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ABSTRACT: Applications of machine learning in chemistry are
many and varied, from prediction of structure−property relation-
ships, to modeling of potential energy surfaces for large scale
atomistic simulations. We describe a generalized approach for the
application of machine learning to the classification of spectra
which can be used as the basis for a wide variety of undergraduate
projects. While our examples use FTIR and mass spectra, the
approach could equally well be used with UV−visible, Raman,
NMR, or indeed any other type of spectra. We summarize a
number of different unsupervised and supervised machine learning
algorithms that can be used to classify spectra into groups, and
illustrate their application using data from three different projects carried out by fourth year chemistry undergraduates. The three
projects investigated the ability of the various machine learning approaches to correctly classify spectra of a variety of fruits, whiskies,
and teas, respectively. In all cases the algorithms were able to differentiate between the various samples used in each study, and the
trained machine learning models could then be used to classify unknown samples with a high degree of accuracy (>98% in many
cases). Depending on the extent to which students are expected to write their own code to perform the data analysis, the general
model adopted in this work can be adapted for a variety of purposes, from short (one to two day) practical exercises and workshops,
to much longer independent student projects.
KEYWORDS: Upper-Division Undergraduate, Laboratory Instruction, Chemoinformatics, Interdisciplinary/Multidisciplinary,
Computer-Based Learning, Chemometrics, Mass Spectrometry, Spectroscopy, Computational Chemistry

■ INTRODUCTION
Every chemist is familiar with the challenge of identifying an
unknown compound or mixture of compounds. With a wide
range of spectroscopic and mass spectrometric techniques at our
fingertips, we are now able to perform sophisticated measure-
ments on virtually any type of sample. In some cases, the sample
and its spectra are simple enough to make identification
straightforward. However, in many cases the spectra are
sufficiently complex that our best approach is comparison with
spectra from a reference library.1−3 Spectral matching with
library spectra is now almost exclusively performed by computer
algorithms, making it easier than ever to identify individual
chemical compounds and to characterize complex mixtures.
Machine learning (ML), a branch of Artificial Intelligence

(AI), offers additional tools for the classification and
identification of spectra. Machine learning algorithms use data
to train a model, which can then be used to make predictions
when presented with previously unseen data.4 ML algorithms
have already found a host of applications in chemistry, including
the prediction of structure−property relationships,5−7 the
modeling of potential energy surfaces for large scale atomistic
simulations,8 the prediction of the electron densities of

molecules,9 the prediction of molecular structures from NMR
spectra,10 and new synthetic routes to complex chemicals.11

However, despite its widespread use in research, there are not
many examples of the use of ML in the chemical education
literature.
One such example described an introductory ML exercise for

undergraduate chemists, using Python notebooks to explore the
physicochemical properties of a pre-existing data set of 6,497
wines.12 The exercise assumes no prior coding knowledge and
covers basic Python syntax and its usage prior to moving on to
the ML activities. A supervised ML method known as k-nearest
neighbors (k-NN) is implemented in the notebooks in order to
classify wines as either red or white. Overall, the exercise is highly
scaffolded to ensure that students with a mixture of prior coding
experiences can complete all of the tasks. Another introductory
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ML task involves the use of binary classification algorithms
alongside ML techniques to classify infrared spectra as
“carbonyl” or “non-carbonyl”.13

A number of authors have approached the subject of teaching
machine learning via artificial neural networks.14,15 However,
the data sets that are required for training these networks need to
be very reproducible to avoid the ANNs finding patterns in the
data that do not exist. We therefore avoided the use of ANNs in
this study, given the complex nature of the substrates that we
planned to sample.
Prior to employing ML methods, it is usually necessary to

carry out dimensionality reduction to reduce the large amount of
data down to a data set of manageable size for computation. The
most widely used dimensionality reduction approach, and the
one used in our work, is Principal Component Analysis
(PCA).16−18 A detailed demonstration of PCA designed for
chemistry undergraduates is demonstrated by Sidou and Borges,
illustrating its use both as a data visualization technique and as a
method of data reduction prior to ML classification.19 Using the
R programming language, the exercise focuses primarily on the
use of PCA to extract correlations in the properties of chemical
elements. Again, the exercise is structured to guide students
through set examples of pre-existing data, with predetermined
outcomes. Other such examples of PCA in the chemical
education literature include the classification of vegetable oils by
FTIR spectroscopy,20 and the identification of a range of edible
oils by NMR spectroscopy.21

