurring smaller overheads. Finally, as seen in §4.6.2, SR is

significantly slower than both UPB and FSB.

εver = 2/255 COLT εver = 8/255 COLT
Method time [s] subproblems∗ %Timeout time [s] subproblems∗ %Timeout
UPB 98.87 257.17 5.16 100.19 2924.80 4.46
FSB 104.41 379.77 5.41 101.00 2840.52 4.09
SR 229.77 5894.53 12.29 318.21 20 916.78 15.99
∗computed on the properties that did not time out for neither UPB nor FSB. The inclusion of timed-out results in the average leads to
an overestimation of the number of subproblems for the less expensive branching strategy.

(a) Comparison of average runtime, average
number of solved subproblems and the per-
centage of timed out properties. The best
performing method is highlighted in bold.
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(b) Cactus plots: percentage of solved prop-
erties as a function of runtime. Baselines
are represented by dotted lines.

Figure C.4: Complete verification performance of different branching strategies, on two
COLT-trained CIFAR-10 networks from §4.6.1.
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D.1 Societal Impact

Due to the object of its study, our work does not have a direct societal impact.

However, as any machine learning paper, it can potentially negatively effect the

society through automation and loss of jobs. While it is hard to anticipate any

particular risk, as any technology, if not regulated properly, it might lead to growing

social and economic inequality.

On the positive side, our work might have a positive environmental impact

since it advocates for simpler and more economical methods which will reduce

energy consumption in data centers. Finally, simpler methods are usually easier to

understand, which is beneficial in terms of explainability, an important factor

for real-life applications.

D.2 Supplement to the Overview of Multi-Task Opti-
mizers

This section presents the proofs and the technical results omitted from section 5.5,

along with a description of the use of per-task gradients with respect to the last

shared activation for encoder-decoder architectures (usually less expensive than

per-task gradients with respect to shared parameters).

D.2.1 MGDA

Proposition 5. The MGDA SMTO (Sener and Koltun, 2018) converges to a

superset of the convergence points of unitary scalarization. More specifically, it

converges to any point θ∗‖ such that: 0 ∈ Conv({∇θ∗‖Li | i ∈ T }).

Proof. As shown by Désidéri (2012), equation (5.3) is a simplex-constrained norm-

minimization problem. In other words, the argument of the minimum is the

projection of 0 onto the feasible set. Therefore:

g = 0 ⇐⇒ 0 ∈ Conv({∇θ‖Li | i ∈ T }).

It then suffices to point out that ∑i∈T ∇θ‖Li = 0 ⇐⇒ ∑
i∈T

1
|T |∇θ‖Li = 0⇒ 0 ∈

Conv({∇θ‖Li | i ∈ T }) to conclude the proof.
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Due to the cost of computing per-task gradients, Sener and Koltun (2018)

propose MGDA-UB, which replaces the gradients wrt the parameters ∇θ‖Li with

the gradients wrt the shared activation ∇zLi in the computation of the coefficients

of g = −∑i αi∇θ‖Li. This yields an upper bound on the objective of equation

(5.3), thus restricting the set of points the algorithm convergences to. Rather than

directly relying on ∇θ‖Li, g can then be obtained by computing the gradient of∑
i∈T αiLi via reverse-mode differentiation, hence saving memory and compute.

Corollary 3. The MGDA-UB SMTO by Sener and Koltun (2018) converges to any

point such that: 0 ∈ Conv({∇zLi | i ∈ T }). Furthermore, if ∂z
∂θ‖

is non-singular, it

converges to a superset of the convergence points of the unitary scalarization.

Proof. The first part of the proof proceeds as the proof of proposition 5, noting

that the MGDA-UB update is associated to the following problem:

max
α

− 1
2 ‖g‖

2
2

s.t.
∑
i

αi∇zLi = −g,
∑
i∈T

αi = 1,

αi ≥ 0 ∀ i ∈ T .

In order to show that a stationary point of the unitary scalarization satisfies

0 ∈ Conv({∇z∗Li | i ∈ T }), we will assume ∂z
∂θ‖

is non-singular, as done by Sener

and Koltun (2018, theorem 1). Then, relying on the chain rule, the result follows

from: ∑
i∈T
∇θ‖Li = 0 ⇐⇒

∑
i∈T

1
|T |
∇θ‖Li = 0

⇐⇒
∑
i∈T

∂z
∂θ‖

|T |
∇zLi = 0

⇐⇒
(
∂z
∂θ‖

)−1
∂z
∂θ‖

∑
i∈T

1
|T |
∇zLi = 0

⇐⇒
∑
i∈T

1
|T |
∇zLi = 0

⇒ 0 ∈ Conv({∇zLi | i ∈ T })
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D.2.2 IMTL

Proposition 6. IMTL by Liu et al. (2021c) updates θ‖ by taking a step in the

steepest descent direction whose cosine similarity with per-task gradients is the

same across tasks.

