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Abstract

Reinforcement learning (RL) is a promising framework for training intelligent agents

which learn to optimize long term utility by directly interacting with the environment.

Creating RL methods which scale to large state-action spaces is a critical problem

towards ensuring real world deployment of RL systems. However, several challenges

limit the applicability of RL to large scale settings. These include difficulties with

exploration, low sample efficiency, computational intractability, task constraints like

decentralization and lack of guarantees about important properties like performance,

generalization and robustness in potentially unseen scenarios.

This thesis is motivated towards bridging the aforementioned gap. We propose

several principled algorithms and frameworks for studying and addressing the above

challenges RL. The proposed methods cover a wide range of RL settings (single

and multi-agent systems (MAS) with all the variations in the latter, prediction

and control, model-based and model-free methods, value-based and policy-based

methods). In this work we propose the first results on several different prob-

lems: e.g. tensorization of the Bellman equation which allows exponential sample

efficiency gains (Chapter 4), provable suboptimality arising from structural con-

straints in MAS(Chapter 3), combinatorial generalization results in cooperative

MAS(Chapter 5), generalization results on observation shifts(Chapter 7), learning

deterministic policies in a probabilistic RL framework(Chapter 6). Our algorithms

exhibit provably enhanced performance and sample efficiency along with better scal-
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ability. Additionally, we also shed light on generalization aspects of the agents under

different frameworks. These properties have been been driven by the use of several

advanced tools (e.g. statistical machine learning, state abstraction, variational

inference, tensor theory).

In summary, the contributions in this thesis significantly advance progress towards

making RL agents ready for large scale, real world applications.
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Chapter 1

Introduction

Artificial Intelligence (AI) holds tremendous promise in terms of being able to provide

solutions for some of the biggest challenges we face today. These challenges come

from a wide array of fields like agriculture, personalized medicine, energy production,

sustainable development, better recommenders in the age of choices etc. Essentially,

AI holds the potential to be applied to any task requiring human ingenuity and

intellect and much beyond. This was also the founding vision for officially creating

the field around 70 years ago.

However, historically, AI research has been focused on mimicking human-like reason-

ing abilities through creation of knowledge systems and using principles of formal

reasoning towards creating expert systems that execute elaborate rules. Such systems

typically required human experts towards carefully designing domain specific rules

for automation and used elaborate search techniques for finding the solutions. This

approach has driven lots of industrial development and enhanced our capabilities to

create super-human systems for the fist time on narrow focus tasks: e.g. beating a

human chess grand master like IBM’s DeepBlue did.

While the aforementioned approach was effective in creating autonomous agents for

controlled environment, such rule based systems often broke in the presence of uncer-
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tainty and environment noise. Thus AI system remained far from delivering on their

promise. This led to researchers thinking about ways to create AI systems which

were robust to noise and came with guarantees about performance and learning.

This led to the rapid development of Machine learning (ML), a field at the confluence

of computer science, optimization and statistics. ML systems were extremely broad

in terms of applicability and tolerance to noisy scenarios. Further, they have been

extensively analysed and studied for leveraging structural properties in the data and

learning in extreme situations involving limited amounts of data and computational

intractability. Several innovative frameworks like statistical machine learning [108],

support vector machines [229] and probabilistic graphical models [115] were created

under this field. Over the past years this approach has transformed many areas

in industry and otherwise. For example a lot of the tech companies like Amazon,

Google and Netflix have benefited massively from automated advertising and recom-

mendation systems driven by such innovations. Similarly, even the finance industry

has several application for such systems. In fact, most of modern AI research still

borrows heavily from concepts discovered during the rapid developmental phase of

ML which started around 30 years ago.

Classical machine learning systems guaranteed principled development of complex

solutions. They became good at modelling tasks like finding high level patterns in

user behaviour, however, some problems which are otherwise easy for most humans

and other living organisms, like reliably identifying a cat in a photograph remained

unscathed for these classical systems. This was in part because these systems still

relied heavily on expert knowledge of the underlying structure in the data for design-

ing effective features for the task. Further, the lack of scalable compute methods

limited the complexity and size of the models to consider while solving the problem

(e.g. the curse of dimensionality is one such effect).

Things began to change around the previous decade when developments in other

technological fields like acceleration hardware and software practices enabled Ma-
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chine learning to enter a new phase of Deep Learning. This has brought a huge

impact on automation for various research and industrial applications. Deep learn-

ing has been driving research in modern AI systems chiefly due to two factors: (1)

Use of large neural networks for automated feature learning (2) Efficient training

on very large amounts of data. Notable applications using deep learning include

image recognition [124], speech-recognition [96], language translation [199], artificial

data synthesis [230] amongst many others. These applications all entail training

on a dataset consisting of inputs and their desired outputs and fall under the the

supervised learning regime. Supervised learning is catered to a fixed underlying

distribution of problem instances and the future data distribution is independent of

current agent decisions/predictions.

However the advantages in automated learning of task relevant features has opened

the doors to automation for extended decision making geared towards maximising

long term utility. Such type of problems can be formalized under the Reinforcement

Learning (RL) framework. In such tasks the autonomous agent∗ has to actively

interact with the environment and learn from feedbacks, instead of being told the

correct answer. These type of problems have tremendous potential for industrial

applications like robotics, swarm intelligence, autonomous driving, financial markets

etc. Deep reinforcement learning (DRL) which combines the deep learning technolo-

gies with reinforcement learning (aka learning from feedbacks) has proved to be very

promising candidate for learning good agent policies for such applications.

1.1 Reinforcement Learning in Large State-Action

Spaces

As mentioned above, Reinforcement Learning in general and Deep Reinforcement

Learning specifically has immense potential in creating truly intelligent agents
∗Hereon we use agents to imply autonomous agents unless specified otherwise
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capable of long term decision making. Most real world RL applications can be

characterized as those having large state action spaces. This makes learning in such

spaces difficult due to a variety of reasons:

(1) Firstly, a large state action space makes the exploration difficult. This also makes

it difficult to reduce uncertainties about the system. Thus innovative methods need

to created so that the agents explore sufficiently and efficiently.

(2) A large state-action space also makes learning the underlying model parameters

and objects used for decision making (like policy, value functions) difficult from a

statistical perspective as the number of samples required for robust learning increases

accordingly. In general, DRL agents have very poor sample efficiency. Even with

rapid concurrent developments in scaling compute power and availability of big

data, allowing for training at very large scales, it is still difficult to learn reasonable

policies for large RL problems. Further, for decision tasks where obtaining the data

is costly, DRL is not very helpful.

(3) For computational tractability, one has to often resort to approximate solutions

for learning in large spaces which include strategies like factorization. The effects of

such approximations are difficult to analyse due to iterated nature of the problem

but they can lead to problems like severe sub-optimality.

(4) Several real world problems pose challenging constraints like learning decen-

tralized control(see Section 2.5) for which any possible solution must have adverse

computational complexity (e.g. Dec-POMDPs are NEXPTIME complete). Thus

even large scale compute is often insufficient for such problems.

(5) Several instances show that DRL agents generalize very poorly. Small changes

in deployment settings can often completely break learnt policies. This comes as a

surprise given the amount of training data and compute required for DRL in addition

to how good humans and other organisms are at generalization in comparison.

(6) Finally, as is typical of many deep learning approaches, DRL agents seldom come

with guarantees about important properties like performance, generalization and
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robustness in potentially unseen scenarios. These properties are especially difficult

to study in large state-action spaces.

We now discuss instances of large state-action spaces relevant to this work. Many

real world applications involve these instances alone or in combinations.

1.1.1 Multi-Agent systems

Many real world applications involve environments that contain a large number of

learning agents, and are thus multi-agent in nature. Not all of the participating

agents in such scenarios need to be machines. While we will primarily be interested

in cooperative multi agent settings (MAS) most of the discussion also applies to

general sum scenarios. In these settings a large number of agents need to coordinate

towards maximising joint rewards, taking into account the presence of other agents

in the environment. The state-action space in this setting grows exponentially in the

number of agents, this makes it particularly susceptible to the needle in the haystack

phenomenon as finding rewarding team actions and coordinating with the team

members for exploration and adaptation becomes necessary †. Additionally, the

number of varied interactions possible between the agents also grows exponentially

in these systems which makes modelling and representing the underlying decision

making objects like joint policy and value function computationally intractable. We

will cover the multi-agent exploration and representation problem along with its

implications on learning in Chapter 3, additionally, we will look at a completely

new perspective towards tackling the representation problem in a statistically sound

manner using the theory of tensors in Chapter 4. Often, agents only get a common

reward, which means the agents need to learn to reason about their contribution to

the rewards obtained and how they can improve. These systems also necessitate

agents to demonstrate combinatorial generalization in addition to usual single agent

generalization towards robust real world deployment, we will cover this in great
†Cooperative MAS have no mini-max performance guarantees unlike competitive MAS
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detail in Chapter 5. Examples of cooperative MAS include autonomous vehicle fleet,

swarm robotics, recommender systems etc.

1.1.2 Continuous state, action and context spaces

Several real world problems involve scenarios where either the state or the action

or both are continuous. This characterization can be extended to systems having

continuous observations. Moreover, several real world problems also contain inherent

structure: like an underlying context which affects the agent rewards and transitions,

such context can come from a continuous space e.g. the observation view angle of

an autonomous car. Learning in these systems is difficult as policy search needs

to be done on a continuous function space. Further, as it is impossible to try out

each state actions combination due to its uncountable nature. Thus special focus is

required to ensure adequate generalization both within the state-action space and

across different such RL tasks using strategies like abstractions and metric learning.

We will explore some of these problems in Chapter 5 and Chapter 7. Finally, due

to the continuous nature of the state-action space, it becomes impossible to apply

tabular approaches for uncertainty reduction and statistical robustness, hence once

again problems like exploration, choosing the right policy class and designing sample

efficient RL algorithms for inference and decision making need special attention. We

will explore how some of these problems can be tackled by bringing the statistical

methodology to bear under the framework of RL as inference in Chapter 6. Examples

of continuous state-action problems include torque outputs for robotic joints, car

steering angles in autonomous vehicles, visual inputs for robots, temperature of a

chemical plant.
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1.2 Contributions and Structure

The aforementioned challenges prevent DRL methods from being applied in large-

scale practical scenarios. Thus, towards bridging the above gap, we propose several

principled algorithms and frameworks for studying and addressing the challenges.

We hope that this helps drive forward Deep-RL research for large scale systems and

in the long term, increases their applicability for solving real world problems.

1.2.1 Core approach

The core strategy we use for tackling the problem of reinforcement learning in

large state-action spaces is that of approximation. This helps us understand in

a principled manner, the underlying similarities between the seemingly different

problems. It also allows for finding common solution techniques which can used

towards solving these hard problems and analyse the effects of approximation in

terms of solution quality. Thus, it acts as the glue connecting various problems and

solution methods developed in this thesis. The approximation approaches we use

in this work can be broadly classified into those related to discrete optimization

problems and those related to continuous optimization. The discrete problems we

study in this thesis are particularly characterized by their combinatorial nature and

typically admit factorization based methods: for instance, the problem of learning a

monotonic decomposition of multi-agent action value function (Chapter 3) under

the context of developing value based decentralized algorithms. On the other end of

the spectrum, for instance in Chapter 7, we deal with the problem of generalizing

across a large observation space that varies continuously with an underlying context,

this allows for using elegant methods from state abstraction and metric learning

to bear given the continuous structure. Quite uniquely, many of the problems

covered here need a combination of approximation methods of both kinds to solve

the problem. For instance, Chapter 3 also utilizes variational approximation from
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the continuous domain to ensure the recovery of diverse monotonic projections.

Similarly, in Chapter 5, where we study combinatorial generalization, we utilize

both the discrete nature of team composition and the continuous dependence on the

underlying agent capabilities for developing generalization bounds. In this thesis

we also elucidate via the approximation strategy, what are the actual underlying

challenges of solving a large (and hence difficult) RL problem. This often manifests

as results obtained under the limit of approximation tending towards the original

hard problem. For instance in Chapter 6, where we study the RL as inference

problem, it becomes clear that the quality of the policy obtained via approximation

is directly dependent on the complexity of the variational class used, and in the limit

of using arbitrary non-parametric distributions, one can solve the problem exactly,

albeit making the problem computationally intractable in the process. Similarly in

Chapter 4, where we utilize tensor decompositions to approximate the joint action

value function, we observe that as the approximation rank gets higher, the sample

efficiency of the approach decreases making the problem difficult. We next discuss

the structure of the thesis.

1.2.2 Thesis Structure

This thesis is divided into a background section followed by three main parts and a

conclusion/discussion in the end. Each of the parts addresses several of the challenges

involved in doing RL in large state-action spaces as outlined above. We next provide

an overview of the different sections.

Background

In Chapter 2, we formally introduce the Reinforcement Learning problem and various

settings used in this thesis. Additionally, we also discuss the necessary algorithmic

and conceptual tools in RL along with methods in deep reinforcement learning

which are common to the rest of the thesis. For the ease of exposition, background
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concepts required only for a specifics chapter are introduced within the corresponding

chapter.

Part 1: Multi Agent Systems

In the first part we address various challenges arising in learning in the cooperative

multi agent setting.

In Chapter 3 we study the relation between representation and learning in multi

agent systems. Centralised training with decentralised execution is an important set-

ting for cooperative deep multi-agent reinforcement learning due to communication

constraints during execution and computational tractability in training. In this work,

we analyse value-based methods that are known to have superior performance in

complex environments. We are the first to show that the representational constraints

on the joint action-values introduced by the value based methods like VDN [198],

QMIX [172] and other similar methods lead to provably poor exploration and sub-

optimality. Furthermore, we propose a novel approach called MAVEN [140] that

hybridises value and policy-based methods by introducing a latent space for hierar-

chical control. The value-based agents condition their behaviour on the shared latent

variable controlled by a hierarchical policy. This allows MAVEN to achieve commit-

ted, temporally extended exploration, which is key to solving complex multi-agent

tasks. Our experimental results show that MAVEN achieves significant performance

improvements on the challenging SMAC domain [181].

In Chapter 4, we focus on the problem of sample efficient policy evaluation and critic

learning for Cooperative multi-agent reinforcement learning (MARL). While RL in

large action spaces is a challenging problem, MARL exacerbates matters by imposing

various constraints on communication and observability. In this work, we consider

the fundamental hurdle affecting both model based and model free(value-based and

policy-gradient) approaches: an exponential blowup of the action space with the
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number of agents. For model based methods, it makes sample efficient learning of

the underlying parameters difficult. For policy gradient methods, it makes training

the critic difficult and exacerbates the problem of the lagging critic similarly, for

value-based methods, it poses challenges in accurately representing the optimal value

function similarly. We show that from a learning theory perspective, both problems

can be addressed by accurately representing the associated action-value function

with a low-complexity hypothesis class. This requires accurately modelling the agent

interactions in a sample efficient way. To this end, we propose a novel tensorised for-

mulation of the Bellman equation. This gives rise to our method Tesseract [142],

which views the Q-function as a tensor whose modes correspond to the action

spaces of different agents. Algorithms derived from Tesseract decompose the

Q-tensor across agents and utilise low-rank tensor approximations to model agent

interactions relevant to the task. We provide probably approximately correct lean-

ring(PAC) analysis for Tesseract-based algorithms and highlight their relevance

to the class of rich observation MDPs. Empirical results in different domains confirm

Tesseract’s gains in sample efficiency predicted by the theory. We are the first

to apply tensor theory towards efficient learning in factored RL problems like MARL.

In Chapter 5 we study generalization in cooperative multi agent systems, which

is a important property exhibited by several species of living organisms. As is

commonly observed, such natural systems are very flexible to changes in their

structure. Specifically, they exhibit a high degree of generalization when the abilities

or the total number of agents changes within a system. We term this phenomenon

as Combinatorial Generalization (CG). CG is particularly difficult for MAS as it

leads to a combinatorial blow-up in the number of possible teams (w.r.t. agent

capabilities) given a team size. Further the capabilities need to be grounded w.r.t.

the dynamics of the environment which becomes increasingly hard with team size

and the non-stattionarity introduced by other agents. CG is a highly desirable trait
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for autonomous systems as it can increase their utility and deployability across a

wide range of applications. While recent works addressing specific aspects of CG

have shown impressive results on narrow domains, they provide no performance

guarantees when generalizing towards novel situations. In this work [141], we shed

light on the theoretical underpinnings of CG for cooperative multi-agent systems

(MAS). Specifically, we study generalization bounds under a linear dependence of the

underlying dynamics on the agent capabilities, which can be seen as a generalization

of Successor Features to MAS. We then extend the results first for Lipschitz and then

arbitrary dependence of rewards on team capabilities. Finally, empirical analysis

on various domains using the framework of multi-agent reinforcement learning

highlights important desiderata for multi-agent algorithms towards ensuring CG.

This is the first work which defines a principled framework for studying combinatorial

generalization in MAS.

Part 2: Learning in continuous state-action spaces

In the second part, we focus on learning in high dimensional continuous state-action

spaces with emphasis on creating methods which can efficient and can principally

reason about uncertainties in these spaces.

Chapter 6 discusses this problem in greater detail. An important approach towards

achieving the above goal is applying probabilistic models to reinforcement learning,

which enables the use of powerful optimisation tools such as variational inference in

RL. However, existing inference frameworks and their algorithms pose significant

challenges for learning optimal policies, e.g., the lack of mode capturing behaviour

in pseudo-likelihood methods, difficulties learning deterministic policies in maximum

entropy RL based approaches, and a lack of analysis when function approximators

are used. We propose virel [58], a theoretically grounded inference framework for

RL that utilises a parametrised action-value function to summarise future dynamics

of the underlying MDP, generalising existing approaches. virel also benefits from
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a mode-seeking form of KL divergence, the ability to learn deterministic optimal

polices naturally from inference, and the ability to optimise value functions and

policies in separate, iterative steps. Applying variational expectation-maximisation

to virel, we show that the actor-critic algorithm can be reduced to expectation-

maximisation, with policy improvement equivalent to an E-step and policy evaluation

to an M-step. We derive a family of actor-critic methods from virel, including a

scheme for adaptive exploration and demonstrate that our algorithms outperform

state-of-the-art methods based on soft value functions in several domains.

Part 3: Learning to generalize across observation shifts

In the third part, we turn our attention to learning agent policies which are robust to

changes in the environment and give good generalization across environment shifts.

In Chapter 7 we focus on bisimulation metrics, which provide a powerful means

for abstracting task relevant components of the observation and learning a succinct

representation space for training the agent using reinforcement learning. In this

work, we extend the bisimulation framework to also account for context dependent

observation shifts. Specifically, we focus on the simulator based learning setting

and use alternate observations to learn a representation space which is invariant

to observation shifts using a novel bisimulation based objective. This allows us to

deploy the agent to varying observation settings during test time and generalize to

unseen scenarios. We further provide theoretical bounds for simulator fidelity and

performance transfer guarantees for using a learnt policy to unseen shifts. Empirical

analysis on the high-dimensional image based control domain [212] demonstrates

the efficacy of our method.
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Chapter 2

Background

Contents

2.1 Markov Decision Process and Reinforcement learning . . . . . . . . 16

2.2 Exploration-Exploitation trade-off . . . . . . . . . . . . . . . . . . . 19
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2.7 Methods and algorithms in RL . . . . . . . . . . . . . . . . . . . . . 26

2.8 Variational Inference and EM . . . . . . . . . . . . . . . . . . . . . 28

In this chapter we provide the necessary background information and formalisms

used for the rest of the thesis. In particular we introduce Markov decision process

(MDP) and Reinforcement Learning (RL), methods used for RL, partial observ-

15



ability and the multi-agent settings. Concepts which are required only for specific

chapters are introduced as additional background in those chapters, see, e.g. tensor

decompositions in Chapter 4. Furthermore, where appropriate, we revise some of

the key concepts within the given chapters. Content in this chapter is based on all

relevant papers and preprints mentioned in the introduction .

2.1 Markov Decision Process and Reinforcement

learning

Figure 2.1: The reinforcement learning loop

We start with the simplest model for sequential decision making which can be

captured using the formalism of a Markov Decision Process (MDP). This uses the

Markov assumption ie. the rewards and the new environment states encountered by

the agent while interacting with the environment are independent of the previous

states and actions given the current state and agent action. An MDP is formally

defined as a tuple ⟨S, U, P, r, γ, ρ⟩. Here S is the state space of the environment

and ρ is the initial state distribution. At each time step t, an agent observes the
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state s ∈ S and chooses an action∗ a ∈ U using its policy π : S → P(U), where

P(·) represents the space of distributions on the argument set. This leads to a

state transition governed by the distribution P (s′|s, a) : S × U × S → [0, 1], and

the agent receives reward† r(s, a) : S × U → [0, Rmax] which can be potentially

stochastic. Fig. 2.1 illustrates the the reinforcement learning loop. We consider the

discounted infinite horizon setting, where the discount factor is given by γ ∈ [0, 1).

The episodic case which has a finite problem horizon can be viewed as a special case

of the infinite horizon setting. The state-action trajectory of the agent is represented

by τ ∈ T ≡ (S × U)∗, we overload the notation to also include rewards as necessary.

We assume finite state and action sets although some of methods in this thesis are

applicable to non-finite sets as well. The value of a policy is defined as:

Jπ = Eπ,ρ

[
∞∑
t=0

γtrτ (st)

]

The expectation on the RHS above is well defined given bounds on rewards and γ.

We also define three other useful functions:

Qπ(s, a) = Eπ

[
∞∑
t=0

γtr(st)|s0 = s, a0 = a

]

V π(s) = Ea∼πQπ(s, a) (2.1)

Aπ(s, a) = Qπ(s, a)− V π(s) (2.2)

respectively called the action-value, value and advantage functions. The goal of

the MDP problem is to find the optimal policy π∗ corresponding to the optimal

policy value J∗. It is well known that a deterministic optimal policy always exists

for finite MDPs [201]. Further, the optimal value function V ∗ and optimal action

value function Q∗ also exhibit important properties like uniqueness and point-wise
∗Following standard convention, for disambiguation, we use a to denote action in single agent

and u for the same in multi-agent settings
†we use Rmax = 1 unless specified
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function dominance over the entire domain [201]. A standard assumption in RL is

that both the rewards and transition kernels are not known to the agent. Thus to

solve the RL problem, the agent has to estimate the underlying dynamics either

explicitly (e.g. model based methods) or implicitly (e.g. value based methods).

2.1.1 Recurrence relations

The action value function Qπ of any policy π satisfies the recurrence relation called

(scalar)-Bellman expectation equation [21]: Qπ(s, a) = r(s, a) + γEs′,a′ [Qπ(s′, a′)],

which can equivalently be written in vectorized form as:

Qπ = R + γP πQπ, (2.3)

where R is the mean reward vector of size |S × U |, P π is the transition matrix

|S × U | × |S × U | with P π((s, a), (s′, a′)) ≜ π(a′|s′)p(s′|s, a). The operation on

RHS: T π(·) ≜ R + γP π(·) is the Bellman expectation operator for the policy π. In

Chapter 4 we will study the novel tensorized form of this recurrence relation. We

also have the Bellman optimality equation followed by any optimal policy π∗:

Qπ∗(s, a) = r(s, a) + γEs′ [max
a′

Qπ∗(s′, a′)] (2.4)

whose Bellman optimality operator is given by T ∗(·) ≜ r(s, a) + γEs′ [maxa′(·)].

We can obtain similar recurrence relations for the value and advantage functions

using Eq. (2.1), Eq. (2.2). It turns out that the above operators are contraction

mappings and thus admit unique fixed point solutions due to Banach fixed point

theorem. Hence, an interesting way to compute the action values Qπ for any given

policy (known as the policy evaluation or prediction problem) and the optimal action

values Q∗ (known as the control problem) is to repeatedly apply these operators on

arbitrary initial vector q ∈ R|S×U | until convergence.
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2.2 Exploration-Exploitation trade-off

Reinforcement Learning deviates significantly from supervised learning methods

because the data distribution on which the agents are trained for the control task is

not stationary. This is because the observations (states, reward) of the agents are

dependent on the agent policy in the first place. Further, there can be additional

shifts in the agent’s training data and internal state representation owing to design

choices like use of function approximation for feature learning or due to events

not in control of the agent like environment non-stationarity. Thus initially when

the agent’s policy is usually not performant or when the agent passes though

non-stationarity, it must gather more information about the environment towards

learning more reward optimizing behaviour. This leads to an interacting trade-off

where the agent, while interacting with the environment, has to choose how much

to explore by taking actions whose outcomes are uncertain versus how much to

exploit by leveraging already found rewarding behaviour, given everything it has

learned so far. Exploration involves taking information-seeking actions, that help

the agent gather data from which it can learn about the environment and adjust to

non-stationarity, while also learning the short and long-term consequences of the

new actions. Thus exploratory actions can be potentially costly and sub-optimal but

may pay off in the long term in comparison to exploitative actions. There has been

extensive work in bandit theory and more recently in RL about principled ways to

manage the Exploration Exploitation trade-off.

2.3 Contextual MDPs

An important class of MDP arises when we consider the presence of an underlying

parametrized context θ, which governs the rewards and transitions in the MDP

framework. We call this extension of the setting as the Contextual MDP setting

(CMDP). Formally, we have M ≜ ⟨S, U, Pθ, rθ, γ, ρ,Θ, PΘ⟩, where Θ defines a
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space of context parameters, PΘ is a fixed distribution over the contexts. The

important distinction here is that the transitions Pθ : S × U × S × Θ → [0, 1],

and the agent reward rθ : S × U × Θ → [0, Rmax] are now also function of the

context parameter θ. Thus fixing a particular context θ gives us an instance of a

regular MDP indexed by θ: Mθ. Fig. 2.2 illustrates the contextual MDP setting.

Figure 2.2: The contextual MDP setting

It is important to note that this CMDP

is equivalent to the regular MDP setting

when we augment the state space S to

also include the context space Θ (ie. new

state space S ≜ S × Θ). Nevertheless,

the explicit MDP treatment by fixing a

given context is a very useful abstraction

from an applications perspective and can

be found in many real world settings. This view also helps design powerful algorithms

which utilize the underlying contextual structure. We will extend the contextual

MDP setting in Chapter 5 where we use contexts to define capabilities of agents in

a multi agent setting towards studying combinatorial generalization. Similarly, in

Chapter 7 we will build over the CMDP setting to include context based dependence

of agent observations and study powerful methods which utilise MDP metrics for

solving important practical problems.

2.4 Partial Observability

Markovian transitions is often an unrealistic assumptions. This is because in most

real-world scenarios, the complete relevant information about the system is hardly

ever observable to the agent. For example, in Stratego, which is a game of incomplete

information, the opponent setup and pieces are not known to the player. Thus,

the player has to reason about the about the opponent state through the course
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of the game progression, further they also have to account for aspects of battle

psychology like concealment, bluffing and guessing. Similarly, in the deployment of

an android robot in real world terrain, important information about physical state

of the environment like coefficient of friction and ground plasticity are not directly

observable to the agent, and these must be indirectly accounted for by the agent’s

policy. Partial observability can also arise in Deep Reinforcement Learning (DRL)

when an agent encounters new situations and observation shifts that it still has to

learn about from a feature extraction perspective. Finally, in cooperative multi-agent

settings where constraints on communication prevent the agents from knowing the

teammates state again requires maintaining beliefs and indirectly inferring the values

of relevant variables towards reasonable execution.

Such situations can be modelled under the Partially Observable Markov Deci-

sion Process framework (POMDP) [106]. The POMDP can be formulated as

⟨S, U, P, r, γ, ρ, Z,O⟩. Here the MDP framework has been extended to allow for

Z the observation set from which the agent observations come, and the observa-

tion function O : S → P(Z) which gives the probability distribution over possible

observations given a state. Agents get to see the obsevation in Z instead of the

environment state. The optimal policy in POMDP conditions on either the agents

observation trajectory τ or a sufficient statistic for the agent observation history.

Note that the agent history itself follows the Markov property by definition. Belief

based approaches for solving POMDPs, maintain a belief distribution over the state

space given the observation history. They use posterior updates on the beliefs as the

agent interacts with the environment [37]. Notice how this can potentially grow the

joint belief-history distribution exponentially in the length of the problem horizon.

Thus POMDP are computationally costly to solve. [189] show that the value function

for the POMDPs are piece-wise linear in beliefs. In practice, partial observability

under the DRL framework is accommodated using RNN based methods [89] for

summarizing the agent trajectories. We use this approach for various algorithms
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discussed in this thesis.

2.5 Multi-Agent Settings

Figure 2.3: Different settings in MAS

In this thesis the multi-agent

system (MAS) scenario which

we will be primarily con-

cerned with is the coopera-

tive scenario. We next dis-

cuss the various formulation

which we use along with their

relation to the other formula-

tions.

Cooperative MARL settings: In the most general setting, a fully cooper-

ative multi-agent task can be modelled as a decentralized partially observable

MDP (Dec-POMDP) [22, 158]. A Dec-POMDP is formally defined as a tuple

⟨S, U, P, r, Z,O, n, ρ, γ⟩. Building over the POMDP framework, the most important

addition is the presence of multiple agents (n in number) which add new algorithmic

complexity to the problem. At each time step t, every agent i ∈ A ≡ {1, ..., n}

observes its observation and chooses an action ui ∈ U which forms the joint action

u ∈ U ≡ Un. The state transition function P (s′|s,u) : S ×U × S → [0, 1] now

conditions on the joint action, and similarly the rewards r(s,u) : S ×U → [0, 1]

which are shared by all agents. As before we have γ ∈ [0, 1) being the discount factor.

A Dec-POMDP is partially observable: each agent i does not have access to the

full state and instead samples observations z ∈ Z according to its own observation

distribution O(s, i) : S ×A → P(Z). The action-observation history for an agent i

is τ i ∈ T ≡ (Z ×U)∗. We use u−i to denote the action of all the agents other than i
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and similarly for the policies π−i. Note that in general fo Dec-POMDPs the agents

cannot exchange their action-observation histories with others and must condition

their policy solely on local trajectories, πi(ui|τ i) : T × U → [0, 1].

There are several interesting specializations of the Dec-POMDP which are of theoret-

ical as well as practical interest. If the Dec-POMDP is such that the observations

across the jointly identify a unique underlying state, the problem is called a Dec-

MDP.

Similarly, when the observations are invertible for each agent, so that the observation

space is partitioned w.r.t. S, i.e., ∀i ∈ A,∀s1, s2 ∈ S,∀zi ∈ Z, P (zi|s1) > 0 ∧ s1 ̸=

s2 =⇒ P (zi|s2) = 0, we classify the problem as a multi-agent richly observed

MDP (M-ROMDP) [142] which extend ROMDPS[10] to the multi-agent setting. For

M-ROMDP, we typically have |Z| >> |S|, thus for this work, we assume a setting

with no information loss due to observation but instead, redundancy across different

observation dimensions. Such is the case for many real world tasks like 2D robot

navigation using observation data from different sensors.

When the observation distributions admit no special structure, but the observation

distribution is independent of the agent index (ie. identical across agents), the

problem is called an M-POMDP[142]. M-POMDPs can be thought of as POMDPs

with factored action spaces, several algorithmic techniques applicable to M-POMDPs

can be used to improve POMDP as well.

Finally, when the observation function is a unique bijective map O : S → Z, we refer

to the scenario as a multi-agent MDP (MMDP) [29], which can simply be denoted

by the tuple : ⟨S, U, P, r, n, γ⟩

Fig. 2.3 gives the relation between different scenarios for the cooperative setting.

For ease of exposition, we present our theoretical results for the MMDP case,

though they can easily be extended to other cases by incurring additional sample
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complexity.

Similar to the single agent setting, the value of a joint policy is defined as Jπ =

Eπ,ρ [
∑∞

t=0 γ
trτ (st)]. Similarly, the joint action-value function given a policy π is

defined as: Qπ(st,ut) = Eπ
[∑∞

k=0 γ
kr(st+k)|st,ut

]
. The goal is to find the optimal

joint policy π∗ corresponding to the optimal joint policy value J∗.

2.5.1 Centralised Training with Decentralised Execution

Figure 2.4: CTDE learning settting

The Dec-POMDP framework in general imposes no information exchange between

the agents during execution. However, with the aim of potentially learning agent

policies efficiently, we will consider a centralised training scenario, where the training

algorithm may utilise extra information such as access to the underlying state or

unbounded communication between the agents. As long as we enforce that the final

agent policies do not rely on such privileged information, we can satisfy the no

information exchange constraint required during execution for the Dec-POMDP. This

training/execution setup is called Centralised Training with Decentralised Execution

(CTDE) [137] and has become standard approach for policy search in Dec-POMDP.

Fig. 2.4 illustrates the CTDE setup. We will be using the CTDE settings for the

multi-agent reinforcement learning (MARL) problems discussed in this thesis. Note

that CTDE is naturally applicable for many real world scenarios where we have access
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to additional information about the environment during training phase: for example

learning decentralized policy for a robot swarm in a controlled lab environment or

simulator which will be subsequently used for deployment in real world.

2.6 Computational complexity of solving different

settings

Our current understanding of computational complexity theory is that:

Class P ⊆ Class NP ⊆ Class PSPACE ⊆ Class EXPTIME ⊆ Class NEXPTIME

Class P ⊂ Class EXPTIME, Class NP ⊂ Class NEXPTIME

where the bottom relations are strict inclusions. Finite horizon MDPs are P-

complete under the dynamic programming framework. However, solving a POMDP

becomes PSPACE-complete [164], this means that the worst instances of POMDP

problems can potentially take exponential time, similarly solving a Dec-MDP for

n = 2 agents is PSPACE-hard. Even more strikingly, solving a Dec-POMDP is

NEXPTIME-complete [22] for n ≥ 2 agents and similarly solving a Dec-MDP is

NEXPTIME-complete [22] for n ≥ 3 agents. NEXPTIME is the class of decision

problems solvable by a nondeterministic Turing machine in exponential time. Since

NEXPTIME is a strict superset of NP, it not possible to solve is the Dec-POMDP

problems in polytime compute resources. This makes solving decentralized POMDPs

computationally intractable. Similarly, the hierarchy of complexity also reflects in the

sample requirements for robustly learning the underlying dynamics in the RL setting,

with Dec-POMDPS being very sample inefficient. Thus creating sample efficient

and computationally tractable solutions for the problem is a research intensive

area.
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2.7 Methods and algorithms in RL

We now discuss the main algorithmic approaches for deep reinforcement learning

used in this thesis.

2.7.1 Model based vs Model free

Reinforcement Learning Methods can be broadly categorized into model based and

model free algorithms. The model based approaches explicitly learn the underlying

dynamics of the environment (rewards, transitions, emission probabilities) which is

then subsequently used for planning and control. An important aspect here is to

obtain robust statistical estimates for the environment models while being sample

efficient. Using the model, other auxillary objects like policy and value functions

are learnt in combination with the environment experience. A general principal is:

the more complex the model the used the better it performs on real world tasks

while being less susceptible to biases, however, this exposes the model to being less

sample efficient and overly sensitive to environment noise (thus requiring careful

regularization). Model free algorithms only implicitly model the environment are

thus more readily deployable. They are directly concerned with computing the

policy/value functions and thus less susceptible to errors in comparison to model

based methods. Model free methods however offer less interpretability and offer a

coarser way to reason about environment uncertainty in comparison to their model

based counterparts.

2.7.2 Value based and Policy based methods

Yet another dimension of classifying the algorithms is based on the components they

use for computing and representing the agent policy.

Value based methods typically use the action value function(Qπ) estimate to derive

a behaviour policy which is iteratively improved using the policy evaluation and
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policy improvement loop. (see policy improvement theorem in [201]). Q-Learning

offers a sample efficient approach which allows reusing experience from previous

policies and can be easily combined with various exploratory strategies. Derived from

the Bellman optimally Eq. (2.4), Q-learning uses the residual loss minimization:

LQL = Eπexp [(r(s,u) + γmax
u′

Qϕ−(s′,u′)−Qϕ(s,u))2].

where πexp denote exploration policy samples (or a experience buffer) and ϕ are

the parameters used for function approximation (ϕ− represent older parameters

used for bootstrapping). Neural network based function approximation along with

other stabilising techniques like replay buffer and target networks [153] have shown

promising performance on problems with large state action spaces, where tabular

methods would be computationally intractable. The most common exploration

strategy for Q-Learning is annealed ϵ greedy where the greedy action corresponding

to argmaxuQ
ϕ(s,u) is picked with probability (w.p.) 1− ϵ and a random action is

picked w.p. ϵ. As we shall see in coming chapters (e.g. Chapter 3) better exploration

methods combined with novel representation classes can prove much more effective,

specially in large problems like MARL.

Policy gradient methods directly optimize an agents policy (typically parameterized

by θ) by performing gradient ascent on the policy value objective Jπ. The simplest

form of policy gradient is REINFORCE [241], in which the gradient is given by:

∇Jθ = Eπ[Gτ∇πθ(u|s)], where Gτ ≜
∑∞

t=0 γ
trt is the discounted return. This

gradient is unbiased but tends to be very noisy as it uses the Monte-Carlo return.

Actor-critic algorithms offer a promising approach in terms of reducing the gradient

estimate variance. Here, an estimator for the action-value function Qϕ ≈ Qπ given

the policy π is used for weighing the score function (∇ log(πθ(u|s))) as we do not
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have access to the true Qπ-function. The overall gradient thus becomes:

∇Jθ =
∫
S

ρπ(s)

∫
U

∇πθ(u|s)Qϕ(s,u)duds

where ρπ(s) ≜ (1−γ)
∑∞

t=0 γ
tP (st = s|ρ, π) is the discounted future state distribution

(similar gradient formula also exists for the average reward formulation). The bias

induced in approximating the gradient using an estimate of Qπ can be removed

using compatible function approximation [206]. The parametrised approximation

Qϕ is usually trained using the bootstrapped target objective derived using the

samples from π by minimising the mean squared temporal difference(TD) error:

Eπ[(r(s,u) + γQϕ(s′,u′)−Qϕ(s,u))2]. Methods such as n-step TD and TD(λ) can

be used to enable faster critic learning and ameliorate the lagging critic problem,

these however become insufficient for large state-action spaces (Chapter 4). Various

techniques aimed towards reducing the gradient variance by using a baseline reduction

have been found. Typically Qϕ is replaced by Qϕ(s,u)− b(s) where b(s) is the state

dependent baseline. A common choice for b(s) = V π(s), which effectively uses the

advantage for weighing the scores. Another option is to use the temporal difference

r(s,u) + γV π(s′)− V π(s), which is an unbiased estimate of the advantage A(s,u).

Hence, the bias and variance of the policy gradient estimate depends strongly on

the particular choice of estimator used for weighing the score. We will also be using

deep neural networks for function approximation for empirical analysis on large

domains throughout this work.

2.8 Variational Inference and EM

We will use tools from variation inference in Chapter 3 (for maximizing mu-

tual information between joint multi-agent trajectories and a latent behaviour

space) and Chapter 6 (for maximizing the RL as inference objective). Here we

give a brief overview of these techniques. Fig. 2.5 shows the representation of
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a generative graphical model that produces observations x from a distribution

x ∼ pω(x|h), has hidden variables h, and is parameterised by a set of parameters, ω.

Figure 2.5: Graphical
model of inference prob-
lem.

In learning a model, we often seek the parameters that

maximises the log-marginal-likelihood (LML), which can

be found by marginalising the joint distribution pω(x, h)

over hidden variables, this is given by:

ℓω(x) := log pω(x) = log

(∫
pω(x, h)dh

)
. (2.5)

In many cases, we also need to infer the corresponding

posterior,

pω(h|x) =
pω(x, h)∫
pω(x, h)dh

.

Evaluating the marginal likelihood in Eq. (2.5) and obtain the corresponding pos-

terior, however, is intractable for most distributions. To compute the marginal

likelihood and ω∗, we can use the Expectation Maximization (EM) algorithm [50]

and variational inference (VI). We review these two methods now.

For any valid probability distribution q(h) with support over h we can rewrite the

LML as a difference of two divergences [105],

ℓω(x) =

∫
q(h) log

(
pω(x, h)

q(h)

)
dh−

∫
q(h) log

(
pω(h|x)
q(h)

)
dh,

=L(ω, q(h)) + KL(q(h) ∥ pω(h|x)),

where L(ω, q(h)) :=
∫
q(h) log

(
pω(x,h)
q(h)

)
dh is known as the evidence lower bound

(ELBO). Intuitively, as KL(q(h) ∥ pω(h|x)) ≥ 0, it follows that ℓω(x) ≥ ELBO (q(h);ω),

hence ℓω(x) ≥ ELBO (q(h);ω) is a lower bound for the LML. The derivation of this

bound can also be viewed as applying Jensen’s inequality directly to Eq. (2.5) [28].
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Note that when the ELBO and marginal likelihood are identical, the resulting KL

divergence between the function q(h) and the posterior p(h|x) is zero, implying that

q(h) = pω(h|x).

Maximising the LML now reduces to maximising the ELBO, which can be achieved

iteratively using EM [50, 244]; an expectation step (E-step) finds the posterior

for the current set of model parameters and then a maximisation step (M-step)

maximises the ELBO with respect to ω while keeping q(h) fixed as the posterior

from the E-step.

As finding the exact posterior in the E-step is still typically intractable, we re-

sort to variational inference (VI), a powerful tool for approximating the posterior

using a parametrised variational distribution qθ(h) [105, 20]. VI aims to reduce

the KL divergence between the true posterior and the variational distribution,

KL(qθ(h) ∥ pω(h|x)). Typically VI never brings this divergence to zero but nonethe-

less yields useful posterior approximations. As minimising KL(qθ(h) ∥ pω(h|x))

is equivalent to maximising the ELBO for the variational distribution (e.g. see

Eq. (D.13) from Theorem D.3 for an RL as inference application), the variational

E-step amounts to maximising the ELBO with respect to θ while keeping ω constant.

The variational EM algorithm can be summarised as:

Variational E-Step: θk+1 ← argmax
θ

L(ωk, θ),

Variational M-Step: ωk+1 ← argmax
ω

L(ω, θk+1).
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Part I

Multi Agent Systems
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Chapter 3

Maven: Multi-agent variational

exploration
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3.1 Introduction

Cooperative multi-agent reinforcement learning (MARL) is a key tool for addressing

many real-world problems such as coordination of robot swarms [99] and autonomous

cars [36]. However, two key challenges stand between cooperative MARL and such

real-world applications. First, scalability is limited by the fact that the size of the

joint action space grows exponentially in the number of agents. Second, while the

training process can typically be centralised, partial observability and communication

constraints often mean that execution must be decentralised, i.e., each agent can

condition its actions only on its local action-observation history, a setting known as

centralised training with decentralised execution (CTDE).

While both policy-based [63] and value-based [172, 209, 197] methods have been

developed for CTDE, value based thend to perform better than policy based methods,

as measured on SMAC, a suite of StarCraft II micromanagement benchmark tasks

[181]. We focus on the recent value based methods here. VDN [197] tries to address

the challenges mentioned above by learning factored value functions. By decomposing

the joint value function into factors that depend only on individual agents, VDN

can cope with large joint action spaces. Furthermore, because such factors are

combined in a way that respects a monotonicity constraint, each agent can select its

action based only on its own factor, enabling decentralised execution. QMIX [172]

similarly learns a more general monotonic factorization. However, this process of

decentralisation comes with a price, as the monotonicity constraint restricts these

algorithms to suboptimal value approximations as we shall see in this work.