In the following, we describe an approach suitable for use as a
mini-research project in which students choose a set of samples
(in our examples these were a variety of fruits, whiskies, and
teas), record spectra for a large number of these samples, use the
data to train an ML classifier, and then evaluate the ability of the
resulting model to classify “unknown” samples based on their
spectra. Our examples employ atmospheric-solids analysis probe
mass spectrometry (ASAP-MS) and Fourier transform infrared
(FTIR) spectroscopy to characterize the samples, but the
approach would work equally well with other types of
spectroscopy. We have previously applied a similar approach
to the classification of spectra recorded using Raman22,23 and
vis−NIR reflectance24 spectroscopies, for example.We have also
demonstrated the use of ASAP-MS as an approachable
technique in the undergraduate chemistry laboratory.25 We
also suggest that a cut-down version of this project may be
suitable for the introduction of PCA/ML techniques in
chemistry, into the undergraduate curriculum (see Supporting
Information for practical details).
For the purposes of the present work, a “data point”,

sometimes known as a “predictor variable”, is an FTIR or mass
spectrum of one of the samples included in the study, and the
goal is to use a classifier to assign each spectrum to the correct
group. Taking our first student project as an example, given a
large number of spectra recorded for oranges, lemons, limes, and
tomatoes, we would like the ML algorithm to be able to assign a
given spectrum to one of these four groups, e.g. to correctly
recognize the spectrum recorded for a lemon as belong to the
“lemon” group. Classifiers can be split into two different types,
namely unsupervised and supervised methods. An unsupervised
classifier looks for patterns in the data themselves to find the
groups. In the present application such a classifier would be
given only the set of spectra to work with, and would not be
provided with any additional information about the samples.
Given the task of sorting a large number of spectra into four
groups, the classifier would aim to assign spectra to groups such

that the variation between spectra within groups was minimized
and between groups was maximized. The k-means clustering
algorithm is an example of an unsupervised classifier.26,27

While unsupervised classifiers can be extremely helpful in
finding patterns in the data, often we are able to train an ML
classifier using a set of training data for which the identities of the
individual data points are known. In this case we can use a
supervised classifier, such as k nearest neighbors (k-NN),
support vector machines (SVM), or linear discriminant analysis
(LDA). The labels for each data point (in our case the identities
of the corresponding samples) are known as “response
variables”, and correspond to the variable we would like to
determine when presenting the trained algorithm with a new
data point. To train the model, a set of predictor variables (mass
or FTIR spectra) and corresponding response variables
(“lemon”, “lime”, “orange”, or “tomato”), collectively known
as the “training data set”, are presented to the algorithm, which
then determines which features of the predictor variables
correlate with the known response variables, i.e. which features
of the spectra correlate with a given spectrum being that of an
orange, lemon, lime, or tomato. The resulting model can then be
tested by seeing how accurately a set of previously unseen “test
data” is classified by the trained algorithm.28,29 A key feature of
ML is that more data can be added as it becomes available in
order to improve the model. The more good quality data the
model has to train on, the more robust it should become.29

The data analysis for our student projects was performed
within the MATLAB30 programming environment using the
Statistics andMachine Learning toolbox,31 which contains built-
in functions for the various ML algorithms employed. Similar
function libraries are available for other programming platforms,
including Python, C++, and R, and the projects could be adapted
for these platforms. Depending on how much coding the
students are expected to do themselves, how many samples are
studied, how much experimental characterization is performed,
and what types of questions are posed, the approach described in
the following can be developed into anything from a two-day
practical exercise or workshop to an extended research project.
Of course, the amount of prior experience that students have
with MatLab will affect the length of time that students need to
complete the tasks set; this is very much up to the individual
institution to plan, but some suggestions of timings are given in
the Supporting Information.

■ LEARNING OBJECTIVES
The exercise outlined here can be tailored to suit the needs of
individual courses. The learning objectives of the exercise are
likely to vary depending on the course, but possible objectives
might include:

• To safely and appropriately prepare and run samples on
analytical instruments.

• To introduce a programming language or build upon
existing programming skills.

• To visualize data using principal component analysis.
• To classify data and make predictions using machine
learning methods.