Proof. First, equation (5.4) solves the linear system in α := [α1, . . . , αm] given by:

gT
 ∇θ‖L1∥∥∥∇θ‖L1

∥∥∥ −
∇θ‖Li∥∥∥∇θ‖Li

∥∥∥
 = 0 ∀ i ∈ T \ {1},

g = −
∑
i

αi∇θ‖Li,
∑
i∈T

αi = 1,

which corresponds to finding a point of A′ := Aff(
{
∇θ‖Li| i ∈ T

}
) which is

orthogonal to A := Aff
 ∇θ‖Li∥∥∥∇θ‖Li

∥∥∥ | i ∈ T

. To see this, it suffices to point

out that any point orthogonal to A is also orthogonal to the vector subspace

spanned by differences of vectors belonging to A. As this subspace has m − 1

dimensions, any vector orthogonal to
 ∇θ‖L1∥∥∥∇θ‖L1

∥∥∥ − ∇θ‖Li∥∥∥∇θ‖Li
∥∥∥
 for each i ∈ T \ {1} is

orthogonal to the entire subspace.

Second, consider the problem of finding a point in A that is orthogonal to the

linear subspace spanned by differences of vectors in A. In other words, we seek the

projection of 0 onto A. Recalling the definition of A, we can write:

max
α

− 1
2 ‖g

′‖2
2

s.t.
∑
i

αi
∇θ‖Li∥∥∥∇θ‖Li

∥∥∥ = −g′,
∑
i

αi = 1.
(D.1)

The solution of equation (D.1) is always collinear to the solution of equation (5.4).

In fact, if a vector g ∈ A′ is orthogonal to the affine subspace A (or to the linear

subspace spanned by differences of its members), then

γg =
−γ∑

i

(
αi
∥∥∥∇θ‖Li

∥∥∥) ∇θ‖Li∥∥∥∇θ‖Li
∥∥∥


is orthogonal to A as well, and γ = 1∑
i

(
αi

∥∥∥∇θ‖Li
∥∥∥) =⇒ γg ∈ A.
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Finally, equation (D.1) differs from equation (5.3) in two aspects: α is not

constrained to be non-negative (hence the convex hull is replaced by the affine hull),

and the task vectors are normalized. Therefore, equation (D.1) is the dual of:

min
g,ε

ε+ 1
2 ‖g‖

2
2

s.t.
∇θ‖LTi∥∥∥∇θ‖Li

∥∥∥g = ε ∀ i ∈ {1, . . . ,m} .
(D.2)

The proposition then follows by comparing equation (D.2) with equation (5.2), and

recalling that IMTL-L only adds a scaling factor to the chosen update direction.

Corollary 1. IMTL by Liu et al. (2021c) converges to a superset of the Pareto-

stationary points for θ‖ (and hence of the convergence points of the unitary scalar-

ization). More specifically, it converges to any point θ∗‖ such that:

0 ∈ Aff
({
∇θ∗‖
Li/
∥∥∥∇θ∗‖

Li
∥∥∥ | i ∈ T }) .

Proof. Inspecting equation (D.2), which yields a collinear point to the IMTL

update, reveals that IMTL might converge to non Pareto-stationary points: due to

the restrictive equality constraints, the minimizer of equation (D.2) might be 0 even

if a descent direction exists. Furthermore, its dual, equation (D.1), implies that:

g = 0 ⇐⇒ 0 ∈ Aff
 ∇θ‖Li∥∥∥∇θ‖Li

∥∥∥ | i ∈ T



⇐⇒ 0 ∈ Aff
({
∇θ‖Li | i ∈ T

})
,

which, noting that Conv(A) ⊆ Aff(A) for any A, concludes the proof.

Similarly to MGDA-UB, Liu et al. (2021c) advocate using ∇zLi in place of

∇θ‖Li while solving equation (5.4), typically reducing the cost of computing the

coefficients of g = −∑i αi∇θ‖Li.

Corollary 4. When employing the approximation of problem (5.4) that relies on

∇zLi, IMTL by Liu et al. (2021c) converges to 0 ∈ Aff
({

∇zLi
‖∇zLi‖ | i ∈ T

})
. If

∂z
∂θ‖

is non-singular, this is a superset of of the convergence points of the unitary

scalarization.
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Proof. Following the proof of proposition 6, the following problem yields a collinear

point to the ∇zLi-approximate IMTL update:

max
α

− 1
2 ‖g

′‖2
2

s.t.
∑
i

αi
∇zLi
‖∇zLi‖

= −g′,
∑
i

αi = 1.

Therefore:

g = 0 ⇐⇒ 0 ∈ Aff
({
∇zLi
‖∇zLi‖

| i ∈ T
})

.

Finally, assuming ∂z
∂θ‖

is non-singular, we can replicate the procedure in the proof

of corollary 3 to get:
∑
i∈T
∇θ‖Li = 0 ⇐⇒

∑
i∈T

1
|T |
∇zLi = 0

⇐⇒
∑
i∈T

‖∇zLi‖
|T |

∇zLi
‖∇zLi‖

= 0

⇐⇒
(

|T |∑
i∈T (‖∇zLi‖)

)∑
i∈T

‖∇zLi‖
|T |

∇zLi
‖∇zLi‖

= 0

⇒ 0 ∈ Conv
({
∇zLi
‖∇zLi‖

| i ∈ T
})

⇒ 0 ∈ Aff
({
∇zLi
‖∇zLi‖

| i ∈ T
})

,

which shows that Aff
({

∇zLi
‖∇zLi‖ | i ∈ T

})
contains the convergence points of the

unitary scalarization.