QTRAN[188], another recent method, performs this trade-off differently by formu-

lating multi-agent learning as an optimisation problem with linear constraints and

relaxing it with L2 penalties for tractability.

In this work, we shed light on a problem unique to decentralised MARL that

arises due to inefficient exploration. Inefficient exploration hurts decentralised
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MARL, not only in the way it hurts single agent RL[152] (by increasing sample

inefficiency[145, 143]), but also by interacting with the representational constraints

necessary for decentralisation to push the algorithm towards suboptimal policies.

Single agent RL can avoid convergence to suboptimal policies using various strategies

like increasing the exploration rate (ϵ) or policy variance, ensuring optimality in the

limit. However, we show, both theoretically and empirically, that the same is not

possible in decentralised MARL.

Furthermore, we show that committed exploration can be used to solve the above

problem. In committed exploration [162], exploratory actions are performed over

extended time steps in a coordinated manner. Committed exploration is key even in

single-agent exploration but is especially important in MARL, as many problems

involve long-term coordination, requiring exploration to discover temporally extended

joint strategies for maximising reward. Unfortunately, none of the existing methods

for CTDE are equipped with committed exploration.

To address these limitations, we propose a novel approach called multi-agent vari-

ational exploration (MAVEN) that hybridises value and policy-based methods by

introducing a latent space for hierarchical control. MAVEN’s value-based agents

condition their behaviour on the shared latent variable controlled by a hierarchical

policy. Thus, fixing the latent variable, each joint action-value function can be

thought of as a mode of joint exploratory behaviour that persists over an entire

episode. Furthermore, MAVEN uses mutual information maximisation between the

trajectories and latent variables to learn a diverse set of such behaviours. This allows

MAVEN to achieve committed exploration while respecting the representational

constraints. We demonstrate the efficacy of our approach by showing significant

performance improvements on the challenging SMAC domain.
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3.2 Background

We use the Dec-POMDP framework with CTDE learning setting. An important

concept we would be using which pertains to the value based methods is decen-

tralisability (see IGM in [188]) which asserts that local agent utilities qi, satisfy

∀s,u:

argmax
u

Q∗(s,u) =

(
argmaxu1 q1(τ

1, u1) . . . argmaxun qn(τ
n, un)

)′
, (3.1)

Fig. 3.1 illustrates the value based CTDE learning process.

Figure 3.1: Value based CTDE learning. f combines local agent utilities for
computing joint action values Q.

Monotonic decomposition: QMIX [172] is a value-based method that learns

a monotonic approximation Qqmix for the joint action-value function. Figure A.1

in Appendix A.2 illustrates its overall setup, reproduced for convenience. QMIX

factors the joint-action Qqmix into a monotonic nonlinear combination of individual
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utilities qi of each agent which are learnt via a utility network. A mixer network

with nonnegative weights is responsible for combining the agent’s utilities for their

chosen actions ui into Qqmix(s,u). This nonnegativity ensures that ∂Qqmix(s,u)

∂qi(s,ui)
≥ 0,

which in turn guarantees Eq. (3.1). During learning, the QMIX agents use ϵ-greedy

exploration over their individual utilities to ensure sufficient exploration. For VDN

[197] the factorization is further restrained to be just the sum of utilities: Qvdn(s,u) =∑
i qi(s, u

i). Monotonic decomposition allows for an efficient, tractable maximisation

as it can be performed in O(n|U |) time as opposed to O(|U |n). Additionally, it allows

for easy decentralisation as each agent can independently perform an argmax.

QTRAN [188] is another value-based method. Theorem 1 in the QTRAN paper

guarantees optimal decentralisation by using linear constraints between agent utilities

and joint action values, but it imposes O(|S||U |n) constraints on the optimisation

problem involved, where | · | gives set size. This is computationally intractable

to solve in discrete state-action spaces and is impossible given continuous state-

action spaces. The authors propose two algorithms (QTRAN-base and QTRAN-alt)

which relax these constraints using two L2 penalties. While QTRAN tries avoid

QMIX’s limitations, we found that it performms poorly in practice on complex

MARL domains (see Section 3.5) as it deviates from the exact solution due to these

relaxations.

3.3 Analysis

In this section, we analyse the policy learnt by value based methods which use

monotonic approximation in the case where they cannot represent the true optimal

action-value function. We first start with QMIX and then discuss to similar algo-

rithms like VDN [197]. Intuitively, monotonicity implies that the optimal action of

agent i does not depend on the actions of the other agents. This motivates us to

characterise the class of Q-functions that cannot be represented by QMIX, which
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we call nonmonotonic Q functions.

Definition 3.1 (Nonmonotonicity). For any state s ∈ S and agent i ∈ A given the

actions of the other agents u−i ∈ Un−1, the Q-values Q(s, (ui, u−i)) form an ordering

over the action space of agent i. Define C(i, u−i) := {(ui1, ..., ui|U |)|Q(s, (uij, u−i)) ≥

Q(s, (uij+1, u
−i)), j ∈ {1, . . . , |U |}, uij ∈ U, j ̸= j′ =⇒ uij ̸= ui

j′
}, as the set of all

possible such orderings over the action-values. The joint-action value function is

nonmonotonic if ∃i ∈ A, u−i1 ̸= u−i2 s.t. C(i, u−i1 ) ∩ C(i, u−i2 ) = ∅.

A simple example of a nonmonotonic Q-function is given by the payoff matrix of the

two-player three-action matrix game shown on Table 3.1(a). Table 3.1(b) shows the

values learned by QMIX under uniform visitation, i.e., when all state-action pairs

are explored equally.

A B C

A 10.4 0 10
B 0 10 10
C 10 10 10

(a)

A B C

A 6.08 6.08 8.95
B 6.00 5.99 8.87
C 8.99 8.99 11.87

(b)

A B C

A 10.43 0.06 9.96
B 0.05 9.72 9.83
C 10.03 9.84 9.97

(c)

Table 3.1: (a) An example of a nonmonotonic payoff matrix, (b) QMIX values under
uniform visitation. (c) MAVEN values under uniform exploration, kz = 4

Of course, the fact that QMIX cannot represent the optimal value function does not

imply that the policy it learns must be suboptimal. However, the following analysis

establishes the suboptimality of such policies.

Theorem 3.1 (Uniform visitation). For n-player, k ≥ 3-action matrix games

(|A| = n, |U | = k), under uniform visitation, Qqmix learns a δ-suboptimal policy

for any time horizon T , for any 0 < δ ≤ R
[√

a(b+1)
a+b

− 1
]

for the payoff matrix (n-

dimensional) given by the template below, where b =
∑k−2

s=1

(
n+s−1

s

)
, a = kn − (b+ 1),
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R > 0:



R + δ 0 . . . R

0 . .
.

... . .
. ...

R . . . R


Proof. see Appendix A.1.1

We next consider ϵ-greedy visitation, in which each agent uses an ϵ-greedy policy

and ϵ decreases over time. Below we provide a probabilistic bound on the maximum

possible value of δ for QMIX to learn a suboptimal policy for any time horizon

T .

Theorem 3.2 (ϵ-greedy visitation). For n-player, k ≥ 3-action matrix games, under

ϵ-greedy visitation ϵ(t), Qqmix learns a δ-suboptimal policy for any time horizon T

with probability ≥ 1 −
(
exp(−Tυ2

2
) + (kn − 1) exp(− Tυ2

2(kn−1)2 )
)

, for any 0 < δ ≤

R

[√
a
(

υb
2(1−υ/2)(a+b) + 1

)
− 1

]
for the payoff matrix given by the template above,

where b =
∑k−2

s=1

(
n+s−1

s

)
, a = kn − (b+ 1), R > 0 and υ = ϵ(T ).

Proof. see Appendix A.1.2

We next cover similar suboptimality results for other value based methods.

Since the class of joint action values learnt by VDN is a subset of that of QMIX,

it is intuitive that the suboptimality incurred by the policies learnt by it would be

greater, this is in fact confirmed by the following theorem:

Theorem 3.3 (Uniform visitation VDN). For n player, k ≥ 3 action matrix games

(|A| = n, |U | = k), under uniform visitation; Qvdn learns a δ-suboptimal policy

for any time horizon T , for any 0 < δ ≤ R
[(

k+n−3
n−1

)
− 1
]

for the payoff matrix (n

dimensional) given by the template above, R > 0.
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Note that the above two upper bounds in Theorems 3.1 and A.3 for the uniform

visitation case are tight further the latter bound is O(Rmax{k, n}n−2) in comparison

to the former which is ofO(Rmax{k, n}n
2 ). We similarly show results for the ϵ-greedy

case and also for IQL[209], see Appendix A.1.3 for proofs and details.

The reliance of QMIX on ϵ-greedy action selection prevents it from engaging in

committed exploration [162], in which a precise sequence of actions must be chosen

in order to reach novel, interesting parts of the state space. Moreover, Theorems

3.1 and 3.2 imply that the agents can latch onto suboptimal behaviour early on,

due to the monotonicity constraint. Theorem 3.2 in particular provides a surprising

result: For a fixed time budget T , increasing QMIX’s exploration rate lowers its

probability of learning the optimal action due to its representational limitations.

Intuitively this is because the monotonicity constraint can prevent the Q-network

from correctly remembering the true value of the optimal action (currently perceived

as suboptimal). We hypothesise that the lack of a principled exploration strategy

coupled with these representational limitations can often lead to catastrophically

poor exploration, which we confirm empirically.

3.4 Methodology

In this section, we propose multi-agent variational exploration (MAVEN), a new

method that overcomes the detrimental effects of QMIX’s monotonicity constraint

on exploration. MAVEN does so by learning a diverse ensemble of monotonic

approximations with the help of a latent space. Its architecture consists of value-

based agents that condition their behaviour on the shared latent variable z controlled

by a hierarchical policy that off-loads ϵ-greedy with committed exploration. Thus,

fixing z, each joint action-value function is a monotonic approximation to the

optimal action-value function that is learnt with Q-learning. Furthermore, each such

approximation can be seen as a mode of committed joint exploratory behaviour.
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The latent policy over z can then be seen as exploring the space of joint behaviours

and can be trained using any policy learning method. Intuitively, the z space should

map to diverse modes of behaviour.

Figure 3.2: Architecture for MAVEN.

Fig. 3.2 illustrates the complete setup for MAVEN. We first focus on the lefthand

side of the diagram, which describes the learning framework for the latent space

policy and the joint action values. We parametrise the hierarchical policy by θ,

the agent utility network with η, the hypernet map from latent variable z used to

condition utilities by ϕ, and the mixer net with ψ. η can be associated with a feature

extraction module per agent and ϕ can be associated with the task of modifying

the utilities for a particular mode of exploration. We model the hierarchical policy

πz(·|s0; θ) as a transformation of a simple random variable x ∼ p(x) through a neural

network parameterised by θ; thus z ∼ gθ(x, s0), where s0 is initial state. Natural

choices for p(x) are uniform for discrete z and uniform or normal for continuous

z.
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We next provide a coordinate ascent scheme for optimising the parameters. Fixing z

gives a joint action-value function Q(u, s; z, ϕ, η, ψ) which implicitly defines a greedy

deterministic policy πA(u|s; z, ϕ, η, ψ) (we drop the parameter dependence wherever

its inferable for clarity of presentation). This gives the corresponding Q-learning

loss:

LQL(ϕ, η, ψ) = EπA [(Q(ut, st; z)− [r(ut, st) + γmax
ut+1

Q(ut+1, st+1; z)])
2],

where t is the time step. Next, fixing ϕ, η, ψ, the hierarchical policy over πz(·|s0; θ)

is trained on the cumulative trajectory reward R(τ , z|ϕ, η, ψ) =
∑

t rt where τ is

the joint trajectory.

Algorithm 1 MAVEN
Initialize parameter vectors υ, ϕ, η, ψ, θ
Learning rate ← α, D ← {}
for each episodic iteration do
s0 ∼ ρ(s0), x ∼ p(x), z ∼ gθ(x; s0)
for each environment step t do
ut ∼ πA(u|st; ; z, ϕ, η, ψ)
st+1 ∼ p(st+1|st,ut)
D ← D ∪ {(st,ut, r(st,ut), rzaux(ut, st), st+1)}

end for
for each gradient step do
ϕ← ϕ+ α∇̂ϕ(λMIJV − λQLLQL) (Hypernet update)
η ← η + α∇̂η(λMIJV − λQLLQL) (Feature update)
ψ ← ψ + α∇̂ψ(λMIJV − λQLLQL) (Mixer update)
υ ← υ + α∇̂υλMIJV (Variational update)
θ ← θ + α∇̂θJRL (Latent space update)

end for
end for

Thus, the hierarchical policy objective for z, freezing the parameters ψ, η, ϕ is given

by:

JRL(θ) =
∫
R(τA|z)pθ(z|s0)ρ(s0)dzds0.

However, the formulation so far does not encourage diverse behaviour corresponding

41



to different values of z and all the values of z could collapse to the same joint

behaviour. To prevent this, we introduce a mutual information (MI) objective

between the observed trajectories τ ≜ {(ut, st)}, which are representative of the

joint behaviour and the latent variable z. The actions ut in the trajectory are

represented as a stack of agent utilities and σ is an operator that returns a per-agent

Boltzmann policy w.r.t. the utilities at each time step t, ensuring the MI objective

is differentiable and helping train the network parameters (ψ, η, ϕ). We use an RNN

[97] to encode the entire trajectory and then maximise MI(σ(τ ), z). Intuitively, the

MI objective encourages visitation of diverse trajectories τ while at the same time

making them identifiable given z, thus elegantly separating the z space into different

exploration modes. The MI objective is:

JMI = H(σ(τ ))−H(σ(τ )|z) = H(z)−H(z|σ(τ )),

where H is the entropy. However, neither the entropy of σ(τ ) nor the conditional

of z given the former is tractable for nontrivial mappings, which makes directly

using MI infeasible. Therefore, we introduce a variational distribution qυ(z|σ(τ ))

[235, 26] parameterised by υ as a proxy for the posterior over z, which provides a

lower bound on JMI (see Appendix A.1.4).

JMI ≥ H(z) + Eσ(τ ),z[log(qυ(z|σ(τ )))].

We refer to the righthand side of the above inequality as the variational MI objec-

tive JV (υ, ϕ, η, ψ). The lower bound matches the exact MI when the variational

distribution equals p(z|σ(τ )), the true posterior of z. The righthand side of Fig. 3.2

gives the network architectures corresponding to the variational MI loss. Since

Eτ ,z[log(qυ(z|σ(·)))] =Eτ [−KL(p(z|σ(·))||qυ(z|σ(·))]−H(z|σ(·)),

42



where the nonnegativity of the KL divergence on the righthand side implies that a

bad variational approximation can hurt performance as it induces a gap between the

true objective and the lower bound [150, 12]. This problem is especially important

if z is chosen to be continuous as for discrete distributions the posterior can be

represented exactly as long as the dimensionality of υ is greater than the number of

categories kz for the random variable z. The problem can be addressed by various

state-of-the-art developments in amortised variational inference [178, 177]. The

variational approximation can also be seen as a discriminator/critic that induces an

auxiliary reward field rzaux(τ ) = log(qυ(z|σ(τ )))− log(p(z)) on the trajectory space.

Thus the overall objective becomes:

max
υ,ϕ,η,ψ,θ

JRL(θ) + λMIJV (υ, ϕ, η, ψ)− λQLLQL(ϕ, η, ψ),

where λMI , λQL are positive multipliers. For training (see Algorithm 1), at the

beginning of each episode we sample an x and obtain z and then unroll the pol-

icy until termination and train ψ, η, ϕ, υ on the Q-learning loss corresponding to

greedy policy for the current exploration mode and the variational MI reward. The

hierarchical policy parameters θ can be trained on the true task return using any

policy optimisation algorithm. At test time, we sample z at the start of an episode

and then perform a decentralised argmax on the corresponding Q-function to select

actions. Thus, MAVEN achieves committed exploration while respecting QMIX’s

representational constraints.

3.5 Experimental Results

We now empirically evaluate MAVEN on various new and existing domains.
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3.5.1 m-step matrix games

To test the how nonmonotonicity and exploration interact, we introduce a simple

m-step matrix game. The initial state is nonmonotonic, zero rewards lead to

termination, and the differentiating states are located at the terminal ends; there

are m− 2 intermediate states. Fig. 3.3(a) illustrates the m-step matrix game for

m = 10. The optimal policy is to take the top left joint action and finally take

the bottom right action, giving an optimal total payoff of m+ 3. As m increases,

it becomes increasingly difficult to discover the optimal policy using ϵ-dithering

and a committed approach becomes necessary. Additionally, the initial state’s

nonmonotonicity provides inertia against switching the policy to the other direction.

Fig. 3.3(b) plots median returns for m = 10. QMIX gets stuck in a suboptimal policy

with payoff 10, while MAVEN successfully learns the true optimal policy with payoff

13. This example shows how representational constraints can hurt performance if

they are left unmoderated.

(a) (b)

Figure 3.3: (a) m-step matrix game for m = 10 case (b) median return of MAVEN
and QMIX method on 10-step matrix game for 100k training steps, averaged over
20 random initializations (2nd and 3rd quartile is shaded).

3.5.2 StarCraft II

StarCraft Multi-Agent Challenge We consider a challenging set of cooperative

StarCraft II maps from the SMAC benchmark [181] which Samvelyan et al. have

classified as Easy, Hard and Super Hard. Our evaluation procedure is similar to

[172, 181]. We pause training every 100000 time steps and run 32 evaluation episodes

with decentralised greedy action selection. After training, we report the median test
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win rate (percentage of episodes won) along with 2nd and 3rd quartiles (shaded

in plots). We use grid search to tune hyperparameters. Appendix A.3.1 contains

additional experimental details. We compare MAVEN, QTRAN, QMIX, COMA [63]

(a) corridor Super Hard (b) 6h_vs_8z Super Hard

(c) 2s3z Easy

Figure 3.4: The performance of various algorithms on three SMAC maps.

and IQL [209] on several SMAC maps. Here we present the results for two Super

Hard maps corridor & 6h_vs_8z and an Easy map 2s3z. The corridor map,

in which 6 Zealots face 24 enemy Zerglings, requires agents to make effective use of

the terrain features and block enemy attacks from different directions. A properly

coordinated exploration scheme applied to this map would help the agents discover a

suitable unit positioning quickly and improve performance. 6h_vs_8z requires fine

grained ’focus fire’ by the allied Hydralisks. 2s3z requires agents to learn “focus fire"

and interception. Figs. 3.4(a) to 3.4(c) show the median win rates for the different

algorithms on the maps; additional plots can be found in Appendix A.3.2. The

plots show that MAVEN performs substantially better than all alternate approaches

on the Super Hard maps with performance similar to QMIX on Hard and Easy

maps.Thus MAVEN performs better as difficulty increases. Furthermore, QTRAN

does not yield satisfactory performance on most SMAC maps (0% win rate). The
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map on which it performs best is 2s3z (Fig. 3.4(c)), an Easy map, where it is

still worse than QMIX and MAVEN. We believe this is because QTRAN enforces

decentralisation using only relaxed L2 penalties that are insufficient for challenging

domains.

(a) 2_corridors (b) Shorter corridor closed at 5mil
steps

(c) zealot_cave (d) zealot_cave depth 3

(e) zealot_cave depth 4

Figure 3.5: State exploration and policy robustness

Exploration and Robustness Although SMAC domains are challenging, they

are not specially designed to test state-action space exploration, as the units involved

start engaging immediately after spawning. We thus introduce a new SMAC map

designed specifically to assess the effectiveness of multi-agent exploration techniques

and their ability to adapt to changes in the environment. The 2-corridors map

features two Marines facing an enemy Zealot. In the beginning of training, the agents
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can make use of two corridors to attack the enemy (see Fig. 3.5(a)). Halfway through

training, the short corridor is blocked. This requires the agents to adapt accordingly

and use the long corridor in a coordinated way to attack the enemy. Fig. 3.5(b)

presents the win rate for MAVEN and QMIX for 2-corridors when the gate to

short corridor is closed after 5 million steps. While QMIX fails to recover after the

closure, MAVEN swiftly adapts to the change in the environment and starts using

the long corridor. MAVEN’s latent space allows it to explore in a committed manner

and associate use of the long corridor with a value of z. Furthermore, it facilitates

recall of the behaviour once the short corridor becomes unavailable, which QMIX

struggles with due to its representational constraints. We also introduce another

new map called zealot_cave to test state exploration, featuring a tree-structured

cave with a Zealot at all but the leaf nodes (see Fig. 3.5(c)). The agents consist of 2

marines who need to learn ‘kiting’ to reach all the way to the leaf nodes and get

extra reward only if they always take the right branch except at the final intersection.

The depth of the cave offers control over the task difficulty. Figs. 3.5(d) and 3.5(e)

give the average reward received by the different algorithms for cave depths of 3 and

4. MAVEN outperforms all algorithms compared.

Figure 3.6: tsne plot for s0 labelled with z (16 categories), initial (left) to final
(right), top 3s5z, bottom micro_corridor
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Representability The optimal action-value function lies outside of the represen-

tation class of the CTDE algorithm used for most interesting problems. One way

to tackle this issue is to find local approximations to the optimal value function

and choose the best local approximation given the observation. We hypothesise

that MAVEN enables application of this principle by mapping the latent space z

to local approximations and using the hierarchical policy to choose the best such

approximation given the initial state s0, thus offering better representational capacity

while respecting the constraints requiring decentralization. To demonstrate this, we

plot the t-SNE [139] of the initial states and colour them according to the latent

variable sampled for it using the hierarchical policy at different time steps during

training. The top row of Fig. 3.6 gives the time evolution of the plots for 3s5z

which shows that MAVEN learns to associate the initial state clusters with the same

latent value, thus partitioning the state-action space with distinct joint behaviours.

Another interesting plot in the bottom row for micro_corridor demonstrates how

MAVEN’s latent space allows transition to more rewarding joint behaviour which

existing methods would struggle to accomplish.

(a) (b)

(c) (d)

Figure 3.7: (a) & (b) investigate uniform hierarchical policy. (c) & (d) investigate
effects of MI loss.
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Ablations We perform several ablations on the micro_corridor scenario with

kz = 16 to try and determine the importance of each component of MAVEN. We

first consider using a fixed uniform hierarchical policy over z. Fig. 3.7(a) shows

that MAVEN with a uniform policy over z performs worse than a learned policy.

Interestingly, using a uniform hierarchical policy and no variational MI loss to

encourage diversity results in a further drop in performance, as shown in Fig. 3.7(b).

Thus sufficient diversification of the observed trajectories via an explicit agency is

important to find good policies ensuring sample efficiency. Fig. 3.7(b) is similar

to Bootstrapped-DQN [162], which has no incentive to produce diverse behaviour

other than the differing initialisations depending on z. Thus, all the latent variable

values can collapse to the same joint behaviour. If we are able to learn a hierarchical

policy over z, we can focus our computation and environmental samples on the

more promising variables, which allows for better final performance. Fig. 3.7(c)

shows improved performance relative to Fig. 3.7(b) providing some evidence for this

claim. Next, we consider how the different choices of variational MI loss (per time

step, per trajectory) affect performance in Fig. 3.7(d). Intuitively, the per time step

loss promotes a more spread out exploration as it forces the discriminator to learn

the inverse map to the latent variable at each step. It thus tends to distribute its

exploration budget at each step uniformly, whereas the trajectory loss allows the

joint behaviours to be similar for extended durations and take diversifying actions at

only a few time steps in a trajectory, keeping its spread fairly narrow. However, we

found that in most scenarios, the two losses perform similarly. See Appendix A.3.2

for additional plots and ablation results.

3.6 Related Work

Guckelsberge et al. [76] maximise the empowerment between one agents actions and

the others future state in a competitive setting. Zheng et al. [255] allow each agent

to condition their policies on a shared continuous latent variable. In contrast to
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our setting, they consider the fully-observable centralised control setting and do not

attempt to enforce diversity across the shared latent variable. Aumann [8] proposes

the concept of a correlated equilibrium in non-cooperative multi-agent settings in

which each agent conditions its policy on some shared variable that is sampled every

episode.

In the single agent setting, Osband et al.[162] learn an ensemble of Q-value functions

(which all share weights except for the final few layers) that are trained on their own

sampled trajectories to approximate a posterior over Q-values via the statistical

bootstrapping method. MAVEN without the MI loss and a uniform policy over

z is then equivalent to each agent using a Bootstrapped DQN. [163] extends the

Bootstrapped DQN to include a prior. [51] consider the setting of concurrent RL in

which multiple agents interact with their own environments in parallel. They aim to

achieve more efficient exploration of the state-action space by seeding each agent’s

parametric distributions over MDPs with different seeds, whereas MAVEN aims to

achieve this by maximising the mutual information between z and a trajectory.

Yet another direction of related work lies in defining intrinsic rewards for single

agent hierarchical RL that enable learning of diverse behaviours for the low level

layers of the hierarchical policy. Florensa et al. [62] use hand designed state features

and train the lower layers of the policy by maximising MI, and then tune the

policy network’s upper layers for specific tasks. Similarly [73, 55] learn a mixture

of diverse behaviours using deep neural networks to extract state features and use

MI maximisation between them and the behaviours to learn useful skills without

a reward function. MAVEN differs from DIAYN [55] in the use case, and also

enforces action diversification due to MI being maximised jointly with states and

actions in a trajectory. Hence, agents jointly learn to solve the task is many different

ways; this is how MAVEN prevents suboptimality from representational constraints,

whereas DIAYN is concerned only with discovering new states. Furthermore, DIAYN
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trains on diversity rewards using RL whereas we train on them via gradient ascent.

Haarnoja et al. [83] use normalising flows [177] to learn hierarchical latent space

policies using max entropy RL [217, 259, 57], which is related to MI maximisation

but ignores the variational posterior over latent space behaviours. In a similar vein

[98, 165] use auxiliary rewards to modify the RL objective towards a better tradeoff

between exploration and exploitation.

3.7 Conclusion and Future work

In this work, we analysed the effects of representational constraints on exploration

under CTDE. We also introduced MAVEN, an algorithm that enables committed

exploration while obeying such constraints. As immediate future work, we aim to

develop a theoretical analysis similar to QMIX for other CTDE algorithms. We

would also like to carry out empirical evaluations for MAVEN when z is continuous.

To address the intractability introduced by the use of continuous latent variables, we

propose the use of state-of-the-art methods from variational inference [112, 178, 177,

113]. Yet another interesting direction would be to condition the latent distribution

on the joint state space at each time step and transmit it across the agents to get

a low communication cost, centralised execution policy and compare its merits to

existing methods [195, 103].
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4.1 Introduction

As we saw in the previous Chapter 3, MARL introduces several new challenges that

do not arise in single-agent reinforcement learning (RL), including exponential growth

of the action space in the number of agents. This affects multiple aspects of learning,

such as credit assignment [63], gradient variance [138] and exploration [140]. In

addition, we also noted how practical constraints on observability and communication

during deployment imply that decision making must be decentralised, leading to

study of new settings like CTDE.

Recent work in CTDE-MARL can be broadly classified into value-based methods

and actor-critic methods. We extensively studied value-based methods [198, 172,

188, 236, 247] in Chapter 3, which typically enforce decentralisability by modelling

the joint action Q-value such that the argmax over the joint action space can be

tractably computed by local maximisation of per-agent utilities. However, as we

saw in Chapter 3, constraining the representation of the Q-function can interfere

with exploration, yielding provably suboptimal solutions [140]. Actor-critic methods

[138, 63, 239] typically use a centralised critic to estimate the gradient for a set

of decentralised policies. In principle, actor-critic methods can satisfy CTDE

without incurring suboptimality, this would be our main motivation in the present

chapter towards creating actor-critic MARL algorithms. However, in practice the

performance of actor-critic methods is limited by the accuracy of the critic, which

is hard to learn given exponentially growing action spaces. This can exacerbate

the problem of the lagging critic [117]. Moreover, unlike the single-agent setting,

this problem cannot be fixed by increasing the critic’s learning rate and number of

training iterations. Similar to these approaches, an exponential blowup in the action

space also makes it difficult to choose the appropriate class of models which strike

the correct balance between expressibility and learnability for the given task.

In this work, we present new theoretical results that show how the aforementioned
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approaches can be improved such that they accurately represent the joint action-

value function whilst keeping the complexity of the underlying hypothesis class

low. This translates to accurate, sample efficient modelling of long-term agent

interactions.

In particular, we propose Tesseract (derived from "Tensorised Actors"), a new

framework that leverages tensors for MARL. Tensors are high dimensional ana-

logues of matrices that offer rich insights into representing and transforming data.

The main idea of Tesseract is to view the output of a joint Q-function as a

tensor whose modes correspond to the actions of the different agents. We thus

formulate the Tensorised Bellman equation, which offers a novel perspective on

the underlying structure of a multi-agent problem. In addition, it enables the

derivation of algorithms that decompose the Q-tensor across agents and utilise low

rank approximations to model relevant agent interactions.

Many real-world tasks (e.g., robot navigation) involve high dimensional observations

but can be completely described by a low dimensional feature vector (e.g., a 2D

map suffices for navigation). For value-based Tesseract methods, maintaining a

tensor approximation with rank matching the intrinsic task dimensionality∗ helps

learn a compact approximation of the true Q-function (alternatively MDP-dynamics

for model based methods). In this way, we can avoid the suboptimality of the

learnt policy while remaining sample efficient. Similarly, for actor-critic methods,

Tesseract reduces the critic’s learning complexity while retaining its accuracy,

thereby mitigating the lagging critic problem. Thus, Tesseract offers a natural

spectrum for trading off accuracy with computational/sample complexity.

To gain insight into how tensor decomposition helps improve sample efficiency for

MARL, we provide theoretical results for model-based Tesseract algorithms and

show that the underlying joint transition and reward functions can be efficiently
∗We define intrinsic task dimensionality (ITD) as the minimum number of dimensions required

to describe an environment
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recovered under a PAC framework (in samples polynomial in accuracy and confidence

parameters). We also introduce a tensor-based framework for CTDE-MARL that

opens new possibilities for developing efficient classes of algorithms. Finally, we

explore the relevance of our framework to rich observation MDPs.

Our main contributions are:

1. A novel tensorised form of the Bellman equation;

2. Tesseract, a method to factorise the action-value function based on tensor

decomposition, which can be used for any factored action space;

3. PAC analysis and error bounds for model based Tesseract that show an

exponential gain in sample efficiency of O(|U |n/2); and

4. Empirical results illustrating the advantage of Tesseract over other methods

and detailed techniques for making tensor decomposition work for deep MARL.

4.2 Background

We use the different Multi-Agents settings defined in Chapter 2 . We next cover the

specific background required for this work:

Tensor Decomposition Tensors are high dimensional analogues of matrices and

tensor methods generalize matrix algebraic operations to higher orders. Tensor

decomposition, in particular, generalizes the concept of low-rank matrix factorization.

In the rest of this work, we use ·̂ to represent tensors. Formally, an order n tensor T̂

has n index sets Ij,∀j ∈ {1..n} and has elements T (e),∀e ∈ ×IIj taking values in a

given set S, where × is the set cross product and we denote the set of index sets

by I. Each dimension {1..n} is also called a mode. An elegant way of representing

tensors and associated operations is via tensor diagrams as shown in Fig. 4.1. Tensor

contraction generalizes the concept of matrix with matrix multiplication. For any
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Figure 4.1: Left: Tensor diagram for an order 3 tensor T̂ . Right: Contraction
between T̂ 1,T̂ 2 on common index sets I2, I3.

two tensors T̂ 1 and T̂ 2 with I∩ = I1 ∩ I2 we define the contraction operation

as T̂ = T̂ 1⊙T̂ 2 with T̂ (e1, e2) =
∑

e∈×I∩Ij
T̂ 1(e1, e) · T̂ 2(e2, e), ei ∈ ×Ii\I∩Ij. The

contraction operation is associative and can be extended to an arbitrary number

of tensors. Fig. 4.2 illustrates the contraction operator. Using this building block,

Figure 4.2: Tensor contraction result

we can define tensor decompositions, which factorizes a (low-rank) tensor in a

compact form. This can be done with various decompositions [114], such as Tucker,

Tensor-Train (also known as Matrix-Product-State), or CP (for Canonical-Polyadic).

In this work, we focus on the latter, which we briefly introduce here. Just as a

matrix can be factored as a sum of rank-1 matrices (each being an outer product of

vectors), a tensor can be factored as a sum of rank-1 tensors, the latter being an

outer product of vectors. The number of vectors in the outer product is equal to

the rank of the tensor, and the number of terms in the sum is called the rank of

the decomposition (sometimes also called CP-rank). Formally, a tensor T̂ can be

factored using a (rank–k) CP decomposition into a sum of k vector outer products

56



(denoted by ⊗), as,

T̂ =
k∑
r=1

wr ⊗n uir, i ∈ {1..n}, ||uir||2 = 1. (4.1)

4.3 Methodology

4.3.1 Tensorised Bellman equation

In this section, we provide the basic framework for Tesseract. We focus here on the

discrete action space. The extension for continuous actions is similar and is deferred

to Appendix B.2.2 for clarity of exposition.

Proposition 4.1. Any real-valued function f of n arguments (x1..xn) each tak-

ing values in a finite set xi ∈ Di can be represented as a tensor f̂ with modes

corresponding to the domain sets Di and entries f̂(x1..xn) = f(x1..xn).

Given a multi-agent problem G = ⟨S, U, P, r, Z,O, n, γ⟩, let Q ≜ {Q : S ×Un → R}

be the set of real-valued functions on the state-action space. We are interested in the

curried [13] form Q : S → Un → R, Q ∈ Q so that Q(s) is an order n tensor (We use

functions and tensors interchangeably where it is clear from context). Algorithms in

Tesseract operate directly on the curried form and preserve the structure implicit in

the output tensor. (Currying in the context of tensors implies fixing the value of

some index. Thus, Tesseract-based methods keep action indices free and fix only

state-dependent indices.)

We are now ready to present the tensorised form of the Bellman equation shown

in Eq. (2.3). Fig. 4.3 gives the equation where Î is the identity tensor of size

|S| × |S| × |S|. The dependence of the action-value tensor Q̂π and the policy tensor

Ûπ on the policy is denoted by superscripts π. The novel Tensorised Bellman

equation provides a theoretically justified foundation for the approximation of the
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joint Q-function, and the subsequent analysis (Theorems 1-3) for learning using this

approximation.

Figure 4.3: Tensorised Bellman Equation for n agents. There is an edge for
each agent i ∈ A in the corresponding nodes Q̂π, Ûπ, R̂, P̂ with the index set U i.

4.3.2 Tesseract Algorithms

For any k ∈ N let Qk ≜ {Q : Q ∈ Q ∧ rank(Q(·, s)) ≤ k,∀s ∈ S}. Given any

policy π we are interested in projecting Qπ to Qk using the projection operator

Πk(·) = argminQ∈Qk
|| ·−Q||π,F . where ||X||π,F ≜ Es∼ρπ(s)[||X(s)||F ] is the weighted

Frobenius norm w.r.t. policy visitation over states. Thus a simple planning based

algorithm for rank k Tesseract would involve starting with an arbitrary Q0 and

successively applying the Bellman operator T π and the projection operator Πk so

that Qt+1 = ΠkT πQt.

As we show in Theorem 4.1, constraining the underlying tensors for dynamics and

rewards (P̂ , R̂) is sufficient to bound the CP-rank of Q̂. From this insight, we

propose a model-based RL version for Tesseract in Algorithm 2. The algorithm

proceeds by estimating the underlying MDP dynamics using the sampled trajectories

obtained by executing the behaviour policy π = (πi)n1 (factorisable across agents)

satisfying Theorem 4.2. Specifically, we use a rank k approximate CP-Decomposition

to calculate the model dynamics R,P as we show in Section 4.4. Next π is evaluated

using the estimated dynamics, which is followed by policy improvement, Algorithm 2

gives the pseudocode for the model-based setting. The termination and policy
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improvement decisions in Algorithm 2 admit a wide range of choices used in practice

in the RL community. Example choices for internal iterations which broadly fall

under approximate policy iteration include: 1) Fixing the number of applications of

Bellman operator 2) Using norm of difference between consecutive Q estimates etc.,

similarly for policy improvement several options can be used like ϵ-greedy (for Q

derived policy), policy gradients (parametrized policy) [201]

Algorithm 2 Model-based Tesseract

1: Initialise rank k, π = (πi)n1 and Q̂: Theorem 4.2
2: Initialise model parameters P̂ , R̂
3: Learning rate ← α,D ← {}
4: for each episodic iteration i do
5: Do episode rollout τi =

{
(st,ut, rt, st+1)

L
0

}
using π

6: D ← D ∪ {τi}
7: Update P̂ , R̂ using CP-Decomposition on moments from D (Theorem 4.2)
8: for each internal iteration j do
9: Q̂← T πQ̂

10: end for
11: Improve π using Q̂
12: end for
13: Return π, Q̂

For large state spaces where storage and planning using model parameters is com-

putationally difficult (they are O(kn|U ||S|2) in number), we propose a model-free

approach using a deep network where the rank constraint on the Q-function is

directly embedded into the network architecture. Fig. 4.4 gives the general network

architecture for this approach and Algorithm 3 the associated pseudo-code. Each

agent in Fig. 4.4 has a policy network parameterized by θ which is used to take

actions in a decentralised manner. The observations of the individual agents along

with the actions are fed through representation function gϕ whose output is a set of

k unit vectors of dimensionality |U | corresponding to each rank. The output gϕ,r(si)

corresponding to each agent i for factor r can be seen as an action-wise contribution

to the joint utility from the agent corresponding to that factor. The joint utility

here is a product over individual agent utilities. For partially observable settings,
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Figure 4.4: Tesseract architecture

an additional RNN layer can be used to summarise agent trajectories. The joint

action-value estimate of the tensor Q̂(s) by the centralized critic is:

Q̂(s) ≈ T =
k∑
r=1

wr ⊗n gϕ,r(si), i ∈ {1..n}, (4.2)

where the weights wr are learnable parameters exclusive to the centralized learner.

In the case of value based methods where the policy is implicitly derived from

utilities, the policy parameters θ are merged with ϕ. The network architecture is

agnostic to the type of the action space (discrete/continuous) and the action-value

corresponding to a particular joint-action (u1..un) is the inner product ⟨T,A⟩ where

A = ⊗nui (This reduces to indexing using joint action in Eq. (4.2) for discrete

spaces). More representational capacity can be added to the network by creating an

abstract representation for actions using fη, which can be any arbitrary monotonic

function (parametrised by η) of vector output of size m ≥ |U | and preserves relative
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order of utilities across actions; this ensures that the optimal policy is learnt as long

as it belongs to the hypothesis space. In this case A = ⊗nfη(ui) and the agents

also carry a copy of fη during the execution phase. Furthermore, the inner product

⟨T,A⟩ can be computed efficiently using the property

⟨T,A⟩ =
k∑
r=1

wr

n∏
1

⟨fη(ui)gϕ,r(si)⟩, i ∈ {1..n}

which is O(nkm) whereas a naive approach involving computation of the tensors

first would be O(kmn). Training the Tesseract-based Q-network involves minimising

the squared TD loss [201]:

LTD(ϕ, η) = Eπ[(Q(ut, st;ϕ, η)

−[r(ut, st) + γQ(ut+1, st+1;ϕ
−, η−)])2],

where ϕ−, η− are target parameters. Policy updates involve gradient ascent w.r.t.

to the policy parameters θ on the objective Jθ =
∫
S
ρπ(s)

∫
U
πθ(u|s)Qπ(s,u)duds.

More sophisticated targets can be used to reduce the policy gradient variance [72, 253]

and propagate rewards efficiently [200]. Note that Algorithm 3 does not require

the individual-global maximisation principle [188] typically assumed by value-based

MARL methods in the CTDE setting, as it is an actor-critic method. In general,

any form of function approximation and compatible model-free approach can be

interleaved with Tesseract by appropriate use of the projection function Πk.

4.3.3 Why Tesseract?

As discussed in Section 4.1, Q(s) is an object of prime interest in MARL. Value

based methods [198, 172, 247] that directly approximate the optimal action values

Q∗ place constraints on Q(s) such that it is a monotonic combination of agent

utilities. In terms of Tesseract this directly translates to finding the best projection
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Algorithm 3 Model-free Tesseract
1: Initialise rank k, parameter vectors θ, ϕ, η
2: Learning rate ← α,D ← {}
3: for each episodic iteration i do
4: Do episode rollout τi =

{
(st,ut, rt, st+1)

L
0

}
using πθ

5: D ← D ∪ {τi}
6: Sample batch B ⊆ D.
7: Compute empirical estimates for LTD,Jθ
8: ϕ← ϕ− α∇ϕLTD (Rank k projection step)
9: η ← η − α∇ηLTD (Action representation update)

10: θ ← θ + α∇θJθ (Policy update)
11: end for
12: Return π, Q̂

constraining Q(s) to be rank one (Appendix B.2.1 for details).

Similarly, the following result demonstrates containment of action-value functions

representable by FQL[39] which uses a learnt inner product to model pairwise agent

interactions (proof and additional results in Appendix B.2.1):.

Proposition 4.2. The set of joint Q-functions representable by FQL is a subset of

that representable by Tesseract.

MAVEN [140] illustrates how rank 1 projections can lead to insufficient exploration

and provides a method to avoid suboptimality by using mutual information (MI)

to learn a diverse set of rank 1 projections that correspond to different joint be-

haviours. In Tesseract, this can simply be achieved by finding the best approximation

constraining Q(s) to be rank k. Moreover, the CP-decomposition problem, being

a product form (Eq. (4.1)), is well posed, whereas in [140] the problem form is

T̂ =
∑k

r=1wr ⊕n uir, i ∈ {1..n}, ||uir||2 = 1, which requires careful balancing of differ-

ent factors {1..k} using MI as otherwise all factors collapse to the same estimate. The

above improvements are equally important for the critic in actor-critic frameworks.

Note that Tesseract is complete in the sense that every possible joint Q-function

is representable by it given sufficient approximation rank. This follows as every

possible Q-tensor can be expressed as linear combination of one-hot tensors (which
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form a basis for the set).

Many real world problems have high-dimensional observation spaces that are encap-

sulated in an underlying low dimensional latent space that governs the transition and

reward dynamics [10]. For example, in the case of robot navigation, the observation

is high dimensional visual and sensory input but solving the underlying problem

requires only knowing the 2D position. Standard RL algorithms that do not address

modelling the latent structure in such problems typically incur poor performance

and intractability. In Section 4.4 we show how Tesseract can be leveraged for such

scenarios. Finally, projection to a low rank offers a natural way of regularising the

approximate Q-functions and makes them easier to learn, which is important for

making value function approximation amenable to multi-agent settings. Specifically

for the case of actor-critic methods, this provides a natural way to make the critic

learn more quickly. Additional discussion about using Tesseract for continuous

action spaces can be found in Appendix B.2.2.

4.4 Analysis

In this section we provide a PAC analysis of model-based Tesseract (Algorithm 2).

We focus on the MMDP setting (Section 2.5) for the simplicity of notation and

exposition; guidelines for other settings are provided in Appendix B.1.