• To design a short project by identifying interesting yet
achievable research questions.

■ METHODS
Mass spectra were acquired using an Advion expressionL
Compact Mass Spectrometer�a single quadrupole instrument
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with a mass range of 10−2000 m/z and resolution of 0.05 m/z
over the entire mass range. The spectrometer is equipped with
an Atmospheric Pressure Chemical Ionization (APCI) ion
source, which was used in all experiments in combination with
an atmospheric solids analysis probe (ASAP). The tip of the
ASAP comprises a disposable sealed glass capillary. To record a
mass spectrum, the capillary tip is placed in contact with the
sample and the probe is then inserted into the ion source of the
mass spectrometer. Spectra are recorded at 0.5 s intervals, and
the spectra are typically averaged over the first 20 s after
insertion of the probe.
FTIR spectra were recorded on a Shimadzu IRSpirit FTIR

Spectrometer fitted with a QATR-S attenuated total reflectance
accessory. Spectra were recorded between 400 and 4000 cm−1,
with a resolution of 1 cm−1, and averaged over 10 scans.
The number of spectra that needs to be recorded for each

sample for a successful outcome was left up to the student to
investigate. It was found that this varied between 20 and 60 per
sample to get sufficient resolution between the types of fruit/
whisky/tea (see below). Students were able to obtain a data set
from an individual sample (e.g. a type of fruit or tea) in 0.5−1.0
h, depending on the instrument used.
Fruit Study

Mass spectra were recorded for four different fruits: easy-peeler
orange, lemon, lime, and salad tomato. To obtain a mass
spectrum the fruit was cut in half, the closed end of the probe’s
glass capillary was dipped a fewmillimeters deep into the flesh of
the fruit, and the probe was inserted into the mass spectrometer
for analysis. Significant residue tends to build up over multiple
acquisitions, so to preclude this the glass capillary tube was
cleaned after each acquisition with a sponge soaked in detergent
and water, before being rinsed in deionized water. The glass

capillary tube on the probe was changed between each
experiment with a new fruit and/or ionization mode, which
was approximately every 10 acquisitions. Preliminary experi-
ments showed that the “high-temperature, low-fragmentation”
setting for the ion source yielded the best spectra, and this
ionization mode was used for all subsequent measurements.
Sixty mass spectra were recorded in both positive and negative
ion mode for each fruit species, yielding a data set of 240 positive
and negative ion mass spectra in total, examples of which are
shown in Figure 1.
FTIR spectra were recorded for the same fruit types by placing

a sample of skin/peel into the ATR attachment of the FTIR
spectrometer. Sixty spectra were recorded for each fruit species,
yielding a data set of 240 FTIR spectra in total. A different part of
the skin/peel was sampled for each spectrum, the ATR prism
was cleaned with isopropyl alcohol between measurements, and
a new background spectrum was taken every 10 measurements.
Whisky Study

The mass spectra of four different whiskies were recorded: an
American Bourbon, a Scottish blended, a Scottish single malt,
and an English single malt. The whiskies were decanted into
smaller sample bottles, which were stored in the dark until
sampling to mitigate any potential chemical changes caused by
prolonged light exposure over time. During preliminary testing it
was determined that negative ion acquisitions displayed poor
signal-to-noise ratio with this sample type, and thus the decision
was taken to collect positive ion spectra only. Twenty positive-
ion mass spectra were acquired for each of the four whiskies, for
each of the nine possible preset ion source combinations of
temperature (low, medium, high) and fragmentation conditions
(low, medium, high).

Figure 1. Mean positive ion and negative ion mass spectra recorded for each of the fruit species, plotted over the m/z range from 10 to 500.
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Tea Study

Mass spectra were recorded for five different types of tea, namely
Chai, Breakfast, Assam, Ceylon, and decaffeinated Earl Grey. To
prepare samples for measurement, the 2.5 g contents of a teabag
was brewed in 100 mL of water at 100 °C for 3 min. The ion
source was run in “high-temperature, low-fragmentation” mode.
Ten mass spectra were recorded for each brew, with the process
repeated twice for each tea to give a total of 20 spectra per tea.
The capillary was cooled and cleaned with methanol in between
each acquisition.
Data Preprocessing and Analysis