D.2.3 PCGrad

Proposition 7. PCGrad is equivalent to a dynamic, and possibly stochastic, loss

rescaling for θ‖. At each iteration, per-task gradients are rescaled as follows:

∇θ‖Li ←
(
1 +∑

j∈T \{i} dji
)
∇θ‖Li, dji ∈

0,

∥∥∥∇θ‖Lj
∥∥∥∥∥∥∇θ‖Li
∥∥∥
.

Furthermore, if |T | > 2, dji is a random variable, and the above range contains

its support.
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Proof. We start by pointing out that:−gTi ∇θ‖Lj(x)∥∥∥∇θ‖Lj
∥∥∥2


+

=
−gTi ∇θ‖Lj(x)∥∥∥∇θ‖Lj

∥∥∥


+

1∥∥∥∇θ‖Lj
∥∥∥

=
[
− cos(gi,∇θ‖Lj) ‖gi‖

]
+

1∥∥∥∇θ‖Lj
∥∥∥

∈

0, ‖gi‖∥∥∥∇θ‖Lj
∥∥∥
 .

As gi is obtained by iterative projections of ∇θ‖Li onto the normals of ∇θ‖Lj ∀j ∈

T \ {i}, and the norm of a vector can only decrease or remain unvaried after

projections, we can write the coefficient of each gi update as:

dij :=

−gTi ∇θ‖Lj(x)∥∥∥∇θ‖Lj
∥∥∥2


+

∈

0,

∥∥∥∇θ‖Li
∥∥∥∥∥∥∇θ‖Lj
∥∥∥
 , ∀i 6= j.

Furthermore, if |T | > 2 the contraction factor ‖gi‖∥∥∥∇θ‖Li
∥∥∥ for the norm of gi depends

on the ordering of the projections, which is stochastic by design (Yu et al., 2020).

Therefore, dij a random variable whose support is contained in
0,

∥∥∥∇θ‖Li
∥∥∥∥∥∥∇θ‖Lj
∥∥∥
. Finally,

exploiting the definition of dij, we can re-write equation (5.5) as:

−g =
∑
i∈T
∇θ‖Li +

∑
i∈T

∑
j∈T \{i}

dij∇θ‖Lj =
∑
i∈T
∇θ‖Li +

∑
j∈T

∑
i∈T \{j}

dji∇θ‖Li

=
∑
j∈T
∇θ‖Lj +

∑
j∈T

∑
i∈T \{j}

dji∇θ‖Li =
∑
j∈T

 ∑
i∈T \{j}

dji∇θ‖Li +∇θ‖Lj

 .
Introducing (and then removing, using their definition) dummy variables djj = 1:

−g =
∑
j∈T

 ∑
i∈T \{j}

dji∇θ‖Li + djj∇θ‖Lj

 =
∑
j∈T

(∑
i∈T

dji∇θ‖Li
)

=
∑
i∈T

∑
j∈T

dji∇θ‖Li


=
∑
i∈T
∇θ‖Li

∑
j∈T

dji

 =
∑
i∈T
∇θ‖Li

1 +
∑

j∈T \{i}
dji

 ,
from which the result trivially follows.

Corollary 2. If |T | = 2, PCGrad will stop at any point where cos(∇θ‖L1,∇θ‖L2) =

−1. Furthermore, if L1 and L2 are differentiable, and ∇θ‖LMT is L-Lipschitz with

L > 0, PCGrad with step size t < 1
L
converges to a superset of the convergence

points of the unitary scalarization.
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Proof. Let us start from the first statement, which does not require any assumption

on the loss landscape. From proposition 7, we get:

−g = ∇θ‖L1 (1 + d21) +∇θ‖L2 (1 + d12)

=

1 +
− cos(∇θ‖L1,∇θ‖L2)

∥∥∥∇θ‖L2

∥∥∥∥∥∥∇θ‖L1

∥∥∥


+

∇θ‖L1

+

1 +
− cos(∇θ‖L1,∇θ‖L2)

∥∥∥∇θ‖L1

∥∥∥∥∥∥∇θ‖L2

∥∥∥


+

∇θ‖L2,

which shows that, in case of conflicting gradient directions, gradient norms are

rebalanced proportionally to the angle between them. For cos(∇θ‖L1,∇θ‖L2) = −1,

the above evaluates to:

−g =

∥∥∥∇θ‖L1

∥∥∥+
∥∥∥∇θ‖L2

∥∥∥∥∥∥∇θ‖L1

∥∥∥
∇θ‖L1 +


∥∥∥∇θ‖L1

∥∥∥+
∥∥∥∇θ‖L2

∥∥∥∥∥∥∇θ‖L2

∥∥∥
∇θ‖L2.

The first part of the result then follows by pointing out that, if cos(∇θ‖L1,∇θ‖L2) =

−1, then ∇θ‖L1 = −∇θ‖L2, and hence g = 0. We remark that a similar proof

appears in (Yu et al., 2020, theorem 1 and proposition 1). However, our derivation

relaxes the author’s assumptions on LMT and is therefore applicable to the training

of neural networks.