The objective of the analysis is twofold: Firstly it provides concrete quantification of

the sample efficiency gained by model-based policy evaluation. Secondly, it provides

insights into how Tesseract can similarly reduce sample complexity for model-free

methods. Proofs for the results stated can be found in Appendix B.1. We

begin with the assumptions used for the analysis:

Assumption 4.1. For the given MMDP G = ⟨S, U, P, r, n, γ⟩, the reward tensor

R̂(s),∀s ∈ S has bounded rank k1 ∈ N.
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Intuitively, a small k1 in Assumption 4.1 implies that the reward is dependent only

on a small number of intrinsic factors characterising the actions.

Assumption 4.2. For the given MMDP G = ⟨S, U, P, r, n, γ⟩, the transition tensor

P̂ (s, s′),∀s, s′ ∈ S has bounded rank k2 ∈ N.

Intuitively a small k2 in Assumption 4.2 implies that only a small number of intrinsic

factors characterising the actions lead to meaningful change in the joint state.

Assumption 4.1-2 always hold for a finite MMDP as CP-rank is upper bounded by

Πn
j=1|Uj|, where Uj are the action sets.

Assumption 4.3. The underlying MMDP is ergodic for any policy π so that there

is a stationary distribution ρπ.

Next, we define coherence parameters, which are quantities of interest for our

theoretical results: for reward decomposition R̂(s) =
∑

r wr,s ⊗n vr,i,s, let µs =

√
nmaxi,r,j |vr,i,s(j)|, wmax

s = maxi,r wr,s,wmin
s = mini,r wr,s. Similarly define the

corresponding quantities for µs,s′ , wmax
s,s′ , w

min
s,s′ for transition tensors P̂ (s, s′). A low

coherence implies that the tensor’s mass is evenly spread and helps bound the

possibility of never seeing an entry with very high mass (large absolute value of an

entry).

Theorem 4.1. For a finite MMDP the action-value tensor satisfies rank(Q̂π(s)) ≤

k1 + k2|S|,∀s ∈ S,∀π.

Proof. We first unroll the Tensor Bellman equation in Fig. 4.3. The first term

R̂ has bounded rank k1 by Assumption 4.1. Next, each contraction term on the

RHS is a linear combination of {P̂ (s, s′)}s′∈S each of which has bounded rank k2

(Assumption 4.2). The result follows from the sub-additivity of CP-rank.

Theorem 4.1 implies that for approximations with enough factors, policy evaluation

converges:
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Corollary 4.1.1. For all k ≥ k1 + k2|S|, the procedure Qt+1 ← ΠkT πQt converges

to Qπ for all Q0, π.

Corollary 4.1.1 is especially useful for the case of M-POMDP and M-ROMDP with

|Z| >> |S|, i.e., where the intrinsic state space dimensionality is small in comparison

to the dimensionality of the observations (like robot navigation Section 4.3.3).

In these cases the Tensorised Bellman equation Fig. 4.3 can be augmented by

padding the transition tensor P̂ with the observation matrix and the lower bound

in Corollary 4.1.1 can be improved using the intrinsic state dimensionality.

We next give a PAC result on the number of samples required to infer the reward

and state transition dynamics for finite MDPs with high probability using sufficient

approximate rank k ≥ k1, k2:

Theorem 4.2 (Model based estimation of R̂, P̂ error bounds). Given any ϵ > 0, 1 >

δ > 0, for a policy π with the policy tensor satisfying π(u|s) ≥ ∆, where

∆ = max
s

C1µ
6
sk

5(wmax
s )4 log(|U |)4 log(3k||R(s)||F/ϵ)

|U |n/2(wmin
s )4

and C1 is a problem dependent positive constant. There exists N0 which is O(|U |n2 )

and polynomial in 1
δ
, 1
ϵ
, k and relevant spectral properties of the underlying MDP

dynamics such that for samples ≥ N0, we can compute the estimates R̄(s), P̄ (s, s′)

such that w.p. ≥ 1− δ, ||R̄(s)− R̂(s)||F ≤ ϵ, ||P̄ (s, s′)− P̂ (s, s′)||F ≤ ϵ,∀s, s′ ∈ S.

Theorem 4.2 gives the relation between the order of the number of samples required

to estimate dynamics and the tolerance for approximation. Theorem 4.2 states that

aside from allowing efficient PAC learning of the reward and transition dynamics

of the multi-agent MDP, Algorithm 2 requires only O(|U |n2 ) to do so, which is

a vanishing fraction of |U |n, the total number of joint actions in any given state.

This also hints at why a tensor based approximation of the Q-function helps with

sample efficiency. Methods that do not use the tensor structure typically use O(|U |n)
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samples. The bound is also useful for off-policy scenarios, where only the behaviour

policy needs to satisfy the bound. Given the result in Theorem 4.2, it is natural

to ask what is the error associated with computing the action-values of a policy

using the estimated transition and reward dynamics. We address this in our next

result, but first we present a lemma bounding the total variation distance between

the estimated and true transition distributions:

Lemma 4.1. For transition tensor estimates satisfying ||P̄ (s, s′)− P̂ (s, s′)||F ≤ ϵ,

we have for any given state-action pair (s, a), the distribution over the next states

follows: TV (P ′(·|s, a), P (·|s, a)) ≤ 1
2
(|1−f |+f |S|ϵ) where 1

1+ϵ|S| ≤ f ≤ 1
1−ϵ|S| , where

TV is the total variation distance. Similarly for any policy π, TV (P̄π(·|s), Pπ(·|s)) ≤
1
2
(|1− f |+ f |S|ϵ and TV (P̄π(s

′, a′|s), Pπ(s′, a′|s)) ≤ 1
2
(|1− f |+ f |S|ϵ)

We now bound the error of model-based evaluation using approximate dynamics in

Theorem 4.3. The first component on the RHS of the upper bound comes from the

tensor analysis of the transition dynamics, whereas the second component can be

attributed to error propagation for the rewards.

Theorem 4.3 (Error bound on policy evaluation). Given a behaviour policy πb

satisfying the conditions in Theorem 4.2 and executed for steps ≥ N0, for any policy

π the model based policy evaluation Qπ
P̄ ,R̄

satisfies:

|Qπ
P,R(s, a)−Qπ

P̄ ,R̄(s, a)| ≤(|1− f |+ f |S|ϵ) γ

2(1− γ)2

+
ϵ

1− γ
,∀(s, a) ∈ S × Un

where f is as defined in Lemma 4.1.

4.4.1 Selecting the CP-rank for approximation

While determining the rank of a fully observed tensor is itself NP-hard [95], we

believe we can help alleviate this problem due to two key observations:
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• The tensors involved in Tesseract capture dependence of transition and

reward dynamics on the action space. Thus if we can approximately identify

(possibly using expert knowledge) the various aspects in which the actions

available at hand affect the environment, we can get a rough idea of the rank

to use for approximation.

• Our experiments on different domains (Section 4.5, Appendix B.3) provide

evidence that even when using a rank insufficient approximation, we can get

good empirical performance and sample efficiency. (This is also evidenced

by the empirical success of related algorithms like VDN which happen to be

specific instances under the Tesseract framework.)

4.5 Experiments

In this section we present the empirical results on the StarCraft domain. Experiments

for a more didactic domain of Tensor games can be found in Appendix B.3.3. We use

the model-free version of Tesseract (Algorithm 3) for all the experiments.
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(a) 3s5z Easy (b) 2s_vs_1sc Easy

(c) 2c_vs_64zg Hard (d) 5m_vs_6m Hard

(e) MMM2 Super Hard (f) 27m_vs_30m Super Hard

(g) 6h_vs_8z Super Hard (h) Corridor Super Hard

Figure 4.5: Performance of different algorithms on different SMAC scenarios: TAC,
QMIX, VDN, FQL, IQL.
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StarCraft II We consider a challenging set of cooperative scenarios from the

StarCraft Multi-Agent Challenge (SMAC) [181]. Scenarios in SMAC have been

classified as Easy, Hard and Super-hard according to the performance of exiting

algorithms on them. We compare Tesseract (TAC in plots) to, QMIX [172], VDN

[198], FQL [39], and IQL [210]. VDN and QMIX use monotonic approximations

for learning the Q-function. FQL uses a pairwise factorized model to capture

effects of agent interactions in joint Q-function, this is done by learning an inner

product space for summarising agent trajectories. IQL ignores the multi-agentness

of the problem and learns an independent per agent policy for the resulting non-

stationary problem. Fig. 4.5 gives the win rate of the different algorithms averaged

across five random runs. Fig. 4.5(c) features 2c_vs_64zg, a hard scenario that

contains two allied agents but 64 enemy units (the largest in the SMAC domain)

making the action space of the agents much larger than in the other scenarios.

Tesseract gains a huge lead over all the other algorithms in just one million

steps. For the asymmetric scenario of 5m_vs_6m Fig. 4.5(d), Tesseract, QMIX,

and VDN learn effective policies, similar behavior occurs in the heterogeneous

scenarios of 3s5z Fig. 4.5(a) and MMM2Fig. 4.5(e) with the exception of VDN for

the latter. In 2s_vs_1sc in Fig. 4.5(b), which requires a ‘kiting’ strategy to defeat

the spine crawler, Tesseract learns an optimal policy in just 100k steps. In the

super-hard scenario of 27m_vs_30m Fig. 4.5(f) having largest ally team of 27

marines, Tesseract again shows improved sample efficiency; this map also shows

Tesseract’s ability to scale with the number of agents. Finally in the super-

hard scenarios of 6 hydralisks vs 8 zealots Fig. 4.5(g) and Corridor Fig. 4.5(h)

which require careful exploration, Tesseract is the only algorithm which is able

to find a good policy. We observe that IQL doesn’t perform well on any of the

maps as it doesn’t model agent interactions/non-stationarity explicitly. FQL loses

performance possibly because modelling just pairwise interactions with a single

dot product might not be expressive enough for joint-Q. Finally, VDN and QMIX
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are unable to perform well on many of the challenging scenarios possibly due to

the monotonic approximation affecting the exploration adversely [140]. Additional

plots and experiment details can be found in Appendix B.3.1 with comparison

with other baselines in Appendix B.3.1 including QPLEX[236], QTRAN[188],

HQL[149], COMA[63] . We detail the techniques used for stabilising the learning of

tensor decomposed critic in Appendix B.3.2.

4.6 Related Work

Policy gradient methods in MARL often utilise the actor-critic framework to cope

with decentralisation. MADDPG [138] trains a centralised critic for each agent.

COMA [63] employs a centralised critic and a counterfactual advantage function.

These actor-critic methods, however, suffer from poor sample efficiency compared to

value-based methods and often converge to sub-optimal local minima. While sample

efficiency has been an important goal for single agent reinforcement learning methods

[144, 146, 107, 127], in this work we shed light on attaining sample efficiency for

cooperative multi-agent systems using low rank tensor approximation.

Tensor methods have been used in machine learning, in the context of learning latent

variable models [5] and signal processing [186]. Tensor methods provides powerful

analytical tools that have been used for various applications, including the theoretical

analysis of deep neural networks [44]. Model compression using tensors [40] has

recently gained momentum owing to the large sizes of deep neural nets. Using tensor

decomposition within deep networks, it is possible to both compress and speed

them up [41, 118]. They allow generalization to higher orders [119] and have also

been used for multi-task learning and domain adaptation [34]. In contrast to prior

work on value function factorisation, Tesseract provides a natural spectrum for

approximation of action-values based on the rank of approximation and provides

theoretical guarantees derived from tensor analysis. Multi-view methods utilising
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tensor decomposition have previously been used in the context of partially observable

single-agent RL [10, 9]. There the goal is to efficiently infer the underlying MDP

parameters for planning under rich observation settings [123]. Similarly [33] use four

dimensional factorization to generalise across Q-tables whereas here we use them for

modelling interactions across multiple agents.

4.7 Conclusions & Future Work

We introduced Tesseract, a novel framework utilising the insight that the joint

action value function for MARL can be seen as a tensor. Tesseract provides a

means for developing new sample efficient algorithms and obtain essential guarantees

about convergence and recovery of the underlying dynamics. We further showed novel

PAC bounds for learning under the framework using model-based algorithms. We also

provided a model-free approach to implicitly induce low rank tensor approximation

for better sample efficiency and showed that it outperforms current state of art

methods. There are several interesting open questions to address in future work,

such as convergence and error analysis for rank insufficient approximation, and

analysis of the learning framework under different types of tensor decompositions

like Tucker and tensor-train [114].
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5.1 Introduction

In Chapter 3 and Chapter 4, we studied two different approaches for policy search in

cooperative multi-agent systems, which were geared towards tackling the problems

arising from an exponentially growing joint action space. In this chapter, we turn our

attention to a different kind of multi-agent problem: One that is concerned with the

generalization behaviour in a multi-agent systems as its composition changes.

We know that collective intelligence is a important trait shared by several species

of living organisms. It has allowed them to thrive in the diverse environmental

conditions that exist on our planet. From simple organisations in an ant colony

to complex systems in human groups, collective intelligence is vital for solving

complex survival tasks. As is commonly observed, such natural systems are flexible

to changes in their structure. For instance, imagine attending a football summer

camp. The coach decides to split the participating players into random teams for

practice. While each player has different capabilities (e.g., defending, dribbling,

speed, and pace), they quickly adapt to the other players in the team to facilitate the

common objective of outscoring their opponents. Furthermore, they smoothly adjust

to unexpected events such as a player getting hurt and retiring with substitution,

which forces them to change their behaviours and adjust their roles. Similarly, they

rapidly adjust to changes in team size (as a result of a player being sent off or new

players joining the team).

Such adaptations are typically possible for two reasons. First, the players understand

each others’ capabilities, including how a change in capabilities affects the underlying

environment and chances of success. Second, players have coordination protocols

for adapting to the changes, both explicitly (e.g., communicating the game plan)

or implicitly (inferring capabilities from observations, e.g., passing the ball to a

player going in for an attack). This phenomenon which we term as Combinatorial

Generalization (CG) is not specific to football or humans, and organisms in general
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manifest abilities to adapt in almost every situation requiring team efforts [45, 157,

7].

Towards capturing specific aspects of CG, recent methods in multi-agent reinforce-

ment learning (MARL) utilize advances in deep learning architectures, such as

graph neural networks [179] and attention mechanism [100], as well as extensively

tuned training regimes, such as a mixture of human and generated data, self-play,

and population-based training [233, 160]. While these methods show impressive

empirical performance on complex domains, they provide little insight into aspects

of when and how much generalization to expect, which is crucial for deploying agents

in the real world due to practical considerations like tolerance, minimum expected

performance in unseen settings etc. for various deployment scenarios. Additionally,

while the problem of sample-efficient generalization is hard for single-agent RL

[145, 52, 67, 147], it is particularly exacerbated for the multi-agent case. Specifically,

even when the underlying task remains the same, agents in MARL typically need to

be trained from scratch for different team compositions. Moreover, across similar

tasks with similar team compositions, there is a lack of modularity for sharing

knowledge to enable quick learning [237]. Thus, we posit that a theoretical under-

standing of generalization in multi-agent systems (MAS) can help address both of

the above-mentioned issues: it can provide important performance guarantees for

practical deployment and can additionally inform better algorithm design to ensure

sample efficiency.

We first highlight the key properties that make CG particularly difficult for MAS:

• P1: The capabilities of agents can come from infinite sets, e.g., maximum

permissible torque for an agent joint which can take values in a continuous set.

• P2: Combinatorial blow-up in the number of possible teams (w.r.t. agent

capabilities) given a team size.
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• P3: The capabilities need to be grounded w.r.t. the dynamics of the envi-

ronment which becomes increasingly hard with team size (similar to credit

assignment).

• P4: Team sizes can vary across different tasks.

• P5: Agents need to infer the capabilities of teammates in settings where it is

hidden, in a potentially non-stationary environment.

P2-P4 particularly distinguish CG from single-agent generalization, highlighting

its combinatorial nature. Furthermore, P5 requires agents to adapt to changing

teammate policies making the problem harder.

In this work, we analyse multi-agent generalization by modelling the dependence of

underlying environment rewards and transitions on agent capabilities. We first look

at generalization bounds for the case when the environment dynamics are linear with

respect to the agent capabilities. We elucidate how this generalizes the successor

feature (SF) framework [16] to the multi-agent case. We provide theoretical bounds

for generalization between team compositions, transfer of optimal policy from one

team to another and changes to optimal values arising from agent addition and

elimination under this framework. Next, we bound the performance gap as a result

of an error in estimating the agent capabilities which covers scenarios such as lossy or

inaccurate communication. Further, we provide bounds for optimal value deviation

when the dynamics themselves are approximately linear. Finally, we elucidate how

the bounds can be extended to Lipschitz rewards (Appendix C.1.6) and then extend

this framework to study arbitrary dependence of rewards on capabilities to shed

light on when generalization can be difficult (Appendix C.1.7). Our results apply

to various training and deployment settings in MAS and are agnostic to the type

of algorithm used (MARL or other forms of policy search methods). Finally, we

empirically analyse popular methods in MARL on tasks designed to offer varying

difficulty in terms of generalization and discuss important desiderata to be met for
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better generalization.

5.2 Background and Formulation

We start with the Dec-POMDP formulation and would also assume the various

specialization of this setting as illustrated Section 2.5 in this work . Without loss of

generality (WLOG), we assume the state is represented as a k-dimensional feature

vector S ⊂ [0, 1]k and similarly observations Z ⊂ [0, 1]l. In this chapter we denote

Jπ =
∑

s∈S ρ(s)V
π(s) to represent the scalar policy value in addition to value

function V π(·) (a vector), we also consider rewards to be only dependent on state

for the ease of exposition (similar results hold for using action dependence).

MARL with Agent Capabilities

We now extend the MARL problem setting for generalisation where agents can

have different capabilities. To this end, we assume that each agent in the task

can be characterised by a d-dimensional capability vector c ∈ C, which governs its

contribution to rewards and transition dynamics (and thus its policy/behaviour

denoted as πi( . ; c)). Without loss of generality, we assume C ⊆ ∆d−1 (the d − 1

dimensional simplex). Intuitively, an agent’s capability reflects the abilities of an

agent along various properties that may be important for solving the collective

task (e.g., an agent’s speed, health recovery, and accuracy). We next assume an

unknown probability distributionM : Cn → R+ with support Sup(M) over a subset

of the joint capability space Cn. Any T sampled from M can be seen as a tuple

of capability vectors T = (ci)
n
i=1, one for each agent in the team. We augment

the Dec-POMDP with T : G = ⟨S, U, PT , rT , Z,O, n, ρ, γ, T ⟩ and call it a variation

for the MARL setting ∗. Thus T defines the rewards and transition dynamics of
∗Agent capabilities can also be interpreted as the contexts, see [88]
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the underlying MMDP (ie. rT (s) = ⟨f(T ) · s⟩ where ⟨·⟩ is the dot product† and

f : Cn → Rk and similarly for transitions). Our goal is then to find algorithms,

which when trained on a small number of variations sampled from M : {T j}Mj=1,

generalise well to unseen team variations in M. i.e., we want to maximise the

expected value over the team variation distribution,

max
π

ET ∼M

[
Eπ(·;T ),PT ,ρ

[
∞∑
t=0

γtrT (st)

]]
, (5.1)

where π = {πi}ni=1 is a group of n agents. The challenge here arises because of two

main factors. First, the agents do not have any prior knowledge about what these

capability vectors mean, and are thus required to learn their semantics (also called

grounding). Second, in the setting where the agents cannot observe the capability

vectors (including possibly their own), they have to infer and learn protocols for

sharing them with each other in order to generalize in a zero-shot setting.

Successor Features

SF framework assumes that the rewards in an MDP can be decomposed as r(s) =

ϕ(s)⊤w, where ϕ(s) ∈ Rd are features of s and w ∈ Rd are weights ‡. When no

assumptions is made about ϕ(s), any reward function can be recovered using this

representation. The value function then follows

V π(s) = Eπ [rt+1 + γrt+2 + ... |St = s]

= Eπ
[
ϕ⊤t+1w + γϕ⊤t+2w + ... |St = s

]
= ψπ(s)⊤w.

†Note that this is still the most general form as states can be encoded as one-hot vectors, see
[16].

‡Similar formulations hold WLOG for ϕ(s,a),ϕ(s,a,s’)
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Here ψπ(s) is called the successor feature of s under policy π [47, 16, 15, 17]. The ith

component of SF ψπ(s) provides the expected discounted sum of ϕi when following

policy π from s.

5.3 Analysis

Our analysis focuses on the generalisation properties w.r.t.M. We focus on the case

of MMDPs for ease of exposition, but similar results for the more general cases can

be obtained by suitable assumptions for identifiability of the state (e.g., M-ROMDP

in [142]). Our results are applicable irrespective of whether agents can observe the

capabilities. They are also agnostic to the training and deployment regimes (e.g.,

centralized or decentralized) and the algorithm being used to find the policy. All

the proofs can be found in Appendix C.1.

For the analysis we assume that the rewards and transitions depend linearly on the

agents capabilities ci :

rT (s) =
n∑
i=1

ai⟨ci ·WRs⟩ (5.2)

PT (s
′|s,u) =

n∑
i=1

ai⟨ci ·WP (s
′, s,u)⟩ (5.3)

where WR ∈ Rdk is the reward kernel of the MMDP and defines the dependence of

the rewards on each capability component. Similarly in Eq. (5.3), WP : S ×U×

S × {1..d} → [0, 1] defines the transition kernel of the MMDP so that Pj(·|s,u) ≜

WP (s,u, j) ∈ ∆|S|−1, j ∈ {1..d} give the next state distribution as directed by the

jth component of the capability and agent i’s propensity (unweighted) to make the

state transition to s′ is given by
〈
ci ·
[
P1(s

′|s,u) . . . Pd(s′|s,u)
]〉

= ⟨ci ·WP (s
′, s,u)⟩.

Finally (ai)
n
i=1 ∈ ∆n−1 are the influence weights of agents which quantify the

influence of agent i in determining the rewards and transitions. Under the linear

setting, given a policy π and capabilities T we have that policy value satisfies
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JπT =
∑n

i=1 ai⟨ci ·WRµ
π
T ⟩ where µπT = Eρ,PT ,π[γ

tst] are the expected discounted state

features and similarly for a given state s, V π
T (s) =

∑n
i=1 ai⟨cTi WR · µπT (s)⟩ where

µπT (s) = EPT ,π[γ
tst|s0 = s]. The linear formulation for dynamics generalizes the

successor feature [16] formulation to the MAS setting, this can be seen by noting that

when the dependence of transition dynamics on capabilities is dropped (Eq. (5.3))

and only single agent is considered (by considering a one-hot a), we get the successor

feature formulation with capability of the non zero ai interpreted as the task weight

in [16](see Section 5.2).

Figure 5.1: Combinatorial Generalization in MAS, various settings.

We now present the first result concerning the difference between the optimal values

of two different team compositions:

Theorem 5.1 (Generalisation between team compositions). Let team compositions

T x, T y ∈ Cn with influence weights ax, ay ∈ ∆n−1, smax = maxs ||WRs||1, Vmid =

1
2
maxs V

∗
T y(s), Then§:

|J∗T x − J∗T y | ≤
smax + γdVmid
γ(1− γ)

Ψ, where

§for γ ∈ (0,
√
5−1
2 ) we can replace the factor 1

γ(1−γ) by 1+γ
1−γ
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Ψ =
[
|
∑
i

axi (T xi − T
y
i )|∞ + |

∑
i

(axi − a
y
i )T

y
i |∞

]
(5.4)

Theorem 5.1 gives an interesting decomposition of an upper bound to the difference

of the optimal values between the two team compositions. The first terms in the

square brackets on the RHS denotes contributions arising purely from substituting

the old capacities with the new one. The second term denotes the contribution

arising from a change in how much influence the agents have over the dynamics of

the MMDP.

Corollary 5.1.1 (Change in optimal value as a result of agent substitution). Let

T ∈ Cn be a team composition with influence weights a ∈ ∆n−1. If agent i is

substituted with i′ keeping ai unchanged such that |Ti′ −Ti|∞ ≤ ϵC then the new team

(T ′) optimal value follows:

|J∗T ′ − J∗T | ≤
(smax + γdVmid)aiϵC

γ(1− γ)

We define an important policy concept which captures the absolute optimality for

an oracle with access to the capabilities. For the ease of exposition we consider

fixed influence weights a and define a metric on the joint capability space as

da(T x, T y) = |
∑

i ai(T xi − T
y
i )|∞. We similarly generalize this metric to distances

between sets by taking the infimum of the distances between pairs of points in the

cross product da(Mx,My) ≜ infT x∈Mx,T y∈My da(T x, T y).

Definition 5.1 (Absolute Oracle). Let π∗M be the oracle policy which optimizes

Eq. (5.1) ie. π∗M is the multiplexer policy which given a team composition T behaves

identically to the optimal policy for T j where T j ∈ argminT l∈Sup(M) da(T l, T ).

We now answer the question of what happens when agents are trained on specific

capabilities but the learnt policy is used on potentially unseen capabilities (this
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could occur e.g. due to changes in hardware components).

Theorem 5.2 (Transfer of optimal policy). Let T x, T y ∈ Cn, ax, ay ∈ ∆n−1,

smax = maxs ||WRs||1, Vmid = 1
2
maxs V

∗
T y(s). Let π∗y be the optimal policy for the

team composed of agents with capabilities T y and influence weights ay. Then:

J∗T x − Jπ
∗
y

T x ≤ 2
smax + γdVmid
γ(1− γ)

Ψ,

where Ψ is defined as in Eq. (5.4).

Corollary 5.2.1 (Out of distribution performance). Let T /∈ Sup(M) be an out of

distribution task, we then have that the performance of the absolute oracle policy on

T satisfies:

J∗T − J
π∗M
T ≤ 2

smax + γdVmid
γ(1− γ)

da(T , Sup(M)),

We now address the scenarios when the team population changes.

Theorem 5.3 (Population decrease bound). For the team composition T ∈ Cn with

influence weights a ∈ ∆n−1. If agent n is eliminated followed by a re-normalization

of influence weights, we have that for the remaining team (T − ≜ (T )n−1i=1 ):

|J∗T − − J∗T | ≤
an(smax + γdVmid)

γ(1− γ)

∣∣∣ n−1∑
i=1

aiTi
1− an

− Tn
∣∣∣
∞

The special case when
∑n−1

i=1
aiTi
1−an = Tn for the linear dynamics formulation when an

agent-n can in principle be rendered redundant if the rest of the agents in the team

can effectively provide a perfect substitute. In fact, this holds true as long as capacity

Tn can be formed from a convex combination of the capabilities Ti, i ∈ {1..n− 1}.

The latter case however requires using the corresponding convex coefficients instead

of re-normalization. A similar bound can be easily constructed for reusing the policy

after an agent eliminated to give the corresponding transfer bound along the lines
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of Theorem 5.2.

Corollary 5.3.1 (Population increase bound). For the team composition T ∈ Cn

with influence weights a ∈ ∆n−1. If agent n+ 1 is added with capability Tn+1 and

weight an+1 (other weights scaled down by λ = 1− an+1) we have that for the new

team (T + ≜ (T1..Tn, Tn+1)):

|J∗T + − J∗T | ≤
an+1(smax + γdVmid)

γ(1− γ)

∣∣∣ n∑
i=1

aiTi − Tn+1

∣∣∣
∞

We next extend the generalization bound Theorem 5.1 to include the scenario where

the reward and the transition dynamics are not exactly linear but are approximately

linear with deviation ϵ̂R,ϵ̂P respectively.

Theorem 5.4 (Approximate ϵ̂R,ϵ̂P dynamics). Let T x, T y ∈ Cn, ax, ay ∈ ∆n−1 and

the dynamics be only approximately linear so that |rT (s)−
∑n

i=1 ai⟨ci ·WRs⟩| ≤ ϵ̂R

and |PT (s′|s,u)−
∑n

i=1 ai⟨ci ·WP (s
′, s,u)⟩| ≤ ϵ̂P . Then:

|J∗T x − J∗T y | ≤
smax + γdVmid
γ(1− γ)

Ψ +
2(ϵ̂R + γϵ̂PVmid)

γ(1− γ)
,

where Ψ is defined as in Eq. (5.4).

The other bounds for transfer and population change can similarly be obtained for

the approximate dynamics case.

We now consider the scenario when the capabilities are not directly observed but

inferred using an approximator which in-turn introduces some errors in their estima-

tion (this could happen due to noise in observations, inaccurate implicit or explicit

communication protocols, etc.).

Theorem 5.5 (Error from estimation of capabilities). For the team composition

T ∈ Cn with influence weights a ∈ ∆n−1. If the agent capabilities are inaccurately
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inferred as T̂ with maxi |Ti − T̂i|∞ ≤ ϵT and agents learn the inexact policy π̂∗ then:

|J∗T − J π̂
∗

T | ≤
2ϵT (smax + γdVmid)

γ(1− γ)

where Vmid = 1
2
maxs V

∗
T̂ (s)

We note that all our results can be easily extended to the setting where rewards

rT (s) = ⟨f(T )·WRs⟩, f(T ) is not linear in capabilities as in Eq. (5.2) but is Lipschitz

with coefficient Li for i ∈ A. For eg. Theorem 5.1 becomes:

Theorem 5.6. For rewards Li Lipschitz in the capabilities with respect to | · |∞

norm, the difference in optimal values between team compositions T x, T y satisfy:

|J∗T x − J∗T y | ≤
smax

∑n
i=1 Li|T xi − T

y
i |∞

γ(1− γ)

See Appendix C.1.6 for proof, which also provides a method for extending the other

results in a similar fashion.

We now consider the dependence of rewards on the capabilities in the most general

form (as is common for dense capability embeddings). For this, we introduce the

notion of (α,K)-rewards where α ≥ 0, K ∈ N.

rT (s) =
〈 ∑
Ki∈N,

∑
Ki≤K

aK1..KnΠ
n
i=1c

Ki
i ·WRs

〉
(5.5)

where N are non negative integers, |aK1..Kn | ≤ α and cKi
i represents element-wise

exponentiation. . Rewards in Eq. (5.2) can be seen as a special case belonging

to Eq. (5.5) the choice α,K = 1. Similarly the union ∪α≥0,K∈N(α,K)-rewards

cover all possible reward dependencies on capabilities. We have further relaxed

the assumption of influence weights belonging to a simplex here and replaced it

with individual bounds on the power series coefficients here. We next see that for
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this scenario, even a small change in the capability of a single agent can shift the

rewards massively. Let the capability of agent i be changed from Ti to Ti′ such that

|Ti − Ti′|∞ ≤ δ. Then we have

Lemma 5.1. For substitution Ti to Ti′ such that |Ti − Ti′ |∞ ≤ δ under the (α,K)-

rewards setting we have that

ϵR ∈ O(αδsmaxK2K)

See Appendix C.1.7 for proof. While this is not a lower bound, the above still

suggests that even a small change in the capability of an agent can cause the rewards

to change by a lot, hence it is natural to expect that generalization becomes harder

as the problem start showing the needle in the haystack phenomenon where only

the right combination of capabilities gives a large optimal value.

We provide experiments elucidating the bounds stated above in Section 5.5.1.

5.4 Experimental Setup

We evaluate the ability of existing MARL algorithms to generalize to novel settings

where the capabilities of teammates change during the training. We are interested

in evaluating the gap between settings encountered during training and held-out

agent configurations reserved for testing. Furthermore, we aim to study how well

algorithms ground privileged information about teammate capabilities and use that

during unseen settings at test time. Lastly, we evaluate the bounds derived in

Section 5.3 on a simple multi-agent problem.
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Figure 5.2: Three episodes from the 10_Protoss_Hard task (a) One featuring only
Zealot and Stalkers during training. (b) One featuring only Zealot and Colossus
during training. (c) A held-out episode featuring Zealot, Stalker, and Colossus
encountered during testing.

5.4.1 Environments

Fruit Forage

We use the fruit forage task on a grid world to empirically demonstrate the gen-

eralisation bounds in Section 5.3. On a 8 × 8 grid world we have n agents and d

types of fruit trees. For each agent i, Ti(j), j ∈ {1..d} represents the utility of fruit

j for agent i. The state vector is appended with the d dimensional binary vector

representing whether each of the tree types has foraged at a given time step. The

details for the team compositions can be found in Appendix C.2.1.

Predator Prey

We consider the grid-world version of the multi-agent Predator Prey task where 4

agents have to hunt 4 prey in an 8× 8 grid. Here, both predators and preys have

certain capabilities. Specifically, each predator has a parameter describing the hit
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point damage it can cause the prey. Similarly, the prey comes with variations in

health. For example, a prey with a capability of 5 can only be caught if the total

capability of agents taking the capture action simultaneously on it have capabilities

≥ 5 (such as [1,1,1,2]), otherwise, the whole team receives a penalty p. Here, we

test for generalization to novel team composition where test tasks contain a team

composition which has not been encountered during training (PP Unseen Team in

Figure 5.4), and additionally test tasks where novel team compositions can also have

agent types with capabilities not encountered during training (PP Unseen Team,

Agent in Figure 5.4). More details are provided in the Appendix C.2.1.

StarCraft II

To assess the generalization capabilities of modern MARL approaches, we make use

of a modified version of StarCraft II unit micromanagement tasks of the SMAC

benchmark [181]. Particularly, we consider novel scenarios featuring three unit types

from each race of the game where the team composition changes during training

and testing, unlike standard SMAC which is static. The opponent’s team is always

identical to the ally team which ensures that the optimal win rate is close to 1.

In the simple cases (10_Protoss, 10_Zerg, and 10_Terran), agents are trained on

various team formations of 10 units that feature all combinations of one, two, and all

three unit types, and is later tested on held out team formations. In the hard cases

(10_Protoss_Hard, 10_Zerg_Hard, and 10_Terran_Hard), agents are exposed to

various team formations including two unit types during training. During testing,

however, the agents encounter held-out scenarios featuring scenarios with using all

three unit types (see Appendix C.2.1 for more details). Fig. 5.2 illustrates three

episodes from the 10_Protoss_Hard environment. In these tasks, agent capabilities

are described as a one-hot encoding of agent types.

To test performance on continuously varying capabilities, we also use variants of

the environment where either the health or attack accuracy of certain units are
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reduced. We randomize these configurations for the allied units during training and

later test on held-out team configurations. We evaluate baselines on the 3m, 2s3z,

8m scenarios from the original benchmark with these modifications. The varying

team size also helps understand how grounding the capabilities becomes harder as

team size increases. Here agent capabilities are described as their accuracy or health

coefficients. Further details are provided in the Appendix C.2.1.

5.4.2 Baselines

Our empirical evaluation is based on various types of MARL algorithms. We make

use of two popular value-based approaches, QMIX [172] and VDN [197] that trained

fully decentralized policies in a centralized fashion. We also use policy gradient

method PPO [184] that recently shown good results on various MARL domains, both

with decentralised (Independent PPO) [49] and centralised critics (MAPPO) [248].

We access the performance of all baselines when the information about teammates

capabilities are provided as observation (denoted with a ‘C’ in parentheses) and

when it is not. The evaluation procedure, architectures and training details

are presented in Appendix C.2.2.

5.5 Results and Discussion

5.5.1 Generalization Bounds

Fig. 5.3 provides empirical evaluation of bounds presented in Section 5.3 in the Fruit

Forage domain. We present the plots for training the agents for one million steps

of training using QMIX. Fig. 5.3(a) shows that the policies in both the domains

converge quickly leading to a stable difference in performance thus comfortably

satisfying Theorem 5.1. Fig. 5.3(b) showing the gap between optimal and transferred

policy shows interesting variations as training proceeds (we posit this happens
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(a) Theorem 1 (b) Theorem 2 (c) Theorem 3

Figure 5.3: Evaluating the bounds for QMIX on Fruit Forage domain. Dashed blue
line indicates the setting where agent capabilities are observable. The red dotted
line indicates the corresponding upper bound for each theorem.

(a) PP Unseen Team (b) PP Unseen Team (c) PP Unseen Team,
Agent

(d) PP Unseen Team,
Agent

Figure 5.4: Experimental results for the Predator Prey domain. Standard deviation
is shaded.

because the transferred policy becomes steadily specialized thus getting less useful

for the target task) the bound in Theorem 5.2 gives a tight fit despite these variations.

Finally, we see similarly good fit for the agent elimination scenario in Theorem 5.3

in Fig. 5.3(c).

5.5.2 Utilizing Information of Agent Capabilities

Fig. 5.4 presents the results of the baselines on Predator Prey domain. We can

observe from Fig. 5.4(a) that providing additional information on agent capabilities

improves the test-time performance of the baselines with the maximal effect seen

on QMIX and VDN. Furthermore, when capabilities are observable to the agents,
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Figure 5.5: Experimental results on the SMAC benchmark. Standard deviation is
shaded. Rows show win rates and generalization gaps.

baselines are able to generalize to new team compositions Fig. 5.4(b), thus successfully

grounding the additional information. This hypothesis is additionally supported

by the fact that knowing agent capabilities result in a lower generalization gap.

Finally, the gap between the settings with known vs. unknown capabilities (dashed

vs solid) indicates that agents have likely not come up with any appropriate protocol

to communicate their capabilities during test time. We also note that the PPO

variants do not perform as well as the value-based approaches. Therefore, their

low generalization gap Fig. 5.4(b) is unlikely representative of good grounding of

capability. We posit that this is just because PPO agents are ignoring the privileged

information when available.

For a harder scenario, where both new team composition and agent types appear

during evaluation Fig. 5.4(c), we observe that the situation is reversed from the
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previous setting as the agents which do not have access to the other’s capabilities

now perform slightly better. This is strongly indicative of insufficient grounding

of the privileged information given to them, which highlights the need for better

grounding mechanisms to obtain CG. We see a similar pattern on generalization

gap in Fig. 5.4(d) where privileged information hurts the performance and is likely

perceived as observation noise.

On the more challenging domain of StarCraft, we see that for easier capability

variations of health and accuracy (as they are continuous and more readily usable for

an agent’s immediate actions), knowing the capabilities is advantageous to the agent

during test time. Moreover, the relative gains of knowing the privileged information

go down as the task difficulty increases. The accuracy variations tend to be easier as

typical joint policies like focus fire remain unchanged. Moreover, health variations

on the smaller team make the task much harder than bigger team due to relative loss

in team hit points. In this regard, 8m, 3s5z accuracy versions show good grounding

and generalization. This changes as tasks get harder. On the harder tasks which

involve swapping unit types within Protoss, Zerg, Terran races, we observe that

knowing the capabilities of other agents gives little advantage. This is especially

noticeable on the Hard versions where all unit types are never within a single team

during training. Furthermore, with win-rate performances on these maps being low,

we hypothesise that the agents do not successfully utilize the capability information.

Thus, it is highly unlikely that they learn any meaningful communication protocols

for exchanging capability information. For full StarCraft II results, including

8m_vs_9m & 10m_vs_11m scenarios, see Appendix C.3.

Compared to the relatively simple Predator Prey task, generalization in StarCraft

proved to be more difficult for the baselines. Although static versions of SMAC

environments are comfortably solved by them [172, 49, 248], changing unit formations

or unit health/accuracy makes the tasks significantly difficult, even for configurations
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seen during the training. As observed in Fig. 5.5, providing the capability information

does not consistently improve the test-time performance. This suggests the poor

grounding abilities of the baseline algorithms, which reinforces the need for better

grounding mechanisms in the MARL algorithms (e.g., forward dynamics prediction

as in [101]). The failure to generalize on index-based privileged information regarding

agent types suggests using mechanisms such as latent embeddings to compose and

reason about capabilities. Finally, a low test performance gap between agents having

privileged information vs those which do not, coupled with a low generalization

gap, suggests that these methods do not facilitate information sharing between the

agents, which is another desideratum towards attaining CG.

5.6 Related Work

Multi-agent systems offer means to overcome theoretical barriers like exponential

blow up in state-action space and compute resource requirements for large problems.

[100] regularize value functions to share factors comprised of sub-groups of entities, in

order to transfer knowledge across cooperative tasks. In the competitive/general sum

MARL space [160] have shown impressive performance on complex tasks. [231] use

an options framework to learn agents which generalize against different opponents.

[46, 226, 169] explore the structural and theoretical properties of general payoff

games.

Ad-hoc coordination was first formalised by [193] by modelling the multi-agent

problem as a single-agent task and using competency scores to measure agent

compatibility. Methods for using explicit hard-coded protocols for adaptations

were explored in [207, 74]. Opponent modelling for general game was explored in

[194, 148, 128]. Several approaches to the ad-hoc cooperation problem assume that

the behaviour of other agents in the ensemble are fixed [30]. Planning methods

like Monte Carlo tree search are used for finding optimal adaptation policy from
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a fixed set of choices [18, 3, 4]. [156] develop over this by enabling learning a set

of behaviours for the adapting agent while performing the task with human agents

instead of assuming that it is given beforehand. Recent methods allow a change in

the behaviour of the other agents to ones picked from a fixed set and account for the

possible non-stationarities using change point detection [93, 174]. However, these

methods do not consider arbitrary learning for other agents. Furthermore, they do

not focus on generalization to unseen agent capabilities.

Generalization in RL aims to develop approaches that generalize well to the

novel, unseen scenarios after training. Such methods avoid overfitting to seen

tasks and can produce robust behaviour when deployed to novel settings. Recent

work on generalization in single-agent RL make use of techniques such as data

augmentation [171, 121], adaptive task distribution [213, 129], encoding inductive

biases [94], and regularization [43]. Methods in contextual MDPs [88, 252] also

provide generalization with guarantees. Recent work also elucidate some of the

fundamental bounds arising from computational complexity which prevents sample

efficient generalization [52, 67, 147].

5.7 Conclusion and Future work

We studied the generalization properties in multi-agent systems (MAS) following

Markovian dynamics with a linear dependence of dynamics on the agent capabilities.

We showed how the framework extends the successor feature setting to MAS. We

explored performance bounds for various interesting scenarios arising in the MAS

including generalization, transfer, agent substitutions, approximate inference of

capabilities and deviations in environment dynamics. Furthermore, we showed how

the bounds can be extended to the Lipschitz reward setting and elucidated the most

general form of rewards and how they make generalization difficult. Finally, we

extensively tested the popular MARL algorithms on domains presenting a wide
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spectrum of hardness for CG. We saw that while some algorithms demonstrated

CG on easier domains, all of them are insufficient towards ensuring CG on the

challenging domains. We further highlighted how the first step towards ensuring CG

should be ensuring proper grounding of agent capabilities. For future work, we aim

to provide tighter bounds for CG for more general dynamics and create methods for

better grounding of agent capabilities.
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Related works for Part I

Previous methods for modelling multi-agent interactions include those that use

coordination graph methods for learning a factored joint action-value estimation

[79, 80, 14], however typically require knowledge of the underlying coordination graph.

To tackle computational intractability from exponential blow-up of state-action space,

Guestrin et al. [77, 78] use coordination graphs to factor large MDPs for multi-agent

systems and propose inter-agent communication arising from message passing on

the graphs. Similarly [195, 103] model inter-agent communication explicitly.

In recent years there has been considerable work extending MARL from small discrete

state spaces that can be handled by tabular methods [245, 35] to high-dimensional,

continuous state spaces that require the use of function approximators [63, 138, 167].