A full data set for the Tea study is provided in the Supporting
Information, together with the Python code used to analyze this.
These data are supplied as .txt files, but by changing the file
extension to.csv, the data may be loaded into a spreadsheet for
manipulation. Data for the other studies is available from the
authors on request from bona f ide instructors.
Initial data preprocessing of the mass spectral data was carried

out within the Advion Data Express software environment. For
each measurement, the mass spectrum was averaged over the
first 20 s after the ASAPwas inserted into themass spectrometer,
and the resulting spectrum was saved as a comma-separated
variables (.csv) file containing a list of m/z values together with
the associated ion counts. For the tea study, a MATLAB
program was written to perform this step automatically,
generating individual data files for each measurement given
the raw acquisition data file as input. For each study, the spectra
were read into MATLAB, stored in a data store, and each
spectrum was normalized either to a maximum peak height of
unity (fruit study mass spectra) or for each spectrum, MS or
FTIR, the total area between the spectral line and the baseline
was calculated numerically by the code written, and this was then
normalized to unity, to ensure that any variations in spectral
intensity due to amount of substance were accounted for
(whisky and tea study mass spectra; fruit study FTIR spectra).
The latter is preferable, as normalization to the largest peak risks
distortion of the data if there is a large, variable impurity peak. In
these cases, either normalization protocol gave similar results in
the hands of our students. The FTIR spectra were also
interpolated to give data for the 400 to 4000 cm−1 range in
regular 1 cm−1 intervals.
The data analysis for this project was performed within the

MATLAB coding environment. Much of the analysis employed
the Statistics and Machine Learning toolbox, which contains a
variety of ready-to-use machine learning algorithms. Initially,
PCA was carried out and the first two and three principal
components plotted as a method of data visualization. This data
reduction technique also prepared the data set for subsequent
ML classification. The PCA andMLmethods used are described
in more detail in the Supporting Information.

■ EXERCISE OUTLINE
The projects described above were carried out by fourth year
undergraduates during the first few weeks of the final year of an
M.Chem. integrated master’s degree. These students were about
to embark upon a more substantial research project in an
established research group, under the supervision of a Principal
Investigator, and these preliminary projects, carried out within
the research group, were designed to introduce students to the
area of research that became the subject of their master’s thesis.
Since all students in our institution are placed individually in
research groups, the projects described in this paper have, so far,

only been undertaken by a small number. However, we suggest
that the flexibility of approach (see below) would allow for the
earlier introduction of this area in the undergraduate course�in
our course this would be in the third year, as part of a suite of
optional laboratories. It is likely, especially if mass spectrometry
was the chosen technique, to continue to be limited to a small
number of undergraduates, due to instrument availability. The
projects described here served to teach the students how to use
the instruments and how to analyze their data using a variety of
ML classifiers. The students were encouraged to design their
own short projects, selecting their own samples and identifying
the key questions they would attempt to answer. This project-
based approach can encourage students to take responsibility for
their work and helps them to develop skills critical for any future
career.32 Depending on the analytical technique employed and
samples chosen, the list of possible questions is almost endless,
but potential areas to explore include:

• Comparison between different spectroscopic techniques.
• Effects of sample preparation methods and/or sample
degradation.

• Effects of data set size.
• Variations between sample brands, batches, etc., and how
these affect the analysis.

• Choice of machine learning methods for different
problems/questions.

• Sensitivity of classifiers to small variations between
samples.

Given the relatively large amount of data that needs to be
acquired to implement ML classifiers, a short data acquisition
time for each measurement is essential. ASAP-MS and FTIR are
very well suited for such applications, particularly given the ease
of use and applicability to a broad range of sample types. As
noted previously, our approach could equally well be used with
data acquired using other spectroscopic or spectrometric
techniques. Students could be given a selection of instruments
to use and prompted to consider the practicalities of data
collection as part of the project.
The amount of coding the students are expected to do