Finally, given the assumptions on differentiability and smoothness, we need to

prove that PCGrad converges to the stationary points of the unitary scalarization:

this directly follows from (Yu et al., 2020, proposition 1).

D.2.4 GradDrop

Proposition 10. Let us assume, as often demonstrated in the single-task case (Ma

et al., 2018; Allen-Zhu et al., 2019), that the multi-task network has the capacity

to interpolate the data on all tasks at once: minθ LMT = ∑
i∈T minθ Li, and that

its training by gradient descent attains such global minimum. Then, if infθ Li >

−∞ ∀ i ∈ T , unitary scalarization converges to a joint minimum.

Proof. It suffices to point out that if LMT(θ∗) = ∑
i∈T minθ Li, then the globally

optimal loss is attained for all tasks. In other words Li(θ∗) = minθ Li ∀i ∈ T ,
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and hence ∇θ∗Li = 0 ∀ i ∈ T (joint minimum). Furthermore, running gradi-

ent descent on minθ LMT corresponds to the unitary scalarization (§5.3), which

concludes the proof.

Proposition 8. Let LRGD(θ‖) := ∑
i∈T uiLi(θ‖), where ui ∼ Bernoulli(p) ∀i ∈ T

and p ∈ (0, 1]. The gradient ∇θ‖LRGD is always zero if and only if ∇θ‖Li = 0 ∀i ∈ T .

In other words, the result from (Chen et al., 2020, proposition 1) can be obtained

without any information on the sign of per-task gradients.

Proposition 8 can be proved by adapting the proof from Chen et al. (2020,

proposition 1): it suffices to replace f(P) with the Bernoulli parameter p, which is

non-negative by definition. In our opinion, this seriously undermines the conflicting

gradient hypothesis that motivated GradDrop. For the reader’s convenience, we

now provide a straightforward and self-contained proof.

Proof. Let us start from the statement on ∇θ‖LRGD. If ∇θ‖Li = 0 ∀i ∈ T , then

∇θ‖LRGD = 0 with probability one. On the other hand, if ∃j : ∇θ‖Lj 6= 0, then:

P
[
∇θ‖L

RGD 6= 0
]
≥ P

[
∇θ‖L

RGD = ∇θ‖Lj
]

= p(1− p)m−1 > 0,

where the first inequality comes from the fact that ∇θ‖LRGD = ∇θ‖Lj is only one

of the many instances of a non-null ∇θ‖LRGD.

Let sign(x) stand for the element-wise sign operator applied on x. On encoder-

decoder architectures, similarly to MGDA and IMTL (see appendices D.2.1 and

D.2.2), the authors do not apply GradDrop on ∇θ‖Li, but rather on a the usually

less expensive ∇zLi. In more detail, they compute the GradDrop sign purity scores

p from equation (5.6) on ∑n
i=1 (sign(z)�∇zLi) [i] ∈ Rr, and then apply equation

(5.6) on the ∇zLi gradients, yielding a vector gz ∈ Rn×r. Then, relying on reverse-

mode differentiation, the update direction in the space of the parameters θ‖ is

obtained via a Jacobian-vector product: g = −
(
∂z
∂θ‖

)T
gz. Such a computation

replaces the similar ∇θ‖LMT =
(
∂z
∂θ‖

)T
∇zLMT from the unitary scalarization.
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D.3 Experimental Setting, Reproducibility

We now present details concerning the experimental settings from §5.4, includ-

ing details on the employed open-source software, hardware specifications, and

hyper-parameters.

D.3.1 Supervised Learning

All the experiments were run under Ubuntu 18.04 LTS, on a single GPU per run

(using two 8-GPU machines in total). Timing experiments were all run on Nvidia

GeForce GTX 1080 Ti GPUs, with an Intel Xeon E5-2650 CPU. The remaining

experiments were run on either Nvidia GeForce RTX 2080 Ti GPUs or Nvidia

GeForce GTX 1080 Ti GPUs, respectively using an Intel Xeon Gold 6230 CPU

or an Intel Xeon E5-2650 CPU.

D.3.1.1 MultiMNIST

For consistency with the experimental setup of Sener and Koltun (2018), we employ

a modified encoder-decoder version of the LeNet architecture (LeCun et al., 1998).

Specifically, the last layer is omitted from the encoder, and two fully-connected

layers are employed as task-specific predictive heads. The cross-entropy loss is

used for both tasks. All methods are trained for 100 epochs using Adam (Kingma

and Ba, 2015) in the stochastic gradient setting, with an initial learning rate of

η = 10−2 (tuned in η ∈ {10−3, 10−2, 10−1} and yielding the best validation results

for all considered algorithms), exponentially decayed by 0.95 after each epoch,

and a mini-batch size of 256.