In CTDE value based setting, [122], [208] extend Independent Q-Learning [209] to use

DQN to learn Q-values for each agent independently. [159] tackle the instability that

arises from training the agents independently. Lin et al.[136] first learn a centralised

controller to solve the task, and then train the agents to imitate its behaviour.

Sunehag et al.[197] propose Value Decomposition Networks (VDN), which learn the

joint-action Q-values by factoring them as the sum of each agent’s Q-values. QMIX

[172] extends VDN to allow the joint action Q-values to be a monotonic combination

of each agent’s Q-Values that can vary depending on the state. QTRAN [188]

approaches the suboptimality vs. decentralisation tradeoff differently by introducing

relaxed L2 penalties in the RL objective. MAVEN [140] learns a diverse ensemble of
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monotonic approximations by conditioning agent Q-functions on a latent space which

helps overcome the detrimental effects of decentralization constraints on exploration

in value based methods. Similarly, Uneven [82] uses universal successor features for

efficient exploration in the joint action space. Qatten [246] makes use of a multi-head

attention mechanism to decompose Qtot into a linear combination of per-agent terms.

RODE [237] learns an action effect based role decomposition for sample efficient

learning. Similarly policy based approaches like MADDPG [138] and Tesseract [142]

use function approximation for scaling to large problems and allow for native CTDE

support by using factored policies.
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Part II

Learning in continuous state-action

spaces
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Chapter 6

Virel: Variational inference

framework for reinforcement

learning
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6.1 Introduction

In this chapter we turn our attention to the problem of reinforcement learning (RL)

in continuous state-action spaces. Towards this, we utilize a perspective of looking

at the RL control problem that is very distinct from the classical approaches in RL:

namely RL as probabilistic inference. Efforts to combine reinforcement learning and

probabilistic inference have a long history, spanning diverse fields such as control,

robotics, and RL [222, 221, 168, 175, 90, 258, 257, 256, 132]. Formalising RL as

probabilistic inference enables the application of many approximate inference tools

to reinforcement learning, extending models in flexible and powerful ways [131] thus

also enabling dealing with large continuous spaces. However, existing methods at

the intersection of RL and inference suffer from several deficiencies. Methods that

derive from the pseudo-likelihood inference framework [48, 222, 168, 87, 155, 1] and

use expectation-maximisation (EM) favour risk-seeking policies [130], which can be

suboptimal. Yet another approach, the MERL inference framework [131] (which we

refer to as merlin), derives from maximum entropy reinforcement learning (MERL)

[116, 258, 257, 256]. While merlin does not suffer from the issues of the pseudo-

likelihood inference framework, it presents different practical difficulties. These

methods do not naturally learn deterministic optimal policies and constraining the

variational policies to be deterministic renders inference intractable [175]. Moreover,

these methods rely on soft value functions which, as we demonstrate empirically

in Section 6.6, are less suited to capturing complex underlying value structures in

higher dimensional MDPs.

Additionally, no framework formally accounts for replacing exact value functions

with function approximators in the objective; learning function approximators is

carried out independently of the inference problem and no analysis of convergence is

given for the corresponding algorithms.

This work addresses these deficiencies. We introduce virel, an inference framework
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that translates the problem of finding an optimal policy into an inference problem.

Given this framework, we demonstrate that applying EM induces a family of actor-

critic algorithms, where the E-step corresponds exactly to policy improvement and

the M-step corresponds exactly to policy evaluation. Using a simple variational EM

algorithm, we derive analytic updates for both the model and variational policy

parameters, giving a unified approach to learning parametrised value functions and

optimal policies.

We extensively evaluate two algorithms derived from our framework against DDPG

[135] and an existing state-of-the-art actor-critic algorithm, soft actor-critic (SAC)

[85], on a variety of OpenAI gym domains [32]. While our algorithms perform

similarly to SAC and DDPG on simple low dimensional tasks, they outperform

them substantially on complex, high dimensional tasks due their ability to better

represent multi-modal value structures in higher dimensional MDPs.

The main contributions of this work are: 1) an exact reduction of entropy regularised

RL to probabilistic inference using value function estimators; 2) the introduction of a

theoretically justified general framework for developing inference-style algorithms for

RL that incorporate the uncertainty in the optimality of Q̂ω(h) to drive exploration,

but that can also learn optimal deterministic policies; and 3) a family of practical

algorithms arising from our framework that adaptively balances exploration-driving

entropy with the RL objective and outperforms the current state-of-the-art SAC,

reconciling existing advanced actor critic methods like A3C [151], MPO [1] and EPG

[42] into a broader theoretical approach.

6.2 Background

We assume familiarity with probabilistic inference [105] and also provide a quick

review in Section 2.8.
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6.2.1 Reinforcement Learning

We start with the Markov decision process (MDP) setup defined by the tuple

⟨S, U, r, p, ρ, γ⟩ Section 2.1 . We assume WLOG U ⊆ Rn is set of available actions

for the continuous action space. We use the notation for a state-action pair as h ∈ H,

h := ⟨s, a⟩. Our goal being maximization of policy value:

Jπ = Eh∼ρ(s)π(a|s) [Qπ(h)] . (6.1)

6.2.2 Maximum Entropy RL

The MERL objective supplements each reward in the RL objective with an entropy

term [218, 258, 257, 256], Jπmerl := Eτ∼p(τ)
[∑T−1

t=0 (rt − c log(π(at|st))
]
. The standard

RL, undiscounted objective is recovered for c→ 0 and we assume c = 1 without loss

of generality. The MERL objective is often used to motivate the MERL inference

framework (which we call merlin) [130], mapping the problem of finding the optimal

policy, π∗merl(a|s) = argmaxπ J
π
merl, to an equivalent inference problem. A full exposi-

tion of this framework is given by [131] and we discuss the graphical model of merlin

in comparison to virel in Section 6.3.3. The inference problem is often solved using

a message passing algorithm, where the log backward messages are called soft value

functions due to their similarity to classic (hard) value functions [220, 176, 85, 84, 131].

The soft Q-function is defined as Qπ
soft(h) := Eτ∼qπ(τ |h)

[
r0 +

∑T−1
t=1 (rt − log π(at|st))

]
where qπ(τ |h) := p(s0|h)

∏T−1
t=0 p(st+1|ht)π(at|st). The corresponding soft Bellman

operator is T πsoft· := r(h) + Eh′∼p(s′|h)π(a′|s′)[·− log π(a′|s′)]. Several algorithms have

been developed that mirror existing RL algorithms using soft Bellman equations,

including maximum entropy policy gradients [131], soft Q-learning [84], and soft

actor-critic (SAC) [85]. MERL is also compatible with methods that use recall traces

[71].

A drawback of merlin is that optimal deterministic policies are not learnt natu-
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rally. Although a deterministic policy can be constructed by approximating a ∈

argmaxaQ
∗
soft(a, s) with the mean of the learnt stochastic policy [85], even when this

estimate is accurate, there exists no analysis relating a ∈ argmax ′aQ
∗
soft(a, s) to the

optimal action a ∈ argmaxa′ Q
∗(a′, s) under Jπ [190]. Constraining the variational

policies to the set of delta distributions renders the inference intractable [175, 176].

s1

s11

sk11

s0

s2

s5

s3 s4

s5+k2

Figure 6.1: A discrete MDP counterex-
ample for optimal policy under maximum
entropy.

Next, we demonstrate that the op-

timal policy under Jπ cannot al-

ways be recovered from the MAP

policy under Jπmerl. Consider the

discrete state MDP as shown in

Fig. 6.1, with action set A =

{a1, a2, a11, · · · a
k1
1 } and state set S =

{s0, s1, s2, s3, s4, s11 · · · s
k1
1 , s5, · · · s5+k2}. All

state transitions are deterministic,

with p(s1|s0, a1) = p(s1|s0, a2) =

p(si1|s1, ai1) = 1. All other state transitions are deterministic and independent

of action taken, that is, p(sj|·, sj−1) = 1 ∀ j > 2 and p(s5|·, si1) = 1. The reward

function is r(s0, a2) = 1 and zero otherwise. Clearly the optimal policy under Jπ

has π∗(a2|s0) = 1. Define a maximum entropy reinforcement learning policy as πmerl

with πmerl(a1|s0) = p1, πmerl(a2|s0) = (1− p1) and πmerl(a
i
1|s1) = pi1. For πmerl and

k2 >> 5, we can evaluate Jπmerl for any scaling constant c and discount factor γ

as:

Jπmerl = (1− p1)(1− c log(1− p1))− p1

(
c log p1 + γc

k∑
i=1

pi1 log p
i
1

)
. (6.2)

We now find the optimal MERL policy. Note that pi1 =
1
k

maximises the final term

in Eq. (6.2). Substituting for pi1 = 1
k1

, then taking derivatives of Eq. (6.2) with

101



respect to p1, and setting to zero, we find p∗1 = π∗merl(a1|s0) as:

1− c log(1− p∗1) = γc log(k1)− c log p∗1,

=⇒ p∗1 =
1

k1
−γ exp

(
1
c

)
+ 1

,

hence, for any k1
−γ exp

(
1
c

)
< 1, we have p∗1 >

1
2

and so π∗ cannot be recovered

from π∗merl, even using the mode action a1 = argmaxa π
∗
merl(a|s0). The degree to

which the MAP policy varies from the optimal unregularised policy depends on both

the value of c and k1, the later controlling the number of states with sub-optimal

reward. Our counterexample illustrates that when there are large regions of the

state-space with sub-optimal reward, the temperature must be comparatively small

to compensate, hence algorithms derived from merlin become very sensitive to

temperature. As we discuss Section 6.3.3, another drawback to merlin its its

reliance on a variational distribution qπθ(τ) to approximate the underlying dynamics

of the MDP for entire trajectories; for complex domains, we hypothesise that the

expressiveness of the variational distribution qπθ(τ) is a bottleneck to performance.

We provide evidence for this claim in Section 6.6. Finally, many existing models are

defined for finite horizon problems [131, 176]. While it is possible to discount and

extend merlin to infinite horizon problems, doing so is nontrivial and can alter the

objective [215, 85].

6.2.3 Pseudo-Likelihood Methods

A related but distinct approach is to apply Jensen’s inequality directly to the RL

objective Jπ. Firstly, we rewrite Eq. (6.1) as an expectation over τ to obtain

J = Eh∼ρ(s)π(a|s) [Qπ(h)] = Eτ∼p(τ) [R(τ)], where R(τ) =
∑T−1

t=0 γ
trt and p(τ) =

ρ(s0)π(a0|so)
∏T−1

t=0 p(ht+1|ht). We then treat p(R, τ) = R(τ)p(τ) as a joint dis-

tribution, and if rewards are positive and bounded, Jensen’s inequality can be

applied, enabling the derivation of an evidence lower bound (ELBO). Inference
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algorithms such as EM can then be employed to find a policy that optimises the

pseudo-likelihood objective [48, 222, 168, 87, 155, 1]. Pseudo-likelihood methods

can also be extended to a model-based setting by defining a prior over the environ-

ment’s transition dynamics. [66] demonstrate that the posterior over all possible

environment models can be integrated over to obtain an optimal policy in a Bayesian

setting.

Many pseudo-likelihood methods minimise KL(pO ∥ pπ), where pπ is the policy

to be learnt and pO is a target distribution monotonically related to reward [131].

Classical RL methods minimise KL(pπ ∥ pO). The latter encourages learning a mode

of the target distribution, while the former encourages matching the moments of

the target distribution. If the optimal policy can be represented accurately in the

class of policy distributions, optimisation converges to a global optimum and the

problem is fully observable, the optimal policy is the same in both cases. Otherwise,

the pseudo-likelihood objective reduces the influence of large negative rewards,

encouraging risk-seeking policies.

6.3 virel

Before describing our framework, we state some relevant assumptions.

Definition 6.1 (Unique Maximum and Locally Smooth Function). Let f : X → Y

be a function with a unique maximum f(x∗) = supx f and a bounded domain X and

range Y. Let f be locally smooth about x∗, that is ∃ ∆ > 0 s.t.f(x) ∈ C2 ∀ x ∈

{x|∥x− x∗∥ < ∆ }.

Assumption 6.1. The optimal action-value function for the reinforcement learning

problem is finite and strictly positive, i.e. 0 < Q∗(h) <∞ ∀ h ∈ H.

Any MDP for which rewards are lower bounded and finite, that is R ⊂ [rmin,∞)

satisfies Assumption 6.1. To see this, we can construct a new MDP by adding rmin
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to the reward function, ensuring that all rewards are positive and hence the optimal

action-value function for the reinforcement learning problem is finite and strictly

positive. This does not affect the optimal solution. Now we introduce a function

approximator Q̂ω(h) ≈ Qπ(h) parametrised by ω ∈ Ω.

Assumption 6.2 (Exact Representability Under Optimisation). Our function

approximator can represent the optimal Q-function, i.e., ∃ ω∗ ∈ Ω s.t. Q∗(·) =

Q̂ω∗(·).

In Appendix D.5.1, we extend the work of [25] to continuous domains, demonstrating

that Assumption 6.2 can be neglected if projected Bellman operators are used.

Assumption 6.3 (Local Smoothness of Q-functions ). For ω∗ parametrising Q∗(h)

in Assumption 6.2, Qω∗(h) has a unique maximum and is locally smooth under

Definition 6.1 for actions in any state.

This assumption is formally required for the strict convergence of a Boltzmann

to a Dirac-delta distribution and, as we discuss in Appendix D.5.4, is of more

mathematical than practical concern.

6.3.1 Objective Specification

We now define an objective that we motivate by satisfying three desiderata: 1 in the

limit of maximising our objective, a deterministic optimal policy can be recovered

and the optimal Bellman equation is satisfied by our function approximator, 2 when

our objective is not maximised, stochastic policies can be recovered that encourage

effective exploration of the state-action space and 3 our objective permits the appli-

cation of powerful and tractable optimisation algorithms from variational inference

that optimise the risk-neutral form of KL divergence KL(pπ ∥ pO) introduced in

Section 6.2.3.

Firstly, we define the residual error εω := c
p
∥TωQ̂ω(h)− Q̂ω(h)∥pp where Tω = T πω · :=
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r(h) + γEh′∼p(s′|h)πω(a′|s′) [·] is the Bellman operator for the Boltzmann policy with

temperature εω:

πω(a|s) :=
exp

(
Q̂ω(h)
εω

)
∫
exp

(
Q̂ω(h)
εω

)
da
. (6.3)

We assume p = 2 and c = 1
|H| without loss of generality. Our main result in Theo-

rem 6.2 proves finding ω∗ that reduces the residual error to zero, i.e. εω∗ = 0, is a

sufficient condition for learning an optimal Q-function Q̂ω∗(h) = Q∗(h). Addition-

ally, the Boltzmann distribution πω(a|s) tends towards a Dirac-delta distribution

πω(a|s) = δ(a = argmax′a Q̂ω∗(a
′, s)) whenever εω → 0 (see Theorem 6.1), which

is an optimal policy. The simple objective argmin(L(ω)) := argmin(εω) therefore

satisfies 1 . Moreover, when our objective is not minimised, we have εω > 0 and

from Eq. (6.3) we see that πω(a|s) is non-deterministic for all non-optimal ω. L(ω)

therefore satisfies 2 as any agent following πω(a|s) will continue exploring until the

RL problem is solved. To generalise our framework, we extend Tω· to any operator

from the set of target operators Tω· ∈ T in Definition 6.2:

Definition 6.2 (Target Operator Set). Define T to be the set of target operators such

that an optimal Bellman operator for Q̂ω(h) is recovered when the Boltzmann policy

in Eq. (6.3) is greedy with respect to Q̂ω(h), i.e., T := {Tω · | limεω→0 πω(a|s) =⇒

TωQ̂ω(h) = T ∗Q̂ω(h)}.

As an illustration, we prove in Appendix D.2 that the Bellman operator T πω ·

introduced above is a member of T and can be approximated by several well-known

RL targets. We also discuss how T πω · induces a constraint on Ω. As we show

in Section 6.3.2, there exists an ω in the constrained domain that maximises the

RL objective under these conditions, so any optimal solution is always feasible.

Moreover, we prove in Appendix D.4.3 that ∇ωεω still has an analytic solution,

facilitating gradient-based optimisation. By definition, the optimal Bellman operator
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T ∗· is a member of T and does not constrain Ω. We discuss another member of

T that does not constrain ω in Appendix D.5.2. Soft Bellman operators are not

members of T as the optimal policy under Jπmerl is not deterministic.

One problem remains: calculating the normalisation constant to sample directly from

the Boltzmann distribution in Eq. (6.3) is intractable for many MDPs and function

approximators. As such, we look to variational inference to learn an approximate

variational policy πθ(a|s) ≈ πω(a|s), parametrised by θ ∈ Θ with finite variance

and the same support as πω(a|s). This suggests optimising a new objective that

penalises πθ(a|s) when πθ(a|s) ̸= πω(a|s) but still has a global maximum at εω = 0.

A tractable objective that meets these requirements is the evidence lower bound

(ELBO) on the unnormalised potential of the Boltzmann distribution, defined as

{ω∗, θ∗} ∈ argmaxω,θ L(ω, θ),

L(ω, θ) := Es∼d(s)

[
Ea∼πθ(a|s)

[
Q̂ω(h)

εω

]
+H(πθ(a|s))

]
, (6.4)

where our variational distribution qθ(h) := d(s)πθ(a|s), H(·) denotes the differential

entropy of a distribution and d(s) is any arbitrary sampling distribution with support

over S. From Eq. (6.4), maximising our objective with respect to ω is achieved when

εω → 0 and hence L(ω, θ) satisfies 1 and 2 . As we show in Lemma 6.1, H(·) in

Eq. (6.4) causes L(ω, θ)→ −∞ whenever πθ(a|s) is a Dirac-delta distribution for

all εω > 0. This means our objective heavily penalises premature convergence of

our variational policy to greedy Dirac-delta policies except under optimality. We

discuss a probabilistic interpretation of our framework in Appendix D.1, where it

can be shown that πω(a|s) characterises our model’s uncertainty in the optimality

of Q̂ω(h).

We now motivate L(ω, θ) from an inference perspective: in Appendix D.3.1, we write

L(ω, θ) in terms of the log-normalisation constant of the Boltzmann distribution

and the KL divergence between the action-state normalised Boltzmann distribution
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pω(h) and the variational distribution qθ(h):

L(ω, θ) = ℓ(ω)−KL(qθ(h) ∥ pω(h)), (6.5)

where ℓ(ω) := log

∫
exp

(
Q̂ω(h)

εω

)
dh, pω(h) :=

exp
(
Q̂ω(h)
εω

)
∫
exp

(
Q̂ω(h)
εω

)
dh
.

As the KL-divergence in Eq. (6.5) is always positive, maximising our objective for θ

always reduces the KL-divergence between πω(a|s) and the variational approximation

πθ(a|s) for any εω > 0, with πθ(a|s) = πω(a|s) achieved under exact representability

(see Theorem 6.3). This yields a tractable way to estimate πω(a|s) at any point

during our optimisation procedure by maximising L(ω, θ) for θ. From Eq. (6.5)

we see that our objective satisfies 3 , as we minimise the mode-seeking direction

of KL-divergence KL(qθ(h) ∥ pω(h)) and our objective is an ELBO, which is the

starting point for inference algorithms [105, 20, 64]. When the RL problem is solved

and εω = 0, our objective tends towards ∞ for any variational distribution that

is non-deterministic (see Lemma 6.1). This is of little consequence however, as

whenever εω = 0, our approximator is the optimal value function Q̂ω∗(h) = Q∗(h)

(Theorem 6.2) and hence π∗(a|s) can be inferred exactly by finding maxa′ Q̂ω∗(a
′, s)

or by using the policy gradient ∇θEd(s)πθ(a|s)
[
Q̂ω∗(h)

]
(see Section 6.4.2).

6.3.2 Theoretical Results

We now formalise the intuition behind 1 - 3 . Theorem 6.1 establishes the emergence

of a Dirac-delta distribution in the limit εω → 0. To the authors’ knowledge, this is

the first rigorous proof of this result. Theorem 6.2 shows that finding an optimal

policy that maximises the RL objective in Eq. (6.1) reduces to finding the Boltzmann

distribution associated with the parameters ω∗ ∈ argmaxω L(ω, θ). The existence of

such a distribution is a sufficient condition for the policy to be optimal. Theorem 6.3

shows that whenever εω > 0, maximising our objective for θ always reduces the
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KL-divergence between πω(a|s) and πθ(a|s), providing a tractable method to infer

the current Boltzmann policy.

Theorem 6.1 (Convergence of Boltzmann Distribution to Dirac Delta). Let pε :

X → [0, 1] be a Boltzmann distribution with temperature ε ∈ R≥0, pε(x) =

exp( f(x)
ε )∫

X exp( f(x)
ε )dx

, where f : X → Y is a function that satisfies Definition 6.1. In

the limit ε→ 0, pε(x)→ δ(x = supx′ f(x
′)).

Proof. See Appendix D.3.2

Lemma 6.1 (Lower and Upper limits of L(ω, θ)). i) For any εω > 0 and πθ(a|s) =

δ(a∗), we have L(ω, θ) = −∞. ii) For Q̂ω(h) > 0 and any non-deterministic πθ(a|s),

limεω→0 L(ω, θ) =∞.

Proof. See Appendix D.3.3.

Theorem 6.2 (Optimal Boltzmann Distributions as Optimal Policies). For ω∗ that

maximises L(ω, θ) defined in Eq. (6.4), the corresponding Boltzmann policy induced

must be optimal, i.e., {ω∗, θ∗} ∈ argmaxω,θ L(ω, θ) =⇒ πω∗(a|s) ∈ Π∗.

Proof. See Appendix D.3.3.

Theorem 6.3 (Maximising the ELBO for θ). For any εω > 0, maxθ L(ω, θ) =

Ed(s) [minθ KL(πθ(a|s) ∥ πω(a|s))] with πω(a|s) = πθ(a|s) under exact representabil-

ity.

Proof. See Appendix D.3.4.

6.3.3 Comparing virel and merlin Frameworks

To compare merlin and virel, we consider the probabilistic interpretation of the

two models discussed in Appendix D.1; introducing a binary variable O ∈ {0, 1}

defines a graphical model for our inference problem whenever εω > 0. Comparing
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Figure 6.2: Graphical models for merlin and virel (variational approximations
are dashed)

the graphs in Fig. 6.2, we hypothesise that since merlin models entire trajectories,

its variational distribution takes the onus of representing future dynamics of the

system. By contrast, virel’s variational policy only needs to model a single step

and a function approximator is used to model future dynamics, which is more

expressive and better suited to capturing essential modes than a parametrised

distribution. This effect becomes more pronounced in higher dimensions, which are

typically multi-modal. We provide empirical evidence supporting our hypothesis in

Section 6.6.

Theorem 6.1 demonstrates that, unlike in merlin, virel naturally learns optimal

deterministic policies directly from the optimisation procedure while still maintaining

the benefits of stochastic policies in training. While Boltzmann policies with fixed

temperatures have been proposed before [180], as we discuss in Appendix D.1, the

adaptive temperature εω in virel’s Boltzmann policy has a unique interpretation,

characterising the model’s uncertainty in the optimality of Q̂ω(h); both πω(a|s) and

its variational approximation πθ(a|s) have an adaptive variance that reduces as

Q̂ω(h) → Q∗(h), allowing us to benefit from uncertainty-driven exploration when

sampling under πθ(a|s).
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6.4 Actor-Critic and EM

We now apply the expectation-maximisation (EM) algorithm [50, 81] to optimise our

objective L(ω, θ). (See Section 2.8 for an exposition of this algorithm). In keeping

with RL nomenclature, we refer to Q̂ω(h) as the critic and πθ(a|s) as the actor.

We establish that the expectation (E-) step is equivalent to carrying out policy

improvement and the maximisation (M-)step to policy evaluation. This formulation

reverses the situation in most pseudo-likelihood methods, where the E-step is related

to policy evaluation and the M-step is related to policy improvement, and is a direct

result of optimising the forward KL-divergence KL(qθ(h) ∥ pω(h|O)) as opposed

to the reverse KL-divergence used in pseudo-likelihood methods. As discussed in

Section 6.2.3, this mode-seeking objective prevents the algorithm from learning

risk-seeking policies. We now introduce an extension to Assumption 6.2 that is

sufficient to guarantee convergence.

Assumption 6.4 (Universal Variational Representability). Every Boltzmann policy

can be represented as πθ(a|s), i.e. ∀ ω ∈ Ω ∃ θ ∈ Θ s.t. πθ(a|s) = πω(a|s).

Assumption 6.4 is strong but, like in variational inference, our variational policy

πθ(a|s) provides a useful approximation when Assumption 6.4 does not hold. As

we discuss in Appendix D.5.1, using projected Bellman errors also ensures that our

M-step always converges no matter what our current policy is.

6.4.1 Variational Actor-Critic

In the E-step, we keep the parameters of our critic ωk constant while updat-

ing the actor’s parameters by maximising the ELBO with respect to θ: θk+1 ←

argmaxθ L(ωk, θ). Using gradient ascent with step size αactor, we optimise εωk
L(ωk, θ)

instead, which prevents ill-conditioning and does not alter the optimal solution,

yielding the update (see Appendix D.4.1 for full derivation):
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E-Step (Actor): θi+1 ← θi + αactor (εωk
∇θL(ωk, θ))|θ=θi ,

εωk
∇θL(ωk, θ) = Es∼d(s)

[
Ea∼πθ(a|s)

[
Q̂ωk

(h)∇θ log πθ(a|s)
]
+ εωk

∇θH(πθ(a|s))
]
.

(6.6)

In the M-step, we maximise the ELBO with respect to ω while holding the parameters

θk+1 constant. Hence expectations are taken with respect to the variational policy

found in the E-step: ωk+1 ← argmaxω L(ω, θk+1). We use gradient ascent with

step size αcritic(εωi
)2 to optimise L(ω, θk+1) to prevent ill-conditioning, yielding (see

Appendix D.4.2 for full derivation):

M-Step (Critic): ωi+1 ← ωi + αcritic(εωi
)2∇ωL(ω, θk+1)|ω=ωi

,

(εωi
)2∇ωL(ω, θk+1) = εωi

Ed(s)πθk+1
(a|s)

[
∇ωQ̂ω(h)

]
− Ed(s)πθk+1

(a|s)

[
Q̂ωi

(h)
]
∇ωεω.

(6.7)

6.4.2 Discussion

From an RL perspective, the E-step corresponds to training an actor using a policy

gradient method [205] with an adaptive entropy regularisation term [243, 151]. The

M-step update corresponds to a policy evaluation step, as we seek to reduce the MSBE

in the second term of Eq. (6.7). Note that the gradient of this term ∇ωεω depends on

(TωQ̂ω(h)− Q̂ω(h))∇ωTωQ̂ω(h), which typically requires evaluating two independent

expectations. For convergence guarantees, techniques such as residual gradients [11]

or GTD2/TDC [25] need to be employed to obtain an unbiased estimate of this

term. If guaranteed convergence is not a priority, dropping gradient terms allows

us to use semi-gradient methods [202], which are often simpler to implement. We

discuss these methods further in Appendix D.5.3. A key component of our algorithm
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is the behaviour when εω∗ = 0; under this condition there is no M-step update (both

εωk
= 0 and∇ωεω = 0) and Qω∗(h) = Q∗(h) (see Theorem 6.2), so our E-step reduces

exactly to a policy gradient step, θk+1 ← θk+αactorEh∼d(s)πθ(a|s) [Q∗(h)∇θ log πθ(a|s)],

recovering the optimal policy πθ(a|s)→ π∗(a|s) in the limit of convergence.

From an inference perspective, the E-step improves the parameters of our variational

distribution to reduce the gap between the current Boltzman posterior and the

variational policy, KL(πθ(a|s)) ∥ πωk
(a|s)) (see Theorem 6.3). This interpretation

makes precise the intuition that how much we can improve our policy is determined

by how similar Q̂ωk
(h) is to Q∗(h), limiting policy improvement to the complete

E-step: πθk+1
(a|s) = πωk

(a|s). We see that the common greedy policy improvement

step, πθk+1
(a|s) = δ(a ∈ argmaxa′(Q̂ωk

(a′, s))) acts as an approximation to the

Boltzmann form in Eq. (6.3), replacing the softmax with a hardmax.

If Assumption 6.4 holds and any constraint induced by Tω· does not prevent con-

vergence to a complete E-step, the EM algorithm alternates between two convex

optimisation schemes, and is guaranteed to converge to at least a local optimum of

the L(ω, θ) [244]. In reality, we cannot carry out complete E- and M-steps for com-

plex domains, and our variational distributions are unlikely to satisfy Assumption 6.4.

Under these conditions, we can resort to the empirically successful variational EM

algorithm [105], carrying out partial E- and M-steps instead, which we discuss

further in Appendix D.5.3.

6.4.3 Advanced Actor-Critic Methods

A family of actor-critic algorithms follows naturally from our framework: 1) we can

use powerful inference techniques such as control variates [75] or variance-reducing

baselines by subtracting any function that does not depend on the action [182], e.g.,

V (s), from the action-value function, as this does not change our objective, 2) we

can manipulate Eq. (6.6) to obtain variance-reducing gradient estimators such as
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EPG [42], FPG [56], and SVG0 [92], and 3) we can take advantage of d(s) being

any general decorrelated distribution by using replay buffers [153] or empirically

successful asynchronous methods that combine several agents’ individual gradient

updates at once [151]. As we discuss in Appendix D.4.4, the manipulation required

to derive the estimators in 2) is not strictly justified in the classic policy gradient

theorem [205] and MERL formulation [85].

MPO is a state-of-the-art EM algorithm derived from the pseudo-likelihood objective

[1]. In its derivation, policy evaluation does not naturally arise from either of its

EM steps and must be carried out separately. As we demonstrate in Appendix D.6,

under the probabilistic interpretation of our model, including a prior of the form

pϕ(h) = U(s)πϕ(a|s) in our ELBO and specifying a hyper-prior p(ω), the MPO

objective with an adaptive regularisation constant can be recovered from virel:

Lmpo(ω, θ, ϕ) = Es∼d(s)

[
Ea∼πθ(a|s)

[
Q̂ω(h)

εω

]
−KL(πθ(a|s) ∥ πϕ(a|s))

]
+ log p(ω).

We also show in Appendix D.6 that applying the (variational) EM algorithm from

Section 6.4 yields the MPO updates with the missing policy evaluation step.

6.5 Using alternate inference frameworks

We now discuss how we can use alternate approximate inference methods, other

than variational inference under the virel framework. Note that our method differs

from most existing methods in that the variable O = 1 is understood to be the

event that the agent is acting softly optimally [131, 220]. As we are using function

approximators in virel, we interpret O = 1 as the event that the agent is behaving

optimally with respect to the given Q̂ω(h). The likelihood for O = 1 under virel is
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given by:

pω(O = 1|h) = exp

(
Q̂ω(h)−maxa′ Q̂ω(a

′, s)

εω

)
, (6.8)

Thus our likelihood encodes for a soft greedy-Q operator (with varying temperature

given by the bellman error) instead of soft reward maximizer. Hence it can be seen as

a form of soft policy iteration. Further, the likelihood is dependent on ω. Maximum

a posteriori(MAP) is guaranteed to improve the policy under our framework (as

it corresponds to policy iteration which provably converges to optimal [201]). Our

action posterior is given by (see Appendix D.1 for details):

pω(a|s,O = 1) =
exp

(
Q̂ω(h)
εω

)
∫
exp

(
Q̂ω(h)
εω

)
da

Thus, the action-posterior is exactly the Boltzmann policy introduced in Section 6.3.1

(see Eq. (6.3)). From a Bayesian perspective, the action-posterior pω(a|s,O = 1)

characterises the uncertainty we have in deducing the optimal action for a given state

s under Q̂ω(h). One way to obtain different RL algorithms under virel model is to

also incorporate uncertainty of the Q approximator under a probabilistic framework,

for instance we can modify Eq. (6.8) by multiplicative functional forms which are

inversely proportional to variance of Q estimates.

Finding policies satisfying Eq. (6.3) is a constrained optimization problem due to

policy bellman operator T πω appearing in the policy expression in the temperature

term εω := c
p
∥TωQ̂ω(h)− Q̂ω(h)∥pp, thus giving rise to recursive definition. Even when

the MDP is known, this is in general a hard problem to solve. Use of the variational

inference framework as described in this work helps neatly separate the recursive

constraint. However, we can also use other approximate inference techniques like

expectation propagation (EP), Markov chain monte carlo (MCMC), cross entropy

methods (CEM) towards the goal of sampling from the optimal policy, with some
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modifications as we discuss below.

The special form of our likelihood and consequently the action posterior means that

we can recover optimal policy by forcing the following additional constraint on our

action posterior Eq. (6.3): the function approximator Q̂ accurately approximates the

action-value function of πω (mathematically the constraint is equivalent to requiring

ϵω = 0). This technique works because the policy becomes greedy with respect to its

own value function and thus must represent the optimal policy ([201]). It also acts

as a stopping criteria for the iterative application of the operator induced by virel.

We use this property in the virel framework while deriving the variational lower

bound for our expectation maximization framework (see Appendix D.1.1).

In principle, it is also possible to use alternate approximate inference methods

like expectation proposition (EP) which minimizes the reversed form of the KL

θ∗ ∈ argminθ KL(pω(h|O) ∥ qθ(h)), although the algorithms so derived may suffer

from mean capturing effects and risk seeking behaviour as previously discussed for

pseudo likelihood methods (Section 6.2.3). They however would also be able to

separate the recursive constraint introduced in Eq. (6.3).

Methods like MCMC which attempt to directly sample for an optimal policy would

require inclusion of constraints in an online fashion [68]. While they may be simpler

to execute, the computational and sample complexity of such approaches is likely

to be much higher. Further, the online computation of the constraints can lead

to improper exploration and instabilities arising from not having discovered large

parts of the state action space. One way to deal with the recursive policy constraint

Eq. (6.3) for such methods would be to combine them with alternate optimization

methods [23, 161]. In such a scheme, we would alternate between fixing a temperature

target and ϵtarget computing the policy πω, this can also ameliorate exploration issues

while using such methods and can help obtain robust estimate of the underlying

dynamics when combined with a model based approaches. In a similar vein, cross
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entropy methods can also be modified for directly sampling from the boltzmann class

used in the virel model with the optimality constraint ϵω = 0. [240] demonstrate

how constrained cross entropy methods can be used in the RL control setting which

can be adapted to sampling from the constrained action posterior class in virel.

Evaluating the effectiveness of these approaches is a promising future direction.

6.6 Experiments

The aim of our experimental evaluation is threefold: Firstly, as explained in Sec-

tion 6.3.1, algorithms using soft value functions cannot be recovered from virel. We

therefore demonstrate that using hard value functions does not harm performance.

Secondly, we provide evidence for our hypothesis introduced in Section 6.3.3 that

using soft value functions can harm performance in higher dimensional tasks. Thirdly,

we show that even under all practical approximations discussed in Appendix D.5.3,

the algorithm derived in Section 6.4 still outperforms advanced actor-critic meth-

ods.

We compare our methods to the state-of-the-art SAC∗ and DDPG [135] algorithms

on MuJoCo tasks in OpenAI gym [32] and in rllab [54]. We use SAC as a baseline

because [85] show that it outperforms PPO [185], Soft Q-Learning [84], and TD3 [65].

We compare to DDPG [135] because, like our methods, it can learn deterministic

optimal policies. We consider two variants: in the first one, called virel, we keep the

scale of the entropy term in the gradient update for the variational policy constant

α; in the second, called beta, we use an estimate ε̂ω of εω to scale the corresponding

term in Eq. (D.15). We compute ε̂ω using a buffer to draw a fixed number of samples

Nε for the estimate.

To adjust for the relative magnitude of the first term in Eq. (D.15) with that of εω
∗We use implementations provided by the authors https://github.com/haarnoja/sac for v1

and https://github.com/vitchyr/rlkit for v2.
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Figure 6.3: Training curves on continuous control benchmarks gym-Mujoco-v2 :
High dimensional domains

scaling the second term, we also multiply the estimate ε̂ω by a scalar λ ≈ 1−γ
ravg

, where

ravg is the average reward observed; λ−1 roughly captures the order of magnitude

of the first term and allows ε̂ω to balance policy changes between exploration and

exploitation. We found performance is poor and unstable without λ. To reduce

variance, all algorithms use a value function network V (ϕ) as a baseline and a

Gaussian policy, which enables the use of the reparametrisation trick. Pseudocode

can be found in Appendix D.7. All experiments use 5 random initialisations and

parameter values are given in Appendix D.8.1.

Fig. 6.3 gives the training curves for the various algorithms on high dimensional tasks

for on gym-mujoco-v2. In particular, in Humanoid-v2 (action space dimensionality:

17, state space dimensionality: 376) and Ant-v2 (action space dimensionality: 8,
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state space dimensionality: 111), DDPG fails to learn any reasonable policy. We

believe that this is because the Ornstein-Uhlenbeck noise that DDPG uses for

exploration is insufficiently adaptive in high dimensions. While SAC performs better,

virel and beta still substantially outperform it. As hypothesised in Section 6.3.3,

we believe that this performance advantage arises because variational policies of

virel methods do not need to model trajectories and are better predisposed to

capturing the multiple modes that are common in higher dimensions. All algorithms

learn optimal policies in simple domains, the training curves for which can be found

in Fig. D.4 in Appendix D.8.3. Thus as the state-action dimensionality increases,

algorithms derived from virel outperform SAC and DDPG.

[65] and [228] note that using the minimum of two randomly initialised action-value

functions helps mitigate the positive bias introduced by function approximation

in policy gradient methods. Therefore, a variant of SAC uses two soft critics. We

compare this variant of SAC to two variants of virel : virel1, which uses two hard

Q-functions and virel2, which uses one hard and one soft Q-function. We scale the

rewards so that the means of the Q-function estimates in virel2 are approximately

aligned. Fig. 6.4 shows the training curves on three gym-Mujoco-v1 domains, with

additional plots shown in Fig. D.3 in Appendix D.8.2. Again, the results demonstrate

that virel1 and virel2 perform on par with SAC in simple domains like Half-Cheetah

and outperform it in challenging high dimensional domains like humanoid-gym and

-rllab (17 and 21 dimensional action spaces, 376 dimensional state space).

6.7 Conclusion

This work presented virel, a novel framework that recasts the reinforcement learning

problem as an inference problem using function approximators. We explored the

strong theoretical justifications for this framework and compared two simple actor-

critic algorithms that arise naturally from applying variational EM on the objective.
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Figure 6.4: Training curves on continuous control benchmarks gym-Mujoco-v1.

Extensive empirical evaluation shows that our algorithms perform on par with the

current state of the art on simple domains and substantially outperform them on

challenging high dimensional domains.
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Part III

Learning to generalize across

observation shifts
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Chapter 7

Conditional Bisimulation:

Generalization to observation

shifts
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7.1 Introduction

We now turn our attention to a large state-observation space RL problem: one

that admits a special contextual structure in the observation space. Many practical

scenarios in reinforcement learning (RL) applications require the agent to be robust

to changes in the observations space between training and deployment. These

changes can occur due to various practical errors and constraints under which

autonomous agents need to be deployed (e.g. variations in sensor position and fitting

on automobiles, change in calibration settings of visual input, change in sensor types

due to upgrades, calibration changes due to wear and tear etc.). However, existing

RL algorithms hardly address this issue. Further, the presence of task irrelevant

noise in the environment make it even more difficult for the agent to generalise across

the changes in observation space and ignore task irrelavant noise. In this chapter we

propose a solution to the aforementioned problem using conditional bisimulation

and leveraging the applicability of simulator/specialized setup during train time

which help explicitly teach the agent the similarities across changes in observation

space. Our methods offers two-fold advantage:

• We can learn representations which are robust to shifts in observation space

• We learn to ignore task irrelavant features as our metric is grounded in rewards

7.2 Background

Our starting point would be the Markov decision process(MDP) formulation (Chap-

ter 2).

7.2.1 Equivalence relations and classes

We first briefly mention some of the concepts from abstract algebra used in motivating

state similarity in MDPs. There after, we review state abstractions and metrics for
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state similarity followed by an outline of the rich observation parameter context for

our setting.

Definition 7.1. A binary relation R on a set S is given by R ⊆ S × S

Definition 7.2. R is symmetric if R(a, b) =⇒ R(b, a)

Definition 7.3. R is reflexive if R(a, a),∀a ∈ S

Definition 7.4. R is transitive if R(a, b) ∧R(b, c) =⇒ R(a, c)

Definition 7.5. R is equivalence if its reflexive, symmetric and transitive.

Definition 7.6. P ≜ {Ci} is a partition of a set S if S = ∪iCi and Ci ∩ Cj is empty

if i ̸= j.

Definition 7.7. If R is an equivalence relation on S, then S can be partitioned into

equivalence classes with P(R,S) ≜ {Ci}, where Ci ⊆ S,∀a, b ∈ Ci =⇒ R(a, b) and

Ci ∩ Cj is empty if i ̸= j.

Definition 7.8. For partitions P1 and P2, P1 is a filtrate of P2 if ∀Ci ∈ P2,∃Dj ∈ P1

s.t. Ci = ∪jDj

Definition 7.9. Pc is the coarsest partition induced by R if ∀ valid partitions P

under R, P is a filtrate of Pc

7.2.2 Bisimulation

If for two states si and sj , we find that for any action sequence a0:∞ the sequence of

rewards are identical, then si and sj are considered equivalent under the notion of

bisimulation. Thus, it is a kind of state abstraction which groups states that are

behaviorally equivalent [133]. We can equivalently state the definition recursively by

stating that two states are bisimilar if they share both the same immediate reward

and equivalent distributions over the next bisimilar states [125, 69].

Definition 7.10 (Bisimulation Relations [69]). Given an MDP M, an equivalence
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relation B between states is a bisimulation relation if, for all states si, sj ∈ S that

are equivalent under B (denoted si ≡B sj) the following conditions hold:

r(si, a) = r(sj, a) ∀a ∈ U, (7.1)

P (G|si, a) = P (G|sj, a) ∀a ∈ U, ∀G ∈ SB, (7.2)

where SB is the partition of S under the relation B (the set of all groups G of states

equivalent under B), and P (G|s, a) =
∑

s′∈G P (s
′|s, a).

Finding the coarsest bisimulation relation is known to be an NP-hard problem [69].