themselves can be varied depending on the anticipated length of
the project or practical and the previous coding experience of the
students. For the studies described above, the students had no
prior programming experience and completed several MATLAB
Self-Paced courses before beginning the project, namely
MATLAB Onramp (∼2 h),33 MATLAB Fundamentals (∼21
h),34 and Machine Learning with MATLAB (∼14 h).35 Exact
implementation of the exercise could be varied depending on the
coding experience required, or desired, by the student. For
example, a two-day exercise with minimal coding knowledge
could be carried out with data collection and preprocessing on
day one, followed by PCA and ML analysis using prefilled
coding notebooks on day two. In this implementation students
should focus on using one or two ML algorithms, such as k-
means clustering (unsupervised) and k-NN (supervised), and
understanding them well (see Supporting Information for
details on the ML algorithms used). Alternatively, a longer (1+
week) project could be imagined in which students choose the
samples they would like to analyze, for example different food
stuffs or different batches of the same type of sample. They
would then need to implement their own code and optimize
their data collection for the best results. Students could be
presented with a range of unsupervised and supervised ML
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methods and asked to determine which are most suitable for
their data.
As mentioned, the data preprocessing and analysis can be

carried out in Python, C++, R, or similar in place of MATLAB,
with all platforms offering dedicated libraries for PCA and ML
methods. As such, the exercise can be tailored to follow on from
any pre-existing coding experience as appropriate. Since the
projects described here have been completed, introductory
exercises in Python and MATLAB have been implemented
within the second year of our own undergraduate course.
Students carrying out such projects in future will already be
familiar with the syntax of these two languages, and will be able
to make an immediate start on the required data processing and
ML analysis. This exemplifies our spiral curriculum approach to
undergraduate teaching, with key skills, in this case writing and
using code, being revisited at later stages of the course and with a
higher degree of complexity.36

■ EXAMPLE RESULTS
The fruit study was the first student project performed, with the
goal of exploring how well a variety of unsupervised and
supervised ML algorithms were able to classify spectra recorded
for the student’s chosen fruit samples. Visual inspection of the
mass spectra reveals that the lemon and lime spectra are very
similar in appearance in both positive and negative ion mode,
while the spectra recorded for oranges and tomatoes are
markedly different. Figure 2(a) shows a plot of the first three
principal component scores for each mass spectrum, with the
data points for each type of fruit represented in different colors.

Not unexpectedly given the visual appearance of the spectra, we
see some overlap between the data points for lemons and limes
in principal component space, while the data points for oranges
and tomatoes are reasonably well separated both from each
other and from the lemon and lime data points.
The data were first analyzed using an unsupervised k-means

clustering algorithm, which was instructed to group the data into
four clusters. The algorithm uses one of several available
distance metrics to measure the distances between data points,
and uses these to cluster nearby data points into groups. The first
20 principal component scores were used to calculate the
distances. The results of this analysis are plotted in Figure 2(b)
in the same principal component space as above, but this time
the data points are colored according to the group they were
assigned by the clustering algorithm rather than by their true
identity. Comparison of Figure 2(a) and (b) reveals that the k-
means clustering algorithm is able to assign oranges and
tomatoes to their own groups with a high degree of accuracy:
nearly all tomato data points are assigned correctly to group 4,
and nearly all orange spectra are assigned to group 3. However,
lemon and lime spectra are often confused by the algorithm, with
the result that groups 1 and 2 each contain a mixture of lemon
and lime spectra.
Similar PCA and k-means clustering analysis of the FTIR data

was carried out and complements the results obtained for the
mass spectra. Figure 2(c) shows the first three principal
component scores for each normalized FTIR spectrum, color-
coded according to sample type. Tomatoes, limes, and oranges/
lemons are seen to occupy separate regions of principal

Figure 2. (a) 3D plot of the first three principal component scores for each data point (mass spectrum) recorded in the fruit study. Data points are
colored according to the identity of the sample. (b) Result of a k-means clustering analysis in which the mass spectral data was grouped into four
clusters. Data points are colored according to the group to which they are assigned. (c) 3D plot of the first three principal component scores for each
FTIR data point recorded in the fruit study. (d) Result of a k-means clustering analysis in which the FTIR data set was grouped into four clusters.
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component space, but there is significant overlap between the
principal component scores of oranges and lemons. Meanwhile,
Figure 2(d) shows that k-means clustering analysis assigns
tomato spectra exclusively to group 3, and limes mostly to group
2, with erroneous assignment in ∼17% of cases to group 4.
Lemons and oranges are often confused, with both assigned
mostly either to groups 3 or 4, and occasionally to group 2.
Combining this analysis with that for the mass spectra, we can
see that while some fruits are misidentified for both techniques,
different pairs of fruits are confused in each case, and so a more
accurate assignment could be elucidated through a combination
of the results.
The mass spectra were also analyzed with a number of