D.3.1.2 CelebA

As commonly done in previous work (Sener and Koltun, 2018; Yu et al., 2020; Liu

et al., 2021c), we employ an encoder-decoder architecture where the encoder is

a ResNet-18 (He et al., 2016) (without the final layer) with batch normalization

layers (Ioffe and Szegedy, 2015), and the per-task decoders are linear classifiers. The

cross-entropy loss is used for all tasks. The training is performed from scratch for
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50 epochs using Adam, with a mini-batch size of 128 and a per-epoch exponential

decay factor of 0.95. As common on this network-dataset combination (Lin et al.,

2022; Chen et al., 2020), the initial learning rate is η = 10−3 for all methods

except for MGDA and IMTL, for which η = 5× 10−4 yielded a better validation

performance. As done by the respective authors, for PCGrad, RLW and GradDrop

we use the same learning rate as the unitary scalarization (Yu et al., 2020; Lin

et al., 2022; Chen et al., 2020).

D.3.1.3 Cityscapes

Consistently with recent work (Lin et al., 2022), we rely on a dilated ResNet-50

architecture pre-trained on ImageNet (Yu et al., 2017) for the encoder, and on the

Atrous Spatial Pyramid Pooling (Chen et al., 2018), which internally uses batch

normalization, as decoders. While more powerful encoders might lead to better

performance on Cityscapes, like the SegNet (Badrinarayanan et al., 2017) used

in (Javaloy and Valera, 2022; Liu et al., 2021a; Navon et al., 2022), we aim to

provide a fair comparison of MTL optimizers, rather than maximize overall task

performance. Cross-entropy loss is employed on the semantic segmentation task,

whereas the `1 loss is used for the depth estimation. The training is performed

by using Adam with a mini-batch size of 32 for 100 epochs, with an initial step

size η = 5 × 10−4 resulting in the best validation performance for all algorithms,

exponentially decayed by 0.95 at each epoch.

D.3.2 Reinforcement Learning

Similarly to the supervised learning experiments, we ran all the experiments under

Ubuntu 18.04 LTS using one GPU per run (using six 8-GPU machines in total).

Timing experiments were all run using NVIDIA GeForce RTX 2080 Ti GPUs, with

an Intel Xeon Gold 6230 CPU. The main bulk of the remaining experiments was

run on Nvidia GeForce RTX 2080 Ti GPUs with either Intel Xeon Gold 6230 or

Intel Xeon Silver 4216. We utilised NVIDIA GeForce RTX 3080 GPUs with Intel

Xeon Gold 6230 CPUs for a small fraction of experiments.
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Table D.1: Hyperparameters of the RL exper-
iments. Hyperparameters different from Sod-
hani et al. (2021) are in bold.

Hyperparameter Value
All methods
– training steps 2,000,000
– batch size 1280
– Replay buffer size 4,000,000
– actor learning rate 0.0003
– critic learning rate 0.0003
– entropy α learning rate 0.0003
– shared entropy α True
– runs 10
– discounting γ 0.99
Unit. Scal.
– actor l2 coeff. 0.0003
PCGrad
– actor l2 coeff. 0.0001
RLW Norm.
– normal mean 0
– normal std 1
– actor l2 coeff. 0.0003
RLW Diri.
– α 1
– actor l2 coeff. 0.0003
GradDrop
– k 1
– p 0.5
– actor l2 coeff. 0.0001
MGDA
– gradient normalization L2
– actor l2 coeff. 0.0
IMTL
– actor learning rate 0.00003
– critic learning rate 0.00003
– entropy α learning rate 0.00003
– actor l2 coeff. 0.0

We use Sodhani et al. (2021) for

most of the hyperparameters and list

them in Table D.1. We use bold font

where we use a hyperparameter different

from Sodhani et al. (2021). Similarly

to Sodhani et al. (2021), we use the

v1 version of Metaworld for our exper-

iments1. Sodhani et al. (2021) use a

shared entropy loss weight α for PCGrad

and separate α for unitary scalarization2.

In our experiments, use shared α for all

of the methods for fairness. Since it is

a single number (rather than a vector),

we used unitary scalarization to update

α for all SMTOs apart from PCGrad

which was already implemented in (Sod-

hani et al., 2021).

We use the same network archi-

tecture as in Sodhani et al. (2021),

i.e. a three-layered feedforward fully-

connected network with 400 hidden

units per layer for both, the actor and

the critic. The actor is shared across all tasks as well as the critic. To normalize

rewards, we keep track of first and second moments in the buffer and normalise the

rewards by their standard deviation: r′i = ri/σ̂i, where σ̂i is the sample standard

deviation of the rewards for environment i. Sodhani et al. (2021) average the gradient

for unitary scalarisation and PCGrad, whereas our SMTO implementations sum

the gradients, i.e. effectively using larger learning rates (apart from MGDA that

assures that all the aggregation weights sum to 1). We tried reducing the learning
1

https://github.com/rlworkgroup/metaworld.git@af8417bfc82a3e249b4b02156518d775f29eb289
2

https://mtrl.readthedocs.io/en/latest/pages/tutorials/baseline.html

https://github.com/rlworkgroup/metaworld.git@af8417bfc82a3e249b4b02156518d775f29eb289
https://mtrl.readthedocs.io/en/latest/pages/tutorials/baseline.html
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rate for SMTOs that sum (RLW Norm., RLW Diri., and GradDrop) both for MT10

and MT50, but it worked worse for these methods and we kept the default learning

rate for them as well. We had to use a smaller learning rate for IMTL, because with

the default one it crashed at the beginning of training due to numerical overflow.