Further, the exact partitioning induced from a bisimulation relation is generally

impractical as it a very strict notion of equivalence and seldom leads to meaningful

compression of the original MDP, this is especially true in continuous domains, where

infinitesimal changes in the reward function or dynamics can break the bisimulation

relation but still imply exploitable aggregation. Thus towards addressing this,

Bisimulation Metrics [60, 61, 38] relaxes the concept of exact bisimulation, and

instead define a pseudometric space (S, d), where a distance function d : S×S 7→ R≥0

measures the behavioral similarity between two states

Defining a distance metric d between states requires choosing a notion of distance be-

tween rewards (towards relaxing Eq. (7.1)), and similay a notion of distance between

state transitions (towards relaxing Eq. (7.2)). Prior works use the Wasserstein metric

for the latter, originally used in the context of bisimulation metrics by [227]. The

Wasserstein-p metric between two probability distributions Pi and Pj is defined as

Wp(Pi, Pj; d) = infγ′∈Γ(Pi,Pj)[
∫
S×S d(si, sj)

p dγ′(si, sj)]1/p, where Γ(Pi, Pj) is the set

of all couplings of Pi and Pj. The metric has intuitive interpretations depending on

the exact value of p when viewed from the dual perspective, for example W1(Pi, Pj ; d)

denotes the cost of transporting mass from distribution Pi to another distribution Pj

where the cost is given by the distance metric d [232]. Thus is known as the earth

mover distance. There are several other application of this metric in the optimal
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transport theory literature. The bisimulation metric is formally defined as a convex

combination of the reward difference added to the Wasserstein distance between

transition distributions:

Definition 7.11 (Bisimulation Metric). From Theorem 2.6 in [60] with c ∈ [0, 1):

d(si, sj) = max
a∈U

(1− c) · |rasi − r
a
sj
|+ c ·W1(P

a
si
, P a

sj
; d)

The above definition can also be modified to include scenarios involving stochastic

rewards, where a similar metric is chosen between reward distributions. To account

for state similarities arising from following a particular policy, the π-bisimulation

metric [38] is similarly defined by fixing a policy π and replacing the rewards and

transitions used by their policy based expectations:

dπ(si, sj) = (1− c) · |rπsi − r
π
sj
|+ c ·W1(P

π
si
, P π

sj
; dπ) (7.3)

In this work we will consider the max entropy RL framework as it ensures a unique

optimal policy π∗merl
∗. Our goal would be to leverage generalization and transfer

obtained from informing the agent representation by similarity metric Eq. (7.3)

under π∗.

7.2.3 Rich observations and context

We now extend the CMDP framework Section 2.3 to our setting with a parametrized

context which defines a functional transformation of the underlying MDP state giving

rise to context dependent observations. Formally, we haveM ≜ ⟨S, U, P, r, γ, ρ,Θ, PΘ, Z, f⟩,

where Θ defines a space of context parameters, PΘ is a fixed distribution over the

contexts, Z is the set of observations emitted as f : S × Θ → Z. Thus fixing

a particular context θ gives us a richly observed MDP indexed by θ: Mθ. We
∗we will refer to it as simply π∗ in this chapter for brevity
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Figure 7.1: PGM for varying observation context setting

assume that the agent observes θ in our setting. Fig. 7.1 illustrates the parametrized

observation setting. Without loss of generality, we assume S ⊂ [0, 1]n, Z ⊂ [0, 1]l,

where typically n << l. We will use f(s, θ), fθ(s) interchangeably to highlight the

corresponding (un)-curried versions of the observation function. We will be focusing

on functional forms for observations, but the setting can be extended to scenarios

with added independent or correlated noise at each step with suitable assumptions

about identifiability [250]. .

7.3 Methodology

Algorithm 4 Robust Conditional Bisimulation (RCB)
1: for Time t = 0 to ∞ do
2: Observe zt, θ
3: Encode observation yt = ϕ(zt, θ)
4: Execute action at ∼ π(yt)
5: Record data: D ← D ∪ {zt, at, zt+1, rt+1}
6: Sample batch B ∼ D
7: Train policy: EB[Jπ]
8: Train encoder using pairwise loss: Lrep(ϕ) {Eq. (7.4)}
9: Train dynamics: J(P̂ ,ϕ)=(P̂ (ϕ(zt, θ), at)−yt+1)

2

10: end for

126



Figure 7.2: Using bisimulation to learn representation invariant to observation
shifts. Hollow circles represent states in the space, solid lines depict distances in
the corresponding space, dashed lines depict equivalence across spaces tied by the
colour.
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As previously discussed, it is important that agent policies in RL are robust to

observation shifts for deployment in real world scenarios. In this work we wish to learn

policies which can generalize well across the support set of the context distribution

PΘ. Towards ensuring this, we propose Robust Conditional Bisimulation (RCB)

Algorithm 4, a data-efficient approach to learn control policies from unstructured,

high-dimensional observations. Our goal specifically would be to learn effective

representation function for the RL task set ϕ : Z × Θ 7→ Y which enables robust

learning and deployment of autonomous agents to potentially unseen observation

shifts (governed by a change in θ), see Fig. 7.2. Towards this, we specify the

desiderata which the representation must follow as shown in Fig. 7.3:

• Base Bisimulation: Given a fixed θ ∈ Θ, the representation should accurately

preserve bisimulation distances between states, thus providing robustness to

unimportant noise in observations. Concretely ∀si, sj ∈ S:

d(si, sj) = dY (ϕ(fθ(si), θ), ϕ(fθ(sj), θ))

Where dY is a metric on Y (we use Y = Rm and L1 distance for our experi-

ments).

• Inter-context consistency (ICC): The representation should remain in-

variant under a fixed state as the context changes. Concretely: ∀s ∈ S and

θ1, θ2 ∈ Θ,

dY (ϕ(fθ1(s), θ1), ϕ(fθ2(s), θ2)) = 0

• Cross consistency (CC): This requires that the representation distance

128



Figure 7.3: Various bisimulation losses. s represents underlying state, fθ the
observation function and y the corresponding observation.

between two states are consistent across observation shifts

d(si, sj) = dY (ϕ(fθ1(si), θ1), ϕ(fθ2(sj), θ2))

d(si, sj) = dY (ϕ(fθ2(si), θ2), ϕ(fθ1(sj), θ1))

Fig. 7.3 depicts the above representation criteria on the Mujoco control domain with

3D background objects acting as noise. We combine the above three representation

conditions into a sum of squared loss components. For this we sample pairs of

experiences i, j from the buffer along with base context θ1 (chosen at episode start)

and an alternate context θ2 both sampled from PΘ. We next compute the embedding

of the underlying states under the contexts and finally compute the representation

loss term as follows:

Lrep(ϕ) =λbase
(
|yi,θ1 − yj,θ1|1 − Ti,j

)2
+

λicc
[
|yi,θ1 − yi,θ2 |

2
1 + |yj,θ1 − yj,θ2|

2
1

]
+

λcc
[(
|yi,θ1 − yj,θ2|1 − Ti,j

)2
+
(
|yi,θ2 − yj,θ1|1 − Ti,j

)2] (7.4)
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Figure 7.4: Network architecture

where we have use the following notation: yi,θ = ϕ(f(si, θ), θ) with yi,θ representing

embeddings with stopped gradient and the target bisimulation distance Ti,j =

|ri − rj| + γW2(P̂ (·|yi,θ1 , ai), P̂ (·|yj,θ1 , aj)). The relative weights for the three loss

terms are given by hyper-parameters λbase, λicc, λcc respectively. We use a setup

similar to [251] where we use a permuted batch of B for pairwise representation

loss computation in step-8 of Algorithm 4. Similarly we a probabilistic dynamics

model P̂ which outputs a Gaussian distribution. This allows for a simple to compute

closed form W2 metric which is used to replace the W1 metric in the original

formulation: W2(N (µi,Σi), N (µj,Σj))
2 = ||µi−µj||22 + ||Σ

1/2
i −Σ

1/2
j ||2F , where || · ||F

is the Frobenius norm, Fig. 7.4 depicts the overall representation learning process.

Finally, for the policy optimization part in step-7, we can use any max entropy

policy gradient method. Access to simulator helps us translate a sampled batch from

buffer into any randomly sampled contexts from which we can compute the various

losses. However, in general this trick can also be extended to non simulator settings

like data augmentation, this could be specially promising as the latter approaches

currently only minimize representation distance between two views of same input

and not the bisimulation distance which is more aligned with solving the task.
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7.4 Analysis

We now discuss the important theoretical properties of our approach and study the

generalization we can expect from learning representations under the conditional

bisimuation framework. Proofs for the results can be found in Appendix E. The

first result demonstrates the convergence of the π∗-bisimulation metric Eq. (7.3) on

the joint input space H ≜ Z ×Θ (We use the notation h ≜ (z, θ) for a tuple in this

space). We also overload the notion of policy(π) to implicitly contain ϕ so that it

can be viewed as operating on the joint space.

Theorem 7.1. Let met be the space of bounded pseudometrics on Z ×Θ and π a

policy that is continuously improving. Define F : met 7→ met by

F(d, π)(hi, hj) = (1− c)|rπhi − r
π
hj
|+ cW (d)(P π

hi
, P π

hj
)

Then, ∀c ∈ (0, 1), F has a least fixed point d̃ which is a π∗-bisimulation metric.

We next discuss an important assumption we need to make towards obtaining

generalization results for the observation shifts.

Assumption 7.1 (Block structure). We assume that fθ1(s1)∩fθ2(s2) ̸= ∅ =⇒ si =

sj,∀θ1, θ2 so that the observation map is invertible.

This means that the observation space Z can be partitioned into disjoint blocks,

each containing the support for a particular value of s ∈ S [53]. This also ensures

that f−1θ exists. Relaxing Assumption 7.1 can break any guarantees obtainable on

value function similarities arising from state similarity. This is because the same

observation can get mapped to entirely different states in the latent MDP each

with very different values, making the environment only partially observable. Note

however that this requirement is not too restrictive, is possible to consider added

noise scenarios (both independent and correlated e.g. see [250]) which maintain

identifiability of the state. Finally, many real-world task observations tend to
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satisfy this assumption for high dimensional scenarios: e.g. visual projection of

non-degenerate objects under different viewing angles.

We next discuss the implications of having learnt an representation ϕ which approx-

imately preserves the π∗-bisimulation metric distances.

Theorem 7.2 (Aggregation value bound). Given an MDP M̂ constructed by

aggregating tuples h of observation, context in an ϵ-neighborhood of the representation

space such that δ ≜ maxs,s′,θi,θj ||ϕ(fθi(s), θi)− ϕ(fθj (s′), θj)| − dS(s, s′)|, where dS is

a π∗-bisimulation metric on S. Further let ϕ̂ denote the map from any h to these

clusters, the optimal value functions for the two MDPs follow:

|V ∗(h)− V̂ ∗(ϕ̂(h))| ≤ 2(ϵ+ δ)

(1− γ)(1− c)
∀h ∈ Z ×Θ

Note how the value estimate accuracy from aggregation is fundamentally bottle-

necked by the representation learning error δ, this means that even the finest

partitions (which use small ϵ) using ϕ will give value approximation only as good as

the underlying representation.

We now state the lipschitz continuity assumptions we use for further analysis. The

first Assumption 7.2 concerns the change in observations z as the context θ changes.

Several natural domains like visual projections satisfy this.

Assumption 7.2. f is lipschitz with coefficient Lfθ with respect to (w.r.t.) θ.

Next, we assume that the representation map ϕ and the policy π which conditions

on the representations y are also lipshitz w.r.t. the inputs. This can be enforced in

practice for example for deep neural networks approximators [234, 70].

Assumption 7.3. ϕ is lipschitz w.r.t. z and θ with coefficients Lϕz , L
ϕ
θ respectively.

Similarly, π is lipschitz with coefficient Lπy where the distance metric on the policy

space is dTV , the total variation metric on space of action distributions P(U).
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We now discuss the amount of generalization which we can expect when a policy

assuming context θi is run on observation coming from the context θj. This can

happen for example in scenarios when a shift in observations happens like change in

the calibration settings of an autonomous vehicle’s sensors. We introduce the notation

πθi←θj to represent the policy obtained from sampling action w.r.t. the restriction

πθi but using observation inputs from the context θj (ie. π(a|ϕ(fθj(s), θi))).

Theorem 7.3 (Generalization to unseen context). Under Assumption 7.2, Assump-

tion 7.3 we have that for any two contexts θi, θj:

|Jπθi − Jπθi←θj | ≤ 1

1− γ
Es∼f−1

θ ρ
πθi ,

a∼πθi←θj

[
Aπθi (s, a) +

2γAmax
1− γ

LfθL
ϕ
zL

π
ydΘ(θi, θj)

]

where Amax ≜ maxs |Ea∼πθi←θj
[Aπθi (s, a)]| and dΘ is a metric on the context space.

Thus Theorem 7.3 gives us the upper bound on the deviation of the expected returns

when the agent expects an environment with context θi but is actually deployed in

with an observation context θj.

We next discuss the important performance transfer scenarios when the simulator

used for training a policy is not exact. These bounds are useful for situations where it

is required to access tolerance of agent performance w.r.t. situations like sim to real

deployment. Our first result discusses the situation where the simulator dynamics is

not exact w.r.t. the real world and instead introduces errors ϵR, ϵP .

Theorem 7.4 (Simulator fidelity bound). For an approximately correct simulator

(r̂, P̂ ) such that maxs,a |r̂(s, a)− r(s, a)| ≤ ϵR and maxs,a dTV (P̂ (s, a), P (s, a)) ≤ ϵP

we have for any policy π:

|Jπ − Ĵπ| ≤ ϵR
(1− γ)

+
γϵPRmax

(1− γ)2

Next, we consider the case where in addition to the latent transition and re-
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ward dynamics, the simulator emission function f̂ is also approximate. Let ϵf ≜

maxs,θ dY (ϕ(f̂θ(s)), ϕ(fθ(s))). We are interested in what happens when the policy

learning happens on the approximate simulator (r̂, P̂ , f̂) but the resultant learnt

policy is deployed in the actual world (R,P, f). Note that this is a common practical

setting as most simulators even after knowing the actual underlying state, cannot

completely capture the richness in the observations found in the real world. The

below result relates the simulator policy performance (f̂) to the one obtained by

running the simulator policy on real observations (f).

Theorem 7.5 (Complete simulator fidelity bound). For an approximately correct

simulator (r̂, P̂ , f̂) such that maxs,a |r̂(s, a)−r(s, a)| ≤ ϵR, maxs,a dTV (P̂ (s, a), P (s, a)) ≤

ϵP and ϵf ≜ maxs,θ dY (ϕ(f̂θ(s)), ϕ(fθ(s))), we have for any policy π:

|Jπf̂←f − Ĵπf̂ | ≤ ϵR
(1− γ)

+
γϵPRmax

(1− γ)2
+

1

1− γ
E
s∼f̂−1ρ

π
f̂ ,

a∼πf̂←f

[
Aπf̂ (s, a) +

2γAmax
1− γ

Lπy ϵf

]

Where we use the notation πf̂←f to represent the sampling of actions from πf̂ but

using the observations obtained under the (real world) observation function f . Thus,

the above two results Theorem 7.4 and Theorem 7.5 are particularly useful for the

realistic scenario where we have imprecise simulation dynamics.

7.5 Experiments

We perform experiments towards understanding whether conditional bisimulation

(RCB) helps learn representations which generalize better to observation shifts.

Towards this, we use the DeepMind control suite [211] which uses Mujoco [219] as

the base simulator. We create new tasks for various agent methodologies where we

learn to control the agent using image based input. For testing observation shifts,

we use a uniform distribution over the range PΘ = U(−π/4, π/4) for the camera

angle. Further, we also modify the simulator to have 3D spheres randomly bouncing
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in the environment, which contribute towards noise. Note that this noise setting

is harder than the simple distractor setting in [251] as the agent has to learn to

model 3D noise across different visual perspectives (see Fig. 7.3). We use SAC[86]

as the base algorithm for optimizing the MERL objective in Algorithm 4. For the

baseline we use an agent similar to our architecture but which doesn’t use the various

bisimulation losses, instead this agent only uses a reward and a emission model to

inform the representation. Additional experimental setup details can be found in

Appendix E. At the beginning of each episode, we sample a camera angle context

from PΘ, the agents must adapt to changing image perspectives. For evaluation, we

use a fixed set of camera angles: {−π/4,−π/8, 0, π/8, π/4} over which we compute

the agent performance during the evaluation phase and report the average across the

angles as the performance metric. Fig. 7.5 gives the evaluation performance plots for

(a) Walker Run (b) Cheetah Run

(c) Hopper Hop

Figure 7.5: Empirical results on modified DMC observation generalization tasks

the two agents on the walker run, cheetah run and hopper hop tasks averaged over
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five seeds with one standard error shaded. We see that RCB performs significantly

better than the baseline agents on all the scenarios. We also note that generalization

for the hopper domain while doing pixel based control is especially hard given the

environment stochasticity. For the walker run and cheetah run tasks RCB seems to

be fairly robust to the observation shifts, infact its performance is comparable to

that obtained when solving the task for only one camera angle.

7.6 Related Work

DBC (Zhang et.al, [251]) use bisimulation metrics to learn task relevant features

which are robust to noise in the environment. They learn to tie together states

distinguishable only by task irrelevant noise using bisimulation for learning a represen-

tation. They further demonstrate its effectiveness over methods like reconstruction

for learning a control policy. In this work, we are concerned with the problem of a

functional shift in the observation space itself arising from a change in an underlying

context for the task (irrespective of presence of noise in the environment). Our

goal is thus to learn a representation invariant to the changing context in richly

observed environments. Towards this, we use the bisimulation framework to learn

a representation which can invert the change in observation space caused by the

varying context and can be seen as abstracting across the group of isomorphic MDPs

indexed by the context. We also provide the first generalization bounds for this

setting with important practical applications like sim to real transfer.

Robust RL considers rewards maximization under adversarially varying dynamics for

the environment. [170] use a two agent zero-sum game to model an adversarial noise

towards learning robust policies. Similarly, [192] inject noise in the state space and

optimise for a minimax problem for robustness, [214] study the robustness problem

under action perturbations. Whereas here we discuss the setting of adapting to

potentially unseen deployment scenarios and provide theoretical guarantees for the
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policy transfer. Contextual Markov Decision Processes[88] offers a general framework

for studying RL problems whose dynamics are structurally dependent on a context

space. [154] propose no regret algorithms for generalized linear model based contexts.

MDP homomorphism [173, 143] is the principled framework of studying structural

similarities across MDPs, this naturally extends the idea of state abstraction and

opens the the way to leverage abstract similarities on a much broader scope. [254]

compile the various methods used in Sim-to-real settings. Domain randomization,

particularly used in robotic vision tasks including object localization [216], object

detection [223], pose estimation [196], and semantic segmentation [249], the training

data from simulator always have different textures, lighting, and camera positions

from the realistic environments. Therefore, domain randomization aims to provide

enough simulated variability of the parameters at training time such that at test

time the model is able to generalize to potentially unseen, real-world data. However,

it doesn’t utilize the inherent structure in terms of state similarity and doesn’t help

ignore the parts of the observation which are not relevant for reward maximization.

Data Augmentation [126] use various image transformations on agent observations

for data efficient learning of policies for pixel based control. [191] use random crops

on image data to be used under a contrastive based framework for representation

learning. [120] use random image translations for regularising reinforcement learning

from images by using multiple shifts to robustly estimate value function loss and

targets.

7.7 Conclusions & Future Work

In this we work we explored how bisimulation can be used to learn representation

for RL towards generalization in complex high dimensional environment like visual

inputs. We specially focused on learning policies invariant to observation shifts a

problem which has several applications in the real world. Further, we analysed the
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theory of learning under the framework of conditional bisimualtion and proposed

novel bounds characterizing state abstraction and generalization in this setting. Of

particular importance were the results relating to performance guarantees across

observation shifts when learning on a simulator. Finally, we evaluated our method

on the modified DM-contol domain and showed its efficacy in comparison to the

baseline approach. For future work we would like to investigate tighter theoretical

bounds for performance transfer specially in finite sample setting and ways to speed

up learning bisimulation metrics on large state action spaces.
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Conclusion, References and Appendix
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Chapter 8

Conclusion

In this thesis we motivated, proposed and analysed several novel challenges for

reinforcement learning in large state action spaces. We covered a variety of RL

settings (single and multi-agent systems (MAS) with all the variation in the latter,

prediction and control, model-based and model-free methods, value-based and policy-

based methods). We were also the first to provide various theoretical and empirical

results on several different problems. We now perform an overview of the results in

this thesis and discuss some important open challenges and potential directions for

future work:

• Chapter 3 gives definite suboptimality bounds arising from insufficient explo-

ration due from constraints on Q function class in cooperative MARL. It covers

various joint exploration scenarios. It also demonstrates the successful use

of the mutual information(MI) based framework: Maven, towards achieving

committed exploration for solving the problem. However, we did not analyse

convergence properties for Maven. We believe this can be addressed using soft

value function based approaches[86], further this can help find better ways

for tuning the MI weight hyper-parameter which we found to be crucial for

better performance on complex domains. Another important future direction
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to explore is the use of Maven style exploration ideas for general su games. We

believe there is great potential in using the MI based exploration framework

for avoiding problems like sub-optimal Nash and correlated equilibria.

• Chapter 4 proposes the novel tensorized form of the Bellman equation which

allows exponential sample gains in comparison to naive methods for model

based leanrning. Similarly, we demonstrated superior performance on the

complex StarCraft domain using tensorized critic for actor-critic methods.

However, there are currently no approaches which utilize the tensorization

for Q-learning approaches. We believe developments on this would be useful

as several domains are more effectively solved using value based approach.

We think development son approximate tensor maximization could be useful

for this. Next, we also provided PAC guarantees for model estimation and

policy evaluation under the Tesseract framework for the rank sufficient case. A

challenging open problem is to extend these results albeit with approximation

errors for the rank deficient case.

• Chapter 5 is the first work to propose a framework for studying combinatorial

generalization (CG) in coopertive multi agent systems. It is also the first to

extend the notion of successor features to MAS and provides several novel

bounds for transfer learning under practical scenarios. However, we found that

modern MARL algorithms only demonstrate preliminary generalization on

easy scenarios, and are in general are brittle to population changes in complex

domains.Creating methods to address this would be a major game changer

for application of MARL to real world problems given that the future of

automation would be inherently multi-agent. We think it would be promising

to try out modern sequence models towards designing MARL algorithms for

CG.

• Chapter 6 proposes a new framework: Virel for learning RL policies under a
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probabilistic framework. It provides several advantages like ability to learn

deterministic policies, mode seeking behaviour and exploration using residual

error. Since deep neural network based function approximation can incur

large estimation error and sharp variations, we believe Virel could benefit

by incorporating alternate ways to the bellman residue for incorporating

uncertainty. One promising direction for this would be to explore applicability

of state abstraction methods for uncertainity estimation [59].

• Chapter 7 proposes a new conditional bisimulation based framework for general-

ization across observation shifts. It also discusses several novel transfer bounds

for important practical settings like sim to real. One promising direction for

this work is exploring the connections to methods like data augmentation [126].

We believe this can help us gain a better understanding about the desiderata

for ensuring generalization in RL.
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Appendix A

Appendix for Chapter 3

A.1 Proofs

A.1.1 Uniform visitation

Theorem A.1. For n player, k ≥ 3 action matrix games (|A| = n, |U | = k), under

uniform visitation; Qqmix learns a δ-suboptimal policy for any time horizon T , for

any 0 < δ ≤ R
[√

a(b+1)
a+b
−1
]

for the payoff matrix given by the template below, where

b =
∑k−2

s=1

(
n+s−1

s

)
, a = kn − (b+ 1), R > 0:



R + δ 0 . . . R

0 . .
.

... . .
. ...

R . . . R


Proof. For single state MDPs, under uniform visitation of the joint state-action

space, QMIX can be seen as minimising the mean squared error between the actual

Q-values and the monotonic projection Qqmix. Using the symmetry of the problem

and an exchange argument, it can be shown that only the monotonic projections of
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the following form need to be considered:



x3 x2 . . . x1

x2 . .
.

... . .
. ...

x1 . . . x1


where X ≜ (x1, x2, x3). Consequently, there are two cases for the monotonic

approximations. We refer to them as M1 and M2 corresponding to x1 ≥ x2 ≥ x3

and x1 ≤ x2 ≤ x3 cases respectively. The optimization problem for M1 is:

M1 :

minimise
X

a(x1 −R)2 + bx22 + (x3 − (R + δ))2

s.t. x2 − x1 ≤ 0

x3 − x2 ≤ 0

where b =
∑k−2

s=1

(
n+s−1

s

)
, a = kn − (b+ 1) are the coefficients corresponding to the

number of entries for the general n player, k action game (having kn entries). It is

thus evident that the above problem is a quadratic program and is indeed convex

[31] as the Hessian of the objective diag(a, b, 1) is positive definite. The Largrangian

is given by:

L(X,λ1, λ2) = a(x1 −R)2 + bx22 + (x3 − (R + δ))2 + λ1(x2 − x1) + λ2(x3 − x2)

where λ1, λ2 are the dual variables. Moreover, the above problem also satisfies

Slater’s conditions which implies that KKT conditions are necessary and sufficient
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for finding the primal and dual optimal. By setting ∇XL = 0, we get:

λ1 = 2a(x1 −R)

λ2 = 2a(R + δ − x3)

x2 =
λ2 − λ1

2b

Using primal and dual feasibility constraints along with complementary slackness,

we can see that x1 = R, x2 = x3 = R+δ
1+b

is an optimal solution to M1 for δ ≤ bR

with the optimal value for the problem as OPT (M1) = b(R+δ)2

b+1
. By solving M2

in a similar way for the reversed primal constraints x2 − x1 ≥ 0, x3 − x2 ≥ 0, we

see that an optimal assignment is x1 = x2 = aR
b+a

, x3 = R + δ with the optimal

value given by OPT (M2) = R2ab
a+b

. Note that the solution to M1 corresponds to the

suboptimal policy of picking action corresponding to payoff R, whereas the solution

to M2 corresponds to that of picking the optimal action with payoff R+ δ (as QMIX

picks the action corresponding to the maximal entry of a monotonic projection).

For QMIX to learn the suboptimal policy corresponding to M1, we require that

OPT (M1) ≤ OPT (M2). Consequently,

b(R + δ)2

b+ 1
≤ R2ab

a+ b

=⇒ δ ≤ R
[√a(b+ 1)

a+ b
− 1
]

(A.1)

A.1.2 ϵ-greedy visitation

Theorem A.2. For n player, k ≥ 3 action matrix games, under ϵ-greedy visitation

ϵ(t); Qqmix learns a δ-suboptimal policy for any time horizon T with probability ≥ 1−(
exp(−Tυ2

2
)+(kn−1) exp(− Tυ2

2(kn−1)2 )
)

, for any 0 < δ ≤ R

[√
a
(

υb
2(1−υ/2)(a+b) + 1

)
−
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1

]
for the payoff matrix given by the template above, where b =

∑k−2
s=1

(
n+s−1

s

)
,

a = kn − (b+ 1), R > 0 and υ = ϵ(T ).

Proof. Given the exploration schedule ϵ(t), let ϵ(T ) = υ (which is the minimum value

since ϵ(t) is decreasing in T ). We reuse the machinery introduced in Appendix A.1.1

and provide an analysis which is agnostic to the actions actually visited by considering

the adversarial case for the maximum possible δ for which Qqmix fails. This happens

precisely when QMIX is provided with the "best opportunity" for learning the

optimal policy (so that it visits the optimal action with probability 1 − ϵ(t),∀t).

Therefore, the visitation frequencies we consider are : Tυ
kn−1 for any suboptimal action

and T (1− υ) for the optimal action. To compute the upper bound on δ, we modify

the objective for the quadratic program in Appendix A.1.1 as XTdiag(a′, b′, 1))X

where a′ ← aυ
(1−υ)(a+b) , b

′ ← bυ
(1−υ)(a+b) in accordance with our visitations. Next, using

the same reasoning as in Eq. (A.1), we get that QMIX learns the suboptimal policy

for

0 < δ ≤ R

[√√√√a

(
υb

(1− υ)(a+ b)
+ 1

)
− 1

]
. (A.2)

Note that the upper bound of δ in Eq. (A.2) is probabilistic in nature. Therefore,

we provide a lower bound on the probability of this by considering the RHS of

Eq. (A.2) with υ ← υ/2 and bounding the probability of deviation from the worst

case visitation frequencies. By making use of the Hoeffding’s lemma, we derive that:

P
[
empirical frequency of optimal− υT ≥ Tυ

2

]
≤ exp(−Tυ

2

2
),

P
[
empirical frequency of suboptimal− Tυ

kn − 1
≤ − Tυ

2(kn − 1)

]
≤ exp(− Tυ2

2(kn − 1)2
).

Finally, by using the union bound, we conclude that with probability ≥ 1 −(
exp(−Tυ2

2
) + (kn − 1) exp(− Tυ2

2(kn−1)2 )
)
, QMIX fails to learn the optimal policy
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for

0 < δ ≤ R

[√√√√a

(
υb

2(1− υ/2)(a+ b)
+ 1

)
− 1

]

A.1.3 Additional suboptimality results

Theorem A.3 (Uniform visitation VDN). For n player, k ≥ 3 action matrix games

(|A| = n, |U | = k), under uniform visitation; Qvdn learns a δ-suboptimal policy

for any time horizon T , for any 0 < δ ≤ R
[(

k+n−3
n−1

)
− 1
]

for the payoff matrix (n

dimensional) given by the template above, R > 0.

Proof. Once again, for single state MDPs, under uniform visitation of the joint

state-action space, VDN can be seen as minimising the mean squared error between

the actual Q-values and the sum factored projection Qvdn(s,u) =
∑

n qi(s, u
i). Using

the symmetry of the given problem and an exchange argument, it can be shown that

the problem can be reduced to finding a single vector q, |q| = k such that qi = q∀i

which minimises the unconstrained quadratic objective:

minimise
q

L(q) =
∑
u

(
M(u)−

n∑
i=1

qu(i)
)2

where M is the n dimensional payoff matrix, qj represents the jth entry of q, and with

slight abuse of notation we set u to represent the an n tuple of indices corresponding

to the actions ie. u ∈ {1..k}n. Since the problem is unconstrained we can directly

solve for the problem by setting ∇qL = 0, which gives rise to system of linear

equations: Aq = b. The tricky part however lies in identifying the entries in A, b.

For this we consider the generating polynomial P(n, k) = (
∑k

j=1 q
j)n. It is then
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evident that:

Aii = 2
∂

∂qi

(
qi
∂P
∂qi

)
|q=1 = 2nkn−2(k + n− 1)

Aij = 2
∂2P
∂qi∂qj

|q=1 = 2nkn−2(n− 1), i ̸= j

Similarly using a careful counting argument via the hockey stick identity it can be

shown that :

b1 = 2nR
[
kn−1 −

(
k + n− 3

n− 1

)]
+ 2n(R + δ)

bi = 2nR
[
kn−1 −

(
k + n− i− 2

n− 1

)]
, i > 1

Matrix A can be easily inverted given its special structure which then gives analytic

solution for q. Note that the optimal action corresponds to the tuple u = 1 where

1 = (1, ..1), n times. Finally for the suboptimality of the policy learnt we have that

it is sufficient to show:

q1 ≤ qi,∀i > 1

=⇒ 0 < δ ≤ R
[(k + n− 3

n− 1

)
− 1
]

Note that the above two upper bounds in Theorems 3.1 and A.3 for the uniform

visitation case are tight further the latter bound is O(Rmax{k, n}n−2) in comparison

to the former which is of O(Rmax{k, n}n
2 ).

Theorem A.4 (Uniform visitation IQL). For n player, k ≥ 3 action matrix games

(|A| = n, |U | = k), under uniform visitation; Qiql learns a δ-suboptimal policy for

any time horizon T , for any 0 < δ ≤ R
[(

k+n−3
n−1

)
− 1
]

for the payoff matrix (n

dimensional) given by the template above, R > 0.
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Proof. The case for IQL is simplest to analyse for the matrix game above. Due to

the symmetry of the problem, each agent i ends up learning the same vector q of

size k that minimises the objective:

minimise
q

L(q) = Eu

[(
M(u)− qu(i)

)2]

The minimiser for the above problem can be found by setting the partial derivative

w.r.t. each of the components qj equal to 0:

L(q) = Eui
[
Eu−i|u(i)=j

[(
M(u)− qj

)2
|u(i) = j

]]
=⇒ ∂L(q)

∂qj
= −2P (u(i) = j)Eu−i|u(i)=j

[(
M(u)− qj

)
|u(i) = j

]]
=⇒ qj = Eu−i|u(i)=j[M(u)|u(i) = j]

which under uniform visitation is just the mean payoff holding the agent i’s action

fixed to j, this gives q1 = R(1+c)+δ
kn−1 , qk = R, where c = kn−1 −

(
k+n−3
n−1

)
Once again

solving for:

q1 ≤ qi,∀i > 1

=⇒ 0 < δ ≤ R
[(k + n− 3

n− 1

)
− 1
]
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A.1.4 Variational Mutual Information lower bound

Let the posterior over z be given by log(p(z|σ(u, s))) and the variational approxima-

tion by qυ(z|σ(u, s)))

JMI = H(σ(u, s))−H(σ(u, s)|z)

= H(z)−H(z|σ(u, s)) {MI is symmetric}

= H(z) + Eσ(u,s)[Ez[log(p(z|σ(u, s)))]] {Def. conditional entropy}

= H(z) + Eσ(u,s)[Ez[log(p(z|σ(u, s)))− log(qυ(z|σ(u, s)) + log(qυ(z|σ(u, s))]]

= H(z) + Eσ(u,s)[Ez[log(qυ(z|σ(u, s))]] + Eσ(u,s)[KL(p(z|σ(u, s))||qυ(z|σ(u, s))]

≥ H(z) + Eσ(u,s),z[log(qυ(z|σ(u, s)))] {KL is non negative}

A.2 QMIX Architecture

Fig. A.1 gives architecture for QMIX. The components here are (a) Mixing network

structure. In red are the hypernetworks that produce the weights and biases for

mixing network layers shown in blue. (b) The overall QMIX architecture. (c) Agent

network structure.

(a) (b) (c)

Figure A.1: The overall setup of QMIX
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A.3 Experimental Setup

A.3.1 Architecture and Training

All agent are designed as Deep Recurrent Q-Networks [89]. At each time step, each

agent network receives a local observation as input, which is fed to a 64-dimensional

fully-connected hidden layer, followed by a GRU recurrent layer and a fully-connected

layer with |U | outputs. To speed up the learning, all agent networks share the same

set of parameters. A one-hot encoded agent id is concatenated to agent observations.

The architectures for mixing and utility networks are the same as in [172].

For all experiments we update the target networks after every 200 episodes. We set

γ = 0.99. The optimisation is conducted using RMSprop with a learning rate of

5× 10−4 and α = 0.99 with no weight decay or momentum.

SMAC

Exploration for QMIX is performed during training during which each agent executes

ϵ-greedy policy over its own actions. ϵ is annealed from 1.0 to 0.05 or 0.005 over

50k time steps and is kept constant afterwards.

We utilise a replay buffer of the most recent 5000 environment steps. A single training

step for a batch of size 32 entire episodes is performed after every episodes.

We set Z = 16 for all the experiments. We set λMI = 0.001 and λQL = 1. Unless

otherwise mentioned, all MAVEN experiments use the trajectory-based MI loss. We

use an entropy regularisation term with a coefficient of 0.001 for the hierarchical

policy. We set the final value of ϵ to 0.05 for MAVEN ans QMIX.

All SMAC experiments use the default reward and observation settings of the SMAC

benchmark [181].

We run all methods for 10 million environmental steps. This takes approximately 36
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hours on a NVIDIA GTX 1080Ti GPU for 12 random initializations.

m-step matrix games

All methods anneal ϵ from 1 to 0.01 over 100 timesteps and keep it constant

afterwards.

A single training step for a batch of size 32 is conducted after every episode.

All methods are run for 100k timesteps.

For MAVEN we set Z = 16, λMI = 1, λQL = 1 and use an entropy regularisation

term with a coefficient of 0.001 for the hierarchical policy.

A.3.2 Additional plots & ablations

(a) Varying the values for Z (b) Policy returns for different Z

Figure A.2: Performance with varying the number of latent variable categories

We also consider varying the number of categories for the discrete latent variable

Fig. A.2(a). While the number of categories loosely correlates with performance, it

was not always the case. For micro_corridor, the results are inconclusive because

they all use the same budget of gradient updates, yielding two opposing factors that

cancel out (more z’s vs. less training per z). Fig. A.2(b) gives the returns of the

corresponding policies learnt.
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(a) 2-corridors (b) 2s3z

(c) micro_corridor (d) micro_focus

Figure A.3: Median test returns on SMAC scenarios.
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Appendix B

Appendix for Chapter 4

B.1 Additional Proofs

B.1.1 Proof of Theorem 4.1

Theorem B.1. For a finite MMDP the action-value tensor satisfies rank(Q̂π(s)) ≤

k1 + k2|S|,∀s ∈ S,∀π.

Proof. We first unroll the Tensor Bellman equation in Fig. 4.3. The first term

R̂ has bounded rank k1 by Assumption 4.1. Next, each contraction term on the

RHS is a linear combination of {P̂ (s, s′)}s′∈S each of which has bounded rank k2

(Assumption 4.2). The result follows from the sub-additivity of CP-rank.

B.1.2 Proof of Theorem 4.2

Theorem B.2 (Model based estimation of R̂, P̂ error bounds). Given any ϵ >

0, 1 > δ > 0, for a policy π with the policy tensor satisfying π(u|s) ≥ ∆, where

∆ = max
s

C1µ
6
sk

5(wmax
s )4 log(|U |)4 log(3k||R(s)||F/ϵ)

|U |n/2(wmin
s )4

(B.1)
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and C1 is a problem dependent positive constant. There exists N0 which is O(|U |n2 )

and polynomial in 1
δ
, 1
ϵ
, k and relevant spectral properties of the underlying MDP

dynamics such that for samples ≥ N0, we can compute the estimates R̄(s), P̄ (s, s′)

such that w.p. ≥ 1− δ, ||R̄(s)− R̂(s)||F ≤ ϵ, ||P̄ (s, s′)− P̂ (s, s′)||F ≤ ϵ,∀s, s′ ∈ S.

Proof. For the simplicity of notation and emphasising key points of the proof, we

focus on orthogonal symmetric tensors with n = 3. Guidelines for more general

cases are provided by the end of the proof.

We break the proof into three parts: Let policy π satisfy π(u|s) ≥ ∆ Eq. (B.1).

Let ρ be the stationary distribution of π (exists by Assumption 4.3) and let N1 =

maxs
1
ρ(s)

log
(

12
√
k||R(s)||F
ϵ

)
. From N1 samples drawn from ρ by following π, we

estimate R̄, the estimated reward tensor computed by using Algorithm 1 in [102].

We have by application of union bound along with Theorem 1.1 in [102] for each

s ∈ S, w.p. ≥ 1− |U |−5 log2
(

12
√
k
∏

s ||R(s)||F
ϵ

)
= pϵ, ||R̄(s)− R̂(s)||F ≤ ϵ/3,∀s ∈ S.

We now provide a boosting scheme to increase the confidence in the estimation of R̂(·)

from pϵ to 1− δ/3. Let η = 1
2

(
pϵ− 1

2

)
> 0 (for clarity of the presentation we assume

pϵ >
1
2

and refer the reader to [108] for the other more involved case). We compute

M independent estimates {R̄i, i ∈ {1..M}} for R̂(s) and find the biggest cluster

C ⊆ {R̄i} amongst the estimates such that for any R̄i, R̄j ∈ C, ||R̄i − R̄j||F ≤ 2ϵ
3
.

We then output any element of C. Intuitively as pϵ > 1
2
, most of the estimates

will be near the actual value R̂(s), this can be confirmed by using the Hoeffding

Lemma[108]. It follows that for M ≥ 1
2η2

ln(3|S|
δ
) the output of the above procedure

satisfies ||R̄(s) − R̂(s)||F ≤ ϵ w.p. ≥ 1 − δ
3|S| for any particular s. Thus MN1

samples from stationary distribution are sufficient to ensure that for all s ∈ S, w.p.

≥ 1− δ/3, ||R̄(s)− R̂(s)||F ≤ ϵ.

Secondly we note that P̂ (s, s′) for any s, s′ ∈ S is a tensor whose entries are the

parameters of a Bernoulli distribution. Under Assumption 4.2, it can be seen as a

latent topic model [6] with k factors, P̂ (s, s′) =
∑k

r=1ws,s′,r ⊗n us,s′,r. Moreover it
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satisfies the conditions in Theorem 3.1 [6] so that ∃N2 = maxs,s′
1
ρ(s)

N2(s, s
′) where

each N2(s, s
′) is O

(
k10|S|2 ln2(3|S|/δ)

δ2ϵ′2

)
depending on the spectral properties of P̂ (s, s′)

as given in the theorem and satisfies || ¯us,s′,r − us,s′,r||2 ≤ ϵ′ on running Algorithm B

in [6] w.p. ≥ 1− δ
3|S| . We pick ϵ′ = ϵ

7n2kµ2
s,s′ (w

max
s,s′ )

2 so that ||P̄ (s, s′)− P̂ (s, s′)||F ≤

ϵ,∀s, s′ ∈ S. We filter off the effects of sampling from a particular policy by using

lower bound constraint in Eq. (B.1) and sampling N2

∆
samples.

Finally we account for the fact that there is a delay in attaining the stationary

distribution ρ and bound the failure probability of significantly deviating from ρ

empirically. Let ρ′ = mins ρ(s) and tmix,π(x) represent the minimum number of

samples that need to drawn from the Markov chain formed by fixing policy π so that

for the state distribution ρt(s) at time step t = tmix,π(x) we have TV (ρt − ρ) ≤ x

for any starting state s ∈ S where TV (·, ·) is the total variation distance. We let

the policy run for a burn in period of t′ = tmix,π(ρ
′/4). For a sample of N3 state

transitions after the burn in period, let ρ̄ represent the empirical state distribution.

By applying the Hoeffding lemma for each state, we get: P (|ρ̄(s) − ρt′(s)| ≥

ρ′/4) ≤ 2 exp
(
−N3ρ

′2

8

)
, so that for N3 ≥ 8

ρ′2
ln
(

6|S|
δ

)
we have w.p. ≥ 1 − δ

3|S| ,

|ρ̄(s)− ρ(s)| < ρ′/2,∀s ∈ S.

Putting everything together we get with tmix,π(ρ
′/4)+max{2MN1,

2N2

∆
, N3} samples,

the underlying reward and probability tensors can be recovered such that w.p.

≥ 1− δ, ||R̄(s)− R̂(s)||F ≤ ϵ, ||P̄ (s, s′)− P̂ (s, s′)||F ≤ ϵ,∀s, s′ ∈ S.

For extending the proof to the case of non-orthogonal tensors, we refer the reader to

use whitening transform as elucidated in [5]. Likewise for asymmetric, higher order

(n > 3) tensors methods shown in [102, 5, 6] should be used. Finally for the case

of M-POMDP and M-ROMDP, the corresponding results for single agent POMDP

and ROMDP should be used, as detailed in [9, 10] respectively.
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B.1.3 Proof of Lemma 4.1

Lemma B.1. For transition tensor estimates satisfying ||P̄ (s, s′)− P̂ (s, s′)||F ≤ ϵ,

we have for any given state and action pair s, a, the distribution over the next

states follows: TV (P ′(·|s, a), P (·|s, a)) ≤ 1
2
(|1−f |+f |S|ϵ) where 1

1+ϵ|S| ≤ f ≤ 1
1−ϵ|S| .