different supervised ML classifiers, namely k-NN, SVM, and
LDA. Each algorithm was run 1000 times with a different 80:20
split of the spectra into training and test data on each run to
minimize any biases arising from the choice of specific training
data points. The results for each classifier, summed over all 1000
runs, are shown in the form of a confusion matrix in Figure 3.
The sensitivities and specificities achieved by each classifier are
shown in Table 1. With 20% of the 60 spectra (i.e., 12 spectra)

for each fruit being used as test data for each run, perfect
performance would correspond to 12,000 data points being
assigned to each fruit and appearing along the diagonal of the
confusion matrix, with all off diagonal elements (corresponding
to mis-assignments) being zero. We see that in reality, while the
proportion of correct classifications is very high, there are some
nonzero off-diagonal elements, the most significant correspond-
ing to misclassifications of lemon spectra as belonging to limes,
and vice versa.
Unsurprisingly, the performance of all of the supervised ML

algorithms is much better than that of the unsupervised k-means
clustering algorithm. Even the simplest supervised algorithm, k-
NN, is able to assign the (principal component scores of the)

spectra to the correct fruit well over 90% of the time, with perfect
assignment of oranges and tomatoes to the correct groups. The
best performing algorithm, LDA, assigns oranges and tomatoes
correctly 100% of the time and lemons and limes correctly
around 98% of the time. The success of this first project was very
encouraging, and opened the way for students to pose a variety
of new questions in subsequent projects.
While slightly different questions were posed, similarly

encouraging results were obtained for the whisky and tea
studies, with further information and results from these studies
included in the Supporting Information.

■ STUDENT FEEDBACK
Students were asked to complete a questionnaire, designed to
monitor changes in skills and perceptions as a result of working
through this project. A copy of the questionnaire is provided
(Supporting Information), and Figure 4 shows how the
students’ responses were affected by the experience they had
been through
In addition, students were asked to rate two statements: I

enjoyed doing the project on ML and PCA in Chemistry, and I
would recommend this project to other students at my university.
These statements scored 4.75 and 5.00 respectively, on the same
scale.
The results show that the project was very popular with the

students, but Q7 shows that the students who undertook the
work were already interested in this area. The opportunity to
respond in free text produced comments such as “I think
integrating this project into Chemistry undergraduate degrees
would advance valuable computational skills in students, better
equipping them to thrive in a career in Chemistry�and
countless other fields�in the modern world.” and “It is very
easy for students to see how the project is applicable to current
scientific research. Much of the code written for such a mini-
project can be easily adapted for research settings.”

■ SUMMARY
Overall, these short ML projects served as useful introductions
to PCA and ML analysis, but also to self-directed learning in
preparation for students’ final year projects. After completion of
the short projects, all of the students were able to use their
newfound skills successfully in their main year-long research
projects. These longer projects employed the same methods but
applied them to the analysis of human tissue and plasma samples
in the context of exploring new approaches to clinical
diagnostics and patient risk stratification. The students found

Figure 3. Confusion matrices showing the results of analyzing the fruit mass spectra with three supervised machine learning classification algorithms:
(a) k-NN, (b) SVM, (c) LDA.

Table 1. Percentage Sensitivity and Specificity Achieved by
the Supervised ML Classifiers for Each Species of Fruit

SVM LDA k-NN

Sens.
(%)

Spec.
(%)

Sens.
(%)

Spec.
(%)

Sens.
(%)

Spec.
(%)

Lemon 96.4 99.8 98.0 98.5 96.1 95.9
Lime 99.6 98.8 97.6 99.2 91.3 98.7
Orange 99.9 100 100 100 100 100
Tomato 100 100 100 100 100 100
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the MATLAB courses to be very useful in introducing them to
the basics of coding, such as reading in data files, creating and
editing variables, visualizing data, for loops, and the
implementation of the ML algorithms. However, with a
sufficiently informative lab manual they felt that the project
would have been manageable even if they had only completed
the two-hour MATLAB Onramp course. All students were very
proficient at coding in MATLAB by the end of their projects,
and felt that their newly acquired coding skills would serve them
well during future careers either in scientific research or in other
professions such as consulting or finance. They also greatly
enjoyed the opportunity to gain insight into the vast capabilities
of modern computational methods.
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