Smaller learning rate did not prevent it from crashing, but this happened much later.

We tried 106, 2× 106, and 4× 106 for the replay buffer size with the last being

superior in terms of stability. Additionally, for l2 actor regularization, we tried 0.0001

and 0.0003 with the latter being slightly superior for the baseline. We tried the

same options for other SMTOs, and picked the best option for each of the method.

For MGDA, no regularisation works best, most likely due to a strong regularization

effect of the method itself, which is mirrored by our supervised learning results.

PCGrad and Graddrop work best with the regularization coefficient of 0.0001. Both

RLW variants use the same coefficient as the baseline (0.0003).

For MT50, we took the best MT10 hyperparameters, and we believe one could

obtain even better results for unitary scalarisation since it is much faster to

tune compared to other SMTOs (e.g. 15 hours for unitary scalarisation vs 9

days for PCGrad).

D.3.3 Software Acknowledgments and Licenses

Our codebase is built upon several prior works: (Sener and Koltun, 2018), Liu

et al. (2019), (Lin et al., 2022) and (Sodhani et al., 2021): all of them were

released under a MIT license. We also acknowledge Tseng (2020), upon which

we built some of our code. Multi-MNIST is based on MNIST dataset that is

released under Creative Commons Attribution-Share Alike 3.0 license. The code

for generating Multi-MNIST dataset was taken from Sener and Koltun (2018)

released under MIT license. CelebA dataset has a custom license allowing non-

commercial research purposes. More details can be found on the project website:

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html. Cityscapes also has a

custom license allowing non-commercial research purposes. The full text of the

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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license can be found on the project website:https://www.cityscapes-dataset.

com/license/. Metaworld, used for RL experiments is released under MIT license.

D.4 Supplementary Supervised Learning Experiments

This section presents supervised learning results omitted from §5.4.1. In particular,

we show additional plots for the experiments of §5.4.1, then present an analysis

of the regularising effect of SMTOs in the absence of single-task regularization

(§D.4.2), and conclude with an ablation study on GradDrop’s dependency on the

sign of per-task gradients (§D.4.3).

D.4.1 Addendum

This section complements the plots presented in §5.4.1. In particular, we show the

test and runtime results in table form, along with the behavior of the validation

metrics and of the training loss over the training epochs. Plots for Multi-MNIST,

CelebA, and Cityscapes are reported in Figures D.1, D.2 and D.10, respectively. The

behavior of the CelebA training loss demonstrates heavier regularization (compare

with the unregularized plot in Figure D.3(a)). Except IMTL and MGDA, for which

the tuned values of the weight decay prevent overfitting, the other optimizers display

very similar validation and training curves, and start overfitting around epoch 30.

Considering that most SMTOs required less regularization (see §5.4.1.2), the

results are consistent with our interpretation of SMTOs as regularizers in §5.5. The

Cityscapes plots display a certain instability across training epochs, as demonstrated

by the various peaks and valleys in the metrics. Nevertheless, in spite of a factor 10

difference in scale, both training losses are similarly decreased by most optimizers.

D.4.2 Unregularized Experiments

Figures 5.5, D.3(a) and D.3(b) respectively report the average task validation

accuracy, the multi-task training loss, and the multi-task validation loss at each

training epoch. The regularizing effect of SMTOs compared to unitary scalarization

is shown by: (i) the delay of the onset of overfitting on the validation data

https://www.cityscapes-dataset.com/license/
https://www.cityscapes-dataset.com/license/
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(a) Mean (and 95% CI) average task valida-
tion accuracy per training epoch.
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(b) Mean (and 95% CI) training multi-task
loss LMT per epoch.

MTO Average Task Accuracy Epoch Runtime [s]

Unit. Scal. 9.476e-01 ± 4.368e-03 [3.510e+00, 3.617e+00]
IMTL 9.487e-01 ± 2.533e-03 [3.695e+00, 3.996e+00]
MGDA 9.478e-01 ± 1.977e-03 [3.491e+00, 3.617e+00]
GradDrop 9.347e-01 ± 1.282e-02 [3.508e+00, 3.589e+00]
PCGrad 9.479e-01 ± 3.578e-03 [3.807e+00, 3.928e+00]
RLW Diri. 9.430e-01 ± 2.973e-03 [3.790e+00, 4.005e+00]
RLW Norm. 9.399e-01 ± 8.929e-03 [3.894e+00, 4.225e+00]

(c) Mean and 95% CI of the avg. task test
accuracy across runs, and interquartile range
for the training time per epoch.

Figure D.1: Additional figures for the
comparison of various SMTOs with
the unitary scalarization on the Mul-
tiMNIST dataset (Sener and Koltun,
2018).
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(a) Mean (and 95% CI) average task valida-
tion accuracy per training epoch.
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(b) Mean (and 95% CI) training multi-task
loss LMT per epoch.