Similarly for any policy π, TV (P̄π(·|s), Pπ(·|s)), TV (P̄π(s
′, a′|s), Pπ(s′, a′|s)) ≤ 1

2
(|1−

f |+ f |S|ϵ)

Proof. Let P̄ (·|s, a) be the next state probability estimates obtained from the

tensor estimates. We next normalise them across the next states to get the (es-

timated)distribution P ′(·|s, a) = fP̄ (·|s, a) where f = 1∑
s′ P̄ (s′|s,a) . Dropping the

conditioning for brevity we have:

TV (P ′, P ) =
1

2

∑
s′

|P (s′)− fP̄ (s′)|

≤ 1

2
(
∑
s′

|P (s′)− fP (s′)|+ |fP (s′)− P̄ (s′)|)

=
1

2
(|1− f |+ f |S|ϵ)

The other two results follow using the definition of TV and Fubini’s theorem followed

by reasoning similar to above.

B.1.4 Proof of Theorem 4.3

Theorem B.3 (Error bound on policy evaluation). Given a behaviour policy πb

satisfying the conditions in Theorem 4.2 and being executed for steps ≥ N0, we have

that for any policy π the model based policy evaluation Qπ
P̄ ,R̄

satisfies:

|Qπ
P,R(s, a)−Qπ

P̄ ,R̄(s, a)| ≤ (|1− f |+ f |S|ϵ) γ

2(1− γ)2
+

ϵ

1− γ
,∀(s, a) ∈ S × Un

where f is as defined in Lemma 4.1.
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Proof. Let P̄ , R̄ be the estimates obtained after running the procedure as described

in Theorem 4.2 with samples corresponding to error ϵ and confidence 1− δ. We will

bound the error incurred in estimation of the action-values using P̄ , R̄. We have for

any π by using triangle inequality

|Qπ
P,R(s, a)−Qπ

P̄ ,R̄(s, a)| ≤ |Q
π
P,R(s, a)−Qπ

P̄ ,R(s, a)|+ |Q
π
P̄ ,R(s, a)−Q

π
P̄ ,R̄(s, a)|

(B.2)

where we use the subscript to denote whether actual or approximate values are

used for P,R respectively. We first focus on the first term on the RHS of Eq. (B.2).

Let Rπ(st) =
∑

at
π(at|st)R(st, at). We use Pt,π(·|s) = (Pπ(·|s))t to denote the state

distribution after t time steps. Consider a horizon h interleaving Q estimate given

by:

Qπ
h(s, a) = R(st, at) +

h−1∑
t=1

γtEP̄t,π(·|s)[Rπ(st)] +
∞∑
t=h

γtEPt−h,π(·|sh)·P̄h,π(sh|s)[Rπ(st)]

Where s0 = s, a0 = a and the first h steps are unrolled according to P̄π, the rest are

done using the true transition Pπ. We have that:

|Qπ
P,R(s, a)−Qπ

P̄ ,R̄(s, a)| = |Q
π
0 (s, a)−Qπ

∞(s, a)| ≤
∞∑
h=0

|Qπ
h(s, a)−Qπ

h+1(s, a)|

Each term in the RHS of the above can be independently bounded as :

|Qπ
h(s, a)−Qπ

h+1(s, a)| =γh+1
∣∣∣EP̄h+1,π(sh+1|s)

[∑
ah+1

π(ah+1|sh+1)Q
π
∞(sh+1.ah+1)

]
− EPπP̄h,π(sh+1|s)

[∑
ah+1

π(ah+1|sh+1)Q
π
∞(sh+1.ah+1)

]∣∣∣
As the rewards are bounded we get the expression above is≤ 1

1−γγ
h+1TV (P̄π(s

′, a′|s), Pπ(s′, a′|s)).

Finally using Lemma 4.1 we get ≤ (1
2
(|1 − f | + f |S|ϵ))γh+1

1−γ . And plugging in the
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original expression:

|Qπ
P,R(s, a)−Qπ

P̄ ,R̄(s, a)| ≤ (|1− f |+ f |S|ϵ) γ

2(1− γ)2

Next the second term on the RHS of Eq. (B.2) can easily be bounded by ϵ
1−γ which

gives:

|Qπ
P,R(s, a)−Qπ

P̄ ,R̄(s, a)| ≤ (|1− f |+ f |S|ϵ) γ

2(1− γ)2
+

ϵ

1− γ

B.2 Discussion

B.2.1 Relation to other methods

In this section we study the relationship between Tesseract and some of the

existing methods for MARL.

FQL

FQL [39] uses a learnt inner product space to represent the dependence of joint

Q-function on pair wise agent interactions. The following result shows containment

of FQL representable action-value function by Tesseract :

Proposition B.1. The set of joint Q-functions representable by FQL is a subset of

that representable by Tesseract.

Proof. In the most general form, any join Q-function representable by FQL has the

form:

Qfql(s,u) =
∑
i=1:n

qi(s, ui) +
∑

i=1:n,j<i

⟨fi(s, ui), fj(s, uj)⟩

where qi : S × U → R are individual contributions to joint Q-function and fi :
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S × U → Rd are the vectors describing pairwise interactions between the agents.

There are
(
n
2

)
pairs of agents to consider for (pairwise)interactions. Let P ≜ (i, j)

be the ordered set of agent pairs where i > j and i, j ∈ {1..n}, let Pk denote the

kth element of P. Define membership function m : P× {1..n} → {0, 1} as:

m((i, j), x) =


1 if x = i ∨ x = j

0 otherwise

Define the mapping vi : S → R|U |×D where D = d
(
n
2

)
+ n and vi,k represents the kth

column of vi.

vi(s) ≜


vi(s)[j, (k − 1)d+ 1 : kd] = fi(s, uj) if m(Pk, i) = 1

vi(s)[j,D − n+ i] = qi(s, uj)

vi(s)[j, k] = 1 otherwise

We get that the tensors:

Qfql(s) =
D∑
k=1

⊗nvi,k(s)

Thus any Qfql can be represented by Tesseract, note that the converse is not true

ie. any arbitrary Q-function representable by Tesseract may not be representable

by FQL as FQL cannot model higher-order (> 2 agent) interactions.

VDN

VDN [198] learns a decentralisable factorisation of the joint action-values by express-

ing it as a sum of per agent utilities Q̂ = ⊕nui, i ∈ {1..n}. This can be equivalently

learnt in Tesseract by finding the best rank one projection of exp(Q̂(s)). We

formalise this in the following result:

Proposition B.2. For any MMDP, given policy π having Q function representable

by VDN ie. Q̂π(s) = ⊕nui(s), i ∈ {1..n}, ∃vi(s)∀s ∈ S, the utility factorization can
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be recovered from rank one CP-decomposition of exp(Q̂π)

Proof. We have that :

exp(Q̂π(s)) = exp(⊕nui(s))

= ⊗n exp(ui(s))

Thus (exp(ui(s)))ni=1 ∈ argminvi(s) || exp(Q̂
π(s))−⊗nvi(s)||F∀s ∈ S and there always

exist vi(s) that can be mapped to some ui(s) via exponentiation. In general any

Q-function that is representable by VDN can be represented by Tesseract under

an exponential transform (Section 4.3.2).

B.2.2 Injecting Priors for Continuous Domains

Figure B.1: Continuous actions task with three agents chasing a prey. Perturbing
Agent 2’s action direction by small amount θ leads to a small change in the joint
value.

We now discuss the continuous action setting. Since the action set of each agent is

infinite, we impose further structure while maintaining appropriate richness in the

hypothesis class of the proposed action value functions. Towards this we present an

example of a simple prior for Tesseract for continuous action domains. WLOG,

let U ≜ Rd for each agent ∈ 1..n. We are now interested in the function class

given by Q ≜ {Q : S × Un → R} where each Q(s) ≜ ⟨T (s, {||ui||2}),⊗nui⟩, here

T (·) : S × Rn → Rdn is a function that outputs an order n tensor and is invariant
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to the direction of the agent actions, ⟨·, ·⟩ is the dot product between two order n

tensors and || · ||2 is the Euclidean norm. Similar to the discrete case, we define

Qk ≜ {Q : Q ∈ Q ∧ rank(T (·)) = k,∀s ∈ S}. The continuous case subsumes the

discrete case with T (·) ≜ Q(·) and actions encoded as one hot vectors. We typically

use rich classes like deep neural nets for Q and T parametrised by ϕ.

We now briefly discuss the motivation behind the example continuous case for-

mulation: for many real world continuous action tasks the joint payoff is much

more sensitive to the magnitude of the actions than their directions, i.e., slightly

perturbing the action direction of one agent while keeping others fixed changes

the payoff by only a small amount (see Fig. B.1). Furthermore, Tϕ can be arbi-

trarily rich and can be seen as representing utility per agent per action dimension,

which is precisely the information required by methods for continuous action spaces

that perform gradient ascent w.r.t. ∇uiQ to ensure policy improvement. Further

magnitude constraints on actions can be easily handled by a rich enough function

class for T . Lastly we can further abstract the interactions amongst the agents

by learnable maps f iη(ui, s) : Rd × S → Rm, m >> d and considering classes

Q(s,u) ≜ ⟨T (s, {||ui||}),⊗nf iη(ui)⟩ where T (·) : S × Rn → Rmn .
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B.3 Additional experiments and details

B.3.1 StarCraft II

Figure B.2: The 2c_vs_64zg scenario in SMAC.

In the SMAC bechmark[181] (https://github.com/oxwhirl/smac), agents can move

in four cardinal directions, stop, take noop (do nothing), or select an enemy to

attack at each timestep. Therefore, if there are ne enemies in the map, the action

space for each ally unit contains ne + 6 discrete actions.
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Additional Experiments

(a) 3s5z Easy (b) 2s_vs_1sc Easy

(c) 2c_vs_64zg Hard (d) 5m_vs_6m Hard

(e) MMM2 Super Hard (f) 27m_vs_30m Super Hard

(g) 6h_vs_8z Super Hard (h) Corridor Super Hard

Figure B.3: Performance of different algorithms on different SMAC scenarios: TAC,
QTRAN, QPLEX, COMA, HQL.
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In addition to the baselines in main text Section 7.5, we also include 4 more baselines:

QTRAN [188], QPLEX [236], COMA [63] and HQL. QTRAN tries to avoid the

issues arising with representational constraints by posing the decentralised multi

agent problem as optimisation with linear constraints, these constraints are relaxed

using L2 penalties for tractability [140]. Similarly, QPLEX another recent method

uses an alternative formulation using advantages for ensuring the Individual Global

Max (IGM) principle [188]. COMA is an actor-critic method that uses a centralised

critic for computing a counterfactual baseline for variance reduction by marginalising

across individual agent actions. Finally, HQL uses the heuristic of differential

learning rates on top of IQL [210] to address problems associated with decentralized

exploration. Fig. B.3 gives the average win rates of the baselines on different

SMAC scenarios across five random runs (with one standard deviation shaded). We

observe that Tesseract outperforms the baselines by a large margin on most of the

scenarios, especially on the super-hard ones on which the exiting methods struggle,

this validates the sample efficiency and representational gains supported by our

analysis. We observe that HQL is unable to learn a good policy on most scenarios,

this might be due to uncertainty in the bootstrap estimates used for choosing the

learning rate that confounds with difficulties arising from non-stationarity. We

also observe that COMA does not yield satisfactory performance on any of the

scenarios. This is possibly because it does not utilise the underlying tensor structure

of the problem and suffers from a lagging critic. While QPLEX is able to alleviate

the problems arising from relaxing the IGM constraints in QTRAN, it lacks in

performance on the super-hard scenarios of Corridor and 6h_vs_8z.

Experimental Setup for SMAC

We use a factor network for the tensorised critic which comprises of a fully connected

MLP with two hidden layers of dimensions 64 and 32 respectively and outputs a

r|U | dimensional vector. We use an identical policy network for the actors which
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outputs a |U | dimensional vector and a value network which outputs a scalar state-

value baseline V (s). The agent policies are derived using softmax over the policy

network output. Similar to previous work [181], we use two layer network consisting

of a fully-connected layer followed by GRU (of 64-dimensional hidden state) for

encoding agent trajectories. We used Relu for non-linearities. All the networks

are shared across the agents. We use ADAM as the optimizer with learning rate

5× 10−4. We use entropy regularisation with scaling coefficient β = 0.005. We use

an approximation rank of 7 for Tesseract (’TAC’) for the SMAC experiments. A

batch size of 512 is used for training which is collected across 8 parallel environments

(additional setup details in Appendix B.3.2). Grid search was performed over the

hyper-parameters for tuning.

For the baselines QPLEX, QMIX, QTRAN, VDN, COMA, IQL we use the open

sourced code provided by their authors at https://github.com/wjh720/QPLEX and

https://github.com/oxwhirl/pymarl respectively which has hyper-parameters tuned

for SMAC domain. The choice for architecture make the experimental setup of the

neural networks used across all the baselines similar. We use a similar trajectory

embedding network as mentioned above for our implementations of HQL and FQL

which is followed by a network comprising of a fully connected MLP with two hidden

layers of dimensions 64 and 32 respectively. For HQL this network outputs |U |

action utilities. For FQL, it outputs a |U |+d vector: first |U | dimension are used for

obtaining the scalar contribution to joint Q-function and rest d are used for computing

interactions between agents via inner product. We use ADAM as the optimizer for

these two baselines. We use differential learning rates of α = 1× 10−3, β = 2× 10−4

for HQL searched over a grid of {1, 2, 5, 10} × 10−3 × {1, 2, 5, 10} × 10−4. FQL

uses the same learning rate 5 × 10−4 with d = 10 which was searched over set

{5, 10, 15}.

The baselines use ϵ−greedy for exploration with ϵ annealed from 1.0→ 0.05 over
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50K steps. For super-hard scenarios in SMAC we extend the anneal time to 400K

steps. We use temperature annealing for Tesseract with temperature given by

τ = 2T
T+t

where T is the total step budget and t is the current step. Similarly we use

temperature τ = 4T
T+3t

for super-hard SMAC scenarios. The discount factor was set

to 0.99 for all the algorithms.

Experiment runs take 1-5 days on a Nvidia DGX server depending on the size of

the StarCraft scenario.

B.3.2 Techniques for stabilising Tesseract critic training for

Deep-MARL

• We used a gradient normalisation of 0.5. The parameters exclusive to the critic

were separately subject to the gradient normalisation, this was done because

the ratio of gradient norms for the actor and the critic parameters can vary

substantially across training.

• We found that using multi-step bootstrapping substantially reduced target

variance for Q-fitting and advantage estimation (we used the advantage based

policy gradient
∫
S
ρπ(s)

∫
U
∇πθ(u|s)Âπ(s,u)duds [201]) for SMAC experi-

ments. Specifically for horizon T, we used the Q-target as:

Qtarget,t =
T−t∑
k=1

λkgt,k

gt,k = rt + γrt+1 + ...+ γkV (st+k)

and similarly for value target. Likewise, the generalised advantage is estimated
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as:

Ât =
T−t∑
k=0

(γλ)kδt+k

δt = rt + γQ̂(st+1,ut+1)− V (st)

Where Q̂ is the tensor network output and the estimates are normalized by

the accumulated powers of λ. We used T = 64, γ = 0.99 and λ = 0.95 for the

experiments.

• The tensor network factors were squashed using a sigmoid for clipping and

were scaled by 2.0 for SMAC experiments. Additionally, we initialised the

factors according to N (0, 0.01) (before applying a sigmoid transform) so that

value estimates can be effectively updated without the gradient vanishing.

• Similarly, we used clipping for the action-value estimates Q̂ to prevent very

large estimates:

clip(Q̂t) = min{Q̂t, Retmax}

we used Retmax = 40 for the SMAC experiments.

(a) Ablation on stabilisation techniques (b) Ablation on rank

Figure B.4: Variations on Tesseract

We provide the ablation results on the stabilisation techniques mentioned above on
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the 2c_vs_64zg scenario in Fig. B.4(a). The plot lines correspond to the ablations:

TAC-multi: no multi-step target and advantage estimation, TAC-clip: no value

upper bounding/clipping, TAC-norm: no separate gradient norm, TAC-init: no

initialisation and sigmoid squashing of factors. We observe that multi-step estimation

of target and advantage plays a very important role in stabilising the training, this is

because noisy estimates can adversely update the learn factors towards undesirable

fits. Similarly, proper initialisation plays a very important role in learning the

Q-tensor as otherwise a larger number of updates might be required for the network

to learn the correct factorization, adversely affecting the sample efficiency. Finally we

observe that max-clipping and separate gradient normalisation do impact learning,

although such effects are relatively mild.

We also provide the learning curves for Tesseract as the CP rank of Q-approximation

is changed, Fig. B.4(b) gives the learning plots as the CP-rank is varied over the

set {3, 7, 11}. Here, we observe that approximation rank makes little impact on the

final performance of the algorithm, however it may require more samples in learning

the optimal policy. Our PAC analysis Theorem 4.2 also supports this.

B.3.3 Tensor games:

We introduce tensor games for our experimental evaluation. These games generalise

the matrix games often used in 2-player domains. Formally, a tensor game is a

cooperative MARL scenario described by tuple (n, |U |, r) that respectively defines

the number of agents (dimensions), the number of actions per agent (size of index

set) and the rank of the underlying reward tensor Fig. B.5. Each agent learns a

policy for picking a value from the index set corresponding to its dimension. The

joint reward is given by the entry corresponding to the joint action picked by the

agents, with the goal of finding the tensor entry corresponding to the maximum

reward. We consider the CTDE setting for this game, which makes it additionally
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challenging. We compare Tesseract (TAC) with VDN, QMIX and independent

actor-critic (IAC) trained using Reinforce [206]. Stateless games provide are ideal

for isolating the effect of an exponential blowup in the action space. The natural

difficulty knobs for stateless games are |n| and |U | which can be increased to obtain

environments with large joint action spaces. Furthermore, as the rank r increases, it

becomes increasingly difficult to obtain good approximations for T̂ .

Figure B.5: Tensor games example with 3 agents (n) having 3 actions each (a).
Optimal joint-action (a1, a3, a1) shown in orange.
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Figure B.6: Experiments on tensor games.

Fig. B.6(a) Fig. B.6(b) present the learning curves for the algorithms for two game

scenarios, averaged over 5 random runs with game parameters as mentioned in the

figures. We observe that Tesseract outperforms the other algorithms in all cases.

Moreover, while the other algorithms find it increasingly difficult to learn good

policies, Tesseract is less affected by this increase in action space. As opposed to

the IAC baseline, Tesseract quickly learns an effective low complexity critic for

scaling the policy gradient. QMIX performs worse than VDN due to the additional

challenge of learning the mixing network.

In Fig. B.6(c) we study the effects of increasing the approximation rank of Tesseract
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(k in decomposition Q̂(s) ≈ T =
∑k

r=1wr ⊗n gϕ,r(si), i ∈ {1..n},) for a fixed

environment with 5 agents, each having 10 actions and the environment rank being

8. While all the three settings learn the optimal policy, it can be observed that the

number of samples required to learn a good policy increases as the approximation

rank is increased (notice delay in ’Rank 8’, ’Rank 32’ plot lines). This again is in-line

with our PAC results, and makes intuitive sense as a higher rank of approximation

directly implies more parameters to learn which increases the samples required to

learn.

We next study how approximation of the actual Q tensors affects learning. In

Fig. B.6(d) we compare the performance of using a rank-2 Tesseract approximation

for environment with 5 agents, each having 10 actions and the environment reward

tensor rank being varied from 8 to 128. We found that for the purpose of finding

the optimal policy, Tesseract is fairly stable even when the environment rank

is greater than the model approximation rank. However performance may drop if

the rank mismatch becomes too large, as can be seen in Fig. B.6(d) for the plot

lines ’E_rank 32’, ’E_rank 128’, where the actual rank required to approximate

the underlying reward tensor is too high and using just 2 factors doesn’t suffice to

accurately represent all the information.

Experimental setup for Tensor games

For tensor game rewards, we sample k linearly independent vectors uir from |N (0, 1)|U ||

for each agent dimension i ∈ {1..n}. The reward tensor is given by T =
∑k

r=1wr ⊗n

uir, i ∈ {1..n}. Thus T has roughly k local maxima in general for k << |U |n. We

normalise T̂ so that the maximum entry is always 1.

All the agents use feed-forward neural networks with one hidden layer having 64

units for various components. Relu is used for non-linear activation.

The training uses ADAM [110] as the optimiser with a L2 regularisation of 0.001.
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The learning rate is set to 0.01. Training happens after each environment step.

The batch size is set to 32. For an environment with n agents and a actions available

per agent we run the training for an

10
steps.

For VDN [198] and QMIX[172] the ϵ-greedy coefficient is annealed from 0.9 to 0.05

at a linear rate until half of the total steps after which it is kept fixed.

For Tesseract (’TAC’) and Independent Actor-Critic (’IAC’) we use a learnt state

baseline for reducing policy gradient variance. We also add entropy regularisation

for the policy with coefficient starting at 0.1 and halved after every 1
10

of total

steps.

We use an approximation rank of 2 for Tesseract (’TAC’) in all the comparisons

except Fig. B.6(c) where it is varied for ablation.
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Appendix C

Appendix for Chapter 5

C.1 Proofs

C.1.1 Generalisation between team compositions

Theorem C.1 (Generalisation between team compositions). Let team compositions

T x, T y ∈ Cn with influence weights ax, ay ∈ ∆n−1, smax = maxs ||WRs||1 , Vmid =

1
2
maxs V

∗
T y(s), Then∗:

|J∗T x − J∗T y | ≤
smax + γdVmid
γ(1− γ)

Ψ, where

Ψ =
[
|
∑
i

axi (T xi − T
y
i )|∞ + |

∑
i

(axi − a
y
i )T

y
i |∞

]

Proof. Let ϵR = maxs |rT x(s)−rT y(s)| and ϵP = maxs,u 2·DTV

(
PT x(·|s,u), PT y(·|s,u)

)
where DTV is the total variation distance. We have that:

|Q∗T x(s,u)−Q∗T y(s,u)|

= |rT x(s)− rT y(s) + γ
(∑

s′

PT x(s′|s,u)max
u′

Q∗T x(s′,u′)−
∑
s′

PT y(s′|s,u)max
u′

Q∗T y(s′,u′))
)
|

∗for γ ∈ (0,
√
5−1
2 ) we can replace 1

γ(1−γ) by 1+γ
1−γ
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≤ |rT x(s)− rT y(s)|+ γ
{
|
∑
s′

PT x(s′|s,u)
[
max
u′

Q∗T x(s′,u′)−max
u′

Q∗T y(s′,u′)
]
|

+ |
∑
s′

[
PT x(s′|s,u)− PT y(s′|s,u)

]
(max

u′
Q∗T y(s′,u′)− Vmid)|

}
≤ ϵR + γ

{∑
s′

PT x(s′|s,u)|max
u′

Q∗T x(s′,u′)−max
u′

Q∗T y(s′,u′)|

+
∑
s′

|PT x(s′|s,u)− PT y(s′|s,u)||max
u′

Q∗T y(s′,u′)− Vmid|
}

≤ ϵR + γ
{∑

s′

PT x(s′|s,u)max
u′
|Q∗T x(s′,u′)−Q∗T y(s′,u′)|

+ 2 ·DTV

(
PT x(s′|s,u), PT y(s′|s,u)

)
Vmid

}
≤ ϵR + γ

{
max
s′,u′
|Q∗T x(s′,u′)−Q∗T y(s′,u′)|+ ϵPVmid

}

Next taking max w.r.t. s, u of the above we get:

max
s,u
|Q∗T x(s,u)−Q∗T y(s,u)| ≤

ϵR + γϵPVmid
1− γ

We now bound the deviation quantities appearing above:

ϵR = max
s
|rT x(s)− rT y(s)|

= max
s
|

n∑
i=1

axi ⟨T xi ·WRs⟩ −
n∑
i=1

ayi ⟨T
y
i ·WRs⟩|

≤ max
s

[
|

n∑
i=1

axi ⟨(T xi − T
y
i ) ·WRs⟩|+ |

n∑
i=1

(axi − a
y
i )⟨T

y
i ·WRs⟩|

]
≤ max

s

[
|
∑
i

axi (T xi − T
y
i )|∞|WRs|1 + |

∑
i

(axi − a
y
i )T

y
i |∞|WRs|1

]
= smax

[
|
∑
i

axi (T xi − T
y
i )|∞ + |

∑
i

(axi − a
y
i )T

y
i |∞

]

Similarly,

ϵP = max
s,u

2 ·DTV

(
PT x(·|s,u), PT y(·|s,u)

)
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= max
s,u

∑
s′

|PT x(s′|s,u)− PT y(s′|s,u)|

= max
s,u

∑
s′

|
n∑
i=1

axi ⟨T xi ·WP (s
′, s,u)⟩ −

n∑
i=1

ayi ⟨T
y
i ·WP (s

′, s,u)⟩|

≤ max
s,u

∑
s′

[
|

n∑
i=1

axi ⟨(T xi − T
y
i ) ·WP (s

′, s,u)⟩|+ |
n∑
i=1

(axi − a
y
i )⟨T

y
i ·WP (s

′, s,u)⟩|
]

≤ max
s,u

∑
s′

[
|
∑
i

axi (T xi − T
y
i )|∞|WP (s

′, s,u)|1 + |
∑
i

(axi − a
y
i )T

y
i |∞|WP (s

′, s,u)|1
]

=
[
|
∑
i

axi (T xi − T
y
i )|∞ + |

∑
i

(axi − a
y
i )T

y
i |∞

]
max
s,u

∑
s′

|WP (s
′, s,u)|1

= d
[
|
∑
i

axi (T xi − T
y
i )|∞ + |

∑
i

(axi − a
y
i )T

y
i |∞

]

Thus, we get:

|Q∗T x(s,u)−Q∗T y(s,u)| ≤
smax + γdVmid

1− γ

[
|
∑
i

axi (T xi − T
y
i )|∞ + |

∑
i

(axi − a
y
i )T

y
i |∞

]

Finally we get the value difference bound by considering a dummy state s# which

always transitions according to ρ and then using the Bellman equation. (Note

that for γ ∈ (0,
√
5−1
2

) we can replace 1
γ(1−γ) by 1+γ

1−γ for a tighter bound without

considering a dummy start state)

Corollary C.1.1 (Change in optimal value as a result of agent substitution). Let

T ∈ Cn be a team composition with influence weights a ∈ ∆n−1. If agent i is

substituted with i′ keeping ai unchanged such that |Ti′ −Ti|∞ ≤ ϵC then the new team

(T ′) optimal value follows:

|J∗T ′ − J∗T | ≤
(smax + γdVmid)aiϵC

γ(1− γ)

Proof. Applying Theorem 5.1 on original task and a new task with same influence

weights and agent i capability replaced with Ti′ immediately gives the result.
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C.1.2 Transfer of optimal policy

Theorem C.2 (Transfer of optimal policy). Let T x, T y ∈ Cn, ax, ay ∈ ∆n−1,

smax = maxs ||WRs||1, Vmid = 1
2
maxs V

∗
T y(s). Let π∗y be the optimal policy for the

team composed of agents with capabilities T y and influence weights ay. Then:

J∗T x − Jπ
∗
y

T x ≤ 2
smax + γdVmid
γ(1− γ)

Ψ,

where Ψ is defined as in Eq. (5.4).

Proof. We have that:

Q∗T x(s,u)−Qπ∗y
T x(s,u) ≤ |Q∗T x(s,u)−Q∗T y(s,u)|+ |Q∗T y(s,u)−Qπ∗y

T x(s,u)| (C.1)

The first term on the RHS of Eq. (C.1) is taken care of by Theorem 5.1. We now

focus on the second term:

|Q∗T y(s,u)−Qπ∗y
T x(s,u)|

= |rT y(s)− rT x(s) + γ
(∑

s′

PT y(s′|s,u)max
u′

Q∗T y(s′,u′)−
∑
s′

PT x(s′|s,u)Qπ∗y
T x(s′, π∗y(u

′))
)
|

≤ ϵR + γ
{
|
∑
s′

PT x(s′|s,u)
[
max
u′

Q∗T y(s′,u′)−Qπ∗y
T x(s′, π∗y(u

′)
]
|

+ |
∑
s′

[
PT y(s′|s,u)− PT x(s′|s,u)

]
(max

u′
Q∗T y(s′,u′)− Vmid)|

}
≤ ϵR + γ

{
max
s′,u′
|Q∗T y(s′,u′)−Qπ∗y

T x(s′, π∗y(u
′)|+ ϵPVmid

}

Once again, taking max w.r.t. s,u of the above we get:

max
s,u
|Q∗T y(s,u)−Qπ∗y

T x(s,u)| ≤
ϵR + γϵPVmid

1− γ
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Substituting for deviation expressions and using Theorem 5.1 in Eq. (C.1) we get:

|Q∗T x(s,u)−Qπ∗y
T x(s,u)| ≤ 2

smax + γdVmid
1− γ

[
|
∑
i

axi (T xi − T
y
i )|∞ + |

∑
i

(axi − a
y
i )T

y
i |∞

]

Note the absolute on LHS above can be dropped as Q∗T x is optimal. Finally using the

same technique as above for Theorem 5.1 we get the statement of the theorem.

Corollary C.2.1 (Out of distribution performance). Let T /∈ Sup(M) be an out of

distribution task, we then have that the performance of the absolute oracle policy on

T satisfies:

J∗T − J
π∗M
T ≤ 2

smax + γdVmid
γ(1− γ)

da(T , Sup(M)),

Proof. For any task that belongs to argminT l∈Sup(M) da(T l, T ), we have by applica-

tion of Theorem 5.2 that the result immediately holds given definition of π∗M.

C.1.3 Population decrease

Theorem C.3 (Population decrease bound). For the team composition T ∈ Cn with

influence weights a ∈ ∆n−1. If agent n is eliminated followed by a re-normalization

of influence weights, we have that for the remaining team (T − ≜ (T )n−1i=1 ):

|J∗T − − J∗T | ≤
an(smax + γdVmid)

γ(1− γ)

∣∣∣ n−1∑
i=1

aiTi
1− an

− Tn
∣∣∣
∞

Proof. We use Theorem 5.1 with influence weights (ai)n1 and (λ ·ai : i = 1..n−1, an =

0) where λ = 1
1−an

Corollary C.3.1 (Population increase bound). For the team composition T ∈ Cn

with influence weights a ∈ ∆n−1. If agent n+ 1 is added with capability Tn+1 and

weight an+1 (other weights scaled down by λ = 1− an+1) we have that for the new
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team (T + ≜ (T1..Tn, Tn+1)):

|J∗T + − J∗T | ≤
an+1(smax + γdVmid)

γ(1− γ)

∣∣∣ n∑
i=1

aiTi − Tn+1

∣∣∣
∞

Proof. Consider the team compositions T x = (T1..Tn, 0) with influence weights =

(a1..an, 0) and T y = (T1..Tn, Tn+1) with influence weights = (λa1..λan, an+1) where

λ = 1− an+1, we have that:

Ψ =
[
|
∑
i

axi (T xi − T
y
i )|∞ + |

∑
i

(axi − a
y
i )T

y
i |∞

]
= |

n∑
i=1

(1− λ)aiT yi − an+1T yn+1|∞

= an+1|
n∑
i=1

aiT yi − T
y
n+1|∞

which on applying Theorem 5.1 yields the result.

C.1.4 Approximate ϵ̂R,ϵ̂P dynamics

Theorem C.4 (Approximate ϵ̂R,ϵ̂P dynamics). Let T x, T y ∈ Cn, ax, ay ∈ ∆n−1 and

the dynamics be only approximately linear so that |rT (s)−
∑n

i=1 ai⟨ci ·WRs⟩| ≤ ϵ̂R

and |PT (s′|s,u)−
∑n

i=1 ai⟨ci ·WP (s
′, s,u)⟩| ≤ ϵ̂P . Then:

|J∗T x − J∗T y | ≤
smax + γdVmid
γ(1− γ)

Ψ +
2(ϵ̂R + γϵ̂PVmid)

γ(1− γ)
,

where Ψ is defined as in Eq. (5.4).

Proof. We begin as in proof of Theorem 5.1 to get:

max
s,u
|Q∗T x(s,u)−Q∗T y(s,u)| ≤

ϵR + γϵPVmid
1− γ
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Next we apply the corrections to the relative differences:

ϵR = max
s
|rT x(s)− rT y(s)|

≤ max
s

[
|rT x(s)−

n∑
i=1

axi ⟨T xi ·WRs⟩|+ |
n∑
i=1

axi ⟨T xi ·WRs⟩ −
n∑
i=1

ayi ⟨T
y
i ·WRs⟩|

+ |rT y(s)−
n∑
i=1

ayi ⟨T
y
i ·WRs⟩|

]
≤ 2ϵ̂R +max

s

[
|

n∑
i=1

axi ⟨(T xi − T
y
i ) ·WRs⟩|+ |

n∑
i=1

(axi − a
y
i )⟨T

y
i ·WRs⟩|

]
≤ 2ϵ̂R +max

s

[
|
∑
i

axi (T xi − T
y
i )|∞|WRs|1 + |

∑
i

(axi − a
y
i )T

y
i |∞|WRs|1

]
= 2ϵ̂R + smax

[
|
∑
i

axi (T xi − T
y
i )|∞ + |

∑
i

(axi − a
y
i )T

y
i |∞

]

Proceeding similarly with the transition probabilities we get the desired result.

C.1.5 Error from estimation of capabilities

Theorem C.5 (Error from estimation of capabilities). For the team composition

T ∈ Cn with influence weights a ∈ ∆n−1. If the agent capabilities are inaccurately

inferred as T̂ with maxi |Ti − T̂i|∞ ≤ ϵT and agents learn the inexact policy π̂∗ then:

|J∗T − J π̂
∗

T | ≤
2ϵT (smax + γdVmid)

γ(1− γ)

where Vmid = 1
2
maxs V

∗
T̂ (s)

Proof. We have that for the actual and inferred team compositions with same

influence weights:

Ψ =
[
|
∑
i

ai(Ti − T̂i)|∞ + |
∑
i

(ai − ai)T̂i|∞
]

= |
∑
i

ai(Ti − T̂i)|∞
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≤
∑
i

ai|Ti − T̂i|∞

≤
∑
i

aiϵT

= ϵT

Now applying Theorem 5.2 gives the result

C.1.6 Extending to Lipschitz rewards

We demonstrate how to extend the results in Section 5.3 to Lipschitz function of

capabilities. For brevity we consider only the setting where the rewards vary with

capabilities. Thus, for the reward function form rT (s) = ⟨f(T ) ·WRs⟩ where f(T )

is Li Lipschitz with respect to the capability Ti for i ∈ A for the | · |∞ norm. We get

that for two different team compositions T x, T y

ϵR = max
s
|rT x(s)− rT y(s)|

= max
s
|⟨f(T x) ·WRs⟩ − ⟨f(T y) ·WRs⟩|

= max
s
|

n∑
i=1

⟨f(T i) ·WRs⟩ − ⟨f(T i+1) ·WRs⟩|

≤ max
s

n∑
i=1

|⟨f(T i) ·WRs⟩ − ⟨f(T i+1) ·WRs⟩|

≤ max
s

n∑
i=1

|⟨f(T i) ·WRs⟩ − ⟨f(T i+1) ·WRs⟩|

≤ max
s

n∑
i=1

|f(T i)− f(T i+1)|∞|WRs|1

≤ smax

n∑
i=1

Li|T xi − T
y
i |∞

Where T i was the sequence satisfying T 1 = T x and T n+1 = T y and changing T x

one index at a time. We have thus proved that:
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Theorem C.6. For rewards Li Lipschitz in the capabilities with respect to | · |∞

norm, the difference in optimal values between team compositions T x, T y satisfy:

|J∗T x − J∗T y | ≤
smax

∑n
i=1 Li|T xi − T

y
i |∞

γ(1− γ)

C.1.7 General dependence of rewards on capabilities:

Lemma C.1. For substitution Ti to Ti′ such that |Ti − Ti′ |∞ ≤ δ under the (α,K)-

rewards setting we have that

ϵR ∈ O(αδsmaxK2K)

Proof.

ϵR = max
s∈S

∣∣∣〈 ∑
Ki∈N,

∑
Ki≤K

aK1..KnΠj ̸=iT
Kj

j (T Ki
i − T Ki

i′ ) ·WRs
〉∣∣∣

≤ max
s∈S

∣∣∣ ∑
Ki∈N,

∑
Ki≤K

aK1..KnΠj ̸=iT
Kj

j (T Ki
i − T Ki

i′ )
∣∣∣
∞

∣∣∣WRs
∣∣∣
1

≤ αsmax

K∑
j=0

j∑
l=1

(
l

j

)
l|T Ki

i − T Ki

i′ |∞

≤ αδsmax

K∑
j=0

j2j−1 = O(αδsmaxK2K)
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C.2 Experimental Setup

C.2.1 Environments

Fruit Forage

We use the fruit forage task on a grid world to empirically demonstrate the gen-

eralisation bounds in Section 5.3. On a k × k grid world we have n agents and d

types of fruit trees. For each agent i, Ti(j), j ∈ {1..d} represents the utility of fruit

j for agent i. The state vector is appended with the d dimensional binary vector

representing whether each of the tree types was foraged at a given time step. The

details for the team compositions can be found in Appendix C.2.1. We define three

team compositions as follows:

• Tx: [[0.05, 0.1, 0.6, 2.8], [0.05, 0.1, 2.1, 0.8], [0.05, 0.1, 1.8, 1.2], [0.05, 0.1, 0.9,

2.4]]

• Ty: [[0.7, 0.4, 0.15, 0.2], [0.2, 1.4, 0.15, 0.2], [0.3, 1.2, 0.15, 0.2], [0.6, 0.6, 0.15,

0.2]]

• Tz: [[0.1, 0.3, 0.6, 0.0], [0.4, 0.1, 0.5, 0.0], [0.05, 0.06, 0.89, 0.0], [0.0, 0.0, 0.0,

1.0]]

For proving bounds on Theorem-1, we compare the mean test returns achieved

on tasks Tx and Ty using J⋆Tx − J
⋆
Ty

. For Theorem-2, we compare the mean test

returns achieved on tasks Tx and optimal policies of task Ty evaluated on task Tx

i.e. J⋆Tx − J
π⋆
Ty

Tx
. Finally, for Theorem-3, we compare the mean test returns achieved

on tasks Tz and optimal policies of task Tz evaluated on task Tz but removing the

last agent i.e. J⋆Tz− − J
⋆
Tz

.
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Predator Prey

We consider a complicated partially observable predator-prey (PP) task in an

8× 8 grid involving four agents (predators) and four prey that is designed to test

coordination between agents. Specifically, each predator has a parameter describing

the hit point damage it can cause the prey. Similarly, the prey comes with variations

in health. For example, a prey with a capability of 5 can only be caught if the total

capability of agents taking the capture action simultaneously on it have capabilities

≥ 5 (such as [1,1,3]), otherwise, the whole team receives a penalty p. On successful

capture, agents get a reward of +1. Once prey is captured, another prey is spawned

at a random location. Therefore, agents have to collaborate and capture as many

preys as possible within 100 time steps.

Each agent can take 6 actions i.e. move in one of the 4 directions (Up, Left, Down,

Right), remain still (no-op), or try to catch (capture) any adjacent prey. The prey

moves around in the grid with a probability of 0.7 and remains still at its position

with the probability of 0.3. Impossible actions for both agents and prey are marked

unavailable, for eg. moving into an occupied cell or trying to take a capture action

with no adjacent prey.

In this domain, we test for two types of generalization: (1) novel team composition

where test tasks contain a team composition which has not been encountered during

training (PP Unseen Team in Figure 5.4), and second, (2) test tasks where novel

team compositions can also have agent types with capabilities not encountered

during training (PP Unseen Team, Agent in Figure 5.4).

For (PP Unseen Team), we train on preys with capabilities [2,2,2,3], and agents with

capabilities [2,3,2,3],[1,2,1,2], thereby having agent teams with total hit points of 10

and 6 respectively. We also train on two separate penalties p for miscoordination i.e.

p ∈ {0.0,−0.008}, this helps inject additional stochasticity in the environment as

the agents don’t know the penalty value. For test tasks, we create novel team compo-
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sitions not encountered during training i.e. agents with capabilities [1,1,2,3],[1,1,1,3]

having total hit points of 7 and 6 respectively.

For (PP Unseen Team, Agent) we train on preys with capabilities [1,2,3,4], and

agents with capabilities [1, 2, 2, 3], [1, 1, 2, 2], [1, 3, 2, 1], thereby having agent

teams with total hit points of 8, 6 and 7 respectively. We also train on two separate

penalties p for miscoordination i.e. p ∈ {0.0,−0.008}. For test tasks, we create novel

team compositions with an unseen agent of capability 4 not encountered during

training i.e. agents with capabilities [1, 1, 1, 4], [1, 1, 3, 4], [1, 1, 2, 4] having total

hit points of 7, 9, and 8 respectively.

Experimental Setup: For (PP Unseen Team, and PP Unseen Team, Agent) oracle

baseline (leftmost), we show the average difference in performance across all test

tasks when capability information is included ((c) for each method.

For testing the generalization gap in (PP Unseen Team), we show the difference in

returns achieved by training task [1,2,1,2] (hit point 6) and test task [1,1,1,3] (hit

point 6). For testing the generalization gap in (PP Unseen Team, Agent), we show

the difference in returns achieved by training task [1,3,2,1] (hit point 7) and test

task [1,1,1,4] (hit point 7) with a new agent of capability 4. All PP experiments are

based on 8 seeds.

StarCraft II

We use the standard set of actions and global state information included as part of

the SMAC benchmark [181]. The sight range of the agent units has been increased

to the fully observable setting. In the oracle mode, agent capabilities are included

as part of individual observations. Each agent always observes its own capabilities.

Furthermore, capabilities are always included in the global state.

10_Terran and 10_Terran_Hard environment includes Marine, Maradeur, and Medi-

vac units. 10_Protoss and 10_Protoss_Hard environments feature Stalker, Zealot,
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and Colossus units. 10_Zerg and 10_Zerg_Hard environments include Zergling,

Hydralisk and Baneling units.

In Accuracy and Health tasks, specific values reduced from full unit capabilities

are chosen to be equivalent to a loss of a single teammate. For example, if there

three agents, their accuracy could be set to 0.75, 0.75 and 0.5 given that (1− 0.5) +

(1− 0.75) + (1− 0.75) = 1. Consequently, the overall reduction in accuracy would

be roughly equivalent to losing one ally unit. This was chosen to ensure that the

difficulty of the tasks was not too high.

All SMAC experiments are based on 5 seeds.

Table C.1 gives the training and evaluation distributions used in the terran unit

type swapping tasks. For the other two unit classes we use similar distribution with

the unit type substitution:

• Zerg: marine → zergling, marauder → hydralisk, medivac → baneling

• Protoss: marine → stalker, marauder → zealot, medivac → collosus

218



Table C.1: Team formations in Terran tasks

10_Terran 10_Terran_Hard

Training Training

1 marine & 9 marauders 1 marine & 9 marauders

3 marines & 7 marauders 2 marines & 8 marauders

4 marines & 6 marauders 3 marines & 7 marauders

5 marines & 5 marauders 4 marines & 6 marauders

6 marines & 4 marauders 5 marines & 5 marauders

8 marines & 2 marauders 6 marines & 4 marauders

9 marines & 1 marauder 7 marines & 3 marauders

5 marauders & 5 medivacs 8 marines & 2 marauders

7 marauders & 3 medivacs 9 marines & 1 marauder

9 marauders & 1 medivac 5 marauders & 5 medivacs

7 marines & 3 medivacs 6 marauders & 4 medivacs

8 marines & 2 medivacs 7 marauders & 3 medivacs

9 marines & 1 medivac 8 marauders & 2 medivacs

10 marines 9 marauders & 1 medivac

10 marauders 7 marines & 3 medivacs

8 marines & 1 marauder & 1 medivac 8 marines & 2 medivacs

1 marine & 8 marauders & 1 medivac 9 marines & 1 medivac

5 marines & 3 marauders & 2 medivacs Testing

2 marines & 7 marauders & 1 medivac 10 marines

6 marines & 2 marauders & 2 medivacs 10 marauders

2 marines & 6 marauders & 2 medivacs 8 marines & 1 marauder & 1 medivac

4 marines & 4 marauders & 2 medivacs 1 marine & 8 marauders & 1 medivac

Testing 5 marines & 3 marauders & 2 medivacs

2 marines & 8 marauders 3 marines & 5 marauders & 2 medivacs

7 marines & 3 marauders 4 marines & 3 marauders & 3 medivacs

6 marauders & 4 medivacs 3 marines & 4 marauders & 3 medivacs

8 marauders & 2 medivacs 7 marines & 2 marauders & 1 medivac

3 marines & 5 marauders & 2 medivacs 2 marines & 7 marauders & 1 medivac

4 marines & 3 marauders & 3 medivacs 6 marines & 2 marauders & 2 medivacs

3 marines & 4 marauders & 3 medivacs 2 marines & 6 marauders & 2 medivacs

7 marines & 2 marauders & 1 medivac 4 marines & 4 marauders & 2 medivacs
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C.2.2 Architecture, Training and Evaluation

The evaluation procedure is similar to the one in [172]. The training is paused after

every 30k timesteps during which 16 test episodes are run with agents performing

action selection greedily in a decentralised fashion. The percentage of episodes where

the agents defeat all enemy units within the permitted time limit is referred to as

the test win rate.

To speed up the learning, the agent networks are parameters are shared across

all agents. A one-hot encoding of the agent_id is concatenated onto each agent’s

observations. All neural networks are trained using RMSprop without weight decay

or momentum.

Value-based baselines

The architecture of all agent networks is a DRQN [89] with a recurrent layer

comprised of a GRU with a 64-dimensional hidden state, with a fully-connected

layer before and after. We sample batches of 32 episodes uniformly from the replay

buffer, and train on fully unrolled episodes, performing a single gradient descent

step after 8 episodes.
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Table C.2: Hyperparameters of QMIX and VDN

Method Name Value

QMIX & VDN learning rate 5× 10−4

RMSprop α 0.99

replay buffer size 5000 episodes

target network update interval 200 episodes

γ 0.99

double DQN target True

initial ϵ 1

final ϵ 0.05

ϵ anneal period 50000 steps

ϵ anneal rule linear

QMIX mixing network hidden layers 1

mixing network hidden layer units 32

mixing network non-linearity ELU

hypernetwork hidden layers 2

hypernetwork hidden layer units 64

hypernetwork non-linearity ReLU

PPO baselines

We parameterize the actor and critic with two independent recurrent neural networks,

each of which is comprised of a GRU with a 64-dimensional hidden state, with a

fully-connected layer as the input and output.
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Table C.3: Hyperparameters of IPPO and MAPPO

Method Name Value

IPPO & MAPPO critic learning rate 0.001

actor learning rate 0.99

γ 0.99

λ 0.95

ϵ 0.2

clip range 0.1

normalize advantage True

normalize inputs True

grad norm 0.5

number of actors 8

critic coefficient 2

entropy coefficient 0

mini epochs for actor update 10

mini epochs for critic update 10

mini batch size 64

C.3 Full StarCraft II Results

Complete results for StarCraft II are as shown in Fig. C.1, Fig. C.2, Fig. C.3.
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Figure C.1: Experimental results on SMAC unit swapping tasks. Dashed lines
indicate the inclusion of information on capabilities as part of the agent observations.
Standard deviation is shaded.
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Figure C.2: Experimental results on SMAC unit accuracy tasks. Dashed lines
indicate the inclusion of information on capabilities as part of the agent observations.
Standard deviation is shaded.
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Figure C.3: Experimental results on SMAC unit health tasks. Dashed lines indicate
the inclusion of information on capabilities as part of the agent observations. Stan-
dard deviation is shaded.
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Appendix D

Appendix for Chapter 6

D.1 A Probabilistic Interpretation of virel

We now motivate our inference procedure and Boltzmann distribution πω(a|s) from

a probabilistic perspective, demonstrating that πω(a|s) can be interpreted as an

action-posterior that characterises the uncertainty our model has in the optimality of

Q̂ω(h). Moreover, maximising L(ω, θ) for θ is equivalent to carrying our variational

inference on the graphical model in Fig. D.1 for any εω > 0.

D.1.1 Model Specification

Like previous work, we introduce a binary variable O ∈ {0, 1} in order to define a

formal graphical model for our inference problem when εω > 0. The likelihood of O

therefore takes the form of a Bernoulli distribution:

pω(O|h) = yω(h)
O(1− yω(h))(1−O),
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where

yω(h) := exp

(
Q̂ω(h)−maxa′ Q

∗
ω(a
′, s)

εω

)
.

In most existing frameworks, O = 1 is understood to be the event that the agent is

acting optimally [131, 220]. As we are using function approximators in virel, O = 1

can be interpreted as the event that the agent is behaving optimally under Q̂ω(h).

Exploring the semantics of O further, consider the likelihood when O = 1:

pω(O = 1|h) = exp

(
Q̂ω(h)−maxa′ Q̂ω(a

′, s)

εω

)
,

Figure D.1: Graphical model for virel (variational approximation dashed)

Observe that 0 ≤ pω(O = 1|·) ≤ 1 ∀ ω ∈ Ω s.t. εω > 0. For any state s, we have

pω(O = 1|s, a∗) = 1 for any action a∗ that is optimal under Q̂ω(h) in the sense that it

is the greedy action a∗ ∈ argmaxa Q̂ω(h). If we find pω(O = 1|h) = 1 ∀ h ∈ H, then

all observed state-action pairs have been generated from a greedy policy π(a|s) =

δ(a ∈ argmaxa′ Q̂ω(a
′|s)). From Theorem 6.2, the closer the residual error εω is to

zero, the closer Q̂ω(h) becomes to representing an optimal action-value function.

When εω ≈ 0, any a observed such that pω(O = 1|a, ·) = 1 will be very nearly an

action sampled from an optimal policy, that is a ∼ π(a|·) ≈ δ(a ∈ argmaxa′ Q
∗(a′|·)).

We caution readers that in the limit εω → 0, our likelihood is not well-defined for
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any a ∈ argmaxa′ Q̂ω(a
′, s). Without loss of generality, we condition on optimality

for the rest of this section, writing O in place of O = 1. Defining the function

yω(s) := exp
(
−maxa′ Q̂ω(a′,s)

εω

)
, our likelihood takes the convenient form:

pω(O|h) = exp

(
Q̂ω(h)

εω

)
yω(s),

Defining the prior distribution as the uniform distribution p(h) = U(h) completes

our model, the graph for which is shown in Fig. D.1. Using Bayes’ rule, we find our

posterior distribution is:

pω(h|O) =
pω(O|h)p(h)

pω(O)
,

=
pω(O|h)p(h)∫
pω(O|h)p(h)dh

,

=
exp

(
Q̂ω(h)
εω

)
yω(s)∫

exp
(
Q̂ω(h)
εω

)
yω(s)dh

. (D.1)

We can also derive our action-posterior, pω(a|s,O), which we will find to be equivalent

to the Boltzmann policy from Eq. (6.3). Using Bayes’ rule, it follows:

pω(a|s,O) =
pω(h|O)
pω(s|O)

.

Now, we find pω(s|O) by marginalising our posterior over actions. Substituting

pω(s|O) =
∫
pω(h|O)da yields :

pω(a|s,O) =
pω(h|O)∫
pω(h|O)da

.

Substituting for our posterior from Eq. (D.1), we obtain:

pω(a|s,O) =
exp

(
Q̂ω(h)
εω

)
yω(s)∫

exp
(
Q̂ω(h)
εω

)
yω(s)da

·

∫
exp

(
Q̂ω(h)
εω

)
yω(s)dh∫

exp
(
Q̂ω(h)
εω

)
yω(s)dh

,
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=
exp

(
Q̂ω(h)
εω

)
yω(s)(∫

exp
(
Q̂ω(h)
εω

)
da
)
yω(s)

,

=
exp

(
Q̂ω(h)
εω

)
∫
exp

(
Q̂ω(h)
εω

)
da
,

= πω(a|s),

proving that our action-posterior is exactly the Boltzmann policy introduced in

Section 6.3.1. From a Bayesian perspective, the action-posterior pω(a|s,O) charac-

terises the uncertainty we have in deducing the optimal action for a given state s

under Q̂ω(h); whenever εω ≈ 0 and hence Q̂ω(h) ≈ Q∗(h), the uncertainty will be

very small as pω(a|s,O) will have near-zero variance, approximating a Dirac-delta

distribution. Our model is therefore highly confident that the maximum-a-posteriori

(MAP) action a ∈ argmaxa′ Q̂ω(a
′, s) is an optimal action, with all of the probability

mass being close to this point. In light of this, we can interpret the greedy policy

πω(a|s) = δ(a ∈ argmaxa′ Q̂ω(a
′, s)) as one that always selecting the MAP action

across all states.

As our model incorporates the uncertainty in the optimality of Q̂ω(h) into the

variance of πω(a|s), we can benefit directly by sampling trajectories from πω(a|s)

which drives exploration to gather data that is beneficial to reducing the residual

error εω. Unfortunately, calculating the normalisation constant
∫
exp

(
Q̂ω(h)
εω

)
da is

intractable for most function approximators and MDPs of interest. As such, we

resort to variational inference, a powerful technique to infer an approximation to a

posterior distribution from a tractable family of variational distributions [105, 20, 28].

As before πθ(a|s) is known as the variational policy, is parametrised by θ ∈ Θ and

with the same support as πω(a|s). Like in Section 6.3.1, we define a variational

distribution as qθ(h) := d(s)πθ(a|s), where d(s) is an arbitrary sampling distribution

with support over S. We fix d(s), as in our model-free paradigm we do not learn
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the state transition dynamics and only seek to infer the action-posterior.

The goal of variational inference is to find qθ(h) closest in KL-divergence to pω(h|O),

giving an objective:

θ∗ ∈ argmin
θ

KL(qθ(h) ∥ pω(h|O)).

This objective still requires the intractable computation of
∫
exp

(
Q̂ω(h)
εω

)
yω(s)dh.

Mirroring the analysis in Appendix D.3.1, we can overcome this by writing the KL

divergence in terms of the ELBO:

KL(qθ(h) ∥ pω(h|O)) = ℓω − Lω(θ),

where ℓ(ω) := log

∫
exp

(
Q̂ω(h)

εω

)
yω(s)dh, Lω(θ) := Eh∼qθ(h)

log
exp

(
Q̂ω(h)
εω

)
yω(s)

qθ(h)

 .

We see that minimising the KL-divergence for θ is equivalent to maximising the

ELBO for θ, which is tractable. This affords a new objective:

θ∗ ∈ argmax
θ

Lω(θ).

Expanding the ELBO yields:

Lω(θ) = Eh∼qθ(h)

log
exp

(
Q̂ω(h)
εω

)
yω(s)

qθ(h)

 ,
= Es∼d(s)

Ea∼πθ(a|s)
log

exp
(
Q̂ω(h)
εω

)
yω(s)

qθ(h)

 ,
= Es∼d(s)

[
Ea∼πθ(a|s)

[
Q̂ω(h)

εω

]
+ Ea∼πθ(a|s) [log yω(s)]− Ea∼πθ(a|s) [log(πθ(a|s)d(s))]

]
,

= Es∼d(s)

[
Ea∼πθ(a|s)

[
Q̂ω(h)

εω

]
+ log yω(s)− log d(s)− Ea∼πθ(a|s) [log πθ(a|s)]

]
,
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= Es∼d(s)

[
Ea∼πθ(a|s)

[
Q̂ω(h)

εω

]
− Ea∼πθ(a|s) [log πθ(a|s)]

]
+ Es∼d(s)

[
log

(
yω(s)

d(s)

)]
,

= Es∼d(s)

[
Ea∼πθ(a|s)

[
Q̂ω(h)

εω

]
+H(πθ(a|s))

]
+ Es∼d(s)

[
log

(
yω(s)

d(s)

)]
.

As the final term Es∼d(s)
[
log
(
yω(s)
d(s)

)]
has no dependency on θ, we can neglect it

from our objective, recovering the virel objective from Eq. (6.4):

Lω(θ) = Es∼d(s)

[
Ea∼πθ(a|s)

[
Q̂ω(h)

εω

]
+H(πθ(a|s))

]
.

Finally, Theorem 6.3 guarantees that minimising Lω(θ) always minimises the ex-

pected KL divergence between πω(a|s) and πθ(a|s), allowing us to learn a variational

approximation for the action-posterior.

D.1.2 Comparison to merlin

Figure D.2: Graphical model for
merlin. The variational approxi-
mation is shown dashed.

We now elucidate a key difference in the inference

procedure between virel and merlin that can

effect performance. Unlike in previous frame-

works including merlin, virel’s hidden vari-

ables are state-action pairs h, rather than entire

trajectories τ . As is clear from the graphical

model in Fig. D.1, the variational distribution

qθ(h) only needs to represent a single interaction

between a and s and the function approximator Q̂ω(h) represents all future interac-

tions. Compare this to the graphical model for merlin, shown in Fig. D.2 (see [131]

for a full exposition of merlin’s graphical model). The variational distribution

for merlin qθ(τ) must represent every interaction between s and a for the entire

trajectory. As qθ(τ) is restricted to classes of tractable distributions, qθ(τ) may not

be expressive enough to capture the underlying dynamics for the MDP in complex
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domains where state-action spaces are large and there exist multiple modes. In

contrast, virel’s function approximator Q̂ω(h) is typically a neural network, which

is much less restricted in representability and can better represent the dynamics of

an MDP.

D.2 A Discussion of the Target Set T

We now prove that the Bellman operator for the Boltzmann policy, T πω · := r(h) +

γEh′∼p(s′|h)πω(a′|s′) [·], is a member of T. Taking the limit εω → 0 of T πωQ̂ω(h), we

find:

lim
εω→0

T πωQ̂ω(h) = r(h) + lim
εω→0

γEh′∼p(s′|h)πω(a′|s′)
[
Q̂ω(h

′)
]
.

From Theorem 6.2, evaluating limεω→0 γEh′∼p(s′|h)πω(a′|s′) [·] recovers a Dirac-delta

distribution:

lim
εω→0

T πωQ̂ω(h) = r(h) + γEh′∼p(s′|h)δ(a′=argmaxa Q̂ω(a,s))

[
Q̂ω(h

′)
]
,

= r(h) + γEh′∼p(s′|h)
[
max
a′

(Q̂ω(h
′))
]
,

= T ∗Q̂ω(h).

which is sufficient to demonstrate membership of T.

Observe that using T πω · implies Q̂ω(h) cannot represent the true Q-function of

any πω(a|s) except for the optimal Q-function. To see this, imagine there exists

some εω > 0 such that Qπω(·) = Q̂(·). Under these conditions, it holds that

T πωQ̂(·) = Q̂(·) =⇒ εω = 0, which is a contradiction. More generally, as πω(a|s) is

defined in terms of εω, which itself depends on πω(a|s) from the definition of T πω ·,

any ω satisfying this recursive definition forms a constrained set Ωc ⊆ Ω. Crucially,

we show in Theorem 6.2 that there always exists some ω∗ ∈ Ωc such that Q̂ω∗ can
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represent the action-value function for an optimal policy. Note that there may exist

other policies that are not Boltzmann distributions such that Q̂ω(h) = Qπ(h) for

some ω ∈ Ωc. We discuss operators that don’t constrain Ω in Appendix D.5.2.

Finally, we can approximate T πω using any TD target sampled from πω(a|s) (see

[202] for an overview of TD methods). Likewise, the optimum Bellman operator

T ∗· = r(h) + γEh′∼p(s′|h) [maxa′(·)] is by definition a member of T and can be

approximated using the Q-learning target [238].

D.3 Proofs for Section 6.3

D.3.1 Derivation of Lower Bound in terms of KL Diver-

gence

Recall the definition of L(ω, θ) from Eq. (6.4):

L(ω, θ) = Es∼d(s)

[
Ea∼πθ(a|s)

[
Q̂ω(h)

εω

]
+H(πθ(a|s))

]
.

Expanding the definition of differential entropy:

L(ω, θ) = Es∼d(s)

[
Ea∼πθ(a|s)

[
Q̂ω(h)

εω

]
− Ea∼πθ(a|s) [log πθ(a|s)]

]
.

= Es∼d(s)

[
Ea∼πθ(a|s)

[
Q̂ω(h)

εω

]
− Ea∼πθ(a|s)

[
log

(
πθ(a|s)
πω(a|s)

· πω(a|s)
)]]

,

= Es∼d(s)

[
Ea∼πθ(a|s)

[
Q̂ω(h)

εω

]
− Ea∼πθ(a|s)

[
log

(
πθ(a|s)
πω(a|s)

)]

− Ea∼πθ(a|s) [log πω(a|s)]

]
,

= Es∼d(s)

[
Ea∼πθ(a|s)

[
Q̂ω(h)

εω

]
−KL(πθ(a|s) ∥ πω(a|s))− Ea∼πθ(a|s) [log πω(a|s)]

]
.
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Substituting for the definition of πω(a|s) in the final term yields our desired re-

sult:

L(ω, θ) = Es∼d(s)

[
Ea∼πθ(a|s)

[
Q̂ω(h)

εω

]
−KL(πθ(a|s) ∥ πω(a|s))

− Ea∼πθ(a|s)

log
 exp

(
Q̂ω(h)
εω

)
∫
exp

(
Q̂ω(h)
εω

)
da

],
= Es∼d(s)

[
Ea∼πθ(a|s)

[
Q̂ω(h)

εω

]
−KL(πθ(a|s) ∥ πω(a|s))

− Ea∼πθ(a|s)

[
Q̂ω(h)

εω

]]
+ log

∫
exp

(
Q̂ω(h)

εω

)
da,

= log

∫
exp

(
Q̂ω(h)

εω

)
da− Es∼d(s) [KL(πθ(a|s) ∥ πω(a|s))] .

D.3.2 Convergence of Boltzmann Distribution to Dirac-Delta

Theorem D.1 (Convergence of Boltzmann Distribution to Dirac Delta). Let pε :

X → [0, 1] be a Boltzmann distribution with temperature ε ∈ R≥0

pε(x) =
exp

(
f(x)
ε

)
∫
X exp

(
f(x)
ε

)
dx
,

where f : X → Y is a function with a unique maximum f(x∗) = supx f and

a bounded domain X and range Y. Let f be locally smooth about x∗, that is

∃ ∆ > 0 s.t.f(x) ∈ C2 ∀ x ∈ {x|∥x− x∗∥ < ∆ }. In the limit ε→ 0, pε(x)→ δ(x∗),

that is:

lim
ε→0

∫
X
φ(x)pε(x)dx = φ(x∗), (D.2)

for any smooth test function φ ∈ C∞0 (X ).
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Proof. Firstly, we define the auxiliary function to be

g(x) := f(x)− f(x∗).

Note, g(x) ≤ 0 with equality at g(x∗) = 0. Substituting f(x) = g(x) + f(x∗) into

pε(x):

pε(x) =
exp

(
g(x)+f(x∗)

ε

)
∫
X exp

(
g(x)+f(x∗)

ε

)
dx
,

=
exp

(
g(x)
ε

)
exp

(
f(x∗)
ε

)
∫
X exp

(
g(x)
ε

)
exp

(
f(x∗)
ε

)
dx
,

=
exp

(
g(x)
ε

)
∫
X exp

(
g(x)
ε

)
dx
. (D.3)

Now, substituting Eq. (D.3) into the limit in Eq. (D.2) yields:

lim
ε→0

∫
X
φ(x)pε(x)dx = lim

ε→0

∫
X
φ(x)

exp
(
g(x)
ε

)
∫
X exp

(
g(x)
ε

)
dx
dx

 . (D.4)

Using the substitution u := (x∗−x)√
ε

to transform the integrals in Eq. (D.4), we obtain

lim
ε→0

∫
X
φ(x)pε(x)dx = lim

ε→0

∫
U
φ(x∗ −

√
εu)

exp
(
g(x∗−

√
εu)

ε

)
∫
U exp

(
g(x∗−

√
εu)

ε

)√
εdu

√
εdu

 ,

= lim
ε→0

∫U φ(x∗ −√εu) exp
(
g(x∗−

√
εu)

ε

)
du∫

U exp
(
g(x∗−

√
εu)

ε

)
du

 . (D.5)

We now find limε→0

(
g(x∗−

√
εu)

ε

)
. Denoting the partial derivative ∂√ε := ∂

∂
√
ε

and

using L’Hôpital’s rule to the second derivative with respect to
√
ϵ, we find the limit
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as:

lim
ε→0

(
g(x∗ −

√
εu)

ε

)
= lim

ε→0

(
∂√εg(x

∗ −
√
εu)

∂√εε

)
,

= lim
ε→0

(
∂√εf(x

∗ −
√
εu)

∂√εε

)
,

= lim
ε→0

(
−u⊤∇f(x∗ −

√
εu)

2
√
ε

)
,

= lim
ε→0

(
−∂√ε

(
u⊤∇f(x∗ −

√
εu)
)

∂√ε(2
√
ε)

)
,

= lim
ε→0

(
u⊤∇2f(x∗ −

√
εu)u

2

)
,

=
u⊤∇2f(x∗)u

2
.

The integrand in the numerator Eq. (D.5) therefore converges pointwise to φ(x∗) exp
(
u⊤∇2f(x∗)u

2

)
,

that is

lim
ε→0

(
φ(x∗ −

√
εu) exp

(
g(x∗ −

√
εu)

ε

))
= φ(x∗) exp

(
u⊤∇2f(x∗)u

2

)
, (D.6)

and the integrand in the denominator converges pointwise to exp
(
u⊤∇2f(x∗)u

2

)
, that

is

lim
ε→0

(
exp

(
g(x∗ −

√
εu)

ε

))
= exp

(
u⊤∇2f(x∗)u

2

)
. (D.7)

From the second order sufficient conditions for f(x∗) to be a maximum, we have

u⊤∇2f(x∗)u ≤ 0 ∀ u ∈ U with equality only when u = 0 [134]. This implies that

Eq. (D.6) and Eq. (D.7) are both bounded functions.

By definition, we have g(x∗−
√
ϵu) ≤ 0 ∀ u ∈ U , which implies that | exp

(
g(x∗−

√
εu)

ε

)
| ≤

1. Consequently, the integrand in the numerator of Eq. (D.5) is dominated by
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∥φ(·)∥∞, that is

∣∣∣∣φ(x∗ −√εu) exp(g(x∗ −√εu)ε

)∣∣∣∣ ≤ ∥φ(·)∥∞, (D.8)

and the integrand in the denominator is dominated by 1, that is

∣∣∣∣exp(g(x∗ −√εu)ε

)∣∣∣∣ ≤ 1. (D.9)

Together Eqs. (D.6) to (D.9) are the sufficient conditions for applying the dominated

convergence theorem [19], allowing us to commute all limits and integrals in Eq. (D.5),

yielding our desired result:

lim
ε→0

∫
X
φ(x)pε(x)dx = lim

ε→0

∫U φ(x∗ −√εu) exp
(
g(x∗−

√
εu)

ε

)
du∫

U exp
(
g(x∗−

√
εu)

ε

)
du

 ,

=

∫
U limε→0

(
φ(x∗ −

√
εu) exp

(
g(x∗−

√
εu)

ε

))
du∫

U limε→0

(
exp

(
g(x∗−

√
εu)

ε

))
du

,

=

∫
U φ(x

∗) exp
(
u⊤∇2f(x∗)u

)
du∫

U exp (u
⊤∇2f(x∗)u) du

,

= φ(x∗)

∫
U exp

(
u⊤∇2f(x∗)u

)
du∫

U exp (u
⊤∇2f(x∗)u) du

,

= φ(x∗).

D.3.3 Optimal Boltzmann Distributions as Optimal Poli-

cies

Lemma D.1 (Lower and Upper limits of L(ω, θ)). i) For any εω > 0 and πθ(a|s) =

δ(a∗), we have L(ω, θ) = −∞. ii) For Q̂ω(·) > 0 and any non-deterministic πθ(a|s),

limεω→0 L(ω, θ) =∞.
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Proof. To prove i), we substitute πθ(a|s) = δ(a∗) into L(ω, θ) from Eq. (6.4), yielding:

L(ω, θ) = Es∼d(s)

[
Ea∼δ(a∗)

[
Q̂ω(h)

εω

]
+H(δ(a∗))

]
,

= Es∼d(s)

[
Q̂ω(a

∗, s)

εω
+H(δ(a∗))

]
, (D.10)

We now prove that H(δ(a∗)) = −∞ for any a∗. Let p : X → [0, 1] be any zero-mean,

unit variance distribution. Using a transformation of variables, we have U = σX +a∗

and hence p(a) = 1
σ
p(σx− a∗). We can therefore write our Dirac-delta distribution

as

δ(a∗) = lim
σ→0

p(a) = lim
σ→0

1

σ
p(σx− a∗).

Substituting into the definition of differential entropy, we obtain:

H(δ(a∗)) = lim
σ→0

H(p(a))

= lim
σ→0

H

(
1

σ
p(σx− a∗)

)
,

= − lim
σ→0

∫
1

σ
p(σx− a∗) log

(
1

σ
p(σx− a∗)

)
da,

= − lim
σ→0

∫
1

σ
p(σx− a∗) log (p(σx− a∗)) da+ lim

σ→0

∫
1

σ
p(σx− a∗) log (σ) da,

= −
∫
δ(a∗) log (p(−a∗)) da+ lim

σ→0
log (σ) ,

= − log(p(−a∗)) + lim
σ→0

log (σ) , (D.11)

= −∞.

Substituting for H(δ(a∗)) from Eq. (D.11) in Eq. (D.10) yields our desired result:

L(ω, θ) = Es∼d(s)

[
Q̂ω(a

∗, s)

εω

]
+ Es∼d(s) [H(δ(a∗))] ,
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=
Es∼d(s)

[
Q̂ω(a

∗, s)
]

εω
+ (lim

σ→0
log (σ)− log(p(−a∗)))Es∼d(s) [1] ,

= −∞,

where our final line follows from the first term being finite for any εω > 0.

To prove ii), we take the limit εω → 0 of L(ω, θ) in Eq. (6.4):

lim
εω→0

L(ω, θ) = lim
εω→0

Ed(s)πθ(a|s)
[
Q̂ω(h)

]
εω

+ Ed(s) [H(πθ(a|s))]

 ,

= lim
εω→0

Ed(s)πθ(a|s)
[
Q̂ω(h)

]
εω

+ Ed(s) [H(πθ(a|s))] ,

=∞.

where our last line follows from H(πθ(a|s)) being finite for any non-deterministic

πθ(a|s) and Q̂ω(·) > 0 =⇒ Ed(s)πθ(a|s)
[
Q̂ω(h)

]
> 0.

Theorem D.2 (Optimal Boltzmann Distributions as Optimal Policies). For any pair

{ω∗, θ∗} that maximises L(ω, θ) defined in Eq. (6.4), the corresponding variational

policy induced must be optimal, i.e. {ω∗, θ∗} ∈ argmaxω,θ L(ω, θ) =⇒ πω∗(a|s) ∈

Π∗. Moreover, any θ∗ s.t. πθ∗(a|s) = πω∗(a|s) =⇒ θ∗ ∈ argmaxω,θ L(ω, θ).

Proof. Our proof is structured as follows: Firstly, we prove that εω∗ = 0 is both a

necessary and sufficient condition for any ω∗ ∈ argmaxω,θ L(ω, θ) with Q̂ω∗(·) > 0.

We then verify that Q̂ω∗(·) > 0 is satisfied by our framework and εω∗ = 0 is feasible.

Finally, we prove that εω∗ = 0 is sufficient for πω∗(a|s) ∈ Π∗.

To prove necessity, assume there exists an optimal ω∗ such that εω∗ ̸= 0. As εω ≥ 0,
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it must be that εω∗ > 0. Consider L(ω, θ) as defined in Eq. (6.4):

L(ω, θ) =
Ed(s)πθ(a|s)

[
Q̂ω(h)

]
εω

+ Ed(s) [H(πθ(a|s))] .

As πθ(a|s) has finite variance, H(πθ(a|s)) is upper bounded, and as Q̂ω(·) is upper

bounded, Ed(s)πθ(a|s)
[
Q̂ω(h)

]
is upper bounded too. Together, this implies that

Ed(s)πθ(a|s)
[
Q̂ω(h)

]
is upper bounded for εω∗ > 0. From Assumption 6.2, there

exists ω⋄ ∈ Ω such that εω⋄ = 0. From Lemma 6.1, there exists θ∗ such that

limεω∗→0 L(ω⋄, θ∗) =∞, implying L(ω∗, θ∗) < L(ω⋄, θ∗) which is a contradiction.

To prove sufficiency, we take argmaxω L(ω, θ):

argmax
ω

L(ω, θ) = argmax
ω

(
Ed(s)πθ(a|s)

[
Q̂ω(h)

εω

]
+ Ed(s) [H(πθ(a|s))]

)
,

=argmax
ω

(
Ed(s)πθ(a|s)

[
Q̂ω(h)

εω

])
,

=argmax
ω

Ed(s)πθ(a|s)
[
Q̂ω(h)

]
εω

 .

Assume that i Q̂ω∗(·) > 0. It then follows:

argmax
ω

L(ω, θ) = argmax
ω

Ed(s)πθ(a|s)
[
Q̂ω(h)

]
εω

 ,

argmin
ω

 εω

Ed(s)πθ(a|s)
[
Q̂ω(h)

]
 ,

=argmin
ω

εω,

which, as εω ≥ 0, is satisfied for any ω∗ ∈ Ω s.t. εω∗ = 0, proving sufficiency.
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Assume now ii Q̂ω∗(·) is locally smooth with a unique maximum over actions

according to Definition 6.1. Under this condition we can apply Theorem D.1 and

our Boltzmann distribution tends towards a Dirac-delta function:

πω∗(a|s) = lim
εω→0

 exp
(
Q̂ω∗ (h)
εω

)
∫
exp

(
Q̂ω∗ (h)
εω

)
da

 = δ(a = argmax
a′

Q̂ω∗(s, a
′)), (D.12)

which is a greedy policy w.r.t. Q̂ω∗(·). From Definition 6.2, when limεω→0 πω(a|s)

we have TωQ̂ω(h) = T ∗Q̂ω(h). Substituting into εω∗ = 0 shows our our function

approximator must satisfy an optimal Bellman equation:

εω∗ =
c

p
∥T ∗Q̂ω(h)− Q̂ω(h)∥pp = 0,

=⇒ T ∗Q̂ω∗(·) = Q̂ω∗(·),

hence Q̂ω∗(·) = Q∗(·). Under Assumption 6.2, we see that there exists ω∗ ∈

Ω s.t. εω∗ = 0 for Q̂ω∗(·) = Q∗(·), hence εω∗ = 0 is feasible. Moreover, our

assumptions i and ii are satisfied for Q̂ω∗(·) = Q∗(·) under Assumptions 6.2 and

6.3 respectively. Substituting for Q̂ω∗(·) = Q∗(·) into πω∗(a|s) from Eq. (D.12) we

recover our desired result:

ω∗ ∈ argmax
ω

L(ω, θ)

=⇒ πω∗(a|s) = δ(a = argmax
a′

Q∗(s, a′)) ∈ Π∗.

From Lemma 6.1, we have that L(ω, θ)→∞ = maxω,θ L(ω, θ) when εω = 0 for any

θ∗ ∈ Θ such that the variational policy is non-deterministic, hence

{ω∗, θ∗} ∈ argmax
ω,θ

L(ω, θ) =⇒ πω∗(a|s) ∈ Π∗,

as required.
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D.3.4 Maximising the ELBO for θ

Theorem D.3 (Maximising the ELBO for θ). Maximsing L(ω, θ) for θ with εω > 0 is

equivalent to minimising the expected KL divergence between πω(a|s) and πθ(a|s), i.e.

for any εω > 0, maxθ L(ω, θ) = minθ Ed(s) [KL(πθ(a|s) ∥ πω(a|s))] with πω(a|s) =

πθ(a|s) under exact representability.

Proof. Firstly, we write L(ω, θ) in terms of ℓ(ω) and KL(qθ(h) ∥ pω(h)) from

Eq. (6.5):

L(ω, θ) = ℓ(ω)−KL(qθ(h) ∥ pω(h)),

which implies

max
θ
L(ω, θ) = max

θ
(ℓ(ω)−KL(qθ(h) ∥ pω(h))) ,

= min
θ

(KL(qθ(h) ∥ pω(h))) . (D.13)

for any εω > 0. Define

pω(s) :=

∫
exp

(
Q̂ω(h)
εω

)
da∫

exp
(
Q̂ω(h)
εω

)
dh
.

We now decompose pω(h) as pω(h) := πω(a|s)pω(s):

pω(h) =
exp

(
Q̂ω(h)
εω

)
∫
exp

(
Q̂ω(h)
εω

)
dh
,

=
exp

(
Q̂ω(h)
εω

)
∫
exp

(
Q̂ω(h)
εω

)
dh
·

∫
exp

(
Q̂ω(h)
εω

)
da∫

exp
(
Q̂ω(h)
εω

)
da
,

=
exp

(
Q̂ω(h)
εω

)
∫
exp

(
Q̂ω(h)
εω

)
da
·

∫
exp

(
Q̂ω(h)
εω

)
da∫

exp
(
Q̂ω(h)
εω

)
dh
,
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= πω(a|s)pω(s).

Substituting for pω(h) = πω(a|s)pω(s) and qθ(h) = d(s)πθ(a|s) into the KL divergence

from Eq. (D.13) yields:

KL(qθ(h) ∥ pω(h)) = Ed(s)πθ(a|s)
[
log

(
d(s)πθ(a|s)
pω(s)πω(a|s)

)]
,

= Ed(s)πθ(a|s)
[
log

(
d(s)

pω(s)

)]
+ Ed(s)πθ(a|s)

[
log

(
πθ(a|s)
πω(a|s)

)]
,

= Ed(s)
[
log

(
d(s)

pω(s)

)]
Eπθ(a|s) [1] + Ed(s)πθ(a|s)

[
log

(
πθ(a|s)
πω(a|s)

)]
,

= Ed(s)
[
log

(
d(s)

pω(s)

)]
+ Ed(s)

[
Eπθ(a|s)

[
log

(
πθ(a|s)
πω(a|s)

)]]
,

= KL(d(s) ∥ pω(s)) + Ed(s) [KL(πθ(a|s) ∥ πω(a|s))] . (D.14)

Observe that the first term in Eq. (D.14) does not depend on θ, hence taking the

minimum yields our desired result:

max
θ
L(ω, θ) = min

θ

(
KL(d(s) ∥ pω(s)) + Ed(s) [KL(πθ(a|s) ∥ πω(a|s))]

)
,

= min
θ

Ed(s) [KL(πθ(a|s) ∥ πω(a|s))] .

Since KL(πθ(a|s) ∥ πω(a|s)) ≥ 0, it follows that under exact representability, that is

there exists θ ∈ Θ s.t. πθ(a|s) = πω(a|s) and hence KL(πθ(a|s) ∥ πω(a|s)) = 0, we

have minθ Ed(s) [KL(πθ(a|s) ∥ πω(a|s))] = 0.
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D.4 Deriving the EM Algorithm

D.4.1 E-Step

Here we provide a full derivation of our E-step of our variational actor-critic algorithm.

The ELBO for our model from Eq. (6.4) with ωk fixed is:

L(ωk, θ) =Es∼d(s)

Ea∼πθ(a|s)
[
Q̂ωk

(h)
]

εωk

+H(πθ(a|s))

 .
Taking derivatives of the with respect to θ yields:

∇θL(ωk, θ) =Es∼d(s)

∇θEa∼πθ(a|s)
[
Q̂ωk

(h)
]

εωk

+∇θH(πθ(a|s)),

=Es∼d(s)

Ea∼πθ(a|s)
[
Q̂ωk

(h)∇θ log πθ(a|s)
]

εωk

+∇θH(πθ(a|s)),

where we have used the log-derivative trick [205] in deriving the final line. Note

that in this form, when εωk
≈ 0, our gradient signal becomes very large. To prevent

ill-conditioning, we multiply our objective by the constant εωk
. As εωk

> 0 for all

non-optimal ωk (see Theorem 6.2), this will not change the solution to the E-step

optimisation. Our gradient becomes:

εωk
∇θL(ωk, θ) =Es∼d(s)

[
Ea∼πθ(a|s)

[
Q̂ωk

(h)∇θ log πθ(a|s)
]
+ εωk

∇θH(πθ(a|s))
]
,

(D.15)

as required.
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D.4.2 M-Step

Here we provide a full derivation of our M-step of our variational actor-critic

algorithm. The ELBO for our model from Eq. (6.4) with θk+1 fixed is:

L(ω, θk+1) = Ed(s)

Eπθk+1
(a|s)

[
Q̂ω(h)

]
εω

+H(πθk+1
(a|s))


Taking derivatives of the with respect to ω yields:

∇ωL(ω, θk+1) = Ed(s)πθk+1
(a|s)

[
∇ω

(
Q̂ω(h)

εω

)]
,

= Ed(s)πθk+1
(a|s)

[
∇ωQ̂ω(h)

εω
− Q̂ω(h)

(εω)2
∇ωεω

]
,

=
1

εω
Ed(s)πθk+1

(a|s)

[
∇ωQ̂ω(h)

]
− 1

(εω)2
Ed(s)πθk+1

(a|s)

[
Q̂ω(h)

]
∇ωεω,

where we note that εω does not depend on h, which allowed us to move it in and

out of the expectation in deriving the final line. The gradient depends on terms up

to 1
(εω)2

, and so we multiply our objective by (εωi
)2 to prevent ill-conditioning when

εω ≈ 0. As (εωi
)2 > 0 for all non-convergent ω∗, this does not change the solution

to our M-step optimisation and can be seen as introducing an adaptive step size

which supplements αcritic. Observe that εωi

εω

∣∣
ω=ωi

= 1, which, with a slight abuse of

notation, yields our desired result:

(εωi
)2∇ωL(ω, θk+1) = εωi

Ed(s)πθk+1
(a|s)

[
∇ωQ̂ω(h)

]
− Ed(s)πθk+1

(a|s)

[
Q̂ω(h)

]
∇ωεω.

In general, calculating the exact gradient of εω is non trivial. We now derive this

update for three important cases:
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D.4.3 Gradient of the Residual Error

We define βω(h) := TωQ̂ω(h)− Q̂ω(h) and use the notation E[·] ≜ Eh∼U(h)[·]. Taking

the derivative yields:

∇ωεω =
1

2|H|
∇ω∥βω(h)2∥22,

=
1

2
∇ωE

[
βω(h)

2
]
,

= E [βω(h)∇ωβω(h)] . (D.16)

For targets that do not depend on πω(a|s), the gradient of ∇ωβω(h) can be computed

directly. As an example, consider the update for the Q-learning target:

∇ωβω(h) = Es′∼p(s′|h)
[
∇ωQ̂ω(a

∗, s′)
]
−∇ωQ̂ω(h),

where a∗ = argmaxa Q̂(a, s
′).

For convenience, we denote the expectation Eh′∼p(s′|h)πω(a′|s′) [·] as Eω [·]. For the

Bellman operator target T πωQ̂ω(h) = r(h) + γEω
[
Q̂ω(h

′)
]

that depends on πω(a|s),

we must solve a recursive equation for ∇ωπω(a|s). Consider the gradient of βω(h)

using T πω ·:

∇ωβω(h) = ∇ω

(
r(h) + γEω

[
Q̂ω(h

′)
]
− Q̂ω(h)

)
,

= ∇ωγEω
[
Q̂ω(h

′)
]
−∇ωQ̂ω(h),

= γEω
[
(∇ω log πω(a

′|s′))Q̂ω(h
′) +∇ωQ̂ω(h

′)
]
−∇ωQ̂ω(h),

= γEω
[
(∇ω log πω(a

′|s′))Q̂ω(h
′)
]
+ γEω

[
∇ωQ̂ω(h

′)
]
−∇ωQ̂ω(h),

= γEω
[
(∇ω log πω(a

′|s′))Q̂ω(h
′)
]
+ Γω(h), (D.17)

where Γω(h) := γEω
[
∇ωQ̂ω(h

′)
]
−∇ωQ̂ω(h). Substituting Eq. (D.17) into Eq. (D.16),
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we obtain:

∇ωεω = E [βω(h)∇ωβω(h)] ,

= γE
[
βω(h)Eω

[
(∇ω log πω(a

′|s′))Q̂ω(h
′)
]]

+ E [βω(h)Γω(h)] (D.18)

To find an analytic expression for the first term of Eq. (D.18), we rely on the

following theorem:

Theorem D.4 (Analytic Expression for Derivative of Boltzmann Policy Under

Expectation). If πω(a|s) is the Boltzmann policy defined in Eq. (6.3), it follows that:

E
[
βω(h)Eω

[
(∇ω log πω(a

′|s′))Q̂ω(h
′)
]]

=
εωE [βω(h)Γω(h)] EωQ̂ω(h) + Eω

[
∇ωQ̂ω(h)

]
(εω)2

(
1 + γE

[
βω(h)Eω

[
Q̂ω(h′)

]]) ,

where Eω is the operator Eω· := E
[
βω(h)Eω

[
Q̂ω(h

′)Mω·
]]

and Mω denotes the

operator Mω[·] := ·− Ea∼πω(a|s) [·]

Proof. consider the derivative πω(a|s)∇ω log πω(a|s):

πω(a|s)∇ω log πω(a|s) = ∇ωπω(a|s),

= ∇ω

exp
(
Q̂ω(h)
εω

)
∫
exp

(
Q̂ω(h)
εω

)
da
,

= ∇ω

(
Q̂ω(h)

εω

)
exp

(
Q̂ω(h)
εω

)
∫
exp

(
Q̂ω(h)
εω

)
da

−
exp

(
Q̂ω(h)
εω

)
∫
exp

(
Q̂ω(h)
εω

)
da
·

∫
∇ω

(
Q̂ω(h)
εω

)
exp

(
Q̂ω(h)
εω

)
da∫

exp
(
Q̂ω(h)
εω

)
da

,

= ∇ω

(
Q̂ω(h)

εω

)
πω(a|s)− πω(a|s)

∫
∇ω

(
Q̂ω(h)

εω

)
πω(a|s)da,

= ∇ω

(
Q̂ω(h)

εω

)
πω(a|s)− πω(a|s)Ea∼πω(a|s)

[
∇ω

(
Q̂ω(h)

εω

)]
,

247



= πω(a|s)

(
∇ω

(
Q̂ω(h)

εω

)
− Ea∼πω(a|s)

[
∇ω

(
Q̂ω(h)

εω

)])
.