MTO Average Task Accuracy Epoch Runtime [s]

Unit. Scal. 9.090e-01 ± 7.568e-04 [2.869e+02, 2.878e+02]
IMTL 9.093e-01 ± 7.631e-04 [3.600e+02, 3.621e+02]
MGDA 9.022e-01 ± 9.687e-04 [6.859e+02, 7.194e+02]
GradDrop 9.098e-01 ± 3.383e-04 [3.001e+02, 3.008e+02]
PCGrad 9.093e-01 ± 1.108e-03 [1.015e+04, 1.016e+04]
RLW Diri. 9.099e-01 ± 7.845e-04 [3.040e+02, 3.054e+02]
RLW Norm. 9.095e-01 ± 1.012e-03 [3.028e+02, 3.037e+02]

(c) Mean and 95% CI of the avg. task test
accuracy across runs, and interquartile range
for the training time per epoch.

Figure D.2: Additional figures for the
comparison of various SMTOs with the
unitary scalarization on the CelebA (Liu
et al., 2015) dataset.

in figure 5.5, (ii) the reduction of the convergence rate on the training loss in

figure D.3(a) (compare with figure D.2(b)), and (iii) the fact that validation and

training losses remain positively correlated for larger numbers of epochs. In fact, the

behavior of both the training and validation loss for the SMTOs closely parallels

that of `2-regularized unitary scalarization, with differing degrees of regularization.

We further note that unregularized IMTL displays a certain instability (compare
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with the regularized version in figure D.2(a)).

The addition of dropout layers further reduces overfitting, improves stability

(reduced confidence intervals) and pushes the average validation curve upwards,

motivating its use on all optimizers for the experiments of §5.4.1.2. Nevertheless,

confidence intervals in Figure 5.5 still overlap due to the instability of the unreg-

ularized unitary scalarization. Figure D.5 provides a more detailed comparison

over 20 repetitions, confirming that the combined use of dropout layers and `2

regularization improves average performance and reduces the empirical variance for

unitary scalarization. Furthermore, Figure D.4 shows that regularization improves

the peak average validation performance for all algorithms, demonstrating the need

of tuning λ also for SMTOs. We conclude by pointing out that even without

regularization, when carefully tuned, the maximal performance over epochs of

unitary scalarization is comparable to SMTOs in Figure 5.5.
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(a) Mean and 95% CI (3 runs) multi-task
training loss per epoch.
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(b) Mean and 95% CI (3 runs) multi-task
validation loss per training epoch.

Figure D.3: Additional figures for the unregularized comparison of various SMTOs with
the unitary scalarization on CelebA. SMTOs provide varying degrees of regularization.
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Figure D.4: Effect of regularization (dropout layers and weight decay) on the average task
validation accuracy for all considered optimizers on the CelebA dataset: regularization
improves the average performance of all algorithms.
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Figure D.5: Effect of regularization (dropout layers and weight decay) on unitary
scalarization on the CelebA dataset: violin plots (20 runs) for the best avg. task
validation accuracy over epochs. The width at a given value represents the proportion
of runs yielding that result. Regularization improves the average performance while
decreasing its variability.

D.4.3 Sign-Agnostic GradDrop

We will now present an ablation study on GradDrop, investigating the effect

of the sign of per-task gradients on the SMTO’s performance. Specifically, we

compare the performance of GradDrop with a sign-agnostic version of its stochastic

gradient masking (which we refer to as “Sign-Agnostic GradDrop"), whose update

direction is defined as follows:

g = −
(
∂z
∂θ‖

)T (∑
i∈T

ui �∇zLi
)
,

where ui,∇zLi ∈ Rn×r and, for all i ∈ T , ui is i.i.d. according to ui[j, k] ∼

Bernoulli(p) ∀j ∈ {1, . . . , n}, k ∈ {1, . . . , r}. Differently from a similar study

carried out by Chen et al. (2020), we tuned the hyper-parameter of the sign-agnostic

masking in the following range: p ∈ {0.1, 0.25, 0.5, 0.75, 0.9}.

The experimental setup complies with the one described in appendix D.3.1.

Figure D.6, plotting test and validation results for the CelebA dataset (Liu et al.,

2015), shows that the performance of Sign-Agnostic GradDrop closely matches the

original algorithm. Therefore, sign conflicts across per-task gradients do not seem

to play a significant role in GradDrop’s performance.

D.5 Supplementary Reinforcement Learning Experiments

This section presents additional results pertaining to the RL experiments in §5.4.2.
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(a) Mean and 95% CI (3 runs) avg. task test
accuracy.
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validation accuracy per training epoch.

Figure D.6: Comparison of GradDrop (Chen et al., 2020) with sign-agnostic masking
of the shared-representation gradients on the CelebA dataset (Liu et al., 2015). No
statistically relevant difference between the two methods can be observed for the majority
of the epochs.
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(b) MT50 (10 runs per method).

Figure D.7: Mean and 95% CI for the best avg. success rate on Metaworld. None of the
SMTOs significantly outperforms unitary scalarization.

D.5.1 Addendum

Figure D.7 re-plots Figure 5.4(a) and 5.4(b) with the omitted IMTL results, while

Figure D.8 shows the learning curves omitted from §5.4.2. As pointed out in §5.4.2,

none of the IMTL runs successfully terminated due to numerical instability. Indeed,

Liu et al. (2021c) show that, in supervised settings, coefficients do not fluctuate much

across epochs (Liu et al., 2021c, Figure 4, appendix B) and never become negative.