(D.19)

Finding an expression for ∇ω

(
Q̂ω(h)
εω

)
, we have:

∇ω

(
Q̂ω(h)

εω

)
=

1

(εω)2

(
εω∇ωQ̂ω(h)− Q̂ω(h)∇ωεω

)
.

Substituting into Eq. (D.19), we obtain:

πω(a|s)∇ω log πω(a|s) =
πω(a|s)
(εω)2

(
εω∇ωQ̂ω(h)− Q̂ω(h)∇ωεω

− Ea∼πω(a|s)
[
εω∇ωQ̂ω(h)− Q̂ω(h)∇ωεω

])
,

=
πω(a|s)
(εω)2

(
εω

(
∇ωQ̂ω(h)− Ea∼πω(a|s)

[
∇ωQ̂ω(h)

])
+∇ωεω

(
Ea∼πω(a|s)

[
Q̂ω(h)

]
− Q̂ω(h)

))
,

=
πω(a|s)
(εω)2

(
εωMω

[
∇ωQ̂ω(h)

]
−∇ωεωMωQ̂ω(h)

)
,

whereMω denotes the operatorMω[·] := ·− Ea∼πω(a|s) [·]. Dividing both sides by

πω(a|s) yields:

∇ω log πω(a|s) =
1

(εω)2

(
εωMω

[
∇ωQ̂ω(h)

]
−∇ωεωMωQ̂ω(h)

)
.

Now, substituting for ∇ωεω = E [βω(h)∇ωβω(h)] from Eq. (D.16) yields:

∇ω log πω(a|s) =
1

(εω)2

(
εωMω

[
∇ωQ̂ω(h)

]
− E [βω(h)∇ωβω(h)]MωQ̂ω(h)

)
.

Now substituting for∇ωβω(h) = γEω
[
(∇ω log πω(a

′|s′))Q̂ω(h
′)
]
+Γω(h) from Eq. (D.17),
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and re-arranging for ∇ω log πω(a|s):

∇ω log πω(a|s) =
1

(εω)2

(
εωMω

[
∇ωQ̂ω(h)

]
− γE

[
βω(h)Eω

[
(∇ω log πω(a

′|s′))Q̂ω(h
′)
]]

+E [βω(h)Γω(h)]MωQ̂ω(h)

)
,

∇ω log πω(a|s) + γE
[
βω(h)Eω

[
(∇ω log πω(a

′|s′))Q̂ω(h
′)
]]

=
1

(εω)2

(
εωMω

[
∇ωQ̂ω(h)

]
+E [βω(h)Γω(h)]MωQ̂ω(h)

)
.

Now, to obtain our desired result, we first multiply both sides by Q̂ω(h), take the

expectation Eω, multiply by βω(h) and finally take the expectation E:

E
[
βω(h)Eω

[
(∇ω log πω(a

′|s′))Q̂ω(h
′)
]] (

1 + γE
[
βω(h)Eω

[
Q̂ω(h

′)
]])

=
1

(εω)2

(
εωE

[
βω(h)Eω

[
Q̂ω(h

′)Mω

[
∇ωQ̂ω(h

′)
]]]

+ E [βω(h)Γω(h)]E
[
βω(h)Eω

[
Q̂ω(h

′)MωQ̂ω(h
′)
]])

.

E
[
βω(h)Eω

[
(∇ω log πω(a

′|s′))Q̂ω(h
′)
]]

=
E
[
βω(h)Eω

[
Q̂ω(h

′)Mω

[
∇ωQ̂ω(h

′)
]]]

εω

(
1 + γE

[
βω(h)Eω

[
Q̂ω(h′)

]])
+

E [βω(h)Γω(h)]E
[
βω(h)Eω

[
Q̂ω(h

′)MωQ̂ω(h
′)
]]

(εω)2
(
1 + γE

[
βω(h)Eω

[
Q̂ω(h′)

]]) ,

=
εωE [βω(h)Γω(h)] EωQ̂ω(h) + Eω

[
∇ωQ̂ω(h)

]
(εω)2

(
1 + γE

[
βω(h)Eω

[
Q̂ω(h′)

]]) ,

as required.

Using Theorem D.4 to substitute for E
[
βω(h)Eω

[
(∇ω log πω(a

′|s′))Q̂ω(h
′)
]]

into

Eq. (D.17), we obtain the result:

∇εω =
εωE [βω(h)Γω(h)] EωQ̂ω(h) + Eω

[
∇ωQ̂ω(h)

]
(εω)2

(
1 + γE

[
βω(h)Eω

[
Q̂ω(h′)

]]) + E [βω(h)Γω(h)] . (D.20)
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The second term of Eq. (D.20) is the standard policy evaluation gradient and

the first term changes πω(a|s) in the direction of increasing εω. We see that all

expectations in Eq. (D.20) can be approximated by sampling from our variational

policy πθ(a|s) ≈ πω(a|s). After a complete E-step, and under Assumption 6.4, we

have πθ(a|s) = πω(a|s) and the gradient is exact.

While the first term in Eq. (D.20) is certainly tractable, it presents a formidable

challenge for the programmer to implement, especially if unbiased estimates are

required; several expressions which involve the multiplication of more than one

expectation Eω need to be evaluated. In all of these cases, expectations approximated

using the same data will introduce bias, however it is infeasible to sample more than

once from the same state in the environment. Like in [203], a solution to this problem

is to learn a function approximator for one of the expectations that is updated at a

slower rate than the other expectation. Alternatively, these function approximators

can be updated using separate data batches from a replay buffer.

A radical approach is simply to neglect this gradient term, which we discuss in

Appendix D.5.3. A more considered approach is to use an operator that does not

constraint Ω. Consider the operator introduced in Appendix D.5.2,

Tω,k· = r(h) + γEω,k [·] ,

where we have used the shorthand for expectation Eω,k [·] := Eh′∼p(s′|h)pω,k(a′|s′) [·]

and the Boltzmann distribution is defined as

pω,k(a|s) :=
exp

(
Q̂ω(h)
εk

)
∫
exp

(
Q̂ω(h)
εk

)
da
.

The incremental residual error is defined as εω,k := 1
2|H|∥βω,k(h)∥

2
2+εk and βω,k(h) :=
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Tω,kQ̂ω(h)− Q̂ω(h). Taking gradients of εω,k directly yields:

∇ωεω,k = E [βω,k(h)∇ωβω,k(h)] .

where

∇ωβω,k(h) = ∇ωEω,k
[
Q̂ω(h

′)
]
−∇ωQ̂ω(h),

= ∇ωEω,k
[
Q̂ω(h

′)
]
−∇ωQ̂ω(h),

= Eω,k
[
∇ω log pω,k(a

′|s′) +∇ωQ̂ω(h
′)
]
−∇ωQ̂ω(h). (D.21)

Now, ∇ω log pω,k(a
′|s′) can be computed directly as:

∇ω log pω,k(a
′|s′) = ∇ω

(
Q̂ω(h

′)

εk
− log

∫
exp

(
Q̂ω(h

′)

εk

)
da

)
,

=
∇ωQ̂ω(h

′)

εk
−
∫
∇ωQ̂ω(h

′)

εk

exp
(
Q̂ω(h′)
εk

)
da∫

exp
(
Q̂ω(h)
εk

)
da
da,

=
∇ωQ̂ω(h

′)

εk
−
∫
∇ωQ̂ω(h)

εk
pω,k(a

′|s′)da,

=
∇ωQ̂ω(h

′)

εk
− Ea′∼pω,k(a′|s′)

[
∇ωQ̂ω(h)

εk

]
,

=Mω,k

[
∇ωQ̂ω(h

′)

εk

]
,

where whereMω,k denotes the operatorMω,k[·] := ·− Ea∼pω,k(a|s) [·]. Substituting

into Eq. (D.21) yields:

∇ωβω,k(h) = Eω,k

[
Mω,k

[
∇ωQ̂ω(h

′)

εk

]
+∇ωQ̂ω(h

′)

]
−∇ωQ̂ω(h).
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D.4.4 Discussion of E-step

We now explore the relationship between classical actor-critic methods and the

E-step. The policy gradient theorem [205] derives an update for the derivative of

the RL objective (6.1) with respect to the policy parameters

∇θJ(θ) = Es∼ρπ(s)
[
Ea∼πθ(a|s) [Q

π(h)∇θ log πθ(a|s)]
]
,

where ρπ(s) is the discounted-ergodic occupancy, defined formally in [42], and in

general not a normalised distribution. To obtain practical algorithms, we collect

rollouts and treat them as samples from the steady-state distribution instead.

By contrast, the virel policy update in Eq. (D.15) involves an expectation over

d(s), which can be any sampling distribution decorrelated from π ensuring all states

are visited infinitely often. As Q̂ω(h) is also independent of πθ(a|s), we can move

the gradient operator ∇θ out of the inner integral to obtain

Es∼d(s)
[
Ea∼πθ(a|s)

[
Q̂ω(h)∇θ log πθ(a|s)

]]
= Es∼d(s)

[
∇θEa∼πθ(a|s)

[
Q̂ω(h)

]]

This transformation is essential in deriving powerful policy gradient methods such

as Expected and Fourier Policy Gradients [42, 56] and holds for deterministic polices

[187]. However, unlike in virel, it is not strictly justified in the classic policy

gradient theorem [205] and MERL formulation [85].

D.5 Relaxations and Approximations

D.5.1 Relaxation of Representability of Q-functions

In our analysis, Assumption 6.2 is required by Theorem 6.2 to ensure that a maximum

to the optimisation problem exists, however it can be completely neglected provided

that projected Bellman operators are used; moreover, if projected Bellman operators
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are used, our M-step is also always guaranteed to converge, even if our E-step does

not. Consequently, we can terminate the algorithm by carrying out a complete

M-step at any time using our variational approximation and still be guaranteed

convergence to a sub-optimal point.

We now introduce the assumption that our action-value function approximator is

three-times differentiable over Ω, which is required for convergence guarantees.

Assumption D.1 (Universal Smoothness of Q̂ω(h)). We require that Q̂ω(h) ∈ C3(Ω)

for all h ∈ H,

We now extend the analysis of [25] to continuous domains. Consider the local lin-

earisation of the function approximator Q̂ω(h) ≈ b⊤ω (h)ω, where bω(h) := ∇ωQ̂ω(h).

We define the projection operator PωQ(·) := b⊤ω (h)ω
′ where ω̃ are the parame-

ters that minimise the difference between the action-value function and the local

linearisation:

ω̃ := argmin
ω′

1

2|H|
∥Q(h)− b⊤ω (h)ω′∥22. (D.22)

Using the notation E[·] ≜ Eh∼U(h)[·] and taking derivatives of Eq. (D.22) with respect

to ω′ yields:

∇ω′
1

2|H|
∥Q(h)− ω′⊤∥22 =

1

2
∇ω′E

[
(Q(h)− b⊤ω (h)ω′)2

]
,

=
1

2
E
[
∇ω′(Q(h)

2 − 2b⊤ω (h)ω
′Q(h) + b⊤ω (h)ω

′b⊤ω (h)ω
′] ,

= E
[
bω(h)b

⊤
ω (h)ω

′ − bω(h)Q(h)
]
.

Equating to zero and solving for ω̃, we obtain:

ω̃ = E
[
bω(h)b

⊤
ω (h)

]−1 E [bω(h)Q(h)] .
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Substituting into our operator yields:

Pω· = b⊤ω (h)E
[
bω(h)b

⊤
ω (h)

]−1 E [bω(h)·] .

We can therefore interpret P as an operator that projects an action-value function

onto the tangent space of Q̂ω(h) at ω. For linear function approximators of the

form Q̂ω(h) = b⊤(h)ω, the projection operator is independent of ω and projects Q

directly onto the nearest function approximator and the operator [204].

We now replace the residual error in Section 6.3.1 with the projected residual

error,

εω :=
1

2|H|

∥∥∥Pω (TωQ̂ω(h)− Q̂ω(h)
)∥∥∥2

2
. (D.23)

By definition, there always exists fixed point ω ∈ Ω for which εω = 0, which means

that εω now satisfies all requirements in Theorem 6.2 without Assumption 6.2. We

can also carry out a complete partial variational M-step by minimising the surrogate

εω, keeping πω(a|s) = πθ(a|s) in all expectations. At convergence, we have εω = 0

in this case.

We now derive the more convenient form of εω from Lemma 1 in [25], extending

this result to continuous domains. Let βω(h) := TωQ̂ω(h)− Q̂ω(h). Substituting into

Eq. (D.23), we obtain:

2εω =
1

|H|
∥Pωβω(h)∥22 ,

=
1

|H|

∥∥∥b⊤ω (h)E [bω(h)b⊤ω (h)]−1 E [bω(h)βω(h)]
∥∥∥2
2
,

= E
[
E
[
b⊤ω (h)βω(h)

]
E
[
bω(h)b

⊤
ω (h)

]−1
bω(h)b

⊤
ω (h)E

[
bω(h)b

⊤
ω (h)

]−1 E [βω(h)bω(h)]
]
,

= E
[
b⊤ω (h)βω(h)

]
E
[
bω(h)b

⊤
ω (h)

]−1 E [bω(h)b⊤ω (h)]E [bω(h)b⊤ω (h)]−1 E [βω(h)bω(h)] ,

= E
[
b⊤ω (h)βω(h)

]
E
[
bω(h)b

⊤
ω (h)

]−1 E [βω(h)bω(h)] .
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Denoting ζω := E
[
bω(h)b

⊤
ω (h)

]−1 E [βω(h)bω(h)] following the analysis in [25], we

find the derivative of εω as:

∇ωεω = E
[
(∇ωβω(h))b

⊤
ω (h)ζω

]
+ E

[
(βω(h)− b⊤ω (h)ζω)∇2

ωQ̂ω(h)ζω

]
.

Following the method of [166], the multiplication between the Hessian and ζω can

be calculated in O(n) time, which bounds the overall complexity of our algorithm.

To avoid bias in our estimate, we learn a set of weights ζ̂ ≈ ζω on a slower timescale,

which we update as:

ζ̂k+1 ← ζ̂k + αζk
(
βω(h)− b⊤ω (h)ζk

)
bω(h), (D.24)

where αζk is a step size chosen to ensure that αζk < αcritic. The weights are then

used to find our gradient term:

∇ωεω = E
[
(∇ωβω(h))b

⊤
ω (h)ζ̂

]
+ E

[
(βω(h)− b⊤ω (h)ζ̂)∇2

ωQ̂ω(h)ζω

]
.

In our framework, the term ∇βω(h) is specific to our choice of operator. In [25], a

TD-target is used and parameter updates for ω are given as:

ωk+1 = P
(
ωk + αωk(bk − γb′k)b⊤k ζ̂k − qk

)
, (D.25)

qk :=
(
βωk

(hk)− b⊤k ζ̂k
)
∇2
ωQ̂ωk

(hk)ζ̂k

where bk := bωk
(hk) and P(·) is an operator that projects ωk into any arbitrary

compact set with a smooth boundary, C. The projection P(·) is introduced for

mathematical formalism and, provided C is large enough to contain all solutions{
ω|E

[
βω(h)∇ωQ̂ω(h)

]
= 0
}
⊆ C, has no bearing on the updates in practice. Un-

der Assumption D.1, provided the step size conditions
∑∞

k αζk =
∑∞

k αωk = ∞,∑∞
k α2

ζk <,
∑∞

k α2
ωk <∞ and limk→∞

αζk

αωk
= 0 hold and E[bω(h)b⊤ω (h)] is non-singular
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∀ω ∈ Ω, the analysis in Theorem 2 of [25] applies and the updates in Eqs. (D.24)

and (D.25) are guaranteed to converge to the TD fixed point. This demonstrates

using data sampled from any variational policy πθ(a|s) to update ωk as Eqs. (D.24)

and (D.25), ωk will converge to a fixed point.

D.5.2 Relaxation of Constraints on Ω

As discussed in Section 6.3.1, using the Bellman operator T πω · induces a constraint

on the set of parameters Ω. While this constraint can be avoided using the optimal

Bellman operator T ∗· := r(h)+γEh′∼p(s′|h) [maxa′(·)], evaluating maxa′(Q̂ω(h
′)) may

be difficult in large continuous domains. We now make a slight modification to our

model in Section 6.3.1 to accommodate a Bellman operator that avoids these two

practical difficulties.

Firstly, we introduce a new Boltzmann distribution pω,k(a|s):

pω,k(a|s) :=
exp

(
Q̂ω(h)
εk

)
∫
exp

(
Q̂ω(h)
εk

)
da
,

where {εk} is a sequence of positive constants εk ≥ 0, limk→∞ εk = 0. We now

introduce a new operator Tω,k·, defined as is the Bellman operator for pω,k(a|s):

Tω,k· := T pω,k· = r(h) + γEh′∼p(s′|h)pω,k(a′|s′) [·] . (D.26)

Let πω,k(a|s) be the Boltzmann policy:

πω,k(a|s) :=
exp

(
Q̂ω(h)
εω,k

)
∫
exp

(
Q̂ω(h)
εω,k

)
da
,

where the residual error εω,k := c
p
∥Tω,kQ̂ω(h)− Q̂ω(h)∥pp + εk. It is clear that Tω,k·

does not constrain Ω as εk has no dependency on ω and πω,k(a|s) is well defined for
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all ω ∈ Ω.

We now formally prove that minω limk→∞ εω,k = minω εω, and so minimising εω,k

is the same as minimising the objective εω from Section 6.3.1 and that Tω,k· ∈ T.

We also prove that minω limk→∞ εω,k = limk→∞minω εω,k (i.e. that min and lim

commute), which allows us to minimise our objective incrementally over sequences

εω,k.

Theorem D.5 (Incremental Optimisation of εω,k). Let εω,k := c
p
∥Tω,kQ̂ω(h) −

Q̂ω(h)∥pp + εk and Tω,k be the Bellman operator defined in Eq. (D.26). It follows

that i) Tω,k· ∈ T, ii) minω limk→∞ εω,k = minω εω and iii) minω limk→∞ εω,k =

limk→∞minω εω,k

Proof. To prove i), we take the limit limk→∞ Tω,kQ̂ω(h) = T ∗Q̂ω(h):

lim
k→∞
Tω,kQ̂ω(h) = r(h) + lim

k→∞
γEh′∼p(s′|h)pω,k(a′|s′)

[
Q̂ω(h)

]
.

Observe that from Theorem 6.1, we have

lim
εk→∞

γEh′∼p(s′|h)pω,k(a′|s′)

[
Q̂ω(h)

]
= γEh′∼p(s′|h)δ(a=argmaxa′ (Q̂ω(a′,s))

[
Q̂ω(h)

]
,

hence:

lim
k→∞
Tω,kQ̂ω(h) = r(h) + lim

k→∞
γEh′∼p(s′|h)pω,k(a′|s′)

[
Q̂ω(h)

]
,

= r(h) + γEh′∼p(s′|h)δ(a=argmaxa′ (Q̂ω(a′,s))

[
Q̂ω(h)

]
,

= r(h) + γEs′∼p(s′|h)
[
max
a′

(Q̂ω(h))
]
,

= T ∗Q̂ω(h).

Our operator is therefore constructed such that in the limit k → ∞, we recover

the optimal Bellman operator. Observe too that as c
p
∥Tω,kQ̂ω(h) − Q̂ω(h)∥pp ≥
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0, we have εω,k > 0 for all εk > 0. From Theorem 6.1, we have πω,k(a|s) →

δ(a = argmaxa′(Q̂ω(a
′, s)) when εω,k = 0, which therefore can only occur when

limk→∞ εk = 0. Under this limit, we have limk→∞ Tω,k = T ∗ and so Tω,k ∈ T, as

required for i).

To prove ii), consider taking the limit of εω,k directly:

lim
k→∞

εω,k = lim
k→∞

(
c

p
∥Tω,kQ̂ω(h)− Q̂ω(h)∥pp + εk

)
,

= lim
k→∞

(
c

p
∥Tω,kQ̂ω(h)− Q̂ω(h)∥pp

)
+ ε∞,

=
c

p
∥ lim
k→∞
Tω,kQ̂ω(h)− Q̂ω(h)∥pp,

=
c

p
∥T ∗Q̂ω(h)− Q̂ω(h)∥pp,

= εω, (D.27)

as required.

To prove iii), let ω̃k be the minimiser of εω,k, that is ω̃k = argminω εω,k. Let ω̃ be the

limit of all such sequences ω̃ = limk→∞ ω̃k and let ω∗ = argminω εω. By definition,

we have εω̃k,k ≤ εω,k. Taking the limit k →∞ and then the min, we have:

min lim
k→∞

εω̃k,k ≤ min lim
k→∞

εω,k,

=⇒ εω̃,∞ ≤ min lim
k→∞

εω,k. (D.28)

Using Assumption 6.2 and Eq. (D.27), it follows that the right hand side of Eq. (D.28)

is min limk→∞ εω,k = min εω = 0, hence εω̃,∞ ≤ 0. By definition, εω̃,∞ ≥ 0, and so

equality must hold. It therefore follows limk→∞minω εω,k = εω̃,∞ = 0, which implies

minω limk→∞ εω,k = limk→∞minω εω = 0 as required.

Overall, this result permits us to carry out separate optimisations over εω,k while

gradually increasing k → ∞ to obtain the same result as minimising εω directly.
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The advantage to this method is that each minimisation εω,k involves the operator

Tω,k, which is tractable, mathematically convenient and does not constrain Ω. Note

too that, as calculated in Appendix D.4.3, the gradient ∇ωεω,k is straightforward to

implement in comparison with ∇ωεω using T πω . We save investigating this operator

further for future work.

D.5.3 Approximate Gradient Methods and Partial Optimisa-

tion

A common trick in policy evaluation is to use a semi-gradient method [202]. Like in

supervised methods [27], semi-gradient treats the term TωQ̂ω(h) as a fixed target,

rather than a differential function. Introducing the notation E[·] ≜ Eh∼U(h)[·], the

semi-gradient can easily be derived as:

∇ωεω =
1

2
∇ωE

[(
⊢
[
TωQ̂ω(h)

]
− Q̂ω(h)

)2]
,

= −E
[(
Q̂ω(h)− TωQ̂ω(h)

)
∇ωQ̂ω(h)

]

where ⊢ [·] is the stopgrad operator, which sets the gradient of its operand to zero,

⊢ [·] = ·, ∇ ⊢ [·] = 0. The semi-gradient method has no convergence guarantees,

and indeed there exist several famous examples of divergence when used with classic

RL targets [24, 224, 242], however its ubiquity in the RL community is testament

to its ease of implementation and empirical success [153, 202]. We therefore see

no reason why it should not be successful for virel, a claim which we verify in

Section 6.6. In our setting, we replace our M-step with the simplified objective

ωk+1 ← argminω εω. This is justified because argminω εω was the original objective

motivated in Section 6.3.1 assuming we have access to as good enough variational

policy πω(a|s) ≈ πθ(a|s). More formally, our objective L(ω, θ) is maximised for any

εω → 0, so argminω εω can be considered a surrogate objective for L(ω, θ). Using

semi-gradients, M-step update becomes:
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M-Step (Critic) Semi-gradient: ωi+1 ← ωi − αcritic∇ωεω|ω=ωi
,

∇ωεω = E
[(
Q̂ω(h)− TωQ̂ω(h)

)
∇ωQ̂ω(h)

]
.

We can approximate TωQ̂ω(h) by sampling from the variational distribution πθ(a|s)

and by using any appropriate RL target. Another important approximation that we

make is that we perform only partial E- and M-steps, halting optimisation before

convergence. From a practical perspective, convergence can often only occur in a

limit of infinite time steps anyway, and if good empirical performance result from

taking partial E- and M-steps, computation may be wasted carrying out many

sub-optimisation steps for little gain.

As analysed by [81], such algorithms fall under the umbrella of the generalised

alternating maximisation (GAM) framework, and convergence guarantees are specific

to the form of function approximator and MDP. Like in many inference settings, we

anticipate that most function approximators and MDPs of interest will not satisfy

the conditions required to prove convergence, however variational EM procedures

are known to be to empirically successful even when convergence properties are not

guaranteed [81, 225]. We demonstrate in Section 6.6 that taking partial EM steps

does not hinder our performance.

D.5.4 Local Smoothness of Q̂ω∗(·)

For Theorem 6.1 to hold, we require that Q̂ω∗(·) is locally smooth about its maximum.

Our choice of function approximator may prevent this condition from holding, for

example, a neural network with ReLU elements can introduce a discontinuity in

gradient at maxh Q̂ω∗(h). In practice, a formal Dirac-delta function can only ever

emerge in the limit of convergence εω → 0. In finite time, we obtain, at best, a

nascent delta function; that is a function with very small variance that is ’on the

way to convergence’ (see, for example, [109] for a formal definition). The mode of
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a nascent delta function therefore approximates the true Dirac-delta distribution.

When Q̂ω∗(·) is not locally smooth, functions that behave similarly to nascent delta

functions will still emerge at finite time, the mode of which we anticipate provides

an approximation to the hardmax behaviour we require for most RL settings.

We also require that Q̂ω∗(·) has a single, unique global maximum for any state. In

reality, optimal Q-functions may have more than one global maxima for a single state

corresponding to the existence of multiple optimal policies. To ensure Assumption 6.3

strictly holds, we can arbitrarily reduce the reward for all but one optimal policy. We

anticipate that this is unnecessary in practice, as our risk-neutral objective means

that a variational policy will be encouraged fit to a single mode anyway. In addition,

these assumptions are required to characterise behaviour under convergence to a

solution and will not present a problem in finite time where Q̂ω(h) is very unlikely

to have more than one global optimum anyway.

D.6 Recovering MPO

We now derive the MPO objective from our framework. Under the probabilistic

interpretation in Appendix D.1, the objective can be derived using the prior pϕ(h) =

U(s)πϕ(a|s) instead of the uniform distribution. Following the same analysis as in

Appendix D.1, this yields an action-posterior:

pω,ϕ(a|s,O) =
exp

(
Q̂ω(h)
εω

)
πϕ(a|s)∫

exp
(
Q̂ω(h)
εω

)
πϕ(a|s)da

.

Again, following the same analysis as in Appendix D.1, our ELBO objective is:

L(ω, θ, ϕ) = Ed(s)

[
Eπθ(a|s)

[
Q̂ω(h)

εω

]
−KL(πθ(a|s) ∥ πϕ(a|s))

]
. (D.29)
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Including a hyper-prior p(ϕ) over ϕ adds an additional term to L(ω, θ, ϕ):

L(ω, θ, ϕ) = Ed(s)

[
Eπθ(a|s)

[
Q̂ω(h)

εω

]
−KL(πθ(a|s) ∥ πϕ(a|s))

]
+ log p(ϕ).

which is exactly the MPO objective, with an adaptive scaling constant εω to balance

the influence of KL(πθ(a|s) ∥ πϕ(a|s)). Without loss of generality, we ignore the

hyperprior and analyse Eq. (D.29) instead.

As discussed by [1], the MPO objective is similar to the PPO [185] objective with

the KL-direction reversed. In our E-step, we find a new variational distribution

πθk+1
(a|s) that maximises the ELBO with ωk fixed: Doing so yields an identical

E-step to MPO. In parametric form, we can use gradient ascent and apply the same

analysis as in Appendix D.4.1, obtaining an update

E-Step (MPO): θi+1 ← θi + αactor (εωk
∇θL(ωk, ϕk, θ)|θ=θi),

εωk
∇θL(ωk, ϕk, θ) = Ed(s)

[
Eπθ(a|s)

[
Q̂ωk

(h)∇θ log πθ(a|s)
]
− εωk

∇θKL(πθ(a|s) ∥ πϕk(a|s))
]
.

(D.30)

As a point of comparison, [1] motivate the update in Eq. (D.30) by carrying out a

partial E-step, maximising the "one-step" KL-regularised pseudo-likelihood objective.

In our framework, maximising Eq. (D.30) constitutes a full E-step, without requiring

approximation.

In our M-step, we maximise the LML using the posterior derived from the E-step,

yielding the update:
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M-Step (MPO): ωk+1, ϕk+1 ← argmaxω,ϕ L(ω, ϕ, θk+1),

argmax
ω,ϕ

L(ω, ϕ, θk+1) = argmax
ω,ϕ

(
Ed(s)

[
Eπθk+1

[
Q̂ω(h)

εω

]
−KL(πθk+1

∥ πϕ(a|s))

])
.

Maximising for ϕ can be achieved exactly by setting πϕ(a|s) = πθk+1
(a|s), un-

der which KL(πθk+1
∥ πϕ(a|s)) = 0. Maximising for ω is equivalent to finding

argmaxω Ed(s)πθk+1

[
Q̂ω(h)
εω

]
, which accounts for the missing policy evaluation step,

and can be implemented using the gradient ascent updates from Eq. (6.7). Setting

πϕ(a|s) = πθk+1
(a|s) is exactly the M-step update for MPO and, like in TRPO [183],

means that πϕ(a|s) can be interpreted as the old policy, which is updated only

after policy improvement. The objective in Eq. (D.29) therefore prevents policy

improvement from straying too far from the old policy, adding a penalisation term

KL(πθ(a|s) ∥ πold(a|s)) to the classic RL objective.

D.7 Variational Actor-Critic Algorithm Pseudocode

Algorithms 5 and 6 show the pseudocode for the variational actor-critic algorithms

virel and beta described in Section 6.6. The respective objectives are:

JV (ϕ) =Est∼D
[
1

2
(Vϕ(st)− Eat∼πθ [Qω(st, at)])

2

]
,

JQ(ω) =E(ht,rt,st+1)∼D

[
1

2

(
rt + γVϕ̄(st+1)−Qω(ht)

)2 ]
,

Jπ
q

virel(θ) =Eht∼D
[
log πθ(at|st)(α− (Qω(ht)− Vϕ̄(st)))

]
,

Jπ
q

beta(θ) =Eht∼D
[
log πθ(at|st)

(
1− γ
ravg

εω − (Qω(ht)− Vϕ̄(st))
)]
.

Note that the derivative of the policy objectives can be found using the reparametri-

sation trick [111, 91], which we use for our implementation.
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Algorithm 5 Variational Actor-Critic: virel

Initialize parameter vectors ϕ, ϕ̄, θ, ω, D ← {}

for each iteration do

for each environment step do

at ∼ πq(a|s; θ)

st+1 ∼ p(st+1|st, at)

D ← D ∪ {(st, at, r(st, at), st+1)}

end for

for each gradient step do

ϕ← ϕ− λV ∇̂ϕJ
V (ϕ) (M-step)

ω ← ω − λQ∇̂ωJ
Q(ω) (M-step)

θ ← θ − λπq∇̂θJ
πq

virel(θ) (E-step)

ϕ̄← τ ϕ̄+ (1− τ)ϕ̄

end for

end for
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Algorithm 6 Variational Actor-Critic: beta

Initialize parameter vectors ϕ, ϕ̄, θ, ω, D ← {}

for each iteration do

for each environment step do

at ∼ πq(a|s; θ)

st+1 ∼ p(st+1|st, at)

D ← D ∪ {(st, at, r(st, at), st+1)}

end for

for each gradient step do

εω ← ED
[(
rt + γVϕ̄(st+1)−Qω(ht)

)2]
ϕ← ϕ− λV ∇̂ϕJ

V (ϕ) (M-step)

ω ← ω − λQ∇̂ωJ
Q(ω) (M-step)

θ ← θ − λπq∇̂θJ
πq

beta(θ) (E-step)

ϕ̄← τ ϕ̄+ (1− τ)ϕ̄

end for

end for
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D.8 Experimental details

D.8.1 Parameter Values

Table D.1: Summary of Experimental Parameter Values: Virel

PARAMETER VALUE

Steps per evaluation 1000
Path Length 999
Discount factor 0.99

Mujoco-v2 Experiments:

Batch size 128
Net size 300

λβ ≈
1− γ
ravg

Humanoid
4e-4

All other
4e-3

Reward scale

Hopper, Half-Cheetah
5

Walker
3

All other
1

Value function
learning rate 3e-4

Policy
learning rate 3e-4

MLP layout as given in
https://github.com/vitchyr/rlkit

Mujoco-v1 Experiments:

Values as used by [85] in
https://github.com/haarnoja/sac

266

https://github.com/vitchyr/rlkit
https://github.com/haarnoja/sac


D.8.2 Additional MuJoCo-v1 Experiments
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Figure D.3: Training curves on additional continuous control benchmarks Mujoco-v1.

D.8.3 Additional MuJoCo-v2 Experiments
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Figure D.4: Training curves on additional continuous control benchmarks gym-
Mujoco-v2.
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Appendix E

Appendix for Chapter 7

E.1 Additional Definitions and Proofs

We first revisit the concept of MDP homomorphisms [173, 143] which we will use

for establishing important results concerning the conditional bisimulation frame-

work.

Definition E.1 (MDP homomorphism [173]). Let Ψ ⊂ S×U is the set of admissible

state-action pairs. MDP homomorphism H from M = ⟨S, U,Ψ, P, r, γ, ρ⟩ to M ′ =

⟨S ′, U ′,Ψ′, P ′, r′, γ, ρ′⟩ is defined as a surjection H : Ψ→ Ψ′, which is itself defined

by a tuple of surjections ⟨f, {gs, s ∈ S}⟩. In particular, H((s, a)) := (f(s), gs(a)),

with f : S → S ′ and gs : As → A′f(s), which satisfies two requirements: Firstly it

preserves the reward function:

r′(f(s), gs(a)) = r(s, a)

and secondly it commutes with transition dynamics of M :

P ′(f(s), gs(a), f(s
′)) = P (s, a, [s′]BH|S)
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Here we use the notation [·]BH|S to denote the projection of equivalence classes

B that partition Ψ under the relation H((s, a)) = (s′, a′) on to S. Isomorphisms

χ : Ψ → Ψ′ can then be formally defined as homomorphisms between M.M ′ that

completely preserve the system dynamics with the underlying functions f, gs being

bijective.

Theorem E.1. Let met be the space of bounded pseudometrics on Z ×Θ and π a

policy that is continuously improving. Define F : met 7→ met by

F(d, π)(hi, hj) = (1− c)|rπhi − r
π
hj
|+ cW (d)(P π

hi
, P π

hj
)

Then, ∀c ∈ (0, 1), F has a least fixed point d̃ which is a π∗-bisimulation metric.

Proof. First, consider the super-MDP over the unified state space H ≜ Z × Θ,

Msuper ≜ ⟨H,U, PH , rH , γ, ρH⟩, where the H subscripted distributions implicitly

account for f, PΘ, ρ. Similarly, let Mθ be the MDP obtained by restricting the

context to a particular value θ and Mbase ≜ ⟨S, U, P, r, γ, ρ⟩. We have that under

Assumption 7.1Mθ andMbase are isomorphic and all ofMsuper,Mθ andMbase are

homomorphic [173, 143]. Thus we can map the policy dynamics in the super-MDP

exactly to the base MDP with states S. We now directly apply metric convergence

result of Theorem 1 in [251] on the representation space Y , thus showing that the π

bisimulation metric converges after repeated applications of the operator F .

Theorem E.2 (Aggregation value bound). Given an MDP M̂ constructed by

aggregating tuples h of observation, context in an ϵ-neighborhood of the representation

space such that δ ≜ maxs,s′,θi,θj ||ϕ(fθi(s), θi)− ϕ(fθj (s′), θj)| − dS(s, s′)|, where dS is

a π∗-bisimulation metric on S. Further let ϕ̂ denote the map from any h to these

clusters, the optimal value functions for the two MDPs follow:

|V ∗(h)− V̂ ∗(ϕ̂(h))| ≤ 2(ϵ+ δ)

(1− γ)(1− c)
∀h ∈ Z ×Θ
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Proof. We use a proof strategy similar to [251]. We have that every θ restriction

of Msuper is isomorphic to Mbase from the above proof. By direct application of

Theorem 5.2 in [59] on the MDPMsuper for any h ∈ Z ×Θ:

(1− c)|V ∗(h)− V̂ ∗(ϕ̂(h))| ≤ g(s, d̃) +
γ

1− γ
max
s′∈S

g(s′, d̃)

where g is the average distance between a state and all other states in its equivalence

class under the bisimulation metric d̃. Substituting g with the ϵ-neighborhood ball,

and accounting for δ, the error of the representation w.r.t. the metric for each cluster

gives us:

(1− c)|V ∗(h)− V̂ ∗(ϕ̂(h))| ≤ 2(ϵ+ δ) +
γ

1− γ
2(ϵ+ δ)

|V ∗(h)− V̂ ∗(ϕ̂(h))| ≤ 1

1− c

(
2(ϵ+ δ) +

γ

1− γ
2(ϵ+ δ)

)
=

2(ϵ+ δ)

(1− γ)(1− c)
.

Lemma E.1. Let f : X → Y , g : Y → Z be two functions with lipschitz constants

L1 and L2 respectively, then g(f(·)) is lipschitz with L1 · L2

Proof. Computing deviations for the various functions and using the definition of

lipschitzness, we have that:

df ≤ L1dx

dg ≤ L2dy = L2df

=⇒ dg ≤ L2L1dx

Thus g(f(·)) is lipschitz with L1 · L2 w.r.t. X.
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Theorem E.3 (Generalization to unseen context). Under Assumption 7.2, Assump-

tion 7.3 we have that for any two contexts θi, θj:

|Jπθi − Jπθi←θj | ≤ 1

1− γ
Es∼f−1

θ ρ
πθi ,

a∼πθi←θj

[
Aπθi (s, a) +

2γAmax
1− γ

LfθL
ϕ
zL

π
ydΘ(θi, θj)

]

where Amax ≜ maxs |Ea∼πθi←θj
[Aπθi (s, a)]| and dΘ is a metric on the context space.

Proof. We have that dTV (πθi , πθj) ≤ LfθL
ϕ
oL

π
ydΘ(θi, θj) by repeated application of

Lemma E.1. We next apply Corollary 2 from [2] that uses the bound for performance

difference as a function of policy TV distance giving us the result.

Theorem E.4 (Simulator fidelity bound). For an approximately correct simulator

(r̂, P̂ ) such that maxs,a |r̂(s, a)− r(s, a)| ≤ ϵR and maxs,a dTV (P̂ (s, a), P (s, a)) ≤ ϵP

we have for any policy π:

|Jπ − Ĵπ| ≤ ϵR
(1− γ)

+
γϵPRmax

(1− γ)2

Proof. We proceed similar to [104] for proving the policy value bound. Let us

consider the base MDP Mbase as defined above. For any projected policy π here,

the value function satisfies ∀s ∈ S:

|V̂ π(s)− V π(s)|

≤ |(r̂(s, π) + γ⟨P̂ (s, π), V̂ π⟩)− (r(s, π) + γ⟨P (s, π), V π⟩)|

≤ ϵR + γ|⟨P̂ (s, π), V̂ π⟩ − ⟨P (s, π), V π⟩|

≤ ϵR + γ|⟨P̂ (s, π), V̂ π⟩ − ⟨P (s, π), V̂ π⟩+ ⟨P (s, π), V̂ π⟩ − ⟨P (s, π), V π⟩|

≤ ϵR + γ[|⟨P̂ (s, π)− P (s, π), V̂ π⟩|+ |V̂ π − V π|∞]

≤ ϵR + γ[|⟨P̂ (s, π)− P (s, π), V̂ π − Rmax

2(1− γ)
1⟩|+ |V̂ π − V π|∞]

≤ ϵR + γ[|P̂ (s, π)− P (s, π)|1|V̂ π − Rmax

2(1− γ)
1|∞ + |V̂ π − V π|∞]
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≤ ϵR + γ[
ϵPRmax

(1− γ)
+ |V̂ π − V π|∞]

Here we have viewed the probability transitions and values as vectors. The use of

baseline Rmax

2(1−γ) helps tighten the bound by centering the values. We use the definition

of TV in last step. As the bound for all s ∈ S we get after rearranging:

|V π − V̂ π|∞ ≤
ϵR

1− γ
+
γϵPRmax

(1− γ)2

Finally, as Jπ is a convex combination of V π w.r.t. ρ, we can use the above bound

to prove the result.

Theorem E.5 (Complete simulator fidelity bound). For an approximately correct

simulator (r̂, P̂ , f̂) such that maxs,a |r̂(s, a)−r(s, a)| ≤ ϵR, maxs,a dTV (P̂ (s, a), P (s, a)) ≤

ϵP and ϵf ≜ maxs,θ dY (ϕ(f̂θ(s)), ϕ(fθ(s))), we have for any policy π:

|Jπf̂←f − Ĵπf̂ | ≤ ϵR
(1− γ)

+
γϵPRmax

(1− γ)2
+

1

1− γ
E
s∼f̂−1ρ

π
f̂ ,

a∼πf̂←f

[
Aπf̂ (s, a) +

2γAmax
1− γ

Lπy ϵf

]

Proof. We consider an intermediate simulator (r̂, P̂ , f) which has the same reward

and transition as the original simulator (R̂, P̂ ) but uses an exact observation function

f (we use ˜ to represent quantities associated with this simulator). We can now

decompose the difference bound as:

|Jπf̂←f − Ĵπf̂ | ≤ |Jπf̂←f − J̃πf̂←f |+ |J̃πf̂←f − Ĵπf̂ |

Next we have that the dTV (πf̂←f , πf̂ ) ≤ Lπy ϵf . Reasoning similarly to Theorem 7.3

for the right term of RHS which gives an upper bound using the TV difference.

Finally also applying Theorem 7.4 on the left term of RHS we get the theorem’s

result.
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E.2 Additional experimental details

E.2.1 Architecture details

We use separate deep networks for actor, critic, transition and reward models. The

encoder network for each used 32 filters and a 50 feature dimensions. The actor and

critic models each used an MLP trunk of 4 layers and 1024 hidden dimensions on top

of the encoder. The reward model used MLP trunk of 2 MLP layers and 512 hidden

dimensions on top of the encoder. The transition model type used was a mixture of

Gaussians of ensemble size 5. Each component in the transition ensemble uses a

2 MLP layers of 768 hidden dimensions on top of the encoder with the final layer

bifurcating for a value for mean and standard deviation per feature dimension. Layer

normalization was used for the reward and transition models. Target networks were

used for value estimates and were updated every 4 epochs. Relu non-linearity was

used for the networks. We exponentially anneal the representation loss with weight

(1.8− 0.8 ∗ 2
steps

total steps ). We use identical architectures for the overlapping components

of the baseline. The reconstruction agent uses an image decoder with an MLP

followed by 2 deconvolution layers with the intermediate layer using 32 filters. Adam

optimizer was used for training the parameters of the networks used. Grid search

was used for tuning the hyperparameters. Our code is based on implementation

by [251] for their work. Each seed takes around 4 days to run on an Nvidia V100

GPU.

E.2.2 Hyper-parameters used: Conditional bisimulation
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Table E.1: Hyper-parameters used: Conditional bisimulation

PARAMETER VALUE

λbase 0.24
λicc 0.32
λcc 0.24
Initial steps 1000
Batch size 512
Action repeat 2
Encoder learning rate 10−3

Encoder τ 5 · 10−3
Decoder learning rate 10−3

Frames 1000
Actor learning rate 10−3

Critic learning rate 10−3

Critic τ 10−2

α learning rate 10−4

γ 0.99
Total Steps 3.5 · 105
Temperature 0.1
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