By contrast, up to 50% of the scaling coefficients α are negative in our experiments,

thus reversing subtask gradient directions. MGDA, which constrains the weights, is

more stable and is comparable to unitary scalarization. In order to avoid incomplete

curves and unfair calculations of the mean, Figure D.8 plots the highest value ever

achieved by any seed as a dashed horizontal line. The IMTL results in Figure D.7,

instead, report the best average success rate of each seed until its termination.
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(a) MT10 (10 points per method).
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Figure D.8: Mean and 95% CI for the avg. success rate on Metaworld. None of the
SMTOs significantly outperforms unitary scalarization.
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(a)MT10 average performance (10 runs) and
95% CI.
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(b) MT50 average performance (5 runs) and
95% CI.

Figure D.9: For both MT10 and MT50, actor l2 regularization pushes the average higher
for unitary scalarization.

D.5.2 Ablation studies

Figure D.12 presents our ablations for MT10 experiments. Due to computational

constraints, we ran ablations on the unitary scalarization and PCGrad since these

are the two methods previously tested in the RL setting.

Figure D.9 shows ablation studies on the effect of regularization on MT10 and

MT50. In spite of CI overlaps, actor l2 regularization pushes the average higher

on both benchmarks, motivating our use of regularization for the experiments in

§5.4.2. Furthermore, the gap between the averages tends to widen with the number

of updates on MT50, suggesting improved stabilization.

D.5.3 Sensitivity to Reward Normalization

Figure D.11 shows that multitask agent performance is highly sensitive to the reward

normalization moving average hyperparameter3 motivating our buffer normalization

in Section 5.4.2.

3
https://github.com/facebookresearch/mtenv/blob/4a6d9d6fdfb321f1b51f890ef36b5161359e972d/mtenv/envs/metaworld/wrappers/

normalized_env.py#L69

https://github.com/facebookresearch/mtenv/blob/4a6d9d6fdfb321f1b51f890ef36b5161359e972d/mtenv/envs/metaworld/wrappers/normalized_env.py#L69
https://github.com/facebookresearch/mtenv/blob/4a6d9d6fdfb321f1b51f890ef36b5161359e972d/mtenv/envs/metaworld/wrappers/normalized_env.py#L69
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(a) Mean and 95% CI of the test metrics across runs, and interquartile range for the
training time per epoch.

MTO Absolute Depth Error Relative Depth Error Segmentation Accuracy Segmentation mIOU Epoch Runtime [s]

Unit. Scal. 1.301e-02 ± 2.342e-04 4.761e+01 ± 5.148e+00 9.196e-01 ± 2.913e-04 7.012e-01 ± 6.001e-04 [3.228e+02, 3.241e+02]
IMTL 1.281e-02 ± 7.521e-04 4.389e+01 ± 6.984e-01 9.164e-01 ± 2.828e-03 6.967e-01 ± 4.785e-03 [7.329e+02, 7.373e+02]
MGDA 1.418e-02 ± 2.331e-04 4.750e+01 ± 1.466e+01 9.189e-01 ± 2.636e-04 6.999e-01 ± 3.124e-03 [7.251e+02, 7.269e+02]
GradDrop 1.293e-02 ± 2.757e-04 4.674e+01 ± 7.709e+00 9.193e-01 ± 1.282e-03 7.024e-01 ± 3.628e-03 [5.196e+02, 5.215e+02]
PCGrad 1.294e-02 ± 2.284e-04 4.380e+01 ± 5.165e+00 9.198e-01 ± 9.119e-04 7.025e-01 ± 6.531e-04 [4.202e+02, 4.212e+02]
RLW Diri. 1.305e-02 ± 4.155e-04 4.810e+01 ± 2.259e+00 9.199e-01 ± 1.247e-03 7.037e-01 ± 1.989e-03 [3.161e+02, 3.164e+02]
RLW Norm. 1.301e-02 ± 5.528e-04 4.630e+01 ± 2.751e+00 9.192e-01 ± 4.962e-04 7.006e-01 ± 4.580e-03 [3.194e+02, 3.210e+02]
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(b) Mean (and 95% CI) absolute depth
validation error per training epoch.
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(c) Mean (and 95% CI) relative depth vali-
dation error per training epoch.
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(d) Mean (and 95% CI) validation segmen-
tation mIOU per training epoch.
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(e) Mean (and 95% CI) validation segmen-
tation accuracy per training epoch.
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(f) Mean (and 95% CI) training depth loss
per epoch.
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(g) Mean (and 95% CI) training segmenta-
tion loss per epoch.

Figure D.10: Additional figures for the comparison of SMTOs with the unitary
scalarization on the Cityscapes (Cordts et al., 2016) dataset.
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Figure D.11: The learning outcomes of a Multitask SAC agent vary considerably depending
on the reward normalisation hyperparameter. Each of the curves represents and average
of 10 runs with shaded 95% confidence interval.
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Figure D.12: Metaworld’s MT10 ablation experiments.
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